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Abstract 

 Obesity rates and other chronic diseases continue to rise due to the lack of physical 

activity and exercise exerted by Americans annually. Although recommendations from the 

American College of Sports Medicine (ACSM) and other exercise science organizations have 

published numerous studies about how to keep up a healthy lifestyle, most Americans tend to not 

follow them. With this in mind, we wanted to know if there were any innate neurobiological 

differences between a population that exercises regularly and one that is sedentary. In order to 

evaluate this phenomenon, we used EEG analysis focusing on functional connectivity and graph 

theory when both groups evaluated images displaying both physically active and inactive 

behaviors. Our results show that exercisers and non-exercisers evaluate the concept of physical 

activity through very different neurocognitive mechanisms. These results have the potential to 

inform the way that agencies can distribute information in a more targeted fashion, hopefully 

reaching the broader population more effectively. 
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Chapter I: Introduction 

 

 Within the United States, all states and territories had more than 20% of adults with 

obesity in 2020 (CDC, 2021) and remains high with sixteen states that now have an adult obesity 

prevalence at or above 35% (CDC, 2021). This is partially due to COVID-19 quarantine 

protocols for several sequential months in the year 2020, but also most American’s sedentary 

activity and poor nutritional lifestyle choices in the past decades. The American government 

provides ample amounts of information on how to cease the epidemic trend from continuing 

including being at a higher risk for fatal diseases from impaired immune function. Having 

obesity increases the risk of severe illness from COVID-19 and people who are overweight may 

also be at increased risk (CDC, 2021). There is abundant evidence supporting the health benefits 

of physical activity, including reduced risk for cardiovascular disease, stroke, some cancers, type 

2 diabetes, osteoporosis, hypertension, high cholesterol, obesity, osteoarthritis, and all-cause 

mortality (U.S. DHHS, 2002). In today’s society, the top two leading causes of death are obesity 

and diabetes and their associated comorbidities. Many people know that exercise alone can be 

used as a remedy to help control the severity of these diseases, yet the obesity trend continues to 

rise. With exercise, there is a decreased percentage of an individual having either of these 

diseases.  

In order to combat these diseases, the American College of Sports Medicine (ASCM) 

guidelines recommend that all healthy adults aged 18-65 years should participate in moderate 

intensity aerobic physical activity (PA) for a minimum of 30 min on 5 d/wk or vigorous intensity 

aerobic physical activity for a minimum of 20 min on 3 d/wk for the prevention of weight gain 

and to sustain current weight loss along with 2 d/wk of muscle-strengthening exercises that 
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incorporate all major muscle groups (ASCM 10th ed.). Even though these recommendations have 

been out for the public since 1975, Americans are still not following the guidelines, which has 

led to a higher percentage of premature mortalities nationwide. About 12% of all deaths in the 

United States can be attributed to physical inactivity (McGinnis, n.d.) and has been estimated 

that the direct costs of physical inactivity account for approximately $24 billion, or 2.4% of US 

health-care expenditures (U.S. DHHS, 2002; Colditz, 1999) and has only increased over the 

years. There have been numerous studies on why individuals aren’t meeting the activity 

guidelines, however, this study aims to see if there are individual components for this 

occurrence. This includes psychological factors, whether the sedentary individual is 

neurobiologically predisposed to encode physical activity as compared to their chronically active 

counterparts, which may suggest how ACSM presents materials might not be effective for 

exercise adherence in all individuals. This study focuses on potential neurological differences 

and how it relates to the perception of exercise to both an avid exerciser group who follow the 

guidelines as well as a sedentary non-exerciser group in a cross-sectional study design.  

Different cultures, experiences, and environments shape the perception of developing 

individuals from infancy to adulthood. Other human beings differ from all other “stimuli” by 

their great similarity to the perceivers themselves (Hari & Kujala, 2009). This study will test 

both Theory of Mind (ToM) and Social Cognitive Theory (SCT). When we watch someone 

perform an action, we group the movements into coherent subunits or parts with some of them 

subordinate to others (Grafton, 2009). Generally, individuals need to have their own experience 

about an observed action before understanding the action themselves. In terms of physical 

activity and exercise, some motor skills do not come as easily to others but need extensive 

practice to understand a movement pattern. The proponents of enactive perception acknowledge 



 
 

3 

the close connections between perception and action, who consider the content of perception to 

rely on the subject’s sensorimotor experience (Hari & Kujala, 2009). Certain cortical areas in 

humans can be attributed to the mirror-neuron system (MNS) (Hari & Kujala, 2009), that will be 

discussed in a later section. This MNS mapping can be seen on an electroencephalogram (EEG) 

to make stronger inferences about correlations between an action observation.  

The purpose of this study looks at a group of avid exercisers and a sedentary non-

exerciser group using EEG analysis by analyzing the differences in perception between brain 

activity when presented with images showing physical and sedentary behaviors, as well as the 

neuronal pathways that are activated when viewing the active and inactive images. By doing so, 

this study should distinguish if there are any innate neurobiological differences between the two 

groups. Within this study, there were two groups: the exercisers and non-exercisers, and two 

conditions: physically active and sedentary images. The differences between the exerciser group 

alone and the non-exerciser group alone will also be looked at. The central hypothesis of this 

thesis is that exercisers and non-exercisers will have differentiated neuronal pathways when 

evaluating active and inactive images. To achieve this, we examined functional connectivity and 

graph theory between the two groups and within groups.



 

 

Chapter II: A Review of the Literature 

 Humans are born to be physically active since the beginning of time. However, over time 

society has been driven away from this idea and has been distracted by modern day technology, 

which is always evolving. With this, society tends to spend more time behind a cellular phone, 

computer, or television rather than being physically active and moving their bodies. While there 

is a portion of the population that still engages in regular physical activity, we wanted to know if 

there is a neurological difference between the active individuals and the sedentary individuals.  

 

Transtheoretical Model 

 The transtheoretical model (TTM) of behavior change (de Freitas et al., 2009) assesses 

the stages of readiness an individual has before beginning an exercise regimen. It has long been 

considered a useful interventional approach in lifestyle modification programs, such as smoking 

reduction (Aveyard et al., 2009), weight management (de Freitas et al., 2020), but for this study 

it was used for physical activity adherence. The TTM consists of five sequential stages: 

precontemplation (no intention to change), contemplation (intension to change within the next 6 

months), preparation (intention to change in the next 30 days), action (engaged in the behavior 

for <6 months), maintenance (behavioral change sustained for >6 months, Ren et al., 2021). 

There is also a relapse stage, most will go through a few times before conquering the 

maintenance stage. These stages were used to reference the participants who volunteered in this 

study to show how they identify themselves. Participants who are in the precontemplation, 

contemplation, and preparation stages were recruited for the non-exerciser group of this study. 

Meanwhile, participants in the maintenance stage of exerciser self-identified themselves as 

exercisers.  
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Theory of Mind 

 It is common to visualize oneself as another person, including their beliefs, desires, 

emotions, and behaviors. This usually begins when we infer emotions, intentions, and beliefs of 

the other person (Adolphs, 2009). This concept refers to “theory of mind”, the attribution of 

mental states to others (Hari & Kujala, 2009; Keysers & Gazzola, 2006). It can be thought of as 

“walking in someone else’s shoes” as every human has the ability to think, feel, react, and 

behave to the environment around us. Mentalizing the other person’s understanding of the world 

is connected to the ability to make first and third person views (Hari & Kujala, 2009). This 

theory compares with the simulation theory, imagining in one’s mind that the actions, emotions, 

and sensations of others are ‘translated’ into the neural language of our own actions, emotions, 

and sensations (Keysers & Gazzola, 2006). It is natural to envision other’s lives as humans are 

curious individuals. Interpreting behavior in terms of underlying mental causes, or 

‘mindreading,’ is widely agreed to be crucial to our ability to succeed in complex social 

environments: in order to predict and interpret behavior, we need to be able to reason about the 

hidden, mentalistic causes of action (beliefs desires, intentions, etc.) (Westra, 2019).   

 There are shared circuits in the brain controlling three systems—actions, sensations, and 

emotions that are perceived in the premotor and motor cortex and the inferior parietal lobule 

interconnected with the superior temporal sulcus (STS) for actions, the insula for the emotion of 

disgust, the anterior cingulate cortex (ACC) and anterior insula for pain, and the somatosensory 

cortices for touch (Keysers & Gazzola, 2006). By observing how others feel or do, we reflect on 

our mental representation of how we would feel or do in a similar circumstance. Through the 

connectivity of these shared circuits, the brain then adds specific first person elements to each 
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situation (Keysers & Gazzola, 2006). To provide examples, it is possible to witness another 

individual experience pain, so the ACC and anterior insula add a sense of pain; the 

somatosensory cortices would add a sense of touch when witnessing another individual pet a 

fluffy dog, and the insula would add a sense of disgust if witnessing someone else eats rotten 

food. The shared circuits relate these sensations to the brain and body in order to internally 

simulate the situations. Current brain imaging is converging neuroscience with various behaviors 

involving human social cognition and interaction (Hari & Kujala, 2009), leading to a better 

understanding of the human mind and these shared circuits within brain connectivity.  

 

Social Cognitive Theory 

 Humans are social in their day-to-day lives as it is practically impossible to be withdrawn 

from others as there are interactions at work, school, or within the family. We want to know what 

is going on in the world as well as what is going on with ourselves and our bodies. This idea is 

known as embodied cognition, the idea that cognition depends upon the kinds of experience that 

comes from having a body with various sensorimotor capacities, and that these individual 

sensorimotor capacities are themselves embedded in a more encompassing biological, 

psychological, and cultural context (Garbarini & Adenzato, 2004). Therefore, both the mind and 

body are interconnected and influence each other on motor behavior.  

The sensorimotor concept involves the sensory inputs from the body and producing a 

motor function from the nervous system as a response.  Hari & Kujala, (2009) discussed how the 

sensorimotor cortex is involved in a circuitry that includes the parietal lobe, and its close 

connections with frontal areas. This circuitry involves the ventral intraparietal area (VIP) which 

is coupled to area F4, and controls hand and mouth movements on the basis of visual input. Hari 
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& Kujala, (2009) explains that the anterior intraparietal area (AIP), which projects to area F5, is 

considered to be related to affordances, the qualities of objects that are perceived as action 

possibilities and this AIP-F5 network forms the core of the mirror-neuron circuitry. F5 also 

receives input from parietal area PF, which itself receives input from the superior temporal 

sulcus (STS).  

Human social cognition encompasses all cognitive processes relevant to the perception 

and understanding of conspecifics including, but not restricted to, the cognitive processes 

involved in the understanding of perceived actions performed by conspecifics (Jacob & 

Jeannerod, 2005). To make stronger inferences about the kind of simulation that takes place in 

action observation, many groups have begun to incorporate electrophysiological methods aimed 

at defining the functional anatomy of embodied cognition and the circumstances where there is 

strong overlap between action, perception, and understanding (Grafton, 2009). As an observer of 

an action, the brain engages in a bilateral network of cortical brain regions including the bilateral 

posterior STS, inferior parietal lobule (IPL), inferior frontal gyrus (IFG), dorsal premotor cortex, 

and ventral premotor cortex known as the action observation network (AON) (Grafton, 2009). A 

small perceptual stimulus can elicit an extensive recruitment of these numerous parts of the 

brain. This network likely supports many subtasks, including the formation of perceptions to 

action, the simulation of observed movements in relationship to known movements, and the 

storage of physical knowledge (both of self and objects) that can be used for simulation (Grafton, 

2009).  

 

Social Identity Theory and Identity Theory 
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 This study will take Social Identity Theory and Identity Theory approach by  placing 

individuals into exercisers and non-exercisers groups. In social identity theory and identity 

theory, the self is reflexive in that it can take itself as an object and can categorize, classify, or 

name itself in particular ways in relation to other social categories or classifications. This process 

is called self-categorization in social identity theory, and identification in identity theory (Stets & 

Burke, 2000). Through this process, an identity is formed within oneself. A social group is a set 

of individuals who hold a common social identification or view themselves as members of the 

same social category (Stets & Burke, 2000). A narrower view to look at these theories is if a 

person partakes in a running group, they will most likely identify as a runner. Members who are 

similar will categorize themselves as in-group and label others who differ as an out-group. With 

this, members of an in-group will enhance their self-esteem by evaluating the in-group positively 

and the out-group negatively. In this case, the exerciser group would probably assess themselves 

as the in-group as they like to focus on physical fitness and health, while the group of non-

exercisers would be the out-group as they portray that they do not care to focus on this matter. 

This accentuation occurs for all the attitudes, beliefs and values, affective reactions, behavioral 

norms, styles of speech, and other properties that are believed to be correlated with the relative 

intergroup categorization (Stets & Burke, 2000). This study is expected to have participants that 

view themselves as an exerciser or non-exerciser based on how they categorize themselves and 

perceive exercise as part of their identity.    

 

Mirror Neuron System 

When observing or engaging with another individual, one (or both) might be involved in 

“mirroring” the actions and intentions of the other. Our ability to perceive the goals and 
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intentions of others from watching their movements is often ascribed to mirror neurons (Frith & 

Frith, 2007).  The “mirror neurons”, possibly responsible for such behavior, were first reported in 

the monkey frontal lobe, in the ventral premotor cortex area F5 (Hari & Kujala, 2009) and fire 

when performing or observing an alike action. This mirror neuron system (MNS) was found to 

be true in humans as well. Such interconnected brain areas form the human MNS, consisting of a 

frontoparietal sensorimotor network that is considered to support implicit understanding of other 

persons’ actions (Hari & Kujala, 2009). While there is no direct correlation between monkeys 

and humans, both species use the MNS, but with different regions of the brain.  

The activation of MNs is a type of social cognitive process that is driven by perception, 

which is different in both humans and monkeys. In monkeys, by automatically matching the 

agent’s observed movements onto her own motor repertoire without executing them, the firing of 

MNs in the observer’s brain stimulates agent’s observed movements (Rizzolatti et al., 1995; 

Rizzolatti et al., 2001; Rizzolatti et al., 2004). In humans, the MNs led to a new way of thinking 

about how we generate our own actions and how we monitor and interpret the actions of others 

(Kilner & Lemon, 2013). By examining the MNs in monkeys, researchers have discovered more 

of the mirror system in humans and have raised the prospects of a ‘motor theory of social 

cognition’, whose goal is to derive human social cognition from human motor cognition (Gallese 

et al., 2003; Wolpert et al., 2003; Blakemore & Decety, 2001; Metzinger & Gallese, 2003; 

Gallese & Goldman, 1998). This theory relates back to executing a specific action and observing 

the same action that fire the MNs, and therefore allows the understanding of the perceived 

action. It should be understood that there is a differentiation between human mindreading and the 

psychological process of understanding perceived actions by the MNs.  
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Neuroanatomy  

 The primary motor cortex, premotor cortex and cerebellum are all a part of the motor 

system used in our everyday lives, especially when involved in exercise. Exploring brain 

function increases scientists’ comprehension of this mysterious system and may facilitate the 

diagnosis of neuropsychological diseases and, for many years, the central theme of brain 

function was that of functional localization, i.e., each separate region of the cerebral cortex 

dictates a specific function (Zhang et al., 2014). Therefore, it would be hypothetically feasible to 

delineate the region of the cortex that implements a certain function, but electrophysiological 

techniques were applied to validate such functional localization (Zhang et al., 2014). Within 

these parts of the brain, as well as others, we will be looking at certain parts that are involved in 

action perception. The medial prefrontal cortex (MPFC) is activated when thinking about mental 

states of self and other (Amodio & Frith, 2006; Saxe 2006), which is tied in with ToM. The 

anterior cingulate cortex (ACC) and anterior insula (AI) are associated with experience of 

emotions, also tied into the SCT (Wicker et al., n.d.; Singer et al., 2004). The inferior frontal 

gyrus (IFG) and intraparietal sulcus (IPS) are associated with action execution and action 

observation (Hamilton, 2006; Rizzolatti & Craighero, 2004). The tempo-parietal junction (TPJ) 

is associated with perception (Blanke, 2005; Aichhorn et al., 2006) and the posterior superior 

temporal sulcus (pSTS) is used for action observation when reading intentions from actions 

(Puce & Perrett, 2003; Pelphrey et al., 2004; Saxe et al., 2004).  

The brain is no longer considered to work via individual regions but rather by several 

regions working cooperatively (Varela et al. 2001). The cerebral cortex in the human brain is a 2-

4 mm thick sheet of gray matter that generally has 5 or 6 layers with pyramidal neurons aligned 

in the same direction perpendicularly along the surface of the cortex, in which there are at least 
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1010 neurons (Kida et al., 2016), making them the most populous cell type. They have long, thick 

apical dendrites that can generate strong dipoles along the somatodendritic axis that induces 

substantial ionic flow in the extracellular medium. Therefore, neurons that generate open fields, 

such as pyramidal cells, make a sizable contribution to the extracellular field (Buzsáki et al., 

2012). When large numbers of neurons with the same orientation in restricted cortical layers are 

synchronously activated by trans-synaptic inputs, it is possible to detect the resulting magnetic 

fields using magnetic field sensors placed near the scalp.  

The precuneus is a region in the brain that rests between the occipital lobe and parietal 

lobe in the medial surface of the cerebral hemisphere. The precuneus, along with the adjacent 

areas within the posteromedial parietal cortex, is among the most active cortical regions 

according to the “default mode” of brain function during the conscious resting state, whereas it 

selectively deactivates in a number of pathophysiological conditions (ie, sleep, vegetative state, 

drug-induced anesthesia), and neuropsychiatric disorders (ie, epilepsy, Alzheimer’s disease, and 

schizophrenia) characterized by impaired consciousness (Cavanna, 2007). One method that has 

been of particular interest is the default-mode network (DMN), comprising the posterior 

cingulate cortex (PCC) and precuneus, medial prefrontal cortex, and bilateral temporoparietal 

junction (TPJ) (Utevsky et al., 2014). This portion of the brain seems to correlate with self-

reflection processes, possibly involving mental imagery and episodic/autobiographical memory 

retrieval (Cavanna, 2007). Studies have shown that PCC/precuneus exhibits increased activation 

during many tasks—including autobiographical memory retrieval (Maddock et al., 2001), reward 

outcome monitoring (Hayden et al., 2008), and emotional stimulus processing (Maddock et al., 

2003—all from Utevsky et al., 2014)—further challenging the association of DMN with task 

disengagement, and highlighting the differences between the functional core of DMN and the 
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network more broadly (Utevsky et al., 2014). The precuneus has long remained one of the less 

accurately mapped areas of the whole cortical surface (Cavanna, 2007). Its strategic location and 

widespread connectivity patterns suggest that it is a major association area that may subserve a 

variety of behavioral functions, which the modern era of neuroimaging has begun to unravel 

(Cavanna, 2007). The researchers found that during the baseline resting state, a neural network 

comprising the precuneus and posteromedial parietal region, along with lateral parietal, 

ventromedial prefrontal, mid-dorsolateral prefrontal, and anterior temporal cortices, exhibits a 

remarkably high metabolic activity (so-called hotspots) (Cavanna, 2007). Moreover, the tonic 

level of activity in the precuneate cortex and of the other regions of the brain characteristically 

decrease when subjects are engaged in goal-directed cognitive processing or perceptual tasks 

(task-induced deactivations (TIDs) (Cavanna, 2007). One possibility that TIDs and selective 

hypometabolism in pathophysiological conditions affecting consciousness relate to resting-state 

mentation is that when an individual is awake and alert and yet not actively engaged in particular 

cognitive task, the precuneus and interconnected posterior cingulate and medial prefrontal 

cortices subserve continuous information-gathering and representation of the self and external 

world (Cavanna, 2007).  

When non-self-referential goal-directed processes are interrupted, reflecting a necessary 

reduction in resources devoted to general information gatherings and evaluation (Cavanna, 

2007). It is suggested that precuneus activity during conscious resting states supports conceptual 

processing operating on internal stores of information (endogenous signals) rather than 

“perceptual” functions (concerned with sources of information external to the brain) (Cavanna, 

2007). This area seems to contribute to the self-referential “thought” processing that humans 

experience during resting consciousness (Cavanna, 2007). This is otherwise known as episodic 
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memory retrieval tasks, the ability to consciously recall personal past events and being able to 

relate to them. This has highlighted clear dissociation between the precuneus and the neighboring 

posterior cingulate cortex, which have traditionally been grouped together as a functional unit 

within the medial parietal region (Cavanna, 2007). Yonelinas and colleagues found that the 

precuneus was related to familiarity whereas the posterior cingulate was related to recollection 

(Cavanna, 2007). Overall, during the baseline resting state this neural system is likely to be 

engaged in higher mental functions involving something similar to contemplative thought against 

a background of general body awareness, upon which any extended consciousness is constructed 

(Cavanna, 2007).  

 

Brain Connectivity and Mapping  

The brain network is a complex system that is constantly working whether we realize it 

or not. Neurons in the brain do not function independently, rather they rely on interacting with 

different brain regions using afferent and efferent connections to enable different sensorimotor 

and cognitive tasks to be performed (Horwitz, 2003). The network is defined as a collection of 

nodes (vertices) and links (edges) between pairs of nodes (Rubinov, 2010). The nature of nodes 

and links in individual brain networks is determined by combinations of brain mapping methods, 

anatomical parcellation schemes, and measures of connectivity (Rubinov, 2010). Brain 

connectivity is an elusive concept that refers to different interrelated aspects of brain 

organization (Horwitz, 2003) and is normally divided into three different categories: anatomical 

or structural, functional (FC) and effective connectivity (EC) (Niso et al., 2013). For this study, 

we used FC, the statistical dependence between the signals stemming from two (or among many) 

distinct units within a nervous system (from single neurons to whole neural networks), while EC 

refers to the causal interactions between (or among) them (Friston, 1994; 2011). Neither FC nor 
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EC involve physical connections, but rather the existence of a relationship between these signals. 

While both are related to the stability of phase relationships of two independent signals 

(channels) or the coherent phase difference between them (Niso et al., 2013), EC relies on the 

probability that the history of one signal can change the probability of another, threin creating the 

causal relationship. Both FC and EC can be observed from multivariate neurophysiological 

signals by analyzing the interdependence between time series. These connectivity measurements 

are used to examine relationships between two time series experimentally recorded from, for 

example, different brain regions, from a brain region and muscle, from cortical and subcortical 

regions, from a subcortical region and muscle (i.e., electromyographic activity), and from a 

cortical region and kinematics (i.e., acceleration of movement) (Kida et al., 2016).  

 

Using EEG Analysis  

Electroencephalography (EEG) is one of the oldest and most widely used methods for the 

investigation of electric activity in the brain (Buzsáki et al., 2012). The millisecond temporal 

resolution of EEG measurements makes using this technique an ideal candidate to study the brain 

as a dynamic system (Nolte et al., 2004). Temporal resolution may be considered in two 

manners; one is as an aspect of the measuring device, while the other is as a physiological aspect 

depending on its electromagnetic properties and the temporal profile of underlying neuronal 

activity (Kida et al., 2016). EEG is a classical tool that has been used for nearly 100 years since 

its first application to humans (Berger, 1929), but in years past, there has been more recognition 

when it comes to interpreting rhythmic EEG to determine brain connectivity. EEG also considers 

a measure of ‘interaction’ that is probably the simplest and most popular measure at a specific 

frequency known as coherence, a generalization of correlation to the frequency domain (Nunez 
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et al., 1997, 1999). Coherence is studied as a relation between EEG or MEG channels (Nolte et 

al., 2004) while EEG always needs a reference similarly to the electrode pairs being studied that 

can contribute significantly to the coherence, and thus, relative power changes may also affect 

coherencies without reflecting a change in coupling (Fein et al., 1988; Florian et al., 1998). 

Coherency between two EEG channels is a measure of the linear relationship of the two at a 

specific frequency (Nolte et al., 2004).  

Although used for many years, coherence is essentially a version of the Perasron’s 

correlation statistic. One of the challenges this presents is the concept of volume conduction, or 

that two electrodes can show artificial coherence simply due to their relative proximity to a 

point-source of activity. This source creates electrical activity that spreads through extracellular 

space and can be measured by multiple electrodes simultaneously, leading to a misinterpretation 

of their true connections. More advanced measures have been developed that control  volume 

conduction through various normalization techniques. For this work, we will focus on the 

weighted phase lag index (wPLI), which normalizes the real part of the cross spectrum against 

the imaginary part of the cross spectrum, thereby removing the potential influence of volume 

conduction. This study intends to interpret the wPLI between EEG channels and their interaction 

between different brain sites.  

When a large number of neurons with the same orientation in restricted cortical layers are 

synchronously activated by trans-synaptic inputs, it is possible to detect the resulting magnetic 

fields using magnetic field sensors placed near the scalp (Kida et al., 2016). These trans-synaptic 

inputs induce a primary current, which is related to the movement of ions due to their chemical 

concentration gradients, and passive ohmic current (also called volume current), which occurs in 

the surrounding medium, in the brain as a volume conductor, with the latter current completing 
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the loop of ionic flow in order to prevent the buildup of charge in the conductor (Hämäläinen et 

al., 1993). Electric fields generated in the brain spread in space via different conductor media 

(volume conduction), and, thus, EEG signals recorded by different scalp sites include an electric 

field derived from a common current source (Kida et al., 2016).  

EEG records the time series of a potential difference (voltage) between two sites 

(recording and reference sites) while the signals mainly include volume current originating from 

both radical and tangential current scores (Kida et al., 2016). The most important factor is that 

the most advanced EEG systems can detect signals with a sampling rate faster than 1 kHz and 

can record subtle and swift changes in neuronal activity, an important advantage, hence, EEG 

can provide precise measurements of brain activity (Zhang et al., 2014) that will be needed for 

this type of research.  

 Essentially, the EEG cap builds a “roadmap” for how information is transmitted across 

the brain and is debated whether it uses holism or localizationism to determine this phenomenon. 

Holism is the idea that discrete brain functions are distributed across the brain, while localization 

is when discrete brain functions are solely controlled by discrete regions of the brain. Despite 

which concept of brain function it is thought to be, this study aims to look more into which of 

these ideas supports this research. Below is an example used from a different study of how a 

young and an old population distributes information throughout the brain using functional 

connectivity.  

 

 Example of Connectivity Analysis 
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Weighted Phase Lag Index 

 One of the central theories of this study is to determine how the brain talks to itself and 

information is traveled throughout. It has been found that functional connectivity (FC) using 

weighted phase lag index and graph theory can explain such a phenomenon. Modern network 

science, a mixture of dynamic systems theory, graph theory and statistics, has been applied to the 

study of the functional and structural brain connectivity network under various states and 

conditions (Ismail & Karwowski, 2020). The theoretical framework for understanding large-

scale networks is given by ‘modern network theory’, a branch in graph theory, in which 

networks are represented by a set of nodes (vertices) and connections (edges) (Stam et al., 2009). 

The modern era of graph theory began in the late 1990s with the discovery of small-worldness 

(Watts & Strogatz, 1998) and scale-free network models (Barabasi & Albert, n.d.), enabling the 

quantification of brain connectivity patterns (Ismail & Karwowski, 2020). He stated that small-

world networks have a relatively high amount of so-called ‘local clustering’, meaning that nodes 
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are often connected to their neighbors, combined with relatively short ‘path lengths’, which 

means that from any node it takes just a few steps to reach any other node in the network (Stam 

et al., 2009). Well-ordered networks are strongly clustered and show large path lengths, in 

contrast, random networks are weakly clustered with small path lengths (Stam et al., 2009).  

Graph theory provides models of complex networks in the brain, and allows one to better 

understand the relations between network structure and the processes taking place on those 

networks (Stam et al., 2009). This study used the Alpha band, due to its involvement in 

visuomotor processing and widespread distribution. The “connectome” refers to the connectivity 

among different brain regions and the manner by which information is transferred among these 

regions (Sporns, 2011). Functional connectivity (wPLI) was used to determine the statistical 

interdependencies between physiological time series recorded from different brain regions 

(Friston et al., 1993; Friston, 1994), however, the functional brain connectivity and network 

topology in the context of cognitive neuroscience in the context of physical activity is largely 

unknown (Ismail & Karwowski, 2020). The first proposal of graph theory for EEG data was 

reported by Stam et al., 2009. who compared the functional brain network of control individuals 

and patients with Alzheimer’s disease (Ismail & Karwowski, 2020). EEG is capable of capturing 

the rich temporal information that aids identification of the directions of the flow of information 

among different brain regions (i.e., causal inference) (Hassan & Wendling, 2018). Since brain 

activity and behavior are determined by both neuronal spiking activity and the communications 

between neurons, we can expect that the firing activity and functional connectivity between 

neurons may also be highly regulated across behavioral states. It is probable that the coupling of 

the neuronal activity and behavioral states are based on the anatomical location of involved 

neurons when using the EEG coordinate (Olcese et al., 2016). Functional coupling between 
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individual neurons that are measured in terms of  firing rate fluctuations (Harris & Thiele, 2011), 

not only changes as a function of brain state, but is also highly dependent on distinct brain areas 

(neocortex vs hippocampus), distance between neurons (within and between brain regions), 

neural subtypes (excitatory vs inhibitory cells), and on functional properties of individual 

neurons that correlate highly localized processes (Olcese et al., 2016). Nevertheless, this study 

will give a brighter insight into this functional brain connectivity and how information is traveled 

throughout the brain.



 

 

  

Chapter III: Methods 

Participants 

 Inclusion criteria for all participants are designated as: 1) healthy young males and 

females aged between 18 and 35 years, 2) right hand dominant, 3) healthy by self-report, 4) self-

reported absence of previous neurological illness or injury, 5) self-reported absence of 

prescription medication usage. For this project, the term healthy is defined as any individual free 

of upper or lower extremity neuromuscular disability, as well as an absence of any neurological 

disease or obvious precursor to a neurologically debilitating disease. All participants have 

normal or corrected-to-normal vision. Specific exclusion criteria include: 1) a history of upper or 

lower extremity neuromuscular illness or chronic injury and 2) upper or lower extremity 

neuromuscular debilitating condition, 3) left-hand dominance. Exclusion criteria are designed to 

prevent extraneous factors from confounding the neural or behavioral activation patterns in 

healthy subjects, which are a primary focus of this work. 

All research procedures will be performed in accordance with all regulations specified by 

the University and Medical Center Institutional Review Board (UMCIRB) of East Carolina 

University. Two groups of participants will be recruited for this study, each with 15 participants. 

The experimental group (“Exercisers”) will consist of individuals who have engaged in a 

minimum of 150 minutes of moderate aerobic exercise (AE) a week for a minimum of 6 months. 

The control group will consist of healthy participants who do not regularly engage in AE, e.g., 

not more than 30 minutes per week. They have also engaged in a minimum of 2-3 days a week of 

muscle strengthening activities including all major muscle groups for a minimum of 6 months.  



 
 

21 

Once participants of this study came into the lab, they are required to review, sign, and 

date the informed consent as well as answer a self-assessment that were given to them by a 

member of the research team. The self-assessment includes a SAM scale-like self-report made by 

the researcher of their overall physical activity in the past 6 months, how they feel about 

exercise, and how important physical activity is to their lifestyle. This was another way, along 

with the TTM, to identify each participant and place them in either group. It is understood that 

the self-assessment that were given are poorly controllable by the researcher, such as insight, 

motivation, and the subject’s honesty leading to the subjects that typically tend to answer in a 

more socially desirable way than could be presumed from their actions (Hari & Kujala, 2009). 

Therefore, this study was based on self-identity and is supported by the SIT. Participants were 

recruited by word-of-mouth and flyers around East Carolina University in Greenville, NC. We 

aimed to recruit 15 individuals for the exercise and non-exercise groups each, however totaled 17 

exercisers and 13 non-exercisers. 

 

Procedures 

Once the questions that were given to participants were analyzed and reviewed, 

participants visited the PI’s research lab (Sensory-Motor Integration Laboratory; 170A Minges 

Coliseum, Greenville, NC, 27858) located on the Grady-White Boats Athletic Campus of East 

Carolina University. Participants were prepared to be set up to the EEG and rest for a few 

moments. For EEG preparation, participants were seated in a chair and any hair care products 

were removed from the hair and scalp with an alcohol-saturated cotton pad. The forehead was 

prepared by wiping the area with a cotton pad and a solution of pumice and Vitamin E, thereby 

removing any residual oil and dirt from the skin. The head was measured with a Gulick 
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measuring tape from the naison to the inion. With that, the researcher made a small mark at 10% 

of the measurement, somewhere on the center of the forehead, as the universally known EEG 

head measurement. This is where the ‘reference’ electrode was placed, also known as Fz. Once 

the cap was securely on the head, the chin strap was attached and fastened. Participants were 

fitted with a 64-channel EEG cap (Compumedics Neuroscan, Charlotte, NC) to record neural 

activity using SynampsRT (Compumedics Neuroscan, Charlotte, NC). Once the cap was in place 

and properly aligned, the scalp under each electrode was prepared by first gently abrading the 

skin using the wooden end of a standard cotton swab with pumice and Vitamin E to reduce 

impedance to the electrode, and then applied a conductive gel with a 16-gauge blunt needle.  

Various pictures were presented to them using stick-figure people performing activities 

including walking, hiking, lifting weights (physically active images) and sitting on the couch, 

sleeping, eating (physically inactive or sedentary images) etc. The stick-figure images were 

created to eliminate potential biases (i.e. weight, expression, connotation of “sedentary 

activities”), whereas using an overweight/obese or lean individual would potentially allow the 

participant to have different thoughts or perspectives of the activity based on their looks and 

size. Below is an example of a physically active image (A) and a physically inactive image (B) 

that were shown to the participants. There were 25 physically active images and 25 physically 

inactive images shown. Before each image appeared on the screen, a plus sign (+) and then a 

circle (○) would become visible in the middle of the screen to focus the participant’s eyes on the 

center. The computer was randomized to project the image within 2-5 seconds after centering the 

eyes. This was done to reduce anticipation from the participant of when the image would appear. 

A series of these physically active and inactive images would appear in random order until all 50 

images were shown.  



 
 

23 

 

Examples of physically active (A) and physically inactive images (B)  

A         B 

 

Eye movements were recorded with electrodes placed above and below the eyes to 

capture electrooculographic (EOG) activity. Data acquisition was performed using a common 

average reference at a sampling rate of 1KHz and filtered to DC-100 Hz. Potentials from the 

right and left ears will also be recorded and used (offline) for artifact correction. Participants 

were seated 1.8m (6’) in front of a 119.38 cm (47”) widescreen visual display for visual 

presentations. The display was placed in the middle of their visual field, and its height matched 

to the eye of the seated subject. The participant was instructed to use a Go/No-go task by using 

their index and middle finger. They were presented with images of simple stick-figure people 

performing static activities to distinguish how they view an active and inactive picture presented. 

The participant would recognize the action and use their index finger to click a button if they 

view the image as inactive, and the middle finger will click a button if they view the image as 

active. This was subjective based on all fifty images presented. Once the subject viewed all fifty 

images, the round was over.  The participant was then able to relax, talk, and adjust themselves 
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in their seats. There were two rounds completed for distractions and averages taken per 

participant.  

 

Instrumentation 

 Electroencephalography (EEG) gives researchers a tool to noninvasively evaluate both 

localized and widespread brain activity at a high temporal resolution in the time-voltage (ERP, 

VEP, MRCP) and time-frequency (power spectrum connectivity, ERD/S) domains. The MRCP 

is commonly used as an electrophysiological correlate of regional cortical involvement before 

and during voluntary movement (Shibasaki & Hallett, 2006). Similarly, the event-related 

potential (ERP) is a waveform of predictable shape, amplitude and latency that follow the onset 

of a stimulus, making it a powerful correlate of localized neural activations (Mizelle & Wheaton, 

2011; J.C. Mizelle & L. A. Wheaton, 2010; J. C. Mizelle & L. A. Wheaton, 2010). As the ERP 

and MRCP are markers of brain activity in the time-voltage domain, changes in EEG signal 

strength in a particular frequency bandwidth (power spectrum, ERD/S) reflects regional brain 

activation in the time-frequency domain (Pfurtscheller & Aranibar, 1977). Most commonly, 

spectral studies are related to motor control within the alpha (~8-12 Hz), beta (~13-25 Hz) and 

theta (~4-8 Hz) frequency bands is described. Due to differences in temporal and spatial 

representation (Toma & Hallett, 2003), it is suspected that voltage and spectral properties 

represent different cortical processes underlying a particular movement or cortical process, 

thereby providing complimentary measures of movement related neuronal activation (Babiloni et 

al., 1999). As such, both time-voltage and time-frequency measures will be used in the current 

study.  
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As the EEG signal is related to activation of summed post-synaptic processes recorded at 

a high sampling rate, it has very fine temporal resolution. However, EEG is not recorded directly 

from the generators of this activity, causing a weaker spatial resolution. The Curry software 

package (Compumedics Neuroscan, Charlotte, NC) allows for sophisticated localization of 

cortical and grey matter linear solutions through the importation of template MRI scans to which 

EEG data can be co-registered for improved spatial accuracy of estimated neuroanatomical 

generator sources. Following the completion of data acquisition, the 3-D location of sensors will 

be recorded to allow for the merging of EEG and template MRI images. Three external indicator 

coils will be placed on the left and right pre-auricular points and the nasion. The exact location of 

these markers with respect to anatomical landmarks will be imaged with digital photography 

(e.g. a digital image, focused only on the marker and the surrounding anatomy, will be made of 

each marker with a high zoom factor; the subject will not be identifiable in the image), and the 

precise 3-D position of each sensor will be digitized using the Polhemus Fastrak following the 

recording session (Polhemus Fastrak, Colchester, VT). Following initial EEG processing and 

analysis, we will evaluate source activations at peak latencies identified in time- and frequency 

domain analyses described above. Statistical significance will be set at p < 0.05.  

This study used a resting EEG to analyze the brain wave frequencies when activated by 

an external stimulus and have been shown to be reliable on regional brain activity. An EEG 

measures excellent temporal resolution, necessary for this degree of study, but are relatively poor 

in their spatial resolution (Grossmann & Johnson, 2007). Recording electrophysiological activity 

is one way that the relationship between resting-state and behavioral performance can be directly 

assessed (Rogala et al., 2020). Several studies have revealed correlations between certain EEG 
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rhythms to differentiate cognitive performance. The MATLAB software was used to analyze the 

recordings of the brain waves as well as compare and contrast the data.  

EEG studies have distinguished between two rhythms at rest, both of which occur in the 

alpha frequency range (8-13Hz) including alpha rhythm and a central mu rhythm (Rizzolatti et 

al., 2001). The posterior alpha rhythm is present when the sensory systems, particularly visual 

system, are not activated, and disappears on the presentation of sensory stimuli; while the mu 

rhythm is present during motor rest and disappears during active movements and somatosensory 

stimulation (Rizzolatti et al., 2001). Alpha oscillations have been proposed to clear sensory 

information from distractors, the beta to gamma band ratio can assure critical-state dynamics for 

optimal information processing and alpha and beta band activity can reduce attentional 

investment during rest (Rogala et al., 2020).  

 

Design and Analysis 

The researcher created codes for data computation in Matlab to assess the information. 

Brain activity was recorded with Compumedics Neuroscan CURRY8 and then analyzed using 

EEGLAB and custom software in Matlab to determine differences in brain connectivity within 

and between groups. By comparing both the neuronal pathways and brain waves, we can 

distinguish if there were significant neurobiological differences between the exercisers and non-

exercisers that might lead to the reasoning of why one individual or population exercises, while 

another does not.  

 

Data Processing 
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Offline, high pass (0.1 Hz) and low pass (45 Hz) filters was applied. Data was epoched 

from 1000 ms before the onset of the prime stimulus through 1000 ms after the target stimulus, 

which included the warning cue and the full duration of all stimuli. Time zero (0 ms) will be 

related to the onset of the prime stimulus, and each epoch will be baseline corrected over the 

interval from -250 to -550 ms. Based on the unique markers created in the SuperLab – 

SynampsRT interface for each stimulus, epochs will be sorted into their respective trial variants. 

The Artifact Subspace Reconstruction technique (ASR) was used to automatically remove 

ocular, muscular, electronic and other artifacts from the data (Mullen et al., 2015). Any trials 

with residual artifact were visually identified and removed from analysis.  

The surface Laplacian was applied to the data to serve as a spatial filter, thus resulting in 

the calculation of the Current Source Density (CSD; Kayser & Tenke, 2006) of the scalp data 

and sharpening the spatial topography of the observed activations. In essence, the CSD maps 

represent the magnitude of the radial (transcranial) current flow from the brain to the scalp 

(source) and to the brain from the scalp (sink). As a net effect, the CSD transformation functions 

as a high-pass spatial filter that minimizes the electrical distortions produced by the mediums 

between cortical surface and sensor (electrode) such as skull and scalp, thus facilitating spatial 

separation of temporally overlapping components. Therefore, the benefits of a CSD transform 

are a reference-free, spatially enhanced representation of the direction, location, and intensity of 

current generators that underlie the recorded scalp potentials, and CSD provides topographies 

with more sharply localized peaks than those of the scalp potential, while eliminating volume-

conducted contributions from distant regions and sources. CSD data was used for all subsequent 

procedures.  
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Data Analysis: Time-Frequency Domain 

Changes in EEG signal strength in a particular frequency bandwidth reflects regional and 

interregional brain activation in the time-frequency domain (Pfurtscheller & Aranibar, 1977). 

Most commonly, ERD/S related to motor control within the alpha (~8-12 Hz), beta (~13-30 Hz) 

and theta (~4-8 Hz) frequency bands is described. Due to differences in temporal and spatial 

representation, it is suspected that time-voltage and time-frequency data represent different 

cortical processes underlying a particular movement, thereby providing complementary measures 

of neuronal activation (Babiloni et al., 1999). As such, both time-voltage and time-frequency 

measures were used in the current study.  

Specifically for time-frequency measures, a complex Morlet wavelet transformation was 

used to extract instantaneous power and phase within all frequency bands (1 Hz resolution, 1-40 

Hz range). A Morlet wavelet is defined as a sine wave tapered by a Gaussian. For time-frequency 

analysis, a complex Morlet wavelet was used, in which the Gaussian tapers a complex sine wave. 

The complex Morlet wavelet was then convolved with the time series signal, and the result of 

convolution is a complex-valued signal from which instantaneous power and phase can be 

extracted at each time point.   

Wavelet convolution can be conceptualized as a “template-matching” procedure, in 

which each time point in the signal is compared against a template (the Gaussian-windowed sine 

wave), and the result of the convolution is a time series of “similarities” between the signal and 

the wavelet. There are several advantages of Morlet wavelets for time-frequency analysis. One is 

that the Morlet wavelet is Gaussian-shaped in the frequency domain. The absence of sharp edges 

minimizes ripple effects that can be misinterpreted as oscillations, which is a potential danger 

associated with plateau-shaped filters). Second, the results of Morlet wavelet convolution retain 
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the temporal resolution of the original signal. Third, wavelet convolution is more 

computationally efficient and requires less code compared to other methods, because it involves 

the smallest number of computations, most of which are implemented using forward and inverse 

realizations of the fast Fourier transform. 

 

Data Analysis: Functional Connectivity  

From the analytic signal, the complex auto- and cross-spectrum for each channel and 

channel pair, respectively, was calculated for the theta, alpha and beta bands. Because the wPLI 

is a useful method to identify nonzero phase lag statistical interdependencies between EEG time 

series (from pairs of electrodes), it was used to identify neural interaction among brain regions in 

this work (Vinck et al., 2011). Because of likely non-normality, adjacency matrices derived 

through wPLI will be compared through nonparametric permutation statistics. Briefly, ground-

truth adjacency data was used to create a null statistical distribution or a distribution that would 

be true if there was no dependence on specific channel pairs in the actual distribution of 

connectivity estimates. This was accomplished by randomly permuting electrode labels through 

1000 iterations (McDonnell et al., 2021). A Fisher’s Z-statistic map (Zmap) was then calculated, 

and a critical value (t = 1.6449 for p < 0.05) was used to threshold the Zmap, therein removing 

values falling below the critical value. The Zmap was then used to mask the ground-truth 

connectivity matrix, leaving only connectivity values that were statistically reliable according to 

the permutation test. 

 

Data Analysis: Graph Theory 
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Network studies of large-scale brain connectivity have begun to reveal attributes that 

promote the segregation and integration of neural information (Sporns, 2013). To formally 

characterize interregional communication, the adjacency matrices derived through the 

permutation procedure were then subjected to graph theoretical measures. Graph theory focuses 

on the properties and behaviors of networks defined as systems consisting of a set of nodes 

(electrodes) linked by edges (connections or interactions) and has been used to distill 

multidimensional data sets into simpler, discrete numerical representations of global and local 

network integrity and function. 

Two concepts are often used to describe the function of brain networks. The functional 

segregation of a network reflects local information processing and is often characterized by 

measures such as modularity and clustering coefficient. On the other hand, the functional 

integration within a network reflects global processing and can be characterized by measures 

such as global efficiency and characteristic path length. These concepts and specific measures 

will be central to this work to evaluate network properties. 

 

Statistical Analyses  

For connectivity measures, the nonparametric permutation statistics were applied as 

described above for the different conditions.



 

Chapter IV: Results 

 Within this study, there were two groups: the exercisers and non-exercisers, and two 

conditions: physically active and sedentary images. These consisted of: the exerciser group 

looking at physically active images (EP), the exerciser group looking at sedentary activity 

images (ES), the non-exerciser group looking at physically active images (NP), and the non-

exerciser group looking at sedentary activity images (NS). Looking at the figures from an aerial 

point of view, there are no distinct correlations between all of the groups shown as none of the 

data look exactly alike and the “hotspots” are located in different areas of the brain, with a few 

exceptions. One of the most significant findings is that this study shows none of the groups think 

alike. The only similarity of both groups was that all of the hotspots are located in the parietal 

lobe as it uses interpretation of sensory information, primarily with the visual field.   

 The EP group revealed the most active FC out of all groups over the parietal and occipital 

lobes. This group showed strong visuomotor processing and widespread distribution among 

different brain regions including the frontoparietal lobes. This is believed to be supported by the 

MNS by using one’s episodic memory to activate these neurons as this group has implemented 

these physical activities into their daily lives. When looking at the ES group compared to the EP 

group, there were overall less hotspots shown. The main area of focus for the EP group was a 

hotspot around the precuneus, an area that uses recollection, memory, and mental imagery. This 

could be the result of the exercisers imagining themselves participating in the sedentary activities 

shown.  

 There was also one major hotspot located in the NS group around the precuneus area. It is 

similar, but not identical to the ES group. Using the idea that the brain was using recollection, it 

is possible to say that these areas were highly active due to the fact that everyone, whether highly 



 
 

32 

active or sedentary, can relate to engaging in sedentary activities daily. This includes being on 

the phone, watching television, eating, sleeping, etc that were depicted in the images. There is 

slightly more surface area covered in the precuneus area in the NS group, while smaller hotspots 

are presented around in the ES group. We are unsure of why these hotspots appeared but believe 

it could be due to the ES group had to use more imagination of themselves partaking in these 

sedentary activities as they are less sedentary than the NS group.  Therefore, the ES group was 

subconsciously influenced about behaving in this inactive manner by showing more active 

neurons firing in these spots. 

Between the EP and NP group, there were similarities of hotspots around the IPL. In the 

NP group, it is the only major hotspot that we recognized. This area is known for perceiving a 

concept from a different point of view, agreeable with the idea of sedentary individuals having a 

different attitude toward the physically active images than the exerciser group.  

 

Figures from the data collected 

  

EP       ES 
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NP       NS



 

Chapter V: Discussion  

The overall purpose of this work was to determine if there were any innate neurological 

differences between individuals who exercise regularly and commit to being an exerciser and 

sedentary individuals who do not like to participate in physical activity and exercise. This was 

done by using EEG looking at FC specifically. By doing so, we discovered that not everyone 

views exercise the same, however, everyone (in the study) viewed sedentary activities in the 

same region of their brains, the precuneus.  

In the EP group, there were several hotspots, located on both hemispheres of the brain, 

and are pinpointed specifically along the parietal and occipital lobes, with some hotspots 

positioned in the frontoparietal lobes. The frontoparietal lobe was discussed earlier when talking 

about MNS, a frontoparietal sensorimotor network that is considered to support implicit 

understanding of one’s actions. This finding would agree with Hari & Kujala’s (2009) study and 

used episodic memory to activate these neurons as this group has implemented these physical 

activities into their daily lives.  

 The ES group had remarkably less hotspots than the EP group. The ES group resembles 

the NS group most as the precuneus area, located between the occipital lobe and parietal lobe in 

the medial surface of the cerebral hemisphere and adjacent to the areas within the posteromedial 

parietal cortex, contains the most similar hotspots as it is among the most active cortical regions 

according to the “default mode” of brain function during the conscious resting state when hooked 

up to the EEG. This data suggests that looking at sedentary activities is relatable to both an 

exercise and non-exercise population as all of society can associate to engaging in modern 

everyday innate sedentary activities such as sleeping, eating, using one’s cell phone, etc., but 

with moderation from the ES group. However, there is one difference between the ES and NS 



 
 

35 

groups as there are two smaller hotspots located to the right in the ES figure. The reason for 

these two hotspots are unknown, but it raises the possibility that it could be related to the ES 

population having less familiarity with these types of sedentary activities as they bring less 

attention to these occurrences daily than the NS group. Therefore, the ES group was 

subconsciously influenced about behaving in this inactive manner by showing more active 

neurons firing in these spots.  

The NP group revealed a major hotspot in the left inferior parietal lobe (IPL). This area, 

along with the  left temporo-parietal junction (TPJ) that overlap one another, is best known for 

tracking potential differences of perspective tasks (Arora et al., 2015). Existing evidence 

suggests regional specificity (Kanwisher, 2010) of different kinds of perspective tasks activate 

the left IPL (Almor et al., 2007). Therefore, this group of non-exercisers was sensitive to 

perspective differences of the physically active images, which is agreeable with ToM. The non-

exercisers were not used to such physical activity in their everyday routines, activating the IPL 

and TPJ regions as they subconsciously envisioned themselves doing the activities presented in 

front of them.  

 

Conclusion 

 

The central hypothesis, exercisers and non-exercisers will have differentiated neuronal 

pathways when evaluating active and inactive images, was supported by the data collected. It is 

clear that the within groups analysis, the EP and ES groups showed hotspots in different brain 

regions. The exercisers looking at physical activity showed greater EEG activity when presented 

with active images compared to inactive images as there was possibly greater excitability in the 

brain due to viewing activities that the subject enjoys participating in. This figure shown has 
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strikingly more hotspots than the other figures portrayed as the hotspots support the amount of 

brain activity that was found in the EEG analysis using functional connectivity. The ES figure 

showed most of its activity in the precuneus area.  

When looking at the within groups of the NP and NS groups, there are also hotspots 

located in different brain regions. This analysis also supports the data as the NP group showed 

active hotspots in the left IPL area, and the NS group showed hotspots in the precuneus area. The 

reason why the NP group did not have any activity near the precuneus is because they had no 

past recollection of being physically active when looking at the images. Both these figures 

showed centralized hotspots in the parietal lobe, whereas the EP group alone showed multiple 

hotspots as a bilateral sensorimotor network.  

There are comparable differences in the within-group analysis, but there are also 

similarities in the between-groups analysis. While the EP group showed hotspots all around the 

brain, there is one similar area of activity in the EP and NP groups in the left IPL. It is obvious 

that the precuneus was highly active in the ES and NS groups. This is very plausible as the 

precuneus area is known for self-reflection and mental imagery. Everyone, whether an exerciser 

or not, can relate to participating in sedentary activities. The average human partakes in 

sedentary activity daily, whether it is being on a cell phone, using a computer, sleeping, eating, 

etc. This supports the data shown in the precuneus area for both groups. Overall, none of the 

figures are exactly alike.  

This concludes that the exerciser group had more EEG activity and functional 

connectivity when looking at both conditions presented in front of them. The non-exerciser 

group had mainly two areas of focus per figure, whereas the exerciser group showed many areas 
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of hotpots throughout the brain.  In conclusion, the exerciser group had greater areas of hotspots 

than the non-exerciser group.  

All three theories, SCT, ToM, and SIT, supported the data in this study. The SCT was 

supported by the data by using strong overlap between action, perception, and understanding 

while viewing and comprehending each scenario presented in front of the participants. ToM was 

supported from the differences and similarities of the shared circuits in the brain being 

highlighted in the figures above.  SIT was supported by participants using the SAM-scale when 

self-analyzing how they felt about exercise in general.  

Overall, ToM supported the data the most. It is believed by the researcher that the reason 

for the way the figures were portrayed was due to the participants having attribution of mental 

states to others. This again, can be thought of as “walking in someone else’s shoes”. The 

exerciser group mentally imagined themselves being physically active as well as sedentary as 

they take part in these activities regularly. The non-exerciser group imagined themselves being 

physically active as they mentally imagined themselves exercising. They also, along with the ES 

group, imagined themselves being sedentary since they have physically done this before. 

Therefore, both groups looking at both conditions supported ToM as all the participants were 

subconsciously imagining themselves partaking in the activities shown in the images.  

This research included many strengths and limitations. The strengths include a non-

invasive evaluation of both localized and widespread activity at a high temporal resolution. 

There were both males and females who volunteered to participate including a wide age range 

with the oldest participant being 35 years old. The biggest strength of this research is that it has 

never been looked at before. This is the first time any study has looked at how the population 

looks at physical and sedentary activity. Some limitations of this research included self-reported 
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physical activity when filling out the SAM scale as the researcher had no idea how truthful the 

participant was being. Another limitation included students solely from the East Carolina 

University campus. This research also has delimitations such as not recording height or weight to 

calculate the average BMI between the two groups. Age and race were not specifically recorded, 

as participants were only told they had to be 18-35 years old. More delimitations of this research 

included not having the same number of exercisers and non-exercisers recruited as it was more 

difficult than initially thought to find non-exercisers in a kinesiology-based program.  

The implications for this study show it is evident that exercisers and non-exercisers do 

not view physical and sedentary activity the same way. Hopefully future research will explore 

more of this idea using these types of methods. It could be narrowed down to a specific group 

instead of a broad range of exercisers such as runners and non-runners. It could also be two 

different avid groups of exercisers comparing swimmers and boxers, for example. Other 

researchers could look at different age ranges such as how toddlers view physically active and 

inactive activities and have a follow up in their lives every 5 or 10 years to see if their views 

change. Another way of changing the dynamic of this study is to show a short 5 second video 

clip of the activities being performed. There could also be research based on left-handed 

exercisers and non-exercisers. This research is groundbreaking and could go in any direction in 

the future.  

As stated before, a possible reason why some people do not exercise could be due to the 

way ACSM presents materials that might not be effective for exercise adherence in all 

individuals. Exercise should be presented to the public in a way that all Americans can relate to. 

For example, an obese woman running in the Runner’s World magazine is more relatable to an 

average overweight or obese woman than the average thin woman that is typically shown on this 
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platform. In this sense, the average obese woman will feel more inclined to participate in this 

type of exercise if another woman that is similar in size and shape is doing so. With this, ACSM 

and other exercise science organizations should think about the different ways that exercise 

recommendations can be marketed and individualized to different populations to make it feasible 

to all and encourage daily physical activity and the benefits that go with it.  

In conclusion, we provided for the first time an idea of how a group of physically active 

individuals who exercise regularly, and a group of sedentary individuals view active and inactive 

activities using FC through EEG analysis. Our analysis demonstrates that exercisers and non-

exercisers view physical activity differently as well as view sedentary activity through 

recollection and memory in different areas of the brain. Hopefully in the future, there will be 

more studies that will investigate why one population views or participates in exercise and why 

the other does not.  
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