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ABSTRACT 

This thesis explores the viability of Bayesian model averaging (BMA) as an alternative to 

traditional general linear models (GLMs) and ensemble-based machine-learning methods 

commonly used to predict workforce outcomes. In contrast to both the practices that focus on 

selecting a single “best” GLM and set of predictors, and the ensemble-based machine-learning 

methods that combine many simpler models, the BMA approach explores the space of all models 

to be considered and assigns probabilistic weights to each. These posterior model probabilities 

(PMPs) can then be used to generate optimal predictions regarding future data observations via a 

weighted-average of the model-specific predictions. By averaging over models, BMA routines 

are well-suited to addressing the model uncertainty that arises when a researcher has numerous 

potential predictor variables. Rather than condition inferences upon a single model and set of 

predictors, or upon a collection of poorer models and simpler subsets, the BMA routine can 

average predictions across all possible combinations of predictor variables. Focusing upon this 

form of model uncertainty, this thesis demonstrates how BMA might be employed to optimally 

forecast workforce outcomes in both classification and regression contexts by way of two 

illustrative case studies related to the prediction of employee turnover intentions. 
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CHAPTER 1: INTRODUCTION 

 In recent years, fueled in part by an exponential increase in data availability and 

computational power (Oswald et al., 2020), the use of regression and machine learning-based 

predictive models as a means of workforce analytics has become increasingly critical to 

organizational success. Alternately referred to at times as “human capital analytics”, “people 

analytics”, or “HR analytics”, workforce analytics can be understood as an evidence-based 

approach which seeks to understand, quantify, manage, and optimize the performance and 

impact of an organization’s workforce (Cheng et al., 2021; Fitz-Enz & Mattox, 2014). 

Subsequently, when employed in furtherance of workforce analytics goals, predictive models 

offer value through their ability to forecast, predict, or classify outcomes related to 

organizations’ people and teams (Putka, 2018). Predictive modeling has been applied to forecast 

workforce-related outcomes such as labor market dynamics (e.g., Liu et al., 2017), employee 

retention and turnover (e.g., Gao et al., 2019), future job performance (e.g., Sajjadiani et al., 

2019), and employee safety and health (e.g., Ott-Holland et al., 2019). Through the optimization 

of such outcomes, predictive models are of critical importance to the ability of organizations to 

remain competitive amidst the current global market, in which highly-skilled workers are 

considered one of the most important corporate resources available (Chambers et al., 1998; 

Vaiman et al., 2012). 

 Despite the organizational utility thus afforded by such applications, there has been a 

growing perception that industrial/organizational psychology (IOP) and human resources 

management (HRM) IOP/HRM practitioners lack familiarity with the substantial advances made 

in predictive modeling in recent years and are inadequately prepared for the challenges and 

opportunities presented by a growing organizational demand for predictive routines (McCartney 
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et al., 2020; Oswald et al., 2020; Putka et al., 2018). This is especially concerning in the context 

of workforce-related applications, where IOP and HRM professionals are uniquely trained to 

navigate the specific legal, ethical, and sociopolitical intricacies and liabilities inherent to 

workforce decision-making, such as those surrounding employment law, selection practices, and 

the impacts of policy changes (Marler & Boudreau, 2017). Further, one particular aspect of 

predictive modeling that has been largely absent in the organizational research literature is that 

pertaining to model uncertainty.   

Model Uncertainty 

Statistical models represent a simplified version of a real-world generative process, 

constructed by the researcher in a manner that formalizes the relationships between the known 

components, such as the observed data (y, x), and the unknown components, such as the 

hypothesized parameters θ or future observations (𝑥̃, 𝑦̃) (Levy & Mislevy, 2016). Critically, any 

such model is a function of decisions made by the researcher regarding which features relevant 

to the problem at hand are represented, and which are suppressed or ignored (Levy & Mislevy, 

2016). As such, any inferences or predictions generated by way of the modeling routine are also 

implicitly conditioned upon the model itself, which creates an additional source of uncertainty 

commonly ignored by the researcher. In the context of predictive models, predictions generated 

under the traditional modeling framework commonly account for uncertainty regarding both the 

underlying parameter estimates and predictions of the unknown 𝑦̃, but ignore structural 

uncertainty regarding the generative model itself (Draper, 1995). Simply put, as noted by Steel 

(2020), model uncertainty is always a given; whether the goal is to identify a “true” data-

generating model or to establish an optimal proxy for the “true” model, ultimately uncertainty 
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always exists regarding the generative process and the specifications and configurations assigned 

to the chosen model.  

It is hard to overstate the importance of model uncertainty for predictive modeling of 

workforce-related organizational outcomes. While all domains incur uncertainty inherent to 

model specifications, the obstacle it presents is particularly challenging for IOP and HRM 

practitioners engaged in empirical work who must address both the natural uncertainty 

encountered when attempting to predict human thoughts and behaviors in general, as well as that 

associated with evolving business needs, changing market dynamics, and the ever-changing 

social, political, and economic climate (Fitz-Enz & Mattox II, 2014). For example, outcomes 

commonly modelled by IOP practitioners include labor availability and costs, skill development 

and measurement, and employee engagement and retention, all of which are shaped by both 

internal and external forces. Amidst this backdrop of uncertainty, and particularly in the context 

of the current heightened workforce-related tensions (Han & Hart, 2021), the decision to rely 

upon a single model, or even a combination of simpler submodels, can have significant negative 

repercussions for an organization’s success. Further, while many forms of model uncertainty are 

relevant to organizational research, of particular importance is the uncertainty regarding which 

predictor variables to include in a given model 

Variable Selection Uncertainty 

For a given outcome measure of interest y, and a set of potential predictor variables 

{𝑿} = 𝒙1, … , 𝒙𝑘, uncertainty regarding which predictors to include in a predictive model is one 

of the most fundamental problems (see Clyde & George, 2004; George, 2000; Miller, 2002). In 

its simplest form, predictor inclusion uncertainty is present when the researcher is given a 

number of candidate predictor variables 𝑿 = {𝒙1, … 𝒙𝑘}, and desires to find a subset that 
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optimally predicts the outcome measure of interest (McCullah & Nelder, 1989). In such a 

context, the set of all models to be considered is collectively referred to as the model space ℳ, 

and each constituent model corresponds to a distinct subset of {𝑿}, such that the full pool of k 

potential predictors yields 2k possible models. Following the notation of Clyde and George 

(2004), the model space corresponding to the variable uncertainty problem can thus be indexed 

by 𝜸, a k-dimensional vector of indicators within which 𝛾𝑘 = 1 denotes that a given predictor 𝒙𝑘 

is included, and 𝛾𝑘 = 0 denotes 𝒙𝑘 is excluded. Following this notation, 𝑀𝛾 can then be used to 

compactly represent the subset of predictor variables included in a given model. 

Model uncertainty related to variable inclusion is a problem that has become increasingly 

important for organizational researchers in recent years as data availability has grown 

exponentially (Oswald et al., 2020). In contrast to the deliberate collection of organizational data 

pertaining to specific prespecified constructs and associated measures, regarding which the 

majority of IOP training and ethical standards are designed to address (e.g. Society for Industrial 

Organizational Psychology, 2018), organizational researchers are increasingly presented with 

unstructured data collected incidentally and/or in real time (Oswald, 2020). In such a context, 

organizational researchers tasked with the development of predictive models face a heightened 

degree of certainty regarding which variables to include. Critically, this issue is particularly 

prescient to IOP and HRM practitioners relative to other domains, as even when the available 

data are demonstrably relevant to the prediction of organizational outcomes, the choice regarding 

which predictor variables to include in a model can involve ethical and legal concerns in addition 

to the standard statistical considerations (Oswald et al., 2020). Consequently, this thesis will 

focus specifically upon model uncertainty in the context of predictor variable inclusion. At a 
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high level, two main strategies have been employed to address model uncertainty, referred to 

respectively as model selection and model averaging. 

Model Selection 

Model selection effectively represents an attempt by the researcher to mitigate, rather 

than account for, model uncertainty. Specifically, under a selection-based predictive modelling 

approach, the researcher chooses a single “best” model M*, as measured by some performance 

metric, and then uses that model to draw inferences and generate predictions, essentially 

proceeding as if M* were in fact the “true” generative model (Draper, 1995; Steel, 2020). As 

noted by Draper (1995) however, the very act of using a data-driven process to search for the 

optimal M* implies an implicit acknowledgement by the researcher regarding the existence of 

some degree of structural model uncertainty. Importantly, predictions generated by model 

selection methods can only be relied upon insofar as the chosen model embodies a strong 

approximation of the real-world data-generating process. Given that some aspects are always 

suppressed by the researcher during the model specification process (Levy and Mislevy, 2016), 

predictions generated upon a model selection routine are overly precise and often fail to 

generalize well to out-of-sample contexts (Draper, 1995; Steel, 2020).  

Within the traditional single-model framework, two of the methods most commonly used 

to predict workforce-related outcomes are multiple linear regression and logistic regression, used 

for regression and classification contexts respectively (Hunter & Schmidt, 1990; Putka et al., 

2018; Raju et al., 1991; Stauffer & Ree, 1996).  

Multiple Linear Regression 

Among the most predominant single-model predictive methods, multiple regression 

models have long been used in organizational research to predict a variety of workforce-related 
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outcomes, such as personnel selection (Gatewood et al., 2011) job validation (Schmidt & Hunter, 

1998), and employee engagement (Xu & Thomas, 2011). In their simplest form, linear regression 

analyses yield closed-form mathematical equations for the linear model that best estimates a 

continuous target variable from a set of optimally-weighted predictor variables (Darlington & 

Hayes, 2017). Specifically, in the classical linear model, the observed continuous outcome 

measure values 𝒚 = {𝑦1, … , 𝑦𝑛}𝑇 are modelled as a weighted linear combination of the observed 

predictor variable values 𝒙 = {𝒙𝟏, … 𝒙𝒑} for each of the n observations, arranged as an n x p 

predictor variable matrix X where each row corresponds to the ith participant or unit, and each 

column corresponds to a different predictor variable. The set of weighting coefficients for the 

predictor variables is denoted as the vector 𝜷 = {𝛽1, … , 𝛽𝑝}𝑇, and when combined with the 

predictor matrix X yields an equation for the vector of predicted response variable scores 𝒚̂ =

{𝑦̂1, … 𝑦̂𝑛}𝑻.  

In matrix notation, the resultant equation for the predicted outcome scores can be written 

as 𝒚̂ = 𝑿𝜷, and the error between the actual and predicted target variable scores can further be 

denoted as 𝒆 = 𝒚 − 𝒚̂ = 𝒚 − 𝑿𝜷. Putting these two components together, the equation for the 

vector y of the observed outcome scores can thus be written as 𝒚 = 𝑿𝜷 + 𝒆 in matrix form. 

Further, the equations for the predicted and observed target scores for the ith observation can be 

written respectively as 

𝑦𝑖̂ = 𝛽0 + 𝛽1𝑋𝑖1 + ⋯ + 𝛽𝑗𝑋𝑖𝑗, (1) 

and 

𝑦𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + ⋯ + 𝛽𝑗𝑋𝑖𝑗 + 𝑒𝑖 (2) 

Written more succinctly, the predicted outcome measure score for a given individual, conditional 

upon their scores on the included predictor variables, is of the form: 
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𝑦̂𝑖 = 𝐸(𝑌𝑖|𝒙𝑖) = ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

1

 (3) 

Lastly, under the normal linear regression model, the corresponding error components are 

assumed to be independent and normally distributed around a mean of zero with a constant error 

variance. In combination, the multiple regression equation and its assumptions can be written as 

𝑦𝑖 = ∑ 𝑥𝑖𝑗𝛽𝑗
𝑝
1 + 𝑒𝑖 , with  𝑒𝑖 ~ 𝑁(0, 𝜎𝑒

2), 

where the assumptions are equivalent to assuming that in the population the values of 𝒀 

conditional on any 𝑿𝑖 are distributed normally with constant variance (Darlington & Hayes, 

2017). This last assumption is particularly important for probabilistic predictions, as the 

probabilistic forecast of any future observation 𝑦̃𝑖, conditional upon its corresponding predictor 

scores 𝑥̃𝑖, to be derived as  

𝑝(𝑦̃𝑖|𝑥̃𝑖) = 𝑝(𝑦̃𝑖|𝑦̂𝑖) =
1

√2𝜋𝜎2
𝑒𝑥𝑝 (−

(𝑦̃𝑖 − 𝑦̂𝑖)2

2𝜎2
) 

Lastly, given this error structure, the normal linear regression model is only appropriate for the 

modelling of continuous outcome measures. 

Under the normal linear regression model, the regression coefficients are typically 

estimated using the least-squares criterion, wherein the parameter estimates are chosen such that 

the resultant predicted outcome measure scores minimize the total squared error. Shown below 

as 

𝒆𝑻𝒆 = ∑ 𝑒𝑖
2

𝑁

𝑖=1

= ∑(𝑦𝑖 − 𝑦̂)2

𝑁

𝑖=1

, (5) 

models that utilize this criterion are commonly referred to as Ordinary Least Squares (OLS) 

regression models and are computationally efficient due to their closed-form solution that can be 

derived through matrix algebra (Clyde & George, 2004).  
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Linear Regression Variable Inclusion Uncertainty. When uncertainty regarding which 

predictor variables to include arises in the context of normal linear regression models, letting 𝜸 

index the subsets, each possible model to be considered is of the form  

𝑴𝜸: 𝒚 = 𝑿𝜸𝜷𝜸 + 𝜺 , (6) 

where 𝑿𝜸 is the predictor matrix whose columns correspond to the 𝜸𝑡ℎ subset, 𝜷𝜸 is the vector of 

non-zero regression coefficients for that subset, and 𝜺 ~ 𝑁(0, 𝜎2𝐼𝑛).   

Logistic Regression  

Logistic regression models are an extension of the classic linear model to contexts where 

the outcome measure is categorical rather than continuous, wherein the weighted set of predictor 

variables are used to yield probabilistic predictions regarding the classification or outcome 

occurrence of an observation (McCullagh & Nelder, 1989). In organizational research, logistic 

regression models have been used for such purposes as assessing occupational fit/orientation 

(e.g. Leong et al., 2013), predicting employee turnover (e.g. Somers, 1996; Vandenberghe, 

1999), and predicting future career advancement (e.g. Chan, 1996). Under the binomial logistic 

regression model, the expectation of the binary response measure, conditional upon the predictor 

variable scores, is the probabilistic forecast 𝒑𝑖, shown as 

𝔼[𝒚|𝑿] = 𝒑𝑖 = 𝑝(𝑦 = 1|𝒙𝑖) (7) 

Similar to their normal linear counterparts, the systematic, non-random component of the 

expected outcome measure, referred to as the linear predictor 𝜂𝑖, is modeled as an optimally 

weighted linear combination of the included predictor variables, as seen below. 

𝜂𝑖 = ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

1

(8) 
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However, unless restrictions are imposed upon these coefficients, this systematic portion 

of the model yields fitted values over the entirety of the real line −∞ < 𝜂 < ∞, which is 

incongruent with the [0,1] range of probabilistic forecasts (McCullagh & Nelder, 1989). 

Consequently, the logistic model proceeds by using a logit link function (g) to map the 

probability of a given observation’s class membership or outcome occurrence (pi) to the real line 

(-∞,+∞), such that the log odds of occurrence are modeled as the linear predictor instead, as 

shown below  

𝑔(𝑝𝑖) = 𝜂𝑖 = ln (
𝑝𝑖

1 − 𝑝𝑖
) = ∑ 𝑥𝑖𝑗β𝑗

𝑝

𝑗=1

(9) 

After fitting the model, exponentiation of the regression coefficients can be used to yield odds 

ratios, and the inverse logit function (g-1) can be used to map the log-odds back to the unit 

interval and derive the desired probabilistic predictions regarding the binary outcome.  

𝑝(𝑦𝑖 = 1|𝒙𝑖) = 𝑙𝑜𝑔𝑖𝑡−1(𝜂𝑖) = 𝑙𝑜𝑔𝑖𝑡−1 (∑ 𝑥𝑖𝑗β𝑗

𝑝

𝑗=1

) =
1

1 + 𝑒−𝜷𝑿𝒊
(10) 

Further, the probabilistic forecasts generated by logistic regression models can also be used to 

directly classify observations regarding class status or event occurrence. In such cases, the binary 

classification is derived by assigning a threshold value to the probabilistic output (Bishop, 2006). 

Parameter estimates for logistic regression models and other non-normal generalized 

linear models (GLMs) are not available via a deterministic closed-form solution, as is the case 

under normal linear regression models (McCullagh & Nelder, 1989). Instead, optimal weights 

for logistic regression models are typically derived through an algorithmic process based on 

maximum likelihood estimation (MLE). While a detailed review is beyond the scope of this 

thesis, the parameter estimates under MLE estimation are obtained through a derivative-based 
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process in which candidate parameter values 𝜷̂∗ are iteratively considered until the estimate is 

obtained for which the log likelihood function is maximized.  For logistic regression models, the 

log likelihood is written as 

𝐿𝐿(𝜃) = ∑ [𝑦𝑖 ∗ 𝑙𝑜𝑔 (
1

1 + 𝑒−𝜷𝑿𝒊
) + (1 − 𝑦𝑖) ∗ 𝑙𝑜𝑔 (

1

1 + 𝑒−𝜷𝑿𝒊
)]

𝑛

𝑖=1

, (11) 

and is used by the MLE algorithms such as the weighted least squares algorithm (McCullagh & 

Nelder, 1989) to select the parameter estimates under which the probability of the observed data 

is maximized. 

Logistic Regression Variable Inclusion Uncertainty. When uncertainty regarding 

predictor variable inclusion arises in the logistic regression context, again letting 𝜸 index the 

predictor subsets, each possible model to be considered is of the form 

𝑴𝜸: 𝑝(𝒚 = 𝟏|𝑿) = 𝑙𝑜𝑔𝑖𝑡−1(𝑿𝜸𝜷𝜸) =
1

1 + 𝑒−(𝑿𝜸𝜷𝜸)
, (12) 

where 𝑿𝜸 is the predictor matrix whose columns correspond to the 𝜸𝑡ℎ subset and 𝜷𝜸 is the 

vector of non-zero regression coefficients for that subset. 

Model Selection for Linear and Logistic Regression Models  

In response to the problem of predictor variable inclusion uncertainty in linear and 

logistic regression models, a variety of approaches have been proposed. While a comprehensive 

review is beyond the scope of this thesis, some of the most common approaches have included 

theory-driven approaches based on construct relevance (as discussed in Putka et al., 2018), 

stepwise procedures where covariates are sequentially included or removed based on the 

statistical significance of the coefficient estimates (Steel, 2020), regularization/shrinkage 

methods that favor parsimony through the inclusion of complexity penalties in the fitting 

process, and nested model evaluation procedures that examine the effects of predictor inclusion 
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upon performance metrics such as information criteria. Critically, regardless of how “good” the 

model ultimately selected is, and regardless of the method used to select said model, all of the 

single-model approaches described above fail to consider alternative models (Hoeting et al., 

1999). 

Model Averaging 

In contrast to single-model selection-based approaches, model averaging methods 

aggregate the model-specific predictions generated by all models contained within a specified 

model space. In doing so, model-averaging methods capitalize upon the recognition that the 

beliefs encoded in each single model are a subset of a richer, fuller understanding of the real-

world generative process (Levy & Mislevy, 2016). While model averaging can be applied to 

virtually any form of model uncertainty, such as that related to theory uncertainty, functional 

form specification, and fixed/random effects inclusion, uncertainty regarding variable inclusion 

in the context of predictive modelling is an application particularly well-suited to model-

averaging routines. As noted by Steel (2020), model-averaging presents a natural solution to 

problems where the researcher is ultimately interested in quantities that are themselves not 

model-specific, such as predictions regarding unknown data. Specifically, in the context of 

predictive modelling, where the researcher’s goal is to generate optimal out-of-sample predictive 

performance, conditioning upon only a single model is both unnecessary and undesirable. By 

averaging predictions across all available models in the model space, the researcher avoids the 

overly confident or potentially biased results that can result from single-model routines.  

Machine Learning Ensemble Methods 

Despite the wide range of the model-averaging methods documented in the general 

literature pertaining to predictive modelling, a class of modelling routines referred to as ensemble 
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methods (e.g. Rokach, 2019) have been predominantly featured in organizational research (e.g. 

Oswald et al, 2020; Putka et al., 2018; Tonidandel et al., 2018; Yuan et al., 2021). At a high 

level, ensemble models comprise a subset of machine learning methods, which themselves 

encompass inductive modelling routines wherein computerized algorithms are used to identify 

and represent patterns in data without being given explicit instructions (Bishop, 2006). 

Underneath the general umbrella of machine learning, ensemble methods are technically 

considered a form of model averaging in that they attempt to combine a set of simpler “weak 

learner” models and their respective individual predictions in order to obtain a final prediction 

that is more robust and generalizes well to out-of-sample contexts (Rokach, 2019). Amongst the 

ensemble methods, random forest models, which aggregate the individual predictions of many 

simpler decision trees, are commonly proffered as a solution to model uncertainty in 

organizational contexts (Putka et al., 2018; Oswald et al., 2020; Tonidandel et al., 2018; Yuan et 

al., 2021). 

Decision Trees. Considered a foundational predecessor of more advanced ensemble-

based methods, decision trees sequentially stratify the predictor variable space into a number of 

regions, each of which corresponds to a single simple decision rule (James et al., 2013). The 

decision rules used to split the predictor space are selected algorithmically during the model-fit 

process based on their ability to segment the observations in each layer in a manner that 

maximizes homogeneity with respect to the outcome measure (Breiman et al., 1984). In contexts 

where the outcome measure is continuous the decision tree is referred to as a regression tree, and 

homogeneity maximization is evaluated with respect to a reduction in variance. In contexts 

where the outcome measure is binary, the decision tree is referred to as a classification tree, and 
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homogeneity maximization is typically evaluated using so-called “purity” measures closely 

related to entropy, such as the Gini index (see Myles et al., 2004).  

This partitioning of the predictor space continues until a final segmented region is 

derived, wherein the predictions regarding the outcome measure are generated (Rokach, 2019). 

For classification trees, predictions are generated via majority vote, wherein a given observation 

is assigned the same class status or outcome occurrence as that of the majority of the training 

observations in the same terminal region. For regression trees, the predicted outcome value is 

generated by averaging the continuous outcome measure values of the training observations in 

the same terminal region (Breiman et al., 1994). Importantly, predictions generated by single 

decision trees tend to generalize poorly to out-sample-performance, which arises from their 

tendency to identify solutions that are locally optimal (Brieman et al., 1984).  

Random Forest Models. Seeking to mitigate such problems, random forest models 

represent a limited form of model averaging, wherein many simpler decision trees and their 

respective predictions are combined to generate a single more-robust prediction (Breiman, 1996; 

2001). Specifically, as proposed by Breiman (1996, 2001), random forest models involve: (a) 

repeatedly drawing bootstrapped training data subsets, (b) fitting a single classification or 

regression tree to each bootstrapped training subset, and then (c) aggregating the predictions 

generated by each separate tree through either a majority vote (classification) or averaging 

(regression) procedure (Putka et al., 2018). In addition, in order to mitigate the redundancy of 

predictions that can arise from correlated constituent trees (Breiman, 2001), random forest 

models constrain each stratification split and its respective decision rule such that only a random 

subset of the available predictor variables is considered (Putka et al., 2018). Further, the specific 

number of predictors that are randomly sampled stays constant and is treated as a hyper-



 

14 
 

parameter that can either be specified by the researcher or selected algorithmically via the 

optimization of a performance metric (James, 2013; Putka et al., 2018). Through this process, the 

random forest model attempts to increase both the robustness and generalizability of future 

predictions to out-of-sample contexts (Putka et al., 2018). 

Random Forest Models and Predictor Uncertainty. Ostensibly, random forest models 

partially mitigate uncertainty regarding predictor inclusion by aggregating predictions generated 

by random subsets of predictor variables. Importantly, however, while ensemble methods such as 

random forests are nominally considered to be a form of model averaging (e.g., Oswald et al., 

2020; Putka et al., 2018; Todinandel et al., 2018), there are several critical distinctions that 

separate them from “full” model-averaging approaches (Steel, 2020). First, in only considering 

decision trees composed of a constant number of predictor variables, random forest models 

ignore all other possible model sizes. Second, the underlying approach of combining multiple 

base “weak learner” models is inherently different from comprehensively exploring the entirety 

of a given model space and all possible combinations of predictor variables (Steel, 2020). Third, 

random forest models grant equal weight to each of the individual predictions generated by the 

constituent trees and fail to consider the relative probabilities or fits of their respective generative 

models, in contrast to the weighted-averaging approaches discussed below. In sum, while 

random forest models do average predictions across multiple models and their respective 

predictor variable subsets, their focus upon a fixed number of predictor variables and their 

inclusion of only simpler base models precludes them from being considered an adequate 

solution to the problem of model uncertainty. In contrast, Bayesian model averaging (BMA) is 

presented as an alternative that fully addresses the problem of model uncertainty in the context of 

predictor variable inclusion. 
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Bayesian Model Averaging 

The Bayesian model averaging (BMA) approach consists of a weighted model averaging 

procedure in which model-specific quantities of interest (i.e., predictions) are averaged across the 

entirety of a specified model space, in a manner such that the weighting coefficients correspond 

to posterior probabilities assigned to the models themselves (George & Clyde, 2004; Steel, 

2020). As noted by Steel (2020), BMA can thus be thought of as a natural extension to the 

single-model Bayesian inferential approach, in which parameter uncertainty is addressed by 

averaging predictions across all possible values of the model-specific posterior distribution. 

When extended to model-averaging, BMA simply takes this process one step further by also 

averaging predictions over the range of possible models in a given model space, such that the 

final predictions thus represent a combination of averaging procedures performed across both the 

continuous parameter space and the discrete model space (Steel, 2020).  

In addition to the conceptual appeal of incorporating the inferential information offered 

by multiple models rather than relying solely upon a single model, BMA has been shown to have 

the desirable property of producing optimal predictions in GLM-based contexts under a variety 

of scoring rules (e.g., Hoeting et al., 1999; Kaplan & Lee, 2018). While applications of BMA 

have been documented across a number of domains such as economics (e.g., Steel, 2020), 

political science (e.g., Montgomery & Nyhan, 2010), and educational psychology (e.g., Kaplan 

& Lee, 2018; Kaplan, 2021), it has been noticeably absent from the organizational literature. 

Consequently, this thesis seeks to illustrate how IOP and HRM researchers might employ BMA 

to optimally predict workforce-related outcomes. 
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Bayesian Modeling 

As a precursor to discussing the underlying methodology of Bayesian model averaging, a 

brief overview of the Bayesian paradigm is discussed below. 

Frequentist Inference 

Broadly speaking, traditional “frequentist” methods primarily conceive of probability as 

the expectation of long-run frequencies under repeated sampling (Neyman, 1977). In frequentist 

models, parameters are considered to be fixed but unknown, and direct probabilistic statements 

about the parameter values themselves are intractable (Levy & Mislevy, 2016). Instead, the 

frequentist approach focuses solely upon the conditional probability of the observed data given a 

particular parameter estimate, 𝑝(𝑦|𝜃), referred to as the likelihood. As noted by Levy and 

Mislevy (2016), likelihood-based estimation essentially seeks to answer the question, “What are 

the values of the parameters that yield the highest conditional probability of observing the values 

of the data that were in fact observed?” (p.25).  

Under frequentist estimation routines such as the least-squared-error criterion and 

maximum likelihood estimation, the true parameter values are considered fixed and the 

estimators themselves are considered random variables with their own sampling distributions, 

such that each specific estimate (i.e. the MLE) is a realization derived from a specific sample of 

data (Levy & Mislevy, 2016). While standard error estimates can be used to construct confidence 

intervals to capture the uncertainty in a given estimator and its subsequent predictions, 

frequentist notions of uncertainty only concern the variability of the parameter estimators 

themselves under repeated sampling of the data (Levy & Mislevy, 2016).  
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Single-Model Bayesian Inference 

In contrast to the frequentist approach, Bayesian inference allows for explicit 

probabilistic statements about both the unknown parameters θ of a given model and any 

unobserved data 𝑦̃, conditioned upon the observed data x, y. Referred to as posterior 

distributions, such statements are facilitated by derivations of Bayes Theorem that center around 

the following functional form: 

𝑝(𝜃|𝑦) =
𝑝(𝜃, 𝑦)

𝑝(𝑦)
=

𝑝(𝑦|𝜃)𝑝(𝜃)

𝑝(𝑦)
(13) 

As seen in EQ13, the first step in a single-model Bayesian analysis begins with the 

specification of the joint distribution for both the observable data and the unknown parameters, 

and should be elicited in a manner consistent with the researcher’s knowledge (or lack thereof) 

about the underlying data generation and collection process. In doing so, the joint distribution 

can further be split into both a likelihood function 𝑝(𝑦|𝜃) that models the hypothesized data-

generating process, and a prior distribution 𝑝(𝜃) that incorporates the researcher’s prior 

knowledge or beliefs regarding the parameters that govern that generative process. Put simply, 

this initial step entails two questions: a) How does the researcher want to model the data 

generating process?; b) How does the researcher want to model their prior knowledge and beliefs 

about the parameters that govern said process?. 

Conceptually, the bulk of the Bayesian data analysis in the single-model context is thus 

equivalent to the researcher first probabilistically encoding their a priori beliefs about the 

unknown parameter values and then allowing for an updating of those a priori beliefs by the 

observed data via the specification of a sampling distribution. The final term in EQ 13 represents 

the joint probability of the observed data and the parameter values integrated over the entire 
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range of all parameter values possible under the given model and is referred to as the marginal 

likelihood 𝑝(𝑦).  

𝑝(𝑦) = ∫ 𝑝(𝜃, 𝑦)𝑑𝜃 =  ∫ 𝑝(𝑦|𝜃)𝑝(𝜃)𝑑𝜃 (14) 

In single-model Bayesian inference, the marginal likelihood is treated as a normalization 

constant that simply ensures that the model-specific posterior distribution is a proper probability 

distribution. Consequently, given that all dependency upon 𝜃 has been integrated out, in model-

specific Bayesian analyses the marginal likelihood is typically replaced by the simpler, un-

normalized version of the posterior, written as 

𝑝(𝜃|𝑦) 𝛼 𝑝(𝑦, 𝜃) =  𝑝(𝑦|𝜃)𝑝(𝜃) (15) 

This alternate version of the posterior has proven essential to fostering many of the advances in 

single-model Bayesian inference, as the integral required to compute 𝑝(𝑦) is typically multi-

dimensional and highly intractable (Hoeting et al., 1999). The importance of the unnormalized 

posterior in facilitating Bayesian computation can be seen when evaluating the relative posterior 

probabilities of any two model-specific parameter values under consideration, wherein the 

posterior odds ratio of the two candidate values can be expressed as: 

𝑝(𝜃∗|𝑦)

𝑝(𝜃|𝑦)
=

𝑝(𝑦|𝜃∗)𝑝(𝜃∗)
𝑝(𝑦)

𝑝(𝑦|𝜃)𝑝(𝜃)
𝑝(𝑦)

=
𝑝(𝑦|𝜃∗)𝑝(𝜃∗)

𝑝(𝑦|𝜃)𝑝(𝜃)
=

𝑝(𝜃∗)

𝑝(𝜃)
 𝑥 

𝑝(𝑦|𝜃∗)

𝑝(𝑦|𝜃)
(16) 

As seen in EQ16, the posterior evaluation of any two proposed parameter values under a given 

model thus reduces to a comparison of their relative prior probabilities and likelihoods. This has 

proved critical to computational advances made in Bayesian inference, as discussed further 

below. 
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Model-Specific Bayesian Prediction. After deriving the model-specific posterior 

distribution for the parameter values 𝑝(𝜽|𝑦), the researcher can then predict an unknown 

observable 𝑦̃ (i.e. a future data value), conditioned upon the future observed explanatory values 𝑥̃ 

and the observed data y, in a manner that incorporates all of the information and uncertainty 

about the generative parameter values by integrating the prediction over the entire model-specific 

posterior distribution (Steel, 2020). Conceptually, this is equivalent to a weighted average of the 

predictions associated with each possible specific parameter value across the range of the entire 

posterior distribution, with weights corresponding to the posterior probabilities of the generative 

parameter values. This process, referred to as the posterior predictive distribution for the 

unknown observables 𝑦̃ under a given model, can be written in the single-model context as 

follows: 

𝑝(𝑦̃|𝑥̃, 𝑦) = ∫ 𝑝(𝑦̃|𝑥̃, 𝜽)𝑝(𝜽|𝑦)𝑑𝜽 (17) 

Simply put, the model-specific posterior predictive distribution thus describes beliefs 

about the future observation given the observed data and the specified model.  

Multi-Model Bayesian Inference 

Crucially, while the single-model Bayesian derivations shown thus far have all required 

an implicit conditioning upon a given model, the same principles used to account for model-

specific parameter uncertainty can intuitively be extended to the multi-model context of variable 

selection uncertainty. Specifically, letting 𝜸 index the predictor variable subsets, the model-

specific Bayesian posterior distribution shown in EQ 13 can be rewritten as 

𝑝(𝜽𝜸|𝑦, 𝑀𝜸) =
𝑝(𝜽𝜸, 𝑦|𝑀𝜸)

𝑝(𝑦|𝑀𝜸)
=

𝑝(𝑦|𝜽𝜸, 𝑀𝜸)𝑝(𝜽𝜸|𝑀𝜸)

𝑝(𝑦|𝑀𝜸)
(18) 
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Importantly, through this extension to the multi-model context, Bayesian inference can be used 

to address model uncertainty by way of a procedure known as Bayesian Model Averaging. 

Bayesian Model Averaging 

Following Steel’s (2020) definition, Bayesian model averaging (BMA) consists of a 

weighted model averaging procedure in which the model-specific parameter values are 

integrated out, where the weights used for averaging the quantity of interest correspond to the 

posterior probabilities of the models themselves. As further noted by Steel (2020), Bayesian 

model averaging can thus be thought of as a natural extension of the Bayesian tendency to 

address uncertainty through averaging, wherein the resultant posterior distributions are averaged 

over both the continuous parameter space and the discrete model space. Subsequently, the final 

BMA posterior distribution thus equates to a weighted sum of the model-specific posterior 

distributions under each of the {𝑀1, … , 𝑀𝑘} models considered. This can be seen below, where, 

for a given quantity of interest (i.e. parameter estimates or future predictions) ∆, the BMA 

posterior distribution can be written as 

𝑝𝐵𝑀𝐴(∆|𝑦) = ∑ 𝑝(∆|𝑦, 𝑀𝜸)𝑝(𝑀𝜸|𝑦)

𝐾

𝑘=1

(18) 

The above equation highlights that the final model-averaged posterior distribution in a BMA 

routine incorporates all of the model-specific probabilistic forecasts 𝑝(∆|𝑦, 𝑀𝜸) by weighting 

each in accordance with the posterior probability of the model 𝑝(𝑀𝜸|𝑦) that generated it. 

Bayesian Model Averaging Predictive Distribution 

Building upon the general BMA approach to calculating quantities of interest described 

in EQ18, the model-specific posterior predictive distribution seen earlier in EQ17 can thus be 

expanded to produce the Bayesian model averaging predictive distribution. Denoting the scores 
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on the future observed predictor variables and the unknown outcome measure as (𝑥̃, 𝑦̃), 

respectively, the BMA predictive distribution is expressed as: 

𝑝𝐵𝑀𝐴(𝑦̃|𝑥̃, 𝑦) = ∑ [∫ 𝑝(𝑦̃|𝑥̃, 𝑦, 𝜃𝜸, 𝑀𝜸)𝑝(𝜃𝜸|𝑦, 𝑀𝜸)𝑑𝜃𝜸] 𝑝(𝑀𝜸|𝑦)

𝐾

𝑘=1

, (19) 

which reduces to 

𝑝𝐵𝑀𝐴(𝑦̃|𝑥̃, 𝑦) = ∑ [∫ 𝑝(𝑦̃, 𝜃𝜸|𝑥̃, 𝑦, 𝑀𝜸)𝑑𝜃𝜸] 𝑝(𝑀𝜸|𝑦)

𝐾

𝑘=1

, (20) 

and finally yields: 

𝑝𝐵𝑀𝐴(𝑦̃|𝑥̃, 𝑦) = ∑ 𝑝(𝑦̃|𝑥̃, 𝑦, 𝑀𝜸)𝑝(𝑀𝜸|𝑦)

𝐾

𝑘=1

(21) 

Thus, as seen above, under a BMA predictive routine, the predictions are averaged over 

both the continuous range of model-specific parameter values and the discrete model space. 

Finally, and of particular relevance to applied settings, the BMA routine can easily be adapted to 

yield point predictions that are optimal under the log-score criterion (Hoeting et al., 1999). As 

noted by Clyde and George (2004), the optimal such estimate is derived simply via a weighted 

average of the model-specific posterior means: 

𝔼𝐵𝑀𝐴[𝑦̃|𝑥̃, 𝑦] = ∑[𝔼(𝑦̃|𝑥̃, 𝑦, 𝑀𝑘) × 𝑝(𝑀𝜸|𝑦)]

𝐾

𝑘=1

(22) 

In using a predictive point estimate derived via the equation shown above, the researcher can 

thus obtain a prediction that is both optimal under the log score rule and simple to compute, but 

still adequately incorporates both parameter and model uncertainty.  
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Posterior Model Probabilities 

The critical component of a BMA routine is the set of posterior model probabilities 

(PMP) used to weight the model-specific inferences and predictions. The PMPs are derived by 

integrating out the model-specific parameter values and can be written as 

𝑝(𝑀𝜸|𝑦) =  
𝑝(𝑦|𝑀𝜸)𝑝(𝑀𝜸)

∑ 𝑝(𝑦|𝑀𝜸)𝑝(𝑀𝜸)𝐾
𝑘=1

 , (23) 

where the numerator is comprised of the marginal likelihood 𝑝(𝑦|𝑀𝜸) and the prior probability 

𝑝(𝑀𝜸) of the model 𝑀𝜸 under consideration, and the denominator represents a normalization 

constant analogous to that in the single-model context. As in the single-model context, the 

normalized posterior model distribution is typically discarded in favor of the unnormalized 

version, written as 

𝑝(𝑀𝜸|𝑦)  ∝  𝑝(𝑦|𝑀𝜸)𝑝(𝑀𝜸) (24) 

Implementation  

Conceptually, implementation of a BMA routine involves two main components, namely 

the specification and exploration of the model space, and the calculation or approximation of the 

posterior model probabilities that serve as weighting coefficients. When the pool of candidate 

predictor variables is large, as is often the case in modern organizational research applications 

(Oswald et al., 2020; Putka et al., 2018), the exponential growth of the model space formed by 

the potential combinations of predictor variables quickly precludes an exhaustive enumeration of 

the model space and deterministic calculations of the posterior model probabilities (Hoeting et 

al., 1999). Consequently, aside from contexts where the pool of potential predictor variables is 

relatively small (e.g. k < 15), modern BMA routines typically utilize methods that seek to 

explore the model space and compute posterior model probabilities simultaneously.  



 

23 
 

Exploration of the Model Space 

Construction/specification of the model space to be considered should be closely aligned 

with the exact type of model uncertainty the researcher is attempting to address (Steel, 2020). 

When implementing a BMA routine to address uncertainty regarding the inclusion of predictor 

variables {𝑿 = 𝒙1, … , 𝒙𝑘}, the model space is typically specified as the set of all 2k possible 

predictor variable subsets that can be formed.  Given the exponentially large model spaces that 

can arise when the pool of available predictors is large, as is often the case in larger 

organizational settings (Oswald, 2020), an exhaustive enumeration of the entire model space 

often quickly becomes infeasible (Clyde & George, 2004; Hoeting et al., 1999). As such, 

exploration of the model space has been a primary barrier that has directly shaped the historical 

development of BMA implementation.  

Reduced-Subsets Approach to Model Space Exploration 

The first approach to the problem of model space exploration has been to average over a 

reduced subset of models best supported by the data, rather than over the entirety of the model 

space (Hoeting et al., 1999). One method for this is Occam’s Window, originally proposed by 

Madigan and Raftery (1994) for the identification of a data-supported subset of graphical 

models, and later extended to regression contexts by Raftery and colleagues (1997).  

Occam’s Window. In regression contexts, the Occam’s Window method consists of two 

principle tenets. First, if a model predicts the data far less well than the model with the strongest 

predictive performance, the poorer-performing model should be discarded. Under this first tenet, 

the researcher specifies a priori the width of a constraint, C, that sets the threshold ratio of 

predictive performance. Thus, models not belonging to the subset A’, in accordance with the 

criteria shown below, are excluded from consideration. 
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𝐴′ = {𝑀𝑘:
𝑚𝑎𝑥𝑙{𝑝(𝑀𝑙|𝑦)}

𝑝(𝑀𝑘|𝑦)
} ≤ 𝐶 (25) 

 Under the second tenet of Occam’s Window, if a simpler model exists that produces 

better predictions than a more complex model, the more complex model is discarded. Formally, 

letting B denote the subset of models to be excluded accordingly, this second tenet is shown as 

follows: 

𝐵 = {𝑀𝑘: ∃𝑀𝑙 ∈ 𝐴′, 𝑀𝑙 ⊂ 𝑀𝑘,
𝑝(𝑀𝑙|𝑦)

𝑝(𝑀𝑘|𝑦)
> 1} (26) 

Put simply, the above equation states that this secondary subset of models to be 

discarded, B, is to contain any model 𝑀𝑘 for which there exists a simpler model 𝑀𝑙 that 

generates better predictive performance. In combination, the remaining subset of models to be 

considered constitutes the final reduced model space A, over which any quantity of interest is to 

be averaged during the BMA routine as follows: 

𝑝(∆|𝑦, 𝐴) = ∑ 𝑝(∆|𝑦, 𝑀𝜸)𝑝(𝑀𝜸|𝑦)
𝑀𝜸∈𝐴

(27) 

Importantly, reduced-subsets methods require not only a method for identifying models 

to be discarded, but also a method for searching the remaining subspace and identifying the 

constituent models. The most common search strategies employ derivations of an algorithmic 

approach originally introduced by Raftery et al. (1997), which utilized the “leaps and bounds” 

algorithm developed by Furnival and Wilson (1974) to rapidly explore the reduced model space. 

While increases in computational power have largely eliminated the need for reduced-subsets 

approaches, various algorithmic approaches have also been proposed in recent years as well, 

such as the Bayesian Adaptive Sampling method developed by Clyde and colleagues (2011), and 

the Evolutionary Stochastic Search by Bottolo and Richardson (2010).   
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MCMC Sampling. Exploration of large model spaces in modern BMA routines is now 

almost exclusively conducted via the use of Markov chain Monte Carlo (MCMC) methods, 

which approximate the posterior model distribution by sampling models from the model space 

with a frequency proportional to their posterior model probabilities. Crucially, MCMC samplers 

have thus greatly reduced the computational complexity that previously served as a barrier to 

large-scale BMA implementation, as model space exploration and PMP approximation are 

addressed simultaneously during the sampling routine. While a variety of samplers have been 

proposed, most are derivations of the MCMC Model Composition (MC3) algorithm, a random-

walk Metropolis sampler developed by Madigan and York (1995).  

Letting M denote the model space under consideration, the samplers proceed by 

constructing a Markov chain {𝑀(𝑡)}, 𝑡 = 1,2, … 𝑁 with state space M and equilibrium 

distribution equal to the posterior model probability 𝑝(𝑀𝑖|𝑦) in order to simulate from the 

Markov chain and obtain observations 𝑀(1), … 𝑀(𝑁). Then, for any function 𝑔(𝑀𝑖) defined on 

M, the average, 

𝐺̂ =
1

𝑁
∑ 𝑔(𝑀(𝑡))

𝑁

𝑡=1

, (28) 

is an estimate of 𝐸(𝑔(𝑀)). The application of standard MCMC results yields 

𝐺̂ → 𝑬(𝑔(𝑀)) 𝑎𝑠 𝑁 → ∞, (29)  

which simply states that the expectation of a given quantity can be estimated through sampling 

by averaging over the individual simulations, and that those estimations will converge to the true 

expectation as sample size increases asymptotically. Applied to predictive contexts, the above 

equation can be used to derive model-averaged predictions under a sampling-based BMA routine 
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by setting 𝑔(𝑀) = 𝑝(𝑦̃|𝑥̃, 𝑦, 𝑀), such that the expectation represents the BMA predictive 

estimate over all models.  

 When constructing the Markov chain over the model space for the Metropolis-based 

samplers typically used in BMA routines, a neighborhood and a transition matrix are both 

specified in order to guide the manner in which a candidate model is proposed and either 

accepted or rejected. Specifically, at any given iteration the sampler stands at the current model 

Mi, and in order to select a model 𝑀𝑖+1 for the next step in the chain, a candidate model 𝑀𝑖+1
∗ is 

proposed from the current model’s neighborhood. In regression contexts, the neighborhood for 

each predictive model is typically comprised of the set of models that include one greater or one 

fewer predictor variables than the current model. After a candidate model is randomly drawn 

from the proposal neighborhood, the sampler will either accept the candidate model with 

probability 

𝑚𝑖𝑛 {1,
𝑝(𝑀∗|𝑦)

𝑝(𝑀|𝑦)
} 

or reject the candidate model in favor of the current model. As seen in the equation above, the 

sampler will automatically accept any candidate model with a higher posterior probability than 

the current model, but will also still accept less probable models with a frequency proportional to 

the ratio of their relative posterior probabilities. As the sampling frequencies converge 

asymptotically to the posterior model distribution, empirical approximations of the posterior 

model probabilities can easily be derived through the sampling routine. 

Marginal Likelihood. The first component of the posterior model probability is the 

marginal likelihood of a given model 𝑀𝑘, and represents the conditional probability of the 

observed data y, evaluated at and integrated across all possible values of the parameters specified 

by the model. Conceptually, as can be seen in the equation below, the marginal likelihood 
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equates to a weighted average of the probability of the observed data under each possible set of 

parameter values 𝑝(𝑦|𝜽𝜸, 𝑀𝜸), with the weights corresponding to the prior probability 

distribution over the model parameters 𝑝(𝜽𝜸|𝑀𝜸) specified by the researcher. 

𝑝(𝑦|𝑀𝜸) = ∫ 𝑝(𝑦|𝜽𝜸, 𝑀𝜸)𝑝(𝜽𝜸|𝑀𝜸)𝑑𝜽𝜸  (32) 

Critically, computation of the marginal likelihood often entails the calculation of a complex 

multi-dimensional integral that is very sensitive to both the researcher’s choice of model 

parameter prior (Berger et al., 2001; Kass & Raftery, 1995; Steel, 2020) and the functional form 

of the model-specific likelihood function. Further, while the marginal likelihood serves only as a 

normalization constant within single-model Bayesian posterior calculations, this is not the case 

in BMA routines, where sensitivity of a model’s marginal likelihood has a direct impact upon its 

subsequent posterior probability (Steel, 2020). Consequently, BMA implementations have 

largely been constrained to a narrow range of specific prior structures that yield analytical 

closed-form solutions or approximations to the marginal likelihood.  

Applying a Bayesian Model Averaging Routine 

In practice, the application of a BMA routine is largely similar across all predictive 

contexts, consisting of a sampling-based exploration of the model space and empirical 

approximation of posterior model probabilities. Implementing such a routine requires that the 

researcher specify the model space, the functional form of the constituent models, and a set of 

priors to be placed upon both the parameter space and the model space (Steel, 2020). In the 

context of model uncertainty pertaining to predictor variable inclusion, the model space is 

typically considered to be comprised of all subsets of predictors possible under the full model, 

such that all of the constituent models share the same functional form. When these constraints 
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are applicable, the researcher’s main concerns are those related to specification of the prior 

structures.  

Prior Over Models 

The prior model probability 𝑝(𝑀𝜸), is the prior probability assigned by the researcher 

that a given model is the “true” actual data-generating model (Steel, 2020). While authors have 

debated the theoretical appropriateness of probabilistic statements regarding “true” generative 

models (e.g., Clyde & Iverson, 2013), such concerns are typically assuaged by instead treating 

model space priors as being reflective of the prior probability that a given model is a useful 

proxy for the “true” model (e.g. Steel, 2020). Theoretical considerations aside, in model 

uncertainty contexts related to variable inclusion, model space priors are typically derived simply 

by specifying an inclusion probability for the potential predictors. (Steel, 2020). Rather than 

elicit custom inclusion probabilities separately for each available predictor, most 

implementations in the literature have relied upon variations of the Bernoulli prior (e.g., George 

& McCulloch, 1993, 1997; Raftery et al., 1997), wherein each potential regressor is 

independently included in the model with probability 𝜔 (Ley & Steel, 2012). Written generally 

as 

𝑝(𝑀𝛾|𝜔) = 𝜔𝑘𝛾(1 − 𝜔)𝑘−𝑘𝛾  , (33) 

the Bernoulli-based model priors require only the specification of a single hyperparameter 𝜔 ∈

(0,1) (Clyde & George, 2004), and are structurally equivalent to placing a prior distribution over 

the range of model sizes (Clyde & George, 2004; Steel, 2020). Consequently, the above equation 

implies that prior selections of 𝜔 > 0.5 will favor larger models, 𝜔 < 0.5 will favor smaller 

models, and 𝜔 = 0.5 assigns equal probability 
1

𝑘𝛾
 to all models (Steel, 2020). 
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Given that the choice of 𝜔 can thus have a substantial effect upon the results of a BMA 

routine, the current literature standard is to place a Beta-distributed hyperprior upon 𝜔, which 

precludes researcher misspecification by allowing the posterior distribution of 𝜔 to vary in 

accordance with the data (e.g., Brown et al., 1998; Clyde & George, 2004; Ley and Steel, 2012; 

Liang et al., 2008; Scott & Berger, 2010). The resulting hierarchical prior over the model space 

is less restrictive than fixed-term model priors (Ley & Steel, 2009) and only requires the 

researcher to specify a prior expected model size m, the selection of which has been shown to 

have a limited impact in practice due to the adaptiveness of the prior (Ley & Steel, 2009; Steel, 

2020). Formalized through the relationship 

𝜔 ~ 𝐵𝑒𝑡𝑎 (1,
𝑘𝛾 − 𝑚

𝑚
) , (34) 

the random-𝜔 Beta-Binomial model-space prior is thus desirable due to both its simplicity and 

its robustness to researcher misspecification (Ley & Steel, 2009; Steel, 2020). 

Priors Over Parameters 

 In regression contexts where the BMA routine is being employed to address model 

uncertainty pertaining to predictor variable inclusion, subjective prior distributions typically 

become infeasible due to the exponentially large model spaces that can arise (Berger et al., 2001; 

Clyde & George, 2004; Steel, 2020). Consequently, research thus far has predominantly focused 

upon variations of a common class of prior structures developed by Zellner (1983, 1986) referred 

to as g-priors, which yield computationally simple solutions or approximations to the marginal 

likelihoods and induce a regularization penalty in alignment with the researcher’s prior beliefs 

(Ley & Steel, 2012).  

Importantly, the exact parameter prior structure recommended depends greatly upon the 

specific functional form of the generative model specified in the likelihood function. As such, for 
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ease of discussion, the review of current best practices regarding prior structures that follows has 

been divided into two contexts: those where the model space under consideration is comprised of 

normal linear regression models, and those that rely upon the broader generalized linear model 

(GLM), such as logistic regression models 

Normal Linear Regression BMA 

Many of the fundamental developments in the use of BMA routines to address model 

uncertainty related to predictor variable inclusion have occurred in the context of the normal 

linear regression model (e.g. George & McCulloch, 1993; Raftery et al., 1997; Zellner, 1983; 

Zellner & Siow, 1980), a trend due in large part to the closed-form integrals for the marginal 

likelihood that arise when certain prior structures are placed upon the parameter space of normal 

linear models (Hoeting et al., 1999; Raftery et al., 1997). Specifically, for normal linear 

regression contexts, a set of natural conjugate priors exists, referred to as such because they 

share same functional form as the likelihood (i.e., the normal distribution) and yield a posterior 

distribution that is also of the same form (Gelman et al., 2013). Further, natural conjugate priors 

also yield exact marginal likelihood integrals, a property that greatly facilitates fast and efficient 

sampling over the model space in BMA routines even the model space is very large (George & 

Clyde, 2004).  

 Consequently, a popular approach has been to follow the common model-specific prior 

structure proposed by Fernandez and colleagues (2001), under which improper non-informative 

prior structures are placed upon the intercept and error variance, and variations of the weakly-

informative natural-conjugate g-prior (Zellner, 1983; 1986) are placed upon the regression 

coefficients.  Developed first for normal linear regression models, the g-prior framework places a 

multivariate-normal distribution upon the regression coefficients, with a prior mean of zero and a 
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covariance matrix equivalent to a scaled version of the covariance matrix of the maximum 

likelihood estimator (Clyde & George, 2004; Zellner, 1983; 1986). Again letting 𝛾 index the 

predictor variable subsets included in each model 𝑀𝛾, placement of a g-prior upon the regression 

coefficients 𝜷𝛾 can be written as   

𝑝(𝜷𝜸|𝑔, 𝑀𝛾) ~ 𝑁 (𝟎, 𝜎2𝑔(𝑿𝜸
′ 𝑿𝜸)

−1
) , (35) 

which simplifies elicitation of the prior structure to specification of the hyper-parameter g. Thus, 

in selecting g, the researcher is effectively encoding how conservative his or her prior beliefs are 

regarding 𝜷𝜸, with a small g signifying the researcher is quite certain the coefficients are equal to 

zero. Importantly, under the g-prior shown above, the marginal posterior distribution for the 

regression coefficients follows a 𝑘𝛾-variate Student’s-t distribution (Fernandez et al., 2001; 

Steel, 2020) with an expected value of  

𝐸(𝜷𝛾|𝑦, 𝑿𝛾, 𝑔, 𝑀𝛾) =
𝑔

1+𝑔
𝜷̂𝛾

∗ , (36)  

where 𝜷̂𝛾
∗  is equivalent to the OLS estimate and 

𝑔

1+𝑔
 serves as a regularization factor (Liang et 

al., 2008). Subsequently, the posterior expectation under the g-prior represents a compromise 

between the OLS estimate and the prior mean of zero, with the relative influence of the prior 

determined by the selection of g (Fernandez et al., 2001). Similarly, the out-of-sample predictive 

distribution for each regression model, given the predictor values for the future observations, 

also follows a Student-t distribution (Fernandez et al, 2001; Steel, 2020). Lastly, the integral for 

marginal likelihood for any normal linear regression model 𝑀𝛾 simplifies under the g-prior to the 

tractable form 

𝑝(𝑦|𝑿𝛾, 𝑔, 𝑀𝛾) ∝  (1 + 𝑔)−
𝑘𝛾

2 (1 −
𝑔

1 + 𝑔
𝑅𝛾

2)
−

𝑁−1
2

, (37) 
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which includes a model-complexity penalty and fosters a computational efficiency that greatly 

facilitates posterior sampling in a BMA routine (Steel, 2020).  

Selection of g. Much research has been done regarding the relative efficacy of various 

selections for g (e.g. Fernandez et al, 2001; George and Foster, 2000; Hansen and Yu, 2003). 

Under uniform prior model probabilities, the choice of g drastically impacts the posterior model 

distribution, with large g selections tending to result in parsimonious models with a few large 

coefficients, and small g selections tending to result in a larger number of saturated models with 

small coefficients (George & Foster, 2000; Liang et al., 2008). While earlier research focused 

upon fixed-g specifications (e.g., Fernandez et al., 2001; Foster & George, 1994; Kass & 

Wasserman, 1995), the sensitivity of the BMA routine to g misspecifications has led researchers 

to recommend various mixtures of g-priors (e.g., Clyde & George, 2000; George & Foster, 2000; 

Liang et al., 2008), wherein the marginal likelihoods and posterior distributions are integrated 

over both the parameter values and g values possible under each model. Written conceptually as 

𝑝(𝑦|𝑀𝛾) = ∫ 𝑝(𝑦|𝜽𝛾, 𝑔, 𝑀𝑦)𝑝(𝜽𝛾|𝑔, 𝑀𝑦)𝑝(𝑔|𝑀𝛾)𝑑𝑔 , (26) 

mixtures of g-priors for linear regression models include variations such as the Cauchy prior 

(Zellner & Snow, 1980) and the hyper-g and hyper-g/n priors (Cui & George, 2008; Liang et al., 

2008). 

Of the above methods, the hyper-g prior of Liang and colleagues (2008) has been 

particularly popular, under which a Beta-distributed hyperprior is placed upon the shrinkage 

factor 
𝑔

1+𝑔
 (e.g. Liang et al., 2008; Zellner & Siow, 1980). Written as 

𝑔

1 + 𝑔
 ~  𝐵𝑒𝑡𝑎 (1,

𝑎

2
− 1) , (38) 
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the hyper-g prior only requires specification of values for the hyperparameter 𝑎 ∈ {2,4}, wherein 

values closer to 2 favor parsimonious models with large coefficients, and values closer to 4 favor 

a larger number of saturated models with small coefficients (Ley & Steel, 2012; Liang et al., 

2008). In the absence of strong prior beliefs held by the researcher, both Liang and colleagues 

(2008) and Ley and Steel (2011) recommend selecting a value of 𝑎 = 3, which predominantly 

favors shrinkage factors close to 1 and thus yields posterior estimates that converge to the OLS 

estimates (Liang et al., 2008). Importantly, in requiring only the selection of a single scalar value 

a, and by allowing the selection of g to vary via a data-dependent process, concerns regarding the 

impact of potential researcher misspecification of prior beliefs are thus largely mitigated (Ley & 

Steel, 2012; Liang et al., 2008).  

Finally, under the random-g priors, the optimal BMA predictions under the squared-error 

loss criterion for a vector of future values 𝒚̂̃, given the associated predictor scores 𝑿̃, can be 

written as 

𝔼[𝒚̃|𝒚] = ∑ 𝔼 [
𝑔

1 + 𝑔
|𝑀𝛾, 𝒚]

𝐾

𝑘=1

𝑿̃𝛾𝜷̂𝛾  × 𝑝(𝑀𝛾|𝒚), (39) 

where 𝔼 [(
𝑔

1+𝑔
) |𝑀𝛾, 𝒚] represents the posterior expected value of the shrinkage factor, and 𝜷̂𝛾 

represents the posterior mean for the regression coefficients under model 𝑀𝛾. In combination, 

use of the random-g priors under a BMA routine thus results in predictive point estimates that 

represent a hierarchical weighted average of the model-specific predictions, where the first set of 

weights corresponds to a data-dependent regularization term expected under model 𝑀𝛾, and the 

second set of weights corresponds to the posterior model probability of 𝑀𝛾. 
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Logistic Regression/GLM Priors Over Parameters 

Eliciting a prior distribution over the parameter space for logistic regression models and 

other GLM derivations can quickly become complex, as the closed-form expressions for the 

marginal likelihood integrals possible under normal linear regression models are typically 

unavailable (Li & Clyde, 2018). Consequently, numerous researchers have proposed variations 

or mixtures of the original g-priors discussed earlier as a means of eliciting objective prior 

structures that yield computationally-efficient integral approximations for non-normal linear 

models, including Hansen and Yu (2003), Kass and Wasserman (1995), and Li and Clyde 

(2018), among others. Of particular promise is the research by Li and Clyde (2018), who have 

shown that by employing large-sample Laplace approximations to the marginal likelihood 

integrals (Tierney et al., 1989; Tierney & Kadane, 1986), the usage of specific g-priors can lead 

to analytic marginal likelihoods and conditionally conjugate posterior distributions for non-

normal GLMs.  

Although a detailed review of Laplace approximations is beyond the scope of this thesis, 

at a high level the Laplace method provides a means of integral approximation based upon the 

volume of a Gaussian distribution centered over the posterior mode, which asymptotically 

converges to the maximum likelihood estimate (MLE). Given that the joint posterior distribution 

converges to normality asymptotically (Gelman et al., 2013), Laplace approximations to 

marginal likelihood integration can be appropriately applied to the BMA routines in large-sample 

contexts (Li & Clyde, 2018; Tierney & Kadane, 1986). Consequently, under a modelling routine 

that employs such approximations, Li and Clyde (2018) advocate for the use of a flexible 

generalized Beta distribution referred to as the truncated compound confluent hypergeometric 

(tCCH) distribution (Gordy 1998), of which mixtures of g-priors such as the hyper-g prior of 
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Liang and colleagues (2018) are included as special cases. As with the hyper-g prior, the tCCH 

prior is an adaptive prior under which the values of g are allowed to vary and which requires 

only the specification of a single scalar hyperparameter by the researcher (Li & Clyde, 2018).  

In addition to specification simplicity, the tCCH prior is also desirable due to the 

computational efficiency it yields with respect to both the model-specific posterior distribution 

and the integrated marginal likelihood. Specifically, under the tCCH prior, both the posterior 

distribution of the regression coefficients and integrated marginal likelihood reduce to functions 

of the MLE estimates. Again letting 𝛾 index the predictor variable subsets included in each 

model 𝑀𝛾, the posterior distribution for the regression parameters and the marginal likelihood 

can be written respectively as  

𝑝(𝜷𝛾|𝑦, 𝑀𝛾)
𝑁
→ 𝑁 (

𝑔

1 + 𝑔
𝜷̂𝛾

∗  ,
𝑔

1 + 𝑔
ℐ𝑛(𝜷̂𝛾

∗ )
−1

) , (40) 

and 

𝑝(𝑦|𝑀𝛾) ≈ 𝑝(𝑦|𝜽̂𝛾
∗ )𝑝(𝜽̂𝛾

∗ )(2𝜋)
𝑘𝛾

2 |Σ|
1
2𝑁−

𝑘𝛾

2 , (41) 

where 𝜷̂𝛾
∗  and 𝜽̂𝛾

∗  denote the MLE estimates for the regression parameters, ℐ𝑛(𝜷̂𝛾
∗ )

−1
 represents 

the inverse of the observed Fisher information matrix evaluated at the MLE estimate, and Σ 

represents the Hessian matrix of second derivatives. Thus, as shown above, under the tCCH 

prior, closed form solutions dependent solely upon the MLE estimate can be derived for both the 

posterior distribution and the marginal likelihood, which greatly facilitates fast and efficient 

sampling from the posterior model distribution (Li & Clyde, 2018).  

Evaluating Predictive Performance 

In organizational research, as in all domains, the evaluation of a given model’s predictive 

performance is often of critical importance. Intuitively, when a predictive model is used to 
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generate forecasts for unknown or future observations, a discrepancy between the predictions 

generated by a model and the actual observations suggest that that model is of limited utility 

(Vehtari & Ojanen, 2012). Consequently, decisions regarding the selection of a performance 

metric that can be used to quantify such a discrepancy are often of great importance to the 

researcher. As noted by Gelman and colleagues (2013), ideally such a measure should be tailored 

specifically for the application at hand and be adept at measuring both the costs and benefits 

associated with the predictions generated by a given model.  

In organizational contexts, these costs and benefits are sometimes tangible and 

calculable, such as in the context of personnel selection models that can be associated with a 

specific predictive validity, adverse impact, and economic impact Schmidt & Hunter, 1998).  

However, when the costs and benefits associated with employing a predictive model are implicit 

or intractable, generic scoring functions and rules are needed (Gelman et al., 2013). In this 

regard, a distinction should first be made between point predictions, wherein a single value 

representing the unknown future observation 𝑦̃ is reported, and probabilistic prediction, where 

the inferences about 𝑦̃ are reported in a manner such that the full uncertainty over 𝑦̃ is 

acknowledged (Vehtari & Ojanen, 2012).  

As discussed by Bernardo and Smith (1994), a modeling strategy is generally preferred 

over another when it consistently assigns higher probabilities to the events that actually occur. 

To this end, scoring rules provide measures of predictive accuracy for probabilistic prediction 

(Gelman, 2013), and should assess both its calibration (whether the assigned probabilities are 

compatible with the proportion of times the outcome occurred) and its sharpness (the 

concentration of the predictive distributions). Further, a scoring rule should be proper, such that 

the score is maximized when the forecasted probability of an event’s occurrence is the same as 
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the true probability of the event’s occurrence (Gelman, 2013). While there are numerous proper 

scoring rules cited in the literature, variations of the logarithm predictive score and the squared-

error function are among the most popular. 

Log Predictive Score 

Perhaps the most common proper scoring rule is the logarithm predictive score (LPS) of 

Good (1952), also referred to as the “log-likelihood”, or the “log predictive density”, which 

seeks to measure the predictive ability of a given model by summing the logarithms of the 

predictive densities of each observation. Introduced by Good (1952), and implemented in the 

BMA context by Fernandez et al. (2001a, b), Kaplan and Lee (2018), Ley and Steel (2009b), and 

Madigan et al. (1995), the LPS for a given model 𝑀𝛾 can be written as 

𝐿𝑃𝑆𝛾 = − ∑ 𝑙𝑜𝑔[𝑝(𝑦̃𝑖|𝑥̃𝑖, 𝑦, 𝑀𝛾)]

𝑛

𝑖=1

, (42) 

which can be written in the Bayesian context as 

𝐿𝑃𝑆𝛾 = − ∑ 𝑙𝑜𝑔(∫ 𝑝(𝑦̃𝑖|𝜽𝛾, 𝑥̃𝑖, 𝑀𝛾)𝑝(𝜽𝛾|𝑦, 𝑀𝛾)𝑑𝜽𝛾)𝑁
𝑖=1 , (43)

where 𝑥̃𝑖 and 𝑦̃𝑖 denote the predictor and response scores, respectively, for the ith future data 

point and 𝜽𝛾 represents the vector of parameter estimates under model 𝑀𝛾. Further, when 

applied to a BMA predictive modelling routine, the LPS can be written as  

𝐿𝑃𝑆𝐵𝑀𝐴 = − ∑ 𝑙𝑜𝑔 (∑ 𝑝(𝑦̃𝑖|𝑥̃𝑖 , 𝑦, 𝑀𝛾)𝑝(𝑀𝛾|𝑦)

𝐾

𝑘=1

)

𝑁

𝑖=1

, (44) 

and thus represents the summation of the logarithms of the Bayesian model-averaged pointwise 

predictive densities of the unknown observations (Gelman et al., 2013). 
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Squared-Error Loss 

The squared-error loss function is one of the simplest and most common predictive 

performance metrics (Gelman et al., 2013; Gneiting, 2011; Vehtari & Ojanen, 2012), and will 

yield equivalent results to the LPS when assumptions of normality and constant error variance 

are met (Gelman, 2013). Amongst the many variations of squared-error loss functions, two of the 

most common derivations are the root mean squared error (RMSE) function and the Brier score, 

intended for continuous and binary outcome measures respectively.  

Root Mean Squared Error. The accuracy of the predictions generated for previously 

unseen data by a given model can be evaluated by way of the RMSE function. Written as 

follows, 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦̃𝑖 − 𝑦𝑖̂̃)

2𝑁
𝑖=1 , (45)

the RMSE statistic involves calculating the average pointwise discrepancy between the actual 

outcome values for previously unseen data 𝑦𝑖̃ and the predicted values 𝑦𝑖̂̃. The RMSE function 

has the desirable properties of simplicity and ease of computation, but it may not be appropriate 

in situations where the distribution of the outcome measures is significantly non-normal (Gelman 

et al., 2013). 

Brier Score. For binary outcome measures, a popular squared-error derivation is the 

Brier (1950) score, a probabilistic analogue to the squared-error cost function written as 

𝐵𝑟𝑖𝑒𝑟 =
1

𝑁
∑(𝑝𝑖 − 𝑦̃𝑖)

2

𝑁

𝑖=1

, (46) 

where for the ith observation, pi is the probabilistic forecast and 𝑦̃𝑖  denotes the actual outcome or 

class status (coded as 1 when the outcome or class membership occurred and 0 otherwise).  
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Out-of-Sample Prediction 

The generalizability of predictive models and decision-making to out-of-sample contexts 

is of critical importance when such models are employed in organizational settings (Putka et al., 

2018), and should thus be a critical consideration in any model evaluation procedure. In order to 

estimate the out-of-sample predictive performance of a given modelling routine, two popular 

approaches are the corrective adjustment-based approach, and the cross-validation approach. 

While a detailed review is beyond the scope of this thesis, the former approach is comprised of 

measures referred to as information criteria, under which the within-sample predictive accuracy 

is calculated and a bias-corrected adjustment of within-sample error is applied (Gelman et al., 

2013). There are numerous such metrics, but some of the more popular ones include the Akaike 

Information Criterion (Akaike, 1973), the Watanabe-Akaike Information Criterion (Watanabe, 

2013), and the Deviance Information Criterion (Spiegelhalter et al., 2002, van der Linde, 2005).  

 In contrast, under a cross-validation approach, the researcher instead partitions the 

dataset into a training set, upon which the model is fit, and a testing set, upon which the 

predictive accuracy is evaluated (Bishop, 2006). Further, in a k-fold cross-validation approach, 

the researcher can elect to recursively partition the dataset into multiple (k) training and hold-out 

sets (folds), ranging from the simplest 2-fold case, to the extreme leave-one-out (LOO) case, 

consisting of n folds (Gelman et al., 2013). While computationally intensive (Gelman et al., 

2013), cross-validation is now a staple component of modern predictive methods (Putka et al., 

2018), and is considered to be the industry standard for model evaluation in organizational 

applications (Society of Industrial Organizational Psychology, 2018). 
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Predictive Efficacy of Bayesian Model Averaging 

There is an abundance of literature regarding the efficacy of BMA relative to other 

predictive methods. Specifically, Madigan and Raftery (1994) found that BMA predicts at least 

as well as any single model with respect to the log score rule, and Min and Zellner (1993) have 

shown that the expected squared-error loss of point predictions is always minimized by BMA in 

situations where the model space includes the generative model. Further, on the basis of 

empirical results, Raftery and colleagues (1997) reported that predictive coverage under a BMA 

routine was improved relative to that observed under a single model. This finding was 

subsequently confirmed by Hoeting and colleagues (1999) and demonstrated again by Kaplan 

and Lee (2018). Similarly, Fernandez et al. (2001) and Ley and Steel (2009) both found that 

under the log score rule, BMA provided substantially better predictive performance than single 

models when applied to economic growth data. Lastly, while the majority of the literature has 

evaluated the predictive performance of BMA routines relative to model selection methods, 

research by Davidson and Fan (2006) found that BMA significantly outperformed various 

ensemble-based machine learning methods in certain situations. 

Predictor Variable Importance 

 While the bulk of the current study focuses upon the benefits of the BMA routine that 

pertain specifically to optimizing predictive performance, the BMA approach does provide 

metrics that allow the researcher to gauge the relative “importance” of individual predictor 

variables. Consequently, a brief review of several of the predictor variable importance metrics 

available under the BMA, OLS/logistic regression, and Random Forest modelling routines is 

provided. 
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Posterior Inclusion Probabilities 

 The posterior inclusion probabilities (PIPs) are generated by summing the posterior 

model probabilities of all the models that contain a given predictor and can be interpreted as the 

marginal model-averaged probability that the regression coefficient for a given predictor is not 

equal to zero (Zeugner, 2011). When the PIP for a predictor variable is high (e.g. close to 1.00), 

this denotes that virtually all of the posterior model mass is distributed over models that contain 

that predictor. In contrast, when the PIP for a predictor variable is low (e.g. close to 0.00), this 

denotes that the majority of the most probable models do not include said predictor variable. 

Consequently, in contrast to frequentist p-values, predictors with high PIPs will have model-

averaged coefficient estimates that are far from zero, and predictors with low PIPs will have 

coefficient estimates that are close to zero (Zeugner, 2011).  

Rescaled Relative Weights 

 Rescaled Relative Weights (RRWs) are a specific type of relative importance index for 

regression models that can be employed to partition explained variance (R2) into the portion that 

is attributable to each individual predictor (Tonidandel et al., 2009; Tonidandel & LeBreton, 

2011). Specifically, relative weights analyses combat intercorrelations amongst the predictor 

variables by utilizing a variable transformation approach to create a new set of orthogonal 

predictors that the outcome measure is then regressed upon (Johnson, 2000; Tonidandel & 

LeBreton, 2011). Further, the RRWs represent a rescaled version of the “raw” relative weights in 

that they represent a percentage of the explained/predicted variance that is attributable to each 

predictor.   
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Increase in Node Purity 

 Variable importance metrics provided by Random Forest models are typically derived by 

calculating the total decrease in node impurities that results from splitting on a given predictor 

variable, averaged over all of the constituent bootstrapped trees (Liaw & Wiener, 2002). 

Specifically, node impurity is typically measured via the decrease in Residual Sums of Squares 

(RSS) in regression contexts, and via the decrease in the Gini homogeneity index in 

classification contexts (Rokach, 2019). Consequently, variable importance in random forest 

modelling routines is measured via the total decrease in either the RSS (regression contexts) or 

the Gini index (classification contexts), averaged over all the individual trees. 

Current Study 

In order to highlight how BMA can be employed to optimize both regression-based and 

classification-based predictions of organizational outcomes by acknowledging model uncertainty 

pertaining to covariate inclusion, two case studies based on an illustrative dataset used by Yuan 

and colleagues (2021) are presented. In Case Study #1, the predictive performance of BMA with 

respect to a continuous measure of employee turnover intentions is compared to that of both the 

full multiple linear regression model and a random forest regression routine. In Case Study #2, 

the predictive performance of BMA with respect to a binary classification of employee turnover 

risk is compared to that of both the full logistic regression model and a random forest classifier. 

Further details regarding the six predictive routines and model configurations are included 

below.  

Hypothesis 1: Bayesian Model Averaging should provide an increase in predictive 

performance relative to traditional single-model methods and machine-learning ensemble-based 
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methods when used to predict organizational outcomes in both classification and regression 

contexts. 



 

 

CHAPTER II: METHODS 

Data 

Both case studies make use of a dataset used by Yuan and colleagues (2021) that was 

collected from a convenience sample of employees (N = 1,454) from 199 different small and 

medium-sized businesses in The Netherlands between 2017 and 2019. The dataset was obtained 

for the purposes of this thesis from the Open Science Framework page pertaining to the article 

published by Yuan and colleagues (2021), which can be viewed directly at https://osf.io/yx2us/. 

Data Collection 

The data were derived from two questionnaires, one of which was distributed to the 

individual employees, and one of which was given to the managing director of each organization. 

The questionnaire given to the individual employees contained validated measures of turnover 

intentions, demographic characteristics such as education, age, contract type, and job/work 

culture attitudes such as perceived fairness, pay satisfaction, and job proactivity. The 

questionnaire that was given to each organization’s managing director covered a variety of 

organizational-level contextual factors, such as the company’s size, governance structure, and 

past turnover rates.  A complete list of the variables included in the current study can be seen 

below in Table 1, and a detailed description provided by Yuan et al. (2021) of the measures, their 

origins, exemplar items and scale/descriptive statistics can be seen in Appendices A and B. In 

addition, while data were initially collected from 1,510 respondents, the respondent pool was 

later screened by Yuan et al. (2021) to only include the 1,454 participants who responded to all 

of the constituent items for the variable of interest, turnover intentions. 
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Table 1. 

Variables Selected for the Current Study 

Level Variable Number of items Scale 

Person    

 Turnover intentions 3 Yes/No 

 Education level 1 Years 

 Management position 1 Yes/No 

 Hours per week - contract 1 Hours 

 Contract type 1 Temp/Perm 

 Leader-member exchange 12 5pt Likert 

 Information sharing 1 5pt Likert 

 Employee voice 5 5pt Likert 

 Pay satisfaction 3 5pt Likert 

 Perceived fairness 16 5pt Likert 

 Job proactivity 5 5pt Likert 

 Career opportunities 3 5pt Likert 

Organization    

 Total number of employees 1 Numeric 

 Number of FTE current year 1 Numeric 

 Number of FTE last year 1 Numeric 

 Presence of employee council 1 Yes/No 

 Presence of HRM on-site 1 Yes/No 

 Number of hierarchical levels 1 Numeric 

 Number of departments 1 Numeric 

 Number of managers 1 Numeric 

 Family business 1 Yes/No 

 HRM 1: Past turnover rate 1 5pt Likert 

 HRM 2: Attract qualified pers. 1 5pt Likert 

 HRM 3: Retain key employees 1 5pt Likert 

 HRM 4: Absenteeism 1 5pt Likert 

 HRM 5: Labor disputes 1 5pt Likert 

 HRM 6: Employee involvement 1 5pt Likert 

 HRM 7: Innovation 1 5pt Likert 

 HRM 8: Quality of ideas 1 5pt Likert 

 HRM 9: Employee flexibility 1 5pt Likert 

 Strategic planning 1 5pt Likert 

 Corporate entrepreneurship 7 5pt Likert 

Note. HRM = Human Resources Manager. 
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Demographics and Background 

 The following information regarding employee demographics and organizational context 

are derived directly from the original study conducted by Yuan et al. (2021). The largest group of 

businesses in the sample operated in the service industry (54.8%), followed by manufacturing 

and agriculture (20.1%), healthcare, education, and recreation (14.6%), and logistics (10.6%). 

The average company size, as measured by the average number of full‐time equivalent 

employees (FTEs), was 22.92 FTEs (SD = 31.85). However, given that a proportion of the 

various organizations’ employees worked part‐time, the average number of “real” employees per 

organization was likely substantially higher, although no additional details were provided. 

Lastly, a slight majority (~ 61%) of the organizations sampled were self-characterized by the 

managing directors as being family-owned-and-operated. Regarding employee demographics, of 

the 1,454 employee respondents included in the final sample, slightly more than half (~57%) 

self-identified as male, and roughly 38% self-reported as having acquired at least a bachelor's 

degree from a four-year university. Finally, the average employee age was 38.44 years (SD = 

12.87).  

Outcomes of Interest 

The target variable used by Yuan et al. (2021) and in the first case study of this thesis is a 

continuous measure of turnover intentions measured as a composite of three Likert-style items 

designed by Valentine and colleagues (2006) to relate thoughts about the likelihood of leaving 

with expected job search behaviors within a 3‐year timeframe. In addition to this first outcome 

measure, a secondary target variable was created via dichotomization of the original variable 

such that participants with scores greater than 3.00 (out of a 5-pt Likert scale) were classified as 

being at greater risk of quitting (High-Risk), and respondents with scores of 3.00 or below were 
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classified as being at a lower risk of quitting (Low Risk). Construction of this alternate outcome 

measure via dichotomization was only made such that the current study could illustrate the 

implementation of a BMA routine in both a regression and a classification context. As noted by 

Hunter and Schmidt (1990), dichotomization of a continuous variable should rarely be conducted 

in practice. 

Data Structure  

Lastly, it should also be noted that the data is of a nested structure, as it consists of 

employees nested within organizations. While the relative efficacy of fixed, random, and mixed-

effects approaches was a primary focus of Yuan and colleagues (2021), such an approach is 

beyond the scope of this thesis, which will utilize only a fixed-effects approach. Specifically, in 

both case studies, both the employee and organizational-level variables are included for 

consideration in the model space, with observations from employees belonging to the same 

organization all sharing the same values on the organizational factors. Prospective practitioners 

and researchers should ensure that real-life data nestedness is adequately addressed, as will be 

addressed further in Section IV.  

Data Preparation and Pre-Processing  

 Upon receipt of the initial dataset, all of included predictor variables were already mean 

centered by Yuan and colleagues (2021), and no further scaling or standardization methods were 

utilized. Data missingness was then screened for and listwise deletion was employed, resulting in 

the deletion of 65 cases and a final sample consisting of 1,389 observations. Last, the original 

dataset included variables regarding the participants’ age and gender. Due to concerns regarding 

protected-status groups, age and gender were removed from the final dataset and were not 

included as predictor variables in any of the modelling routines. 
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Data Partitioning into Training and Testing Subsets 

In order to better approximate the out-of-sample predictive performance for each 

predictive modelling routine the full dataset was partitioned using a 70/30 split into a training 

subset (70%) and a testing subset (30%) using the caret package (Kuhn, 2021) in R (R Core 

Team, 2021). Importantly, the partitioning procedure was conducted using a stratified split with 

respect to the target variable, such that distribution of scores on the outcome measure, turnover 

intentions, was preserved in both the training and testing subsets. Stratified splits are particularly 

important in the context of classification problems, where any disjoint proportionality between 

the target class groups can greatly impact predictive performance. Consequently, preserving the 

relative distribution of the outcome measure scores across both the training and testing subsets is 

important in order to mitigate predictive performance variability (Sechidis et al., 2011). The end 

result of the data partitioning step was thus a single subset of training data (n = 973) and a single 

subset of testing data (n = 416) that was next used to fit and evaluate, respectively, each of the 

modelling routines. Importantly, this single test/train split was used for both the regression and 

classification contexts, with the only distinction being the selected outcome measure (continuous 

turnover intentions vs binary turnover risk).  

Case Study 1: BMA for Linear Regression 

Overview 

For the first case study, the original continuous measure of turnover intentions was 

regressed upon both the employee-level and organizational-level factors. A fixed-effects 

approach was utilized, in which observations from employees belonging to the same 

organization all shared the same values on the various organizational factors. All employee-level 

and organizational-level variables shown in Table 1 were included as potential covariates, with 
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no hierarchical distinction made. As such, the full model space contained 34 predictor variables 

and 234 separate submodels, making it an ideal candidate for prediction under a BMA routine.  

Analytic Procedure 

 The predictive performance of the BMA routine, as applied to the regression context, was 

evaluated relative to that of the full OLS model and the random forest model using an analytic 

procedure that consisted of three general steps. In the first stage, the various applicable 

hyperparameters, configurations, and settings were tuned and/or specified for each of the three 

modelling routines, as described below.  

The BMA linear regression modelling routine was conducted using the BAS package 

(Clyde, 2020) in R (R Core Team, 2021). Following the current literature standard, a “random” 

model space prior equivalent to the placement of a beta-binomial distribution over the prior 

variable inclusion probability was selected (Brown et al., 1998; Clyde & George, 2004; Ley & 

Steel, 2009). This has the desired effect of placing a uniform prior distribution over the expected 

model size (Ley & Steel, 2009). For the prior over the regression coefficients, the random hyper-

g prior recommended by Liang et al. (2008) was used, with a hyperparameter value of 𝑎 = 3 

selected. As discussed in Section I, this corresponds to a placement of a Beta-distributed 

hyperprior over the shrinkage factor 
𝑔

1+𝑔
, with the hyperparameter selection of 𝑎 = 3 yielding 

model-specific coefficient estimates similar to those derived under a regularized OLS routine. 

Finally, 524,288 unique models were sampled from the model space using the BAS (Clyde, 

2020) default MC3-based sampler with 50,000,000 iterations. 

The OLS linear regression modelling routine used for comparison consisted of the full 

regression model with all available predictor variables included. There were no applicable 
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hyperparameters, specifications, or configurations to be considered, and the model was 

conducted using base R (R Core Team, 2021). 

The random forest regression model was fit using the caret package (Kuhn, 2021) in R (R 

Core Team, 2021), which by default uses a cross-validation tuning process to select the optimal 

number of variables to be randomly sampled as candidates at each decision tree split. 

Specifically, the default selection for the caret package random forest model uses a k-fold cross-

validation routine with a RMSE performance metric to evaluate a range of possible numbers of 

predictor variables to be randomly sampled as candidates at each split. In addition, the default 

number of 500 trees with a default bootstrapped resampling routine (as described in Section I) 

was utilized as well. 

After specifying the applicable model configurations, the second step of the regression-

based analytic procedure consisted of fitting the full OLS, random forest regression, and BMA 

linear regression models to the training data set using the software packages referenced above. 

This resulted in a set of applicable parameter estimates and decision rules for each of the three 

models, which were then formalized as the estimated regression equations generated by each 

trained modelling routine. 

For the third and final step, each of the fitted models was used to generate predicted 

levels of turnover intentions for each of the testing set observations, such that three separate sets 

of predicted turnover level intentions were generated. The predictions generated by each of the 

three modelling routines were then compared to the actual turnover intention levels of the test set 

observations in order to evaluate and compare the predictive performance of the BMA approach 

with that of the full OLS model and the random forest regression model. In order to do so, the 
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root mean squared error (RMSE) and the percentage of variance explained (R2) performance 

metrics were utilized, in alignment with Yuan and colleagues (2021). 

Case Study 2: BMA for Logistic Regression/Classification 

Overview 

For the second case study, the binary measure of turnover risk (High Risk = 1, Low Risk 

= 0) was regressed upon the same employee-level and organizational-level factors as in the first 

case study. All of the variables shown in Table 1 were thus included again as potential 

predictors, utilizing the same fixed-effects approach with no hierarchical distinction. 

Consequently, the full model space under consideration for the second case study also contained 

34 predictor variables and 234 submodels, with the only distinction relative to the first case study 

being that of the functional form of the constituent generative models (logistic rather than normal 

linear).  

Analytic Procedure 

Similarly to the first case study, the predictive performance of the BMA routine, as 

applied to the classification context, was evaluated relative to that of the full logistic model and 

the random forest classifier using an analytic procedure that consisted of three general steps. In 

the first stage, the various applicable hyperparameters, configurations, and settings were tuned 

and/or specified for each of the three modelling routines, as described below.  

The BMA logistic regression modelling routine was conducted using the BAS package 

(Clyde, 2020) in R (R Core Team, 2021). As in the regression context, a “random” model space 

prior equivalent to the placement of a beta-binomial distribution over the prior variable inclusion 

probability was selected (Brown et al., 1998; Clyde & George, 2004; Ley & Steel, 2009). This 

has the desired effect of placing a uniform prior distribution over the expected model size (Ley & 
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Steel, 2009). For the prior over the regression coefficients, the tCCH prior recommended by Li & 

Clyde (2018) for use in non-normal GLM contexts was used, with hyperparameter values 

selected that yield equivalent results to those produced under a normal linear regression context 

by the hyper-g (𝑎 = 3) prior of Liang et al. (2008). Similarly, to the normal linear context, this 

corresponds to the placement of a Beta-distributed hyperprior over the shrinkage factor 
𝑔

1+𝑔
 that 

yields model-specific coefficient estimates similar to those derived under a regularized MLE 

estimation routine (Li & Clyde, 2018). In addition, given the classification context, the default 

binomial family and logistic link function were utilized for the functional form specification. 

Finally, as in the regression context, 524,288 unique models were sampled from the model space 

using the BAS (Clyde, 2020) default MC3-based sampler with 50,000,000 iterations. 

The logistic regression modelling routine used for comparison consisted of the full 

logistic regression model with all available predictor variables included. There were no 

applicable hyperparameters, specifications, or configurations to be considered, and the model 

was conducted using base R (R Core Team, 2021). 

Similarly to the random forest regression model, the random forest classifier model was 

fit using the caret package (Kuhn, 2021), which by default uses a cross validation tuning process 

to select the optimal number of variables to be randomly sampled as candidates at each decision 

tree split. Specifically, the default selection uses a k-fold cross-validation routine with an 

accuracy-based performance metric to evaluate a range of possible numbers of predictor 

variables to be randomly sampled as candidates at each split. In addition, the default number of 

500 trees with a default bootstrapped training data resampling routine was utilized as well. 

After specifying the applicable model configurations, the second step of the 

classification-based analytic procedure consisted of fitting the full logistic regression, random 



 

53 
 

forest classifier, and BMA logistic regression models to the training data set using the software 

packages referenced above. This resulted in a set of applicable parameter estimates and decision 

rules for each of the three models, which were then formalized as the estimated regression 

equations generated by each trained modelling routine. 

For the third and final step, each of the fitted models was used to generate probabilistic 

predictions regarding turnover risk status for each of the testing set observations, such that three 

separate sets of probabilistic predictions regarding turnover risk status were generated. The 

probabilistic forecasts generated by each of the three modelling routines were then compared to 

the actual turnover risk status of the corresponding test set observations in order to evaluate 

predictive performance for each model. Specifically, following the example of Kaplan and Lee 

(2018), the Brier (1950) score was used to evaluate the efficacy of the BMA approach in 

generating a probabilistic classification forecast relative to that of the full logistic regression 

model and the random forest classifier. As discussed in Section I, the Brier score is analogous to 

a squared-error cost function and measures the discrepancy between the observed class status 

and the probabilistic forecast assigned by the modelling routine.



 

 

CHAPTER III: RESULTS 

Case Study 1 

Predictive Performance 

In order to evaluate the predictive performance of the BMA regression routine relative to 

that of the full OLS and Random Forest regression models, the Root Mean Squared Error 

(RMSE) and the proportion of variance explained (R2) and are provided below in Table 2. As 

hypothesized, the BMA regression routine produced higher R2 and lower RMSE values than both 

the Random Forest and the full OLS regression models. It should be noted, however, that the 

difference in R2 between the BMA and Random Forest routines was relatively small ( ~ 0.05%). 

Further, the Random Forest regression model produced lower RMSE and higher R2 scores than 

the full OLS model. 

 

Table 2. 

Predictive Performance: Bayesian Model Averaging, OLS Regression, and Random Forest 

Comparison 

Modeling Routine Root Mean Squared Error R2 

BMA 0.814 0.225 

Full OLS 0.828 0.206 

Random Forest 0.817 0.220 

Note. BMA = Bayesian Model Averaging; OLS = Ordinary Least Squares regression 

 

Parameter Estimates 

 Regression coefficient estimates and relevant statistics produced from the BMA 

regression routine and the full OLS regression model can be seen below in Table 3. Specifically, 

for the model-averaged regression coefficient estimates generated by the BMA routine, the 

marginal posterior mean 𝔼[𝛽|𝑦], the marginal 95% posterior credible interval, and the posterior 
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inclusion probability (PIP) are provided. For the coefficient estimates generated by the full OLS 

regression model, the unstandardized slopes b, the 95% confidence intervals for the 

unstandardized slopes, and the p-values for the tests of significance are provided. It should also 

be noted that random forest regression modelling routines do not employ or produce regression 

coefficients or their associated estimates, and as such are not included in Table 3.  

As can be seen below, the coefficient estimates produced by the BMA routine tend to be 

of a smaller magnitude than those associated with the full OLS model. This is largely to be 

expected, as under the hyper-g prior placed upon the regression coefficients, the model-specific 

regression coefficients have conditional posterior expectations 𝔼[𝛽𝛾|𝑦, 𝑔, 𝑀𝛾] equivalent to a 

convex combination of the OLS estimates and a shrinkage term 
𝑔

1+𝑔
, as discussed earlier in 

Section I (see Liang et al., 2008; Zeugner, 2011). Consequently, the results shown below suggest 

that in addition to the increase in predictive performance, the BMA regression routine also 

produces coefficient estimates that better incorporate uncertainty and mitigate potential 

overfitting. 

  



 

56 
 

Table 3. 

Regression Coefficients: Bayesian Model Averaging and OLS Regression Comparison 

 Bayesian Model Averaging  Full OLS Linear Regression 

Predictor  Mean (β | y) 95% CI (β | y)  b 95% CI p 

(Intercept) 2.128 [2.08, 2.18]  2.109 [1.97, 2.25] < .001 

Education level 0.107 [0.07, 0.15]  0.101 [0.06, 0.14] < .001 

Management position 0.003 [-0.03, 0.04]  0.032 [-0.10, 0.16] .620 

Hours per week - contract -0.003 [-0.01, 0.00]  -0.006 [-0.01, 0.00] .028 

Contract type 0.001 [-0.02, 0.04]  0.022 [-0.11, 0.16] .750 

Leader-member exchange -0.282 [-0.39, -0.16]  -0.286 [-0.40, -0.17] < .001 

Information sharing -0.026 [-0.08, 0.00]  -0.059 [-0.11, -0.01] .015 

Employee voice 0.005 [0.00, 0.07]  0.047 [-0.02, 0.12] .192 

Pay satisfaction -0.120 [-0.21, 0.00]  -0.114 [-0.20, -0.03] .009 

Perceived fairness -0.161 [-0.31, 0.00]  -0.208 [-0.34, -0.07] .003 

Job proactivity 0.001 [-0.01, 0.03]  0.009 [-0.08, 0.10] .847 

Career opportunities -0.207 [-0.28, -0.13]  -0.211 [-0.29, -0.14] < .001 

Total employees (N) 0.002 [0.00, 0.01]  0.001 [0.00, 0.00] .610 

Current FTE (N) 0.002 [0.00, 0.01]  0.007 [0.00, 0.01] .027 

Last year FTE (N) -0.004 [-0.01, 0.00]  -0.007 [-0.01, 0.00] .018 

Employee council present 0.006 [0.00, 0.12]  -0.051 [-0.22, 0.12] .559 

HRM rep on-site 0.002 [-0.02, 0.03]  0.034 [-0.09, 0.15] .579 

Hierarchical levels (N) 0.013 [0.00, 0.03]  0.023 [0.01, 0.04] .009 

Departments (N) -0.003 [-0.03, 0.00]  -0.023 [-0.05, 0.01] .132 

Managers (N) 0.001 [0.00, 0.01]  0.007 [-0.02, 0.03] .545 

Family business -0.001 [-0.03, 0.01]  -0.003 [-0.12, 0.11] .957 

HR1: Past turnover rate 0.004 [0.00, 0.06]  0.04 [-0.03, 0.11] .235 

HR2: Attract qualified talent -0.094 [-0.16, 0.00]  -0.1 [-0.18, -0.02] .016 

HR3: Retain key talent 0.002 [-0.01, 0.03]  0.042 [-0.05, 0.14] .369 

HR4: Absenteeism 0.000 [0.00, 0.02]  -0.014 [-0.07, 0.05] .648 

HR5: Labor disputes 0.002 [0.00, 0.04]  0.016 [-0.08, 0.11] .728 

HR6: Employee involvement 0.003 [0.00, 0.06]  0.004 [-0.10, 0.11] .936 

HR7: Innovation 0.004 [0.00, 0.06]  0.021 [-0.06, 0.11] .628 

HR8: Quality of ideas -0.012 [-0.12, 0.01]  -0.115 [-0.23, -0.00] .045 

HR9: Employee flexibility 0.017 [0.00, 0.12]  0.098 [0.00, 0.20] .048 

Supervisory board 0.175 [0.00, 0.47]  0.331 [0.07, 0.59] .012 

Advisory board -0.259 [-0.48, 0.00]  -0.379 [-0.60, -0.17] < .001 

Corporate entrepreneurship -0.001 [-0.03, 0.01]  -0.007 [-0.09, 0.08] .878 

Strategic planning 0.073 [0.00, 0.25]  0.173 [0.02, 0.32] .023 

Entrepreneurial orientation -0.021 [-0.10, 0.00]  -0.075 [-0.15, 0.00] .039 

Note. OLS = Ordinary Least Squares regression; Mean (β|y) = marginal posterior mean; 95% CI 

(β | y) = Bayesian credible interval; 95% CI = OLS confidence interval; FTE = Full-time 

employees; N = number/count. HR = Human Resources 
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Predictor Importance 

The various predictor importance statistics associated with each of the BMA regression, 

full OLS regression, and Random Forest regression modelling routines can be seen below in 

Table 4. Specifically, for the BMA routine, the PIP 𝑝(𝛽 ≠ 0|𝑦) is provided for each predictor 

and the predictor variables have been sorted in rank order from largest to smallest PIP 

accordingly. For the full OLS regression model, the Rescaled Relative Weight (RRW) is 

provided by way of the rwa (Chan, 2020) package in R (R Core Team, 2021). The rank of each 

predictor according to the RRW metric is also provided, although the predictors are still 

presented in rank order according to the PIP metric. Lastly, for the Random Forest regression 

model, the decrease in Residual Sums of Squares (RSS) is provided, along with the associated 

ranks generated for each of the predictor variables. 

While the importance rankings observed under the full OLS and BMA regression 

routines seemed to be in relative agreement regarding the higher-ranked predictors, they became 

increasingly divergent as relative importance decreased. In contrast, the variable importance 

rankings observed under the random forest regression routine differed greatly from both the full 

OLS and BMA regression routines, with no clear divergence pattern being readily apparent. Also 

of note is the observation that out of the 32 available predictor variables, only 13 had PIPs 

greater than 0.50, which marks the median probabilistic inclusion point (Barbieri & Berger, 

2004). In other words, only 13 out of the 32 available predictor variables were included in 

models that comprised the majority of the posterior mass. In contrast, under the full OLS model, 

18 of the 32 predictors were statistically significant when evaluated at an alpha level of .05. 

Similarly, the random forest cross-validation tuning process identified a model size of 18 as 

being optimal under the RMSE metric.  
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Table 4. 

Predictor Importance: BMA, Full OLS Regression, and Random Forest Comparison 

 BMA  Full OLS Regression  Random Forest  

Predictor Rank PIP 
 

 Rank RRW 
 

Rank 
RSS 

Decrease 

Education level 1 1.00  5 6.04  10 26.62 

Leader-member exchange 2 1.00  2 16.34  3 79.50 

Career opportunities 3 1.00  1 19.98  2 104.43 

Pay satisfaction 4 0.93  4 11.34  4 44.66 

HR2: Attract qualified 

talent 
5 0.92 

 
7 3.09 

 
20 10.31 

Perceived fairness 6 0.85  3 16.28  1 124.95 

Advisory board 7 0.85  8 2.91  34 3.01 

Last year FTE (N) 8 0.69  16 1.01  12 24.86 

Total employees (N) 9 0.68  12 1.41  11 25.59 

Hierarchical levels (N) 10 0.66  11 1.41  16 19.14 

Supervisory board 11 0.63  13 1.22  29 4.88 

Hours per week - contract 12 0.55  10 2.18  8 28.01 

Information sharing 13 0.55  6 4.34  14 24.13 

Strategic planning 14 0.48  19 0.63  7 30.22 

Current FTE (N) 15 0.39  14 1.12  15 23.94 

Entrepreneurial orientation 16 0.36  20 0.54  13 24.25 

HR9: Employee flexibility 17 0.24  25 0.41  23 8.89 

HR8: Quality of ideas 18 0.17  17 1.01  25 8.32 

Departments (N) 19 0.16  31 0.23  18 14.72 

Employee voice 20 0.13  9 2.68  6 33.97 

HR1: Past turnover rate 21 0.13  15 1.17  19 13.59 

HR7: Innovation 22 0.13  30 0.24  21 9.89 

Employee council 23 0.11  27 0.33  33 3.28 

HR6: Employee 

involvement 
24 0.10 

 
28 0.25 

 
26 7.22 

Management position 25 0.09  34 0.11  28 6.32 

Managers (N) 26 0.09  21 0.54  17 17.00 

HR3: Retain key talent 27 0.09  22 0.52  24 8.47 

HRM rep onsite 28 0.08  29 0.24  32 3.79 

HR5: Labor dispute 29 0.08  26 0.37  27 7.08 

Corporate 

entrepreneurship 
30 0.08 

 
23 0.47 

 
9 26.63 

Contract type 31 0.07  32 0.16  31 4.73 

Job proactivity 32 0.07  18 0.79  5 37.17 

Family business 33 0.07  24 0.43  30 4.78 

HR4: Absenteeism 34 0.07  33 0.12  22 9.47 

Note. BMA = Bayesian Model Averaging; RRW = Rescaled Raw Relative Weights; OLS = 

Ordinary Least Squares regression; RSS = Residual Sums of Squares; PIP = posterior inclusion 

probability, or the marginal probability that the coefficient is not equal to zero; N = 

number/count; HR = Human Resources.  
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Case Study 2 

Predictive Performance 

In order to evaluate the predictive performance of the BMA logistic regression routine 

relative to that of the full logistic regression and Random Forest classifier models, the overall 

accuracy, kappa, and Brier Score are provided below in Table 5. As hypothesized, lower Brier 

Score values were observed under the BMA routine than both the Random Forest classifier and 

the full logistic regression models. However, it should also be noted that the difference in Brier 

Score values between the BMA and full logistic regression routines was relatively small ( ~ 

0.04). Further, the BMA routine had a lower accuracy rate than the full logistic model, and a 

lower kappa score than both the logistic regression model and the Random Forest classifier. A 

review of the associated confusion matrices suggested that these lower accuracy-based scores 

may be due to the BMA routine’s regularization term, which “shrinks” the probabilistic forecasts 

and thus lowers the frequency of positive (target) classifications relative to the other models. 

Further, given the regularization of the probabilistic estimates, selection of a different 

classification threshold than the 50% level used for the current study may yield better accuracy-

based results for the BMA routine.  

 

Table 5. 

Predictive Performance: BMA, Logistic Regression, and Random Forest Comparison 

Modelling Routine Accuracy Kappa Brier Score 

BMA 0.868 0.21 0.800 

Full Logistic 0.873 0.31 0.804 

Random Forest 0.865 0.220 0.812 

Note. BMA = Bayesian Model Averaging.  
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Parameter Estimates 

Regression coefficient estimates and relevant statistics produced from the BMA logistic 

regression routine and the full logistic regression model can be seen below in Table 6. 

Specifically, for the model-averaged regression coefficient estimates generated by the BMA 

routine, the marginal posterior means 𝔼[𝛽|𝑦], the marginal 95% posterior credible intervals, the 

posterior inclusion probabilities (PIPs), and the odds ratios are provided. For the coefficient 

estimates generated by the full logistic regression model, the unstandardized slopes b, the 95% 

confidence intervals for the unstandardized slopes, the p-values for the tests of significance, and 

the odds ratios are provided. It should also be noted that as in the regression context, random 

forest classifier modelling routines do not employ or produce regression coefficients or their 

associated estimates, and as such are not included in Table 6. 

 As in the regression context, the coefficient estimates produced by the BMA routine in 

the classification context are analogous to those produced under the full logistic regression 

model, but of a smaller magnitude. This to be expected, as the tCCH prior over the regression 

coefficients utilized in the present study is the GLM-counterpart to the hyper-g prior used in the 

regression context (Li & Clyde, 2018). Consequently, the model-specific regression coefficients 

have conditional posterior expectations 𝔼[𝛽𝛾|𝑦, 𝑔, 𝑀𝛾] equivalent to a convex combination of the 

MLEs and a shrinkage term 
𝑔

1+𝑔
, as discussed earlier in Section I (see Li & Clyde, 2018). As 

noted by Copas (1993) and Li & Clyde (2018), shrinking regression coefficients toward the prior 

mean of zero can mitigate the potential for overfitting and thereby help optimize out-of-sample 

predictive performance. Further, in classification and/or logistic regression contexts, this 

regularization has the additional consequence of shrinking the odds ratios towards 1.00, as can be 

seen when comparing the BMA and logistic regression results shown in Table 6. 
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Table 6. 

Regression Coefficients: Bayesian Model Averaging and Logistic Regression Comparison 

 Bayesian Model Averaging  Full Logistic Regression 

Predictor 
Mean 

(β | y) 

95% CI 

(β | y) 
O.R.  b 95% CI p O.R. 

(Intercept) -2.243 [-2.74, -1.74] 0.11  -2.43 [-3.08, -1.82] < .001 0.09 

Education level 0.110 [0.00, 0.29] 1.12  0.18 [0.00, 0.36] .045 1.20 

Management position 0.001 [-0.30, 0.35] 1.00  0.00 [-0.54, 0.52] .994 1.00 

Hours per week – contract -0.002 [-0.02, 0.01] 1.00  -0.01 [-0.03, 0.01] .479 0.99 

Contract type 0.079 [-0.18, 0.58] 1.08  0.35 [-0.21, 0.94] .238 1.42 

Leader-member exchange -0.326 [-0.78, 0.00] 0.72  -0.48 [-0.93, -0.40] .034 0.62 

Information sharing -0.004 [-0.12, 0.10] 1.00  -0.01 [-0.19, 0.17] .898 0.99 

Employee voice -0.062 [-0.35, 0.04] 0.94  -0.12 [-0.41, 0.16] .402 0.89 

Pay satisfaction -0.16 [-0.55, 0.02] 0.85  -0.24 [-0.57, 0.10] .170 0.79 

Perceived fairness -0.452 [-1.00, 0.00] 0.64  -0.48 [-1.02, 0.06] .084 0.62 

Job proactivity -0.003 [-0.26, 0.20] 1.00  -0.02 [-0.39, 0.35] .914 0.98 

Career opportunities -0.625 [-0.90, -0.36] 0.54  -0.69 [-0.99, -0.4] < .001 0.50 

Total employees (N) 0.001 [-0.00, 0.01] 1.00  0.00 [-0.01, 0.01] .855 1.00 

Current FTE (N) 0.002 [-0.01, 0.02] 1.00  0.02 [-0.01, 0.04] .164 1.02 

Last year FTE (N) -0.002 [-0.02, 0.01] 1.00  -0.01 [-0.03, 0.01] .206 0.99 

Employee council present 0.29 [-0.01, 0.90] 1.33  0.31 [-0.34, 0.95] .350 1.36 

HRM rep on-site 0.003 [-0.27, 0.35] 1.00  -0.03 [-0.53, 0.47] .917 0.97 

Hierarchical levels (N) 0.01 [-0.02, 0.07] 1.01  0.04 [-0.03, 0.11 .244 1.04 

Departments (N) -0.018 [-0.13, 0.04] 0.98  -0.08 [-0.21, 0.05] .210 0.92 

Managers (N) 0.008 [-0.03, 0.08] 1.01  0.02 [-0.08, 0.11] .727 1.02 

Family business -0.113 [-0.60, 0.09] 0.89  -0.18 [-0.67, 0.30] .459 0.84 

HR1: Past turnover rate 0.185 [0.00, 0.43] 1.20  0.31 [0.02, 0.59] .034 1.36 

HR2: Attract qualified talent -0.002 [-0.22, 0.20] 1.00  0.09 [-0.26, 0.43] .613 1.09 

HR3: Retain key talent -0.012 [-0.27, 0.16] 0.99  -0.03 [-0.41, 0.35] .861 0.97 

HR4: Absenteeism 0.013 [-0.09, 0.19] 1.01  0.06 [-0.19, 0.31] .618 1.06 

HR5: Labor disputes -0.01 [-0.26, 0.18] 0.99  -0.12 [-0.53, 0.28] .569 0.89 

HR6: Employee involvement -0.038 [-0.34, 0.15] 0.96  -0.04 [-0.49, 0.41] .851 0.96 

HR7: Innovation -0.083 [-0.41, 0.05] 0.92  -0.23 [-0.60, 0.14] .234 0.79 

HR8: Quality of ideas -0.024 [-0.32, 0.16] 0.98  -0.08 [-0.55, 0.38] .728 0.92 

HR9: Employee flexibility -0.005 [-0.24, 0.19] 1.00  -0.03 [-0.44, 0.39] .891 0.97 

Supervisory board 0.057 [-0.49, 0.79] 1.06  0.36 [-0.67, 1.33] .481 1.43 

Advisory board -0.414 [-1.56, 0.16] 0.66  -1.10 [-2.43, -0.01] .069 0.33 

Corporate entrepreneurship 0.051 [-0.10, 0.37] 1.05  0.09 [-0.28, 0.46] .640 1.09 

Strategic planning 0.213 [-0.02, 0.86] 1.24  0.53 [-0.08, 1.15] .086 1.70 

Entrepreneurial orientation -0.013 [-0.22, 0.14] 0.99  -0.06 [-0.37, 0.25] .695 0.94 

Note. Mean (β | y) = marginal posterior mean; 95% CI (β | y) = Bayesian credible interval ; 95% CI = logistic 

regression confidence interval; O.R. = odds ratio; N = number/count; FTE = Full-time employees; HR = Human 

Resources; HRM = Human Resources Management 

 



 

62 
 

 

Predictor Importance 

The various predictor importance statistics associated with each of the BMA logistic 

regression, full logistic regression, and Random Forest classifier modelling routines can be seen 

below in Table 7. Specifically, for the BMA routine, the PIP 𝑝(𝛽 ≠ 0|𝑦) is provided for each 

predictor and the predictor variables have been sorted in rank order from largest to smallest PIP. 

For the full logistic regression model, the RRW metric and the associated predictor ranks are 

again provided, although as in the regression context, the predictors are still presented in rank 

order according to the PIP metric. Lastly, for the Random Forest classifier, the mean Gini 

decrease is provided, along with the associated ranks generated for each of the predictor 

variables. 

As seen below, results indicate agreement between the three modelling routines  

regarding the top few predictor importance rankings, as career opportunities, fairness, leader-

member exchange, and pay satisfaction are all highly ranked. However, aside from the 

agreement regarding the top few predictor importance rankings, no clear trend regarding rest of 

the predictor variables’ importance rankings seems readily apparent. In addition, predictor 

importance agreement between the BMA and full logistic regression models does not appear to 

be significantly higher than the two routines’ level of agreement with the random forest model, 

which is a noticeable divergence from the regression context. Lastly, only nine out of the 32 

available predictors had PIPs greater than 0.50, which indicates that only nine predictors were 

included in models that comprised most of the posterior mass. In contrast, under the full logistic 

regression model, only four of the 32 predictors were statistically significant at the .05 alpha 

level. Similarly, the random forest cross-validation tuning process identified a model size of 2 as 

being optimal under the accuracy-based metrics. 
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Table 7. 

Predictor Importance: Bayesian Model Averaging, Logistic Regression, and Random Forest 

Comparison 

 BMA  
Full Logistic 

Regression 
 Random Forest 

Predictor Rank PIP  Rank RRW  Rank 
Mean Gini 

Decrease 

Career opportunities 1 1.00  1 27.80  2 18.98 

Perceived fairness 2 0.82  2 12.85  1 19.44 

HR1: Past turnover rate 3 0.79  18 0.78  20 3.87 

Leader-member 

exchange 
4 0.78  3 12.01  3 15.56 

Education level 5 0.73  7 4.41  12 7.24 

Employee council 6 0.66  23 0.60  32 1.92 

Pay satisfaction 7 0.61  4 9.57  5 12.02 

Advisory board 8 0.58  13 1.14  34 0.69 

Strategic planning 9 0.55  8 2.62  14 6.90 

HR7: Innovation 10 0.48  17 0.80  23 3.55 

Family business 11 0.45  27 0.51  29 2.27 

Employee voice 12 0.43  6 5.23  4 12.49 

Hierarchical levels (N) 13 0.38  11 1.70  18 5.11 

Departments (N) 14 0.38  30 0.19  17 5.59 

Corp. entrepreneurship 15 0.38  12 1.31  13 7.13 

Total employees (N) 16 0.37  16 0.84  8 8.28 

Current FTE (N) 17 0.37  15 1.01  10 7.64 

Contract type 18 0.36  31 0.16  30 2.17 

Last year FTE (N) 19 0.36  14 1.08  11 7.42 

HR6: Employee 

involvement 
20 0.35  24 0.65  24 3.34 

Hours per week – 

contract 
21 0.32  10 2.09  9 7.82 

Managers (N) 22 0.32  26 0.51  16 5.97 

HR8: Quality of ideas 23 0.3  10 0.73  25 3.17 

Supervisory board 24 0.3  24 0.58  33 1.00 

Entrepreneurial 

orientation 
25 0.3  29 0.24  15 6.85 

Information sharing 26 0.29  5 5.67  7 8.69 

HR2: Attract key talent 27 0.29  9 2.30  19 4.09 

HR4: Absenteeism 28 0.29  33 0.12  21 3.80 

Job proactivity 29 0.28  25 0.55  6 9.65 

HRM rep on-site 30 0.28  34 0.12  31 2.15 

HR3: Retain key talent 31 0.28  28 0.31  26 3.10 

HR5: Labor disputes 32 0.28  19 0.77  27 2.67 

HR9: Employee flex. 33 0.28  21 0.68  22 3.60 

Management position 34 0.27  32 0.14  28 2.64 

Note. RRW = Rescaled Raw Relative Weights; Mean Gini Decrease = average decrease in Gini 

index purity metric; PIP = posterior inclusion probability, or the marginal probability that the 

coefficient is not equal to zero; N = number/count.



 

 

CHAPTER IV: DISCUSSION 

This study was conducted to investigate the predictive performance of BMA routines 

relative to that of random forest models and the full OLS and logistic regression models when 

used to forecast turnover intentions and turnover risk. Prior to conducting analyses, it was 

hypothesized that the BMA routine would outperform the random forest models and the full OLS 

and logistic regression models in both the regression and classification contexts (Hypothesis 1). 

This hypothesis appears to have been supported in both the regression and classification 

contexts, as the BMA routine resulted in higher R2/lower RMSE values (regression context) and 

lower Brier Score (classification context) metrics than did the OLS/logistic regression and the 

Random Forest modelling routines. It should, however, be noted that the differences in 

performance between the BMA routine and the Random Forest model (regression context), as 

well as the BMA routine and the logistic regression model (classification context), were not very 

large. Lastly, regarding the classification context, while the BMA routine resulted in poorer 

scores on the accuracy-based metrics, this should not be interpreted as undermining support for 

Hypothesis I, as the BMA routine still provided optimal probabilistic forecasts regarding the 

binary classifications. Further, as will be discussed further below, the classification inaccuracy 

may be partially attributable to the target class imbalance observed in the present study. 

In addition, while the present study’s primary research goal was centered upon predictive 

performance, the findings regarding the predictor variable importance rankings were unexpected 

and warrant further discussion. Specifically, while the magnitude and direction of the slope 

estimates were as expected (i.e., roughly equivalent but slightly smaller slope estimates were 

observed under the BMA routines due to the associated regularization terms), there was a large 

degree of divergence across the three modelling routines with respect to the importance rankings. 

In the regression context, results indicated relative agreement between the full OLS and the 
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BMA routines regarding only the higher-ranked predictors, and both routines were noticeably 

divergent from the random forest model. In the classification context, all three routines seemed 

to agree regarding the top few predictors, but results differed greatly regarding all of the other 

predictors. 

While little research has been conducted to date that specifically addresses discrepancies 

between the PIP rankings available under the BMA routine and the predictor importance metrics 

used by other modelling routines, one possible explanation for the especially high divergence 

observed in the classification context may be the larger shrinkage penalty that was applied by the 

BMA routine. As seen in Figures 1 and 2 in Appendix C, the posterior mass for the shrinkage 

factor 
𝑔

1+𝑔
 in the classification context was centered over a much lower numeric range (and thus 

a higher shrinkage penalty) than that observed under the regression context. This greater degree 

of regularization may be due to improper dichotomization of the target variable and the resultant 

class imbalance (discussed further in the Limitations section), which can result in a greater 

dispersion of posterior mass over larger models with smaller individual PIPs (see Zeugner, 

2011). In addition, variance inflation factors were also checked for all available predictors, as 

multicollinearity can result in inaccurate underestimation of the marginal PIPs (Clyde et al., 

2011). However, upon doing so, all included predictors had relatively low variance inflation 

factors (VIF < 3.0).  

Organizational Implications 

 The utilization of predictive modelling routines to forecast workforce-related outcomes is 

an essential component of organizational success (Cheng et al., 2020; Fitz-Enz & Mattox, 2014). 

While an increasing number of organizations have implemented or are implementing workforce 

analytics programs in recognition of this insight, most such implementations are either single-
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model selection-based approaches, or ensemble-based machine learning approaches. Despite 

comprising a predominance of the current predictive modelling routines, predictions generated 

by model selection and ensemble-based approaches fail to adequately incorporate model 

uncertainty regarding the underlying data-generating process (Steel, 2020). In contrast, 

predictions generated by BMA routines fully incorporate model uncertainty by averaging over 

the entire set of possible models, and have been shown to provide optimal predictive 

performance under a variety of scoring rules, contexts, and subject matter domains (e.g. 

Davidson & Fan, 2006; Hoeting et al., 1999; Kaplan & Lee, 2018).  

 Predictive BMA routines offer particular value in workforce-related contexts, as the 

advent of “big data” and modern computing power have led to an exponential increase in the 

amount of data and potential predictor variables available to organizational researchers and 

practitioners (Oswald et al., 2020). Rather than employ a theory-based or data-driven model 

selection approach, or a constrained quasi-averaging ensemble-based approach, predictive BMA 

routines offer a means of fully incorporating information from all available predictors and 

mitigate the risk of researcher misspecification regarding the “best” subset of predictors. The 

present study has provided an illustrative guide for how organizational researchers might employ 

BMA routines to forecast workforce-related outcomes and offered insights into the resulting 

predictive efficacy relative to several competing modelling routines commonly employed in 

organizational settings.  

Based on the results, organizational researchers and practitioners may benefit from 

implementing BMA modelling routines when the goal is the optimization of out-of-sample 

predictive performance and generalizability. Further, the potential for increased predictive 

performance associated with BMA routines is readily accessible via several open-source 
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software packages in R (R Core Team, 2021), most of which offer “out-of-the-box” default 

configurations that require little to no custom specifications on the part of the researcher or 

practitioner. Consequently, BMA routines can offer organizations a cost-effective means of 

generating accurate and efficient probabilistic forecasts of workforce-related outcomes.  

Lastly, the present study has illustrated how BMA routines might also offer researchers 

insight into the relative importance of individual predictor variables as well and can thus serve as 

a supplement to more explanatory-based traditional modelling routines without sacrificing 

predictive accuracy. While future research is needed in order to fully investigate the nuances 

surrounding BMA-generated PIP importance rankings, results of the current study suggest that 

BMA routines have the potential to afford organizational researchers the ability to 

simultaneously generate optimal predictions, mitigate overfitting and spurious associations, and 

ascertain the relative importance of possible predictors, all in a single intuitive modelling routine. 

It should also be noted, however, that caution should be undertaken to ensure that any 

explanatory inference should be coupled with applicable theoretical, legal, and ethical 

considerations.  

Limitations and Future Directions 

 Several limitations should be noted regarding the present study. First, as noted by Kaplan 

and Lee (2018), the current study operates under the theoretical assumption that the “true” 

generative model, denoted 𝑀𝑇, is one of the models {𝑀1, 𝑀2, … , 𝑀𝑘} that comprise the model 

space ℳ. Referred to as the “M-closed framework” (Bernardo & Smith, 1994; Clyde & Iverson, 

2013), this assumption underlies most BMA applications and is a conceptual prerequisite to the 

placement of prior probabilities over the model space. Importantly, the current study follows 

Steel (2020) in regarding this as a theoretical limitation rather than a practical one, and instead 
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treating model space priors as being reflective of the prior probability that a given model is a 

useful proxy for the “true” model. 

 A second limitation should be noted with respect to several analytic decisions made 

regarding the current dataset. Specifically, the decisions to dichotomize the original continuous 

outcome measure of turnover intentions and to employ a fixed-effects approach despite a nested 

data structure were both made solely for illustrative purposes and should not be replicated in 

practice. Organizational researchers and practitioners dealing with nested data structures should 

explore other options to resolve said clustering, as fixed-effects approaches are prone to 

overfitting and inhibit generalizability (Snijders & Bosker, 2012). Similarly, researchers and 

practitioners should rarely dichotomize continuous measures, as doing so can result in a loss of 

data information and statistical power (Hunter & Schmidt, 1990). Further, the cut-point utilized 

in this study for the dichotomization of the original turnover intentions measure resulted in a 

class imbalance, with the resultant target class comprising only 15% of the data observations. 

This imbalance could partially explain the poor performance of the BMA routine on the 

accuracy-based metrics (Japkowicz & Stephen, 2002). 

A third limitation should be noted regarding the generalizability of the current study’s 

results beyond the contexts and configurations specific to this study. Primarily, the findings of 

the current study are at least partially dependent upon the characteristics of a dataset drawn from 

a single-sample context. In other words, results and conclusions drawn from a single-sample 

study should be verified and validated through comprehensive replication- or simulation-based 

reviews. A Monte Carlo simulation study should be conducted to supplement the single-sample 

case study-based approach currently used. In addition, the current results were also dependent 

upon the configurations and analytical choices used in the specification of each of the modelling 
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routines. Specifically, for the random forest routine, results may differ based on the number of 

bootstrapped constituent trees chosen. For the BMA routines, results may differ depending on 

the size of the shrinkage penalty imposed, as well as the form and precision of both the model-

space and model-parameter priors chosen.  

 Lastly, BMA applications in general, and non-normal GLM-based BMA applications in 

particular, suffer from several technical limitations. First, the computational complexity inherent 

in the calculation of the marginal likelihoods largely constrains the choice of prior distributions 

over model parameters to conjugate, or quasi-conjugate prior structures (Li & Clyde, 2018; 

Liang et al., 2008). While research has been conducted regarding possible MCMC-based 

methods for marginal likelihood estimation (e.g. Carlin & Chib, 1995; Chib, 1995), such 

techniques have yet to be implemented consistently and effectively. As such, the “custom” priors 

commonly associated with subjectivist Bayesian methods are currently out of reach for 

practitioners wishing to implement a BMA routine. In addition, the approximation-based 

integration methods used for marginal likelihood estimation can be unstable and lead to MCMC 

convergence issues under certain conditions, particularly when 𝑅𝜸
2 is very low and the 

expectation of the resultant data-dependent shrinkage term 
𝑔

1+𝑔
 is “pulled” towards the lower 

bound (Clyde et al., 2011; Liang et al., 2008). This is especially problematic in the context of 

non-normal likelihood functions such as the classification context discussed in the present study, 

as exact closed-form integration is unavailable (Liang et al., 2008).   

Conclusions 

Despite the limitations noted above, the current study offers provides a novel contribution 

to the extant organizational research literature by illustrating how researchers and practitioners 

can employ Bayesian Model Averaging routines to optimize predictive performance when 
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forecasting workforce outcomes. Results showed that the BMA routine resulted in a greater 

proportion of variance explained (higher R2) and lower RMSE that both the full OLS and 

Random Forest regression models when used to predict the continuous measure of employee 

turnover intentions. In the classification context, the BMA routine produced lower probabilistic-

based Brier Score values than both the full logistic regression and the Random Forest models but 

appeared to underperform on the simpler accuracy-based metrics. Consequently, practitioners 

and researchers may benefit from using BMA routines to optimize both predictions of 

continuous organizational outcome measures and probabilistic forecasts of binary organizational 

outcomes.
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Appendix A: Complete Employee-Level Variables, Measures, and Descriptive Statistics 

Measure N items α1 Scale Reference M SD 

Intention to leave  
3 .888 A2 Valentine, Greller & 

Richtmeyer, 2006 
2.19 .932 

Gender (male)  1    57%  

Age  1  years  38.44 12.867 

Educational level > Ba.  1    38%  

Management position   1  No/Yes  24%  

Hours/week - contract  1  hours  31.43 12.39 

Contract type (1-2)  1  B3  83%  

Leader-Member 

Exchange  
12 .889 A 

Liden & Maslyn 

(1998) 
3.74 .426 

Information sharing  2 .686 C4 Kroon, et al. (2012) 3.52 1.291 

Voice  5 .774 C Kroon, et al.  (2012) 3.05 .922 

Pay satisfaction  3 .812 A QEEW (2014) 3.37 .776 

Perceived fairness  16 .941 A Tsui, et al. (1997) 3.37 .616 

Job proactivity  
5 .889 A 

Van Veldhoven & 

Dorenbosch (2008) 
3.94 .603 

Career opportunities  3 .891 A QEEW (2014) 3.29 .918 
1 α = Cronbach’s alpha. 
2 Scale A is a 5pt scale (completely disagree, disagree, neither, agree, strongly agree). 
3 Scale B is a 4pt scale (1 = permanent employee, 2 = temporary with outlook on permanent, 3 = 

temporary with no outlook for permanent status, 4 = on call). 
4 Scale C is a 5pt scale (1= not applicable to any employee, 2 = not applicable to most 

employees, 3 = applicable to some, 4 = applicable to most, 5 = applicable to all employees)  



 

 

 

Appendix B: Complete Organization-Level Variables, Measures, and Descriptive Statistics 

Measure N items α¹ Scale Reference M SD 

Number of employees  1    31.27 40.02 

Number of FTE current 

year  

  

1  
 FTE  22.92 31.80 

Number of FTE last year  1  FTE  20.67 28.06 

Availability works council  1  No/Yes  12.69%  

Availability HR 

professional  
1  No/Yes  39.90%  

Number of hierarchical 

levels  
1    2.26 2.57 

Number of departments  1    3.34 2.11 

Number of managers  1    2.90 2.54 

Family business  1  No/Yes  60.47%  

HRM:  turnover  1  A2 

 

Guest, & 

Peccei(2001) 

2.11 0.96 

HRM: attract well-qualified 

personnel  
1  A 3.15 0.78 

HRM: retain key 

employees  
1  A 3.78 0.71 

HRM: Absenteeism level    1  A 2.08 0.98 

HRM: Amount of labor 

disputes.   
1  A 1.52 0.69 

HRM: quality of ideas and 

suggestions   
1  A 3.2 0.74 

HRM: Contribution to 

innovation   
1  A 3.14 0.85 

HRM: Involvement of 

employees.  
1  A 4.03 0.66 

HRM: Flexibility of 

employees  
1  A 3.85 0.74 

Availability of a 

supervisory board  
1  

 No/Yes  5.05%  

Availability of an advisory 

board  
1  No/Yes  8.67%  

Corporate  

entrepreneurship  
7 .824 B3 Kellermanns & 

Eddleston (2006), 

Pearce et al., (1987), 

Powell (1992) 

3.10 0.77 

Strategic planning  13 .696 B 3.54 0.41 

Entrepreneurial orientation 9 .827 C4 Kroon et al., (2012)  4.60 0.94 
1 α = Cronbach’s alpha. 
2 Scale A is a 5pt scale (very low, low, average, high, very high). 
3 Scale B is a 5pt scale (completely disagree, disagree, neither, agree, strongly agree) 
4 Scale C is a 7pt scale ranging from 1 (very low) to 7 (very high



 

 

Appendix C: MCMC Diagnostics 

 

Figure 1.  

 

BMA Regression Context: Posterior Distribution of the Shrinkage Factor  

 

 
 

 

Figure 2.  

 

BMA Classification Context: Posterior Distribution of the Shrinkage Factor 

 



 

 

 

Appendix D: Syntax  

 
# Syntax for Using BMA for Classification and/or Regression 

 

############################################################################# 

# Housekeeping & Data Prep 

############################################################################# 

 

 

# Packages 

 

library(psych) 

 

library(BAS) 

 

library(tidyverse) 

 

library(caret) 

 

library(randomForest) 

 

library(DescTools) 

 

library(rwa) 

 

############################################################################# 

 

# Data Prep (All variables except T/O intent mean-centered already) 

 

dat1 <- read.csv("turnover_data.csv") # Load original dataset 

 

# Remove company code and protected status variables (Age & Gender) 

 

dat1 <- dat1[, -c(2, 3, 4)] 

 

# Convert categorical/indicators to factors 

 

dat1$manager <- factor(dat1$manager) # Manager Status (N/Y) 

levels(dat1$manager) <- c("No", "Yes") 

 

dat1$contype <- factor(dat1$contype) # Contract Type (Perm/Temp) 

levels(dat1$contype) <- c("Temp", "Perm") 

 

dat1$employee_council <- factor(dat1$employee_council) # Employee council 

(N/Y) 

levels(dat1$employee_council) <- c("No", "Yes") 

 

dat1$hr_rep <- factor(dat1$hr_rep) # HRM on-site (N/Y) 

levels(dat1$hr_rep) <- c("No", "Yes") 

 

dat1$familybiz <- factor(dat1$familybiz) # Family Business (N/Y) 

levels(dat1$familybiz) <- c("No", "Yes") 

 

dat1$superboard <- factor(dat1$superboard) # Supervisory Board (N/Y) 

levels(dat1$superboard) <- c("No", "Yes") 
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dat1$adv_board <- factor(dat1$adv_board) # Advisory Board (N/Y) 

levels(dat1$adv_board) <- c("No", "Yes") 

 

############################################################################ 

 

# Because the train/test partitions are stratified with respect to the # # # 

# outcome measures, we need to make 2 different full datasets prior to # # # 

# train/test partitioning. 

 

# The first full dataset will have a continuous outcome measure, and the # # 

# second full dataset will have a dichotomous outcome measure.  

 

# This way we can ensure that the train/test partitions will be stratified # 

# correctly according to their respective outcome measure 

 

 

dat2 <- dat1 # Make 2nd full dataset 

 

dat2$TI_risk <- ifelse(dat2$TI > 3, 1, 0) # Dichotomous outcome measure 

 

dat2$TI_risk <- factor(dat2$TI_risk) # Make factor 

 

dat2 <- dat2 %>% relocate(TI_risk, .before = TI) # Relocate 

 

dat2 <- dat2[-2] # Delete continuous outcome from this 2nd  dataset 

 

# Double-checking datasets 1 & 2 are correct 

 

View(dat1) # View dataset 1 

 

View(dat2) # View dataset 2 

 

str(dat1) # Check Variable descriptions/structure for datasets 1 & 2 

 

str(dat2) 

 

############################################################################# 

 

# Listwise Deletion for both datasets 

 

dat1<-na.omit(dat1) 

 

dat2<-na.omit(dat2) 

 

nrow(dat1) # Check 1 

 

nrow(dat2) # Check 2 

 

############################################################################# 

 

# Partitions full datasets 1 & 2 into training and testing sets.  

 

# We will end up with a training and test set for dataset1 (continuous # # # 

# outcome),  

# and a training and test set for dataset2 (classification outcome) 
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set.seed(300) 

 

# Partitions via 70/30 train/test split 

 

# First train/test set 

 

indxTrain1 <- createDataPartition(y = dat1$TI, p = 0.7, list = FALSE) # index 

 

training1 <- dat1[indxTrain1, ] # training set 1 

 

testing1 <- dat1[-indxTrain1, ] # testing set 1 

 

# Second train/test set 

 

indxTrain2 <- createDataPartition(y = dat2$TI_risk, p = 0.7, list = FALSE)  

 

training2 <- dat2[indxTrain2, ] # training set 2 

 

testing2 <- dat2[-indxTrain2, ] # testing set 2 

 

################################################################ 

 

# Check outcome distributions are correctly stratified  

 

 

# Continuous outcome distributions  

 

summary(training1$TI) # training1 

 

summary(testing1$TI) # testing1 

 

summary(dat1$TI) # overall 

 

 

# Classification outcome distributions  

 

prop.table(table(training2$TI_risk)) * 100 # Outcome balance for training2 

 

prop.table(table(testing2$TI_risk)) * 100 # Outcome balance for testing2 

 

prop.table(table(dat2$TI_risk)) * 100 # full/non-partioned dataset2 

 

############################################################################# 

############################################################################# 

 

# BMA Case Study 1 (Continuous Outcome Measure via Normal Linear Regression) 

 

# 'prior' sets the regression coefficient prior to a hyper-g coefficient # # 

# prior  

# with Laplace approximation for the integration over 'g'.  

 

# 'method' is set to "MCMC" to specify a MCMC sampling routine should be used 

 

# "MCMC.iterations" specifies the number of iterations.  

 

# "Force.heredity" requires the factor levels to be kept together  
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#  "na.action=omit" is the default for missing data   

 

#  "model prior" defaults to Beta-Binomial (1, 1) on predictor inclusion # # 

# prob. 

 

# "Renormalization" is specified in order to calculate posterior model # # # 

# probabilities  

# exactly after model space has been sampled, rather than used frequency-# # 

# based approximations  

# (done when data is noisy and convergence of MCMC routine is poor). 

 

 

 

# Model Specification 

 

BMA1 <- bas.lm(TI ~ edu + manager + conhour + contype + lmx + infshare + 

voice + 

                 paysatis + fair + proact + caropp + N + FTEN + FTELY + 

employee_council + 

                 hr_rep + n_levels + n_deps + n_magers + familybiz + HR1 + 

HR2 + 

                 HR3 + HR4 + HR5 + HR6 + HR7 + HR8 + HR9 + superboard + 

adv_board + 

                 corp_entr + stratplan + entr_orient, 

  data = training1, prior = "hyper-g-laplace", alpha = 3, method = "MCMC", 

  MCMC.iterations = 50000000, force.heredity = TRUE, renormalize = TRUE 

) 

 

 

############################################################################# 

 

# MCMC Convergence Diagnostics (for use if "renormalized=FALSE" was used) 

 

 

 

# MCMC approximated predictor inclusion probs vs calculated predictor # # # # 

# inclusion probs 

 

diagnostics(BMA1, type = "pip", pch = 16) 

 

 

 

# MCMC approximated posterior model probabilities vs calculated posterior # # 

# model probs 

 

diagnostics(BMA1, type = "model", pch = 16) 

 

 

 

# Number of Unique Models Sampled/Explored 

 

BMA1$n.Unique 

 

 

############################################################################# 

 

# Results & Diagnostics 
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# initial results summary 

 

summary(BMA1)  

 

 

 

# Plots -> (1) Resids vs Fitted, (2) Cumulative Model Probs, 

# (3) Marginal Likelihood vs complexity, Marginal Predictor inclusion probs 

 

plot(BMA1, ask = F) # Plots 

 

 

 

# Visualization of Posterior Model Probabilities and Variable Inclusion. 

# Models with indistinguishable log posterior odds have the same color. 

 

image(BMA1, rotate = F) 

 

 

# Regression Coefficients 

 

BMA1coefs <- coef(BMA1, digits = 2) 

 

BMA1coefs 

 

 

# 95% Credible Interval (Highest Posterior Density) for Coefficients 

 

confint(BMA1coefs) 

 

 

# Plot of 95% Credible Intervals (HPD) from above 

 

# "parm" argument can specify specific predictors (helpful with large #) 

 

 

plot(confint(BMA1coefs, parm = 1:8)) 

plot(confint(BMA1coefs, parm = 9:15)) 

plot(confint(BMA1coefs, parm = 16:22)) 

plot(confint(BMA1coefs, parm = 23:29)) 

plot(confint(BMA1coefs, parm = 30:35)) 

 

 

# Marginal Posterior Distributions for coefficients. 

 

# The vertical bar is the posterior probability that the coefficient is 0 

 

# bell shaped curve represents the density of plausible values from all the # 

# models where the coefficient is non-zero.  

 

# This is scaled so that the density height for non-zero values is the # # # 

# probability  

# that the coefficient is non-zero 

 



 

91 
 

plot(BMA1coefs, ask = F) # subset argument can be used to specify specific 

predictors 

 

 

# Histogram of shrinkage/regularization term sample frequencies (g/1+g) 

hist(BMA1$shrinkage) 

 

############################################################################# 

 

# Fitted Values for current data and Prediction of new data 

 

 

# fitted values for current data 

 

fitted_BMA1 <- fitted(BMA1, estimator = "BMA") 

 

 

# prediction for new data (testing set 1) 

 

predicted_BMA1 <- predict(BMA1, newdata = testing1, estimator = "BMA") 

 

 

# View Available attributes 

 

names(predicted_BMA1)  

 

 

# Predicted Outcome Measure for newdata 

 

predY_BMA1 <- predicted_BMA1$fit  

 

head(predY_BMA1) 

 

 

# Predictive intervals for predictions (can't get this to work due to vector 

# size) 

 

BMA1.pred <- predict(BMA1, estimator = "BMA", predict = FALSE, se.fit = TRUE) 

 

confint(BMA1.pred) 

 

 

############################################################################# 

 

 

# Evaluation of BMA1 Predictive Performance (RMSE, R^2, MAE) 

 

 

postResample(predY_BMA1, obs = testing1$TI) 

 

 

############################################################################# 

############################################################################# 

 

 

# Full OLS model Case Study 1 (Continuous Turnover Intent Outcome Measure) 

 



 

92 
 

 

# Fit OLS model using training dataset 1 

 

olsm1 <- lm(TI ~ edu + manager + conhour + contype + lmx + infshare + voice + 

              paysatis + fair + proact + caropp + N + FTEN + FTELY + 

employee_council + 

              hr_rep + n_levels + n_deps + n_magers + familybiz + HR1 + HR2 + 

              HR3 + HR4 + HR5 + HR6 + HR7 + HR8 + HR9 + superboard + 

adv_board + 

              corp_entr + stratplan + entr_orient, data = training1)  

 

 

# Model Summary 

 

summary(olsm1)  

 

# 95% CI for Regression Coefficients (Standardized) 

 

confint(olsm1)    # Unstandardized 

effectsize(olsm1) # Standardized 

 

############################################################################# 

 

# OLS Model Raw Relative Weights Analysis (Predictor "Importance") 

 

training1b <- training1 

 

levels(training1b$manager) <- c(0, 1) 

training1b$manager <- as.numeric(training1b$manager)   

 

levels(training1b$contype) <- c(0, 1) 

training1b$contype <- as.numeric(training1b$contype) 

 

levels(training1b$employee_council) <- c(0, 1) 

training1b$employee_council <- as.numeric(training1b$employee_council) 

 

levels(training1b$hr_rep) <- c(0, 1) 

training1b$hr_rep <- as.numeric(training1b$hr_rep) 

 

levels(training1b$familybiz) <- c(0, 1) 

training1b$familybiz <- as.numeric(training1b$familybiz) 

 

levels(training1b$superboard) <- c(0, 1) 

training1b$superboard <- as.numeric(training1b$superboard) 

 

levels(training1b$adv_board) <- c(0, 1) 

training1b$adv_board <- as.numeric(training1b$adv_board) 

 

rwa(df = training1b,  

    outcome = "TI",  

    predictors = c("edu","manager","conhour","contype","lmx", "infshare", 

"voice","paysatis","fair","proact", "caropp", "N",  

"FTEN", "FTELY", "employee_council", "hr_rep", "n_levels",  

"n_deps", "n_magers", "familybiz", "HR1", "HR2", "HR3", 

"HR4", "HR5", "HR6", "HR7", "HR8", "HR9", "superboard",  

"adv_board", "corp_entr", "stratplan", "entr_orient")) 
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################################################################ 

 

# OLS Model Predictions for new data (testing set 1) 

 

predY_OLS1 <- predict(olsm1, newdata = testing1) 

 

head(predY_OLS1) 

 

 

 

# Evaluation of OLS Predictive Performance (BMA wins!) 

 

postResample(predY_OLS1, obs = testing1$TI) 

 

################################################################ 

################################################################ 

 

# Random Forest Regression Case Study 1 (Continuous Outcome Measure of T/O # 

# Intent) 

 

 

set.seed(300) 

 

# Set training control to use 10-fold Cross Validation 

 

ctrl1 <- trainControl(method = "repeatedcv", repeats = 10) 

 

 

# Train/Fit Random Forest Regression model to training dataset 1 

 

rf1 <- train(TI ~ edu + manager + conhour + contype + lmx + infshare + voice 

+ paysatis + fair + proact + caropp + N + FTEN + FTELY + employee_council + 

hr_rep + n_levels + n_deps + n_magers + familybiz + HR1 + HR2 + HR3 + HR4 + 

HR5 + HR6 + HR7 + HR8 + HR9 + superboard + adv_board + corp_entr + stratplan 

+ entr_orient, data = training1, trControl = ctrl1, method = "rf", na.action 

= na.omit) 

 

 

 

# Predictions for new data (testing set 1) 

 

predY_RF1 <- predict(rf1, newdata = testing1) 

 

head(predY_RF1) 

 

 

# Evaluation of RF Regression Predictive Performance (RMSE, R^2, MAE)  #BMA 

does better! 

 

postResample(predY_RF1, obs = testing1$TI) 

 

 

# Variable Importance for RF 

 

varImp(rf1) 

 

################################################################ 



 

94 
 

################################################################ 

 

# BMA Case Study 2 (Binary Turnover Risk Outcome via Logistic Regression) 

 

# "family" sets binomial logistic regression likelihood family 

 

# 'betaprior' sets the regression coefficient prior to a CCH(1, 2, 0) # # # # 

# coefficient prior  

#  equivalent to the hyper-g (alpha = 3) prior used for regression contexts.  

 

# "modelprior" sets beta.binomial(1, 1) prior over predictor inclusion prob. 

 

# 'method' is set to "MCMC" to specify a MCMC sampling routine should be used 

 

# "MCMC.iterations" specifies the number of iterations.  

 

# "Force.heredity" requires the factor levels to be kept together  

 

#  "na.action=omit" is the default for missing data   

 

# "laplace" = TRUE/FALSE specifies Laplace integration/Cephes estimation for 

# marginal likelihood  

 

# "Renormalization" =TRUE/FALSE specifies whether posterior model probs are # 

# calculated 

 

# using renormalization or approximated based on sampling frequencies. 

 

 

 

# Model Specification 

 

BMA2 <- bas.glm(TI_risk ~ edu + manager + conhour + contype + lmx + infshare 

+ voice + paysatis + fair + proact + caropp + N + FTEN + FTELY + 

employee_council + hr_rep + n_levels + n_deps + n_magers + familybiz + HR1 + 

HR2 + HR3 + HR4 + HR5 + HR6 + HR7 + HR8 + HR9 + superboard + adv_board + 

corp_entr + stratplan + entr_orient, data = training2, family = binomial(link 

= "logit"), betaprior = CCH(1, 2, 0), modelprior = beta.binomial(1,1), method 

= "MCMC", MCMC.iterations = 50000000, force.heredity = TRUE, renormalize = 

FALSE) 

 

############################################################################# 

 

# MCMC Convergence Diagnostics (for use if "renormalized=FALSE" was used) 

 

 

# MCMC approximated predictor inclusion probs vs calculated predictor # # # # 

# inclusion probs 

 

diagnostics(BMA2, type = "pip", pch = 16) 

 

 

# MCMC approximated posterior model probabilities vs calculated posterior 

model probs 

 

diagnostics(BMA2, type = "model", pch = 16) 
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# Number of Unique Models Sampled/Explored 

 

BMA2$n.Unique 

 

 

############################################################################# 

# Results & Diagnostics 

 

 

# initial results summary 

 

summary(BMA2)  

 

 

 

# Plots -> (1) Resids vs Fitted, (2) Cumulative Model Probs, 

# (3) Marginal Likelihood vs complexity, Marginal Predictor inclusion probs 

 

plot(BMA2, ask = F) # Plots 

 

 

 

# Visualization of Posterior Model Probabilities and Variable Inclusion. 

# Models with indistinguishable log posterior odds have the same color. 

 

image(BMA2, rotate = F) 

 

 

# Regression Coefficients 

 

BMA2coefs <- coef(BMA2) 

 

BMA2coefs 

 

 

# 95% Credible Interval (Highest Posterior Density) for Coefficients 

 

confint(BMA2coefs) 

 

 

# Plot of 95% Credible Intervals (HPD) from above 

 

# "parm" argument can specify specific predictors (helpful with large #) 

 

 

plot(confint(BMA2coefs, parm = 1:8)) 

plot(confint(BMA2coefs, parm = 9:15)) 

plot(confint(BMA2coefs, parm = 16:22)) 

plot(confint(BMA2coefs, parm = 23:29)) 

plot(confint(BMA2coefs, parm = 30:35)) 

 

 

# Marginal Posterior Distributions for coefficients. 

 

# The vertical bar is the posterior probability that the coefficient is 0 
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# bell shaped curve represents the density of plausible values from all the  

# models  

# where the coefficient is non-zero.  

 

# This is scaled so that the density height for non-zero values is the # # # 

# probability  

# that the coefficient is non-zero 

 

plot(BMA2coefs, ask = F) # subset argument can be used to specify specific 

predictors 

 

 

# Histogram of shrinkage/regularization term sample frequencies (g/1+g) 

hist(BMA2$shrinkage) 

 

 

############################################################################# 

 

# Fitted Values for current data and Prediction of new data 

 

 

# fitted values for current data 

 

fitted_BMA2 <- fitted(BMA2, estimator = "BMA") 

 

 

# prediction for new data (testing set 2) 

 

predicted_BMA2 <- predict(BMA2, newdata = testing2, estimator = "BMA", 

type="response") 

 

 

# View Available attributes 

 

names(predicted_BMA2)  

 

# Ybma = linear predictor scale predictions (log odds) 

 

# fit = response scale predictions (probability of class membership) 

 

# Predicted probability of class membership  for new data 

 

predY_BMA2 <- predicted_BMA2$fit  

 

 

# Predictive intervals for predictions (can't get this to work due to vector 

size) 

 

BMA2.pred <- predict(BMA2, estimator = "BMA", predict = FALSE, se.fit = TRUE) 

 

confint(BMA2.pred) 

 

 

# Convert predicted probabilities to classifications 

 

pred_class_BMA2<- ifelse(predY_BMA2 >= 0.5, 1, 0) 
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pred_class_BMA2 <- factor(pred_class_BMA2) 

 

 

 

# Evaluation of BMA2 Predictive Performance  

 

 

postResample(pred_class_BMA2, obs = testing2$TI_risk) # Accuracy/Kappa 

 

BrierScore(as.numeric(testing2$TI_risk), predY_BMA2)  # Brier Score 

 

confusionMatrix(pred_class_BMA2, testing2$TI_risk)    # Confusion Matrix 

 

############################################################################# 

############################################################################# 

 

 

# Full Logistic Regression model Case Study 2 (Binary Turnover Risk Outcome) 

 

 

# Fit Logistic Regression model using training dataset 2 

 

logregm2 <- glm(TI_risk ~ edu + manager + conhour + contype + lmx + infshare 

+ voice + paysatis + fair + proact + caropp + N + FTEN + FTELY + 

employee_council + hr_rep + n_levels + n_deps + n_magers + familybiz + HR1 + 

HR2 + HR3 + HR4 + HR5 + HR6 + HR7 + HR8 + HR9 + superboard + adv_board + 

corp_entr + stratplan + entr_orient, data = training2, family=binomial())  

 

 

# Model Summary 

 

summary(logregm2)  

 

# 95% CI for Regression Coefficients  

 

confint(logregm2)    # Unstandardized 

effectsize(logregm2) # Standardized 

 

############################################################################# 

 

# Logistic Regression Model Raw Relative Weights Analysis (Predictor 

"Importance") 

 

rwa(df = training1b,  

    outcome = "TI_risk",  

 predictors = c("edu","manager","conhour","contype","lmx", "infshare", 

"voice","paysatis","fair","proact", "caropp", "N",  

  "FTEN", "FTELY", "employee_council", "hr_rep", "n_levels",  

 "n_deps", "n_magers", "familybiz", "HR1", "HR2", "HR3", 

"HR4", "HR5", "HR6", "HR7", "HR8", "HR9", "superboard",  

"adv_board", "corp_entr", "stratplan", "entr_orient")) 

 

############################################################################# 

 

# Predicted Probabilities for new data (testing set 2) 

 

predY_logreg2 <- predict(logregm2, newdata = testing2, type = "response") 
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head(predY_logreg2) 

 

 

# Convert Predicted Probabilities to Classifications 

 

pred_class_logreg2<- ifelse(predY_logreg2 >= 0.5, 1, 0) 

 

pred_class_logreg2 <- factor(pred_class_logreg2) 

 

 

# Evaluation of LogReg Predictive Performance  

 

postResample(pred_class_logreg2, obs = testing2$TI_risk) # Accuracy/Kappa 

 

BrierScore(as.numeric(testing2$TI_risk), predY_logreg2)  # Brier Score 

 

confusionMatrix(pred_class_logreg2, testing2$TI_risk)    # Confusion Matrix 

 

############################################################################# 

############################################################################# 

 

 

# Random Forest Classifier Case Study 2 (Binary Turnover Risk Outcome) 

 

 

set.seed(300) 

 

 

# Set training control to use 10-fold Cross Validation 

 

ctrl1 <- trainControl(method = "repeatedcv", repeats = 10) 

 

 

# Train/Fit Random Forest Regression model to training dataset 1 

 

rf2 <- train(TI_risk ~ edu + manager + conhour + contype + lmx + infshare + 

voice + paysatis + fair + proact + caropp + N + FTEN + FTELY + 

employee_council + hr_rep + n_levels + n_deps + n_magers + familybiz + HR1 + 

HR2 + HR3 + HR4 + HR5 + HR6 + HR7 + HR8 + HR9 + superboard + adv_board + 

corp_entr + stratplan + entr_orient, data = training2, trControl = ctrl1, 

method = "rf", na.action = na.omit) 

 

 

# Predictions for new data (testing set 2) 

 

predY_RF2 <- predict(rf2, newdata = testing2, type = "prob") 

 

head(predY_RF2) 

 

 

# Convert Predicted Probabilities to Classifications 

 

pred_class_RF2<- ifelse(predY_RF2[,2] >= 0.5, 1, 0) 

 

pred_class_RF2<-factor(pred_class_RF2) 
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# Predictor Variable Importance 

 

varImp(rf2) 

 

 

# Evaluation of RF Regression Predictive Performance 

 

postResample(pred_class_RF2, obs = testing2$TI_risk) # Accuracy/Kappa 

 

BrierScore(as.numeric(testing2$TI_risk), predY_RF2[,2])  # Brier Score 

 

confusionMatrix(pred_class_RF2, testing2$TI_risk)    # Confusion Matrix 

 

################################################################ 

################################################################



 

 

 


