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Abstract

Background

Warfarin is a widely used anticoagulant with a narrow therapeutic index and large interpati-

ent variability in the therapeutic dose. Warfarin sensitivity has been reported to be associ-

ated with increased incidence of international normalized ratio (INR) > 5. However, whether

warfarin sensitivity is a risk factor for adverse outcomes in critically ill patients remains

unknown. In the present study, we aimed to evaluate the utility of different machine learning

algorithms for the prediction of warfarin sensitivity and to determine the impact of warfarin

sensitivity on outcomes in critically ill patients.

Methods

Nine different machine learning algorithms for the prediction of warfarin sensitivity were

tested in the International Warfarin Pharmacogenetic Consortium cohort and Easton cohort.

Furthermore, a total of 7,647 critically ill patients was analyzed for warfarin sensitivity on in-

hospital mortality by multivariable regression. Covariates that potentially confound the asso-

ciation were further adjusted using propensity score matching or inverse probability of treat-

ment weighting.

Results

We found that logistic regression (AUC = 0.879, 95% CI: 0.834–0.924) was indistinguish-

able from support vector machine with a linear kernel, neural network, AdaBoost and light

gradient boosting trees, and significantly outperformed all the other machine learning algo-

rithms. Furthermore, we found that warfarin sensitivity predicted by the logistic regression
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model was significantly associated with worse in-hospital mortality in critically ill patients

with an odds ratio (OR) of 1.33 (95% CI, 1.01–1.77).

Conclusions

Our data suggest that the logistic regression model is the best model for the prediction of

warfarin sensitivity clinically and that warfarin sensitivity is likely to be a risk factor for

adverse outcomes in critically ill patients.

Introduction

Warfarin is the most widely used oral anticoagulant worldwide. However, it has a narrow thera-

peutic window and large interpatient variability and incorrect warfarin dosing is associated with

increased risk of bleeding or thromboembolism [1]. As a result, it is one of the leading common

drugs implicated in emergency department visits and an important cause of drug-related mortal-

ity [2, 3]. Polymorphisms in cytochrome p450, family 2, subfamily C, polypeptide 9 (CYP2C9),

and vitamin K epoxide reductase complex, subunit 1 (VKORC1) have been reported to be inde-

pendently correlate with warfarin therapeutic dose [4–6]. Genetic variants in those two genes

account for approximately 30% (20%-25% for VKORC1 rs9923231; 5%-10% for CYP2C9) of the

interpatient warfarin dose variability [4–7]. Many pharmacogenetic algorithms have been devel-

oped to predict the individual warfarin dose by integrating clinical, demographic, and genetic

variables [8–11]. Due to the strong genetic effects on warfarin dose, the U.S. Food and Drug

Administration (FDA) issued the warfarin product label to instruct how to initiate the individu-

alized dose based on combined genetic variants of CYP2C9 and VKORC1 [12]. Despite these

effects, a classification for warfarin responses in patients to reflect the genetic influence is needed.

Recently, a previous study proposed a classification of warfarin sensitivity based on combined

polymorphisms of CYP2C9 and VKORC1 and found that the average incidence of international

normalized ratio (INR)>5 in the sensitive and very sensitive combined group was nearly 2-fold

more frequent than that in the normal group, suggesting warfarin sensitive patients are more

prone to bleeding complications [13]. However, whether warfarin sensitivity is a risk factor for

adverse outcomes in critically ill patients remains unknown.

Machine learning that has been gradually appreciated and applied into clinical use, is to

devise models and algorithms that lend themselves to prediction without being explicitly pro-

grammed. Data is fed to the machine learning algorithm, and the algorithm builds logic based

on the data given. Machine learning models have been shown to easily identify trends and pat-

terns, and handle multi-dimensional, multi-variety data and non-linear relationship [14]. In our

previous study, we developed a clinical algorithm to predict the warfarin sensitivity based on

logistic regression [13]. However, the performance of different machine learning algorithms for

the prediction of warfarin sensitivity has yet to be determined for clinical applications.

In the present study, we aimed to evaluate the utility of different machine learning algorithms

for the prediction of warfarin sensitivity and then to investigate the impact of warfarin sensitivity

predicted using the best performance model on the outcomes of critically ill adult patients.

Materials and methods

Study population

A total of 106 qualified patients with various cardiovascular diseases on warfarin therapy in the

Easton cohort (S1 File) has been reported [13]. This study protocol was approved by
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Copernicus Group Institutional Review Boards with a waiver of informed consent for retro-

spective analysis of de-identified data.

IWPC Cohort has been described previously [9, 15]. Expanded dataset was downloaded

from the PharmGKB website (http://www.pharmgkb.org/downloads/), which contains pooled

data on 6922 chronic warfarin users recruited through collaborative efforts of 22 research

groups from 4 continents. This data set includes detailed de-identified curated data on demo-

graphic factors, clinical features, such as age, weight, height, and concomitant use of amiodar-

one, as well as CYP2C9 and VKORC1 genotypes. Missing values for height and weight were

imputed with multivariate linear regression models. Specifically, weight, race, and sex were

used for the imputation of the height variable, while height, race, and sex were used for the

weight variable. For missing values of the VKORC1 rs9923231, the imputation strategy has

been described [9], which is based on linkage disequilibrium in VKORC1 and race. We

excluded those that did not have warfarin stable dose, missing age or lacking CYP2C9 and

VKORC1 rs9923231 genotypes after imputation. We also excluded 17 subjects with CYP2C9�5,
�6, �11, �13 and �14, due to low allele frequency and an outlier subject with warfarin stable

dose 315 mg/week. A total of 5444 subjects were included in this study.

The dataset for investigating the impact of warfarin sensitivity on the outcomes of critically

ill adult patients was extracted from the Medical Information Mart for Intensive Care IV

(MIMIC-IV) version 0.4. MIMIC-IV is a large and freely available database containing de-

identified health-related data associated with patients that stayed in critical care units at the

Beth Israel Deaconess Medical Center between 2008 and 2019 [16]. The database was approved

by the Institutional Review Boards of the Massachusetts Institute of Technology. One author

(ZM) was given permission to extract data from MIMIC-IV. Patients who used warfarin dur-

ing hospitalization were eligible for inclusion. For patients with multiple ICU admissions, we

only included the first ICU stay. We excluded patients who were younger than 18 years old or

ICU length of stay less than 1 day. The primary outcome was 28-day mortality from the date of

ICU admission. Missing values for height were imputed as in the IWPC cohort.

Warfarin sensitivity

Warfarin sensitivity has been defined in our previous study based on the FDA warfarin label

(S1 Table) [12]. Briefly, VKORC1 G/G; CYP2C9 �1/�1, VKORC1 G/G; CYP2C9 �1/�2 and

VKORC1 A/G; CYP2C9 �1/�1 were three compound genotypes for warfarin normal respond-

ers. The rest 15 compound genotypes were deemed warfarin sensitive including sensitive and

very sensitive groups. In this study, warfarin sensitivity (normal or sensitive) was used as a cat-

egorical variable.

The logistic model for predicting warfarin sensitivity

The logistical model to predict warfarin sensitivity followed our previously developed regres-

sion equation [13]: Probability (P) = 1–1 / [1 + exp(6.3606–

1.0903
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
weekly warfarin stable dose

p
+ 0.0075 × height + 0.0116 × weight– 0.2693 × age–

3.8913 × Black– 1.4203 × White– 1.9562 × Missing or mixed race– 0.6882 × amiodarone)];

where exp is the exponential function; height in cm; weight in kg; Age in decades; Black = 1 if

race is Black, otherwise 0; White = 1 if race is White, otherwise 0; Missing or mixed race = 1 if

race is unspecified or mixed, otherwise 0; amiodarone = 1 if patient taking amiodarone, other-

wise 0. If P> 0.4, warfarin response is sensitive. It has been shown in our previous publication

[13] that the accuracy, sensitivity, and specificity in the logistic regression is better with a

threshold of probability > 0.4 for warfarin sensitivity. In the MIMIC-IV dataset, warfarin
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sensitivity was predicted by using the above logistic model. Warfarin stable dose was estimated

from the most frequent daily dose prescribed during hospitalization.

Statistical analysis

Implementation of machine learning algorithms and parameters. In the IWPC data

set, we randomly chose 80% of the eligible patients (for a total of 4355) as the derivation cohort

(training data set) to train various classifiers. The remaining 20% of the patients (N = 1089)

were reserved as the validation cohort (testing data set) to calculate the estimates of correct

classification rates. The variables were initially identified based on reported pharmacogenetic

dosing algorithm [9], including warfarin stable dose, height, weight, race, age, and use of amio-

darone. For the cross-validation (CV), the IWPC data set was randomly partitioned into 5

equal parts (folds). Thus, in each iteration, a model was trained on all but one held-aside folds

and then tested on the held-aside fold of the data. The iteration was repeated 5 times and each

fold served as a test data set to evaluate the model performance. For model quality assessment,

the areas under the ROC Curve (AUC), the overall prediction accuracy and F1 score of the

5-fold CV were evaluated.

The neural networks (NN), random forest (RF), extremely randomized trees (ET), support

vector machine with a linear kernel (SVC), AdaBoost (AB), K Nearest Neighbors (KNN), Logis-

tic Regression (LG), Gaussian Naïve Bayes (GNB) were implemented using python library Sci-

kit-learn (version 0.19.1) [17]. Gradient boosting trees (LGBT) was implemented using

Microsoft’s software ‘LightGBM’ with a python wrapper [18]. Hyperparameter tuning was per-

formed using ‘GridSearchCV’ with the default 5-fold CV in Scikit-learn. The key parameters for

each algorithm were: hidden layer sizes = (200,) for NN; n_estimators = 250, 75, 50 and 25 for

RF, ET, AB and LGBT, respectively; n_neighbors = 5, weights = ‘distance’ for KNN; kernel = ‘lin-

ear’, regularization C = 20, probability = ‘True’ for SVC. The performance of the logistic regres-

sion model was compared to other machine learning algorithms using unpaired Student’s t-test

for 5-fold CV in the IWPC Cohort and McNemar’s χ2 test in the Easton cohort.

Multivariable regression. To investigate the potential impact of warfarin sensitivity on the

primary outcome, multivariable regression was applied. Clinically relevant confounders includ-

ing age, height, weight, gender, race, service units, simplified acute physiology score (SAPS) II,

sequential organ failure assessment (SOFA) score, interventions (mechanical ventilation, vaso-

pressor use, sedative use), comorbidities (congestive heart failure (CHF), coronary heart disease

(CAD), asthma, chronic obstructive pulmonary disease (COPD), endocarditis, atrial fibrillation,

chronic renal disease, chronic liver disease, respiratory failure, ARDS, pneumonia, stroke, and

malignancy), clinical lab tests on first day of ICU stay (hemoglobin, platelet, WBC, bicarb, BUN,

creatinine, chloride, sodium, potassium) and vital signs (mean blood pressure, respiratory rate,

temperature, SpO2) were entered into a multivariate logistic regression model as covariates.

Propensity score matching (PSM) and inverse probability of treatment weighting

(IPTW). To account for the potential confounders associated with the predicted warfarin

sensitivity and to ensure the robustness of our results, propensity score matching was used

based on variables as described in the multivariable regression. Propensity scores for each

patient were estimated by a multivariate logistic regression model. The matched cohort was

created at a 1:1 with a caliper size of 0.05. Using the estimated propensity scores as weights, the

IPTW method [19] was used to generate additional weighted cohort (IPTW cohort). The bal-

ance between covariates was evaluated by estimating standardized mean differences (SMD).

SMD < 0.1 is considered a negligible group imbalance.

Due to the skewed distribution (with a longer tail at high doses) of warfarin dose, we trans-

formed the raw dose into the square root of the dose. For differences in continuous variables,
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warfarin stable dose, height, and weight between the derivation and validation cohorts were

compared with the Wilcoxon rank-sum test. For categorical variables, Fisher exact test was

used in CYP2C9 allele frequencies, χ2 tests were used for VKORC1 rs9923231 genotype, age,

and race. All the quantitative data are presented as means with 95% confidence intervals (CI)

or medians with interquartile ranges. P values < 0.05 were considered to be statistically signifi-

cant. All statistical analyses were conducted with R (version 3.6.1).

Results

Basic characteristics of study population

The characteristics of the patients in the IWPC and Easton cohorts are shown in S2 Table. In

the Easton cohort, of 106 patients on long-term warfarin therapy for thromboembolic disor-

ders and other cardiovascular diseases were included for analyses with complete clinical and

genotype data. The median warfarin stable dose was 27.5 mg/week. In the IWPC cohort, 5444

patients were included for analyses with a median warfarin stable dose of 28.0 mg/week.

In the MIMIC-IV cohort, 19,007 patients were prescribed warfarin during hospitalizations

and 10,823 patients were admitted to ICU with first stays. Based on exclusion criteria, a total of

7,647 critically ill patients were enrolled in the final cohort. There were 3833 patients predicted

to be warfarin normal sensitivity and 3814 patients deemed as warfarin sensitive by our logistic

model. The flow diagram of patient selections was shown in Fig 1. The baseline characteristics

of MIMIC-IV cohort were summarized in Table 1.

Performance of the different algorithms

Previously, we developed a clinical algorithm to predict warfarin sensitivity based on logistic

regression [13]. To determine whether the performance of different machine learning algo-

rithms is better than logistic regression, the same features were selected to train the various

Fig 1. Flowchart illustration of the study cohorts. AB: AdaBoost, ET: Extremely Randomized Tree, GNB: Gaussian Naïve Bayes, KNN:

K Nearest Neighbors, RF: Random Forests, LGBT: Light Gradient Boosting Tree, LG: Logistic Regression, NN: Neural Network, SVC:

Support Vector Machine.

https://doi.org/10.1371/journal.pone.0267966.g001

PLOS ONE Warfarin sensitivity correlates with worse mortality

PLOS ONE | https://doi.org/10.1371/journal.pone.0267966 May 5, 2022 5 / 14

https://doi.org/10.1371/journal.pone.0267966.g001
https://doi.org/10.1371/journal.pone.0267966


Table 1. Comparisons of demographic and clinical characteristics between the original cohort and matched cohort.

Covariates Original cohort Matched cohort

Normal Sensitive SMD Normal Sensitive SMD

N 3833 3814 2851 2851

Age (Median) 71 72 0.013 71 73 0.003

Male (%) 59.2 58.6 0.013 60.3 62.6 0.048

Weight-kg 0.013 0.016

Median 82.5 81.5 82.5 81.4

Interquartile range 70.0–98.0 68.1–97.6 69.9–97.6 68.9–97.0

Height-m 0.041 0.026

Median 172.7 170.2 172.7 172.7

Interquartile range 162.0–177.7 161.1–177.8 161.6–177.8 162.6–177.8

Race-no. (%) 0.644 0.010

Asian 6 (0.2) 128 (3.4) 6 (0.2) 6 (0.2)

Black 585 (15.3) 33 (0.9) 33 (1.2) 33 (1.2)

White 2500 (65.2) 3137 (82.2) 2324 (81.5) 2313 (81.1)

Unknown 742 (19.4) 516 (13.5) 488 (17.1) 499 (17.5)

Service unit-no. (%) 0.232 0.149

CCU 913 (23.8) 739 (19.4) 638 (22.4) 646 (22.7)

CSICU 784 (20.5) 1013 (26.6) 692 (24.3) 843 (29.6)

MICU 1194 (31.2) 1266 (33.2) 868 (30.4) 750 (26.3)

SICU 233 (6.1) 263 (6.9) 183 (6.4) 171 (6.0)

Others 709 (18.5) 533 (14.0) 470 (16.5) 441 (15.5)

SAPSII 35.7 (12.3) 37.1 0.113 36.4 36.4 0.001

SOFA 4.7 (3.2) 5.3 (3.4) 0.194 4.87 4.97 0.033

Interventions- (%)

Ventilation 36 41 0.091 39 38 0.023

Vasopressor use 42 49 0.144 46 49 0.069

Sedative use 71 75 0.101 73 75 0.049

Comorbidity- (%)

Endocarditis 1 2 0.032 1 2 0.029

CHF 39 41 0.039 39 38 0.019

CAD 36 38 0.049 38 39 0.030

COPD 14 15 0.049 14 14 0.010

AFIB 56 61 0.102 60 62 0.039

Renal 24 25 0.038 22 22 0.022

Liver 3 4 0.076 3 3 0.006

Resp fail 18 20 0.051 18 17 0.042

ARDS 3 3 0.041 3 3 0.019

Pneumonia 16 17 0.025 16 15 0.019

Stroke 8 6 0.067 7 7 0.001

Malignancy 12 11 0.016 12 10 0.037

Vital signs-Mean (SD)

HR (/min) 84.1 (15.9) 84.3 (15.4) 0.013 83.9 (15.6) 83.5 (15.2) 0.027

RR (/min) 19.2 (3.5) 19.1 (3.5) 0.022 19.1 (3.5) 19.0 (3.5) 0.019

MBP (mmHg) 77.9 (10.5) 76.0 (10.0) 0.183 76.8 (9.8) 76.7 (10.0) 0.008

Temperature (˚C) 36.8 (0.5) 36.8 (0.5) 0.016 36.8 (0.5) 36.8 (0.5) 0.025

SpO2 96.9 (1.8) 96.9 (1.9) 0.006 96.9 (1.8) 96.9 (1.9) 0.029

Laboratory tests-Mean (SD)

(Continued)
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prediction classifiers using the derivation data set from the IWPC cohort. There was no statis-

tically significant difference between the derivation and validation data set (S2 Table). The

maximal predictive performance evaluated with the validation data set was obtained with the

logistic regression (AUC = 0.868) and SVC (AUC = 0.868), followed by NN (AUC = 0.864)

and LGBT (AUC = 0.857), and AB (AUC = 0.853) (Fig 2). The algorithms RF, ET, GNB and

KNN resulted in the least favorable results (Fig 1). To obtain robust results, the model perfor-

mance was evaluated by 5-fold CV (Table 2). Similarly, the algorithm logistic regression

(AUC = 0.879, 95% CI: 0.834–0.924; Accuracy = 0.754, 95% CI: 0.649–0.859; F1 score = 0.691,

95% CI: 0.415–0.963) was indistinguishable from SVC, NN, LGBT and AB (P > 0.05).

Feature importance

To investigate the importance of selected features in the prediction models, the relative feature

importance was ranked by random forest and AdaBoost algorithms using the IWPC cohort. The

warfarin stable dose was the most important variable to predict warfarin sensitivity (Fig 3).

Validation of the performance

To fully utilize the IWPC data set, we pooled the derivation and validation cohorts to train the

nine different classifiers, and then validated the performance of the various machine learning

algorithms using the external Easton cohort. As shown in Table 3, consistent with the results

in the IWPC cohort, the classifier logistic regression (AUC = 0.835; Accuracy = 0.802; and F1

score = 0.759) was non-inferior to SVC, NN, AB and LGBT (P> 0.05), and better than all the

other algorithms (P< 0.05).

Warfarin sensitivity and hospital mortality

To determine the impact of warfarin sensitivity on critically ill patients during hospitalization,

28-day mortality since ICU admission was designated as the primary outcome. Of the 3814 in

Table 1. (Continued)

Covariates Original cohort Matched cohort

Normal Sensitive SMD Normal Sensitive SMD

Hemoglobin (g/L) 11.6(2.1) 11.4 (2.0) 0.094 11.6 (2.0) 11.6 (2.0) 0.002

Platelet (x109/L) 228.5 (110.6) 224.5 (111.0) 0.036 224.9 (105.7) 221.2 (104.0) 0.035

WBC (x109/L) 13.6 (7.0) 14.4 (8.9) 0.109 14.0 (7.3) 14.3 (9.3) 0.041

Bicarbonate (mmol/L) 25.1 (4.0) 24.9 (4.1) 0.067 25.1 (4.1) 25.0 (3.9) 0.012

Chloride (mmol/L) 105.6 (6.1) 105.6 (6.0) 0.008 105.7 (6.0) 105.9 (5.8) 0.032

Sodium (mmol/L) 139.6 (4.3) 139.3 (4.4) 0.063 139.4 (4.2) 139.4 (4.2) 0.005

Potassium (mmol/L) 4.6 (0.8) 4.6 (0.8) 0.030 4.6 (0.8) 4.6 (0.7) 0.013

BUN (mg/dL) 29.3 (22.6) 30.7 (24.0) 0.058 29.3 (22.2) 28.7 (22.3) 0.027

Creatinine (mg/dL) 1.6 (1.7) 1.6 (1.5) 0.014 1.5 (1.4) 1.5 (1.3) 0.030

ALT (Tested %) 45.0 45.0 0.001 43.5 41.2 0.046

TB (Tested %) 44.6 45.6 0.020 43.8 41.3 0.050

CK (Tested %) 37.2 32.5 0.098 34.2 33.2 0.021

AFIB, atrial fibrillation; ALT, alanine aminotransferase; ARDS, acute respiratory distress syndrome; BUN, blood urea nitrogen; CHF, congestive heart failure; CAD,

coronary artery disease; CK, creatine kinase; COPD, chronic obstructive pulmonary disease; HR, heart rate; Liver, chronic liver disease; MBP, mean blood pressure;

Renal, chronic renal disease; Resp fail, respiratory failure; RR, respiratory rate; SAPSII, simplified acute physiology score II; SOFA, sequential organ failure assessment

score; SMD, standardized mean difference; SpO2, pulse oxygen saturation; TB, total bilirubin; WBC, white blood cell.

https://doi.org/10.1371/journal.pone.0267966.t001
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the warfarin sensitive group, primary outcome events occurred in 158 patients (4.14%), com-

pared with 117 of 3833 (3.05%) in the warfarin normal group. In the multivariate logistic

regression analyses, after adjusting age, height, weight, gender, race, service unit, SAPS score,

SOFA score, interventions, comorbidities, clinical lab tests and vital signs on admission to

ICU, warfarin sensitivity was significantly associated with higher primary outcome events

(OR, 1.33; 95% CI, 1.01–1.77; P = 0.045) compared to normal warfarin sensitivity. To account

for confounding that could lead to the protective association between warfarin sensitivity and

the primary outcome, we further performed PSM and propensity score-based inverse

Fig 2. ROC curve analysis of nine different machine learning algorithms using the validation cohort in the IWPC

cohort. AB: AdaBoost, ET: Extremely Randomized Tree, GNB: Gaussian Naïve Bayes, KNN: K Nearest Neighbors, RF:

Random Forests, LGBT: Light Gradient Boosting Tree, LG: Logistic Regression, NN: Neural Network, SVC: Support

Vector Machine.

https://doi.org/10.1371/journal.pone.0267966.g002

Table 2. AUC, accuracy and F1 score for different machine learning algorithms using 5-fold CV in the IWPC cohort.

Algorithms AUC Accuracy F1 score

Mean(95% CI) P value (vs. LG) Mean (95% CI) P value (vs. LG) Mean (95% CI) P value (vs. LG)

RF 0.830(0.795–0.865) 0.010 0.733(0.671–0.795) 0.523 0.681(0.491–0.871) 0.904

ET 0.826 (0.785–0.866) 0.009 0.729 (0.677–0.781) 0.441 0.676 (0.494–0.859) 0.864

AB 0.863 (0.834–0.892) 0.289 0.751 (0.674–0.828) 0.944 0.702 (0.504–0.901) 0.902

NN 0.874 (0.826–0.922) 0.782 0.745 (0.608–0.882) 0.856 0.645 (0.253–1.037) 0.714

LGBT 0.857 (0.830–0.884) 0.134 0.746 (0.662–0.830) 0.828 0.689 (0.456–0.921) 0.978

KNN 0.729 (0.648–0.810) <0.001 0.668 (0.606–0.730) 0.025 0.617 (0.442–0.792) 0.891

GNB 0.828 (0.725–0.932) 0.117 0.671 (0.551–0.792) 0.079 0.686 (0.634–0.737) 0.937

SVC 0.877 (0.835–0.919) 0.916 0.750 (0.647–0.852) 0.920 0.684 (0.399–0.969) 0.945

LG 0.879 (0.834–0.924) 0.754 (0.649–0.859) 0.691 (0.415–0.968)

P values for the difference between logistic regression and other algorithms were calculated by the Student’s t test.

AB: AdaBoost, ET: Extremely Randomized Tree, GNB: Gaussian Naïve Bayes, KNN: K Nearest Neighbors, RF: Random Forests, LGBT: Light Gradient Boosting Tree,

LG: Logistic Regression, NN: Neural Network, SVC: Support Vector Machine.

https://doi.org/10.1371/journal.pone.0267966.t002

PLOS ONE Warfarin sensitivity correlates with worse mortality

PLOS ONE | https://doi.org/10.1371/journal.pone.0267966 May 5, 2022 8 / 14

https://doi.org/10.1371/journal.pone.0267966.g002
https://doi.org/10.1371/journal.pone.0267966.t002
https://doi.org/10.1371/journal.pone.0267966


probability of treatment weighting (IPTW) analyses. In the PSM matched cohort, after adjust-

ing the above variables, there was an increased risk of primary outcome events in the warfarin

sensitive group (adjusted OR, 0.1.49; 95% CI, 1.09–2.06; P = 0.014) (Fig 4). Similarly, in the

IPTW matched cohort, the adjusted OR for the primary outcome was 1.38 (95% CI, 1.02–1.87;

P = 0.038).

Discussion

Direct oral anticoagulants (DOACs), also known as non-vitamin K antagonist oral anticoagu-

lants (NOACs), which have a wide therapeutic window, thereby facilitating fixed dosing in

adults without the need for laboratory monitoring or dose adjustments for body weight, are

now available as a possible alternative to warfarin. However, warfarin has proven efficacy, low

cost, and years of physician experience compared with DOACs [20]. Warfarin offers superior

efficacy compared to DOACs in high-risk patients with antiphospholipid syndrome and

mechanical valves. The clinical trial for the use of rivaroxaban versus warfarin in patients with

antiphospholipid syndrome was terminated prematurely and showed that an increased rate of

Fig 3. The importance of features in the random forest and AdaBoost machine learning models.

https://doi.org/10.1371/journal.pone.0267966.g003
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events with rivaroxaban compared with warfarin [21]. The RE-ALIGN trial for the use of dabi-

gatran versus warfarin in patients with mechanical heart valves was also terminated prema-

turely due to an excess of both thromboembolic events and bleeding events among patients in

the dabigatran group [22]. In addition, warfarin may be a superior option for patients with a

history of medication nonadherence or morbid obesity. Therefore, warfarin will remain an

important and frequently used anticoagulant.

The individual response to warfarin is highly variable, being greatly influenced by genetic

variants, for example, in CYP2C9 and VKORC1. In view of the importance of genetic influ-

ence, we have proposed a classification for the individual response to warfarin and created a

simple algorithm to predict warfarin sensitivity based on logistic regression [13]. Logistic

regression is a widely used traditional statistical approach, but it is liable to ‘sparse-data biases’

in case of low cardinality of records especially when training and testing procedures are

Table 3. AUC, accuracy and F1 score for different machine learning algorithms tested in the Easton cohort.

Algorithms AUC Accuracy F1 score P value (vs. LG)

RF 0.748 0.698 0.644 0.006

ET 0.748 0.670 0.628 0.006

AB 0.826 0.755 0.717 0.131

NN 0.824 0.783 0.747 0.617

LGBT 0.815 0.755 0.723 0.131

KNN 0.715 0.689 0.629 0.034

GNB 0.736 0.623 0.672 0.002

SVC 0.836 0.802 0.759 NA�

LG 0.835 0.802 0.759

P values for the difference between logistic regression and other algorithms were calculated using the McNemar’s χ2 test.

� P value could not be calculated due to the exact same prediction.

AB: AdaBoost, ET: Extremely Randomized Tree, GNB: Gaussian Naïve Bayes, KNN: K Nearest Neighbors, RF: Random Forests, LGBT: Light Gradient Boosting Tree,

LG: Logistic Regression, NN: Neural Network, SVC: Support Vector Machine.

https://doi.org/10.1371/journal.pone.0267966.t003

Fig 4. Primary outcome analysis with three different models. Warfarin sensitivity was significantly associated with increased in-

hospital mortality. PSM, propensity score matching; IPTW, inverse probability of treatment weighting.

https://doi.org/10.1371/journal.pone.0267966.g004
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applied. Recently, machine learning algorithms are gradually appreciated and applied into

clinical use in general medicine [23, 24]. In data analytics, machine learning is to devise models

and algorithms that lend themselves to prediction. Machine learning can handle complex,

nonlinear relationships among variables and deal with many sources of inferential trouble

such as outliers and collinearity compared to linear methods, for instance, multivariable linear

regression. It is therefore very necessary to compare various machine learning algorithms with

logistic regression for the prediction of warfarin sensitivity.

In this study, using distinct machine learning algorithms, we developed eight models with

the same variables as in the logistic regression model to predict warfarin sensitivity. Intrigu-

ingly, we found that the models produced by logistic regression was indistinguishable from

SVC with a linear kernel, NN, AdaBoost and LGBT and significantly outperformed all the

other algorithms in both the IWPC cohort and the external Easton cohort. This is consistent

with the IWPC study, in which linear regression outperforms other machine learning-based

algorithms for the prediction of warfarin maintenance dose [9]. The result has also been con-

firmed in Chinese patients that the performance of the linear regression model is superior

[25]. This is probably attributed to the fact that machine learning algorithms excel at complex

and non-linear models with many independent variables. Because the logistic regression

model uses fewer variables, is easy to be implemented in a clinical setting and has the superior

performance, it is the best model for the prediction of warfarin sensitivity clinically. However,

the models in our study were relatively simple, only six variables included in our models for

the prediction of warfarin sensitivity. Additional potential variables affecting the prediction of

warfarin sensitivity were not included in the model, such as comorbidities, additional drug–

drug interactions, and patient behaviors, including diet, exercise, and compliance. With more

variables integrated into models, machine learning based models are likely to have better per-

formance at the risk of overfitting.

It has been shown that predicted warfarin maintenance dose decreases as with the increase

of age [26]. In the present study, we revealed that age was an important factor in the prediction

of warfarin sensitivity. These data indicate age is linked to warfarin maintenance dose and sen-

sitivity. In addition, we have shown that Asians, Whites, and Blacks have different polymor-

phism profiles of CYP2C9 and VKORC1 in the IWPC cohort [13]. In line with this, we found

that race was another important variable to predict warfarin sensitivity.

Lastly, we applied the logistic regression model to predict warfarin sensitivity on critically

ill patients in the MIMIC-IV database. Intriguingly, warfarin sensitive patients with critical ill-

nesses were significantly associated with worse in-hospital mortality, compared to warfarin

normal patients. This result suggests that warfarin sensitivity is a risk factor in critically ill

patients.

Several limitations are present in our study. First, missing genotypes of VKORC1 were

derived based on linkage disequilibrium in the IWPC cohort. Missing values for height and

weight were also imputed using multivariate linear regression. Errors could have been intro-

duced in the study despite these generally reliable imputation strategies. Second, although

potential confounding factors were attempted to balance and control by multiple variable

adjustments and propensity score matching, due to the inherent nature of retrospective stud-

ies, residual confounders were likely to exist and could not be balanced in the analysis of the

association of warfarin sensitivity and in-hospital mortality.

Conclusions

We evaluated the utility of different machine learning algorithms for the prediction of warfarin

sensitivity and found that logistic regression was indistinguishable from other machine
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algorithms such as SVC with a linear kernel, NN, AdaBoost and LGBT. We found that the

logistic regression model is the best model for the prediction of warfarin sensitivity clinically.

We also demonstrated that warfarin sensitivity predicted by the logistic regression model was

significantly associated with increased in-hospital mortality in critically ill patients, suggesting

warfarin sensitivity may be a risk factor for adverse outcomes in critically ill patients.
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