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The Upper Mississippian (Chesterian) carbonate sequence in the
Greendale Syncline of Washington County, Virginia, is a thick (580m)
accumulation of shallow water mixed siliciclastic-carbonate sediments
characterized by the cyclic deposition of four facies. Point-count data
and cluster analysis were used to identify these four facies based upon
21 carbonate and non-carbonate components. The facies include 1)
calcareous mudrocks, 2) calcareous sandstones, 3) oosparites, and 4)
biomicrites.

The data suggest deposition of the Girkin and Cove Creek Limestones
on a homoclinal ramp on which subtidal, low-energy biomicrites grade up
slope into oolitic sediments characteristic of a shallow, highly
agitated shoal. The nearshore calcareous mudrocks represent intertidal
to tidal-flat environments. Calcareous sandstones were deposited in a
high energy nearshore environment, possibly tidal channels or strandline
accumulations.

Diagenetic processes began shortly after deposition in the marine
environment and include micritization, compaction, pyrite formation and
isopachous cementation. As burial continued, syntaxial, drusy and
blocky cementation occurred as well as dolomitization and pressure

solution. Microspar formation and silicification are also present in



Girkin and Cove Creek sediments.

Cyclic depositional patterns formed in response to changing
environmental parameters. Periodic uplift of a southeast highland,
episodes of basin subsidence, and fluctuations in eustatic sea-level

contributed to the environmental changes recorded in this sequence.
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INTRODUCTION

Sedimentary petrology is traditionally divided into two separate
fields of study: siliciclastic and carbonate petrology. As such, most
petrologic work is concentrated on the '"pure'" sediment end members,
commonly ignoring the vast spectrum of mixed sediments that lie between.
Likewise, most sedimentary petrology texts are divided into sections
dealing with clastics and carbonates, ignoring the rocks of mixed
composition and the problems inherent in their study. Investigation
of these hybrid sediments is further complicated by the lack of a
refined nomenclature for mixed siliciclastic—-carbonate sediments. In
spite of the complications, these sediments recently have generated much
interest (Colacicchi et al. 1982; Hubbard,1982; Ball, 1983; Ginsburg et
al. 1983; Mount,1984). Continued interest in the sedimentology of these
mixed composition rocks eventually may result in a more complete
understanding of the dynamics and interactions of facies, organisms and
the tectonic history of depositional basins. This will come, however,
only after we understand the sedimentology of numerous small areas, both
modern and ancient.

The Upper Mississippian (Chesterian) Girkin and Cove Creek
Limestones of the Central Appalachians represent one such mixed
siliciclastic—carbonate interval. These units are located within the
Greendale Syncline of southwest Virginia and northeast Tennessee and
represent the thickest and possibly best exposed sections of Chesterian
strata within the Central Appalachians. Detailed studies of the

sedimentary and mineralogic characteristics of the units are lacking.



OBJECTIVES

The objectives of this study are: 1) to characterize the texture
and composition of the Girkin and Cove Creek Limestones; 2) to
characterize diagenetic features within these mixed
siliclastic—carbonate units; 3) on the basis of these descriptions, to
interpret the depositional environments; and 4) to evaluate changes in

textures and diagenetic effects relative to depositional environment and

tectonic history.

GEOGRAPHIC AND GEOLOGIC SETTING

The Girkin and Cove Creek Limestones outcrop in a
northeast—-southwest trending outcrop belt in Washington County,
Virginia. 7Two locations in this belt were chosen for this investigation
(Fig. 1). The Holston sampling location is located along U. S. 58A in
the Brumley Quadrangle, approximately 3.9 miles northwest of Abingdon.
The Hayters Gap sampling location is situated along Virginia State Route
80, approximately 4.3 miles northeast of Abingdon in the Hayters Gap
Quadrangle.

The major structural features in the Washington County, Virginia,
area consist of portions of the Greendale and Beaver Creek Synclines and

of the Saltville, Pulaski-Staunton, Spurgeon, and Bristol Fault Blocks
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Figure 1. Study Area.

A--Holston sampling location.
B--Hayters Gap sampling location.



(Bartlett and Webb, 1971). CQCutcrop belts and major fault traces are
aligned northeast-southwest, maintaining a southeasterly dip.

The stratigraphic units in the study area (Fig. 2) include the
‘Lower Mississippian Big Stone Gap Shale, Price Formation, Maccrady
Shale, Little Valley Limestone, Hillsdale Limestone, and the Ste.
Genevieve Limestone. The Upper Mississippian (Chesterian) units include
the Girkin Limestone, Fido Sandstone, Cove Creek Limestone and
Pennington Formation.

The contact of the Ste. Genevieve with the Girkin is at the top of
a distinctive 4.5-6m thick bed of maroon, crinoidal carbonate with
varying amounts of ooliths. This bed has been previously used for
locating the Ste. Genevieve—-Girkin boundary in the Greendale Syncline
(Butts, 1940; Averitt, 1941; Bartlett and Webb, 1971). The Fido
Sandstone (Butts, 1927) is a thin (9-15m) dark-maroon sandstone which
subdivides the Girkin (303.3m) and Cove Creek Limestones (272.8m). This
lithologically distinct bed is important as a marker so that its
recognition and description as an independent unit is justified (Butts,
1927).

The Girkin Limestone (Butts, 1917) is described as having two
facies (Butts, 1940). The first is a pure limestone found along the
northwestern portion of the Valley and Ridge Province, and the second, a
predominantly argillaceous limestone and shale, is found in the
Greendale Syncline. In eastern West Virginia and Virginia, the Girkin
is correlated, in part, to Greenbrier strata (de Witt and McGrew,
1979).

The Cove Creek Limestone was named by Butts (1927) for exposures of

argillaceous limestone along Cove Creek in Washington County, Virginia.
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He described the Cove Creek, the Glen Dean of Eastern Kentucky and the
Bluefield Formation of the western Valley and Ridge as three different
facies of what is believed to be the same stratigraphic unit. In the
western Valley and Ridge, the Cove Creek equivalent is underlain by the
Girkin and overlain by the Stony Gap Sandstone, the basal member of the
Pennington Formation. In the Greendale Syncline, the Cove Creek
overlies the Fido Sandstone and is bounded above by the shales and
siltstones of the Pennington Formation. Butts (1940) described the Cove
Creek as occurring only in a single belt in the Greendale Syncline,
extending from the Virginia-Tennessee state line in Scott County,
northeast to the Saltville Thrust Fault just north of Lindell,
Washington County. Wilpolt and Marden (1959) suggested abandoning the
name ''Cove Creek' in favor of '"Bluefield". Due to the imprecise
correlation of the units, the Cove Creek nomenclature is retained and

used in this study.

PREVIOUS INVESTIGATIONS

The Girkin Limestone was originally referred to as the Gasper
Limestone (Butts, 1917) for its similarity to the partly oolitic
limestones exposed along the Gasper River in Warren County, Kentucky.
Sutton and Weller (1932) considered the Gasper Limestone to be
inadequately defined. Butts (1940), however, continued to use the name

Gasper for rocks in southwest Virginia considered equivalent to those



found in Kentucky. The name Gasper persisted until 1963 when Rainey
redefined the formation in its type area and named the unit the Girkin
Limestone. The change in nomenclature is followed in this
investigation.

Butts (1927) named the Cove Creek Limestone for exposures of
argillaceous limestone along Cove Creek in Washington County, Virginia.
Detailed investigations of this unit are lacking.

Although correlative units in Kentucky and West Virginia have been
studied in some detail, Upper Mississippian carbonates exposed within
the Greendale Syncline have not. Reconnaissance and field mapping
studies by Butts (1917, 1927, 1940), Averitt (1941), Bartlett and Webb
(1971), Bartlett and Biggs (1980) and Bartlett (1981), provide only very

general descriptions of the Girkin and Cove Creek Limestones.

METHODS

Sampling

Two partial sections of the Girkin and Cove Creek Limestones were
sampled at approximately 6m intervals (more frequently in heterogeneous
lithologies). The samples were labled "E" (for Girkin along U. S. 58A,
near Holston), "A" (for Cove Creek along U. S. 58A), '"C" (for Girkin
along State Route 80, in Hayters Gap) and '"D" (for Cove Creek along
State Route 80) followed by numerals identifying the sample. Sections

were measured and described with the results in Appendix A.

Mineral Identification
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One hundred and sixty three thin-sections were prepared and stained
with a solution of Alizarin Red S and potassium ferricyanide in dilute
hydrochloric acid (Evamy, 1963; Katz and Friedman, 1965; Friedman,
1971). With these stains calcite stains red, ferroan calcite stains
purple, dolomite does not stain and ferroan dolomite stains light blue.
In addition, X-ray diffractometry was employed to aid in determination
of mineralogy. All 163 thin-sections were examined and point counted
using 300 points per slide. Point count data is presented in Appendix
B. Cement filled voids within allochems were counted as allochemical
constituents (Dunham, 1962). 7The petrologic data was analyzed by
multivariate statistical tests (cluster analysis) to aid in microfacies
determination and the interpretation of depositional environments.

Each of the 163 samples was subjected to acid treatment to isolate
non-carbonate material. Samples of approximately 15g to 25g were
crushed and added to diluted hydrochloric acid. After allowing
sufficient time for dissolution, the excess acid was decanted, the
sample was washed in distilled water, filtered, dried in an oven at 75;C

for 3 hours and weighed. Calculated percentages are listed in Appendix B.

Statistical Analysis

Cluster analysis is a statistical method used to place objects into
groups or clusters suggested by the data, where no '"a priori" knowledge
exists. If the nature of the measurable distinguishing parameters are
properly selected, objects in a given cluster tend to be similar to
each other in some sense, and objects in differing clusters will tend to

be dissimilar (SAS Institute, 1982).



CONSTITUENTS

INTRODUCTION

Compositional elements recognized from samples taken from the
Girkin and Cove Creek Limestones are catagorized into two groups,
carbonate and non-carbonate constituents. Carbonate constituents are
further subdivided into the various allochemical components. Figures 3

and 4 illustrate Girkin and Cove Creek lithologies and constituents.

CARBONATE CONSTITUENTS

Fossils

Algae

Sedimentary fabrics which include cryptalgal laminations (Fig. 11),
microborings of bioclastics and dark brown patches of micrite with faint
structure, suggest the presence of algae in the Girkin and Cove Creek
sediment. Although no algal remains were observed, several authors have
indicated the presence of calcareous algae in Upper Mississippian
sediments in West Virginia (Leonard, 1968; Blancher, 1974; Wray, 1977;

Gray, 1985).



10

from the Holston sampling location.

Figure 3. Girkin and Cove Creek lithologies and constituents
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Arthropods

Arthropod bioclasts in the Girkin and Cove Creek are represented by
trilobites and ostracodes. Trilobite fragments exhibit a fine,
prismatic microstructure with extinction bands that sweep across the
fragment as the stage is rotated. Tangential sections reveal the
characteristic "Shepard's Crook" shape. Ostracodes are recognized by
their typical morphology, small size, and thin, homogenous prismatic

wall structure. Valves are generally less than O.5mm in length.

Brachiopods

Brachiopods (Fig. 5) occur in minor amounts in both the Girkin and
Cove Creek Limestones and are easily recognized in thin section by their
laminated wall structure. 7The parallel laminated wall structure often
contains small plications (punctate or pseudopunctate) which are
oriented perpendicular to laminated wall structure through the shell.
Brachiopod spines are identified by the presence of concentric parallel
laminated inner, and radial-laminated outer wall layers as well as a
hollow central canal. Both articulate and inarticulate forms are

presente.

Bryozoans

Bryozoans are the most abundant fossil group recognized within the

Girkin and Cove Creek Limestones. They consist primarily of fenestrate
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forms, although ramose and encrusting varieties are apparent. In thin
section, fronds are frequently micritized, suggestive of algal

encrustations.

Echinoderms

The echinoderms, which approach bryozoans in abundance, are
recognized in thin section by their characteristic unit extinction (Fig.
5). Blastoids, echinoids and crinoids are all composed of plates and
columnals, making identification difficult. Therefore, they were
identified as echinoderms. Echinoiderms are occasionally micritized,

suggestive of algal activity.

Foraminifers

The foraminifers occur in minor amounts in the Girkin and Cove
Creek and are primarily of endothyrid types (Fig. 6). Climacamina sp.
has also been identified. Their distinctive chambered tests are filled

with micrite or spar, while outer walls are commonly micritized.

Mollusks

Fragments of bivalves, and low spired gastropods (Fig. 7) are

sparsely distributed in micritic sediments. In thin section, fragments

are commonly recrystallized, making identification difficult.



Figure 8. TIsopachous Cement and Syntaxial Cement.
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Intraclasts
Intraclasts are penecontemporaneous reworked fragments of locally
accumulating sediments. Although rare, in the Girkin and Cove Creek,
they are generally rounded, range in size of O.5-4mm in diameter, and

often contain inclusions of skeletal remains.

Pellets
Pellets are very rare in the Girkin and Cove Creek sediments. They
are spherical, micritic aggregates lacking any obvious structure, and
are less than O.5mm in diameter. Pellets may represent fossilized fecal
matter of burrowing organisms or they may have resulted from abrasion of

lithified micrite, i.e. small intraclasts.

Ooliths

Normal ooliths are spherical accretionary grains built of several
layers of concentric carbonate laminae around a central core.
Individual laminae are indistinct; radial texture, however, is well
developed, forming '"Maltese crosses' under crossed nichols except in
cases where micritzation has obliterated all structures. Ooliths in the
Girkin and Cove Creek range in size from 0.8 to 3.5mm with a mean
diameter of l.5mm. Nuclei occur as subrounded to subangular fragments
of bryozoans, echinoderms, rock fragments, quartz and brachiopods.

Superficial ooliths (Carozzi,l1960; Bathurst, 1967; Flugel, 1982)

are generally smaller than normal ooliths with very few (1-3) laminae.
In the Girkin and Cove Creek, superficial ooids range from 0.2 to l.3mm
in diameter (averaging U.4mm) and are recognized by a thin film of iron

oxide coating subrounded quartz, rock fragments, echinoderms and
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feldspars.

NON-CARBONATE CONSTITUENTS

Quartz

Detrital quartz occurs as subangular to subrounded grains ranging
in size from fine silt to fine sand. Most quartz grains exhibit
straight to slightly undulose extinction and are relatively free of

inclusions. Rarer polycrystalline forms are present.

Feldspars

Feldspars form only a small percentage of the detrital grains,
either within the calcareous mudrocks or calcareous sandstones.
Orthoclase, plagioclase (approximately An40 to An60), and microcline can

be distinguished in thin section.
Micas
Muscovite is a common accessory mineral of many argillaceous
samples. The mica flakes tend to be oriented parallel to depositional
surfaces. For purposes of point-count analyses, micaceous grains less

than 0.06bmm were classified as matrix.

Clay Minerals
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lerrigenous clays are very common in Girkin and Cove Creek
sediments, and are classified as matrix in point-count data (Appendix B).
X-ray data suggest chlorite and illite are the predominant forms. Due
to the small crystal sizes of both clays and carbonate mud, insoluble
residue calculations proved useful in distinguishing between the two.
Clays also occur in trace amounts as thin, platy flakes replacing

feldspars along cleavage planes.

Pyrite

Pyrite is common in many samples as small, opaque grains generally
less than O.2mm in size. Pyrite is found in the matrix, in pressure
solution seams and in wall linings of skeletal fragments. Framboidal

forms are also present.
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DIAGENESIS

INTRODUCTION

All the chemical, physical and biologic changes a sediment
undergoes after its deposition, exclusive of metamorphism, is considered
diagenesis. It embraces processes such as compaction, cementation,
replacement, crystallization, authigenesis and bacterial action which
occur under conditions of pressure (up to lkb) and temperature (maximum
range of lOOCC to BOO:C) which are normal to the Earth's crust.

The following discussion focuses on post-depositional changes which
have effected mixed siliciclastic—carbonate sediments in the Girkin and
Cove Creek Limestones. Where applicable, the timing of diagenetic

events is given.

MICRITIZATION

Micritization is an early diagenetic process and entails the
replacement of original carbonate grains by microcrystalline carbonate
at the sediment-water interface (Kobluk and Risk, 1977) from the
intertidal zone to depths of at least 780m (Perkins and Halsey, 1971).

Two processes are recognized. Degrading micritization is the
result of algal, fungal or bacterial borings into carbonate particles
whereby the skeletal grain is bored, the boring organism dies and

decays, and the vacated tubes are filled with micrite (Bathurst, 1966;
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Klement et al., 1967). Aggrading micrite envelopes form from the growth
of micro-organisms on the surface of carbonate particles which
subsequently protect the grains from being destroyed (Kobluk and Risk,
1977).

Allochems within the Girkin and Cove Creek are affected by
degrading micritization and exhibit a wide range of alteration from thin
micritic envelopes to completely micritized grains. Echinoderms and
bryozoans appear to be the most affected by micritization in which a
thin, micritic envelope develops. Total micritization affects

foraminifers and some ooliths where original structures are obliterated.

ISOPACHOUS RIM CEMENT

A finely crystalline, isopachous, sparry calcite crust is formed
around many allochems in the oosparite microfacies. Isopachous fibrous
to bladed crystals grow normal to the surfaces of grains into available
pore space. The small, isopachous fibrous or prismatic crystals are
generally 0.0l to O.lmm in length, whereas the larger bladed crystals
are approximately (.4 to O.8mm. This rim cement is equivalent to cement
A of Graf and Lamar (1950). Cement A is common in shallow marine
environments and appears in beachrocks and in deeper marine environments
with restricted sedimentation (Flugel, 1982). .

Isopachous rim cements form under marine phreatic conditions
(Longman, 1980). 1In the Girkin and Cove Creek Limestones isopachous

cement preceeds syntaxial and drusy cementation (Fig. 8).

SYNTAXIAL CALCITE CEMENT
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Syntaxial cement, sparry calcite formed in optical continuity with
a host grain, precipitated into pore spaces and commonly form
overgrowths on echinoderm fragments (Fig. 8). Syntaxial overgrowths
within Girkin and Cove Creek sediments developed after the formation of
a micrite rim. It has been noted, however, that no overgrowths are
present on echinoiderm ossicles where such rims are thick. Syntaxial
cements also formed after the precipitation of isopachous rim cements.
Evamy and Shearman (1965), Land (1970) and Longman (1980) have
interpreted syntaxial cements as being an early diagenetic event which

occurs in a meteoric phreatic zone.

PORE FILLING CEMENTS

Sparry calcite commonly fills the pore spaces between carbonate and
non—-carbonate grains in the calcareous sandstones of the Girkin and Cove
Creek Limestones. This cement is blocky or granular and commonly forms
a poikilotopic texture surrounding terrigenous grains. Crystals are
equant, anhedral to subhedral, generally 20 to 50um in size.

Drusy cement is an early diagenetic texture with anhedral to
subhedral calcite crystals increasing in size outward from pore walls.
This cement is common within the Girkin and Cove Creek oosparites and
forms after isopachous cementation and possibly synchronous with
syntaxial cement development. Longman (1980) has interpreted drusy

cementation as a product of freshwater cementation.

DOLCMITE
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Dolomite formation within the Girkin and Cove Creek Limestones is a
secondary process, forming as a replacement of earlier blocky calcite
cement in calcareous sandstones, as silt-sized rhombs scattered
throughout the matrix of calcareous mudrocks and rarely as rhombs in
bryozoan zoecia.

Models of dolomitization are numerous. In the Girkin and Cove
Creek sediments it is difficult to postulate if any one model was
responsible for dolomitization. The most likely model, however, is that
proposed by Badiozamani (1973) in which a mixing environment of
freshwater and seawater occurs. It is evident that freshwater
conditions did occur in the Girkin and Cove Creek, recognized by

characteristic meteoric cements.

MICKOSPAR

Folk (1959, 1965, 1974) characterized microspar as equant, euhedral
to subhedral crystals generally 5-10um in diameter. A size range of
4-30um corresponds to the micrite II of Bosselini (1964). The wider
range is used for the size range of microspar. In Girkin and Cove Creek
sediments microspar takes the form of scattered, variable sized crystals
within mudrocks and biomicrites.

Two methods of microspar formation have been proposed. The first

"cage'" around

is an aggrading process whereby available Mg++ forms a
microcrystalline calcite crystals, preventing a growth larger than 2-3

microns. The removal of Mg++, initiated in a brackish water or

treshwater environment, allows for the growth of calcite crystals to



23
microsparite (Folk, 1974). Lasemi and Sandberg (1984), however, suggest

a one step origin in the formation of microspar from an aragonitic mud.
They do not envision the mud first calcitizing to micrite and then

altering to microspar by aggrading neomorphism.

SILICIFICATION

Silicification is the introduction of, or the replacement by
silica, resulting in the formation of fine-grained quartz, chalcedony
or opal. Silicification within the Girkin and Cove Creek affects
echinoderms, brachiopods, mollusks and bryozoans whereby replacement is
characterized by chalcedony anq, in rarer cases, microquartz. Possible
sources for silica include 1) biogenic material, 2) dissolution of
feldspars and volcanic fragments, 3) pressure solution, and &)
alteration of clays.

One of the most important sources of silica is biogenic material.
Two ways in which this may occur are 1) from siliceous organisms such as
sponges, diatoms and radiolarians and 2) as varying proportions of
silica within calcareous organisms. This is especially true of the
echinoderms, in which ancient forms contain as much as 297% silica
(Clarke and Wheeler, 1922).

Dissolution of volcanics (Berner,1971) and feldspars (Fuchtbauer,
1979) can be an important source of silica. Volcanic rock fragments
have been identified within the intervening Fido Sandstone (Neal, 1984),
however, volcanics are not recognized in the Girkin and Cove Creek
Limestones. Therefore, volcanic material is not thought to be a primary

producer of silica. Since feldspars account for less than one percent
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of total rock volume they are considered insignificant as a contributor.

Investigations by Heald (1959), Sibley and Blatt (1976) and
Fuchtbauer (1979) indicate that pressure solution may contribute to
silicification. Authigenic overgrowths are lacking in the Girkin and
Cove Creek and it is uncertain if pressure solution provided silica.

Some investigations indicate the alteration of clays may produce
silica. 7The smectite to illite transformation in shales (Fuchtbauer,
1979) and the alteration of illite to muscovite (Towe, 1962) can

contribute to silica production.

COMPACTION

Compaction refers to any process that decreases the bulk volume of
sediments. Compaction is generally considered an early diagenetic
change. Some carbonate sediments, however, are only affected by
compaction in a deep burial stage (Flugel, 19&2). Compaction features
in the Girkin and Cove Creek include ooid deformation and pressure
solution. Prior to isopachous cementation, some of the ooid lamellae
were spalled (Fig. 9), perhaps by overburden pressures.

Pressure solution is the preferential dissolution of mineral
material at points of stress. Two styles of pressure solution (Wanless,
1979) are observed in the Girkin and Cove Creek Limestones. Sutured
seam solutions occur in the oosparites which lack significant amounts of
matrix. Stylolites and grain—-to—-grain contact sutures form irregular
interpenetrating surfaces, shortening parallel to the direction of
maximum stress. Grain-to—-grain contacts are easily recognized where

loss of material at point contacts is evident (Fig. 10). These contacts



Figure 9. 0Ooid Deformation.

Figure 10. Grain-to-Grain Pressure Solution.
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are both planar and sutured. Bathurst (1971) indicated the timing of
grain—to—grain sutures as prior to the emplacement of a second
generation cement.

Non-sutured seam solution occurs where significant portions of clay
or platy silt are present. This solution feature is common in the
calcareous mudrocks, where pressure solution produces fine clay seams.
These seams have been described as clay seams (Barrett, 1964),
horsetails (Roehl, 1967), wispy laminae (Lucia, 1972), wavy laminae
(Reinhardt and Hardie, 1976), pseudo-stylolites (Shinn et al., 1977) and
microstylolites (Wanless, 1979).

Depth of burial and pressures capable of producing pressure
solutions are variable. Dunnington (1967) reported in many instances
that overburdens of 500-800m were required for pressure solution,
however, Schlanger (1964) reported formation of clay seams at depths of

82m or less.

PYRITE AND HEMATITE

Pyrite in the Girkin and Cove Creek Limestones is a widely
distributed, isometric, opaque mineral. It commonly oxidizes to
hematite and iron hydroxides which often form pseudomorphs after the
common pyrite forms. Pyrite forms under a large range of geologic
conditions. It is most commonly formed early during diagenesis, under
reducing conditions. In these units, localized pyrite probably formed
in a stagnant marine environment, possibly influenced by the action of

microorganismse.
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The diagenetic sequence interpreted for Girkin and Cove Creek
Limestones is summarized in Table 1. Diagenesis within these mixed
siliciclastic—carbonate sediments began shortly after deposition in the
marine environment with micritization of carbonate grains and the
formation of pyrite. Mechanical compaction and initial cementation
began soon after deposition with the formation of isopachous rim cements
that loosely bound the sediments. With subsequent burial, several
diagenetic processes were active including pressure solution and the
precipitation of syntaxial, drusy and blocky cements. These cements may
have been related to continued development of the Upper
Mississippian—Pennsylvanian clastic wedge and an associated freshwater
lens. As burial continued, dolomitization, pressure solution and
fracturing developed. Microspar formation and silicification may occur

under various conditions, where precise timing is uncertain.



I - -  criczATION
- D - - - s CRvE

= PORE-FILLING CEMENT

T R I - - - — oo

SILICIFICATION = = = e e e e e e e e e e e e = e = o = — — - — — =

I AL CONMPACTION

N - o RoT:-HEMATITE FORMATION

TIME

Table 1. Diagenetic sequence in the Girkin and Cove Creek
Limestones.

28



29

FACIES

INTRODUCTION

Four facies are recognized within the Girkin and Cove Creek
Limestones. They are 1) calcareous mudrocks, 2) calcareous sandstones,
3) oosparites, and 4) biomicrites. These facies are divisible on the
basis of point-count and insoluble residue data. The data were also
analyzed by cluster analysis as a suppliment to petrographic
subdivision. Criteria for subdivision include, for calcareous mudrocks,
the high percentage of matrix; for calcareous sandstones, the high
percentage of terrigenous minerals; for oosparites, the high percentage
of ooliths; and, for biomicrites, the high percentage of fossils and
carbonate matrix. A graphic comparison of constituents for each facies

is given in Table 2.

CALCAREOUS MUDROCKS

The calcareous mudrocks are the most abundant facies present within
the Girkin and Cove Creek. Field descriptions of this facies are
varied. Generally, these rocks are medium-light to medium-dark gray,
often weathering to a shaly appearance. Most samples exhibit
horizontal, planar to wavy laminations averaging O.3mm in thickness.
Sedimentary features include cryptalgal laminations (Fig. ll1), flaser

and cross stratification, and wisps. Evidence of bioturbation is common
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Matrix 83.2 14.7
Intraclasts 0.2 0.0
Echinoderms 0.3 0.6
Brachiopods 0.1 0.07
Bryozoans 1.1 0.07
Ostracodes 0.004 0.0
Foraminifers 0.02 0.0
Mollusks 0.006 0.0
Trilobites 0.0 0.0
Ooliths 0.0 0.25
Spar 4.1 26.87
Microspar 0.01 0.0
Dolomite 0.4 675
Pvrite 0:7 0.43
Hematite 0.2 2.97
Unknown 0.06 0.0
Insolubles 533 e8.2 8.8 e
Carbonate 44.7 31.75
FABLE 2. Mean values(percentages) ol
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in many samples. Interbedded within the mudrocks, are thin beds (less
than 1.5m thick) of shale and siltstone reflecting variations in energy
and terrigenenous input. Allochems are represented by bioclastic
fragments of bryozoans (l.l1%), echinoderms (0.37%) and brachiopods (0.1%)
generally O.5mm in length. Rarer forms include foraminifers (0.02%),
ostracodes (0.004%), and mollusks (0.006%).

Non-carbonate grains include subangular to subrounded silt- and
sand-sized quartz, feldspar and rock fragments. Feldspars include
untwinned potassium feldspar, microcline and plagioclase. The
plagioclase feldspars range in composition from approximately An4U to
An60 as determined by the Michel-Levy method (Phillips and Griffin,
1981).

For the purpose of point-counting, materials less than
approximately 0U.005mm were classified as matrix. Terrigenous clays and
microcrystalline calcite are the dominant matrix constituents. X-ray
data suggest chlorite and illite are bredominant clays. Due to the
small crystal sizes of both clays and carbonate mud, insoluble residue
calculations proved useful in distinguishing between the two (Table 2).
Pyrite and hematite are found in most samples in the form of framboids,
as small opaque grains disseminated throughout the matrix, along
pressure seams, and in wall linings of skeletal fragments.

The calcareous mudstones have undergone a variety of diagenetic
alteration. Micritization, a syn—-depositional process which commonly
forms micrite envelopes, is perhaps the most evident form of diagenesis
in these rocks. Other diagenetic processes include the precipitation of
sparry calcite, (both poikilotopic and syntaxial forms), microspar

formation, silicification and dolomitization.
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The calcareous mudstones are fine-grained, argillaceous rocks with
less than 2% bioclastic material. The paucity of bioclastics may
suggest conditions were unsuitable for many organisms. Restrictive
currents may have failed to supply the nutrients required for survival.
Abnormal salinities and/or the excellerated input of terrigenous
material also may have prohibited organic activity. The presence of
bioturbation features indicate, however, that some organisms survived
under such conditions.

Cryptalgal laminations are present (Fig. 1l1), and are an important
environmental indicator. Modern algal-laminated sediments are formed by
the sediment trapping and binding action of blue—-green algal mats, as
commonly found in the intertidal and supratidal zones of Shark Bay
(Davies, 1970), the Persian Gulf (Purser, 1973) and the Bahamas (Shinn
et al., 1969). Algal-laminated sediments are affected by burrowing and
browsing organisms. Only under specific environmental conditions are
these laminae preserved. Algal-laminated deposits of the intertidal
zone of Shark Bay are preserved in hypersaline areas (greater than 567
salinity), where burrowing and browsing organisms are limited by high
salinities. The rare occurrences of algal-laminated sediments of the
calcareous mudstones may indicate local areas of higher salinity or some
other factor limiting burrowing and browsing.

The mudstones could be of subtidal origin or could represent
sediments of shallower, perhaps intertidal muds. A shallow water
genesis is supported by cryptalgal features and lack of bioclastic
material. The absence of mud cracks (Shinn, 1964) and well developed
stromatolitic features such as found in modern laminated muds (Laporte,

1967; Illing et al., 1965) would seem to argue against a supratidal
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Figure 11. Cryptalgal Lamination.

Figure 12. Clotted Texture.
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origin. Ginsburg et al. (1957), attribute the absence of these features
to extended periods of emergence. However, Simonson and Walker (1984)
note that mixed carbonate-siliciclastic sediments may lack
characteristic tidal-flat features due to an abundance of clay material.
Therefore, the mixed carbonate-siliciclastic tidal-flat behaves as a
soft sediment, having high water content far longer than pure
carbonates. Whatever their mode of origin, continued subsidence was
necessary to account for the thick accumulation of the calcareous

mudrocks.

CALCAREOUS SANDSTONES

The calcareous sandstones contain varied amounts of terrigenous and
matrix material Table 2. Matrix ranges from 5% in clean, moderately
sorted sands to as much as 15% in gradational calcareous
sandstones-mudrocks. Residue bulk consists of clear, inclusion free,
subangular to subrounded quartz. The quartz grains exhibit straight to
slightly undulose extinction and lack evidence of secondary overgrowths.
The skeletal-carbonate components (less than 2%) include fragmented
fossil debris which is commonly micritized.

Distribution and degree of dolomitization (0-26%) is variable from
sample to sample. Stylolites and microstylolites are pervasive
throughout the calcareous sandstones. Pyrite and hematite are common.

The calcareous sandstones accumulated by major influxes of
terrigenous material at the expense of carbonate deposition. Tidal
currents appear to have prevented carbonate muds from settling so that

later sparry calcite cement precipitated in interstitial pores. This
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facies interfingers with calcareous mudstones and appears to have been
deposited above wave base in a rather moderate to high energy

environment.

OOSPARITES

Oosparites are composed of approximately 677% allochems consisting
of 11% fossils, 117% normal ooids and 457% superficial ooids.
Macroscopically, the oosparites are dark-red-brown, moderately sorted
and medium- to thick-bedded.

Pore filling cements include isopachous radial rim, drusy and
syntaxial cements. The results of compaction are pronounced, and
include the spalling of ooid corticies (Fig. 9). Pressure solution
features in the form of microstylolites and stylolites, are common (Fig.
10).

The oosparites interfinger with the calcareous mudstones and
biomicrites. High—energy, shallow subtidal conditions of deposition are
indicated by the grain-supported framework, the lack of carbonate mud,
and the abundance of ooids.

Modern marine ooids form in shallow, well agitated environments
where water depths are generally less than 2 meters (Newell et al,
1960). Conditions for growth include warm water, calcium carbonate
supersaturation and normal to high salinity (Flugel, 1982). Ooid
accumulations occur in a variety of geometries and most often form at a
break in slope. The presence of ooid micritization also indicates
shallow water deposition. The commonly recognized formational processes

are limited to the photic zone, specifically in shallow current swept
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areas.

The oosparites of the Girkin and Cove Creek Limestones developed on
a shallow carbonate shoal over which ocean waters flowed turbulently.
Environmental stresses, including high-energy conditions, quartz sand
influx and a shifting substrate, were the primary causes for the absence
of organisms. The abundance of superficial ooids suggests that currents
were not capable of keeping the substrate mobile. The fact that
micritization is present attests that grains were exposed on the

seafloor for periods of time sufficient to allow grain degradation.

BIOMICRITES

The second most abundant facies in the Girkin and Cove Creek is the
biomicrites. Fossil content averages 287, including whole and
fragmented bryozoans (18.4%), echinoderms (7.3%), brachiopods (l.8%)
mollusks (0.06%), trilobites (0.04%) foraminifers (0.2%) and ostracodes
(0.1%). Other allochemical constituents include intraclasts (4%) and
ooliths (0.5%). Sediments are poorly to moderately sorted with varying
proportions of clay and quartz silt.

In outcrop, the biomicrites are thick-bedded, medium to
medium—-light gray, and weather to light-olive gray. In hand sample,
bryozoans and pelmatozoans are easily recognized.

Micrite is the pervasive interstitial matrix in the biomicrites.
Some samples exhibit a '"clotted'" texture which designates structureless
micritic lumps. These '"clots" are 50 to 125 microns in size, exhibit
indistinct boundaries and have the appearance of being fused (Fig. 12).

At present, there are two theories proposed for this texture. First,
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the micrite matrix recrystallizes (Schwarzacher, 1961) and secondly, the
mud particles disintegrate early and fuse during compaction. The latter
theory is commonly preferred (Illing, 1954; Bachmann, 1973; Flugel,
1982). It has been postulated that boring organisms and
detritus—feeders may contribute significantly to the origin of the
clotted structure (Flugel, 1982).

Micritization is an early diagenetic condition which affects most
skeletal material. A wide range of alteration occurs, from thin
micritic envelopes to completely micritized grains. Other diagenetic
processes include patchy spar cementation and recrystallization,
silicification, stylolitization and microspar formation.

The biomicrites are characterized by a high faunal content,
abundant lime mud and micritization of allochems. The skeletal fauna
characteristically inhabit a low-energy, well-oxygenated, normal
salinity environment. Based on the preserved fauna, the environment was
conducive to attached organisms.' The abundance of lime mud also
suggests that the biomicrites probably accumulated under low-energy
subtidal conditions below wave base.

Recent investigations include several different interpretations
for the accumulation of lime mud. Modern lime muds are accumulating
below wave base in low-energy environments of Shark Bay (Davies, 1970),
the Persian Gulf (Purser, 1973), the Bahamas (Shinn et al., 1969; Cloud,
1962) and British Honduras (Matthews, 1966). These modern muds are
commonly derived from the breakdown of skeletal material (Cloud, 1962;
Matthews, 1966; Stockman et al., 1967; Davies, 1970). Stockman et al.
(1967) discussed the importance of micrite production by algae in the

Florida Bay. 1In addition to algal influences, other organic processes
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are thought to exist. Biological abrasion, such as rasping by
gastropods and the intestinal grinding of sediment-injesting organisms
might produce significant amounts of fine material (Stieglitz, 1973;
Flugel, 1982). Two principle bacterial processes, sulfate reduction and
ammonia formation, can result in the formation of excess HCO3 aq in
sediment pore waters from the reaction of sulfide and ammonia with
bacteriogenic C02. This excess bicarbonate may cause the precipitation
of CaCO03 (Berner, 1971).

Davies (1970) noted that sea grasses in Shark Bay influence the
depositional environment by: 1) accumulating skeletal carbonate
material from the seagrass community, 2) reducing current movement near
the bottom forming a layer of still water in which clay- and silt-sized
particles can accumulate and, 3) the binding of sediments by seagrass
root systems. It may be possible that dense stands of fenestellid
bryozoan communities in the Girkin and Cove Creek could have served as

limited baffles which may have contributed to lime mud accumulation.
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DEPOSITIONAL MODEL

Four facies, representing distinct environmental conditions, have
been identified in the Girkin and Cove Creek Limestones of Washington
County, Virginia. It is suggested that these Upper Mississippian
carbonate-siliciclastic sediments were deposited on a homoclinal
carbonate ramp.

In general, a ramp (Fig. 13) is a gently sloping platform
(generally less than lc) that extends basinward without a pronounced
break in slope (Ahr, 1973). Shallow, wave—agitated facies of the
nearshore zone pass downslope into deeper water, low energy deposits
(Ahr, 1973; Read, 1982). They differ from rimmed shelves in that
continuous reef trends are absent and buildups are separated and
discrete. Ramps generally develop at times of tectonic or climatic
crises in whigh reef formers are poorly represented (James, 1979).

Homoclinal ramps are characterized by uniform slopes dipping into
the basin. They generally lack significant gravity flow deposits and
slumps in deeper-water facies as compared to periplatform deposits
(Read, 1982). Homoclinal ramps are located well landward of the
continental—-ocean crust boundary on continental margins, on
underthrusting continental crusts in foreland basins, or in continental
interiors (Read, 1985).

The calcareous mudrocks of the Girkin and Cove Creek are composed
of various mixtures of carbonate and siliciclastic materials. These

sediments are interpreted as shallow, nearshore, low-energy deposits
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where coastal systems acted as a transport mechanism, mixing carbonates
and siliciclastics. These sediments are similar to tidal-flat deposits,
however, typical tidal-flat sedimentary and diagenetic features are
lacking. It is possible that the argillaceous mud retarded early
cementation, dolomitization, and extensive algal mat development.
Simonson and Walker (1984) indicate mixed carbonate-siliciclastic
tidal-flat complexes exhibit soft sediment deformation and diffuse
burrows. These sediments had high water content far longer than would
be expected of pure carbonates.

Oosparites were deposited seaward of the calcareous mudrocks in a
shallow, highly agitated area of the carbonate ramp. They may have
formed as discontinuous bars or shoals at or near wave base.

The biomicrites contain the most abundant remains of diverse, open
marine organisms of all the other facies. The organisms served as
sediment producers and, perhaps, as sedimen* bafflers and binders. The
biomicrites formed below wave base, basinward of the oosparites and
calcareous mudrocks. Micritic intraclasts may have formed when storms
passed over the ramp.

Calcareous sandstones are cross—bedded quartz sediments containing
a paucity of fossil material. They are indicative of a high-energy,
nearshore environment and represent significant clastic input during
Late Mississippian time. Due to the lack of characteristic
sedimentological evidence, a definitive depositional environment is not
proposed. However, they may represent tidal channel deposits or

strandline accumulationse.
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GEOLOGIC HISTORY

The Vertical distribution of facies (Fig. 14) reflects the cyclic
nature of these Upper Mississippian sediments. The cyclic pattern is
the result of changing environmental parameters. The lithologic
sections also illustrate the complicated lateral variations in the two
sections, making correlation difficult. This complexity suggests local
variation in the coastal environment rather than regional changes
resulting from periodic uplift of a southeastern highland, episodes of
basin subsidence, and fluctuations in eustatic sea level. The general
trend of a shallowing upward sequence as demonstrated by the Girkin and
Cove Creek is, perhaps, more related to these factors.

The majority of terrigenous clastics in Girkin and Cove Creek
sediments was derived from the erosion of metamorphic and sedimentary
highlands to the east and southeast (Cooper, 1964). As these highlands
were eroded, streams swept large amounts of detritus to the west and
northwest where the sediments were winnowed and sorted by waves and
currents. During Girkin and Cove Creek time, broad tidal flats of mixed
siliciclastic—-carbonate sediments formed as terrigenous sediment from
the eastern highland source mixed with basin carbonates. Minor
variations in terrigenous influx could account for local coastal
displacement.

As sediments were accumulating within the Appalachian basin, local
areas of downwarping occurred. Isopach maps of the Greendale Syncline

indicate Chester age rocks were thicker in the syncline than in adjacent
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areas (Cooper, 1964). This suggests that local folding occurred during
the deposition of the Girkin and Cove Creek strata and as the syncline
increased in size, it acted as a trap for detritus eroded from the
adjacent boarderlands. Fluctuations in the rate of subsidence, as well
as the rate of clastic influx, may have resulted in the lateral
migration of facies, thus, acting as a mechanism responsible for cyclic
variations.

Regionally, it is evident that the source areas were uplifted and
large amounts of material accumulated to form a large coalescing delta
complex (Pennington Formation). These clastics were confined to the
eastern portion of the basin during early Chester time (deWitt and
McGrew, 1979). By late mid-Chester time a delta—alluvial plain was
formed and the westward expanding wedge of detritus had displaced the
Chester sea to the west. During late Chester time, the seas continued
to retreat to the west and southwest as a result of the ever expanding
delta. By the end of Chester time, the sea had withdrawn from all but
the extreme western part of the basin (deWitt and McGrew, 1979).

Vail et al. (1977), devised a sea level curve which reflects global
cycles of relative changes in coastal onlap through geologic time.
During Late Mississippian time a second order regressive cycle is
recognized. This is consistent with the present data which illustrate a
prograding deltaic wedge which displaced a late Chesterian sea to the
weste.

Lithologic evaluation suggests that argillaceous sediments of the
Girkin and Cove Creek Limestones formed in response to continued
development of a delta sequence to the east. As fluvial transport

systems matured, the accumulation of mixed siliciclastic-carbonate rocks
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resulted. Since clastics of the Pennington sequence overlie Girkin and
Cove Creek sediments it is plausible to suggest these two formations
represent a transition between carbonate and clastic sequences in both
environment and lithology. Cyclic successions within the Girkin and
Cove Creek are oscillations that represent local
transgressive-regressive sequences superimposed on a broad offlapping

successione.
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SUMMARY OF CONCLUSIONS

1) Sediments were deposited on a homoclinal ramp on which subtidal,
low—energy biomicrites grade up slope into oolitic sediments
characteristic of a shallow, highly agitated shoal. The nearshore
calcareous mudrocks are indicative of intertidal to tidal-flat
sediments. Calcareous sandstones are indicative of a high energy,
nearshore environment, possibly tidal channels or strandline

accumulations.

2) Cyclic depositional patterns formed in response to changing
environmental parameters. Periodic uplift of a southeast highland,
episodes of basin subsidence, and fluctuations in eustatic sea level

contributed to the environmental changes recorded in this sequence.

3) Diagenesis within the Girkin and Cove Creek Limestones began shortly
atter deposition in the marine environment with micritization of
carbonate grains and the formation of pyrite. Mechanical compaction and
initial cementation by isopachous rim cements began soon after
deposition. With subsequent burial, several diagenetic processes were
active including pressure solution and the precipitation of syntaxial,
blocky and drusy cements. These cements may have been associated with
freshwater lenses in connection with the development of the Upper

Mississippian-Pennsylvanian clastic wedge. Dolomitization, pressure
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solution and fracturing occurred with continued burial. Microspar
formation and silicification are also present in Girkin and Cove Creek

sediments.
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Interval
Thickness(meters)

Cumulative

Unit Thickness (meters)
Cove Creek Limestone (272.8m)
1. Light gray calcareous

mudrock. 0-8.2
2. Light gray calcareous

sandstone. 8.2-11.3
Bis Light gray calcareous

mudrock, bioturbated. 11.3-17.7
4. Light gray calcareous

sandstone 17.7-19.8
5. Dark-Red-Brown oosparite,

medium-to thick-bedded,

fossiliferous. 19.8-22.9
6. Brownish gray Biomicrite,

thick-bedded, abundant
bryozoans and echinoderms. 22.9-25.6

7. Medium-light gray
calcareous sandstone 25.6-28.7
8. Light gray-medium-light

gray calcareous mudrock,
medium-bedded, trace fossils,

bioturbated. 28.7-43.0
9. Light gray calcareous

sandstone. 43.0-44.8
10. Medium-light gray Biomicrite,

thick-bedded, abundant
bryozoans and echinoderms. 44.8-61.0

11, Medium gray calcareous

mudrock, laminated,

bioturbated. 61.0-87.5
12. Medium-light gray

calcareous sandstone,

medium-to thick-bedded. 87.5-90.8
13. Medium-light gray calcareous

mudrock, laminated, trace

fossils, N65E 25SE. 90.8-95.1
14. Medium-light gray,calcareous

sandstone, minor

dolomitization, moderately-

poorly sorted. 95.1-99.7
15. Light olive gray calcareous

mudrock, cryptalgal

laminations, trace

bryozoans. 99.7-117.9

14.3

16.2

26.5

18.2



Unit

16.

17

18.

19.

20.

21.

22

23.

24,
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Cumulative Interval
Thickness (meters) Thickness(meters)

Medium-light gray

calcareous sandstone 117.

Medium-light gray
calcareous mudrock, thin,
wavy, laminations,

flaggey. 120.

Black,fissile shale with

slickensides. 159.

Medium-1light gray
calcareous mudrock, trace

bryozoans and echinoderms.160.

Medium-gray Biomicrite,
thick-bedded, abundant
Bryozoans and echinoderms,
trace foraminifers,
trilobites, brachiopods,

ostracodes and mollusks. 166.

Medium gray calcareous

murdock, wispy laminae. 172,

Medium gray biomicrite,
thick-bedded, abundant
bryozoans and echinoderms,
trace brachiopods, mollusks

and ostracodes. 189.

light gray calcareous
mudrock, finely laminated,

bioturbated. 196.

medium-light gray
calcareous sandstone,
moderately-poorly sorted,

medium-to thick-bedded. 269.

Fido Sandstone (15.2m)

25,

Dark-red-Brown sandstone

Girkin Limestone (231.6m)

26.

27.

28.
29.

Medium gray biomicrite,
thick-bedded, abundant
bryozoans and echinoderms,
trace foraminifers and
brachiopods.
Dark-red-brown oosparite,
medium-to thick-bedded,

moderately sorted. 62.
Covered. 71.

Medium-light gray

calcareous mudrock, finely
laminated, bioturbated,

trace echinoderms and
bryozoans, N70E, 24SE. 128

9-120.4 2.5
4-159.1 2.5
1-160.6 i 5
6-166. 1 5.5
1-172.2 6.1
2-189.9 17.7
9-196.0 6.1
0-269.7 73.7
7-272.8 3.1
0-15.2 15.2
0-62.2 62.2
2-71.0 8.8
0-128.0 57.0

.0-231.6 103.6
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Hayters Gap Section

Cumulative Interval
Unit Thickness(meters) Thickness(meters)

Cove Creek Limestone (82.3m)
30. Light gray calcareous

mudrock, finely laminated,

flaggey. 0-2.1 2.1
31. Light gray calcareous

sandstone, minor dolomite,

moderately sorted. 2.1-7.9 5.8
32. Light gray calcareous

mudrock, finely laminated,

N55E, 72SE. 7.9-14.6 6.7
33. Light gray calcareous

sandstone, medium-bedded 14.6-19.8 5.2
34. Medium-light gray

calcareous mudrock,

finely laminated. 19.8-67.7 47.
35. Medium-brownish-gray

calcareous sandstone,

trace dolomite. 67.7-82.3 14.6

\O

Fido Sandstone (15.2m)
36. Dark-red-Brown sandstone 0-15.2 1.5 2

Girkin Limestone (303.3m)
37. Medium gray calcareous

mudrock, silty, medium-—

bedded. 0-35.0 35.0
38. Medium-light gray

biomicrite, abundant

Bryozoans and echinoderms. 35.0-41.8 6.8
39. Light gray calcareous

mudrock, trace intraclasts 41.8-59.1 17.3
40. Medium gray biomicrite,

abundant bryozoans and

echinoderms. 59.1-84.1 25.0
41. Medium gray calcareous

mudrock, trace intraclasts,

medium-bedded. 84.1-96.0 11.
42. Medium gray biomicrite,

abundant bryozoans and

echinoderms, trace

brachiopods, forams,

ostracodes. 96.0-137.2 41.2
43. medium gray calcareous

mudrock, finely laminated.137.2-148.4 - 11.2

W



Cumulative
Unit Thickness (meters)
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Interval
Thickness (meters)

44, Covered 148.4-162.5
45. Light gray calcareous

mucrock, cryptalgal

laminations, bioturbated

N59E, 29SE 162.5-224.0
46. Medium gray biomicrite,

abundant bryozoans and

echinoderms. 224,0-229.2
47. Medium gray calcareous

mudrock, trace

echinoderms. 229.2-239.9
48. Medium gray biomicrite,

abundant bryozoans and

echinoderms, trace

brachiopods and

foraminifers. 239.9-244.1
49. Light gray calcareous

mudrock, medium bedded,

trace byrozoans and

echinoderms, medium-

bedded. 244,1-303.3

14.1

61.5

5.2

10.7

59.2
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KEY TO APPENDIX B
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MICSPAR MICROSPAR

DOL DOLOMITE
00ID OOLITHS
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BRACH BRACHIOPODS
BRYOZ BRYOZOANS
OST OSTRACODES
FORAM  FORAMINIFERS
MOLL MOLLUSKS
GAST GASTROPODS
TRILO TRILOBITES

QTZ QUARTZ

FSP FELDSPAR

PYR PYRITE

HEM HEMATITE

CHERT CHERT

RF ROCK FRAGMENTS

MATRIX MATRIX
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