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Abstract

Control over gene expression is exerted, in multiple stages of spermatogenesis, at the post-

transcriptional level by RNA binding proteins (RBPs). We identify here an essential role in

mammalian spermatogenesis and male fertility for ‘RNA binding protein 46’ (RBM46). A

highly evolutionarily conserved gene, Rbm46 is also essential for fertility in both flies and

fish. We found Rbm46 expression was restricted to the mouse germline, detectable in

males in the cytoplasm of premeiotic spermatogonia and meiotic spermatocytes. To define

its requirement for spermatogenesis, we generated Rbm46 knockout (KO, Rbm46-/-) mice;

although male Rbm46-/- mice were viable and appeared grossly normal, they were infertile.

Testes from adult Rbm46-/- mice were small, with seminiferous tubules containing only Ser-

toli cells and few undifferentiated spermatogonia. Using genome-wide unbiased high

throughput assays RNA-seq and ‘enhanced crosslinking immunoprecipitation’ coupled with

RNA-seq (eCLIP-seq), we discovered RBM46 could bind, via a U-rich conserved consensus

sequence, to a cohort of mRNAs encoding proteins required for completion of differentiation

and subsequent meiotic initiation. In summary, our studies support an essential role for

RBM46 in regulating target mRNAs during spermatogonia differentiation prior to the commit-

ment to meiosis in mice.
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Author summary

Male fertility relies upon continuous daily production of millions of fertilization-compe-

tent sperm. These sperm are created in the testis during spermatogenesis, the develop-

mental program founded upon spermatogonial stem cells (SSCs). SSCs divide to produce

progeny spermatogonia that either remain in the stem cell pool or commit to differentiate

and enter meiosis and ultimately form sperm. The balance between stem cell self-renewal

and production of gametes is controlled by changes in the expression of a large comple-

ment of genes. An emerging concept in control over gene expression is the essential role

of proteins that bind to mRNAs and regulate their stability, storage, and/or translation

into proteins. Here, we identify such an RNA binding protein–RBM46 –that is only

expressed in the male and female germline and required for gamete production and thus

fertility in both sexes. In male mice with a specific deletion of Rbm46, spermatogenesis is

arrested at spermatogonial differentiation. RBM46 binds a specific cohort of mRNAs

encoding factors essential for differentiation and meiosis, and is thus positioned to play a

critical role in post-transcriptional control over gene expression in mammalian

spermatogonia.

Introduction

The foundation of mammalian spermatogenesis is provided by the regenerative pool of sper-

matogonial stem cells (SSCs). SSCs are dispersed throughout the normal testis and, upon divi-

sion, progeny of SSCs either replenish the SSC pool or proliferate as transit-amplifying

undifferentiated progenitor spermatogonia. These progenitor spermatogonia commit to meio-

sis by differentiating in response to retinoic acid (RA). The essential differentiation program

in the mouse lasts 8.6 days, culminating in entry into meiosis as preleptotene spermatocytes.

Disruption of spermatogonial fate diminishes male fertility by ultimately impairing sperm pro-

duction; indeed, a block in differentiation of undifferentiated spermatogonia results in matu-

ration arrest, while overactive differentiation can lead to eventual germline loss.

Spermatogonia that commit to the lengthy differentiation program have but two fates–either

initiating meiosis as spermatocytes or dying by apoptosis. Indeed, we are unaware of any phar-

macologic-treated or mutant or knockout (KO) mouse models with testes containing stable

populations of differentiating spermatogonia. Despite the critical nature of the differentiation

program, the underlying molecular mechanisms remain largely undefined. One reason for this

is the relative paucity of transcriptome-wide changes [1–5]. In line with this, recent studies

from our lab revealed RA activates the ‘mammalian target of rapamycin complex 1’

(mTORC1) kinase signaling complex, leading to enhanced translation of differentiation-

required proteins such as KIT, STRA8, and SOHLH1/2 [6–9]. Taken together, this reveals a

critical reliance upon post-transcriptional control mechanisms for gene regulation during

spermatogonial differentiation.

Gene expression can be profoundly controlled at the post-transcriptional level, by regulat-

ing pre-mRNA splicing, polyadenylation, mRNA stability, translation, and/or localization

[10–12]. These regulatory events are largely directed by sequence-specific RNA binding pro-

teins (RBPs). RBPs are expressed in many tissues and cell types, but male germ cells express an

especially high number of unique RBPs. Exemplary germ cell specific RBPs include MSY2,

DAZL, BOLL, NANOS2, NANOS3, PIWIL1, DND1, RBMXL2, and DDX4, all of which play

essential roles during spermatogenesis, as evidenced by mouse KO studies [13–19]. These
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RBPs have specialized functions at distinct steps of spermatogenesis, indicating the critical

importance of RBPs in regulating gene expression to ensure maintenance of male fertility.

While performing a functional screen for a collection of cDNAs, we observed mRNAs encod-

ing the predicted RBP RBM46 were restricted to testes in mouse and human transcriptome data-

bases [20]. Based on this highly restricted expression pattern, we predicted an essential role for

RBM46 in spermatogenesis. To test this hypothesis, we generated Rbm46KO (Rbm46-/-) male

mice and discovered loss of RBM46 blocked the completion of spermatogonia differentiation, pre-

venting sperm formation and resulting in infertility. The results presented here position RBM46

as a critical regulator of post-transcriptional gene expression in differentiating mammalian sper-

matogonia that is essential for completion of spermatogenesis and male fertility.

Results

RBM46 is expressed specifically in spermatogonia and spermatocytes in

mouse testes

In a search for novel RBPs expressed in the male germline, we identified a putative candidate

encoded by the Rbm46 gene that was testes-specific in transcriptomic datasets [20]. Analysis of

single cell RNA-seq data [21] revealed Rbm46mRNAs were detectable in adult testes in undif-

ferentiated and differentiating premeiotic spermatogonia, increased in preleptotene, lepto-

tene/zygotene, and pachytene meiotic spermatocytes as well as secondary spermatocytes,

declined in early postmeiotic round spermatids, and were undetectable in mid- and late round

spermatids, as well as somatic cells of the testis (Fig 1A). We next sought to define the expres-

sion pattern of RBM46 protein in mouse testes. Since none of the commercially available anti-

bodies yielded consistent results in immunostaining, CRISPR/Cas9 technology was used to

generate mice with tandem copies of the FLAG epitope tag inserted at the N-terminus of

RBM46 (Fig 1B). Male mice with homozygous insertion of sequences encoding the FLAG tag

(Rbm46FLAG/FLAG) appeared normal and were fertile; their histologically normal testes (S1 Fig)

suggested the FLAG tag did not adversely affect RBM46 function. Immunostaining these adult

testes using anti-FLAG antibodies revealed RBM46 protein was specifically expressed in cyto-

plasm of undifferentiated and differentiating spermatogonia as well as spermatocytes, but not

in spermatids, sperm, or somatic cells (Fig 1C–1G).

RBM46 is essential for fertility in both sexes

To define the requirement for the RNA binding protein RBM46 in spermatogenesis, CRISPR/

Cas9 technology was used to generate Rbm46-/- mice. A founder male was identified with a fra-

meshifting deletion between exons 2–3 (Fig 2A). This frameshift in the region encoding the

first RNA Recognition Motif (RRM) led to a premature termination codon that disrupted all

three consensus RRMs, giving high confidence for a functional null allele (S2A–S2C Fig).

Rbm46-/- mice were viable, healthy, and displayed no overt defects (not shown). However, nei-

ther Rbm46-/- male nor female mice were able to produce pups when mated with WT counter-

parts, revealing a requirement for RBM46 in fertility. Compared to WT littermates, adult

Rbm46-/- ovaries lacked oocytes, revealing complete loss of the germline (S3A and S3B Fig).

In this study, we focused on the male infertility phenotype. Paired testis weights of Rbm46-/-

mice were considerably lower (42.5 ± 13.0 mg) than those from Rbm46+/+ (255.5 ± 67.9 mg)

and Rbm46+/- (227 ± 55.9 mg) littermate controls (Fig 2B). This dramatic decrease in Rbm46-/-

testis size (Fig 2C) suggested impaired spermatogenesis. Indeed, histological analysis con-

firmed that, as compared to Rbm46+/+ and Rbm46+/- testes (which appeared normal, e.g., Fig

2C and 2D), Rbm46-/- testes had severe defects in spermatogenesis, with seminiferous tubules

PLOS GENETICS RBM46 is required for spermatogenesis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010416 September 21, 2022 3 / 20

https://doi.org/10.1371/journal.pgen.1010416


Fig 1. Rbm46 expression is restricted to spermatogonia, spermatocytes, and early round spermatids in the adult

testis. (A) Violin plots showing relative mRNA levels from single cell (sc)RNA-seq data from adult mouse testes [4].

Undiff = undifferentiated; diff = differentiating; spg = spermatogonia; lep/zyg = leptotene + zygotene;

pach = pachytene; spc = spermatocyte; tid = spermatid; MF = macrophage; PV = perivascular; PTM = peritubular

myoid. (B) Diagram depicting insertion of the 2x FLAG tag upstream of exon 2 of the genomic Rbm46 locus. (C-G) IIF

was performed to localize the RBM46-FLAG (green in C, red in D-G) in testes from adult Rbm46FLAG/FLAG mice. (C)

RBM46-FLAG (green) was detectable in germ cells but not in GATA4+ (red) Sertoli cells. (D-G) RBM46-FLAG (red)

was faintly detectable in ZBTB16+ (green) undifferentiated spermatogonia and KIT+ (green) differentiating

spermatogonia, indicated by white arrows. Insets in D-E are single fluorescent channel images of individual ZBTB16

+ undifferentiated and chains of KIT+ differentiating spermatogonia (in white), respectively. RBM46-FLAG (red)

became readily detectable in SYCP3+ (green) spermatocytes (white arrows = pachytene, yellow = leptotene) and was

undetectable in lectin+ (green) spermatids (white arrows). Nuclei were stained with DAPI (blue). Scale bars = 25 μm.

https://doi.org/10.1371/journal.pgen.1010416.g001
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containing Sertoli cells and only a few apparent spermatogonia, but lacking spermatocytes,

spermatids, or testicular sperm (Fig 2E). This result was confirmed by staining adult testes for

the pan germ cell marker TRA98 (also termed GCNA [18, 22, 23] along with the somatic Ser-

toli cell marker GATA4 (S4A and S4B Fig). In comparison to normal-appearing Rbm46+/- tes-

tes (Fig 2F), most tubules in Rbm46-/- adult mice lacked germ cells, although there were

isolated populations of ZBTB16+/TRA98+ undifferentiated spermatogonia (Fig 2G). To con-

firm the absence of more advanced germ cells in Rbm46-/- testes, co-immunostaining was

done to detect differentiating spermatogonia markers KIT and STRA8, the latter of which is

also highly expressed in preleptotene spermatocytes [24, 25]. As expected, tubule cross sections

in control testes contained numerous KIT+ differentiating spermatogonia and STRA8+ prelep-

totene spermatocytes (Fig 2H). In Rbm46-/- testes, some TRA98+ spermatogonia were also

STRA8+, revealing the capacity to respond to RA; however, none were KIT+ (Figs 2I and S4F),

suggesting an inability to undergo bona fide RA-induced differentiation. In agreement with

this, there were no SYCP3+ meiotic spermatocytes in Rbm46-/- testes, in contrast to controls

(S4C–S4F Fig). Taken together, these findings suggest impaired spermatogonial differentiation

and reveal an absence of meiotic spermatocytes in Rbm46-/- testes.

Although Rbm46mRNA and protein were detectable primarily in germ cells, we tested the

cell-autonomous requirement by generating germ cell-specific conditional KO mice. These

mice were created by crossing Rbm46fl/fl and Stra8-iCre, the latter of which is expressed begin-

ning in undifferentiated progenitor spermatogonia [26]. The testis phenotype of adult

Rbm46fl/-;Stra8-Cremice (S5 Fig) was indistinguishable from those with conventional whole-

body deletion (Fig 2), confirming an essential cell autonomous role for RBM46 during male

germ cell development.

Fig 2. Adult Rbm46-/- testes were dramatically reduced in size and contained only spermatogonia. (A) Diagram

showing the genomic Rbm46 locus and the cut sites for deletion within exons 2–3. (B-C) Testes from Rbm46-/- mice

were significantly smaller than those from Rbm46+/+ littermate controls. (D-E) PAS-stained Bouin’s-fixed testes from

adult Rbm46+/- (D) and Rbm46-/- (E) mice, respectively. In contrast to control (D), Rbm46-/- seminiferous epithelia (E)

exhibited a single cellular layer, which included apparent Sertoli cells (white arrows) and spermatogonia (yellow

arrows). (F-I) IIF was done to confirm the cellular identity of remaining cells in Rbm46-/- seminiferous epithelia.

Compared to controls (F), Rbm46-/- seminiferous epithelia (G) contained ZBTB16+ (green) undifferentiated

spermatogonia (in tubules marked with an asterisk), and germ cells were immunostained for the pan germ cell marker

TRA98 (red). Compared to controls (H), some spermatogonia (indicated by white arrows) in Rbm46-/- testes were

STRA8+ (green, I), indicating response to RA, but none were KIT+ (red, I), revealing impaired differentiation.

Interstitial cells (marked by yellow arrows, shown in H-I) are always KIT+. Nuclei were stained with DAPI (blue).

Triple asterisks indicate statistical significance at P<0.001. Scale bars = 50 μm.

https://doi.org/10.1371/journal.pgen.1010416.g002
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Spermatogonial differentiation is impaired in developing Rbm46-/- testes

We next sought to precisely define the onset of the spermatogenic defect in Rbm46-/- testes. To

accomplish this, we examined Rbm46-/- testes during the well-characterized first wave of sper-

matogenesis, when populations of progressively advanced germ cells predictably appear on

successive days [27]. In control testes, at P6, 8, 10, 15, and 21 the most advanced germ cell

types were differentiating spermatogonia, preleptotene spermatocytes, leptotene spermato-

cytes, pachytene spermatocytes, and round spermatids, as expected [28] (Fig 3A–3E). In stark

contrast, Rbm46-/- testes only contained apparent spermatogonia on each of these days (Fig

3F–3J, 3K and 3L), and there was no difference in numbers of spermatogonia as early as P6

(S6 Fig).

To confirm the identity of the resident germ cells in developing Rbm46-/- testes, we per-

formed immunostaining for the bona fide spermatogonia differentiation protein marker KIT,

which also is expressed in somatic cells in the interstitial compartment [29–34]. At P8, 10, 15,

and 21 KIT was readily detectable in the membrane of differentiating spermatogonia, as

expected (Fig 4A–4D). In Rbm46-/- testes, significantly fewer KIT+ spermatogonia were pres-

ent at each of these ages, with numbers remaining stagnant as the mice age (Fig 4E–4I). Thus,

we conclude that although spermatogonia initiated the program of differentiation, it was not

sustained, leading to stalled germ cell development and an absence of meiotic cells.

RBM46 is required for activation of differentiation- and meiosis-associated

gene expression in spermatogonia

To begin to define underlying molecular defects in Rbm46-/- spermatogonia, we performed

bulk RNA-Seq on WT and Rbm46-/- testes from P8 mice. This age was selected for analysis

Fig 3. Germ cell loss was evident after P8 during the first wave of spermatogenesis in Rbm46-/- testes. (A-E) The

first cohort of spermatogenic cells appear on predictable days during the first wave of spermatogenesis in control PAS-

stained Rbm46+/+ testes. These include spermatogonia (red arrows), preleptotene spermatocytes (orange arrows),

leptotene spermatocytes (yellow arrows), pachytene spermatocytes (green arrows), and round spermatids (blue

arrows). (F-J) In contrast, Rbm46-/- testes contained only spermatogonia (red arrows) and apparently degenerating

germ cells (grey arrows). Meiotic spermatocytes were not observed at any age examined. (K-L) P8 testes contain

abundant TRA98+ (brown) spermatogonia in both control and Rbm46-/- testes. (M-O) P10, P15, and P21 Rbm46-/-

testes contained TRA98+ (brown) basally located spermatogonia. Scale bars = 50 μm.

https://doi.org/10.1371/journal.pgen.1010416.g003
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as it represented a time that, although there was some germ cell degeneration in Rbm46-/-

testes (Fig 3G), WT and Rbm46-/- testes had similar apparent numbers of germ cells (Fig

3K–3L). Quantitation revealed a ~21% decrease in numbers of TRA98+ germ cells in

Rbm46-/- testes. We reasoned differences in gene expression at the mRNA level would reveal

key dysregulated genes due to either direct regulation by RBM46 on mRNA stability or indi-

rect downstream consequences of Rbm46 deletion. We used DESeq2 to identify differences

in mRNA levels between WT and Rbm46-/- testes. For protein coding genes (using a cutoff

adjusted p-value <0.05), we identified 561 upregulated and 1,218 downregulated transcripts

(S1 Table). Changes in mRNA abundance were modest, with only 167 downregulated genes

and 33 upregulated genes showing >2-fold changes (Fig 5A). Gene ontology (GO) analysis

of downregulated genes identified numerous terms relevant to spermatogenesis, including

several related to meiosis: ‘spermatogenesis’, ‘synapsis’, ‘male gamete generation’, and ‘synap-
tonemal complex assembly’ (Fig 5B). Examples of meiotic genes with reduced mRNA levels

in Rbm46-/- testes included Dmc1, H2afx,Meiob, Spo11, Mov10l, Hormad1, Sycp2, and

Sycp3. We also identified reduced levels of several mRNAs encoding proteins involved with

(e.g., Stra8) or required for (e.g., Kit, Sohlh1; Fig 5C) spermatogonia differentiation. There

were no significant changes in mRNA levels of most markers of undifferentiated spermato-

gonia (e.g., Gfra1, Id4, Nanos2/3, Cdh1, Ret, Itga6, Itgb1, and Sall4). GO analysis of upregu-

lated genes did not identify terms with apparent relevance to spermatogenesis (Fig 5B). We

did, however, note increased levels of somatic cell markers (e.g., Sertoli cell mRNAs Sox9
and Clu and Leydig cell markers Cyp17a1, Hmgcs2, and Prlr [21, 35, 36]). Using the Majiq

computational pipeline [37], we only found few changes in alternative splicing (see S2

Table) and, although the splicing differences were important (S7A Fig) and mostly involved

alternative first or last exon events (S7A Fig), all but eight genes (Lrif1, Apobec3, Zfp429,

Chd1l, Prickle2, Selenbp2, Zfp697, Ndufs1) affected at the splicing level were unaffected at

the level of mRNA abundance. Genes with differential splicing were not enriched for any

specific GO term. In summary, there was an apparent decrease in the mRNA abundance of

genes encoding proteins required for spermatogonial differentiation and meiosis, which is

likely due to indirect action of RBM46, in that differentiating spermatogonia and prelepto-

tene spermatocytes were absent in P8 Rbm46-/- testes.

Fig 4. KIT+ differentiating spermatogonia were reduced dramatically in developing Rbm46-/- testes. (A-D) Darkly

staining KIT+ (brown) spermatogonia (gray arrows, A) were numerous in Rbm46+/+ testes. KIT+ interstitial cells are

indicated with white arrows. (E-H) At P8, there are scattered faintly staining KIT+ spermatogonia (gray arrows, E),

and fewer are seen afterwards, from P10 (F) through P15 (G) and then at P21 (H). (I) Quantitation of KIT

+ spermatogonia at each age. Scale bar = 50 μm. Triple asterisks indicate statistical significance at P<0.001.

https://doi.org/10.1371/journal.pgen.1010416.g004
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RBM46-bound mRNAs are enriched for functions in RNA processing,

meiosis, and translation regulation

To identify mRNAs directly bound by RBM46 in the male germline, we used enhanced cross-

linking coupled with immunoprecipitation and RNA-seq (eCLIP-Seq). This method provides

unbiased genome-wide coverage from small amounts of cellular input, enabling identification

of RBP binding sites at single nucleotide resolution [38]. We used testes from Rbm46FLAG/FLAG

mice (Fig 1B), as the FLAG-tagged RBM46 protein can be efficiently and specifically immuno-

precipitated using FLAG antibodies. Because RBM46 is expressed in both spermatogonia and

spermatocytes (Fig 1D–1F), we used eCLIP in testes from RBM46FLAG/FLAG mice at P21, an

age when they contain spermatogonia, spermatocytes, and the very first emergent round sper-

matids [28]. Immunoprecipitated material was separated by electrophoresis, transferred to a

nitrocellulose membrane, and the region containing crosslinked RNAs excised and released

from the membrane (Figs 6A and S8). eCLIP libraries were prepared and five replicate eCLIP

samples were sequenced with corresponding inputs, processed, and mapped at ~8 x 106 non-

redundant reads to the genome (mm10) [39]. We anticipated enrichment of binding sites in

mRNA 3’ untranslated regions (3’ UTRs), similar to reports of other cytoplasmic RBPs in male

germ cells [40–43]. To our surprise, nearly equal percentages of CLIP tags were present in the

3’ UTR and protein coding sequences, though when corrected for the percentage of these

regions in the transcriptome there was a modest enrichment of binding sites in the 3’ UTR

Fig 5. Genes involved in cell cycle regulation were deregulated in Rbm46-/- testes at P8. (A) Heatmap of 200 genes

with>2-fold changes in Rbm46-/- relative to Rbm46+/+ controls at P8. (B) Gene ontology terms for biological processes

enriched in genes that are downregulated (top) or upregulated (bottom) in Rbm46-/-. Circle size and numbers

correspond to the number of genes that are differentially expressed and represented in a GO term over to the total

number of genes listed in the GO term. (C) Expression level of genes involved in spermatogonia differentiation and

somatic cell markers. P-values are DESeq2 adjusted p-values comparing Rbm46+/+ to Rbm46-/- testes.

https://doi.org/10.1371/journal.pgen.1010416.g005
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over the CDS (Fig 6B). CLIP tags also showed a relatively uniform distribution across mRNAs

(Fig 6C).

To determine the binding specificity of RBM46, we extracted sequences around CITS and

performed de novomotif discovery using mCross, an algorithm developed to simultaneously

model RBP binding specificity and the crosslink position in the binding motif [44]. After pool-

ing all replicates, mCross was used extract sequences around crosslink-induced truncation

sites for de novomotif discovery, which identified 90,243 crosslink-induced truncation sites

(CITS, P<0.001) [39, 45]. This analysis revealed a U-rich motif with a UGAU core and pre-

dominant crosslinking at the U1 position of the core (Fig 6D). The UGAU motif is highly

enriched at the crosslink sites (with a 25-fold enrichment for crosslinking at U1 of the UGAU

Fig 6. RBM46 sequence-specific binding to a specific cohort of mRNAs encoding factors required for RNA

processing and meiosis. (A) FLAG-stained western blot of lysates from Rbm46WT/WT and Rbm46FLAG/FLAG showing

input and immunoprecipitated proteins, respectively. Band at the expected protein size is indicated by arrow. (B)

Genomic distribution of RBM46 binding in the testis, displayed as percentages of binding to each sequence feature. (C)

Representative UCSC genome browser view showing exonic binding of RBM46 across Dazl andMeioc. (D) WebLogo

showing U-rich RNA binding sequence motif identified using mCross as the most enriched sequence at the RBM46

crosslink sites. (E) Gene ontology analysis performed using EnrichR showing the top biological processes of

RBM46-bound mRNAs.

https://doi.org/10.1371/journal.pgen.1010416.g006
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motif), while a moderate enrichment was observed in regions around CLIP tag peaks. Given

the high signal-to-noise ratio of CITS, we identified a stringent subset of RBM46 target tran-

scripts based on the presence of CITS satisfying two criteria: 1) presence of the UGAU motif

with crosslinking at the U1 position; and 2)�50 putative truncated tags at the crosslink sites.

This allowed us to identify 1,349 CITS associated with 873 unique genes. Gene Ontology (GO)

analysis of these genes was performed using DAVID [46]. RBM46 target transcripts were

enriched for terms relevant to spermatogenesis using GO analysis (Fig 6E). Of note, there was

significant enrichment of genes involved in RNA processing that included several RBPs with

functions in spermatogenesis (e.g., DAZL, BOLL, PABPC1, CELF1, CEBP1, PTBP2, and

RBM46 itself) and translation initiation factors (e.g., EIF1A, EIF2S1, EIF4G1, and EIF4G2).

RBM46 also showed enriched binding to mRNAs encoding essential meiosis proteins (e.g.,

SYCP1, SYCP2, SYCP3, MEIOC, SPO11, TEX15, HORMAD1, HSPA2, and BRCA2). A list of

mRNAs that were bound by RBM46 at P21 and exhibited differential abundance in P8

Rbm46-/- testes are presented in S3 Table.

Discussion

Here, we localized the germ cell specific RBP RBM46 to the cytoplasm of spermatogonia and

spermatocytes, but not in other testes germ cell types nor in somatic cells. We generated KO

mice and discovered a germ cell autonomous requirement for RBM46 in spermatogenesis and

male fertility. Specifically, RBM46 was essential, in spermatogonia, to complete differentiation

in both developing and adult testes. Rbm46 KO testes had altered transcriptomes, with downre-

gulation of transcripts encoding differentiation- and meiosis-associated genes. Using enhanced

crosslinking immunoprecipitation [38] followed by binding analysis with the CLIP Tool Kit

[39], we determined RBM46 directly bound, at a U-rich consensus sequence, to mRNAs encod-

ing proteins involved in spermatogenesis as well as in general translation regulation. In sum-

mary, RBP46 is required for spermatogonial differentiation and male fertility, and directly

binds to mRNAs encoding genes essential for differentiation and meiosis in the male germline.

All stages of spermatogenesis, from survival of prospermatogonia to the maintenance of

SSCs to meiosis and spermiogenesis, require post-transcriptional regulation by RBPs. Indeed,

a number of essential RBPs have been identified that repress or activate the translation of select

mRNAs, including NANOS2, NANOS3, DAZL, TIAR/TIAL1, PIWIL2/MILI, PIWIL4/

MIWI2, DDX4/VASA, MSY2, and LIN28A [16, 40, 43, 47–52]. The functions of essential

RBPs include regulation of mRNA splicing, polyadenylation, localization, stability/degrada-

tion, and translation [53–55]. While the mechanistic functions and global regulatory targets

have been identified for multiple essential RBPs, many RBPs necessary for spermatogenesis

remain to be defined and characterized. Therefore, identification of a novel RBP and its

genome-wide regulatory targets provides new insights into the molecular pathways that con-

trol germ cell gene expression during maintenance and differentiation.

Once in the cytoplasm, mRNAs face three possible fates: translation, storage, or degrada-

tion. Transit between these fates is well-known to regulate key transitions during male germ

cell development [56, 57]. Our RNA-Seq findings offer further support for a spermatogonial

differentiation block in Rbm46-/- testes. However, the changes in mRNA levels were rather

modest, including markers of differentiated spermatogonia and meiotic genes. The RNA-seq

experiment was performed using testes at P8, a time when there was a ~21% decrease in germ

cells, notably differentiating spermatogonia and the first emergent preleptotene spermatocytes

entering meiosis. The loss of these cells, and their transcriptomes suggest many, if not most

changes in transcript levels in Rbm46-/- testes were indirect, due to the differentiation

impairment and not due to changes in RNA posttranscriptional control.
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RBM46 was recently discovered to be part of a complex containing several essential pro-

teins. These include the disordered protein MEIOC (required for mouse meiosis [58, 59]), the

exoribonuclease XRN1 (Drosophila pacman, required for spermatogenesis and male fertility

[60]), and the RNA helicase YTHDC2 (Drosophila bgcn [61], required for progression through

meiosis in the male mouse germline [62–66]). This YTHDC2-containing complex bound in

testes containing both spermatogonia and spermatocytes to a canonical U-rich binding motif

[67, 68]. This sequence closely resembles the one identified here, in P21 testes, which contain

spermatogonia, spermatocytes, and the first emergent spermatids [28]. YTHDC2’s function in

gametogenesis was recently shown to be independent of its N6-methyladenosine (m6A)-modi-

fied RNA binding [67, 68]; therefore, it is possible that RBM46, as a resident in this RNA man-

agement complex, provides additional RNA binding function (allosterically or directly)

through the U-rich binding sequence we identified. In Drosophila, Bgcn is required for trans-

lation control and expressed in a reciprocal pattern to the Nanos proteins [69]. Based on pub-

lished reports and the present data, this arrangement appears to be conserved in mice–we

discovered a requirement for RBM46 in spermatogonial differentiation, whereas others have

shown NANOS2 and NANOS3 are required for SSC maintenance [70–72]. Therefore, RBM46

may aid in target recognition for YTHDC2 functions in translational regulation.

The uniform binding observed across both coding sequences and UTRs of mRNA tran-

scripts is somewhat uncommon among RBPs but resembles the diffuse mRNA binding pattern

shown by CLIP of Fragile X mental retardation protein (FMRP) and LIN28A [51, 73]. FMRP

is present in actively translating polysomes and regulates translation [74–76]. Similarly, bind-

ing of LIN28A across the CDS and UTRs positively regulates translation of mRNAs, including

meiotic transcripts in mouse testes [52, 77–79]. Thus, the atypical binding pattern of RBM46 is

consistent with or permissive for a role in translation regulation.

RBM46 is a highly conserved RBP whose function has been examined in flies, fish, and now

mice. In Drosophila, the mouse ortholog of RBM46 is encoded by the RBP ‘tumorous testis’

(Tut), which is required for spermatogenesis and male fertility [80]. Interestingly, the phenotype

of Tut mutant flies is similar to that reported here–germ cell development is blocked at differentia-

tion, and thus contain only undifferentiated spermatogonia. In addition, in zebrafish (Danio
rerio), rbm46 is expressed in male germ cells and is required for spermatogonia to enter or prog-

ress through meiosis. [81]. Indeed, male rbm46mutants were sterile, with testes containing only

spermatogonia that proliferated into>16 interconnected 3C-4C germ cells, suggesting incorrect

meiotic entry. Rbm46-depleted gonads were sex-reversed to testes, and transcriptome analyses

revealed many more changes in mRNA abundance (4,436 up and 3,571 down) than we observed

here, including reduced levels of many meiotic mRNAs (e.g., spo11, dmc1, rad51,msh4,mlh1,
rec8, smc1b, sycp1-3). These findings support a major role in directing meiotic gene expression.

Here, we identified numerous mRNAs encoding essential meiosis proteins among the top

RBM46 CLIP targets in P21 testes containing a mixture of spermatogonia and spermatocytes

(e.g., SYCP1, SYCP2, SYCP3, MEIOC, SPO11, TEX15, HORMAD1, HSPA2, and BRCA2). These

findings provide further support for RBM46 functions in meiosis while also suggesting that

mRNAs highly bound by RBM46 support translation, or at least do not inhibit it.

In two previous studies from the same research group, a critical role for RBM46 was

reported in embryonic stem cell (ESC) and trophectoderm differentiation [82, 83]. These stud-

ies found RBM46 promoted Cdx2mRNA stability and degradation of beta-catenin (Ctnnb1)

mRNAs in ESCs. However, the second manuscript was recently retracted by the authors [84].

It is notable that Rbm46 expression is rather low in ESCs in available datasets, suggesting the

primary roles of RBM46 are in male germ cell development and function. Furthermore, the

fact that male Rbm46-/- mice were otherwise normal, without any phenotypes other than infer-

tility, is not compatible with an essential role of RBM46 outside of the germline.
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Methods

Ethics statement

All animal procedures and experiments were approved by the Institutional Animal Care and

Use Committees (IACUC) at the University of Pennsylvania (protocol #803164) and East

Carolina University (approval A3469-01).

Mouse strains

Rbm46FLAG/FLAG mice and Rbm46-/- mice were generated in the Penn Transgenic and Chime-

ric Mouse and CRISPR-Cas9 Mouse Targeting Core Facilities (supported by NIH grant

P30DK050306). To create Rbm46FLAG/FLAG mice, Alt-R CRISPR-Cas9 crRNA (Integrated

DNA Technologies (IDT: Iowa City, IA)) targeting the sequence 5’-ATCAGTGTTTCTT-

CATTCA-3’ (anti-sense) and a rescue donor oligo were created containing two tandem copies

of the FLAG Tag in-frame after the ATG start codon with a 5’ 91 nt homology arm and 3’ 37

nt homology arm. The crRNA and donor oligos were microinjected in fertilized eggs together

with an mRNA encoding Cas9 protein.

For Rbm46-/- mice, two crRNAs were generated in vitro using T7 polymerase to target the

following sequences in Rbm46 exon 2 (5’- ATGAATGAAGAAAACACTGA-3’ and 5’-

ATAATTGTTAAGAATCCGGA-3’ (anti-sense)). The two crRNAs were microinjected

together into fertilized eggs along with Cas9 mRNAs. Resulting pups were screened by PCR

for heterozygous KI or deletion and founder mice were confirmed by DNA sequencing. Mice

were humanely euthanized by CO2 asphyxiation followed by cervical dislocation. Mice were

on a B6SJLF1/J hybrid genetic background (strain #100012, The Jackson Laboratory).

Tissue collection, fixation, and immunostaining

For cryosections or paraffin embedding, testes were fixed for 4 hrs–overnight in either fresh

4% paraformaldehyde or Bouin’s solution, respectively, at 4˚C and prepared as described pre-

viously [85]. Bouin’s-fixed testes were stained with Periodic Acid Schiff (PAS) using standard

methods. For immunohistochemistry (IHC), immunostaining was performed on Bouin’s-

fixed sections as described [85]. Brightfield images were captured on an Axio Observer A1

inverted microscope outfitted with a Zeiss Axiocam 503 color digital camera and Zen software

(Carl Zeiss Microscopy, LLC).

For indirect immunofluorescence (IIF), immunostaining was performed on cryosections as

described [85]. Alexa-Fluor conjugated secondary antibodies (Thermo Scientific) raised

against the animal host of the primary antibody (Table 1) were incubated for 1 hr at room tem-

perature at a 1:500 dilution. Coverslips were mounted for IIF with Vectastain containing

DAPI (Vector Laboratories). Sections were imaged using a Fluoview FV1000 confocal laser

scanning confocal microscope (Olympus America).

RNA-seq

Testes from P8 mice were flash frozen in liquid nitrogen and ground using a mortar and pestle.

Ground tissue was homogenized in TriZol reagent by passing samples through 18- and

26-gauge needles, and RNA was extracted with RNeasy minikit (Qiagen) using manufacturer’s

instructions. Total RNA was then submitted to Genewiz and Illumina libraries were prepared

after rRNA depletion using the Illumina Ribo-Zero kit. Sequencing was performed using Illu-

mina HiSeq for 150 bp paired end sequencing using four replicates each from wild type control

and Rbm46-/- samples. Adapters were trimmed from RNA-Seq samples using BBDuk, aligned

to the mouse GRCm38 genome assembly using STAR v.2.5.1B, and sorted and indexed using
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samtools v.1.9. For gene expression quantification, salmon v.0.14.0 was used in mapping-

based mode with selective alignment on trimmed fastq files using GENCODE vM23 annota-

tion to create the index. Differential gene expression analysis was performed with DESeq2

v.1.22.2. Differential splicing analysis was performed with MAJIQ v.2.1 using GENCODE

vM23 reference transcriptome annotation without intron retention quantification. We identi-

fied differentially spliced junctions by keeping junctions that had a delta PSI of at least 15 with

a probability that the delta PSI is above 15 of at least 95%. Gene ontology analysis was per-

formed with enrichR v.1.0 using a 2018 release of the GO Consortium annotations.

eCLIP-seq

Testes were harvested from mice and rinsed in PBS. Testes were detunicated, triturated,

dounced in PBS, and tissue material was crosslinked three times at 400 mJ/cm2 using a Strata-

linker 2400 (Stratagene). Samples were then flash-frozen in liquid nitrogen and stored at

-80˚C until use. Each replicate was derived from a pair of testes from a single mouse. Samples

were lysed, and crosslinked RNP complexes were treated with 5 U/ml RNAse I, immunopre-

cipitated, and used to generate eCLIP libraries and control input libraries as previously

described [38]. In brief, to extract RBM46-specific interactors, cleared immunoprecipitants

were resolved on 4–12% Bis-Tris protein gel and transferred to a nitrocellulose membrane.

The RNA:RNP complex was extracted from the nitrocellulose membrane by cutting a region

that included the RNA binding protein, RBM46 (size ~62 kDa) and a region of the membrane

~50 kDa above the RBM46 band. The RNA was isolated from the membrane following pro-

teinase K and urea treatments. An Illumina Nova-Seq was used for 50 bp paired end sequenc-

ing. Raw data from Rbm46 eCLIP experiments and input controls were processed using CLIP

Tool Kit (CTK) [39]. Unique tags were identified after stringent mapping to the reference

genome (mm10) and collapsing of PCR duplicates. Only read2, which corresponds to the 5’

end of CLIP tags, was used for analyses.

Statistics

Experimental groups were compared using one-way ANOVA and Student’s T-tests. Differ-

ences were considered statistically significant at P<0.05.

Supporting information

S1 Fig. Testes from adult Rbm46FLAG/FLAG mice were morphologically normal. (A-B) Simi-

lar to Bouin’s-fixed and PAS-stained testes from adult (P>60) WT (A) mice, those from

Rbm46FLAG/FLAG mice (B) contained normal complements of male germ cells

(Spg = spermatogonium; Pl = preleptotene spermatocyte; L = leptotene spermatocyte;

Table 1. Antibodies and immunostaining reagents.

Antigen Host Source Dilution Catalog number
TRA98 rat Abcam 1:1000 ab82527

ZBTB16/PLZF Goat R & D Systems 1:1000 AF2944

KIT Goat R & D Systems 1:1000 (IIF); 1:500 (IHC) AF1356

SYCP3-488 Mouse Abcam 1:200 Ab205846

FLAG Rat Novus 1:250 NBP1-06712SS

STRA8 Rabbit Abcam 1:3000 ab49602

GATA4 Rabbit Cell Signaling Technology 1:400 36966S

Lectin-488 Peanut ThermoFisher Scientific 1:500 L21409

https://doi.org/10.1371/journal.pgen.1010416.t001
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Z = zygotene spermatocyte; PS = pachytene spermatocyte; RS = round spermatid;

ES = elongating spermatid; CS = condensing spermatid; SC = Sertoli cell nucleus) within that

appropriate seminiferous tubule stages, indicated on each cross section in Roman numerals.

Scale bar = 50 μm.

(TIF)

S2 Fig. Schematic of Rbm46 whole-body and conditional KO alleles. (A) For whole-body

KO allele, the deleted region is indicated by scissors. (B) For conditional KO allele, inserted

loxP sites are represented by blue arrows. (C) RBM46 protein contains three RRMs, indicated

in yellow.

(TIF)

S3 Fig. Adult Rbm46-/- ovaries lacked a germline. (A-B) PAS-stained ovaries from Rbm46+/+

and Rbm46-/- mice, with genotypes indicated on each image. The cortex of an Rbm46+/+ ovary

(A) contained numerous oocytes (white arrows) in follicles at various stages of development.

In contrast, the Rbm46+/+ ovary lacked oocytes or organized follicles (B). Scale bar = 200 μm.

(TIF)

S4 Fig. Adult Rbm46-/- testes contained abundant Sertoli cells but lacked SYCP3+ meiotic

spermatocytes. (A-B) GATA4+ Sertoli cells (green) were present in both Rbm46+/- and

Rbm46-/- testes, but there were few TRA98+ (red) germ cells in Rbm46-/- testes. (C-D) In con-

trast to Rbm46+/- testes, there were no SYCP3+ (green) spermatocytes in Rbm46-/- testes. (E-F)

Using Rbm46+/- and Rbm46-/- testes, the numbers of germ cells (E) and % cell fate (F) were

quantified. Nuclei were stained with DAPI (blue). Scale bar = 50 μm.

(TIF)

S5 Fig. Conditional deletion of Rbm46 with Stra8-Cre resulted in an adult spermatogenesis

phenotype resembling that of whole-body KO mice. (A-C) Compared to controls, adult con-

ditional KO testes were dramatically reduced in size. (D) Seminiferous epithelia from control

mice (left panel) contained Sertoli cells as well as all advanced germ cell types, with examples

marked including leptotene (Lep) and pachytene (Pac) spermatocytes as well as elongated

spermatids (ES). In stark contrast, seminiferous epithelia of conditional KO testes contained

only somatic Sertoli cells and a few spermatogonia (Spg). Scale bar = 50 μm.

(TIF)

S6 Fig. Similar numbers of spermatogonia present in Rbm46+/- and Rbm46-/- testes at P6.

(TIF)

S7 Fig. Differential splicing events in Rbm46-/- testes at P8. (A) Heatmap depicts 36 splicing

events with a change in percent spliced in (PSI) of at least 15% in Rbm46-/- relative to Rbm46+/
+ testes at P8. (B) Distribution of the types of altered splicing events in Rbm46-/- testes. Abso-

lute number of changing events for each type shown on the chart. ALE = Alternative Last

Exon; AFE = Alternative First Exon; Alt 3 = Alternative 3’ splice site; Alt 5 = Alternative 5’

splice site.

(TIF)

S8 Fig. CLIP of Rbm46FLAG/FLAG in P21 mouse testes. (A) SDS-PAGE of crosslinked immu-

noprecipitants and input from Rbm46FLAG/FLAG and Rbm46WT/WT testes. RNAs in the immu-

noprecipitants were ligated (on beads) with an RNA linker containing the IRDye 800CW

fluorochrome to enable RNA visualization. (B) Corresponding anti-FLAG western blot of

crosslinked immunoprecipitants and input from Rbm46FLAG/FLAG and Rbm46WT/WT testes
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following FLAG immunoprecipitation.

(TIF)

S1 Table. List of differentially expressed genes in Rbm46-/- testes at P8.

(XLS)

S2 Table. List of differential splicing events in Rbm46-/- testes at P8.

(XLS)

S3 Table. List of genes bound by RBM46 at P21 whose mRNAs were differentially

expressed in Rbm46-/- testes at P8.

(XLSX)
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