Abstract

William B. Clark. DETERMINATION OF THE CYTOTOXICITY OF BORON SULFHYDRYL, BORONOPHENYLALANINE, AND BORIC ACID AND THEIR INTERACTIONS WITH γ -RAYS AND PROTONS IN V-79 CHINESE HAMSTER CELLS. (Under the guidance of Dr. James B. Robertson) Department of Biology East Carolina University. September 1997.

The cytotoxicities and y-ray interactions of three ¹⁰Boron (¹⁰B) enriched compounds used in boron neutron capture therapy (BNCT) were tested with V-79 cells. Boron sulfhydral (BSH), borono-phenylalanine (BPA), and boric acid were found to show no toxicity at 30 and 60 ppm of ¹⁰B. At 120 ppm, ¹⁰B toxicity was observed with boric acid and BSH, but not with The survival of cells exposed to γ -rays in the presence BPA. of boric acid, BSH, and BPA were compared to survival of cells exposed to γ -rays alone. The results show that there is no significant difference in survival between V-79 cells exposed to γ -rays or to γ -rays with 100 ppm ¹⁰B of BPA. There is a difference in the survival of V-79 cells exposed to yray and V-79 cells exposed to γ -rays and 100 ppm ¹⁰B of boric acid and BSH. These experiments were controls for use with the proton beam at Loma Linda University Medical Center in California. High energy protons collide with atomic nuclei as they travel through matter releasing secondary neutrons. The amount of secondary neutron capture by BPA in V-79 cells exposed to the proton beam did not significantly increase the biological effectiveness of the proton beam.

DETERMINATION OF THE CYTOTOXICITY OF BORON SULFHYDRYL, BORONPHENYLALANINE, AND BORIC ACID AND THEIR INTERACTIONS WITH γ -RAYS AND PROTONS IN V-79 CHINESE HAMSTER CELLS

> A Thesis Presented to the Faculty of the Department of Biology East Carolina University

In Partial Fulfillment of the Requirements for the Degree Master of Science in Biology

> by William B. Clark September 1997

DETERMINATION OF THE CYTOTOXICITY OF BORON SULFHYDRYL, BORONOPHENYLALANINE, AND BORIC ACID AND THEIR INTERACTIONS WITH γ -RAYS AND PROTONS IN V-79 CHINESE HAMSTER CELLS

> by William B. Clark

APPROVED BY:
DIRECTOR OF THESIS Jones Robertson
COMMITTEE MEMBER Gulkalmus
(GERHARD KALMUS, Ph.D.)
COMMITTEE MEMBER 72 0 m C
(THOMAS MCCONNELL, Ph.D.)
COMMITTEE MEMBER John T. Broy
(JOHN BRAY, Ph.D.)
CHAIR OF THE DEPARTMENT OF BIOLOGY
Bland
(CHARLES BLAND, Ph.DA)
DEAN OF THE GRADUATE SCHOOL THOMAS Feldman
(THOMAS FELDBUSH, PH.D.)

Acknowledgments

I would like to thank Dr. Robertson for his ideas and guidance. I would like to thank Boron Biologicals, Inc. of Raleigh, NC for the generous donation of ¹⁰B enriched boric acid, BSH, and BPA. I would like to thank Loma Linda University Medical Center for providing the grant to Dr. Robertson that helped fund this project. I would also like to thank my committee members, Dr. Bray, Dr. Kalmus, and Dr. McConnell, for their time. Finally, I would like to thank my family, Dr. William and Bernice Wiley, Ben, Ann, and Melissa Clark, and Elizabeth Oelrich.

Table of Contents

List	of	Tables	v
List	of	Figures	vi
List	of	Abbreviations	vii
Intr	oduo	ction	1
	A.	Boron Neutron Capture Therapy	1
	в.	Advantages of BNCT over Conventional	
		Cancer Therapy	2
	c.	Boron Compounds	3
	D.	Neutron Sources	9
	E.	Possibilities with Protons	11
	F.	Purpose	14
Mate	rial	s and Methods	16
	Α.	Cell Line	16
	в.	Boron Solutions	16
	с.	Cytotoxicity Experiments	18
	D.	γ Irradiations and Proton Irradiations	19
	E.	Data Analysis	20
Resu	lts		22
	Α.	Cytotoxicity	22
	в.	100 ppm 10 Boron γ Irradiations	26
	c.	100 ppm ¹⁰ Boron Proton Irradiations	36
Conc	lus	ion	40
	Α.	Cytotoxicity	40

Table of Contents Continued

B. 100 pp	om ¹⁰ Boron y Irradiations	40
C. 100 pp	m ¹⁰ Boron Proton Irradiations	41
References		43
Appendix I	Cytotoxicity of Boric Acid	48
Appendix II	Cytotoxicity of BSH	51
Appendix III	Cytotoxicity of BPA	54
Appendix IV	Boric Acid with γ Irradiations	57
Appendix V	BSH with γ Irradiations	63
Appendix VI	BPA with γ Irradiations	69
Appendix VII	BPA with Proton and γ Irradiations	75

List of Tables

1.	Thermal neutron capture cross section	5
2.	Energies of neutrons	11
3.	Energy generated by direct and secondary products	
	of proton beam in water	14
4.	Cytotoxicity of boric acid	23
5.	Cytotoxicity of BSH	24
6.	Cytotoxicity of BPA	25
7.	Boric acid, BSH, and BPA interactions with $\gamma\text{-rays}$	27
8.	BPA interactions with γ -rays and protons	37

List of Figures

1.	Boron neutron capture reaction	1
2.	Boron neutron capture reaction	2
3.	Boron Compounds	5
4.	BSH	8
5.	BPA	9
6.	Cytotoxicty of Boric Acid	23
7.	Cytotoxicty of BSH	24
8.	Cytotoxicty of BPA	25
9.	S/So vs. Dose(Rads) for Boric Acid pooled	28
10.	-lnS/So/Dose vs. Dose(Rads) for Boric Acid pooled	29
11.	S/So vs. Dose(Rads) for BSH pooled	31
12.	-lnS/So/Dose vs. Dose(Rads) for BSH pooled	32
13.	S/So vs. Dose(Rads) for BPA pooled	34
14.	-lnS/So/Dose vs. Dose(Rads) for BPA pooled	35
15.	S/So vs. Dose(Rads) for BPA pooled with $\gamma\text{-rays}$	
	and Protons	38
16.	-lnS/So/Dose vs. Dose(Rads) for BPA pooled with	20
	γ-rays and Protons	39

List of Symbols and Abbreviations

BNCT----Boron neutron capture therapy

y-rays----gamma rays

BSH----Boronosulfhydral

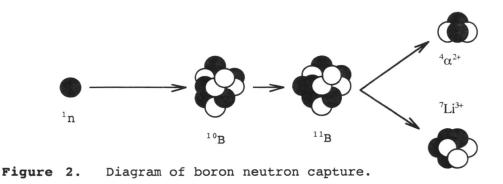
BPA----Boronophenylalanine

⁷Li⁺³----Lithium

 ${}^{4}\text{He}^{{}^{+2}}\text{-----Helium,}$ alpha particle, or α

Introduction

A. Boron Neutron Capture Therapy


Boron neutron capture therapy (BNCT) is a treatment for killing neoplastic tissue involving ¹⁰B localized in the tumor cell and thermal neutron radiation. The ¹⁰B captures the thermal neutron (0.025 eV) and instantaneously splits into ⁷Li³⁺ and ⁴He²⁺, α -particle (SEE FIGURE 1 and 2). The ⁷Li³⁺ and ⁴He²⁺ particles are direct ionizing particles that only travel the distance of one cell diameter, 7-10 µm, killing the tumor cell and sparing the normal tissue (Locher, 1936). In the past sixty years, considerable research addressed the development of boron compounds capable of delivering ¹⁰B to tumor cells and into the development of neutron sources.

¹⁰B + ¹n \rightarrow [¹¹B] \rightarrow ⁴He²⁺(1.79MeV) + ⁷Li³⁺(1.00MeV) (6%) ⁴He²⁺(1.49MeV) + ⁷Li³⁺(0.85MeV)(94%) ⁷Li³⁺ + 0.48MeV γ

Figure 1. The ${}^{10}B(n,\alpha)$ ⁷Li reaction. The n is the neutron. The ⁴He, α -particle, and the ⁷Li are high LET particles. Both high LET particles travel only the distance of a cell diameter (Kitao, 1975).

B. Advantage of BNCT over Conventional Cancer Therapy

Boron neutron capture therapy for neoplastic tissue was designed as an alternative to conventional surgery,

chemotherapy, and radiotherapy treatment for glioblastoma multiforme brain tumors. Theoretically, the advantage of BNCT is the localized dose of radiation due to the selective uptake of ¹⁰B by tumor cells, and the short range particles generated from the neutron capture reaction, ⁷Li³⁺ and ⁴He²⁺. These are direct ionizing particles and are more biologically effective than indirect ionizing radiation, neutrons, γ -rays and x-rays.

The localization of ¹⁰B in tumor cells is an advantage of BNCT. Tumor cells are dividing more rapidly than normal cells, especially in the brain. Cells that are dividing more rapidly have a higher demand for amino acids, phospholipids, nucleotides, and other molecules. The ¹⁰B is attached to a molecule selectively localized in the tumor cells. Ideally, the ¹⁰B compound is localized in the nucleus. After neutron capture, the direct ionizing particles are generated within the tumor cell increasing the chances of a collision with DNA resulting in cell death. The direct ionizing particles travel 7-10 μ m irradiating neoplastic tissue and sparing normal tissue (Barth *et al.*, 1990).

There are two types of radiation delivered in BNCT, direct ionizing particles and indirect ionizing particles. The direct ionizing particles, $^{7}\text{Li}^{3+}$ and $^{4}\text{He}^{2+}$, are heavy charged particles. As the heavy charged particles travel through tissue in a straight line, they will lose kinetic energy. The loss of energy is due to ionizations and excitations of electrons within the matter they penetrate. This phenomenon is referred to as linear energy transfer (LET). When heavy charged particles reach the end of their path, they gain electrons and come to rest at a neutral charge. A single 5-MeV α -particle interacts with matter 1.4 x 10^5 times in 1200 µm before reaching a resting state (Lapp and Andrews, 1972). The high LET of direct ionizing particles to DNA causes double strand breaks leading to cell death in tumor cells. As indirect ionizing particles, yrays, x-rays and neutrons, travel through matter they may pass through without a collision or they may interact with one atom at a time. They are considered low LET radiations. An indirect ionizing particle colliding with DNA will usually cause a single strand break. A single strand break of DNA is more likely to be repaired than a double strand break. Thus, the products of BNCT are more biologically effective than indirect ionizing radiation.

C. Boron Compounds

Since before the times of the Roman Empire, borax $(Na_2B_4O(0H)_2 - 8H2O)$, a boron containing ore, has been used as a detergent and as an internal medicine (Pfeiffer and Jenny, 1950). Borax is still used as a detergent, under the brand name known as "20 Mule Team." Boron has been incorporated into a wide variety of organic molecules for internal use because of its similar structure to carbon (Spielvogel, 1995).

Boron is found next to carbon on the periodic table and has two naturally occurring isotopes, ¹¹B (80%) and ¹⁰B (20%). Many types of boron compounds can be easily synthesized because boron is similar in stability and covalent chemistry to carbon. Boron has five electrons in its valence shell. Carbon has four electrons in its valence shell. B and C can bind four hydrogens. However, borohydride (BH_4^-) has a negative charge and methane (CH_4) has a neutral charge (SEE FIGURE 3). Boron can be incorporated into a borazene ring (SEE FIGURE 3), amino acids, nucleotides, and phospholipids in the place of carbon. Boronated biomolecules have been used in the treatment of high cholesterol, osteoporosis, and BNCT for cancer (Spielvogel, 1995).

¹⁰Boron was proposed for neutron capture therapy by Locher in 1936. Boron is the ideal element for neutron capture because of its high cross section for thermal neutron capture (SEE TABLE 1) and the low abundance of ¹⁰B *in vivo*, relative to N, C, H, O, and P. The cross section for capture of ^{10}B is dependent on the structure of its nucleus not the size of its nucleus (Locher, 1936).

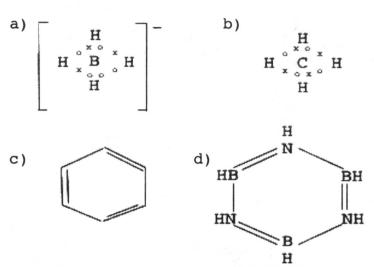


Figure 3. Diagram of a)borohydride b)methane c)benzene d)borazene. (Spielvogel, 1995)

Table 1

Ther	IIIaI	Neutron	Capture	C1055-	Section	va.	lues
Nuclide		Neutron	Capture	Cross	Section	in	barns*
H		0.33	2				
С		0.00	34				
N		1.82					
0		0.00	018				
P		1.16					
¹⁰ B		3,838					
⁷ Li		942					

* barns (b=10⁻²⁴cm²)

(Barth et al., 1990).

There are three considerations in determining the usefulness of new ¹⁰boronated molecules for neutron capture therapy: 1) low toxicity 2) selective uptake by tumors, a tumor:normal tissue concentration of ¹⁰B of at least 5:1 ¹⁰B (Fairchild *et al.*, 1990) and at least 10⁹ atoms ¹⁰B per cell, 50 μ g ¹⁰B/g tumor (Fairchild *et al.*, 1985), and 3) photosensitizing potential in humans (Barth *et al.*, 1990).

Early boronated compounds did not meet any of the criteria necessary for BNCT. Borax and boric acid derivatives were the first ¹⁰B compound used clinically for BNCT by Sweet from 1951-1962. These compounds were taken into the brain tumors by passive diffusion due to a break down in the blood brain barrier. However, they were not retained in the tumor. The leaking of ¹⁰B into the brain's vasculature caused vascular damage during neutron radiation evident during autopsy (Asbury *et al.*, 1972). Since Sweets' early experiments, improvements have been made decreasing the toxicity and increasing the uptake and retention of boronated molecules in tumor tissue for BNCT. The newer molecules are BSH, BPA, bi-specific monoclonal antibody, nucleotides, porphyrins, and low-density lipoproteins.

Boron sulfhydryl, BSH, (SEE FIGURE 4) has been used with some success in clinical trials by Hatanaka. The mean survival of patients treated with BSH and thermal neutron radiation in 1968 was 19.2 months compared to a mean of 12.9 months for patients receiving chemotherapy, immunotherapy,

and photon irradiation (Hatanaka, 1986). An animal study using BSH and rat F98 anaplastic glioma cells as a model for brain tumors, found a 99.9% reduction in tumor growth (Clendenonn *et al.*, 1990). Although there has been success using BSH in clinical trials and animal trials, BSH has a short half-life in tumors and a low tumor:blood ratio. The mean concentrations of ¹⁰B in dogs after exposure to 55 mg BSH/kg body weight were 30.6 μ g boron/g tumor after two hours and 2.9 μ g boron/g tumor after six hours. The concentrations of ¹⁰B in the blood, liver, and kidney after two hours were 65.4 μ g boron/g, 115.7 μ g boron/g, and 101.5 μ g boron/g, respectively (Kraft *et al.*, 1994). The tumor:blood concentration ratio of BSH in humans is 1.69 (Hatanaka, 1986).

Boronophenylalanine, BPA, (SEE FIGURE 5) is a boronated derivative of the amino acid phenylalanine. Accumulation of BPA in melanoma cells is due to the binding of BPA to L-DOPA. L-DOPA is selectively taken into melanoma cells as a precursor to melanin. The BPA-L-DOPA complex accumulates in the melanoma cell. In the melanoma cell, the BPA-L-DOPA complex is oxidized to form boric acid and phenylalanine from BPA and dopaquinone from L-DOPA. The phenylalanine is retained in the cell as an amino acid but the boric acid is free to diffuse into the blood (Yoshino *et al.*, 1993). In vitro, BPA accumulates in B-16 melanoma cells as much as eleven times the media concentration. Neutron irradiations

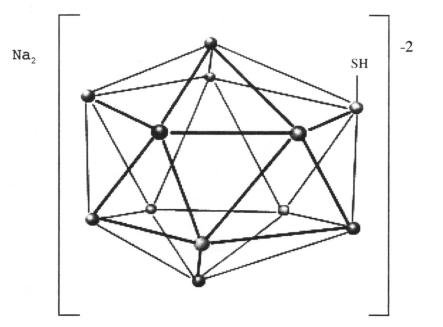


Figure 4. Diagram of BSH. ${}^{10}B$ is represented by circles. Na ${}^{210}B_{12}SH$

with BPA and B-16 melanoma cells were more biologically effective than neutrons alone (Ichihashi *et al.*, 1982). Balb/c mice with subcutaneous Harding-Passey melanoma were injected with BPA. When the mice were irradiated with high doses of neutrons the tumors stopped growing and completely regressed (Coderre *et al.*, 1988). Tumor:blood ratio of BPA in glioblastoma multiforme has been shown to be approximately 3.5 with a tumor concentration of $3.2-64.5 \ \mu g^{10}B/g$ (Elowitz *et al.*, 1996). Mishima and colleagues have had success treating several patients with malignant tumors with BPA and neutron radiation (Mishima *et al.*, 1989). Although BPA has been shown to be effective *in vitro* and results from clinical trials are encouraging, the real success of BNCT will be with the next generation of boronated molecules.

 $CH_2CH(NH_3)COO^-$ B(OH),

Figure 5. Diagram of BPA. C₉H₁₂NO₄¹⁰B.

The next generation of boronated biomolecules include low-density lipoprotein (LDL), monoclonal antibodies, and nucleotides generated by using more advanced techniques. Low-density lipoproteins accumulate in tumor by receptor mediated endocytosis as high as 240 μ g ¹⁰B/g tumor. *In Vitro*, the relative biological effectiveness of LDL is ten times greater than BSH (Laster *et al.*, 1991).

D. Neutron Sources

Thermal neutrons were first proposed for BNCT by Locher in 1936. Thermal neutrons deposit little energy in normal tissue, but have a high probability of reacting with ¹⁰B. Thermal neutrons are most effective for boron neutron capture because higher energy neutrons may pass through the ¹⁰B nucleus without being captured (Locher, 1936).

Neutrons are found in atomic nuclei and must be ejected from the nucleus by disrupting the nucleus with α -particles, protons, γ -rays, or other neutrons. Therefore, the clinical source of neutrons is a nuclear reactor. Neutrons of several energies are generated in nuclear reactors due to the disruption of the nucleus by fission and atomic collisions (SEE TABLE 2)(Locher, 1936). The neutrons generated from a nuclear reactor must be filtered to obtain thermal neutrons. Thermal neutrons lose energy rapidly in tissue. Thermal neutrons only penetrate tissue 3-4 cm. In clinical studies with BNCT and thermal neutrons, the scalp and cranium need to be reflected to expose deep seated tumors to thermal neutron radiation (Mishima *et al.*, 1989).

Since thermal neutrons cannot expose deep seated glioblastoma multiforme to neutron irradiation without surgery, research has gone into developing a neutron source with the ability expose the tumor to thermal neutrons. The most promising source of neutrons for BNCT is epithermal neutrons (1eV) generated from nuclear reactors. As

epithermal neutrons pass through tissue, they lose kinetic energy by colliding with hydrogen and slow to become thermal neutrons. The thermal neutrons are generated within the tissue. These thermal neutrons can reach deep seated tumors. (Barth *et al.*, 1990). Fast neutron beams (>1x10⁷eV) are a possible source of neutrons to use with BNCT. Fast neutron beams alone have already been shown to be effective in clinical trials treating salivary gland (Griffin *et al.*, 1988) and prostate tumors (Laramore *et al.*, 1993).

Table 2

Energies of neutrons

Туре	of neutron	Energy
	High energy	>1 x 10eV
	Fast	1,000eV-10,000,000eV 100eV-1x10 ⁴ eV
	Intermediate	$100 eV - 1x10^4 eV$
	Slow	3.0x10 ⁻² eV-100eV
	Epithermal	~leV
	Thermal	2.5x10 ⁻² eV

Table 2. Energies of various neutrons created in nuclear reactors. (Lapp and Andrews, 1972)

Although neutrons with higher energies than thermal neutrons may pass through ¹⁰B without being captured, they have already been shown to be effective treating neoplastic

tissue. Neutrons of higher energies than thermal neutrons slow down to become thermal neutrons as they pass through tissue. A small increase in biological effectiveness due to boron capture of thermal neutrons generated in the tissue would be significant in treating neoplastic tissue with fast neutrons.

E. Possibilities with Protons

The purpose of this study is to determine the efficacy of supplementing proton beam therapy for cancer with BNCT. Although protons are direct ionizing particles, they interact with matter mostly as low LET particles and partially as high LET particles. Up to ninety percent of the energy delivered to tissue by the proton beam are as low LET interactions. Protons behave like low LET particles because of their small mass and small charge relative to heavy charged particles. Their small mass and charge allow protons to travel through tissue with relatively few ionizing interactions. However, protons do behave like high LET as they come to a stop. As the protons slow down, they transfer all of their energy to the tissue. The point where protons deliver their energy and stop is called the Bragg peak. There is no energy delivered by protons past the Bragg peak. The distance the protons travel through tissue before they reach the Bragg peak is determined by the initial energy of the protons. By controlling the energy of protons, shallow or deep seated

tumors can be irradiated sparing normal tissue (Personal Communication with Dr. Robertson).

Proton beam therapy for neoplastic tissue is more effective than γ -ray treatment for neoplastic tissue. As γ rays travel through tissue, they deliver most of their dose just beneath the skin. Therefore, normal tissue under the skin receives more radiation than deep seated tumors. The amount of dose delivered declines all the way through the tissue. In contrast, the proton beam delivers little dose to the normal tissue shallower than the tumor, most of the dose to the tumor, and no dose past the tumor at the Bragg peak. Delivering the most dose to the tumor is important in prostate and brain tumors because of the critical nature of the surrounding tissues (Personal Communication with Dr. Robertson).

The proton beam may prove to be biologically effective as a source for BNCT for two reasons. First, as protons travel through tissue the protons generate secondary protons and neutrons by colliding with atomic nuclei. The proton beam generates neutrons of all energies as the protons travel through tissue (SEE TABLE 3). Some of these neutrons may be captured by ¹⁰B in tumor cells and increase the biological effectiveness of the proton beam. Second, the proton beam is an effective clinical tool in treating neoplastic tissue. A small increase in biological effectiveness of the proton beam in the tissue would be significant in treating neoplastic tissue (Personal Communication with Dr. Robertson).

Table 3

Energy generated by direct and secondary products of proton beam in water.

Ionizing particle	<pre>% total dose</pre>
Direct protons	70%
Secondary protons	208
Secondary neutrons	6%
Other	48

(Personal Communication with Jeff Siebers)

F. Purpose

Cytotoxicities and γ -ray interactions of three ¹⁰B enriched compounds commonly used for BNCT were tested at East Carolina University as controls for use with the proton beam at Loma Linda Medical University. γ -ray experiments are used as a control for the proton beam experiments because 80%-90% of the dose delivered by protons is low LET. The γ -ray experiments were used as controls to evaluate any radiationsensitizing effects of boric acid, BSH, and BPA not a result of boron neutron capture. If the regression lines for the group exposed to γ -rays is the same as the regression line for the group exposed to γ -rays and ¹⁰B, then the null hypothesis, there is no interaction between γ -rays and ¹⁰B, is accepted. If the regression lines are different, then the null hypothesis is rejected and the alternate hypothesis, there is an interaction between γ -rays and ¹⁰B, must be considered. (Personal Communication with Dr. Robertson).

The aim of this study was to make some preliminary investigations into the efficacy of combining proton beam therapy and BNCT. If the regression lines for the group exposed to protons is the same as the regression line for the group exposed to protons and ¹⁰B, then the null hypothesis, there is no interaction between protons and ¹⁰B, is accepted. If the regression lines are different, then the null hypothesis is rejected and the alternate hypothesis, there is an interaction between protons and ¹⁰B, must be considered.

Since γ -rays do not generate neutrons, the controls show the interaction between low LET and ¹⁰B. The proton beam experiments show the interaction between protons and ¹⁰B. Because the proton beam interacts with matter as low LET and generates secondary neutrons, any significant interaction observed between the proton beam and ¹⁰B not observed with γ rays must be due to BNC. If the null hypothesis is accepted for γ -ray experiments and rejected for proton experiments, then the interaction observed must be due to boron neutron capture and coupling proton beam therapy with BNCT may have clinical possibilities.

Materials and Methods

A. Cell Line

Chinese hamster lung fibroblast, V-79, cells in logarithmic growth were maintained in Eagles MEM (Cellgro stock # 50-010-PB) supplemented with 10% fetal bovine serum, (Hyclone lot # 1111946) 100 units penicillin/L (Sigma stock # P-7539), 40 µg streptomycin/L (Sigma stock # P-7539), and 400 µM L-glutamine (Sigma stock # G-7513).

B. Boron Solutions

All ¹⁰B compounds were generously donated by Boron Biologicals Incorporated of Raleigh, NC. All solutions of ¹⁰B compounds were prepared in ppm ¹⁰B.

Boric acid, $H_3^{10}BO_3$ (M.W.=61), went into solution with filter sterilized and autoclaved water. Solutions were made up at concentrations of 300 ppm, 600 ppm, 1000 ppm, and 1200 ppm of ¹⁰B. The stock solutions were vacuum sterilized with a 0.22 μ m filter. The four stock solutions were diluted 1:10 with media to yield ¹⁰B concentrations of 30 ppm, 60 ppm, and 120 ppm ¹⁰B for cytotoxicity experiments and 100 ppm ¹⁰B for irradiation experiments.

Boron sulfhydral, $Na_2^{10}B_{12}SH$ (M.W.=199), went into solution in Hanks balanced salts solution (HBSS). Solutions were made up at concentrations of 300 ppm, 600 ppm, 1000 ppm, and 1200 ppm of ¹⁰B. The stock solutions were vacuum sterilized with a 0.22 μ m filter. Due to the possibility of BSH oxidizing with O_2 in the air the BSH solution was bubbled with compressed N_2 gas for at least ten minutes after the bottle was opened (Personal Communication with Dr. Dave Spielvogel). The four stock solutions were diluted 1:10 with media to yield ¹⁰B concentrations of 30 ppm, 60 ppm, and 120 ppm ¹⁰B for cytotoxicity experiments and 100 ppm ¹⁰B for irradiation experiments.

Boronophenylalanine, $C_{9}H_{12}NO_{4}^{10}B$ (M.W.=208) is highly insoluble in HBSS and water. Therefore, a BPA-fructose complex was made to increase the solubility of BPA in HBSS. The BPA-fructose complex was made by adding equimolar amounts of BPA and fructose, $C_6H_{12}O_6$ (M.W.=180), to sixty-five percent of the total desired volume HBSS. This solution was stirred slowly and the pH was brought up to 9.0-9.5 dropwise, with 10M NaOH. The solution stirred for one hour. The pH was brought up to 9.5-10 with 10M NaOH and allowed to stir thirty minutes. The pH was slowly adjusted with 3N HCl to 7.4. The solution was brought up to full volume with HBSS and stored at 4°C overnight. The solution was vacuum sterilized with a 0.22 µm filter and poured into sterile bottles. Stock solutions of BPA were made at 1200 ppm ¹⁰B for cytotoxicity and 1000 ppm ¹⁰B for irradiations. The 1200 ppm ¹⁰B-BPA stock solution was diluted with HBSS into 300 ppm and 600 ppm 10B-BPA stock solutions. The four stock solutions were diluted 1:10 with media to yield ¹⁰B concentrations of 30 ppm, 60 ppm, and 120 ppm ¹⁰B for cytotoxicity experiments and 100 ppm ¹⁰B for irradiation experiments.

C. Cytotoxicity Experiments

Two days before the experiment (T=0) V-79 cells in log phase were washed twice with HBSS, trypsinized, diluted in MEM, and counted by hemocytometer. Approximately 1.5×10^5 cells were added to the control and experimental flasks, 25 cm² Corning tissue culture flasks. The media was aspirated at T=24hr and 5 ml of 0 ppm ¹⁰B media was added to the control flask. In a similar manner, 5 ml of 30 ppm, 60 ppm, and 120 ppm ¹⁰B media was added to the experimental flasks. At T=48hr all flasks were aspirated, washed two times with HBSS, trypsinized, counted, diluted with 0, 30, 60, and 120 ppm ¹⁰B media and plated into three 75 cm² petri dishes for each dose. The cells were allowed to attach for six hours. The total exposure was 30 hours. After the cells attached, the 0, 30, 60, and 120 ppm ¹⁰B media was aspirated and replaced with fresh media. The cells were allowed to form colonies for seven days. After seven days, the surviving colonies were washed twice with 0.9% NaCl solution, fixed with 1:3 (v/v)acetic acid/methanol solution, and stained with 0.5% crystal violet solution. The colonies were counted. Colonies of greater than fifty members were counted as survivors.

The first ¹⁰B cytotoxicity experiments for each compound used 200, 2000, and 20000 cells per dish to ensure some survivors. In all cases, large numbers of survivors were observed and the following three replicates used about 300 cells per dish.

D. y Irradiations and Proton Irradiations

Two days before the experiment (T=0) V-79 cells in log phase were washed twice with HBSS, trypsinized, diluted in MEM, and counted by hemocytometer. Approximately 1.5×10^5 cells were added to the control and experimental flasks, 25 cm² Corning tissue culture flasks. The media was aspirated at T=24hr and 5 ml of 0 ppm ¹⁰B media was added to the control flask and 100 ppm ¹⁰B media was added to the experimental flask. At T=45hr both flasks were aspirated, washed twice with HBSS, trypsinized, diluted in 0 ppm ¹⁰B media and 100 ppm ¹⁰B media, and put into three 25 cm² flasks for each dose. The cells were allowed to attach for four hours. At T=50, the flasks were filled with 1% media at 0 ppm and 100 ppm ¹⁰B. The flasks were irradiated at the East Carolina University Medical School with the cobalt⁶⁰ γ -irradiator at 0, 200, 400, 600, 800, and 1000 rads. After all irradiations, the flasks were brought back to lab and the 1% FBS media was removed. Total exposure was 30 hours. The 1% media was replaced with fresh 10% FBS media at 0 ppm ¹⁰B. The cells were allowed to form colonies for seven days. After seven days, the surviving colonies were washed twice with 0.9% NaCl solution, fixed with 1:3 (v/v) acetic acid/methanol solution, and stained with 0.5% crystal violet solution. The colonies were

counted. Colonies of greater than fifty members were counted as survivors.

E. Data Analysis

Plating efficiency (PE) was determined by counting the three flasks in each experiment with no treatment. The survivors of the three flasks were averaged and divided by the number of cells plated based on serial dilutions multiplied by 100. Plating efficiency varied from 27-88%.

Survival (S/So) was determined by multiplying the inverse of the PE (1/0.6) by the inverse of the cells plated based on serial dilutions (1/300) by the number of colonies observed (153) equals the normalized (N) S/So (0.85) for the flask (1/0.6 x 1/300 x 153 = 0.85). The S/So values for three flasks at each dose were averaged and plotted on semilog paper with standard deviations (S/So vs. Dose). The PE, cells plated, cells observed, N values, means, and standard deviations can be found in Appendix I-VII for both cytotoxicity and γ -ray experiments.

Survival curves due to γ -rays were exponential. To transform the survival curves to linear relationships we used the following formula:

 $S/So = e^{-(\alpha D + \beta D^{2})} \qquad D= Dose(Rads)$ $ln S/So = -(\alpha D + \beta D^{2}) \qquad \beta= constant$ $-ln S/So = \alpha + \beta D \qquad \alpha= constant$ D

The transformed equation is the same as the equation of a line, y=b + mx. In this case y=-lnS/So/D, $b=\alpha$ and $m=\beta$.

The null hypothesis is: the regression line for γ -rays or the proton beam is the same as the regression line for γ rays or proton beam and boric acid, BSH and BPA. The null hypothesis was tested by using the two sample t test for comparing two straight regression lines (Kleinbaum and Kupper, 1978). The t values were calculated by subtracting the means ($\alpha_1-\alpha_2$ or $\beta_1-\beta_2$) and dividing by the difference of the respective standard deviations. Probabilities were then calculated corresponding to the t test values.

Results

A. Cytotoxicity

The cytotoxicity of boric acid to V-79 cells was measured at 30, 60, and 120 ppm 10 B. Boric acid was not toxic at 30 and 60 ppm 10 B. Boric acid was toxic at 120 ppm 10 B with 71% survivors (SEE TABLE 4, FIGURE 6, and Appendix I).

The cytotoxicity of BSH was measured at 30, 60, and 120 ppm ^{10}B . BSH was not toxic at 30 and 60 ppm ^{10}B . BSH was toxic at 120 ppm ^{10}B with 69% survivors (SEE TABLE 5, FIGURE 7, and Appendix II).

The cytotoxicity of BPA was measured at 30, 60, and 120 ppm ¹⁰B. BPA was not toxic at any concentration tested. Cell cultures exposed to BPA had the same survival rate as control cell cultures (SEE TABLE 6, FIGURE 8, and Appendix III).

The data shown below in the tables and figures are the pooled data for the cytotoxicity experiments 2,3, and 4 for boric acid, BSH, and BPA. All of the data for the cytotoxicity experiments is shown in Appendix I, II, and III.

Table 4

Data Iro	Data from Boric Acid Cytotoxicity Pooled					
$ppm^{10}B-H_3^{10}BO_3$	Mean	s.d.	+-s.d.			
0	1.00	0.05	0.95-1.05			
30	0.96	0.09	0.87-1.05			
60	0.98	0.13	0.85-1.11			
120	0.71	0.06	0.71-0.77			

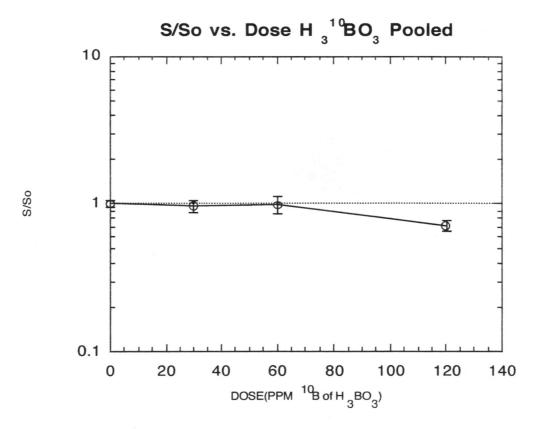


Figure 6. Graph of pooled data from experiments 2,3, and 4 S/So for boric acid cytotoxicity. There is no toxicity at 30 ppm and 60 ppm ^{10}B . The survival at 120 ppm ^{10}B is 0.71.

T	a	b	1	е		5
-	-	-	-	-	-	

ppm ¹⁰ B-BSH	Mean	s.d.	+-s.d.
0	1.00	0.05	0.95-1.05
30	1.03	0.31	0.72-1.34
60	0.98	0.24	0.74-1.22
120	0.67	0.19	0.86-0.48

Data from BSH Cytotoxicity Pooled

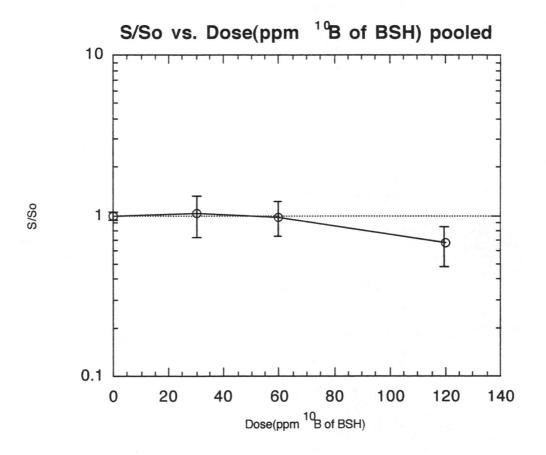


Figure 7. Plot of the pooled data for experiments 2,3, and 4 S/So for BSH cytotoxicity tests. There is no toxicity at 30 ppm and 60 ppm ^{10}B . The survival at 120 ppm ^{10}B is 0.69.

<u>Table 6</u>

ppm ¹⁰ B-BSH	Mean	s.d.	+-s.d.
0	1.01	0.07	0.94-1.08
30	1.06	0.27	0.79-1.33
60	0.99	0.18	0.81-1.17
120	0.99	0.16	0.83-1.15

Data from BPA Cytotoxicity Pooled

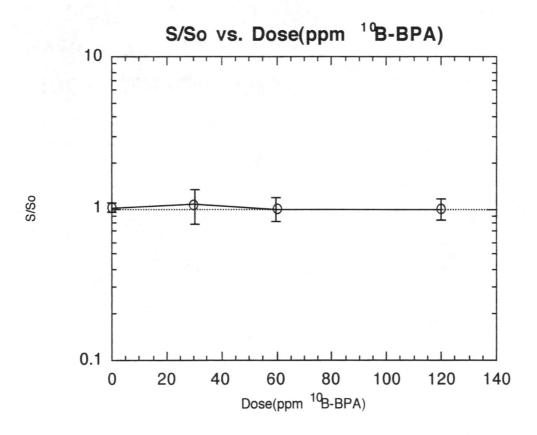


Figure 8. Plot of the pooled data for experiments 2,3, and 4 S/So for BPA cytotoxicity tests. There is no toxicity at any concentration.

B. 100 ppm ¹⁰Boron γ Irradiations

The interaction of ¹⁰B and γ -rays was measured as controls for ¹⁰B and proton irradiations. The α , y-intercept, and β , slope, for γ -rays alone and γ -rays with boric acid, BSH, and BPA were compared using t ratios to determine if the regression lines were the same. If the regression lines are the same, then there is not a significant interaction between γ -rays and boric acid, BSH, and BPA.

B₁. Boric Acid and γ Irradiations

Cells were exposed to 100 ppm 10 B boric acid media 24 h before irradiation with γ -rays. The survival curves of these irradiations were compared to cells exposed to γ -rays without boric acid. The survival curves of pooled experiments are shown in FIGURE 9, TABLE 7, and Appendix IV. The two curves show a similar shape with the boric acid group showing less cell survival. The two survival curves were compared by transforming the mean survival (S/So) for each group of data at each radiation dose to fit a linear equation. A linear regression line was fit to each group. Results of the linear transformation are plotted in FIGURE 10 and tabulated in Appendix IV. The regression lines are:

y-rays only

-lnS/So/D = $3.73 \times 10^{-4} + 3.11 \times 10^{-6}$ D ($\alpha = 3.73 \times 10^{-4}$; $\beta = 3.11 \times 10^{-7}$) γ -rays with 100 ppm ¹⁰B boric acid -lnS/So/D = $1.98 \times 10^{-3} + 3.75 \times 10^{-6}$ D ($\alpha = 1.98 \times 10^{-3}$; $\beta = 3.75 \times 10^{-6}$)

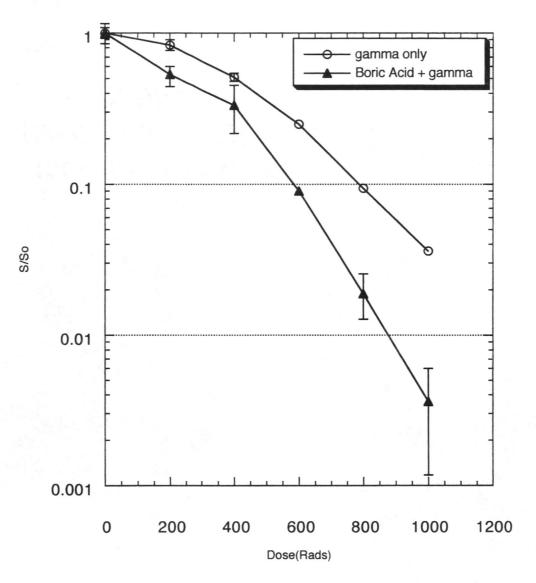
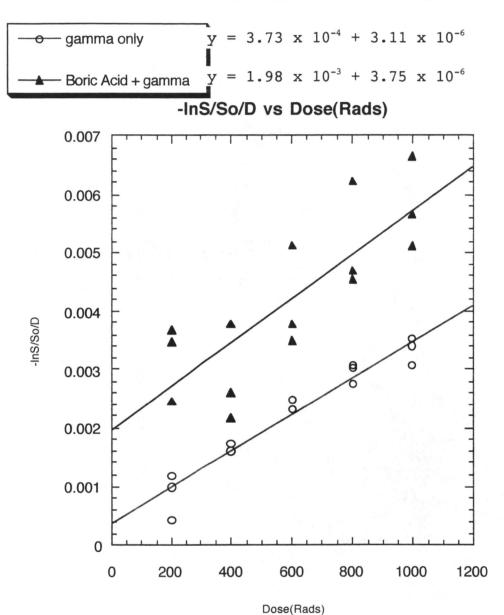

The two regression lines were compared and the t value for α =-3.11 (P=0.0045) and the t value for β =0.82 (P=0.42). The results of the t-test showed the differences in the intercepts were significant and the differences in the slopes were not significant. Therefore, the intercepts are the different and the slopes are the same (SEE FIGURE 10).

Table 7

Pooled N(S/SO) for γ Irradiations for 100 ppm ¹⁰B


Dose						
Experiment	0	200	400	600	800	1000
<u>γ only B.A.</u> (Mean) (s.d.)	1.00 0.07	0.84 0.07	0.51 0.03	0.25 0.01	0.94 0.013	0.36 0.009
<u>γ + B.A.</u> (Mean) (s.d.)	1.00	0.53 0.15	0.33 0.12	0.091 0.039	0.019 0.0096	0.0036 0.0024
<u>γ only BSH</u> (Mean) (s.d.)	1.00	0.83 0.1	0.51 0.05	0.27 0.05	0.11 0.03	0.035
<u>γ + BSH</u> (Mean) (s.d.)	1.00	0.61 0.15	0.43 0.13	0.17 0.092	0.079 0.052	0.036
<u>γ only BPA</u> (Mean) (s.d.)	1.00	0.76 0.11	0.57 0.10	0.31 0.048	0.15 0.025	0.065 0.016
$\gamma + BPA$ (Mean) (s.d)	1.00	0.69 0.14	0.53 0.082	0.31 0.057	0.14 0.029	0.06 0.014

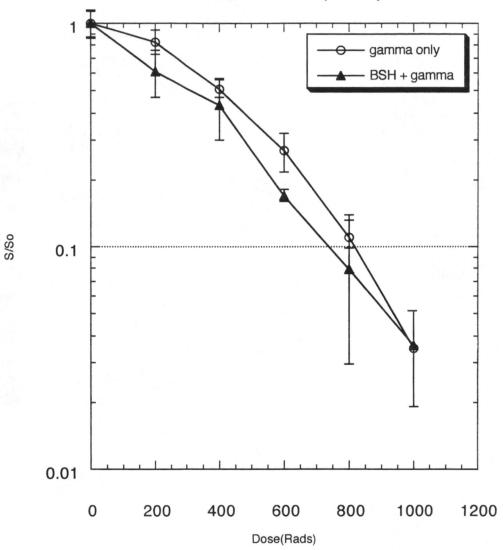
Boric Acid and γ -ray experiments S/So pooled

S/So vs. Dose

Figure 9. S/So vs. dose for boric acid and γ -ray experiment S/So pooled. Data from table 7.

Boric Acid and γ -ray -lnS/So/D pooled

Figure 10. $-\ln S/So/D$ vs. Dose for boric acid and γ -ray experiments. All of the points are $-\ln S/So/D$ from tables


B₂. **BSH** and γ Irradiations

Cells were exposed to 100 ppm 10 B BSH media 24 h before irradiation with γ -rays. The survival curves of these irradiations were compared to cells exposed to γ -rays without BSH. Results of the survival curves are shown in FIGURE 11, TABLE 7, and Appendix V. The two curves show a similar shape with the BSH group showing slightly less cell survival. The two survival curves were compared by transforming the mean survival (S/So) for each group of data at each radiation dose to fit a linear equation. A linear regression line was fit to each group. Results of the linear transformation are plotted in FIGURE 12 and tabulated in Appendix V. The regression lines are:

y-rays only

-lnS/So/D = $4.18 \times 10^{-4} + 2.98 \times 10^{-6}$ D ($\alpha = 4.18 \times 10^{-4}$; $\beta = 2.98 \times 10^{-6}$) γ -rays with 100 ppm ¹⁰B BSH -lnS/So/D = $1.88 \times 10^{-3} + 1.95 \times 10^{-6}$ D ($\alpha = 1.18 \times 10^{-3}$; $\beta = 1.95 \times 10^{-6}$)

The two regression lines were compared and the t value for α =-2.52 (P=0.018) and the t value for β =1.17 (P=0.25). The results of the t-test showed the differences in the intercepts were significant and the differences in the slopes were not significant. Therefore, the intercepts for the two groups are different and the slopes for the two groups are the same (SEE FIGURE 12).

S/So vs. Dose(Rads)

Figure 11. S/So vs. dose for BSH and γ -ray experiment S/So pooled. Data from table 7.

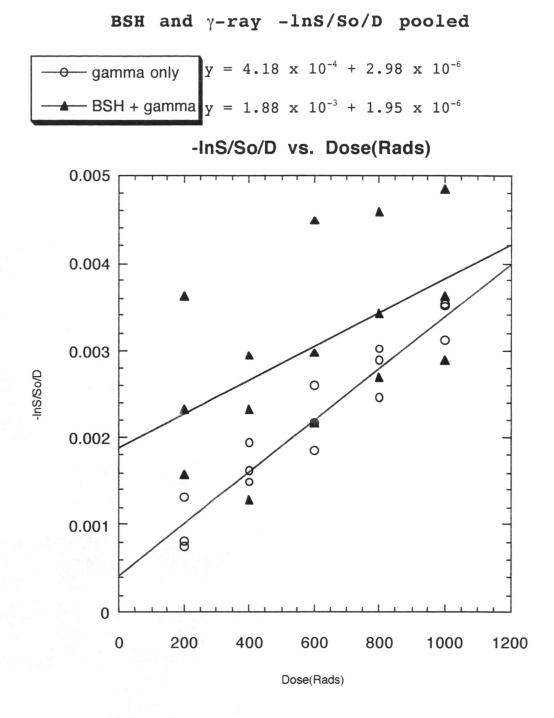


Figure 12. $-\ln S/SO/D$ vs. Dose for BSH and γ -ray experiments. All of the points are $-\ln S/SO/D$ from tables in Appendix V.

B₃. **BPA** and γ Irradiations

Cells were exposed to 100 ppm ¹⁰B BPA media 24 h before irradiation with γ -rays. The survival curves of these irradiations were compared to cells exposed to γ -rays without BPA. Results of the survival curves are shown in FIGURE 13, TABLE 7, and Appendix VI. The two survival curves are similar. The two survival curves were compared by transforming the mean survival (S/So) for each group of data at each radiation dose to fit a linear equation. A linear regression line was fit to each group. Results of the linear transformation are plotted in FIGURE 14 and tabulated in Appendix VI. The regression lines for the two lines are:

 γ -rays only -lns/so/D = 8.98x10⁻⁴ + 1.82x10⁻⁶D (α =8.98x10⁻⁴ ; β = 1.82x10⁻⁶) γ -rays with 100 ppm ¹⁰B BPA

 $-\ln S/So/D = 1.35 \times 10^{-3} + 1.37 \times 10^{-6} D$ ($\alpha = 1.35 \times 10^{-3}$; $\beta = 1.37 \times 10^{-6}$)

The two regression lines were compared and the t value for α =-1.39 (P=0.18) and the t value for β =0.93 (P=0.36). The results of the t-test showed differences in the intercepts were not significant and the differences in the slopes were not significant. The regression lines for the two groups are the same (SEE FIGURE 14).

S/So vs. Dose(Rads)

Figure 13. S/So vs. dose for BPA and $\gamma\text{-ray}$ experiment S/So pooled. Data from table 7.

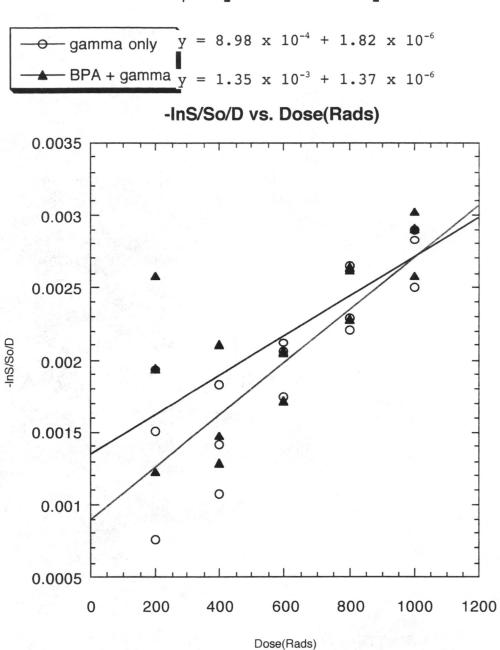


Figure 14. $-\ln S/So/D$ vs. Dose for BPA and γ -ray experiments. All of the points are $-\ln S/So/D$ from tables from Appendix VI.

BPA and γ -ray -lnS/So/D pooled

C. 100 ppm ¹⁰Boron Proton Irradiations

Cells were exposed to 100 ppm ¹⁰B BPA media 24 h before irradiation with the proton beam. The survival curves of these irradiations were compared to cells exposed to γ -rays and protons without BPA. Results of the survival curves are shown in FIGURE 15, TABLE 8, and Appendix VII. To determine if boron neutron capture had a significant increase in the biological effectiveness of the proton beam, the survival curve for proton beam control was compared to the survival curve for proton beam with 100 ppm ¹⁰B BPA. The two survival curves were compared by transforming the mean survival (S/So) for each group of data at each radiation dose to fit a linear equation. A linear regression line was fit to each group. Results of the linear transformation are plotted in FIGURE 16 and tabulated in Appendix VII. The regression lines are:

Protons only

 $-\ln S/So/D = 1.02 \times 10^{-3} + 2.31 \times 10^{-6} D$ ($\alpha = 8.98 \times 10^{-4}$; $\beta = 1.82 \times 10^{-6}$)

Protons with 100 ppm ¹⁰B BPA

 $-\ln S/So/D = 2.17 \times 10^{-3} + 4.53 \times 10^{-6} D$ ($\alpha = 1.35 \times 10^{-3}$; $\beta = 1.37 \times 10^{-6}$)

The two regression lines were compared and the t value for α =0.16 (P=0.87) and the t value for β =0.54 (P=0.60). The results of the t-test showed differences in the intercepts were not significant and the differences in the slopes were not significant. The regression lines for the two groups are the same (SEE FIGURE 16).

36

Ta	b1	е	8

γ-ray, P	roton 1	beam, an	d BPA +	- Proto	n Beam	Pooled				
RADS										
Experiment	0	200	400	600	800	1000				
<u>y only</u> (Mean) (s.d.)	1.00 0.057	0.778 0.054	0.429 0.047	0.211 0.031	0.101 0.008	0.0422 0.0085				
<u>Proton only</u> (Mean) (s.d.)	1.00 0.21	0.708 0.071	0.259 0.155	0.0916 0.0769		0.0152 0.0132				
<u>BPA + Proton</u> (Mean) (s.d.)	1.00 0.039	0.667 0.068	0.205 0.154	0.077 0.0806	0.0342 0.0365	0.0081 0.008				

-ray,	Proton	beam,	and	BPA	+	Proton	Beam	Pooled
-------	--------	-------	-----	-----	---	--------	------	--------

γ-ray, Proton Beam, and BPA + Proton Beam Pooled

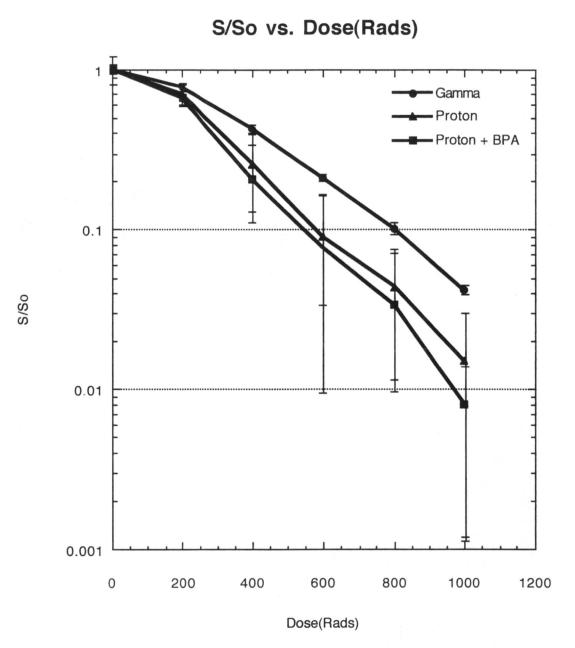
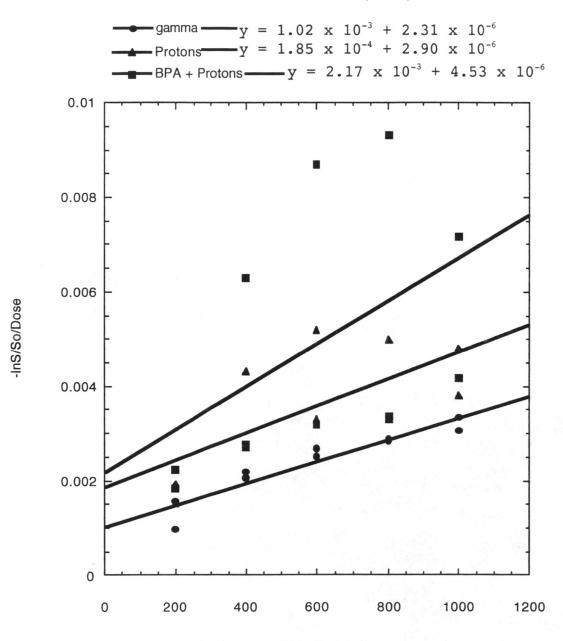



Figure 15. S/So vs. dose for BPA, $\gamma-ray,$ and proton experiment S/So pooled. Data from table 8.

γ-ray, Proton Beam, and BPA + Proton Beam Pooled

-InS/So/Dose vs. Dose(Rads)

Dose(Rads)

Figure 16. $-\ln S/So/D$ vs. Dose for BPA, γ -ray, and proton experiments. All of the points are $-\ln S/So/D$ from tables from Appendix VII.

Conclusions

A. Cytotoxicity

Boric acid and BSH were toxic at 120 ppm ¹⁰B. The cytotoxicity of BSH at 30 ppm and 60 ppm ¹⁰B was consistent with the results published by Lindstrom and colleagues. Lindstrom and colleagues showed BSH was not toxic in melanoma B16 and U-343MGa cells at concentration up to 50 ppm ¹⁰B (Lindstrom *et al.*, 1994). In this study, BSH was toxic in V-79 cells at 120 ppm ¹⁰B.

The cytotoxicity of BPA was consistent with results published by Pettersson and colleagues. They showed BPA was not toxic at any concentration tested up to 10 μ g/g ¹⁰B, 10 ppm ¹⁰B (Pettersson *et al.*, 1994). There are two reasons BPA may not show toxicity in the V-79 cell line. First, BPA is a derivative of the amino acid phenylalanine and is not toxic. Second, BPA may not be taken up by the V-79 cells. BPA has been shown to be incorporated into melanoma cells (Yoshino *et al.*, 1993). However, the V-79 cell line is not a melanoma cell line and may not incorporate BPA as well as a melanoma cell.

B. 100 ppm ¹⁰Boron γ Irradiations

Boric acid and BSH showed similar interactions with γ rays in the V-79 cell line. The interactions of boric acid and BSH with γ -rays may be similar due their similar cytotoxicity. When the V-79 cells were exposed to 100 ppm ¹⁰B boric acid or BSH, the cytotoxicity was due to the concentration of compound. When the V-79 cells were exposed to 100 ppm ¹⁰B boric acid or BSH and radiation, the cytotoxicity was due to the concentration of compound and the dose of radiation. The effect of cytotoxicity due to the boron compound was the same at every radiation dose. Since the ¹⁰B compound contributes the same amount of toxicity at each dose of radiation, the regression lines may be parallel. Therefore, the intercepts could be different and the slopes could be the same. The null hypothesis was rejected for boric acid and BSH.

There was a large variation observed in experiments with boric acid and BSH. The variation may be due to my techniques related to plating efficiency, transporting the cells to the medical school with compound, or compound left in the flask after the media was removed and fresh media was added.

There was no significant interaction between γ -rays and BPA. The lack of interaction was probably due to the low toxicity of the amino acid derivative or the lack of uptake of BPA by the V-79 cell line. We accept the null hypothesis. There is no interaction between γ -rays and BPA.

C. 100 ppm ¹⁰Boron Proton Irradiations

There was no statistically significant interaction observed between the proton beam and BPA due to boron neutron capture. However, boron neutron capture may have occurred.

41

The group with BPA and protons showed an insignificant decrease in cell survival. The decrease in cell survival was not statistically significant. The small decrease in cell survival could be caused by random variation or a contribution of cell death by neutron capture. Although neutron capture may have contributed to cell death, the influence of neutron capture could not be detected at a statistically significant level. We accept the null hypothesis that there is no interaction between the proton beam and BPA.

Results showed a) boric acid and BSH were toxic at high concentrations b) BPA was not toxic c) boric acid and BSH significantly interacted with γ -rays d) BPA did not interact with γ -rays or the proton beam. In this study, boron neutron capture of the neutrons produced by the proton beam did not significantly increase the biological effectiveness of the proton beam. However, the sampling size was small. In the future, more repetitions need to be done to increase the sampling size. An increase in sample size will more accurately determine the actual contribution boron neutron capture may have on the biological effectiveness of the proton beam.

42

References

Asbury, A.K., R.G. Ojeann, S.L. Nielsen and W.H. Sweet. 1972. Neuropathological study of fourteen cases of malignant brain tumor treated by boron-10 slow neutron capture radiation. J. Neuropathol. Exp. Neurol., **31**:278-303.

Barth, R.F., A.H. Soloway and R.G. Fairchild. 1990. Boron neutron capture therapy of cancer. Cancer Res., **50**:1061-1070.

Bond, V.P., B.G. Laster and L. Wielopolski. 1995. The equal effectiveness ratio: A quantitative approach to the evaluation of compounds for boron neutron capture therapy. Radiat. Res., 141: 287-293.

Ceberg, P.C., A. Burn, S.B. Kahl, M.S. Koo, B.R.R. Persson and L.G. Salford. 1995. A comparative study on the pharmacokinetics and biodistribution of boronated porphyrin, (BOPP) and sulfhydryl boron hydride(BSH) in the RG2 rat glioma model. J. Neurosurg., 83:86-92.

Ceberg, P.C., A. Persson, A. Burn, R. Huiskamp, A. Fyhr, B.R.R. Persson and L.G. Salford. 1995. Performance of sulfhydryl boron hydride in patients with grade III and IV astrocytoma: A basis for boron neutron capture therapy. J. Neurosurg., 83:79-85.

Clenedenon, N.R., R.F. Barth, W.A. Gordon, J.H. Goodman, F. Alam, A.E. Staubus, C.P. Boesel, A.J. Yates, M.L. Moeschberger, R.G. Fairchild and J.A Kalef-Ezra. 1990. Boron neutron capture therapy of rat glioma. Neurosurgery 26:47-55.

Coderre, J.A., J.A. Kalef-Ezra, R.G. Fairchild, P.L. Micca, L.E. Reinstein and J.D. Glass. 1988. Boron neutron capture therapy of melanoma. Cancer Res., **48**:6313-6316.

Coderre, J.A., M.S. Makar, P.L. Micca, M.M. Nawroky, H.B. Liu, D.D. Joel, D.N. Slatkin and H.I Amols. 1993. Derivations of the relative biological effectiveness for the high-let radiations produced during boron neutron capture irradiations of the 9L rat gliosarcaoma *in vitro* and *in vivo*. Int. J. Radiat. Onc. Biol. Phys., **27**:1121-1129. Elowitz, E.H., M. Chadha, J.A. Codere, J. Iwai, D.N. Slatkin and , A.D.Chanana. 1996. A phase I/II trial of boron neutron capture therapy for glioblastoma multiforme using intravenous boronophenylalanine-fructose complex and epithermal neutrons: early clinical results. Seventh international symposium on neutron capture therapy for cancer. p. 163.

Fairchild, R.G. and V.P. Bond. 1985. Current status of ¹⁰Boron-neutron capture therapy: Enhancement of tumor dose via beam filtration and dose rate, and the effects of these parameters on minimum boron content: a theoretical evaluation. Int. J. Radiat. Oncol. Biol. Phys., **11**:831-840.

Fairchild, R.G., S.K. Saraf, J. Kalef-Ezra and B. Laster. 1990. Comparison of measured parameters from a 24 keV and a broad spectrum epithermal neutron beam for neutron capture therapy(NCT): An identification of consequential parameters. Med. Phys., 17:1047.

Fairchild, R.G., S.B. Kahl, B.H. Laster, J. Kalef-Ezra and E.A. Popence. 1990. In vitro determination of uptake, retention, distribution, biological efficacy and toxicity of boronated compounds for neutron capture therapy: A comparison of porphyrins with sulfhydral boron hydrides. Cancer Res., 50:4860-4865.

Gabel, D., R.G. Fairchild, B. Larsson and H.G. Borner. 1984. The relative biological effectiveness in V79 Chinese hamster cells of the neutron capture reactions in boron and nitrogen. Radiat. Res., **98**:307-316.

Griffin, T.W., T.F. Pajak, G.E. Laramore, W. Duncan, M.P. Richter, F.R. Hendrickson and M.P. Maor. 1988. Neutron vs. photon irradiation of inoperable salivary gland tumors: Results of an RTOG-MRC cooperative randomized study. Int. J. Radiat. Oncol. Biol. Phys., **15**:1085-1090.

Hatanaka, H., K. Amano, S. Kamano and K. Sano. 1986. Clinical experience of boron neutron capture therapy of malignant brain tumors. (1968-1985). In: *Neutron Capture Therapy*. [Hatanaka, H. (Ed.)]. Nishimura Co., Ltd., Nigata, Japan. pp:447-449.

Ichihashi, M., T. Nakanishi and Y. Mishima. 1982. Specific killing effect of ¹⁰B-para-boronophenylalanine in thermal neutron capture therapy of malignant melanoma: *In vitro* radiobiological evaluation. J. Invest. Dermatology **78**:215-218.

Janku, I., E. Buchar and Z. Jiricka. Nephrotoxicity of borocaptate after short-term administration in rabbits. Toxicology 70:99-108.

Jensen, D. 1984. A quantitative test for mutagenicity in V79 Chinese hamster cells. In: *Handbook of Mutagenicity Test Procedures* (2nd Ed.). [Kelby, B.J., Legator, M., Nichols, W., Ramel, C.(Eds.)]. Elsevier, Amsterdam.

Kitao, K. 1975. A method for calculating absorbed dose near interface from ${}^{10}B(n,\alpha)^7Li$ reaction. Radiat. Res., **61**:304-315.

Kleinbaum, D.G, and Kupper, L.L. 1978. Applied Regression Analysis and Other Multivariable Methods. Boston, MA. Duxbury Press, Boston, MA.

Kraft, S.L., P.R. Gavin, C.W. Leathers, C.E. DeHaan, W.F. Bauer, D.L. Miller, R.V. Dorn and M.L. Griebenow. 1994. Biodistribution of boron in dogs with spontaneous intracranial tumors following borocaptate sodium administration. Cancer Res., **54**:1259-1263.

Kruger, P.G. 1940. Some biological effects of nuclear disintegration products on neoplastic tissue. Proc. Nat. Acad. Sci., **26**:181-192.

Lapp R.E. and Andrews H.L (Eds.). 1972. Nuclear Radiation Physics (4th ed.). Prentice-Hall, Inc., Englewood Cliffs, NJ.

Larmore, G.E., P. Wootton, J.C. Livesey, D.S. Wilbur, R. Risler, M. Phillips, J. Jacky, T.A. Buchholz, T.W. Griffin and S. Brossard. 1994. Boron neutron capture therapy: A mechanism for achieving a concomitant tumor boost in fast neutron radiotherapy. Int. J. Radiat. Oncol. Biol. Phys., 28:1135-1142.

Laramore, G.E., J.M. Krall, F.J. Thomas, K.J. Russell, M.H. Maor, F.R. Hendrickson, K.L. Martz, T.W. Griffin and L.W. Davis. 1993. Fast neutron radiotherapy for locally advanced prostate cancer: Final report of an RTOG randomized clinical trial. Am. J. Clin. Oncol., **16**:164-167.

Laster, B.H., S.B. Kahl, E.A. Popenoe, D.W. Pate and R.G. Fairchild. 1991. Biological efficacy of boronated lowdensity lipoprotein for boron neutron capture therapy as measured in cell culture. Cancer Res., **51**:4588-4593. Lindstrom, P., P. Olsson, J. Malmqvist, J. Pettersson, P. Lemmen, B. Werner, S. Sjoberg, A. Olin, and J. Carlsson. 1994. New carborane-based compounds for boron neutron capture therapy: binding and toxicity of ANC-1, DAC-1 and B-Et-OMe in cultured human glioma and mouse melanoma cells. Anti-Cancer Drugs 5:43052.

Locher, G.L. 1936. Biological effects and therapeutic possibilities of neutrons. Am. J. Roentgenol Radium Ther., **36:**1-13.

Mill, A.J., G.R. Morgan and S.M. Newman. 1994. Cell survival measurements in argon, aluminum and sulfur filtered neutron beam: A comparison with 24 keV neutrons and relevance to boron neutron capture therapy. Br. J. Radiol., 67:1008-1016.

Mishima, Y., C. Honda, M. Ichihashi, H. Obara, J. Hiratsuka, H. Fukuda, M. Karashima, T. Kobayashi and K. Yoshino. 1989. Treatment of malignant melanoma by single thermal neutron capture therapy with melanoma-seeking ¹⁰Bcompound. Lancet **2**:388-389.

Nguyen, T., G. Brownell, S.A. Holden, S. Kahl, M. Miura and B.A. Teicher. 1993. Subcellular distribution of various boron compounds and implications for their efficacy in boron neutron capture therapy by Monte Carlo simulations. Radiat. Res., 133:33-40.

Nguyen, T., G. Brownell, S.A. Holden, and B.A. Teicher. 1993. Intracellular distribution of various boron compounds for use in boron neutron capture therapy. Biochem. Pharmacol., **45**:147-155.

Papaspyrou, M., L.E. Feinendegen and H. Muller-Gartner. 1994. Preloading with L-tyrosine increases the uptake of bornophenylalanine in mouse melanoma cells. Cancer Res., 54:6311-6314.

Prados, M.D. and C.B. Wilson. 1993. Neoplasms of the central nervous system. In: *Cancer Medicine*, Vol. 1. [Holland, J.F., Frei, E., Bast, R.C., Kufe, D.W., Morton, D.L. Weichselbaum, R.R. (Eds.)] Lea Febeger. pp:1080-1119.

Pettersson, O.A., P. Olsson, P. Lindstrom, S. Sjoberg, B.S. Larsson and J. Carlsson. Cellular binding of carboanylalanine and some effects of boron neutron capture. Acta Oncologica 33:685-691.

Slatkin, D.N., R.D. Stoner, K.M. Rosander, J.A. Kalef-Ezra and J.A. Laissue. 1988. Central nervous system radiation syndrome in mice from preferential ${}^{10}B(n,\alpha){}^{7}Li$ irradiation of brain vasculature. Proc. Natl. Acad. Sci., **85**:4020-4024.

Spielvogel, B.F. Choose a new path: Boron Biologicals. Personal Communication.

Soloway, A.H., R.F. Barth, R.A. Gahbauer, T.E. Blue and J.H. Goodman. The rationale and requirements for the development of boron neutron capture therapy. Personal Communication.

Sweet, W.H. 1951. The nuclear disintegrations in the diagnosis and treatment of brain tumor. N. Eng. J. Med., 245:875-878.

Sweet, W.H. and M. Javid. The possible use of neutron - capturing isotopes such as boron-10 in the treatment of neoplasms. I. Intracranial tumors. J. Neurosurg., 9:200-209.

Robertson, J.B. 1989. Toxicology of ionizing radiation. In: A Guide to general Toxicology (2nd Ed.). [Hayes, M. (Eds.)]. S. Karger, Basel, Switzerland. pp: 142-156.

Stragliotto, G., and H. Fankhauser. 1995. Biodistribution of boron sulfhydral for boron neutron capture therapy in patients with intracranial tumors. Neurosurgery **36**:285-293.

Yoshino, K., H. Kakihana, Y. Mori, H. Torii, H. Takahashi and Y. Mishma. 1993. Proposed mechanism of capture and release of p-boronophenylalanine in melanoma cells: Chemical behavior of p-boronophenylalanine-fructose complex in L-DOPA solution. In: Advances in neutron capture therapy. [Soloway, A.H., R. F. Barth and D.E. Carpenter (Eds.)]. Plenum Press, New York. pp. 253-256.

Zahn, P.A., F.S. Cooper and J.R. Dunning. 1940. Some *In* vivo effects of localized nuclear disintegration products on a transplantable mouse sarcoma. Proc. Nat. Acad. Sci., **26:**589-599.

Appendix I

Cytotoxicity of Boric Acid

Experiments with Cytotoxicity of Boric Acid

Rlach	DE	Cells	C**	5/50	Mean		
Flask	PE	Plated			Mean	s.d.	+-s.d
0 [*] -200 ^{\$} -1 0-200-2	0.47	165 165	79 77	1.02	1.01	0.02	1.03
0-200-3	0.47	165	79	1.02			0.99
0-2000-1	0.38	1805	651	0.99			1.03
0-2000-2 0-2000-3	0.38	1805 1805	701 678	1.02	0.99	0.04	0.95
30-200-1 30-200-2	0.47	198 198	N/A N/A		0.75		
30-200-3	0.47	198	70	0.75			
30-2000-1	0.38	1981	590	0.78			0.79
30-2000-2 30-2000-3	0.38	1981 1981	511 570	0.68	0.74	0.05	0.69
60-200-1	0.47	195	75	0.82			0.82
60-200-2	0.47	195	72	0.79	0.78	0.04	
60-200-3	0.47	195	68	0.74			0.74
60-2000-1 60-2000-2	0.38	1946 1946	603	0.82	0.88	0.06	0.94
60-2000-2	0.38	1946	657 686	0.89	0.00	0.00	0.82
120-200-1	0.47	195	37	0.4			0.64
120-200-2 120-200-3	0.47	195 195	49 58	0.54	0.52	0.12	0.40
120-2000-1 120-2000-2	0.38	1945 1945	482 568	0.65	0.72	0.06	0.78
120-2000-3	0.38	1945	551	0.75			0.66

Experiment 1

* = ppm ${}^{10}B$. ** = Colonies observed. \$ = Number of cells plated per flask.

Experiments with Cytotoxicity of Boric Acid

Flask	PE	Cells Plated	C**	s/so	Mean	s.d.	+-s.d.
0*-1	0.6	294	171	0.97	1 0	0 025	1.025
0-2 0-3	0.6	294 294	187 173	1.06	1.0	0.025	0.975
30-1	0.6	299	187	1.04			1.05
30-2 30-3	0.6	299 299	172 184	0.96	1.01	0.04	0.97
60-1 60-2	0.6	299 299	205 191	1.14	1.05	0.11	1.16
60-3	0.6	299	167	0.93	1.05	0.11	0.94
120-1 120-2	0.6	299 299	122 122	0.68	0.67	0.02	0.69
120-2	0.6	299	117	0.65	0.07	0.02	0.65

Experiment 2

* = ppm ¹⁰B. ** = Colonies observed.

Experiments with Cytotoxicity of Boric Acid

0	r	i	C	A	C	i	d

Flask	PE	Cells Plated	C**	S/So	Mean	s.d.	+-s.d
0-1 0-2	0.66	304 304	190 192	0.95 0.96	1.01	0.09	1.10
0-3	0.66	304	222	1.11			0.92
30-1 30-2	0.66	307 307	215 205	1.06	1.01	0.05	1.06
30-3	0.66	307	196	0.97			0.96
60-1 60-2	0.66	302 302	210 221	1.05	1.05	0.05	1.10
60-3	0.66	302	202	1.01			1.00
120-1 120-2	0.66	309 309	166 161	0.81	0.79	0.03	0.83
120-2	0.66	309	155	0.76	0.75	0.05	0.75

Experiment 3

* = ppm ¹⁰B. ** = Colonies observed.

Flask	PE	Cells Plated	C**	S/So	Mean	s.d.	+-s.d.
0 [*] -1 0-2	0.76	295 295	226 220	1.01	1.0	0.02	1.02
0-3	0.76	295	229	1.02			0.98
30-1 30-2	0.76	300 300	210 212	0.92	0.87	0.1	0.97
30-3	0.76	300	173	0.76	0.07		0.77
60-1 60-2	0.76	298 298	214 191	0.95	0.85	0.1	0.95
60-3	0.76	298	171	0.76			0.75
120-1 120-2	0.76	299 299	149 147	0.66	0.68	0.04	0.72
120-2	0.76	299	165	0.73	0.00	0.04	0.64

Experiment 4

* = ppm ¹⁰B. ** = Colonies observed.

Appendix II

Cytotoxicity of BSH

Experiments with Cytotoxicity of BSH

Flask	PE	Cells	C**	0/0-	Maga		
0-200-1 0-200-2 0-200-3	0.69 0.69 0.69	Plated 204 204 204 204	140 152 131	s/so 0.99 1.08 0.93	Mean	s.d.	+-s.d. 1.08 0.92
0-2000-1 0-2000-2 0-2000-3	0.62 0.62 0.62	2035 2035 2035	1251 1278 1226	0.99 1.01 0.97	0.99	0.02	1.01 0.97
30-200-1 30-200-2 30-200-3	0.69 0.69 0.69	201 201 201	65 67 78	0.47 0.48 0.56	0.50	0.05	0.55 0.45
30-2000-1 30-2000-2 30-2000-3	0.62 0.62 0.62	2007 2007 2007	545 571 N/A	0.44 0.46	0.45	0.01	0.46 0.44
60-200-1 60-200-2 60-200-3	0.69 0.69 0.69	201 201 201	78 83 80	0.56 0.60 0.58	0.58	0.02	0.60 0.56
60-2000-1 60-2000-2 60-2000-3	0.62 0.62 0.62	2012 2012 2012	887 841 816	0.71 0.67 0.65	0.68	0.03	0.71 0.65
120-200-1 120-200-2 120-200-3	0.69 0.69 0.69	227 227 227	28 32 22	0.18 0.2 0.14	0.17	0.03	0.20 0.14
120-2000-1 120-2000-2 120-2000-3	0.62 0.62 0.62	2270 2270 2270	206 232 195	0.15 0.16 0.14	0.15	0.01	0.16 0.14

Experiment 1

* = ppm ¹⁰B. ** = Colonies observed. \$ = Number of cells plated per flask.

Experiments with Cytotoxicity of BSH

Flask	PE	Cells Plated	C**	S/So	Mean	s.d.	+-s.d.
0 [*] -1 0-2	0.76	301 301	226	0.99	1.0	0.03	1.03
0-2	0.76 0.76	301	224 238	1.04	1.0	0.03	0.97
30-1	0.76	298	142	0.63			0.63
30-2 30-3	0.76 0.76	298 298	137 138	0.61	0.62	0.01	0.61
60-1	0.76	303	165	0.72			0.72
60-2 60-3	0.76 0.76	303 303	154 149	0.67 0.65	0.68	0.04	0.64
120-1	0.76	606	349	0.76			0.76
120-2 120-3	0.76 0.76	606 606	339 345	0.74 0.75	0.75	0.01	0.74
			L	L	L		

Experiment 2

* = ppm ¹⁰B. ** = Colonies observed.

Experiments with Cytotoxicity of BSH

Experiment 3

			-				
Flask	PE	Cells Plated	C**	S/So	Mean	s.d.	+-s.d.
0*-1	0.49	303	156	1.03	1 01	0.00	1.09
0-2 0-3	0.49 0.49	303 303	162 139	1.07 0.92	1.01	0.08	0.93
30-1	0.49	314	204	1.33			1.33
30-2 30-3	0.49	314 314	195 199	1.27 1.29	1.30	0.03	1.27
60-1	0.49	304	175	1.17			1.21
60-2 60-3	0.49	304 304	179 162	1.20	1.15	0.06	1.09
120-1	0.49	627	118	0.38			0.47
120-2 120-3	0.49	627 627	136 142	0.44	0.43	0.04	0.39
	L	I	L	1	I		L

* = ppm ¹⁰B. ** = Colonies observed.

Experiments with Cytotoxicity of BSH

Flask	PE	Cells Plated	C**	S/So	Mean	s.d.	+-s.d.
0 [*] -1 0-2	0.52	307 307	149 165	0.93	1.01	0.06	1.07
0-3	0.52	307	164	1.03			0.95
30-1 30-2	0.52	318 318	188 206	1.14	1.18	0.06	1.24
30-3	0.52	318	189	1.14	1.10	0.00	1.12
60-1 60-2	0.52	304 304	204 171	1.29	1.11	0.16	1.27
60-3	0.52	304	154	0.97		0.10	0.95
120-1 120-2	0.52	592 592	246 263	0.8	0.83	0.03	0.86
120-2	0.52	592	263	0.85		0.00	0.80

Experiment 4

* = ppm ¹⁰B. ** = Colonies observed.

Appendix III

Cytotoxicity of BPA

Experiments with Cytotoxicity of BPA

Experiment 1

			I		1		
Flask	PE	Cells Plated	C**	S/So	Mean	s.d.	+-s.d.
0*-200 ^{\$} -1 0-200-2	0.66	209 209	134 147	0.97 1.07	1.0	0.06	1.06
0-200-3	0.66	209	133	0.96			0.94
0-2000-1 0-2000-2	0.56	2093 2093	1126 1150	0.96 0.98	0.99	0.04	1.03
0-2000-3	0.56	2093	1219	1.04			0.95
30-200-1 30-200-2	0.66	345 345	280 227	1.23	1.12	0.12	1.24
30-200-3	0.66	345	255	1.12			1.00
30-2000-1 30-2000-2	0.56	3021 3021	1804 1814	1.07	1.04	0.05	1.09
30-2000-3	0.56	3021	1670	0.99	1.01	0.05	0.99
60-200-1 60-200-2	0.66	345 345	252 223	1.11 0.98	1.06	0.06	1.12
60-200-3	0.66	345	250	1.10			1.00
60-2000-1 60-2000-2	0.56	3021 3021	1585 1549	0.94	0.93	0.01	0.94
60-2000-3	0.56	3021	1565	0.93	0.50		0.92
120-200-1 120-200-2	0.66	297 297	268 231	1.37	1.34	0.15	1.49
120-200-2	0.66	297	291	1.48	1.54	0.15	1.19
120-2000-1 120-2000-2 120-2000-3	N/A	N/A	N/A		N/A	N/A	N/A

* = ppm ¹⁰B. ** = Colonies observed. \$ = Number of cells plated per flask.

Experiments with Cytotoxicity of BPA

Flask	PE	Cells Plated	C**	S/So	Mean	s.d.	+-s.d.
0 [*] -1 0-2 0-3	0.76 0.76 0.76	314 314 314	251 209 258	1.05 0.87 1.08	1.00	0.11	1.11
30-1 30-2 30-3	0.76 0.76 0.76	298 298 298	162 172 159	0.71 0.76 0.70	0.72	0.03	0.75
60-1 60-2 60-3	0.76 0.76 0.76	301 301 301	212 184 214	0.92 0.08 0.93	0.88	0.07	0.95
120-1 120-2 120-3	0.76 0.76 0.76	307 307 307	184 205 182	0.79 0.87 0.78	0.81	0.05	0.86

Experiment 2

* = ppm ¹⁰B. ** = Colonies observed.

Experiments with Cytotoxicity of BPA

Flask	PE	Cells Plated	C**	S/So	Mean	s.d.	+-s.d.
0 [*] -1 0-2	0.58	314 314	176 185	0.95	1.00	0.05	1.05
0-3	0.58	314	193	1.05			0.95
30-1 30-2	0.58	298 298	246 232	1.4	1.32	0.09	1.41
30-3	0.58	298	216	1.23	1.02		1.23
60-1 60-2	0.58	298 298	209 215	1.19	1.22	0.02	1.24
60-3	0.58	298	215	1.23	1.22	0.02	1.20
120-1 120-2	0.58	302 302	179 171	1.01	0.99	0.03	1.02
120-2	0.58	302	180	1.01	0.55	0.05	0.96

Experiment 3

* = ppm ¹⁰B. ** = Colonies observed.

Experiments with Cytotoxicity of BPA

Flask	PE	Cells Plated	C**	S/So	Mean	s.d.	+-s.d.
0 [*] -1 0-2	0.62	345 345	198 222	0.91	0.99	0.08	1.07
0-3	0.62	345	231	1.06	0.99		0.91
30-1 30-2	0.62	310 310	228 203	1.17	1.14	0.09	1.23
30-3	0.62	310	235	1.21	1.11	0.05	1.05
60-1 60-2	0.62	323 323	183 184	0.9	0.87	0.06	0.93
60-3	0.62	323	162	0.80	0.07	0.00	0.81
120-1 120-2	0.62	320 320	234 246	1.16	1.18	0.03	1.21
120-2	0.62	320	233	1.16	1.10	0.05	1.15

Experiment 4

* = ppm ¹⁰B. ** = Colonies observed.

Appendix IV

Boric Acid with $\boldsymbol{\gamma}$ Irradiations

RBE of y-ray only for Boric Acid

Experiment 1

Flask	<u>-lnS/So</u> Dose	Cells Plated	C**	S/So	Mean	s.d.	+-s.d.
0 [*] -1 0-2	N/A	305 305	189 185	1.02	1.01	0.03	1.04
0-3		305	193	0.97			0.98
200-1 200-2	1.18 x 10 ⁻³	305 305	155 149	0.79	0.79	0.05	0.84
200-3		305	144	0.84			0.74
400-1 400-2	1.73 x 10 ⁻³	525 525	141 136	0.52	0.50	0.02	0.52
400-3	10,0 10	525	162	0.48		0102	0.48
600-1 600-2	2.48 x 10 ⁻³	1010 1010	162 132	0.22	0.24	0.02	0.26
600-3	2010 1 10	1010	112	0.24	0.21	0.02	0.22
800-1 800-2	3.07×10^{-3}	3277 3277	138 149	0.089	0.086	0.005	0.091
800-3	5.07 X 10	3277	124	0.081	0.000	0.005	0.081
1000-1 1000-2	3.41 x 10 ⁻³	8095 8095	147 122	0.038	0.033	0.005	0.038
1000-2	5.41 A 10	8095	116	0.032	0.000	0.005	0.028

PE=0.61. * = RADS. ** = colonies observed.

RBE of y-ray with 100 ppm 10B-Boric Acid

Experiment 1

	<u>-lnS/So</u>	Cells					
Flask	Dose	Plated	C**	S/So	Mean	s.d.	+-s.d.
****B- ⁸ 0-1 B-0-2 B-0-3	N/A	525 525 525	166 221 191	0.86 1.14 0.99	1.00	0.14	1.14 0.86
B-200-1 B-200-2 B-200-3	3.47 x 10 ⁻³	525 525 525	92 108 90	0.48 0.56 0.47	0.50	0.05	0.55 0.45
B-400-1 B-400-2 B-400-3	3.79 x 10 ⁻³	1015 1015 1015	89 85 72	0.24 0.23 0.19	0.22	0.02	0.24 0.20
B-600-1 B-600-2 B-600-3	5.13 x 10 ⁻³	2035 2035 2035	47 31 27	0.063 0.042 0.036	0.047	0.014	0.061
B-800-1 B-800-2 B-800-3	6.22 x 10 ⁻³	6105 6105 6105	10 15 22	0.0045 0.0067 0.0098	0.007	0.0027	0.0097
B-1000-1 B-1000-2 B-1000-3	6.65×10^{-3}	20345 20345 20345	13 9 7	0.0017 0.0012 0.0009	0.0013	0.0004	0.0017

PE= 0.37. * = RADS. ** = colonies observed. *** = Boric Acid.

RBE of y-ray only for Boric Acid

Flask	<u>-lnS/So</u> Dose	Cells Plated	C**	S/So	Mean	s.d.	+-s.d.
*0-1 0-2	N/A	300 300	199 165	1.14	1.00	0.12	1.12
0-3	N/ 11	300	162	0.92	1.00	0.12	0.88
200-1 200-2	4.17 x 10^{-4}	300 300	171 164	0.98	0.92	0.08	1.00
200-3		300	146	0.83			0.84
400-1 400-2	1.73 x 10 ⁻³	522 522	141 166	0.46	0.50	0.04	0.54
400-3		522	154	0.51			0.46
600-1 600-2	2.31 x 10^{-3}	1005 1005	148 143	0.25	0.25	0.02	0.27
600-3		1005	160	0.27			0.23
800-1 800-2	2.76 x 10 ⁻³	3254 3254	223 211	0.12	0.11	0.02	0.13
800-3	2.70 X 10	3254	177	0.09	0.11	0.02	0.09
1000-1 1000-2		8040 8040	223 214	0.047	0.046	0.001	0.047
1000-3		8040	212	0.045	0.040	0.001	0.045
		St. And L. Same V.	1.8				

Experiment 2

PE=0.58. * = RADS. ** = colonies observed.

1

RBE of y-ray with 100 ppm 10B-Boric Acid

Experiment 2

	<u>-lnS/So</u>	Cells					
Flask	Dose	Plated	C**	S/So	Mean	s.d.	+-s.d.
*** [*] B-*0-1 B-0-2	N/A	520 520	124 133	0.89	1.00	0.13	1.13
B-0-3	M/A	520	160	1.15	1.00	0.15	0.87
B-200-1 B-200-2	3.68 x 10 ⁻³	520 520	52 51	0.37	0.48	0.19	0.67
B-200-3		520	97	0.70			0.29
B-400-1 B-400-2	2.60 x 10 ⁻³	1010 1010	121 61	0.45	0.35	0.12	0.47
B-400-3	2.00 x 10	1010	104	0.39	0.33	0.12	0.23
B-600-1 B-600-2	3.79×10^{-3}	2020 2020	60 70	0.11	0.10	0.03	0.13
B-600-3	5.77 A 10	2020	36	0.067	0.10	0.05	0.07
B-800-1 B-800-2	4.68 x 10 ⁻³	6060 6060	46 29	0.028	0.024	0.005	0.029
B-800-3	4.00 X 10	6060	40	0.025	0.024	0.005	0.019
B-1000-1 B-1000-2	5.65 x 10 ⁻³	20195 20195		0.0011	0.0035	0.0021	0.0056
B-1000-2 B-1000-3		20195		0.0046	0.0000	0.0021	0.0014

PE= 0.27. * = RADS. ** = colonies observed. *** = Boric acid.

60

RBE of y-ray only for Boric Acid

Flask	<u>-lnS/So</u> Dose	Cells Plated	C**	S/So	Mean	s.d.	+-s.d.
0 [*] -1 0-2 0-3	N/A	313 313	180 189	0.99	1.00	0.04	1.04
0-3		313	177	0.97			0.96
200-1 200-2	9.92 x 10^{-4}	313 313	146 150	0.80 0.83	0.82	0.02	0.84
200-3		313	148	0.82			0.80
400-1 400-2	1.59 x 10^{-3}	542 542	166 157	0.53	0.53	0.03	0.56
400-3	1000 11 10	542	177	0.56			0.50
600-1 600-2	2.31 x 10^{-3}	1043 1043	151 155	0.25	0.25	0.01	0.26
600-3	2002 11 20	1043	145	0.24	0.120		0.24
800-1 800-2	3.02×10^{-3}	3128 3128	153 167	0.084		0.005	0.094
800-2	J.02 X 10	3128	164	0.092	0.005	0.005	0.84
1000-1 1000-2	3.54×10^{-3}	8342 8342	174 106	0.036		0.007	0.035
1000-2		8342	144	0.022		0.007	0.022

Experiment 3

PE=0.58. * = RADS. ** = colonies observed..

RBE of y-ray with 100 ppm 10B-Boric Acid

Flask	<u>-lnS/So</u> Dose	Cells Plated	с	S/So	Mean	s.d.	+-s.d.
B***-0*-1 B-0-2	N/A	590 590	214 136	1.18	1.00	0.22	1.22
B-0-3		590	192	1.06			0.78
B-200-1 B-200-2	2.46 x 10 ⁻³	590 590	76 116	0.42	0.61	0.18	0.79
B-200-3		590	139	0.77			0.43
B-400-1 B-400-2	2.16 x 10 ⁻³	2060 2060	241 208	0.38	0.42	0.12	0.54
B-400-3		2060	350	0.56			0.30
B-600-1 B-600-2	3.49 x 10 ⁻³	4120 4120	158 164	0.13	0.12	0.01	0.13
B-600-3		4120	143	0.11			0.11
B-800-1 B-800-2	4.55 x 10 ⁻³	12360 12360	103 106	0.027	0.026 (.003	0.029
B-800-3	1100 1 10	12360	88	0.023	0.020		0.023
B-1000-1 B-1000-2		41200 41200	69 95	0.0055	0.0060	0.0013	0.0073
B-1000-3		41200	64	0.0051			0.0047

Experiment 3

PE=0.31. * = RADS. ** = colonies observed. *** = Boric acid.

Appendix V

BSH with γ Irradiations

RBE of y-ray only for BSH

Experiment 1

Flask	<u>-lnS/So</u> Dose	Cells Plated	C**	S/So	Mean	s.d.	+-s.d.
0 [*] -1 0-2 0-3	N/A	301 301 301	101 154 141	0.76 1.16 1.06	0.99	0.21	1.20
200-1 200-2 200-3	8.13 x 10 ⁻⁴	301	109 129 102	0.82 0.97 0.77	0.85	0.10	0.95
400-1 400-2 400-3	1.49 x 10 ⁻³	522 522 522	131 132 114	0.57 0.57 0.50	0.55	0.04	0.59
600-1 600-2 600-3	1.85 x 10 ⁻³	1004 1004 1004	157 135 137	0.36 0.31 0.31	0.33	0.03	0.36
800-1 800-2 800-3	2.88 x 10 ⁻³	3012 3012 3012	154 125 137	0.12 0.094 0.1	0.10	0.01	0.11
1000-1 1000-2 1000-3	3.51×10^{-3}	8033 8033 8033	119 120 81	0.034 0.034 0.023	0.03	0.006	0.036 0.024

PE=0.44. * = RADS. ** = colonies observed.

RBE of y-ray with 100 ppm 10B-BSH

Flask	<u>-lnS/So</u> Dose	Cells Plated	C**	S/So	Mean	s.d.	+-s.d.
B***-0*-1 B-0-2	N/A	585 585	205	1.02	1.00	0.03	1.03
B-0-3		585	194	0.97			0.97
B-200-1 B-200-2	1.59 x 10 ⁻³	585 585	152 136	0.76 0.68	0.73	0.03	0.76
B-200-3		585	149	0.74			0.70
B-400-1 B-400-2	2.32 x 10 ⁻³	2048 2048	243 259	0.35	0.40	0.05	0.45
B-400-3		2048	329	0.47			0.35
B-600-1 B-600-2	4.48 x 10 ⁻³	4097 4097	175 60	0.13	0.068	0.038	0.106
B-600-3		4097	51	0.036			0.30
B-800-1 B-800-2	4.59 x 10 ⁻³	12291 12291	102 110	0.024	0.026	0.0011	0.027
B-800-3	4.33 X 10	12291	110	0.026	0.020	0.0011	0.025
B-1000-1 B-1000-2	4.84 x 10 ⁻³	40972 40972	130 91	0.0093	0.0079	0.0014	0.0093
B-1000-2 B-1000-3	4.04 X 10	40972	111	0.0079	0.0079	0.0014	0.0065

Experiment 1

PE=0.34. * = RADS. ** = colonies observed. *** = BSH.

RBE of y-ray only for BSH

Flask	<u>-lnS/So</u> Dose	Cells Plated	C**	S/So	Mean	s.d.	+-s.d.
0 [*] -1 0-2 0-3	N/A	302 302 302	181 182 153	1.05 1.06 0.89	1.00	0.09	1.09
200-1 200-2 200-3	1.31 x 10 ⁻³	302 302 302	131 143 123	0.76 0.83 0.71	0.77	0.06	0.83
400-1 400-2 400-3	1.94 x 10 ⁻³	523 523 523	135 154 123	0.45 0.52 0.41	0.46	0.06	0.52
600-1 600-2 600-3	2.6 x 10 ⁻³	1006 1006 1006	138 108 118	0.24 0.19 0.21	0.21	0.03	0.24
800-1 800-2 800-3	3.02 x 10 ⁻³	3019 3019 3019	150 187 121	0.087 0.11 0.07	0.089	0.02	0.109
1000-1 1000-2 1000-3		8050 8050 8050	144 124 135	0.031 0.027 0.029	0.029	0.002	0.031

Experiment 2

PE=0.57. * = RADS. ** = colonies observed.

RBE of y-ray with 100 ppm 10B-BSH

Flask	<u>-lnS/So</u> Dose	Cells Plated	C**	S/So	Mean	s.d.	+-s.d.
B ^{***} -0 [*] -1 B-0-2	N/A	603 603	152 270	0.67	1.00	0.29	1.29
B-0-3		603	258	1.14			0.71
B-200-1 B-200-2	2.33 x 10 ⁻³	603 603	115 119	0.51	0.63	0.19	0.82
B-200-3		603	193	0.85			0.44
B-400-1 B-400-2	1.29 x 10 ⁻³	2110 2110	452 490	0.57	0.60	0.03	0.63
B-400-3		2110	480	0.61			0.57
B-600-1 B-600-2	2.17 x 10 ⁻³	4221 4221	422 441	0.27	0.27	0.006	0.276
B-600-3		4221	431	0.27			0.264
B-800-1 B-800-2	2.69 x 10 ⁻³	12664 12664	577 535	0.12	0.12	0.005	0.125
B-800-3		12664	549	0.12			0.115
B-1000-1 B-1000-2		40214 40214	1084 780	0.072	0.056	0.014	0.070
B-1000-3		40214	684	0.045			0.042

Experiment 2

PE=0.38. * = RADS. ** = colonies observed. *** = BSH.

RBE of y-ray only for BSH

Flask	<u>-lnS/So</u> Dose	Cells Plated	C**	S/So	Mean	s.d.	+-s.d.
0 [*] -1 0-2 0-3	N/A	303 303 303	158 170 139	1.02 1.10 0.9	1.01	0.1	1.11 0.91
200-1 200-2 200-3	7.54×10^{-4}	303 303 303	133 152 116	0.86 0.98 0.75	0.86	0.12	0.89
400-1 400-2 400-3	1.63 x 10 ⁻³	524 524 524	133 141 140	0.50 0.53 0.52	0.52	0.02	0.48
600-1 600-2 600-3	2.18 x 10 ⁻³	1008 1008 1008	149 123 146	0.29 0.24 0.28	0.27	0.03	0.24
800-1 800-2 800-3	2.46 x 10 ⁻³	3025 3025 3025	244 244 172	0.16 0.16 0.11	0.14	0.03	0.17
1000-1 1000-2 1000-3		8067 8067 8067	185 184 175	0.045 0.045 0.043	0.044	0.001	0.045 0.043

Experiment 3

PE=0.51. * = RADS. ** = colonies observed.

RBE of y-ray with 100 ppm 10B-BSH

Flask	<u>-lnS/So</u> Dose	Cells Plated	C**	S/So	Mean	s.d.	+-s.d.
B ^{***} -0 [*] -1 B-0-2	N/A	602 602	672 639	1.02	1.00	0.02	1.02
B-0-3		602	657	1.00			0.98
B-200-1 B-200-2	N/A	602 602	292 333	0.45	0.48	0.04	0.52
B-200-3		602	321	0.49			0.44
B-400-1 B-400-2	9.28 x 10 ⁻⁴	2108 2108	699 710	0.30	0.31	0.003	0.313
B-400-3	<i>J</i> .20 II 10	2108	707	0.31	0.01		0.307
B-600-1 B-600-2	1.75 x 10 ⁻³	4215 4215	781 762	0.17	0.17	0.003	0.173
B-600-3		4215	753	0.16			0.167
B-800-1 B-800-2	2.46 x 10 ⁻³	12646 12646	991 882	0.072	0.065	0.007	0.072
B-800-3		12646	812	0.059			0.058
B-1000-1 B-1000-2		40153 40153	1272 1115	0.029	0.027	0.002	0.029
B-1000-3		40153	1147	0.026			0.025

Experiment 3

PE= 1.09. * = RADS. ** = colonies observed. *** = BSH.

Appendix VI

BPA with γ Irradiations

RBE of y-ray only for BPA

Experiment 1

Flask	<u>-lnS/So</u> Dose	Cells Plated	C**	S/So	Mean	s.d.	+-s.d.
0 [*] -1 0-2	N/A	298 298 208	121 123	1.02	1.00	0.04	1.04
0-3 200-1 200-2 200-3	7.54 x 10 ⁻⁴	298 298 298 298	113 89 101 115	0.95 0.75 0.85 0.97	0.86	0.11	0.96 0.97 0.75
400-1 400-2 400-3	1.08 x 10 ⁻³	516 516 516	106 154 144	0.51 0.75 0.70	0.65	0.13	0.78
600-1 600-2 600-3	1.75 x 10 ⁻³	993 993 993	132 135 151	0.33 0.34 0.38	0.35	0.026	0.376
800-1 800-2 800-3	2.21 x 10 ⁻³	2268 2268 2268	148 168 152	0.16 0.19 0.17	0.17	0.015	0.185
1000-1 1000-2 1000-3	2.5×10^{-3}	7941 7941 7941	208 305 263	0.065 0.096 0.083	0.082	0.015	0.097 0.067

PE=0.4. * = RADS. ** = colonies observed.

RBE of y-ray with 100 ppm 10B-BPA

Experiment 1

Flask	<u>-lnS/So</u> Dose	Cells Plated	C**	s/so	Mean	s.d.	+-s.d.
B ^{***} -0 [*] -1 B-0-2 B-0-3	N/A	168 168 168	89 66 81	1.13 0.84 1.03	1.00	0.15	1.15
B-200-1 B-200-2 B-200-3	1.78 x 10 ⁻³	168 168 168	32 51 58	0.41 0.65 0.74	0.60	0.17	0.77
B-400-1 B-400-2 B-400-3	1.68 x 10 ⁻³	590 590 590	130 132 96	0.47 0.48 0.35	0.43	0.07	0.50
B-600-1 B-600-2 B-600-3	1.8 x 10 ⁻³	1770 1770 1770	169 277 276	0.20 0.33 0.33	0.29	0.08	0.37
B-800-1 B-800-2 B-800-3	2.46 x 10 ⁻³	5900 5900 5900	310 321 370	0.11 0.12 0.13	0.12	0.012	0.132
B-1000-1 B-1000-2 B-1000-3		11800 11800 11800	307 195 305	0.056 0.035 0.055	0.049	0.012	0.061 0.037

PE=0.47. * = RADS. ** = colonies observed. *** = BPA.

RBE of y-ray only for BPA

Flask	<u>-lnS/So</u> Dose	Cells Plated	C**	S/So	Mean	s.d.	+-s.d.
0 [*] -1 0-2 0-3	N/A	281 281 281	127 145 167	0.87 0.99 1.14	1.00	0.14	1.14
200-1 200-2 200-3	1.51 x 10 ⁻³	281	109 104 111	0.75 0.71 0.76	0.74	0.03	0.77
400-1 400-2 400-3	1.41 x 10 ⁻³	488 488 488	139 139 153	0.55 0.55 0.60	0.57	0.03	0.60
600-1 600-2 600-3	2.06 x 10 ⁻³	939 939 939	158 154 112	0.32 0.32 0.23	0.29	0.05	0.34
800-1 800-2 800-3	2.29 x 10 ⁻³	2817 2817 2817	239 230 220	0.16 0.16 0.15	0.16	0.01	0.17
1000-1 1000-2 1000-3		7511 7511 7511	251 240 205	0.064 0.061 0.052	0.059	0.006	0.065 0.053

Experiment 2

PE=0.52. * = RADS. ** = colonies observed.

RBE of y-ray with 100 ppm 10B-BPA

Flask	<u>-lnS/So</u> Dose	Cells Plated	C**	S/So	Mean	s.d.	+-s.d.
B ^{***} -0 [*] -1 B-0-2	N/A	322 322	151 166	0.92	1.00	0.07	1.07
B-0-3		322	173	1.06			0.93
B-200-1 B-200-2	2.08 x 10 ⁻³	322 322	123 92	0.75	0.68	0.1	0.78
B-200-3		322	118	0.72			0.58
B-400-1 B-400-2	1.36 x 10 ⁻³	571 571	162 167	0.56	0.60	0.05	0.65
B-400-3	1.00 1. 10	571	189	0.65			0.55
B-600-1 B-600-2	1.7 x 10 ⁻³	1714 1714	343 286	0.40	0.36	0.03	0.39
B-600-3		1714	300	0.35			0.39
B-800-1 B-800-2	2.29 x 10 ⁻³	5712 5712	560 351	0.19	0.16	0.04	0.20
B-800-3	2.29 1 10	5712	492	0.17	0.10	0.01	0.12
B-1000-1 B-1000-2	2.60 x 10^{-3}	$11424 \\ 11424$	497 421	0.086	0.076	0.009	0.085
B-1000-3		11424	399	0.069			0.067

Experiment 2

PE=0.51. * = RADS. ** = colonies observed. *** = BPA.

RBE of y-ray only for BPA

Flask	<u>-lnS/So</u> Dose	Cells Plated	C**	S/So	Mean	s.d.	+-s.d.
0 [*] -1 0-2	N/A	274 274	176 140	1.21 0.96	1.00	0.19	1.19
0-3		274	120	0.83			0.81
200-1 200-2	1.93 x 10 ⁻³	274 274	100 82	0.69	0.68	0.11	0.79
200-3		274	113	0.78			0.57
400-1 400-2	1.83 x 10 ⁻³	475 475	114 133	0.45	0.48	0.04	0.52
400-3		475	115	0.46			0.44
600-1 600-2	2.12 x 10 ⁻³	915 915	153 137	0.32	0.28	0.04	0.32
600-3		915	116	0.24			0.24
800-1 800-2	2.65 x 10 ⁻³	2744 2744	173 202	0.12	0.12	0.02	0.14
800-3	2.05 A 10	2744	161	0.11	0.12	0.02	0.10
1000-1 1000-2		7318 7318	223 269	0.057	0.055	0.015	0.07
1000-3		7318	154	0.040			0.04

Experiment 3

PE=0.53. * = RADS. ** = Colonies observed.

RBE of y-ray with 100 ppm 10B-BPA

	<u>-lnS/So</u>	Cells		1	1		
Flask	Dose	Plated	C**	S/So	Mean	s.d.	+-s.d.
B ^{***} -0 [*] -1 B-0-2 B-0-3	N/A	305 305 305	183 168 159	1.08 0.99 0.94	1.00	0.07	1.07 0.93
<u> </u>		505	135	0.51			0.55
B-200-1 B-200-2	1.23 x 10 ⁻⁴	305 305	158 116	0.93	0.78	0.13	0.91
B-200-3		305	125	0.74			0.65
B-400-1 B-400-2	1.47 x 10 ⁻³	542 542	171 162	0.57	0.56	0.02	0.58
B-400-3		542	170	0.56			0.54
B-600-1 B-600-2 B-600-3	2.05 x 10^{-3}	1627 1627 1627	302 275 221	0.33 0.30 0.24	0.29	0.05	0.34
B-800-1 B-800-2 B-800-3	2.62 x 10 ⁻³	5423 5423 5423	414 386 317	0.14 0.13 0.11	0.12	0.02	0.14
B-1000-1 B-1000-2 B-1000-3		10847 10847 10847	331 316 340	0.055 0.052 0.056	0.054	0.002	0.056

Experiment 3

PE=0.56. * = RADS. ** = colonies observed. *** = BPA

Appendix VII

BPA with Proton and γ Irradiations

RBE of y-rays only for proton + 100 ppm 10B-BPA

Experiment 1

	<u>-lnS/So</u>	Cells					
Flask	Dose	Plated	C**	S/So	Mean	s.d.	+-s.d.
0 ^{**} -1 0-2 0-3 0-4	N/A	293 293 293 293 293	237 226 246 228	1.00 0.96 1.05 0.97	0.99	0.04	1.03 0.95
200-0 200-1 200-3 200-4	1.56 x 10 ⁻³	293 293 293 293 293	172 174 167 173	0.73 0.74 0.71 0.73	0.73	0.013	0.743
400-1 400-2 400-3 400-4	2.05 x 10 ⁻³	489 489 489 489	182 135 176 196	0.47 0.35 0.45 0.50	0.44	0.07	0.51
600-1 600-2 600-3 600-4	2.52 x 10^{-3}	979 979 979 979 979	162 156 163 211	0.21 0.20 0.21 0.27	0.22	0.03	0.25 0.19
800-1 800-2 800-3 800-4	2.85 x 10 ⁻³	2938 2938 2938 2938 2938	206 257 231 263	0.088 0.109 0.098 0.112	0.102	0.011	0.113 0.091
1000-1 1000-2 1000-3 1000-4	3.05 x 10 ⁻³	8814 8814 8814 8814 8814	303 284 342 401	0.043 0.040 0.049 0.057	0.047	0.007	0.054 0.040

P.E.= 0.80. * = RADS. ** = colonies observed.

-lnS/So Cells Plated C** S/So Flask Dose Mean s.d. +-s.d. $P^{\circ} - 0^{**} - 1$ 293 206 0.94 1.05 293 216 0.99 1.00 0.05 P-0-2 N/AP-0-3 293 219 1.00 0.95 P - 0 - 4293 233 1.07 293 0.64 0.74 P-200-0 139 1.93×10^{-3} P-200-1 293 155 0.71 0.68 0.06 P-200-3 293 165 0.76 0.62 P-200-4 293 135 0.72 139 0.38 P - 400 - 1489 0.38 4.30×10^{-3} 489 114 P-400-2 0.31 0.18 0.20 P-400-3 489 7 0.019 -0.02 P-400-4 489 1 0.0027 125 P-600-1 979 0.17 0.129 5.18 x 10⁻³ 0.045 0.084 P-600-2 979 0.008 6 P-600-3 979 0 0.00 -0.039 P-600-4 979 0 0.00 P-800-1 2938 0 0.00 0.055 4.99 x 10⁻³ 161 P-800-2 2938 0.074 0.018 0.037 P-800-3 2938 0 0.00 -0.019P-800-4 2938 0 0.00 0.0003 P-1000-1 8814 2 0.024 P-1000-2 4.81 x 10⁻³ 8814 0 0.00 0.008 0.016 0.00 -0.008 P-1000-3 8814 0 P-1000-4 8814 212 0.032

Experiment 1

P.E.= 0.75. * = RADS. ** = colonies observed. \$ = Proton.

RBE for proton + 100 ppm ¹⁰B-BPA

Flask	<u>-lnS/So</u> Dose	Cells Plated	C**	S/So	Mean	s.d.	+-s.d.
^e BP ^{\$} -0**-1 BP-0-2 BP-0-3 BP-0-4	249 (mark)	436 436 436 436	270 243 247 254	1.07 0.96 0.97	1.00	0.05	1.05 0.95
BP-200-0 BP-200-1 BP-200-3 BP-200-4	2.22 x 10 ⁻³	436 436 436 436	177 149 176 149	0.59 0.70	0.64	0.06	0.70 0.58
BP-400-1 BP-400-2 BP-400-3 BP-400-4	6.28 x 10 ⁻³	784 784 784 784	99 1 43 5	0.22 0.0022 0.094 0.011	0.081	0.20	0.281 -0.119
BP-600-1 BP-600-2 BP-600-3 BP-600-4	8.67 x 10 ⁻³	1962 1962 1962 1962 1962	0 2 23 0	0.00 0.0018 0.021 0.00	0.005	0.084	0.089 -0.079
BP-800-1 BP-800-2 BP-800-3 BP-800-4	9.30 x 10 ⁻³	5886 5886 5886 5886	0 0 0 8	0.00 0.00 0.00 0.0023	0.0006	0.001	0.0016 -0.0004
BP-1000- BP-1000- BP-1000- BP-1000-	2 7.14 x 10 ⁻³	9814 9814 9814 9814	0 18 0 0	0.00 0.0032 0.00 0.00	0.0008	0.002	0.0028

Experiment 1

P.E.= 0.58. * = RADS. ** = colonies observed. @ = BPA. \$ = Proton.

RBE of y-rays only for proton + 100 ppm 10B-BPA

	<u>-lnS/So</u>	Cells			I		
Flask	Dose	Plated	C**	S/So	Mean	s.d.	+-s.d.
0 [*] -1 0-2 0-3 0-4	N/A	255 255 255 255	233 241 225 201	1.04 1.07 1.00 0.89	1.00	0.08	1.08 0.92
200-0 200-1 200-3 200-4	9.62 x 10 ⁻⁴	255 255 255 255 255	177 189 185 191	0.79 0.84 0.82 0.85	0.83	0.027	0.857 0.803
400-1 400-2 400-3 400-4	2.18 x 10 ⁻³	425 425 425 425	166 149 157 154	0.44 0.40 0.42 0.41	0.42	0.02	0.44
600-1 600-2 600-3 600-4	2.67 x 10 ⁻³	850 850 850 850	170 160 119 154	0.23 0.21 0.16 0.21	0.20	0.03	0.23 0.17
800-1 800-2 800-3 800-4	2.87 x 10 ⁻³	2550 2550 2550 2550	230 241 232 207	0.102 0.107 0.103 0.092	0.10	0.006	0.106 0.094
1000-1 1000-2 1000-3 1000-4	3.34×10^{-3}	7651 7651 7651 7651	202 245 245 265	0.030 0.036 0.036 0.039	0.036	0.004	0.040

Experiment 2

P.E.= 0.88. * = RADS. ** = colonies observed..

Flask	<u>-lnS/So</u> Dose	Cells Plated	C**	S/So	Mean	s.d.	+-s.d.
$P^{\circ}-0^{*}-1$ P-0-2 P-0-3 P-0-4	N/A	255 255 255 255	233 216 215 100	1.22 1.13 1.13 0.52	1.00	0.32	1.32 0.68
P-200-0 P-200-1 P-200-3 P-200-4	1.53 x 10 ⁻³	255 255 255 255 255	155 121 146 140	0.81 0.63 0.76 0.73	0.74	0.08	0.82 0.66
P-400-1 P-400-2 P-400-3 P-400-4	2.7 x 10 ⁻³	425 425 425 425	112 112 111 96	0.35 0.35 0.35 0.30	0.34	0.03	0.37
P-600-1 P-600-2 P-600-3 P-600-4	3.3 x 10 ⁻³	850 850 850 850	97 97 60 99	0.15 0.15 0.09 0.16	0.14	0.03	0.17 0.11
P-800-1 P-800-2 P-800-3 P-800-4	3.33 x 10 ⁻³	2550 2550 2550 2550	140 126 139 129	0.073 0.066 0.073 0.068	0.070	0.004	0.074 0.066
P-1000-1 P-1000-2 P-1000-3 P-1000-4		7651 7651 7651 7651	110 123 117 160	0.019 0.022 0.02 0.028	0.022	0.004	0.026 0.018

Experiment 2

P.E.= 0.75. * = RADS. ** = colonies observed. \$ = Proton.

RBE for proton + 100 ppm ¹⁰B-BPA

Flask	<u>-lnS/So</u> Dose	Cells Plated	C**	s/so	Mean	s.d.	+-s.d.
^e BP ^{\$} -0 [*] -1 BP-0-2 BP-0-3 BP-0-4	N/A	417 417 417 417	171 161 159 163	1.05 0.99 0.97 0.97	1.00	0.3	1.03 0.97
BP-200-0 BP-200-1 BP-200-3 BP-200-4	1.83 x 10 ⁻³	417 417 417 417	105 113 130 105	0.64 0.69 0.80 0.64	0.69	0.07	0.76 0.62
BP-400-1 BP-400-2 BP-400-3 BP-400-4	2.77 x 10 ⁻³	752 752 752 752	91 126 84 88	0.31 0.43 0.29 0.30	0.33	0.07	0.40 0.26
BP-600-1 BP-600-2 BP-600-3 BP-600-4	3.17 x 10 ⁻³	1880 1880 1880 1880	104 74 139 121	0.14 0.10 0.19 0.16	0.15	0.04	0.19 0.11
BP-800-1 BP-800-2 BP-800-3 BP-800-4	3.36 x 10 ⁻³	5641 5641 5641 5641	157 122 170 151	0.071 0.055 0.077 0.068	0.068	0.009	0.077 0.059
BP-1000-2 BP-1000-2 BP-1000-3 BP-1000-4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9402 9402 9402 9402 9402	68 59 50 50	0.018 0.016 0.014 0.014	0.015	0.002	0.017 0.013

Experiment 2

P.E.= 0.39. * = RADS. ** = colonies observed. @ = BPA. \$ = Proton.