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Abstract

Time series data is prevalent in many fields, such as finance, weather fore-
casting, and economics. Predicting future values of a time series can provide
valuable insights for decision-making, such as identifying trends, detecting
anomalies, and improving resource allocation. Recently, Generative Adversar-
ial Networks (GANs) have been used to learn from these features to aid in
time-series forecasting. We propose a novel framework that utilizes the un-
supervised paradigm of a GAN based on related research called TimeGAN.
Instead of using the discriminator as a classification model, we employ it as
a regressive model to learn both temporal and static features. This frame-
work can help generate synthetic data and facilitate forecasting. Our model
outperforms TimeGAN, which only preserves temporal dynamics and uses the

discriminator as a classifier to distinguish between synthetic and real datasets






TIME SERIES FORECASTING USING GENERATIVE ADVERSARIAL
NETWORK

A Thesis
Presented to The Faculty of the Department of Computer Science

East Carolina University

In Partial Fulfillment of the Requirements for the Degree

Master of Science in Data Science

by
Sharon Sone Mamua

May, 2023



Copyright Sharon Sone Mamua, 2023



TIME SERIES FORECASTING USING GENERATIVE ADVERSARIAL
NETWORK

by

Sharon Sone Mamua

APPROVED BY:

DIRECTOR OF THESIS:

Rui Wu, PhD

COMMITTEE MEMBER:

Qin Ding, Ph.D.

COMMITTEE MEMBER:

Nic Herndon, Ph.D.

CHAIR OF THE DEPARTMENT

OF COMPUTER SCIENCE: Venkat Gudivada, PhD

DEAN OF THE

GRADUATE SCHOOL: Kathleen Cox, Ph.D.



Table of Contents

LIST OF TABLES . . . . . . o i i h e e vi
LISTOF FIGURES . . . . . . oo o v i oo bt e e vii
1 INTRODUCTION . . . . oo o vt b s e e e 1
2 RELATED WORK . .. .. ... oo 4

2.1 Time-series Forecasting Using Recurrent Neural Networks and

its variants: Long Short-Term Memory(LSTM) and Gated Re-

current Units(GRU) . . . . . ... ... .. L. 4
2.2 Introduction to Generative Adversarial Networks(GAN) . . . . 5
2.3 Time-series Generative Adversarial Networks(TimeGAN) . . . 6
PROPOSED METHOD . . . .. ... ... ... 9
3.1 Architecture Diagram . . . . . . . .. ... ... ... 10
3.2 Synthetic Data Generation . . . . . .. ... ... ... .... 11
3.2.1 Embedding and Recovery Functions . . . . . . . . . .. 11
3.2.2 Reconstruction Loss and Embedding loss . . . . . . .. 11
3.2.3 Generator and Discriminator . . . . . .. ... ... .. 12
3.2.4  Generator and Discriminator Losses . . . . . . . . . .. 12
3.2.5 Jointly Training . . . . . . . . ... ... 13
3.3 Post-hoc Prediction Model . . . . . .. .. ... .. ... ... 14
IMPLEMENTATION . . .. .. .. i, 15
4.1 Application Work Flow . . . . . . ... ... ... ... .... 15

4.2  Generating Synthetic Data . . . . . . ... ... ... ... 16



4.3 Post-hoc Training and Testing . . . . . . .. .. .. ... ... 17

4.3.1 Predictive Score . . . . . . ... 17

4.3.2 Discriminative Score . . . . . .. ... 18

4.4 Hyperparameters . . . . . . . . . .. ... 19

5 EXPERIMENT RESULTS AND DISCUSSION . . ... ... .. 21
5.1 Data . . . . o 23
52 Results . . . . . . 24
5.3 Discussion . . . . . ..o 25
5.4 Constraints . . . . . . . ... 25

6 CONCLUSION AND FUTURE WORK . .. ... ........ 27
6.1 Conclusion . . . . . . . ... 27

6.2 Future Work . . . . . . ... 27

BIBLIOGRAPHY . . . . . o oo oo i e e 28



LIST OF TABLES

5.1
5.2
5.3
5.4

MAE Results for Proposed TimeGAN VS Original TimeGAN 24
RMSE Results for Proposed TimeGAN VS Original TimeGAN 24
R-Squared Results for Proposed TimeGAN VS Original TimeGAN 24

RMSE Results for Proposed Discriminator . . . . . . . . . .. 25



LIST OF FIGURES

3.1 Diagram of the different Components and their functions . . .

4.1 Application Training Scheme



Chapter 1

Introduction

Time-Series data is data collected and/or observed at equivalent time frames
from each other. Such data is increasingly used in different sectors such as;
finance, geography, weather, and engineering. With such a rise, there is also
a need to create models that can predict the outcome for future time steps.
There is a lot of historic data that can be used to make informed future
decisions using forecasting models. In addition, we want to be able to produce
synthetic data that looks very similar to real data for privacy. Analysis can also
be conducted on such data to perform informed decisions because real data
can be costly and sensitive. Using synthetic data with the same properties
and probability distribution as real data is very helpful in forecasting and
predictions.

Recurrent Neural Networks(RNNs) have been very prominently used for
forecasting. RNNs suffer from the problem of short-term memory. For exam-
ple, the translation of a long text can have earlier words in a sentence or text
overlooked; this can be problematic, as these overlooked words may have great
significance in the meaning of the text in future time steps. Long Short-Term
Memory (LSTM) and Gated Recurrent Units (GRU) have been previously
proposed as solutions to this problem. Because of their use of hidden states,
LSTM and GRU provide a solution for the vanishing of vital features as the
neural network goes from one-time step to the next. These will be used as the
basic cell units for our discriminator and generator in our proposed model.

Machine learning models are commonly implemented in two forms. First,

Supervised Learning is a form of machine learning where that uses labeled



data sets and the data sets are trained to accurately predict or classify data
sets over time. While unsupervised learning is used to cluster and analyze
data sets [1]. In our approach to forecasting time-series data, we will be using
both. A Generative Adversarial Network (GAN) is a form of unsupervised
learning via generative modeling. In generative modeling, the training data
set is obtained from an unknown probability distribution. Then, the model
used to generate that data set is learned, then generates a distribution that
approximates the training data set as closely as possible [2]. Then, we will
predict a one-time step ahead in our data using both synthetic and real data
to evaluate the accuracy of our proposed model.

Our Approach is based on the paper Time-series Generative Adversarial
Networks [3] where they used a GAN framework to generate synthetic data.
They used the generator and discriminator simultaneously, where the discrim-
inator is a classifier that tries to correctly label the data as synthetic or real,
while the generator tries to deceive the discriminator. The discriminator is
introduced to help improve the quality and integrity of the results produced
by the generator. However, in our approach, the discriminator predicts the
loss between the synthetic data from the generator and the real data. They
both work together simultaneously to minimize the error in the discriminator
and generator. Through the combination of unsupervised learning GAN and
supervised training in autoregressive models, we are presenting a model for
Time-Series forecasting.

The main contributions of this study are : A generative model to produce
synthetic data that is very similar to the real data, and in contrast, to the
original discriminator using a classifier to distinguish between the real and
synthetic data, our discriminator will be a regression model used to predict

the loss between the generator and the real data, which will result to the final



prediction (one time step ahead) being an addition of the synthetic data(from

the generator) to the loss(from the discriminator).



Chapter 2

Related Work

There are numerous studies in the field of time-series forecasting. However,
few of these studies utilize GAN with the discriminator as a regressive model.
Some of the works detailed in this section will include different research that
uses GAN and time-series forecasting in order to give us a look at some previous

research that will be useful for the understanding of time-series research.

2.1 Time-series Forecasting Using Recurrent Neural Networks and
its variants: Long Short-Term Memory(LSTM) and Gated Re-
current Units(GRU)

Recurrent Neural Networks are types of artificial neural networks, and one of
their many advantages is to help with the forecasting of complex data. One of
RNNs important features is its ability to recognize patterns in time-series data
and make more accurate predictions. Neural networks are based on the bio-
logical functionality of neurons. Recurrent Neural Networks consist of hidden
neural network units which are connected recurrently. RNNs constitute three
components: Input, activation function, and Output [4]. The four common
types of activation functions are the Rectified Linear Unit (ReLU), Sigmoid,
Tangent hyperbolic (tanh), and Softmax.

One main feature of RNNs is that the same network is used for several time
steps; which can tend to serve as memory|[5]. However, there comes a problem
when faced with a long sequence of data. This is known as the vanishing
gradient problem where crucial events which happened several time steps ago

may be overlooked. This happens due to the decreasing weights given to data



as the time steps go along. This problem has been solved using Long Short
Term Memory(LSTM)]6].

LSTMs have an internal state and a number of multiplicative gates: an
input gate, a forget gate, and an output gate [7]. LSTMs have dedicated mech-
anisms for when a hidden state should be updated and also when it should
be reset. This helps with the vanishing gradient problem. However, LSTMs
have many parameters to be set during the training phase, which requires
a large computational power[4]. To help with the computational challenges
with large/complex data sets, Gated Recurrent Units(GRU) have been imple-
mented. With GRUs unlike LSTMs, the three gates are replaced by two: the

reset gate and the update gate.

2.2 Introduction to Generative Adversarial Networks(GAN)

As previously mentioned, our model is based on Generative Adversarial Net-
works (GANSs). Generative Adversarial Networks (GANs) are a type of deep
learning model introduced in 2014 by Ian Goodfellow and his team [8]. GANs
are a form of unsupervised learning, where the model learns to generate new
data without any pre-existing labels or categories. The GAN architecture con-
sists of two components called Generator and Discriminator. The role of the
generator is to generate new data which is similar to the data that is provided,
and the role of the discriminator is to differentiate between generated data
and real input data. Both synthetic data and real data are used as input to
the discriminator. The discriminator needs to correctly classify the input data
as real or fake.

Over time, the generator learns to produce increasingly realistic data sam-
ples that can fool the discriminator. The end goal is to have a generator

that produces synthetic data samples that are indistinguishable from real data



samples, while the discriminator becomes increasingly confused and uncertain
about which samples are real and which are fake.

GANSs have shown promising results in a variety of applications, including
image and video generation, music synthesis, text generation, and even drug
discovery. GANs have the potential to revolutionize the way we generate and
analyze data, and their development continues to be an active area of research

in the field of machine learning.

2.3 Time-series Generative Adversarial Networks(TimeGAN)

TimeGAN is a model proposed by Jinsung Yoon et al [3] which is a generative
model, trained adversarially and jointly via learned embedding space with both
supervised and unsupervised loss. The paper ” Time-series Generative Adver-
sarial Networks” introduces a new type of neural network architecture called
Time-series Generative Adversarial Networks (TGANs) for generating syn-
thetic time-series data that is similar to real-world time-series data. TGANs
consist of two deep neural networks, a generator and a discriminator, which
are trained in an adversarial manner to produce realistic synthetic time-series
data.

The generator takes random noise as input and generates synthetic time-
series data that is similar to the real data, while the discriminator distinguishes
between real and synthetic time-series data. Through iterative training, the
generator learns to generate time-series data that can fool the discriminator,
while the discriminator learns to distinguish between real and synthetic data.

The paper demonstrates the effectiveness of TGANs on several real-world
time-series data and shows that TGANs can generate synthetic time-series
data that is comparable to real-world data in terms of statistical properties

and predictive accuracy. TGANs have potential applications in areas such as



finance, healthcare, and manufacturing, where generating synthetic time-series
data can be useful for data augmentation, privacy-preserving data sharing, and
predictive modeling.

TimeGAN consists of four network components: embedding function, re-
covery function, sequence generator, and sequence discriminator. The autoen-
coding components(embedding and recovery functions) are trained jointly with
the adversarial components (sequence generator and discriminator).

The embedding function, e is implemented via a recurrent neural network.
The recovery function, r is implemented via a feedforward network at each
step. The generator, g takes a random vector, Z from a known distribution.
Then generating a tuple of static and temporal features. The generator, g is
implemented via a recurrent neural network. The discriminator, d operates
in the embedding space where it receives static and temporal features and
classifies them as real or fake. The discriminator, d is implemented via a
recurrent bidirectional network with a feedforward output layer.

The first objective is for the embedding and recovery functions to enable
the reconstruction of the original data. They provide a function called re-
construction loss. During training, the objective is to minimize this loss. In
TimeGAN proposed method, the generator is exposed to two types of inputs
during training. The generator receives synthetic embeddings in order to gen-
erate the next synthetic vector. Gradients are then computed to calculate the
unsupervised loss. The main objective during this step is to allow maximizing
the efficiency of the discriminator and minimize the efficiency of the generator.
The generator does not rely mainly on the discriminator’s binary adversarial
feedback but also receives sequence embeddings of the actual data. This helps
generate the next latent vector. This model yields the supervised loss.

Traditional time-series forecasting techniques, such as ARIMA and expo-



nential smoothing, rely on statistical methods and historical data to forecast
future values. These techniques often assume that the underlying data is sta-
tionary and linear, which may not be true in many real-world scenarios. GANs
offer an alternative approach to time-series forecasting by generating synthetic
data that captures the underlying distribution of the data.

The authors evaluate their proposed method, TimeGAN with RCGAN|9]
and C-RNN-GAN]10], the two most closely related methods. They calculated
a discriminative and predictive score. For the discriminative score, they trained
a classification model to distinguish between the real and synthetic data. Then,
reported the classification error. However, since our proposed model doesn’t
utilize the discriminator as a classification model we are not going to utilize
those scores. On the other hand, the predictive score was obtained by training
a post-hoc sequence prediction model to predict the temporal vectors for the
next time step. The model was trained on the synthetic data, then evaluated
using the original data. Performance was evaluated using the mean absolute

error (MAE), which we are going to use as well to evaluate our proposed model.



Chapter 3

Proposed Method

In this thesis, we have created a framework for time-series forecasting using a
generative adversarial network. Within this framework, there is a generator
and discriminator as the two main components for predictions. Where the
generator is the model used to generate synthetic data, and the discriminator
is a model used to predict the loss between the synthetic data and real data
at every time step. These two models are used simultaneously to produce
synthetic data. They are later trained in post-hoc models to predict the next
time step in the original data.

Further, we utilize recovery and embedding functions. Our proposed model
for generating synthetic data comprises four components: recovery and em-
bedding functions, generator, and discriminator, a model previously proposed
by Yoon [3]. The recovery and embedding functions are autoencoding compo-
nents used to accurately take the data between the feature and latent spaces
which enables the learning of the dynamic temporal features of the data. As
previously mentioned, our main contribution which differs from the TimeGAN
paper[3] is that instead of using our discriminator as a classifier to differentiate
between the synthetic and real data, we use the discriminator to predict the
difference between the values in the real and synthetic data. Then, we add
this predicted loss to the generated data to predict the record for the next
time step.

First, we develop synthetic data by jointly training the generator and dis-
criminator. As previously mentioned the embedding and recovery functions are

also used to optimize the quality of the synthetic data. Then, to test the gen-



erator’s and discriminator’s efficiency, we use a post-hoc sequence-prediction
model (by optimizing a 2-layer LSTM) to predict next-step temporal vectors
over each input sequence.

The following sections will discuss the architecture of the proposed frame-
work. We will detail the generation of the Synthetic Data Generation

methodology and Post-hoc Prediction Model used in our proposed method.

3.1 Architecture Diagram

The overall setup of this time-series forecasting model relies on the design of a
generative adversarial network(GAN). The architecture diagram given below

illustrates our proposed framework.

Recovered
loss

Reconstructions Discriminator

Loss

Discriminate

Recovery

Latent Generator
Codes loss
Embedding Generate
Random
Real Sequence S n
q equence Recovery
Loss

Figure 3.1: Architecture diagram of component functions and ob-
jectives. Latent Codes are generated by using an autoencoding
network. Codes are reconstructed, and the loss between both (real
and reconstructed data) is minimized in training.

Figure 3.1 shows how the data is transformed into latent codes allowing the
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adversarial network to learn the underlying temporal dynamics of the data via
lower-dimensional representations. Time-series data usually contains temporal
correlations, which cannot be directly captured and interpreted by traditional
image-focused disentangle methods like LSTM[11], Auto-Regressive Integrated
Moving Average (ARIMA) [12]. Hence, representation learning in the time-
series setting primarily deals with the benefits of learning compact encodings
for the use of downstream tasks such as forecasting. Hence in our method,

latent space helps fix this problem.

3.2 Synthetic Data Generation

One of the two main steps is generating synthetic data that is very similar
to the original data. To achieve this, we use the GAN framework. This is
made up of four components: embedding and recovery functions, generator,

and discriminator.

3.2.1 Embedding and Recovery Functions

The embedding function takes the original features of the data into latent
spaces. This function is implemented with the help of a feedforward neural
network at each step. Which returns the static and temporal features of the
real data.

The recovery function takes the data from latent spaces to original spaces.
This function is used to train the recovery of data from both its static and

temporal features.

3.2.2 Reconstruction Loss and Embedding loss

A reversible mapping between original and latent spaces is required. Hence,

the embedding and recovery functions should enable accurate reconstructions.
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To achieve this, we put parameters in our model to minimize the loss between

recovered data and real data using the Mean Squared Error.

E_loss = tf.losses.mean_squared_error(X, Xtilde) (3.1)

3.2.3 Generator and Discriminator

The generator is the main model responsible for producing the synthetic data.
This model takes a random vector sequence with a similar probability distri-
bution to the original data. First, the generator takes the data to latent space,
then calculates the unsupervised loss and tries to minimize this loss in every
iteration. This is done with the help of two models: a generator, a generator
network for the temporal features, and supervisorl, for static features.

The discriminator operates in the latent spaces where it tries to predict the
loss between the generator output and the original data. The discriminator
has a supervisor as well used to get the static features. The discriminator

consists of discriminator and supervisor2.

3.2.4 Generator and Discriminator Losses

First, for the generator loss, we access the difference between X, real data,

and X _hat, the generator data at that time step.

G_loss U = tf.losses.absolute_dif ference(X, X _tilde)

G _loss_U is the loss between Xand X _tilde, recovered real data. Then, we
get a supervised loss, G_loss_S, which calculates the mean squared error of
the data in latent space. H, which is the result of embedding the real data
into latent space, and H _hat_supervise, which results from H being run on

the generator’s supervisor.
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G_loss S = tf.losses.mean_squared_error(H[:, 1 :,:], Hhatsupervisel[:,: —1,:])

Then calculate two moments:

G.loss V = G.loss V1 + G.loss V2

Final generator loss equation:

G_loss = G_loss.U + 100 x t f.sqrt(G_loss_S) + 100 * G_loss_V (3.2)

Next, we have the discriminator loss which evaluates the loss between the

synthetic data plus discriminator loss and real data

D_loss = tf.losses.mean_squared_error(X,Y _hat + X _hat) (3.3)

3.2.5 Jointly Training

This proposed model is heavily reliant on the joint training of both the gener-
ator and discriminator. Where the generator is able to predict data as close to
the real data, and the discriminator is able to predict the loss between the real
data and generated data at every iteration. The objective is to minimize the
discriminator loss(the difference between the generated output and real data),
and generator loss to get the generated data to be as close to the real data as
possible.

The model is run for 10000 iterations. The resulting generated data is

X _hat, which is the output from the discriminator.
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3.3 Post-hoc Prediction Model

At this stage, we have generated the synthetic data, now is the time for the
prediction of time steps ahead.

First, we get a predictive score that uses a sequence-prediction model to
predict next-step temporal vectors over each input sequence. This model con-
sists of a Multi-Layer recurrent neural network made up of gated recurrent
units(GRU) as neurons. The model predicts the next time step in the input
data. The model is trained on the synthetic data, and tested on the real data.

Then, we get our novel prediction model which predicts the loss between
the synthetic data and the real data. This model also consists of a Multi-Layer
recurrent neural network made up of gated recurrent units(GRU) as neurons.
Then, evaluates the final prediction as the sum of generated data and the

predicted loss from the discriminator.
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Chapter 4

Implementation

4.1 Application Work Flow

E
Embedder Gene;}—/ H_hat_ s
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Figure 4.1: Training scheme for generating synthetic data in the
proposed model. Embedder gets real data and transforms it into
latent codes. Recovery takes the latent codes to the original data.
The generator learns from latent codes of random sequence to pre-
dict data. Discriminator learns from real and synthetic data to
predict the loss( real data - prediction from generator)

Rallst)

£
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Figure 4.1 shows the training scheme for generating synthetic data in the
proposed model. This figure is used to visually represent the roles of the

different components which will be described in-depth below.



4.2 Generating Synthetic Data

For the first part of our model which is generating the synthetic data, we start

by constructing placeholders for our data; X, Z, T

X = tf.placeholder(tf.float32, [None, max_ seqlen, dim|, name = "myin-
put_x")

Z = tf.placeholder(tf.float32, [None, max_seq_len, z_dim|, name = ”"myin-
put_z”)

T = tf.placeholder(tf.int32, [None|, name = "myinput_t”)

X represents the input data, which has dimensions similar to original data
grouped by sequence. T represents the time data. Z represents the random
sequence data.

We use Python code defining a function named TimeGAN, which generates
synthetic time-series data using the TimeGAN algorithm. The TimeGAN al-
gorithm consists of four networks: an embedding network, a recovery network,
a generator network, and a discriminator network.

The function takes two arguments: oridata, the original time-series data
used as a training set for generating synthetic data, and parameters, a dic-
tionary containing TimeGAN network parameters, including the number of
hidden layers, number of iterations, batch size, etc. These hyperparameters
will be discussed in the next section.

The function begins by resetting the default TensorFlow graph. Next,
the original data is normalized using the MinMaxScaler function. Then, the
TimeGAN networks are defined using helper functions: embedded, recovery,
supervisorl(for generator), and supervisor2(for discriminator).

The embedder function takes the original time-series data and returns the
latent space embeddings of the data. The recoveryl and recovery2 functions

reconstruct the original time-series data from the embeddings. The supervi-

16



sorl and supervisor2 functions generate a new sequence based on the previous
sequence using the latent representations generated by the generator and dis-
criminator simultaneously.
e_vars= [v forvint f.trainable_variables()i fv.name.startswith('embedder’)]
rlvars = [v for v in tf.trainable_variables() if v.name.startswith('recoveryl’)]
E _solver = tf.train. AdamOptimizer().minimize( E_loss,var_list = e_vars +
rlvars)
sess.run([E0_solver, E_loss T0|, feed_dict = X : X_mb,T : T_mb)
Finally, the synthetic data is generated using the TimeGAN algorithm,
which involves training the generator and discriminator networks simultane-
ously for a number of iterations until the synthetic data matches the original

data. The generated synthetic data, X _hat is returned by the function.

4.3 Post-hoc Training and Testing

4.3.1 Predictive Score

This is implemented using Python code for evaluating the performance of a
predictive model using post-hoc RNN time steps ahead prediction. Specifically,
it takes as input the original data and the generated synthetic data and outputs
the mean absolute error (MAE), RMSE, and R2 scores of the predictions and
the original data.

The code builds a post-hoc RNN predictive network using the generated
synthetic data and then tests the trained model on the original data. The
performance is evaluated in terms of MAE, root mean squared error (RMSE),
and R-squared (R2) score.

The code imports necessary packages including TensorFlow, NumPy, mat-
plotlib, and sci-kit-learn. It defines the predictive score metrics function that

takes in two arrays of data real data and generated data. It then initializes the
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TensorFlow graph and sets basic parameters such as the maximum sequence
length, the sequence length of each time series, and the number of dimen-
sions. The function builds a post-hoc RNN predictive network with a simple
predictor function that uses a GRU cell and a fully connected layer with a
sigmoid activation function. The loss function for the predictor is the absolute
difference between the predicted and true values.

The function then trains the predictor using the generated synthetic data
and tests the trained model on the original data. It computes the MAE,

RMSE, and R2 scores for each time series.

4.3.2 Discriminative Score

The section is where we compute our final prediction using our proposed
method that utilizes the prediction of the loss between the synthetic and real
data.

This function takes inputs (ori_date, generated_data), and we compute a
new data set, new_prediction = ori_data — generated_data, which is the loss
between the synthetic and real data. We split the data into 70% : 30% train-
ing/testing split which are chosen at random. We train an RNN predictive
network with a simple predictor function that uses a GRU cell and a fully
connected layer with a sigmoid activation function to predict one step ahead
in new_prediction.

Our final prediction is calculated as the sum of the loss and the generated
synthetic data.

This is the input data for the model. This data is for the time step, t.

X_mb = list(ori_datali][: —1,: (dim — 1)] foriintest_idx)

T _mb = list(ori_time[i] — 1 for i in test_idz)

18



y_pred_curr = sess.run(y-_pred, feed_dict = X : X_mb, T : T_mb)
This is the generator data for one time step ahead, t+1

Y _mb = list(np.reshape(generated_datali][1 :, (dim—1)], [len(generated_datali][1 :
, (dim — 1)]),1]) for i in test_idx)

Then the generated synthetic data is added to the predicted loss,

new_y_pred =Y _mb+ y_pred_curr (4.1)

All predicted datasets are flattened to [None, maz_seq_len — 1,1] before

training/testing in order to help speed up training by reducing the dimensions.

4.4 Hyperparameters

Our hyperparameters for the execution of our code are as follows:

e —data_name: This refers to the name of the data set, which is one of the
data described in 5.1.

e —seq_len: This refers to the number of time-series records grouped as one
time step. This varies from data to data depending on the time interval
the data was collected. So we can want to group the records per hour,
per day, per month, etc.

e —module: This refers to the name of the units that will be used in the
Recurrent Neural Network units for our different models: embedding
function, recovery function, generator, and discriminator.

e —hidden_dim: This refers to the number of units used in each layer(num layer)
of the recurrent neural network.

e —batch size: This refers to the number of training examples used in one
iteration of the training.

e —iteration: This refers to the number of cycles used in training the model.

Here is the code specifying the hyperparameters on the command line. The
sequence length is the only parameter that changes by data because we want

to consider one time step by hour or day.
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python main_TimeGAN.py —data_name energy —seq_len 6 —module gru —
hidden_dim 24 —num_layer 3 —iteration 10000 —batch_size 128 —metric_iteration
1

python main_TimeGAN.py —data_name stock —seq.len 5 —module gru —
hidden_dim 24 —num _layer 3 —iteration 10000 —batch_size 128 —metric_iteration
1

python main_TimeGAN.py —data_name electricity —seq_len 24 -module gru
—~hidden_dim 24 —num _layer 3 —iteration 10000 —batch_size 128 —metric_iteration
1

python main_TimeGAN.py —data_name solar —seq_len 24 —module gru —
hidden_dim 24 —num _layer 3 —iteration 10000 —batch_size 128 —metric_iteration
1

python main_TimeGAN.py —data_name sine —seq_len 10 —module gru —
hidden_dim 24 —num_layer 3 —iteration 10000 —batch_size 128 —metric_iteration
1
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Chapter 5

Experiment Results and Discussion

This work proposes a framework to predict time-series data for one time step
ahead, utilizing a generative adversarial network framework(GAN) for syn-
thetic data generation and using set data for said predictions. Although pre-
vious studies utilize GAN, our study utilizes the discriminator as a regressive
model to predict the loss between the generated and real data. This work
utilized GAN to generate synthetic data, and a post-hoc time-series regression
model (by optimizing a 2-layer LSTM) to predict the difference between the
sequences from the original and generated data (Discriminative Score). Then,
train a post-hoc sequence-prediction model (by optimizing a 2-layer LSTM) to
predict next-step temporal vectors over each input sequence. Then, we evalu-
ate the trained model on the original data(Predictive Score). The models will
be evaluated using the mae, r?, and rmse metrics.

r? (r-squared) signifies how much of the resulting variable data can be
explained using the other variables. In particular, the predictors (variable
information used in the prediction of the machine learning algorithm) are
compared to the resulting variable. The proportion of the variance between
these variables is called r2. It provides an indication of how well the model fits
the data, with higher values indicating a better fit. R-squared is also
easy to interpret, as it represents the proportion of the variation in the target
variable that can be explained by the model.

However, R-squared has some limitations. It can be sensitive to the number
of variables in the model, and it doesn’t provide information on the accuracy

of individual predictions.



Similarly, the rmse (root mean squared error) metric illustrates how far the
resulting predictions are from the observed result variable. In simpler terms,
rmse directly portrays how close the model predictions compare to the actual
observations from the initial data. Further, this metric can be considered
absolute in that it is a direct comparison between the predicted and actual
measurements.

Mean Absolute Error (MAE) is a popular metric used to evaluate the per-
formance of regression models in machine learning. MAE measures the average
absolute difference between the predicted and actual values of a target variable.
The smaller the MAE value, the better the model’s performance.

Like MAE, RMSE measures the difference between predicted and actual
values of a target variable, but it gives more weight to larger errors.

All of these metrics are important for the evaluation of machine learn-
ing algorithms. Each one illustrates not only how well the machine learning

algorithms compare in terms of model fit, but also in the behavior of the data.

1 n
RMSE =, |~ ;Yf — Yiat? (5.1)
1 n
MAE = = Y — Vi, 5.9
- ;\ hati (5.2)

where Y; are the observed values and Y},,;; are the predicted values at i.

| Vs = Y5 5.3

r2 = -
2 izo(Yi = Yoar)?

Ynat Tepresents the predicted values, y; represents the observed values and

Ypar Tepresents the mean of all the values
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5.1 Data

We are going to evaluate our proposed method on a variety of characteristic
benchmark time-series data. The following data are publicly available on the
UCI machine learning repository[13], and have been used in a variety of time-

series research we can compare our model with.

e Sine. We simulate multivariate sinusoidal sequences of different frequen-
cies, f, and phases 6, providing continuous-valued, periodic, multivariate
data [3].

e Solar. Solar data has 137 records with 52560 instances.

e Energy. This data is collected every 10 minutes for about 4.5 months.
The house temperature and humidity conditions were monitored with a
ZigBee[14] wireless sensor network. The timer was set at 10 minutes for
4.5 months. They have 28 records and 19735 attributes. This data can
be found at this link

e Electricity. This is a time-series data collected every 15 minutes for
370 records/clients. There exist 140256 instances of these records. This
data can be found at this link

e Stock This is stock data from Yahoo Finance. Stock data is recorded
daily during weekdays.
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https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://finance.yahoo.com/quote/CSV/history/

5.2 Results
Table 5.1: Mean Absolute Error(MAE) results for comparison of
the Original TimeGAN Model[3] against our proposed model
using the discriminator as a regressive instead of a classification
model. The table is organized by data.
Data Original GAN Proposed GAN
Prediction (w/o d loss) Prediction (with d loss)
Energy 0.3017 0.2852 0.20684
Stock 0.0393 0.08773 0.0532
Electricity 0.0379 0.0388 0.09283
Solar 0.0408 0.0293 0.145
Sine 0.1241 0.06942 0.06282
Table 5.2: Root Mean Squared Error(RMSE) results for
comparison of the Original TimeGAN Model[3] against our
proposed model using the discriminator as a regressive instead of
a classification model. The table is organized by data.
Data Original GAN Proposed GAN
Prediction (w/o d loss) Prediction (with d loss)
Energy 0.3964 0.33108 0.26374
Stock 0.0590 0.08773 0.0552
Electricity 0.04435 0.04716 0.11264
Solar 0.0611 0.04024 0.15617
Sine 0.13791 0.07943 0.07135
Table 5.3: R-Square(R-2) results for comparison of the Original
TimeGAN Model[3] against our proposed model using the
discriminator as a regressive instead of a classification model.
The table is organized by data.
Data Original GAN Proposed GAN
Prediction (w/o d loss) Prediction (with d loss)
Energy -1.1407 -2.49607 -0.92776
Stock -1.6961 -478.00693 -1012.46742
Electricity -0.5563 -0.16531 -12.53315
Solar -12.736 -11.11944 -13693.53011
Sine -26157.72 -25761.89194 -30033.24543
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Table 5.4: Root Mean Squared Error(RMSE) results for
comparison of the proposed discriminator and the actual loss
between the synthetic data and real data

Data Proposed GAN
Energy 0.1085

Stock 0.07676
Electricity 0.04799

Solar 0.0920

Sine 0.10113

5.3 Discussion

First, the rmse and mae results are very similar. For both the energy and sine
data our proposed method worked best. However, with the solar data, just
a partial part of our proposed method worked. Even though our predicted
score, which is a result of using synthetic data generated with a regressive
discriminator, than the original TimeGAN|[3], the addition of the predicted
loss(from the discriminator) did not improve the overall prediction of times
step ahead.

However, for both the stock and electricity data, our proposed method did
not help much in data prediction. Also, these were the only data for which
we had a worse overall score than the predictive score(prediction without the
addition of the loss from the discriminator).

Table 5.4 refers to the rmse scores for the loss between the real data and
synthetic data, and the output from the discriminator model which predicts
the former. The error between the two is small which should help in the final

prediction. However, this is not the case for both electricity and solar data.

5.4 Constraints

One requirement for this model to be most efficient is the data collection meth-

ods should be standardized to ensure the data is collected at the same intervals.
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Along with this proposed framework, there are some constraints regarding the
implementation. First, for some of the data, there wasn’t information about
the time interval. Hence, during the tuning of the hyperparameters for the
sequence length we were not able to immediately find the sequence that would
be best to get the best results. This is the possible reason for the outcome of

the results in the electricity and stock data.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this study, we proposed a model for generating synthetic time-series data
and time-series prediction using the TimeGAN algorithm. The generated
synthetic data was evaluated using post-hoc RNN one-step ahead prediction,
where the performance was evaluated in terms of MAE, RMSE, and R-squared
score, which proved to outperform some existing models. The proposed model
can be utilized for generating synthetic data in various fields, including fi-
nance, energy, and climate modeling, among others. This study contributes
to the development of time-series data generation and can help to fill the gaps
in existing data, which can be used for various applications, including training

deep learning models.

6.2 Future Work

First, we need to test the model with more time series data. This will help
with checking if there is an improvement in results with only certain time series
data sets, and that will help us better our model for others. We will need to
test our model against other state-of-the-art models: Graph Neural Networks,
ARIMA, GRU, and LSTM.

Also, we ran into a bottleneck when predicting loss because when getting
the difference between two quantities we inevitably ran into negative values
which we believe tend to confuse the model. Eventually, we will need to find

a way to normalize the loss that works for our model.
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