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CLASSIFICATION OF KUGA FIBER VARIETIES

SALMAN ABDULALI

Abstract. We complete Satake’s classification of Kuga fiber varieties
by showing that if a representation ρ of a hermitian algebraic group
satisfies Satake’s necessary conditions, then some multiple of ρ defines
a Kuga fiber variety.

1. Introduction

Kuga fiber varieties [20,23] are families of abelian varieties A → V, where
V = Γ\G(R)0/K is an arithmetic variety, and A is the pullback of the
universal family of abelian varieties over a Siegel modular variety. Here,
G is a semisimple algebraic group over Q such that G(R) is of hermitian
type, K is a maximal compact subgroup of G(R)0, and Γ is an arithmetic
subgroup of G(Q). A Kuga fiber variety is constructed from a symplectic
representation ρ : G → Sp(2n,Q) which is equivariant with a holomorphic
map τ : X → Sn, where X = G(R)0/K is the symmetric domain belonging
to G, and Sn is the Siegel space of degree n. Kuga assumed that V is
compact; we do not make this assumption.

Kuga’s original motivation was to prove the Ramanujan conjecture, a goal
achieved by Deligne [9, 11]. Kuga fiber varieties, which include Shimura’s
pel-families [41], have played a central role in the arithmetic theory of auto-
morphic forms [26,30,31]. These varieties are also key to the study of alge-
braic cycles on abelian varieties and abelian schemes [4,5,14,15,18,21,29,42];
indeed, the concept of the Hodge group (or Mumford-Tate group) of an
abelian variety arose in the context of Kuga fiber varieties [28]. Another
area in which Kuga fiber varieties play a key role is in the study of K3-
surfaces, via the Kuga-Satake construction of abelian varieties associated
to K3-surfaces [25], as in Deligne’s proof of the Weil conjectures for these
surfaces [10].

We consider the following problem in this paper: Given an arithmetic va-
riety V, classify all Kuga fiber varieties over it. Equivalently, given the group
G, find all representations of it into a symplectic group which are equivari-
ant with holomorphic maps of the corresponding symmetric domains. From
another point of view, this problem is equivalent to the classification (up to
isogeny) of the semisimple parts of the Hodge groups of abelian varieties, to-
gether with their action on the first cohomology of the abelian variety. This
problem was raised by Kuga [20] in the 1960’s, and partially answered by
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Satake [33–40]. Addington [6] completed Satake’s classification for Q-simple
groups of type II (orthogonal groups) and type III (symplectic groups). This
was partially extended to non-simple groups of type III by Abdulali [1, 2].

Deligne [12] and Milne [27] considered this problem from a somewhat dif-
ferent point of view. Their results are similar to those of Satake. Milne states
the theorem for all suitable representations of a Q-simple group, though he
proves it only in the situations where Satake proved it, and he does not
deal fully with non-simple groups. It is important to deal with non-simple
groups because the semisimple part of the Hodge group of a simple abelian
variety need not be simple. We give an example of such an abelian variety in
Section 6. Further examples may be found in Satake [36, Remark 2, p. 356],
Kuga [22, §5], and Abdulali [2, §4; 3, §2.4].

Green, Griffiths, and Kerr [16, 17] and Patrikis [32] have considered the
more general problem of classifying the Hodge groups of Hodge structures
of higher weight. They completely classify the reductive groups which are
Mumford-Tate groups of polarizable Hodge structures of arbitrary weight;
however the representations of the groups on the Hodge structures have not
been classified.

The key to our classification is a reduction to the rigid case, which is much
easier. In the proof of our main theorem (Theorem 4) we reduce the general
case to the rigid case, which is proved in Theorem 3. The inspiration for
this strategy comes from the construction of families of families of abelian
varieties by Kuga and Ihara [24], and the related concept of “sharing” in
Kuga [22, §5, p. 277].

Notations and conventions. All representations are finite-dimensional and
algebraic. For a finite field extension E of a field F , we let ResE/F be the
restriction of scalars functor, from schemes over E to schemes over F . For an
algebraic or topological group G, we denote by G0 the connected component
of the identity.

2. Kuga fiber varieties

In this section we give an overview of the construction of Kuga fiber
varieties. Our primary purpose is to fix the notations and terminology; for
details we refer to Satake [39].

2.1. Groups of hermitian type. Let G be a group of hermitian type.
This means that G is a semisimple real Lie group, and X := G0/K is
a bounded symmetric domain for a maximal compact subgroup K of G0.
Denote by 1 the identity element of G. Let g := LieG be the Lie algebra of
G, k := LieK, and let g = k⊕p be the corresponding Cartan decomposition.
Differentiating the natural map ν : G0 → X induces an isomorphism of p
with To(X), the tangent space of X at the base point o = ν(1), and there
exists a unique H0 ∈ Z(k), called the H-element at o, such that adH0|p is
the complex structure on To(X).
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2.2. Equivariant holomorphic maps. Let G1 and G2 be groups of her-
mitian type, with symmetric spaces X1 and X2 respectively. Let H0 and
H ′

0 be H-elements at base points o1 ∈ X1 and o2 ∈ X2 respectively. Let
ρ : G1 → G2 be a homomorphism of Lie groups. We say that ρ satisfies the
H1-condition relative to the H-elements H0 and H ′

0 if

(2.2.1) [dρ(H0)−H ′
0, dρ(g)] = 0 for all g ∈ g.

The stronger condition

(2.2.2) dρ(H0) = H ′
0

is called the H2-condition. If either of these is satisfied, then there exists a
unique holomorphic map τ : X1 → X2 such that τ(o1) = o2, and the pair
(ρ, τ) is equivariant in the sense that

τ(g · x) = ρ(g) · τ(x) for all g ∈ G0, x ∈ X.

In fact, Clozel [8] has shown that if G2 has no exceptional factors, then the
H1-condition is equivalent to the existence of an equivariant holomorphic
map.

2.3. The Siegel space. Let E be a nondegenerate alternating form on a
finite-dimensional real vector space V . The symplectic group Sp(V,E) is a
Lie group of hermitian type; the associated symmetric domain is the Siegel

space

S(V,E) = {J ∈ GL(V ) | J2 = −I and

E(x, Jy) is symmetric, positive definite }.
Sp(V,E) acts on S(V,E) by conjugation. The H-element at J ∈ S(V,E)
is J/2.

Lemma 1. Let G be a group of hermitian type with symmetric domain X,

and let E be a nondegenerate alternating form on a finite-dimensional real

vector space V . Let ρ : G → Sp(V,E) satisfy the H2-condition with respect

to H-elements H0 and H ′
0 = J0/2 at base points o ∈ X and J0 ∈ S(V,E),

respectively. Then J0 ∈ ρ(G).

Proof. Since J0 is a complex structure on V , there exists a basis of V with

respect to which J0 =

(
0 In

−In 0

)
, where 2n = dimV . Then, using the H2-

condition, we calculate that J0 = exp(π2J0) = exp(πH ′
0) = exp(dρ(πH0)) =

ρ(exp(πH0)). �

2.4. The fiber varieties. We shall say that an algebraic group G over a
subfield of R is of hermitian type if the Lie group G(R) is of hermitian type.
Now let G be a connected, semisimple algebraic group of hermitian type
over Q. Assume that G has no nontrivial, connected, normal subgroup H
such that H(R) is compact.
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Let E be a nondegenerate alternating form on a finite-dimensional rational
vector space V . The symplectic group Sp(V,E) is then a Q-algebraic group
of hermitian type. We write S(V,E) for S(VR, ER). Let ρ : G → Sp(V,E)
be a representation defined over Q, which satisfies the H1 condition with
respect to the H-elements H0 and H ′

0 = J/2. Let τ : X → S(V,E) be
the corresponding equivariant holomorphic map. Let Γ be a torsion-free
arithmetic subgroup of G(Q), and L a lattice in V such that ρ(Γ)L = L.
Then the natural map

A = (Γ⋉ρ L)\(X × VR) −→ V := Γ\X

is a morphism of smooth quasiprojective algebraic varieties (Borel [7, Theo-
rem 3.10, p. 559] and Deligne [13, p. 74]), so that A is a fiber variety over V
called a Kuga fiber variety. The fiber AP over any point P ∈ V is an abelian
variety isomorphic to the torus VR/L with the complex structure τ(x), where
x is a point in X lying over P .

We say that a representation ρ : G → GL(V ) defines a Kuga fiber variety
if ρ(G) is contained in a symplectic group Sp(V,E), and ρ satisfies the H1-
condition with respect to some H-elements.

3. Satake’s Classification

3.1. Necessary Conditions. In a series of papers [33–40] Satake classified
the H1-representations of a given hermitian group into a symplectic group.
We summarize his results below. Let G be a connected, semisimple, linear
algebraic group over Q. Assume that G(R)0 is of hermitian type, and has
no nontrivial, connected, normal Q-subgroup H with H(R) compact. After
replacing G by a finite covering, if necessary, we may write

gR =
s⊕

j=0

gj, G(R) = G0 ×G1 × · · · ×Gs,

where G0 is compact, each Gj is a noncompact absolutely simple Lie group
for j > 0, and, each gj = Lie(Gj). Suppose ρ : G → Sp(V,E) is a symplectic
representation satisfying the H1-condition. Then,

(1) For j = 1, . . . s, we have that Gj is one of the following:
(a) Type I: SU(p, q) with p ≥ q ≥ 1;
(b) Type II: SU−(n,H) with n ≥ 5 (this is the group that Helgason

[19, p. 445] calls SO⋆(2n));
(c) Type III: Sp(2n,R) with n ≥ 1;
(d) Type IV: Spin(p, 2) with p ≥ 1, p 6= 2.

(2) Let ρ′ be a nontrivial C-irreducible subrepresentation of ρC. Then,
for some index j (1 ≤ j ≤ s), we have that ρ′ is equivalent to ρ0⊗ρj,
where ρ0 is a representation of G0,C, and, ρj is a representation of
Gj,C. We call this the stability condition.



CLASSIFICATION OF KUGA FIBER VARIETIES 5

(3) Fix an index j with 1 ≤ j ≤ s. Let ρj be an irreducible subrepre-
sentation of VR considered as a Gj-module. Then ρj is either trivial
or given by one of the following:
(a) If Gj = SU(p, q) with p ≥ q ≥ 2, then ρj,C is the direct sum of

the standard representation of Gj,C = SLp+q(C) and its contra-
gredient; it satisfies the H2-condition if and only if p = q.

(b) If Gj = SU(p, 1), then ρj is one of the following:

(i)
∧k ⊕

∧p+1−k, for some k with 1 ≤ k < p+1
2 ;

(ii)
∧k with k = p+1

2 , and p ≡ 1 (mod 4);

(iii) the direct sum of two copies of
∧k with k = p+1

2 , and
p ≡ 3 (mod 4).

The H2-condition is satisfied if and only if k = p+1
2 .

(c) If Gj = SU−(n,H) with n ≥ 5, then ρj,C is the direct sum of
two copies of the standard representation. The H2-condition is
satisfied in this case.

(d) If Gj = Sp(2n,R), then ρj is the standard representation, and
satisfies the H2-condition.

(e) If Gj = Spin(p, 2) with p ≥ 1 and p odd, then
(i) ρj is the spin representation if p ≡ 1, 3 (mod 8);
(ii) ρj,C is the direct sum of two copies of the spin represen-

tation if p ≡ 5, 7 (mod 8).
In both cases, ρj satisfies the H2-condition.

(f) If Gj = Spin(p, 2) with p ≥ 4, and p even, then ρj is
(i) one of the two spin representations if p ≡ 2 (mod 8);
(ii) the direct sum of two copies of a spin representation if

p ≡ 6 (mod 8);
(iii) the direct sum of the two spin representations if p ≡ 0

(mod 4).
In each case, ρj satisfies the H2-condition.

We note that the above conditions imply that ρ is self-dual.

3.2. A sufficient condition. Satake showed that the necessary conditions
listed in §3.1 are sufficient if we make an additional assumption.

Theorem 2 (Satake [38]). Let G be a Q-simple hermitian group, and write

G(R) =
∏

α∈S Gα where each Gα is an absolutely simple real algebraic group.

Let ρ be a representation of G satisfying the conditions of §3.1. Assume

further that each irreducible subrepresentation of ρC is nontrivial on Gα for

exactly one α. Then some multiple of ρ defines a Kuga fiber variety.

3.3. More on type I. We now take a closer look at the H1-representation
ρ : SU(p, q) → Sp(V,E) given by item (3a) of the list in §3.1. We recall the
matrix representation of this given by Satake. Let J0 ∈ S(V,E) be the base
point. The eigenvalues of J0 on VC are i and −i, and we take a basis of VC

with respect to which the matrix of J0 is

(
iIm 0
0 −iIm

)
. The Lie algebra of
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Sp(V,E) with respect to this basis is given by

sp(V,E) =

{(
A B
C −tA

) ∣∣∣∣B,C symmetric

}
,

and the H-element is H ′
0 =

(
i
2Im 0
0 − i

2Im

)
.

With respect to a suitable basis the Lie algebra of SU(p, q) is given by

su(p, q) =

{(
X1 X12

tX12 X2

)
∈ slp+q(C)

∣∣∣∣
X1 ∈ Mp(C),X2 ∈ Mq(C)

tXj = −Xj(j = 1, 2)

}
,

and an H-element is given by

H0 =

(
qi
p+qIp 0

0 − pi
p+qIq

)
.

Then, dρ : su(p, q) → sp2p+2q is given by

(
X1 X12

tX12 X2

)
7→




X2 0 0 tX12

0 X1 X12 0
0 tX12 X2 0

X12 0 0 X1


 .

We extend dρ to u(p, q), and denote by

ρ̄ : U(p, q) → Sp(2p+ 2q,R)

the corresponding map of Lie groups which extends ρ. Let

H̄p,q
0 =

(
i
2Ip 0
0 − i

2Iq

)
.

Then dρ̄(H̄0) = H ′
0. It follows, as in the proof of Lemma 1, that J0 ∈

ρ̄(U(p, q)).
Consider, next, the H1-representation ρ : SU(p, 1) → Sp(2m,R) given in

item (3(b)i) of the list in §3.1. We extend it to a representation ρ̄ : U(p, 1) →
Sp(2m,R). Let

H̃0 =

(
i
2k Ip 0

0 1−2k
2k i

)
.

Then
k∧
(H̃0) =

(
i
2I

′
p 0

0 − i
2I

′
q

)
= H̄p′,q′

0 ,

where p′ =
(
p
k

)
and q′ =

(
p

k−1

)
. From this we see that dρ̄(H̃0) = H ′

0,

the H-element of Sp(2m,R). It follows, as in the proof of Lemma 1, that
J0 ∈ ρ̄(U(p, 1)).
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4. The rigid case

4.1. Statement of the theorem. Let G be an algebraic group over Q of
hermitian type, and ρ a representation of G satisfying Satake’s conditions in
§3.1. By the stability condition (2) of §3.1, every irreducible subrepresenta-
tion of ρC is nontrivial on at most one noncompact factor of G(R). We say
that ρ is rigid, if every irreducible subrepresentation of ρC is nontrivial on
exactly one noncompact factor of G(R). We begin by classifying the rigid
representations which define Kuga fiber varieties.

Theorem 3. Let G be a semisimple connected algebraic group over Q such

that G(R)0 is of hermitian type and has no compact factors defined over Q.

Let ρ be a representation of G satisfying Satake’s conditions in §3.1. If ρ is

rigid, then some multiple of ρ defines a Kuga fiber variety.

The rest of this section is devoted to the proof of this theorem.

4.2. Beginning of the proof. Without loss of generality we assume that
G is simply connected, and ρ is nontrivial and a multiple of a Q-irreducible
representation (see Satake [39, p. 189]).

Write G =
∏t

j=1Gj , where each Gj is a simple group of hermitian type.
Then there are totally real number fields Fj , and absolutely simple groups

G̃j over Fj, such that Gj = ResFj/Q G̃j for 1 ≤ j ≤ t. Let F be the smallest

Galois extension of Q containing all the Fj , and G = Gal(F/Q). Let Sj

be the set of embeddings of Fj into R, and let S be the disjoint union of
the Sj’s. For α ∈ S, we let j(α) be the unique index such that α ∈ Sj(α).
We note that F is a totally real field, G acts on S, and the orbits of this

action are the sets Sj. For α ∈ S, we let Gα = G̃j(α) ⊗Fj(α),α F . Then

GF =
∏

α∈S Gα.
Let S0 = {α ∈ S | Gα,R is not compact}. An H-element of GR is given

by H0 =
∑

α∈S0
H0,α, where H0,α is an H-element of Gα,R.

Let ρ0 : GC → GL(V0) be a C-irreducible subrepresentation of ρC. Let

M = {α ∈ S | ρ0 is nontrivial on Gα,C},
and let α0 be the unique element ofM such that Gα0,R is not compact. Write
ρ0 = ⊗α∈Mρ′α, where ρ

′
α is an irreducible representation of Gα,C. Either ρ

′
α,

or the sum of two copies of ρ′α, or, the direct sum of ρ′α and its complex
conjugate is defined over R. Let ρα be the real representation such that ρ′α
equals ρα,C, the direct sum of two copies of ρα,C, or the direct sum of ρα,C
and its complex conjugate, respectively.

For each α ∈ M , let ρ̂α =
∑

σ∈G ρ
σ
α. Then ρ̂α is a representation of Gj(α)

satisfying the hypotheses of Theorem 2, so some multiple of it defines a
Kuga fiber variety. By Satake’s construction (see [39, §IV.6, Theorems 6.1,
6.2, 6.3]), this representation is defined over Fj(α) in the sense that it is the
restriction from Fj(α) to Q of a symplectic representation

ρ̃α : G̃j(α) → Sp(Ṽα, Ẽα).
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Here, Ẽα is an Fj(α)-bilinear alternating form on Ṽα, and Eα = TrFj(α)/Q Ẽα

is a Gj(α)-invariant Q-bilinear alternating form on Vα = ResFj(α)/Q Ṽα. Let

Vα = ResFj(α)/Q Ṽα. Then Vα ⊗ Fj(α) = ⊕σ∈GṼ
σ
α (up to multiplicity), and

Ṽ σ
α is the representation space of ρσα. For each α ∈ Sj(α), there is a complex

structure Jα on Ṽα,R such that Ẽα(x, Jαy) is a symmetric, positive definite

form. Moreover, ρα0 : Gα0,R → Sp(Ṽα0,R, Ẽα0) satisfies the H1-condition

with respect to the H-elements H0,α0 and 1
2Jα0 .

4.3. Construction of a symmetric form. We claim that for each α ∈ M
there exists a Gα-invariant, Fj(α)-bilinear positive definite symmetric form

γα on Ṽα. The space of symmetric positive definite Gα,R-invariant forms

on Ṽα,R is an open subset of the space of symmetric forms; it is nonempty

because Ẽα(x, Jαy) is such a form. Therefore it contains an Fj(α)-rational
point γα. This proves the claim.

We next claim that when α = α0 we have

(4.3.1) γα0(Jα0x, Jα0y) = γα0(x, y).

If ρα0 satisfies the H2-condition, then Lemma 1 shows that Jα0 belongs to
the image of Gα0(R) under ρα0 , so (4.3.1) is a consequence of γα0 being
Gα0-invariant. Finally, we consider the situation when the H2-condition is
not satisfied. Then we are in either case (3a) or case (3(b)i) of §3.1. In
both cases, Gα is a special unitary group SU(W,h). We can extend ρ̂α to a
representation of the full unitary group U(W,h). We have seen in §3.3 that
Jα0 belongs to the image of U(W,h), so now we can argue as before to prove
(4.3.1) in this situation.

Observe that (4.3.1) is equivalent to

(4.3.2) γα0(x, Jα0y) = −γα0(y, Jα0x),

since Jα0 is a complex structure.

4.4. Construction of an alternating form. Let Ṽ = ⊗α∈M (Ṽα⊗Fj(α)
F ).

Define an F -bilinear alternating form Ẽ on Ṽ by

Ẽ(⊗αxα,⊗αyα) =
∑

α∈M

(
Ẽα(xα, yα)

∏

β∈M
β 6=α

γβ(xβ , yβ)

)
.

Then Ẽ is G̃-invariant, where G̃ =
∏t

j=1 G̃j . Next, we define a Q-bilinear

alternating form E on V = ResF/Q Ṽ by

E(x, y) = TrF/Q Ẽ(x, y).

Then E is G-invariant.
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4.5. Construction of a complex structure. We next construct a com-

plex structure J̃ on ṼR = ⊗α∈M (Ṽα ⊗Fj(α)
R). We have seen that we have

a complex structure Jα0 on Ṽα0,R such that Ẽα0(x, Jα0y) is symmetric and

positive definite. Define J̃ on ṼR by J̃(⊗xα) = ⊗Iαxα, where Iα0 = Jα0 ,

and Iα is the identity for α 6= α0. Then J̃ is a complex structure.

For x = ⊗xα, y = ⊗yα ∈ ṼR, we have

Ẽ(x, J̃y) =
∑

α∈M

(
Ẽα(xα, Iαyα)

∏

β∈M
β 6=α

γβ(xβ , Iβyβ)

)

= Ẽα0(xα0 , Jα0yα0)
∏

β∈M
β 6=α0

γβ(xβ, yβ)

+
∑

α∈M
α6=α0

(
Ẽα(xα, yα)γα0(xα0 , Jα0yα0)

∏

β∈M
β 6=α
β 6=α0

γβ(xβ, yβ)

)

= Ẽα0(yα0 , Jα0xα0)
∏

β∈M
β 6=α0

γβ(yβ, xβ)

+
∑

α∈M
α6=α0

(
Ẽα(yα, xα)γα0(yα0 , Jα0xα0)

∏

β∈M
β 6=α
β 6=α0

γβ(yβ, xβ)

)

=
∑

α∈M

(
Ẽα(yα, Iαxα)

∏

β∈M
β 6=α

γβ(yβ, Iβxβ)

)

= Ẽ(y, J̃x),

because Ẽα0(x, Jα0y) and γα are symmetric, Iα is the identity for α 6= α0,

Ẽα0(xα0 , Jα0yα0) and γα0(xα0 , Jα0yα0) are alternating, and using (4.3.2).

Thus Ẽ(x, J̃y) is a symmetric form on ṼR. It follows that E(x, J̃y) is sym-
metric.

If x = y we have

Ẽ(x, J̃x) =
∑

α∈M

(
Ẽα(xα, Iαxα)

∏

β∈M
β 6=α

γβ(xβ, Iβxβ)

)

= Ẽα0(xα0 , Jα0xα0)
∏

β∈M
β 6=α0

γβ(xβ, xβ),

so Ẽ(x, J̃y) is positive definite.
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Our next task is to define a complex structure J on VR, where V =

ResF/Q Ṽ . Now, VR =
⊕

σ∈G Ṽ
σ
R , so it is sufficient to define a complex

structure J̃σ on Ṽ σ
R for each σ ∈ G. When σ is the identity, we have already

defined J̃ on ṼR. In the same manner we can define J̃σ for each σ ∈ G,

such that Ẽσ(x, J̃σy) is symmetric and positive definite on Ṽ σ
R . Then J =∑

σ∈G J̃
σ is a complex structure on VR.

4.6. Conclusion of the proof. Since each Ẽσ(x, J̃σy) is symmetric, so is
E(x, Jy). It remains to show that E(x, Jy) is positive definite. For each
σ ∈ G, let α(σ) be the unique element of Mσ ∩ S0. Then, we have

E(x, Jx) =
∑

σ∈G

Ẽσ(x, J̃σx)

=
∑

σ∈G

(
Ẽα(σ)(xα(σ), J̃

α(σ)xα(σ))
∏

β∈Mσ

β 6=α(σ)

γβ(xβ, xβ)

)

=
∑

σ∈G

Qσ(x),

where

Qσ(x) = Ẽα(σ)(xα(σ), J̃
α(σ)xα(σ))

∏

β∈Mσ

β 6=α(σ)

γβ(xβ , xβ)

is a symmetric form on VR. For σ equal to the identity, we know that

Q(x) = Ẽ(x, Jx) is positive definite. Therefore there exists a positive integer
N such that

Q′(x) = NQ(x) +
∑

σ∈G
σ 6=id

Qσ(x)

is positive definite (see Addington [6, Lemma 4.9, p. 80]). For each j (1 ≤
j ≤ t), let cj ∈ Fj be such that α(cj) > N if α ∈ S0, and 0 < α(cj) < 1 if

α /∈ S0. Replace each Ẽα by cj(α)Ẽα. Then E(x, Jy) is positive definite.

An H-element for Sp(V,E) is given by 1
2J . Since H0 =

∑
α∈S0

H0,α is an
H-element of G, and ρα satisfies the H1-condition with respect to H0,α and
1
2Jα whenever α ∈ S0, it follows from our construction that ρ satisfies the
H1-condition, and therefore defines a Kuga fiber variety.

5. The general case

We next derive the general case from the rigid case.

Theorem 4. Let ρ be a representation of G satisfying Satake’s conditions

in §3.1. Then some multiple of ρ defines a Kuga fiber variety.

Proof. We keep the notations used in the proof of Theorem 3. Without loss
of generality we assume that ρ is a primary representation, i.e., a multiple
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of an irreducible representation. An irreducible subrepresentation ρ0 of ρC
is said to be rigid if it is nontrivial on some noncompact factor of G(R).
We define the index of rigidity of ρ to be the cardinality of the set {σ ∈ G |
µσ is rigid}, where µ is an irreducible subrepresentation of ρC. It depends
only on ρ, and not on the choice of µ.

Suppose ρ is not rigid. Then there exists a subrepresentation µ of ρC such
that µ is trivial on all noncompact factors of GR. Let G1 = {σ ∈ G | µσ = µ}.
Then ρC is equivalent to a multiple of

∑
σ∈G/G1

µσ.

Let α0 ∈ Sj be such that µ is nontrivial on Gα0 . Extend α0 to an em-
bedding of F into R, and denote it again by α0. Let B be a quaternion
algebra over F which splits at α0 and ramifies at all other infinite places.
Let SL1(B) be the group of norm 1 units of B, and H = ResF/Q SL1(B).

Then H(R) =
∏

α∈S Hα, where S is the set of embeddings of F into R, and
Hα = H ⊗F,α R.

Define a representation of G×H by

ρ1 =
∑

σ∈G

µσ ⊗ pσα0
,

where pα0 : H(R) → Hα0 = SL2(R) is the projection. Since ρ1 is invariant
under any automorphism of C, some multiple nρ1 of ρ1 is defined over Q.
Now pσα0

= pασ
0
. If σ is not the identity then ασ

0 6= α0. Since Hα is compact
for α 6= α0, we see that nρ1 satisfies the stability condition. We verify that
nρ1 satisfies all of Satake’s conditions.

Now, µσ ⊗ pσα is rigid whenever µσ is rigid, and it is also rigid when σ
is the identity. Hence the index of rigidity of nρ1 is greater than the index
of rigidity of ρ. Continuing this process, if necessary, we will eventually get
a representation ρ̃ whose index of rigidity is the cardinality of G, i.e., one
which is rigid. Then Theorem 3 implies that some multiple of ρ̃ defines a
Kuga fiber variety. Since the restriction of ρ̃ to G is a multiple of ρ, this
completes the proof. �

6. An example

Let F = Q(
√
3). Let α1, α2 be the embeddings of F into R. Let B be a

quaternion algebra over F which splits at α1 and ramifies at α2. Let G̃1 be

the group of norm 1 units in B, and, G1 = ResF/Q G̃1. Let G̃2 be a group

over F such that G̃2 ⊗F,α1 R = SU(5, 1) and G̃2 ⊗F,α2 R = SU(6, 0). Let

G2 = ResF/Q G̃2. Let G = G1 ×G2. Then

G(R) = SL2(R)× SU(2)× SU(5, 1) × SU(6, 0).

We shall classify all representations of G which define Kuga fiber varieties.
Let

p1 : G(R) → SL2(R),

p2 : G(R) → SU(2),
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p3 : G(R) → SU(5, 1),

p4 : G(R) → SU(6, 0),

be the projections. Then, the representations of G defining Kuga fiber
varieties are equivalent over R to linear combinations of the following:

(1) p1 ⊕ p2,
(2) p1 ⊗ p2,

(3)
∧k p3 ⊕

∧k p4,

(4)
(∧j p3 ⊗

∧k p4

)
⊕
(∧k p3 ⊗

∧j p4

)
,

(5)
(
p1 ⊗

∧k p4

)
⊕
(
p2 ⊗

∧k p3

)
.

Of these, the first four are direct sums of representations of either G1

alone, or G2 alone. The last one is a representation of the product group
in an essential manner. A general fiber of the corresponding Kuga fiber
variety is a simple abelian variety; the semisimple part of its Hodge group
is isogenous to G = G1 ×G2.
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