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Abstract 

Distortion product otoacoustic emissions (DPOAEs) were examined in 15 normal-

hearing African-American children between the ages of 6 and 14 years with homozygous 

sickle cell disease (SCD), who were on a regimen of hydroxyurea (HDU), a drug that 

reduces inflammatory processes and symptoms of SCD; a matched group of 15 African-

American children with homozygous SCD not on HDU; and 15 African-American 

children with normal hemoglobin. DPOAEs were evoked by 13 primary tone pairs with f2 

frequencies ranging from 1000 to 4500 Hz. Increased DPOAE amplitudes, believed to be 

a precursor of eventual hearing loss, were evident in children with SCD who were not 

receiving HDU. Those taking HDU had DPOAE amplitudes similar to normal controls. 

These findings suggest that HDU, in addition to reducing symptoms of SCD, may play a 

role in inhibiting or preventing cochlear pathology and hearing loss in individuals with 

SCD. 

 

Key Words: distortion product otoacoustic emissions; sickle cell disease; hydroxyurea 

Abbreviations: ABR = auditory brainstem response; DPOAE = distortion product 

otoacoustic emission; HDU = hydroxyurea; HbSS = homozygous sickle cell disease; 

ICAM = intercellular adhesion molecule; M = mean; OAE = otoacoustic emission; p = 

probability; PECAM = platelet-endothelial cell adhesion molecule SCD = sickle cell 

disease; SD = standard deviation of the mean; SOAE = spontaneous otoacoustic 

emission; TEOAE = transient evoked otoacoustic emission; VCAM = vascular cell 

adhesion molecule. 
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Insights Into Elevated Distortion Product Otoacoustic Emissions In Sickle Cell Disease: 

Comparisons of Hydroxyurea-treated and Non-treated Young Children 

 

The hallmarks of sickle cell disease (SCD) are hemolytic anemia and vaso-

occlusion as a result of intracellular polymerization of deoxyhemoglobin S. Occlusion 

occurs from the level of the microvasculature to large arteries. The precursor of vaso-

occlusion is activation of inflammatory processes by erythrocyte, and to a lesser extent 

leucocyte, interactions with the postcapillary venule endothelium. The obstruction or 

trapping of sickle cells is secondary to adhesion of erythrocytes on the venous side of 

microcirculation. The sequela includes local hypoxia, increased erythrocyte sickling, and 

spread of inflammation to adjacent tissue (Elion et al., 2004; Stuart and Nagel, 2004). 

Given the microvasculature of the cochlea (Haupt et al., 1993; Scheibe et al., 

1997; Slepecky, 1996), one would suspect that cochlear function would be particularly 

vulnerable in those with SCD. Indeed, histopathological changes in the temporal bone 

and degenerative changes in the organ of Corti consonant with hypoxia have been 

observed with SCD (Morgenstein and Mance, 1969). Also consistent with this 

speculation is the observation of a higher prevalence of sensorineural hearing loss among 

those with SCD (Adams and Benson, 1992; Ajulo et al., 1993; Ashoor and Al-Awamy, 

1985; Atsina and Ankra-Badu, 1988; Crawford et al., 1991; Forman-Franco et al., 1982; 

Friedman, et al., 1980; Piltcher et al., 2000; Todd et al., 1973). Hearing loss has a 

progressive nature in SCD as the prevalence is lower in children than adults (Gentry et 

al., 1997; Koussi et al., 2001; MacDonald et al., 1999; Odetoyinbo and Adekile, 1987) 
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and the degree becomes more advanced with increasing age (Onakoya et al., 2002; 

Piltcher et al., 2000). 

It is generally recognized that evoked otoacoustic emissions (OAEs) are more 

sensitive in revealing early or sub-clinical cochlear damage versus standard behavioral 

testing (e.g., Lonsbury-Martin et al., 1993; Prieve et al., 1997; Schweinfurth et al., 1997; 

Shera, 2004). OAEs reflect nonlinear distortion and linear reflection mechanisms in the 

cochlea generated by outer hair cell activity in response to acoustic stimulation (Shera, 

2004). Energy from this activity is partly released back through the middle ear to the ear 

canal reappearing as sound. Distortion product otoacoustic emissions (DPOAEs) are 

intermodulation products produced by the cochlea when presented with two closely 

spaced simultaneous pure tones (i.e., f1 and f2). DPOAE amplitude increases with 

increasing input levels until saturation and varies as a function of stimulus frequency. 

Following cochlear insult (e.g., hypoxia, noise, or ototoxic drugs), DPOAEs are reduced 

in amplitude or are absent (Kemp, 2002). 

We originally investigated DPOAEs in normal-hearing African American school-

aged children with SCD in an effort to see if sub-clinical cochlear damage was present 

(Downs et al., 2000; Walker et al., 2004). Paradoxically, an increase in DPOAE 

amplitude was observed and the likelihood of detecting a DPOAE response was not 

related to the disease status or middle ear function. That is, Downs et al. (2000) reported 

that normal-hearing children with SCD had larger DPOAE amplitudes than children with 

normal hemoglobin and that the prevalence of DPOAEs did not differ between the two 

groups. Considering that the integrity of the middle ear system directly influences OAE 
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characteristics, Walker et al. (2004) undertook a concurrent investigation of DPOAEs and 

outer/middle ear function with tympanometry. DPOAE amplitudes were again 

significantly larger for children with SCD, but there were no group differences in any of 

the middle ear indices (i.e., peak compensated static acoustic admittance, tympanometric 

width, tympanometric peak pressure, ear canal volume, and middle ear resonance 

frequency). Their findings were consistent with the notion that increased DPOAE 

amplitudes could not be attributed to differences in outer/middle ear function as assessed 

with tympanometry. 

DPOAE amplitudes have been reported to increase before reduction or loss 

secondary to localized cochlear lesions in animal studies suggesting that increased 

DPOAE amplitudes may precede the manifestation of measurable behavioral changes in 

cochlear pathology (Huang et al., 2005; Kakigi et al., 1998; Raveh et al., 1998). It stands 

to reason that increased DPOAE amplitude may be related to the inflammatory process of 

SCD since markers of vascular inflammation have been observed in the cochlea 

following other cochlear lesions (e.g., Suzuki and Harris, 1995; Zhang et al., 2000) and 

inflammatory responses can lead to cochlear damage and hearing loss (Ryan et al., 2002). 

Hydroxyurea (HDU) is currently the only known drug that reduces the frequency 

of vaso-occlusive crisis, pain, and transfusion needs in those suffering from SCD (Halsey 

and Roberts, 2003; Stuart and Nagel, 2004). HDU was originally investigated for its 

ability to increase fetal hemoglobin with a concomitant decrease in sickle cell 

hemoglobin, as it was known that patients with the elevated fetal hemoglobin experience 

milder forms of SCD. Since clinical improvement was noticed in patients prior to 
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significant increase in fetal hemoglobin, other properties of HDU had to mediate 

recovery. It is now believed that HDU, in addition to increasing fetal hemoglobin, 

reduces erythrocyte and leucocyte endothelial adhesion thereby reducing inflammatory 

processes; enhances erythrocyte rheology and myelosupression; and facilitates 

vasodilatation by increased nitric oxide release (Halsey and Roberts, 2003). 

We subsequently hypothesized that if HDU reduces the inflammatory process, 

one should observe a difference in DPOAE responses in those with SCD receiving HDU 

versus those who are not. Toward that end, we examined DPOAEs in normal-hearing 

African-American children with homozygous (HbSS) SCD who were on a regimen of 

HDU; a matched group of African-American children with homozygous SCD not on 

HDU; and African-American children with normal hemoglobin. 

Method 

Participants 

Forty-five normal-hearing, African-American children between the ages of 

6 and 14 years participated. Fifteen African-American children (M = 10.5 years, 

SD = 2.9; nine males, six females) with HbSS SCD who were on a regimen of 

HDU and a matched group of 15 African-American children (M = 9.1 years, SD = 

1.8; six males, nine females) with HbSS SCD not on HDU were selected from the 

East Carolina University School of Medicine Sickle Cell Clinic at Pitt County 

Memorial Hospital, Greenville, NC. The average HDU regimen length was 27.3 

months (SD = 25.7, range 3-77 months). HDU was administered 15 mg/kg orally 

once a day. The average HDU dosage was 805 mg (SD = 351, range 286-1500). 
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All of the children with SCD were asymptomatic (i.e., not in crisis) at the time of 

testing. A control group of 15 African-American children (M = 9.9 years, SD = 

2.9; six males, nine females) with normal hemoglobin also participated. There 

was no significant difference between the mean ages of the three groups of 

participants (p = .32). All participants presented with normal-hearing sensitivity 

defined as having pure-tone thresholds at octave frequencies from 500 to 4000 Hz 

of ≤ 20 dB HL (American National Standards Institute, 1996). There was no 

significant difference between the mean pure tone thresholds between groups (p = 

.77). Participants also presented with normal otoscopy and negative histories of 

otitis media (i.e., according to parental report). Normal otoscopy was defined as 

an absence of ear drainage, a previously undetected structural deficit, ear canal 

abnormalities (i.e., obstruction, impacted cerumen, foreign object, blood or 

secretion, stenois or atresia), otitis externa, a perforated tympanic membrane or 

other abnormality of the tympanic membrane (American Speech-Language-

Hearing Association Panel on Audiologic Assessment, 1997). 

Apparatus 

DPOAEs at 2f1-f2 were collected with a Grason-Stadler GSI-60 DPOAE System 

(Revision 4.2.0) interfaced with a personal computer (Compaq Model Deskpro 2000). 

The protocol for collection of DPOAEs was identical to that of Downs et al. (2000) and 

Walker et al. (2004). An f2/f1 ratio of 1.22 was used with the primary tones to evoke 

DPOAEs. Recordings were obtained at f2 frequencies of 1078, 1218, 1359, 1546, 1734, 

1921, 2156, 2437, 2718, 3093, 3468, 3890, and 4359 Hz. These frequencies were 
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selected because DPOAE test performance is best in this mid to high f2 frequency range 

(Gaskill and Brown, 1990; Gorga et al., 1993a,b; Kimberly et al., 1997). 

Primary tones were presented at two levels. Primary L1 and L2 levels were 70 and 

60 dB SPL and 50 and 40 dB SPL for high and low levels, respectively. A sequential 

signal presentation was utilized. Time domain averaging for DPOAE data collection was 

employed. Ten averages were acquired for each data point. A 24,000 Hz sampling rate 

was used for all conditions. Frame rejection ensued if L1 and L2 were out of tolerance by 

±5 dB and/or ambient noise levels exceeded 30 dB SPL. DPOAE collection ended when 

either of the following occurred: test time exceeded 32 seconds or 1500 frames; 50 

occurrences of frame rejection due to excessive ambient noise; and/or 20 occurrences of 

frame rejection due to L1 and L2 being out of tolerance for at least 20 frames. The test was 

accepted when either of the following occurred: 10 frames were averaged; the average 

noise level was less than -6 dB SPL; and/or either the DPOAE was 3 dB above the noise 

floor or the absolute noise level was less than -12 dB SPL. 

Procedure 

The University and Medical Center Institutional Review Board at East Carolina 

University reviewed and approved the research study prior to any data collection. Control 

participants were tested in a double wall sound-treated audiometric suite (Industrial 

Acoustics Corporation) at the Department of Communication Sciences and Disorders at 

East Carolina University. All children with SCD were tested in a quiet room at Pitt 

County Memorial Hospital. Both rooms met specifications for permissible ambient noise 
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(American National Standards Institute, 1999). A routine hearing evaluation consisting of 

otoscopy and pure tone audiometry was obtained for both ears. 

DPOAEs were obtained for one randomly selected ear for all participants. For 

collection of the DPOAEs, participants sat upright while a probe tip (GSI 1700-9660) 

was positioned securely in the ear canal such that the proximal edge of the probe tip 

flange was flush with the entrance to the external auditory meatus. DPOAEs were 

estimated as the amplitude in the frequency bin for the cubic distortion product 2f1-f2. 

The average amplitude of the three frequency bins on either side of the cubic distortion 

product bin served to estimate the noise floor (Gorga et al., 1997). The noise floor was set 

at -6 dB SPL. A DPOAE was deemed to be present if response amplitude was 3 dB larger 

than the noise floor. In few cases where participants did not sit quiet, two or three 

DPOAE measures were obtained. In these cases, all repeated measures were averaged. In 

cases where data points were missing (i.e., 4%), they were replaced by the mean of two 

valid surrounding values (i.e., the two data points in each adjacent frequency bin). 

Results 

The mean DPOAE amplitudes as a function of group, presentation level, and f2 

frequency are displayed in Figure 1. A four factor mixed analysis of variance was 

undertaken to investigate differences in mean DPOAE amplitudes as a function of group, 

gender, primary tone level, and f2 frequency. The results of this analysis are presented in 

Table 1. As evident in Table 1, significant main effects of group, presentation level, and 

f2 frequency and significant interactions of frequency by group and frequency by level (p 

< .05) were found. 
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Discussion 

The effects of presentation level and f2 frequency on DPOAE amplitudes observed 

across all three groups of children are well accepted (Kemp, 2002; Shera, 2004). DPOAE 

amplitudes of the children in the control group are similar with previously reported data 

on normal-hearing school-aged children (O'Rourke et al., 2002; Owens et al., 1993; 

Prieve et al., 1997). The group effect and frequency by group interaction supports our 

hypothesis that HDU reduces the inflammatory process whereby DPOAE amplitudes in 

children on HDU were similar to those of the normal controls. It is difficult to conclude 

that the disruption of the terminal blood supply to the cochlea is responsible for larger 

DPOAEs observed in these children with SCD as acute hypoxia and ischemia have been 

shown to reduce DPOAE amplitudes (Koga et al., 2003; Mom et al., 1999; Schweinfurth 

and Cacace, 2000; Telischi et al., 1999). It may be the case that children with SCD not on 

HDU may have more spontaneous otoacoustic emissions (SOAEs) since it is known that 

SOAEs enhance DPOAE amplitude in the frequency region of the SOAE (e.g., 

Lonsbury-Martin et al., 1990; Prieve et al., 1997). Unfortunately SOAEs were not 

assessed in this cohort of children. It is unlikely, however, that this is the cause of group 

differences in DPOAE amplitudes as there is no evidence to suggest that only those 

children with SCD and not on HDU would exhibit more SOAEs. Further, it is unlikely 

that they would have multiple SOAEs to the extent that larger DPOAE amplitudes would 

be seen at 10 f2 frequencies.  When multiple SOAEs are evident there are typically on 

average four SOAEs (Lonsbury-Martin et al., 1990; Talmadge et al., 1993). We offer 
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another possibility namely the sequela of vaso-occlusive events and their impact on 

cochlear function. Our reasoning is as follows: 

First, more contemporary research findings support the notion that SCD be 

viewed as a chronic inflammatory disease. For example, Belcher et al. (2003) measured 

several markers of vascular inflammation (i.e., vascular cell adhesion molecule [VCAM], 

intercellular adhesion molecule [ICAM], platelet-endothelial cell adhesion molecule 

[PECAM]) and demonstrated that all were significantly elevated in mice with transgenic 

SCD. Other evidence for inflammatory markers and processes has also been described 

(see Stuart and Hagel, 2004 for a review). Active vascular inflammation appears to be 

present in SCD even in an asymptomatic state (Chies and Nardi, 2001). In fact, exposure 

to sickle blood cells in vitro activates vascular endothelium inducing cell adhesion 

molecules (Brown et al., 2001). In addition, Kaul and Hebbel (2000) showed that a brief 

episode of hypoxia followed by reoxygenation actually triggered inflammatory processes 

(e.g., leukocyte-endothelium interaction and cell adhesion molecules) in SCD, processes 

that were not activated in normal mice post-hypoxia. 

If SCD is a chronic inflammatory disease, is there evidence that the latter could 

exist in the cochlea and lead to hearing loss? The answer is yes: Suzuki and Harris (1995) 

investigated the presence of ICAM-1 within the inner ear following induction of 

labyrinthitis. They detected the expression of ICAM-1 within the spiral modiolar vein 

and collecting venules of the cochlea suggesting that ICAM-1 expression may play a role 

in inner ear inflammation. Zhang et al. (2000) demonstrated VCAM-1 expression on the 

endothelial surface of the spiral modiolar vein and collecting venules in induced 
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labyrinthitis. VCAM-1 expression persisted for up to two weeks. Zhang et al. suggested 

that VCAM-1 is linked to infiltration of inflammatory cells into the cochlea. Such an 

inflammatory response can lead to cochlear damage and hearing loss (for a review see 

Ryan et al., 2002). 

Can inflammatory processes and/or other cochlear insults generate increased 

DPOAE amplitudes? As noted above, increased OAE amplitudes have been observed in 

animals following localized cochlear lesions. Raveh et al. (1998) examined transient 

evoked otoacoustic emissions (TEOAEs) and DPOAE amplitudes before and after local 

thermoprobe lesioning in the apical and middle turns of the cochlea of 11 adult 

chinchillas. Their most interesting observation was increased OAE amplitudes at 

frequencies basal to the lesioned frequency areas. Kakigi et al. (1998) measured hearing 

status in chinchillas with DPOAEs and TEOAEs before, during, and after amikacin 

treatment. Kakigi et al. (1998) found that when the basal most hair cells of the cochlea 

were damaged, OAE amplitudes increased particularly for stimulus frequencies bordering 

the damaged tonotopic region. OAEs decreased when hair cell damage was more 

extensive. They suggested that increased OAE amplitudes might precede the expression 

of hearing loss. Finally, Huang et al. (2005) reported a paradoxical enhancement in 

DPOAE amplitude in guinea pigs following salicylate injection. Following a single 

injection, DPOAE amplitude decreased but following a 14-day course of injection 

DPOAE amplitude progressively increased to a significant level relative to baseline. Four 

weeks following cessation of salicylate injection, the DPOAE amplitude increase 



 13 

reversed to the normal baseline level. The normal control specimens showed no change in 

DPOAE amplitude over the same period. 

Increased OAE amplitudes have also been observed in humans. Zorowka et al. 

(1993) reported increased TEOAE amplitudes in newborns with perinatal infections that 

were receiving aminoglycosides. Seventeen infants were tested shortly after birth 

following the first and before receiving a second dose of the antibiotic ampicillin plus the 

aminoglycoside tobramycin. Within 24 hours of their last aminoglygoside dose, a second 

TEOAE measurement was obtained. Five to 10 days later at retest, 10 of 21 ears 

demonstrated an increase in TEOAE amplitude while nine ears displayed no change and 

two ears a decrease in TEOAE amplitude relative to the initial test. Cevette et al. (2000) 

also reported increased DPOAE amplitudes following ototoxic medication. In two case 

reports, hearing thresholds and DPOAEs were serially recorded in a 30 year-old male and 

a 64 year-old female receiving cisplatin. Measures were obtained at baseline prior to 

administration of cisplatin and a one, two, four, and six months post administration. Both 

individuals showed significant bilateral increases in DPOAE amplitudes at one month 

bilaterally followed by a significant decrease in one case or an absence in case of 

DPOAEs in subsequent tests. 

The mechanism underlying increased DPOAE amplitude seen in children with 

SCD remains to be elucidated. It is possible that inflammatory process(es) somehow 

affect the mechanics of the basilar membrane and/or organ of Corti. Kakigi et al. (1998) 

suggested that the site of lesion basal to the area being monitored might be responsible 

whereby the increased OAE amplitude is a “result of a more effective basal transmission 
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signal across a less active, and therefore less interfering cochlear region” (p. 371). This 

speculation is not consistent with the significant interaction of frequency by group; 

namely that both groups of children with SCD showed similar increased DPOAE 

amplitudes in the lower frequencies (i.e., f2 < 1546 Hz). Here the elevated amplitudes in 

the low frequencies must be interpreted as impairment of the apical region of the cochlea 

in the case of the children receiving HDU. This is not consistent with the common 

observation that loss in function typically follows a basal to apical pattern and recovery 

generally happens at the distal margin of the insult (e.g., Nicol et al., 1992). The 

mechanisms behind the differences and similarities, between children with SCD treated 

and not treated with HDU, remain to be elucidated. 

It may also be the case that there is some dysfunction or reduction in the efferent 

suppression of outer hair cell activity that is responsible for increased DPOAE amplitude 

seen in children with SCD. This could be a consequence of aberrant medial olivocochlear 

neuron function or a disruption of olivocochlear efferent transmitter function. Some 

pharmacological agents are known to disinhibit the OAE response (e.g., Chen et al., 

1998; Drexl et al., 2004; Kujawa et al., 1994). There is also evidence of enhancement of 

OAEs following drug administration or insult to the olivocochlear efferent system in 

some individuals (Berlin et al., 1993, 1994). Interestingly, if elevated OAEs prove to be a 

consequence of aberrant medial olivocochlear efferent system function then SCD may 

share some underlying mechanisms seen with age-related functional decline of the medial 

olivocochlear efferent system see in humans and animals. In fact, functional decline in 

the medial olivocochlear efferent system precedes hair cell degeneration (Jacobson et al., 
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2003; Kim et al., 2002). However, this seems unlikely as there is no evidence to suggest 

that HDU affects the central efferent system and therefore mediates recovery of outer hair 

cell function via the medial olivocochlear efferent system. Finally, Kemp (1986) has 

suggested an “adaptive mechanism” that allows the cochlea to return to a normal state 

following insult. His finding of OAE amplitude rebounding to normal levels following 

noise exposure has also been evidenced following exposure to ototoxic treatment 

(Whitehead et al., 1992). 

If one views SCD as an inflammatory process and increased DPOAE amplitudes 

as a consequence of the process, what then is the role of HDU? As noted above, HDU 

diminishes the inflammatory processes in SCD (Halsey and Roberts, 2003; Stuart and 

Nagel, 2004). It stands to reason then that the observed differences in DPOAE amplitude 

between the two groups of children with SCD in this study be viewed as a drug effect. 

The mechanism of HDU in reducing vaso-occlusive events in SCD has been suggested as 

decreased ICAM (Conran et al., 2004) and VCAM levels (Saleh et al., 1999, 1998), 

reduced adhesion molecule expression in leucocytes (Okpala et al., 2002), decreased 

vaso-constrictor peptide through down regulation of gene expression (Brun et al., 2003), 

increased vasomotor tone via intravascular and intraerythrocytic generation of nitrous 

oxide (Galdwin et al., 2002), a decrease in polymorphonuclear neutrophil adhesion to 

endothelium (Benkerrou et al., 2002), decrease in adhesion receptor expression (Styles et 

al., 1997), and decreased erthrocytic adhesion to protein thrombospondin and laminin 

(Hillery et al., 2000). If HDU diminishes the inflammatory processes then the rebound of 
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the DPOAE amplitudes toward a normal level reflects a reduction in the mechanism(s) of 

the yet undetermined cause of the increased amplitude. 

These findings suggest that not only does HDU prevent SCD crisis but it also may 

play a role in minimizing abnormal cochlear function and/or the restoration of normal 

function as revealed by DPOAEs. That being the case, HDU may prevent or delay 

hearing loss in those with SCD. As the long-term efficacy of HDU treatment in children 

with SCD is examined, beneficial or detrimental effects of HDU on hearing function 

should also be examined. It may be the case, in those with SCD who undergo a long-term 

regime of HDU, that a lower prevalence and less progression in extent and degree of 

sensorineural hearing loss with increasing age be evidenced. Finally, if the increase in 

OAE amplitudes precedes the expression of detectable cochlear pathology, it remains to 

be determined at what point normal hearing children who are not on a regime of HDU 

begin to display a reduction in amplitude and a loss in OAE expression that eventually 

accompanies demonstrable decreases in behavioural hearing sensitivity that accompanies 

SCD. Recall from above that hearing loss is progressive in nature with SCD as the 

prevalence is lower in children than adults, yet the severity of hearing loss becomes 

greater with increasing age. 
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Table 1 

Summary Table for the Three-Factor Mixed ANOVA Investigating Mean DPOAE 

Amplitude as a Function of Group, Gender, Primary Tone Level, and f2 Frequency. 

Source df F p η2 φ 

Group  2 3.36 .045* .15 .60 

Gender 1 3.89 .056 .091 .48 

Level 1 427.63 <.0001* .92 1.0 

Frequency  12 15.00 <.0001* .28 1.0 

Group X Gender 2 1.22 .30 .059 .25 

Group X Level 2 .48 .62 .024 .12 

Group X Frequency 24 1.96 .025* .091 .93 

Gender X Level 1 .09 .77 .002 .060 

Gender X Frequency 12 1.21 .30 .030 .49 

Level X Frequency 12 3.22 <.0001* .076 .99 

Group X Gender X Level 2 .77 .47 .038 .17 

Group X Gender X Frequency 24 .91 .54 .045 .55 

Group X Level X Frequency 24 .62 .91 .031 .52 

Gender X Level X Frequency 12 .75 .69 .019 .42 

Group X Gender X Level X Frequency 24 1.25 .20 .060 .89 

Note. *p < .05; repeated measures factor p values following a Huynh-Feldt correction 

(Huynh and Feldt, 1976). Effect size and power at α of .05 are indexed by η2 and indexed 

by φ, respectively. 
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Figure Caption 

Figure 1. Mean DPOAE amplitude as a function of group, f2 frequency, and stimulus 

level. 
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