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ABSTRACT
In the era of Next-Generation Sequencing and shotgun proteomics, the sequences
of animal toxigenic proteins are being generated at rates exceeding the pace of
traditional means for empirical toxicity verification. To facilitate the automation of
toxin identification from protein sequences, we trained Recurrent Neural Networks
with Gated Recurrent Units on publicly available datasets. The resulting models are
available via the novel software package TOXIFY, allowing users to infer the probability
of a given protein sequence being a venom protein. TOXIFY is more than 20X faster
and uses over an order of magnitude less memory than previously published methods.
Additionally, TOXIFY is more accurate, precise, and sensitive at classifying venom
proteins.

Subjects Bioinformatics, Computational Biology, Genomics
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INTRODUCTION
Venom is a complex trait utilized across numerous animal phyla and is an ideal source
for novel drug discoveries with millions of peptides highly specific for therapeutically
relevant ion channels, G-protein-coupled receptors, enzymes, and transporters (Prashanth,
Hasaballah & Vetter, 2017). Despite recent advances in venom gland proteomics and
transcriptomics that have yielded millions of potential venom peptides (Fry et al., 2009),
the biological function of only approximately 8,000 entities have been empirically verified
and deposited into UniProt to date. In lieu of empirical evidence, venom proteins are
often identified via BLAST searches, which can be a problematic approach for two primary
reasons. First, venom proteins frequently evolve via gene duplications and subsequent
neofunctionalization and subfunctionalization of non-toxic physiological proteins,
rendering BLAST unable to possess the sensitivity needed to distinguish venomous
paralogs (Hargreaves et al., 2014; Duda & Palumbi, 1999). Second, venom peptides are
often highly diverged to the extent that BLAST searches yield no strong matches (Linial,
Rappoport & Ofer, 2017). Gacesa, Barlow & Long (2016) attempted to alleviate these
difficulties through their software ToxClassifier with Generalized Linear Models (GLM)
and by training a support vector machine (SVM) on venom and non-venom proteins
encoded with Hidden Markov Models (HMM) of tox-bit motifs via BLAST searches
against a positive venom database (Gacesa, Barlow & Long, 2016). However, the SVM-
based approach utilized by ToxClassifier is restricted to linear representations, which
may limit performance in regard to classifying protein sequences (Byvatov et al., 2003).
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Here we present toxify, a deep-learning approach to distinguish animal venom proteins
from non-toxic proteins by training neural networks on protein sequences encoded as
numerical vectors.

METHODS
Datasets
To allow for a proper comparison betweenToxClassifier and toxify, the training datasets
for toxify comprised only protein sequences fromUniProtKB thatwere uploaded/available
pior to June 2016, when ToxClassifier was published. Protein sequences uploaded to
UniProtKB between June 2016 and October 2018 were not included as training data for
either ToxClassifier or toxify and were used as benchmark comparisons between the
two methods. Datasets were obtained using the following two procedures.
1. To train our models to classify venom proteins, we constrained our training sets to only

include verified venom proteins from Swiss-Prot. This dataset, referred henceforth as
‘‘positive’’, was constructed using the following search terms (annotation:(type:‘‘tissue
specificity’’ venom)). This resulted in a total of 6,133 venom protein sequences.

2. ‘‘Negative’’ datasets comprised 50,000 random, non-venom proteins from Swiss-Prot
using the following search term (NOT annotation:(type:‘‘tissue specificity’’ venom)
AND reviewed:yes).
Due to venom proteins generally being low mass and relatively short (e.g., <30 AA),

only proteins containing ≤500 amino acids were included in the final training dataset.
This brought the size of the positive dataset down to a total of 4,808 proteins and the
negative dataset to 32,391 proteins. Training data consisted of a random 80% subset of the
positive and negative sequences, and the remaining 20% was set aside for model validation.
Less than 5% of the dataset contained sequence redundancy, which is an artifact of the
databasing procedure in SwissProt.

Sequence encoding
In order to encode proteins as numerical representations, the amino acid sequence for
each protein was inscribed as a 5x500 matrix with values corresponding to each of the
five Atchley factors per amino acid in the protein (Atchley et al., 2005). Atchley factors
were chosen because they statistically summarize 500 AA attributes that reflect polarity,
secondary structure, molecular volume, codon diversity, and electrostatic charge. Matrices
of proteins containing fewer than 500 amino acids were padded with zeros to fill the
remainder of the matrix, which do not affect the resulting models and predictions.

Sequence classifier
Recurrent Neural Networks (RNN) are an ideal tool for classifying ordered sets of items,
such as amino acid sequences, because they specify hidden states that depend on the input
as well as the prior hidden state. Gated Recurrent Units (GRUs) are a high-performing
RNN that have gained popularity since being introduced by Cho et al. (2014), due to faster
performance over traditional Long Short-Term Memory approaches. Using TensorFlow
v1.8.0 libraries as the back-end (Abadi et al., 2016), we constructed a venom protein
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Figure 1 Workflow diagram for toxify, including preprocessing of training data, filtering by size and
zero padding, converting numeric vectors as Atchley factors, and training on neural network using
gated recurrent units.

Full-size DOI: 10.7717/peerj.7200/fig-1

classifier using GRU with 270 hidden units with a learning rate of 0.01. Training occurred
for 50 epochs, and the training accuracy and training loss in accuracy (from a logit cost
function) were recorded at every 2nd epoch. The trained model was then used to calculate
the probability that a given protein should be classified as an animal venom (Fig. 1).

Benchmark against ToxClassifier
While other machine learning approaches exist, such as ToxinPred (Gupta et al., 2013),
ClanTox (Naamati, Askenazi & Linial, 2009) and ToxClassifer are the only ones that
support large proteomic datasets, so we chose them to benchmark against toxify. Test
data used to compare performance of toxify to ToxClassifier included all protein
sequences from Swiss-Prot with ≤500 amino acids that have been uploaded since the
publication of ToxClassifier (2016–2018) and not used in the training set of either
toxify, Toxclassifier, or ClanTox. These were split into a positive dataset with all 274
verified venom protein sequences and a negative dataset with 274 randomly selected and
verified non-venom protein sequences.

ClanTox scores toxins on a scale of −1 to 1, with -1 being unlikely to be a venom
and 1 being very likely to be a venom. The overall venom probability for ClanTox was
calculated by normalizing the values to range between 0 and 1. ToxClassifier uses nine
SVM and GLMmodels and provides as output a nine dimensional vector of zeros and ones
indicating the prediction of whether or not the protein is a venom from each model. The
probability for ToxClassifier was calculated as the average for all models. Contrarily, the
probability a protein is a venom from toxify was determined as the probability calculated
for each protein by the trained network. Thus, the sum of these probabilities gives an
approximation of the total number of predicted toxins in a dataset, and serves as the basis
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for bench-marking the performance of the different models with the same following criteria
as Gacesa, Barlow & Long (2016).
1. True positive (TP): This is the approximate number of positive sequences that were

correctly predicted to be venom proteins. It is calculated as the product of the mean
venom probability of the positive dataset and the total number of positive sequences.

2. True negative (TN): This is the approximate number of negative sequences that were
correctly predicted to be non-venom proteins. This is calculated as the product of the
mean venom complementary probability of the negative dataset and the total number
of negative sequences.

3. False positive (FP): This is the approximate number of negative sequences that were
incorrectly predicted to be venom proteins. This is calculated as the product of the
mean venom probability of the negative dataset and the total number of negative
sequences.

4. False negative (FN): This is the approximate number of positive sequences that were
incorrectly predicted to be non-venom proteins. This is calculated as the product of the
mean venom complementary probability of the positive dataset and the total number
of positive sequences.

5. Accuracy (ACC): This is the proportion of proteins that were correctly predicted to
be either a venom protein or a non-venom protein. This was calculated using the
following expression; ACC = TP+TN

TP+TN+FP+FN
6. Specificity (SPEC): This is the proportion of proteins that were correctly classified as a

non-venom protein. This was calculated using the following expression;
SPEC = TN

TN+FP
7. Sensitivity (SENS): This is the proportion of proteins that were correctly classified as a

venom protein. This was calculated using the following expression; SENS= TP
TP+FN

8. Balanced accuracy (BACC): This is the average of specificity and sensitivity, which was
calculated using the following expression; BACC = SPEC+SENS

2
9. Negative predictive value (NPV): This is the proportion of negative sequences that were

classified as true negatives, which was calculated using the following expression;
NPV = TN

TN+FN
10. Positive predictive value (PPV): This is the proportion of positive sequences that were

classified as true positives, which was calculated using the following expression;
PPV = TP

TP+FP
11. F-score (F1): This is the harmonic mean of precision and sensitivity, which was

calculated using the following expression; F1= 2×TP
2×TP+FP+FN

12. Matthew’s Correlation coefficient (MCC): This is a measure of the correlation between
observed and predicted values (Matthews, 1975; Powers, 2011), which was calculated
using the following expression;
MCC = TP×TN+FP×FN

√
(TP+FP)×(TP+FN )×(TN+FP)×(TN+FN )

These analysis were carried out on the same Linux computer (Ubuntu 18.04; Dell
PowerEdge-R910; 48 threads; 1 Tb RAM). The elapsed real time between invocation and
termination of each process by the CPU was recorded in seconds(s), and the maximum
resident set size of memory allocation (MEM) was recorded in megabytes (MB).
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Figure 2 Accuracy progression for RNN as training progressed for both training and test datasets.
Full-size DOI: 10.7717/peerj.7200/fig-2

RESULTS
Validation
The overall accuracy of the model was assessed every 2nd epoch during training as recorded
by the loss of accuracy, the training accuracy, and the test dataset accuracy (Fig. 2). At the
end of training, the model approached 99.9% training accuracy and 97.4% accuracy on the
test dataset.

Benchmark against ClanTox and ToxClassifier
Of the 274 venom and non-venom proteins uploaded to Swiss-Prot since the publication of
ToxClassifier, toxify correctly classified 37%more venomproteins thanToxClassifier.
toxify also correctly classified 96.0% of non-venom proteins, which is only 2.7% less
than the amount correctly classified by ToxClassifier. ToxClassifier and toxify
outperformed ClanTox on all metrics. Further, toxify completed these predictions an
order of magnitude faster than ToxClassifier, and used an order of magnitude less
memory (Table 1).
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Table 1 Benchmarkmetrics for toxify compared to clantox and Toxclassifier. The top portion
shows averages and percentages (in parenthesis) of true and false positives (TP & FP) as well as true and
false negatives (TN & NF). Additionally, the proportions for accuracy, specificity, sensitivity, balanced ac-
curacy, negative predictive value, positive predictive value, F-score, and Matthew’s correlation coefficient
are listed. The bottom portion shows computational performance in terms of CPU time in seconds and
memory usage in megabytes. Asterisks indicate metrics in which toxify outperformed.

clantox ToxClassifier toxify

TP* 147.8 (54.2%) 152.8 (55.8%) 209.6 (76.5%)
TN 223.4 (81.8%) 270.2 (98.6%) 263.0 (96.0%)
FP 50.6 (18.5%) 3.8 (1.4%) 11.0 (4.0%)
FN* 126.2 (46.2%) 121.2 (44.2%) 64.4 (23.5%)
ACC* 0.68 0.77 0.86
SPEC 0.82 0.99 0.96
SENS* 0.54 0.56 0.76
BACC* 0.68 0.77 0.86
NPV* 0.64 0.69 0.80
PPV 0.74 0.98 0.95
F1* 0.63 0.71 0.85
MCC* 0.37 0.60 0.74
CPU (s)* NA 100.18 4.05
MEM (MB)* NA 6,824 293

Implementation
Sensitivity against non-toxic homologs
To ensure that toxify is able to discern between toxins and homologous physiological
proteins, toxify classified the top hits from a BLASTP search of the remaining 502,000
proteins in Swiss-Prot (not included in the training dataset) against the positive dataset
keeping hits with an e-value cutoff of 1×10−6. toxify correctly assigned at least a 90%
non-venom probability to 1,961 out of 2,183 (89.8%) of the non-toxic homologs, which
is only 6.2 percentage points lower than toxify’s true negative rate when calculated for
non-toxic non-homologous proteins, and 5.2 percentage points lower than the accuracy
reported by ToxClassifier on a similar dataset denoted by Gacesa, Barlow & Long (2016)
as their ‘‘hard’’ dataset.

Case usage
Venom proteins from highly studied venomous animals made up the bulk of the training
data. In order to assess the robustness of toxify to other venomous animals, we classified a
recently discovered venom protein expressed by a robber fly (Diptera: Asilidae: Machimus
arthriticus), which belongs to a lineage of venomous flies whose venoms had not been
previously studied and were not found in Swiss-Prot before our cutoff date (Drukewitz et
al., 2018). The neurotoxin described by Drukewitz et al. (2018) as asilidin1 was discovered
through venom gland transcriptomics and venom proteomics, and its activity as a
neurotoxin was verified via injection of the synthesized peptide into a honey bee (Apis
mellifera), which caused subsequent paralysis. toxify classified asilidin1 as a venom protein
with a probability of 0.99.
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While asilidin1 is the only toxin that Drukewitz et al. (2018) empirically verified to
have toxigenic effects, they also discovered 169 additional putative toxins. We provided
those sequences as well as 170 random complete coding seqeunces from the body tissue
transcriptome of Machimus arthriticus as input. toxify classified a total of 50 out of the
169 putative toxins described by Drukewitz et al. (2018) as being toxins, but only 10 of
the 170 randomly sampled non-venom proteins from the same species. This suggests that
the predictive power of the models used by toxify is reduced in venomous lineages not
included in the training datasets, nevertheless the true positive rate is five times higher than
the false positive rate.

DISCUSSION
In this paper, we proposed toxify, the first animal toxin classifier that utilizes deep
learning. While other classifiers use slower BLAST-based methods to encode proteins as a
set of features as training input for SVMmodels (Naamati, Askenazi & Linial, 2009;Gacesa,
Barlow & Long, 2016), toxify quickly encodes amino acids as a 5-dimensional vector of
Atchley factors and makes use of the sequential nature of proteins via neural networks
with GRUs to classify sequences. While toxify had a slightly poorer false positive rate
and specificity scores when compared to ToxClassifier, it achieved a better accuracy,
sensitivity score, F-score, and Matthew’s correlation coefficient—while achieving speeds
and memory efficiency an order of magnitude better than ToxClassifier.

There are two obvious applications for toxify. First of all, the prediction module of
toxify may be used to quickly classify large venom protein datasets. These datasets may
be in the form of venom gland transcriptomes or venom proteomes and can stem from a
wide variety of venomous taxa. Users may also find toxify to be a helpful screening tool
for annotation pipelines such as Venomix (Macrander et al., 2018). Secondly, the training
module of toxify has been setup for users to easily retrain models on custom protein
datasets, while easily adjusting hyper-parameters such as the number of training epochs,
learning rate, and unit size for the GRUs.

While we were able to demonstrate toxify’s utility in classifying venom proteins
across the phylogenetic diversity of eumetazoans, improvements in the overall accuracy
between taxa can still be made. Balancing the training dataset is still an issue due to verified
venom protein sequences being outnumbered by non-venom proteins by several orders
of magnitude. Improvements in the accuracy of the current iteration of toxify will be
accomplished by empirically verifying the functionality of additional venoms from an ever
increasing number of sequenced venom proteins from a broader array of venomous taxa. In
the meantime, a tool like toxify in tandem with ToxClassifier (Gacesa, Barlow & Long,
2016), ToxinPred (Gupta et al., 2013), ClanTox (Naamati, Askenazi & Linial, 2009), and
Venomix (Macrander et al., 2018) may expedite the process of narrowing down potentially
novel venoms to be empirically verified and added to repositories such as Swiss-Prot.
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