
Abstract

Inferences Over Fields: A Preliminary Investigation into the Deductive

Capabilities of Field-Theoretically Defined Logical Connectives

by

Charles Crumpler

May, 2023

Chair: Dr. Zachary Robinson

Major Department: Mathematics

In this paper, we will be concerned with developing an inferential structure

over the field with four elements in characteristic 2. We begin by discussing the

historical context in which this research occurs. In subsequent sections, we will

construct the field, called F4 and describing the algebraic structure over F4. We

then define the connectives ∧, ∨, and ¬ over F4 by extending their standard

definition over F2. We define the basic syntax and semantics of F4. We show that

∧ and ∨ are dual over F4 with respect to ¬ and that F4 is functionally complete

over { ∧,∨,¬ }∪F4. We develop a notion of inferences over F4 by imbuing it with a

partial order, defining validity and the material implication, and defining a proof.

Upon completing this, we prove the Deduction, Soundness, and Completeness

Theorems, thereby showing that inferences over F4 behaves in ways comparable

to, but not equivalent to, those over a field of two values in characteristic 2.





Inferences Over Fields: A Preliminary Investigation into the Deductive

Capabilities of Field-Theoretically Defined Logical Connectives

A Thesis

Presented to the Faculty of the Department of Mathematics

East Carolina University

In Partial Fulfillment of the Requirements for the Degree

Masters of Arts in Mathematics

by

Charles Crumpler

May, 2023

Director of Thesis: Zachary Robinson, Ph.D.

Thesis Committee Members:

Zachary Robinson, Ph.D.

Jungmin Choi, Ph.D.

Michael Spurr, Ph.D.



© 2023, Charles Crumpler



ACKNOWLEDGEMENTS

I wish to extended my thanks to Dr. Zachary Robinson, without whom this thesis

would not exist. I would also like to thank Dr. Choi and Dr. Spurr for serving on

my thesis committee. Finally, I wish to thank my significant other, Bowen Plumb, and

my mother, father, sister, and brother, for putting up with my (perhaps incoherent)

ramblings on symbolic logic.



Contents

1 Introduction 1

1.1 A Brief History of Multi-Valued Logic . . . . . . . . . . . . . . . . . . . . 1

1.2 Arithmetic with Additional Structure . . . . . . . . . . . . . . . . . . . . 3

1.3 Boolean Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 The Syntax and Semantics of F4 8

2.1 The Algebraic Structure of F4 . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 The Syntax of Propositional Calculus over F4 . . . . . . . . . . . . . . . 10

2.3 The Semantics of Propositional Calculus over F4 . . . . . . . . . . . . . . 11

2.4 Basic Properties of F4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Inferential Structures on F4 19

3.1 Validity, Semantic Implication, and Proofs . . . . . . . . . . . . . . . . . 19

3.2 Substituion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Material Implication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Derivations for Standard Rules of Inference . . . . . . . . . . . . . . . . . 31

3.5 The Soundness and Completeness Theorems . . . . . . . . . . . . . . . . 36

4 Some Considerations for Further Development 38

References 41



1 Introduction

1.1 A Brief History of Multi-Valued Logic

For most of its history, logic has dealt with propositions that can take on one of two

values. The values are usually interpreted as denoting the concepts of true and false.

While treatises on logic were often concerned with the philosophical meaning of these

terms (i.e. “What does it mean for a sentence to be true or false?”), they rarely consid-

ered the formal character of true and false except insofar as it related to the valuation

of sentences. However, with the advent of symbolic logic, the groundwork was laid for

considering logics with values other than true and false. These new logics typically act

as extensions of two-valued logic, with the new value(s) taking intermediate positions

between true and false.

Several logicians developed systems of multi-valued logic independently. The earliest

known discussion of multi-valued logic was carried out by the American logician C. S.

Peirce in three pages of his notebook. Pierce uses three values, called V , F , and L,

to denote sentences with true, false, and indeterminate truth values respectively. It is

likely that Peirce viewed L as a designation of possible (as oppossed to strictly true

or false). Though Peirce’s work anticipated later work in multi-valued logic, it was

not published during his lifetime and remained largely unknown until the pages were

discovered sometime in the 1960s (Fisch and Turquette, 1966).

Several decades after Peirce, the Polish logician Jan  Lukasiewicz and the Ameri-

can mathematician Emil Post independently developed distinct systems of multi-valued

logic. Like Peirce,  Lukasiewicz used an intermediate truth value (in his case, 1
2
) to denote

an indeterminate state of veracity between true or 1 and false or 0, claiming that his

logical system might be justified “when the consequences of the indeterministic philoso-

phy . . . can be compared with empirical data” ( Lukasiewicz, 1920, p. 88).  Lukasiewicz’s



work anticipated later developments in probablistic and fuzzy logic, though his interpre-

tation of multi-valued logic as a model for “indeterministic philosophy” was largely left

behind with the advent of quantified modal logic.

Post’s system of multi-valued divererges sharply from the course charted by Peirce

and  Lukasiewicz. Post was concerened with showing that, relative to a formal language

L, every truth table has a formula that generates it, a property now known as functional

completeness. After proving functional completeness in the two-valued setting, Post

developed a system with m truth values. The two primitive connectives, called ¬m and

∨m, are defined as follows:

¬mti = ti+1 and ti ∧m tj = tmin{i,j}

for i ∈ Zm and ti a truth value. Post proved that, under this generalization of two-valued

logic, the set {¬m,∨m} is functionally complete (1921, pp. 180 - 181).

In the mid-1960’s, the Azerbaijani computer scientist Lofti Zadeh reinvigorated the

study of multi-valued logic by introducing fuzzy logic. Zadeh (1965) was principally

concerned with fuzzy sets, which he defined as a set with a membership function that

can take on values in the interval [0, 1] (ordinary set theory is interpreted as a restriction

membership functions that only take on 0 and 1). Zadeh implicitly developed fuzzy logic

through his definitions of fuzzy complements (the correlate of negation), fuzzy union

(the correlate of disjunction), and fuzzy intersection (the correlate of conjunction). The

operations are defined as follows: Let fX be the membership function for the fuzzy set

X. Then, for sets A and B,

1. Complements: fA′(x) = 1 − fA(x) = ¬fA(x),

2. Unions: fA∪B(x) = max{fA(x), fB(x)} = fA(x) ∨ fB(x),

3. Intersection: fA∩B(x) = min{fA(x), fB(x)} = fA(x) ∧ fB(x).
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for all fuzzy sets A, B, and C. Using these definitions, Zadeh proved many standard

identities of classical logic, such ad De Morgan’s Law and the Distributive Law.

1.2 Arithmetic with Additional Structure

A well-trod program in mathematics is to consider a structured set of objects and im-

bue it with additional operations or relations. As a simple example, consider Peano

arithmetic N = ⟨N,+, ·, S, 1⟩, where N = {1, 2, 3, . . . } and S is the successor function

with the standard Peano axioms. We can give N an ordered structure with the following

definition: for x, y ∈ N, we say x < y if there exists an n ∈ N such that Sn(x) = y,

where Sn(x) means n applications of S to x1. In fact, this gives the standard order on

the natural numbers.

Often, arithmetics are given additional structure as a means of proving something

about the arithmetic. An example is the theory of real closed fields, which has proved

useful in computation, geometry, and algebraic topology. A real closed field is some set

F such that a first-order sentence is true over F if, and only if, it is true over R. In

effect, this means that a structure F = ⟨F,+, ·, 0, 1,≤⟩ is a real closed field if it satisfies

the following axioms:

1. The (finitely many) axioms of ordered fields,

2. ∀x ∃y [ (0 ≤ x) → (y · y = x) ], and

3n. the axiom scheme ∀(a0, . . . , a2n+1)∃x(a2n+1 ̸= 0 → a2n+1x
2n+1 + a2nx

2n + · · · +

a1x+ a0 = 0 .

Alfred Tarski proved that the first-order theory of real closed fields, denoted Trcf , admits

decidable quantifier elimination. On that basis, he showed Trcf is complete and decidable.

1While N is not, strictly speaking, a set, we will use the notation n ∈ N to denote that n ∈ N and
propositions involving n obey the Peano axioms. We will adopt this convention for other structures as
well.
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In collaboration with Abraham Seidenberg, Tarski applied these results to the theory of

algebraic geometry (van den Dries 1988).

The research herein rests at the intersection of the two traditions discussed above. It

describes a four-valued logic with two incomparable values between true and false. To

develop this logic, we make use of a standard construction in ring theory which produces

a field of four elements in characteristic 2 (hense the name F4). Thus, when we call F4

an extension of F2, we mean this in two senses. In one sense, it is an extension in the

colloquial sense; that is, we have added truth values to F2 to produce F4. In the other

sense, F4 is an algebraic extension of F2. However, the construction of F4 differs from the

usual way F2 is extended to produce multi-valued logics. To understand this difference,

we must briefly discuss Boolean algebra.

1.3 Boolean Algebra

Let B = ⟨B,∪,∩,′ , 0, 1⟩ be a structure with a (possible infinite) set B, two binary

operations ∪ and ∩, a unary operation ′, and two constant symbols 0 and 1. We will call

B a Boolean algebra with |B| = n (possibly infinite) if it satisfies the following axioms2:

for all x, y, z ∈ B

1. Idempotency (i) x ∪ x = x (ii) x ∩ x = x

2. Commutativity (i) x ∪ y = y ∪ x (ii) x ∩ y = y ∩ x

3. Associativity (i) x ∪ (y ∪ z) = (x ∪ y) ∪ z (ii) x ∩ (y ∩ z) = (x ∩ y) ∩ z

4. Absorption (i) (x ∪ y) ∩ y = y (ii) (x ∩ y) ∪ y = y

5. Distributivity (i) x ∪ (y ∩ z) = (x ∪ y) ∩ (x ∪ z) (ii) x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z)

6. Complements (i) ∃x′ (x ∪ x′) = 1 (ii) ∃x′ (x ∩ x′) = 0

7. Uniquness of Elements 0 ̸= 1

2The set of axioms presented is neither unique nor the most parcimonious set of axioms for Boolean
algebra.
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Note that the first four pairs of axioms (idempotency, commutativity, associativity, and

absorption) are the foundational axioms of lattice theory. Since Boolean algebras admit

distribution of ∩ over ∪, ∪ over ∩, and complements (in the sense described above), we

say that Boolean algebras are complemented distributive lattices. If we interpret ∪ as

“supremum” and ∩ as “infimum”, then the axioms of a Boolean algebra induce a partial

order over B. (Note: the order will only be strict when |B| = 2.)

In fact, the order of a Boolean algebra B is defined to be the cardinality of B. By

the Stone Representation Theorem, every Boolean algebra B is isomorphic to a family

F of subsets of a given set S with |S| = |B| such that F is closed under ∪, ∩, and ′.

The family F is partially ordered by ⊂ (Stone, 1936). When B is finite, the atoms (or

least non-zero elements) are sent to the singleton sets under the isomorphism. A natural

consequence of the Stone Representation Theorem is that any finite Boolean algebra

with n atoms will have 2n elements. As such, we shall call a finite Boolean algebra

B2n . The smallest four non-degenerate Boolean Algebras are drawn below, making use

of their Hasse diagrams:

{1}

∅

Fig. 1a: B2

{1, 2}

{1} {2}

∅

Fig. 1b: B4
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{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅

Fig 1c: B8

{1, 2, 3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1} {2} {3} {4}

∅

Fig 1d: B16

To avoid clutter, the arrows in a lattice are understood to be transitive. Thus, ∅ ⊂ {1, 2},

even though there is no arrow directly connecting ∅ to {1, 2}.

Boolean algebras are the standard extensions of the two-valued logic. The Boolean

algebra B2 is the standard two-valued logic with ∪ corresponding to ∧, ∩ corresponding

to ∨, and ′ corresponding to ¬. For a set of formulas Γ taking values in Bn and another

formula ϕ, we say Γ semantically implies ϕ, denoted Γ |= ϕ, if
∧
ψ∈Γ[[ψ]]V ≤ [[ϕ]]V for

every Boolean valuation [[ · ]]V . If we let Γ ⊢ ϕ denote the existence of a proof of ϕ from

Γ, then the axioms of Boolean algebra imply that Γ ⊢ ϕ if, and only if, Γ |= ϕ.

The right-directed implication, known as the Soundness theorem, is a standard fea-
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ture of most commonly used logics. Over B2, we can interpret Soundness theorem as

“If there is a proof of ϕ with true premises, then ϕ is true.” For Boolean algebras of

higher cardinality, the Soundness theorem says that the valuation of the conclusion of a

proof will neither move closer to 0 nor will it move off a chain. Generally speaking, the

Soundness theorem for any given logic is a direct consequence of the definition of a proof

over that logic. The left-directed implication, known as the Completeness theorem, is a

sought after feature of a logic. Over B2, the Completeness theorem states “There exists

a proof for every true formula.” This translation, while true, is inadequate over any

Boolean algebra with more than 2 elements. For n > 2, the Completeness theorem over

Bn states “If the valuation of a formula ϕ is greater than that of the conjunction over

a set of formulas Γ, then there exists a proof of ϕ from Γ.” Not all logics admit the

Completeness theorem. As proved by Gödel, any logic sufficiently strong to handle the

axioms of Peano arithmetic is incomplete, meaning that there are true sentences that

cannot be proved. For a review of the Completeness theorem over Boolean algebras, see

Akiba (2022).

When a logic admit both the Soundness and Completeness theorems, there is a

deep link between syntax, or the structure of formulas, and semantics, the means of

evaluating formulas. If the Deduction theorem (which states that if Γ, ϕ ⊢ ψ then

Γ ⊢ ϕ ⇒ ψ) and its converse hold in a sound and complete logic, then the notions of

semantic implication, proof, and the material implication (the connective that models

“if . . . then” statements) are equivalent notions. We will show that these theorems hold

in F4 under suitable conditions. Peculiarly, the Completeness theorem holds without

any conditions over F4, but the Soundness theorem requires some modification.
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2 The Syntax and Semantics of F4

2.1 The Algebraic Structure of F4

Let F2 = Z/2Z; that is F2 = {[0], [1]}.3 Define the operations + and · over F2 as the

standard addition and multiplication over equivalence classes. Then, the tables form +

and · are as follows:

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

A useful observation that follows from this construction is that F2 is of characteristic 2.

We will define the operations ∧, ∨, and ¬ as follows:

∧ : F2 × F2 −→ F2 ∨ : F2 × F2 −→ F2

(x, y) 7−→ x · y (x, y) 7−→ x+ y + (x · y).

¬ : F2 −→ F2

x 7−→ x+ 1

The tables for ∧, ∨, ¬ are

∧ 0 1
0 0 0
1 0 1

∨ 0 1
0 0 1
1 1 1

¬ 0 1
1 0

Note that the tables for ∧, ∨, ¬ give the truth tables for the logical connectives repre-

senting ′′and′′, ′′or′′, and ′′not′′ if we interpret 0 as false and 1 as true. Said another

way, sentences in the language of ⟨F2,∧,∨,¬⟩ make up the language of the standard

two-valued logic.

Consider F2[x]/⟨x2 + x + 1⟩. By Euclidean Division, it is clear that a system of

representatives for the equivalence classes are F2/⟨x2 + x + 1⟩ = { 0, 1, x, x + 1 }. We

will call this field F4. It is clear that

3Since F2
∼= Z2, we will drop the equivalence class notation and only write 0 and 1.



F4 = {α + βx | α, β ∈ F2}.

That is, F4 is an F2-vector space. Note that x is a solution to x2 + x + 1 = 0. Thus,

x2 = x + 1. It can be easily verified that (x + 1)2 = x. In general, computations in F4

are done using the identity x2 + x + 1 = 0. For convenience, we will call a = x and

b = x+ 1. Since F4 has characteristic 2, we get the following tables for + and · (defined

in the usual ways for polynomials)

+ 0 a b 1
0 0 a b 1
a a 0 1 b
b b 1 0 a
1 1 b a 0

· 0 a b 1
0 0 0 0 0
a 0 b 1 a
b 0 1 a b
1 0 a b 1

If we define ∧ : F4 ×F4 −→ F4, ∨ : F4 ×F4 −→ F4, and ¬ : F4 ×F4 −→ F4 as we did

over F2, we get the tables

∧ 0 a b 1
0 0 0 0 0
a 0 b 1 a
b 0 1 a b
1 0 a b 1

∨ 0 a b 1
0 0 a b 1
a a b 0 1
b b 0 a 1
1 1 1 1 1

¬ 0 a b 1
1 b a 0

We will use these tables as the semantic foundation for F4.

We will pause here to make some observations about ∧, ∨ and ¬ over F4. First, ∧

and ∨ are commutative and associative, conforming to our usual understanding of and

and or. However, since a∧ a = a∨ a = b, idempotency does not hold for all elements in

F4. Furthermore, since

a ∧ (a ∨ b) = 0 ̸= b = (a ∧ a) ∨ (a ∧ b)

and

a ∨ (a ∧ b) = a ̸= 0 = (a ∨ a) ∧ (a ∨ b),
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F4 does not admit distribution of ∧ over ∨ and vice versa. Thus, the behavior of ∧ and

∨ over F4 diverges radically from their behavior over any Boolean algebra.

2.2 The Syntax of Propositional Calculus over F4

We will now develop the syntax of logic over F4. This is the standard syntax of logic

over F2, augmented only by the addition of symbols for the new elements of F4:

1. The elements of F4;

2. A countably infinite set of propositional variables X = {p, q, r, . . . }; and

3. The set of logical connectives C = {¬,∧,∨}.

To develop an inferential structure over F4, we must first define what a formula over F4

is.

Definition 1. We will call a string ϕ of symbols over F4 a formula if it satisfies any of

the following conditions:

1. ϕ ∈ F4;

2. ϕ ∈ X; and

3. For formulas ψ and π, ¬ψ, (ψ ∧ π), and (ψ ∨ π) are also formulas.

No other strings will be called formulas. We will let P (F4,C) represent the set of formulas

over F4 with connectives in C.

Note that every formula in P (F4,C) is also a polynomial. We will exploit this fact.

We have inherited this definition of a formula from two-valued logic. Since this

definition is purely syntactic4, every theorem derivable solely from the definition of a

formula holds for the syntax of F4. In particular, the Unique Parsing Lemma, which

4That is, it makes no reference to evaluations of formulas.
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states that the constituent non-connective elements of a formula are uniquely determined

by the structure of the formula, holds in F4.
5 It is conventional to drop the outermost

pair of parenthesis from formulas. We will adopt this convention.

2.3 The Semantics of Propositional Calculus over F4

When we speak of the semantics of F4, we mean a system by which we may assign

formulas a value in F4. The most basic notion in semantics is the truth function.

Definition 2. We call τ : P (F4,C) −→ F4 a truth function if, for ϕ, ψ ∈ P (F4,C),

τ(¬ϕ) = ¬τ(ϕ) τ(ϕ ∧ ψ) = τ(ϕ) ∧ τ(ψ) τ(ϕ ∨ ψ) = τ(ϕ) ∨ τ(ψ).

We have already made use of truth functions; the tables for ∧, ∨ and ¬ display the

valuations of the connectives. As an example, the entry in the second row and third

column of the p ∧ q truth table represents a truth function that takes p to a and q to b.

We will call tables displaying the valuations of formulas containing ∧, ∨, and ¬ truth

tables. A truth table will be represented by n dimensional arrays, with n corresponding

to the number of variables in the formula. We will use T (V ) to denote the set of truth

tables over a set of values V . Thus, the set of truth tables over F4 is T (F4).

We can use the truth function to define the meta-symbol ≡ (pronounced “equiva-

lence”) as follows:

Definition 3. Let ϕ, ψ ∈ P (F4,C). We will say ϕ ≡ ψ if, and only if, τ(ϕ) = τ(ψ) for

all truth functions τ .

From the definition of equivalence, the following lemmas hold:

5For a proof of the Unique Parsing Lemma, see Ebbinghaus, Flum, Thomas (2021) p. 22 Theorem
4.4.
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Lemma 1. Let ϕ, ψ ∈ P (F4,C) and x̂ = (x1, x2, . . . , xn) ∈ Xn. Then ϕ ≡ ψ if, and only

if, ϕ(x̂) = ψ(x̂) for all values x̂.

Proof. Suppose ϕ ≡ ψ. Then τ(ϕ) = τ(ψ) for all τ . Since τ is a valuation of the variables

in ϕ and ψ, it follows immediately that ϕ(x̂) = ψ(x̂) for all values of x̂. The converse

holds for similar reasons.

Lemma 2. The ≡ relation defines an equivalence class on P (F4,C).

Proof. The lemma follows immediately from the fact that = is an equivalence relation.

We can use truth functions to define several important concepts. The first will be

the notion of an α-tautology.

Definition 4. Let ϕ ∈ P (F4,C). We will say ϕ is an α-tautology if τ(ϕ) = α for all

truth functions τ .

If we consider this definition over F2, then a 1-tautology corresponds to the notion of a

tautology while a 0-tautology corresponds to the notion of a contradiction. To preserve

clarity, we will largely avoid this simplification here. Occasionally, it will be necessary to

talk about formulas that only take on values in F2. We will call these formulas absolute.

Put formally

Definition 5. Let ϕ ∈ P (F4,C). We say ϕ is absolute if τ(ϕ) ∈ F2 for all truth functions

τ .

We will now demonstrate some of the algebraic properties of absolute formulas. First,

any absolute formula can be made non-absolute by conjoining a or b with it. For example,

the formula p ∧ p ∧ p is absolute since

12



0 a b 1

p ∧ p ∧ p 0 1 1 1.

If we conjoin a, we get

0 a b 1

a ∧ p ∧ p ∧ p 0 a a a.

Given that ∧ is just polynomial multiplication, this is not a surprising result. We will

exploit this fact in a future proof. The set of absolute formulas is also closed under ∧,

∨, and ¬. This follows immediately from the fact that the table for each connective over

F2 is a subtable of the table for the connective over F4.

2.4 Basic Properties of F4

An interesting feature of F4 is displayed in the following truth table

p 0 a b 1
p ∧ ¬p 0 1 1 0
p ∨ ¬p 1 0 0 1

Under F2, p ∨ ¬p always evaluates to 1 (′′true′′) and p ∧ ¬p always evaluates to 0

(′′false′′). In fact, the formulas are often used as stand-ins for the notion of a tautology

and a contradiction respectively. By contrast, F4 does not allow this simple equivalence.

We have already seen that F4 is neither distributive nor idempotent, implying that

F4 is not a Boolean algebra. Thus, by moving to F4, we must define our logical notions

to accomodate these peculiarities. However, before moving to those logical notions, we

will discuss certain familiar relationships that hold in F4.

Theorem 1. Let ϕ, ψ ∈ P (F4,C). Then the following equivalences hold

1. ¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ,

2. ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ,

13



3. ϕ ≡ ¬(¬ϕ).

Proof. Observe that ¬(ϕ∧ψ) = ϕψ+ 1 and ¬(ϕ∨ψ) = ϕ+ψ+ ϕψ+ 1. For Part 1, we

note that

ϕψ + 1 = ϕ+ 1 + ψ + 1 + ϕ+ ψ + ϕψ + 1

= (ϕ+ 1) + (ψ + 1) + ϕ(ψ + 1) + ψ + 1

= (ϕ+ 1) + (ψ + 1) + (ϕ+ 1)(ψ + 1)

= ¬ϕ ∨ ¬ψ.

For Part 2, we note that

ϕ+ ψ + ϕψ + 1 = ϕ(ψ + 1) + ψ + 1

= (ϕ+ 1)(ψ + 1)

= ¬ϕ ∧ ¬ψ.

Thus, ¬(ϕ ∧ ψ) = ¬ϕ ∨ ¬ψ and ¬(ϕ ∨ ψ) = ¬ϕ ∧ ¬ψ. Thus, by Lemma 1, ¬(ϕ ∧ ψ) ≡

¬ϕ ∨ ¬ψ and ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ.

For Part 3, it is sufficient to note that ¬ϕ = ϕ+ 1 and F4 is in characteristic 2.

The first two items in Theorem 1 are jointly known as DeMorgan’s Law, while the

third item is known as Double Negation. These are standard features of many logical

systems. From DeMorgan’s Law, we can prove the following theorem.

Theorem 2. The Duality Theorem: The connectives ∧ and ∨ are dual to one another

with respect to ¬. That is, if ϕ ∈ P (F4,C) and we define ϕ′ to be that element of P (F4,C)

such that every propositional variable xi appearing ϕ is replaced with ¬xi, every instance

of ∧ is replaced with ∨, and every instance of ∨ is replaced with ∧, then ϕ′ = ¬ϕ.

Proof. The Duality Theorem is an immediate consequence of Theorem 1 by induction

on the complexity of terms in ϕ.
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An important relationship between the syntactic and semantic structures of many

logics is the notion of functional completeness. We say that a set of connectives F is

functionally complete over a set of values V if there is a function f : P (V, F ) → T (V )

that is surjective. That is, every truth table corresponds to at least one proposition in

P (V, F ). We will be concerned with functional completeness of C∪ F4 over F4. We first

prove a lemma.

Lemma 3. Every absolute truth table with only one 1 has a formula.

Proof. The following table proves the lemma for the single variable case.

p χ0(p) = ¬(p ∧ p ∧ p) χa(p) = (p ∧ ¬p) ∧ ¬(a ∧ p) ∧ ¬a

0 1 0

a 0 1

b 0 0

1 0 0

p χb(p) = ¬[χ0(p) ∨ χa(p) ∨ χ1(p)] χ1(p) = p ∨ p ∨ p

0 0 0

a 0 0

b 1 0

1 0 1

Note that each entry in a truth table corresponds to a valuation of the variables defining

the table. Let T be a truth table in n variables as in the statement of Lemma 3. We claim

that the formula for the truth table T is ϕ(p1, p2, . . . , pn) =
∧
i∈{1,...,n} χαi

(pi), where αi

is the valuation of the variable pi that give 1. The table above proves the single variable

case. Suppose the truth table T in n variables has value 1 at (α1, α2, . . . , αn). Then
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τ (χα1(α1) ∧ χα2(α2) ∧ · · · ∧ χαn(αn)) = α1 ∧ α2 ∧ · · · ∧ αn = 1

Since each non-zero element has a unique inverse under ∧, changing the value of any of

the αi will make τ(χαi
(pi)) = 0, making τ(ϕ(p1, p2, . . . , pn)) = 0. Thus, ϕ(p1, p2, . . . , pn)

gives a formula for any absolute T with exactly one entry of 1.

Corollary 1. Every truth table over F4 with exactly one non-zero entry is given by a

proposition.

Proof. The absolute case is covered in Lemma 3. For the non-absolute case, suppose the

truth table T has value α at position (α1, α2, . . . , αn). We can construct the truth table

T ′ with value 1 at position (α1, α2, . . . , αn) as in Lemma 3. Call the proposition for T ′

ϕ. Then, T is determined by the formula α ∧ ϕ.

Theorem 3. The set C ∪ F4 is functionally complete over F4.

Proof. Let T be a truth table over F4. Let ϕ(α1,...,αn)(p1, . . . , pn) be the formula evaluating

to α at (α1, . . . , αn) and 0 under all other evaluations. Construct 4n such formulas with

each ϕ(α1,...,αn)(p1, . . . , pn) having the same value as T at (α1, . . . , αn). Note that, for

α ∈ F4, α ∨ 0 = α. Let τ be the truth function such that τ(ϕ(ι1,...,ιn)(p1, . . . , pn)) = α.

Then, by construction, τ(ϕ(α1,...,αn)(p1, . . . , pn)) = 0 for all (α1, . . . , αn) ̸= (ι1, . . . , ιn).

Then,

τ

 ∨
(α1,...,αn)∈Fn

4

ϕ(α1,...,αn)(p1, . . . , pn)

 = 0 ∨ 0 ∨ · · · ∨ α ∨ · · · ∨ 0 = α.

Therefore,
∨

(α1,...,αn)∈Fn
4
ϕ(α1,...,αn)(p1, . . . , pn) is a formula for T .
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An important consequence of functional completeness is that we can define a connec-

tive not in C over F4 simply by giving its truth table. For example, given the definition

of equivalence, it is clear that its truth table is

≡ 0 a b 1
0 1 0 0 0
a 0 1 0 0
b 0 0 1 0
1 0 0 0 1

if we let 1 mean the formulas are equivalent and 0 mean they are not. In fact, we can

encode any metalogical concept into the language of F4. We will exploit this in the next

section. Before concluding, we will show an interesting equivalence.

Corollary 2. P (F4,C) = F2[x̂].

Proof. Since p ∧ q := pq and p ∨ q := p + q + pq, it is clear that P (F4,C) ⊂ F2[x̂]. By

functional completeness, p + q can be written in terms of ∧, ∨, and ¬. Since 0, 1, and

X are elements of P (F4,C), the elements of F2[x̂] ⊂ P (F4,C), as needed.

One oft-followed line of inquiry in classical symbolic logic is to ask what connectives

are strictly necessary. It has been proved that {∨,¬}, {∧,¬}, and {→,¬} are func-

tionally complete in F2.
6 We can carry out a similar reduction over C ∪ F4 via a few

observations. First, by Theorem 1, ¬(ϕ∨ψ) ≡ ¬ϕ∧¬ψ. We can use this equivalence to

give a definition of ∨ in terms of ∧, namely ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ). We also do not need

every element of F4. Since 0 ≡ ¬1 and a ≡ ¬b, we only need to include one element

from F2 and one element from F4 \ F2 to generate all truth tables. Thus, for example,

the set {∧,¬, 0, a} is functionally complete by an argument almost identical to the proof

of Theorem 3. However, while there are philosophical and aesthetic advantages to this

6Here, → is the implication symbol, typically defined as ϕ → ψ := ¬ϕ ∨ ψ. If → is taken as a
primitive, it is usually defined axiomatically.
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reduction, we will largely ignore it since it decreases the number of logical symbols we

have at hand.
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3 Inferential Structures on F4

3.1 Validity, Semantic Implication, and Proofs

Up to this point, we have defined the semantic notions of F4 in a similar way as we

defined them for F2. However, there are several semantic notions in F2 that require

more care to extend to F4. Principal among these are the related notions of validity

and semantic implication. Over F2, for a set of formulas Γ and a formula ϕ, we say Γ

semantically implies ϕ, denoted Γ |= ϕ, if, and only if, the truth of the conjunction of

the formulas in Γ guarantees the truth of ϕ. We say an argument is valid if the premises

semantically imply the conclusion. We will adopt this definition of a valid argument.

Thus, to determine how to make inferences over F4, it suffices to determine how validity

ought to be defined.

Since F2 only contains two elements, the order of those elements is rarely discussed

explicitly. However, as we saw implicitly with Peirce’s and  Lukasiewicz’s “intermediate”

truth value and explicitly with Post’s multiples truth values, applying an order to the

set of truth values can formalize many logical intuitions. In fact, the tendency among

mathematicians to prefer truth over falsity (that is, 1 over 0) implies an order on F2. If

we let 0 < 1, the standard definition of a valid argument can be rephrased in terms of

order as follows:

Definition 6. Let Γ be a set of formulas and ϕ be a formula (possibly in Γ). Then the

argument from Γ to ϕ is valid, written as Γ |= ϕ, if, and only if, τ (
∧

Γ) ≤ τ(ϕ), where∧
Γ is the conjunction of all formulas in Γ.

We can extend this notion of semantic implication to F4 by defining a suitable partial

order. Note the following two facts:

1. There is a natural Boolean homomorphism from B2 to B4 (when interpreted as

algebras of sets) that takes {1} to {1, 2} and ∅ to ∅,



2. There is a natural field homomorphism from F2 to F4 that takes 1 to 1 and 0 to 0.

Call these homomorphisms f and g respectively. It is clear that there is an isomorphism

h : B2 −→ F2 that takes ∩ to ∧ and ∩ to ∨. Thus, we seek some morphism σ such that

B2 B4

F2 F4

f

h σ

g

commutes. We will not be concerened with the construction of σ. It will suffice to note

that there are two possibilities, defined as follows:

x ∅ {1} {2} {1, 2}

1. σ(x) 0 a b 1

2. σ(x) 0 b a 1

Since {1} and {2} are incomparable under ⊂, the choice of definition for σ is inconse-

quential. We can define the partial order of F4 using σ. If x, y ∈ F4, we will say that

x ≤ y if, and only if, σ−1(x) ⊂ σ−1(y). We define other order symbols (e.g. < and

̸>) in the usual way. Under this definition, 1 is the greatest element of F4, 0 is the

least element, and a and b are incomparable intermediate values. That is, the F4 lattice

induced by σ is as follows:

1

a b

0

We can now begin to define validity. We will call a finite ordered sequence of formulas

Φ = {ϕi}1≤i≤n an argument for ϕ if, and only if, ϕn = ϕ; that is, if ϕ is the last formula

in the sequence. Fix some number k < n. We will call Γ = { ϕi ∈ Φ | i ≤ k } a set

of premises. Since any collection of formulas can be put in sequence, it is clear from

the definition that not all arguments are equally useful. Thus, we need some means by
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which to distinguish the quality of arguments. As in F2, validity will serve this function.

To begin, we will define three notions of semantic implication. Let Γ be a set of

premises and ϕ be a formula in some argument with Γ as its inital subset. Then, we

define semantic implication in one of the three following ways.

1. Γ semantically implies ϕ classically, denoted Γ |=clas ϕ, iff τ (
∧

Γ) ≤ τ (ϕ) for all

truth functions τ , or

2. Γ semantically implies ϕ cardinally, denoted Γ |=card ϕ, iff # (
∧

Γ) ≤ #(ϕ), or

3. Γ semantically implies ϕ bi-conversely, denoted Γ |=bc ϕ, iff τ (
∧

Γ) ̸> τ(ϕ) for all

truth functions τ ,

where #(ϕ) is the cardinality of τ(ϕ) under σ−1.7 The definition given in 1 is the

standard definition of semantic implication over Boolean algebras, hence the description

“classical”. The definition given in 3 is the converse of the converse of 1, hense the

description “bi-conversely”.

Note that, in F4, Γ |=bc ϕ and Γ |=card ϕ are equivalent. This is clear in the case

where τ (
∧

Γ) ∈ F2. Suppose τ (
∧

Γ) = α ∈ F4 \ F2. Then, # (
∧

Γ) = 1. For any given

value of ϕ, we have

#
∧

Γ = a
∧

Γ = b

ϕ = 0 I I

ϕ = a V V

ϕ = b V V

ϕ = 1 V V

τ
∧

Γ = a
∧

Γ = b

ϕ = 0 I I

ϕ = a V V

ϕ = b V V

ϕ = 1 V V

where V represents validity and I represents invalidity. Thus, any difference between

the possible definitions of semantic implication in F4 can be reduced to discussion of

7Note that τ(ϕ) is guaranteed to have a cardinality by the Stone Representation Theorem.
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the differences between 1 and 3. To adjudicate between the two, we must develop the

inferential system of F4 further.

Suppose we fix a definition of semantic implication and let |= denote this relationship.

We define validity as follows:

Definition 7. Let Φ = {ϕi}i≤n be an argument of length n for ϕ and Γ ⊂ Φ be the set

of premises. We will say that Φ is a valid argument if, and only if, Γ |= ϕ.

To define the notion of proof, we must define some way of “moving” between formulas in

the argument. We will call these locomotive objects rules of inference, formally defined

as:

Definition 8. A rule of inference is a function i : Qn ⊂ P (F4,C)n −→ P (F4,C), where

each formula in the tuple (ϕ1, ϕ2, . . . , ϕn) ∈ Qn is of a certain specified form. If Φ is a

set of formulas, we will define i(Φ) as the application of i to the tuple (ϕ1, ϕ2, . . . , ϕn)

where
n⋃
i=1

{ϕi} = Φ and each ϕi is in a place appropriate for the given i.

For two rules of inference i0 and i1 and sets of formulas Φ and Ψ, we will call i1(i0(Φ)∪Ψ)

a composition of rules of inferences. We will use the notation i1 ◦ i0 to indicate the

composition of inference rules with suitably many arguments. When stating a rule of

inference, we will write it in the following form: for a set of premises Γ and a conclusion

ϕ

Γ

∴ ϕ

We will call a rule of inference sound if, and only if, it is valid.

We can now begin to adjudicate between the competing definitions of semantic im-

plication. A basic property of most inferential systems is the soundness of the following

inference rule:
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ϕ

∴ ϕ & ϕ

where & is the conjunction operation in the inferential system. We can see from the

table for ∧, if τ(ϕ) = a for some truth function τ , definition 1 fails while definition 3

holds. Thus, we will accept definition 3 as out definition of validity.

Having defined validity, we can prove the following results:

Lemma 4. The inference rule

ϕ

ψ

∴ ϕ ∧ ψ

is a sound.

Proof. Since ϕ ∧ ψ ≡ ϕ ∧ ψ, it is clear that τ(ϕ ∧ ψ) ̸> τ(ϕ ∧ ψ), as needed.

Lemma 5. The composition of two sound rules of inference is a sound rule of inference.

Proof. Suppose i0 and i1 are sound rules of inference. We claim i1 ◦ i0 is a sound rule

of inference. Let ϕ be a formula such that i0(ϕ) = ϕ0 is a formula and i1(ϕ0) = ϕ1 is

a formula. (Note: since conjunction of finitely many premises is a valid argument, the

proof may proceed from one formula without loss of generality). It is sufficient to show

that τ(ϕ) ̸≥ τ(ϕ1) for all truth functions τ . Let τ(ϕ) = α. By the definition of a rule of

inference, α ̸≥ τ(ϕ0) = β. Similarly, β ̸≥ τ(ϕ1) = γ. Therefore, α ̸≥ γ, as needed.

We will now define what a proof is in F4.
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Definition 9. Let Γ be a set of formulas. A proof of a formula ϕ from Γ is a finite

sequence of ordered pairs of the form (ϕi, ρi), where ϕi is a formula satisfying one of the

following conditions

1. ϕi is an axiom, or

2. ϕi is a formula in Γ, or

3. ϕi is derivable from a collection of axioms or formulas in Γ by a sound rule of

inference,

and ρi ⊂ Γ with (ϕ, ρn) as the last pair in the sequence. We denote the existence of a

proof of ϕ from Γ by Γ ⊢ ϕ. We will call a formula ϕ a theorem if there exists a proof

for ϕ.

Note that ρn is not necessarily equal to Γ. We will use Σi(Γ, ϕ) to denote a subset of Γ

for which every element of Σi(Γ, ϕ) is necessary for a proof of ϕ. Since Γ is finite and

each proof is of finite length, there are at most countably many proofs of ϕ from a subset

of Γ. If we index these proofs to N, we will say Σi(Γ, ϕ) is the set of premises for the ith

proof.

There are several immediate consequences of the definition of a proof. First, since

proofs only make use of sound rules of inference, if every premise of a proof is a 1-

tautology, then the conclusion is also a 1-tautology. This recovers the standard notion

of proof over F2. Another immediate consequence of the definition is that ⊢ is transitive.

Suppose Γ ⊢ ∆ and ∆ ⊢ ϕ for Γ and ∆ sets of formulas and ϕ a formula. Since a proof

of ∆ exists from Γ, it follows that Γ ⊢ ϕ.

3.2 Substituion

A core feature of any inferential system is substitution. Many non-trivial proofs in two-

valued logic requires the substituion of formulas in a rule of inference with the formulas
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present in the proof. Thus, verifying that substitution is sound of great importance.

We will be concerned with two forms of substitution. For a formula ϕ(x̂, y), we will

use the notation ϕ(x̂, ψ|y) to denote a substitution of the variable y with the formula

ψ. The first kind of substitution, which we will call tautological substitution, claims

that, if some formula ϕ(x̂, y) takes the truth value α under all truth functions τ , then

τ(ϕ(x̂, ψ|y)) = α. The second, which we will call equivalent substitution, claims that if

ψ ≡ π then ϕ(x̂, ψ) = ϕ(x̂, π).

Theorem 4. Let ϕ(x̂, y) be a formula with variables x̂ ∈ Xn and y and ψ be another

formula. If τ(ϕ(x̂, y)) = α for all truth functions τ then τ(ϕ(x̂, ψ|y)) = α.

Proof. We will proceed by induction on the complexity of terms. The theorem vacuously

holds for variables since they take on any value in F4. Fix n such that every formula of

length less than n satisfies the theorem. Then there are three cases.

1. Case 1: Let ϕ(x̂, y) = ¬ψ(x̂, y) for formula ψ(x̂, y). It is clear that ψ(x̂, y)

has length less than n and it admits tautological substitution. Thus, ψ(x̂, y) ≡

ψ(x̂, p|y). Let τ(ϕ(x̂, y)) = α. Then, τ(¬ψ(x̂, y)) = α. We can see that

τ(¬ψ(x̂, y)) = ¬τ(ψ(x̂, y))

= ¬α

= ¬τ(ψ(x̂, ψ|y))

= τ(¬ψ(x̂, ψ|y))

Thus, ϕ(x̂, y) ≡ ϕ(x̂, p|y).

2. Case 2: Let ϕ(x̂, y) = ψ(x̂, y) ∧ π(x̂, y). Since ψ(x̂, y) and π(x̂, y) are both of

length less than n, they admit tautological substituion. Let τ(ψ(x̂, y)) = β and

τ(π(x̂, y)) = γ. Then
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τ(ψ(x̂, y) ∧ π(x̂, y)) = τ(ψ(x̂, y)) ∧ τ(π(x̂, y))

= β ∧ γ

= τ(ψ(x̂, ψ|y)) ∧ τ(π(x̂, ψ|y))

= τ(ψ(x̂, ψ|y) ∧ π(x̂, ψ|y))

Thus, ϕ(x̂, y) ≡ ϕ(x̂, p|y).

3. Case 3: Let ϕ(x̂, y) = ψ(x̂, y)∨ π(x̂, y). This case is identical to Case 2 with every

∧ replaced with ∨

Therefore, tautological substituion holds, as needed.

Theorem 5. Suppose τ (ϕ(x̂, γ)) = α for all x̂ ∈ Xn and π. Let γ ≡ π. Then

τ (ϕ(x̂, π)) = α

Proof. We will proceed by induction on the complexity of ϕ. If ϕ(x̂, γ) = xi, then

substitution holds trivially. Suppose substitution holds for all formulas of length less

than n and ϕ(x̂, γ) has length n. There are three cases (of which the ∧ and the ∨ cases

are equivalent up to renaming of symbols)

1. Case 1: Let ϕ(x̂, γ) = ¬ψ(x̂, γ). Note that ψ(x̂, γ) has length less than n. Thus,

ψ(x̂, p) ≡ ψ(x̂, q), implying that

τ(ψ(x̂, γ)) = τ(ψ(x̂, π)) ⇒ ¬τ(ψ(x̂, γ)) = ¬τ(ψ(x̂, π))

⇒ τ(¬ψ(x̂, γ)) = τ(¬ψ(x̂, π))

⇒ ϕ(x̂, γ) ≡ ϕ(x̂, π)

as needed.
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2. Case 2: Let ϕ(x̂, γ) = ψ(x̂, γ)∧ρ(x̂, γ). Note that ψ and ρ have lenght less than n.

Thus, ψ(x̂, γ) ≡ ψ(x̂, π) and ρ(x̂, γ) ≡ ρ(x̂, π). It follows that ψ(x̂, γ) ∧ ρ(x̂, γ) ≡

ψ(x̂, π) ∧ ρ(x̂, π), as needed.

3. Case 3: Let ϕ(x̂, γ) = ψ(x̂, γ) ∨ ρ(x̂, γ. This case is identical to Case 2 with every

∧ replaced with ∨

Thus, equivalent substituion holds in F4, as needed.

To give substition its full deductive force, we must show first that equivalent formu-

las imply one another. The soundness of this deduction follows immediately from the

definition of validity. We will express this observation in the following lemma:

Lemma 6. Let ϕ and ψ be equivalent formulas. Then

ϕ

∴ ψ

is sound.

Corollary 3. The deductions

ϕ(x̂, y)

∴ ϕ(x̂, γ|y)
and

ψ(x̂, π)

∴ ψ(x̂, γ)

are sound when τ(ϕ(x̂, y)) = α for all τ and π ≡ γ.

3.3 Material Implication

Formally, we define material implication, denoted here by ◦, according to the following

axiom scheme8:

8The axioms presented are a simplification of a system first proposed in Frege (1879) presented in
 Lukasiewic and Tarski (1930).
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1. τ ([s ◦ [p ◦ q]] ◦ [[s ◦ p] ◦ [s ◦ q]]) = 1

2. τ (p ◦ (q ◦ p)) = 1

3. τ ([¬q ◦ ¬p] ◦ [p ◦ q]) = 1

4. For all formulas ϕ and ψ, the rule of inference

ϕ

ϕ ◦ ψ

∴ ψ

is sound. We will call this deduction modus ponens (abbreviated MP).

We will say that any connective that satisfies the scheme above models the axioms of

the material implication.

Before defining the semantics of the material implication over F4, we will derive some

consequences of the axiom scheme. From the definition of a proof, an axiom can be used

at any line of a proof. Thus, we can make the following deduction,

1. [s ◦ [p ◦ q]] ◦ [[s ◦ p] ◦ [p ◦ q]] {1} P

2. p ◦ (q ◦ p) {2} P

3. [p ◦ [q ◦ p]] ◦ [[p ◦ q] ◦ [p ◦ p]] {1} 1, Sub

4. [[p ◦ q] ◦ [p ◦ p]] {1, 2} 2, 3,MP

5. [[p ◦ (q ◦ p)] ◦ [p ◦ p]] {1, 2} 4, Sub

6. p ◦ p {1, 2} 5,MP

Note that, in lines 1 and 2, since variables are formulas, we may substituted the variables

s, p, and q into the axioms. Since the axioms are definitionally 1-tautologies, it follows

that τ(p ◦ p) = 1. We will use p ◦ p as our standard, non-trivial 1-tautology.

In logics over F2, the connective → defined as
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p→ q := ¬p ∨ q

for formulas p and q models the axioms of the material implication. Let τ(p) = a and

τ(q) = 0. Then p ∧ (¬p ∨ q) = a ∧ (¬a ∨ 0) = 1 > 0. Thus, MP is not sound with →

and → does not model the axioms of the material implication.

Let’s pause to consider the semantics of → over F2.
9 The truth table for → is

p→ q q = 0 1
p = 0 1 1

1 0 1

From the table, we can see that → encodes the notion of semantic implication over F2

by letting an entry of 1 denote “p semantically implies q” while an entry of 0 denotes “p

does not semantically implies q”. This encoding is guaranteed to have a formula in terms

of {0,¬,∧,∨} by the functional completeness of the connectives over F2. We will encode

the notion of validity into F4 using the connective ⇒. Put formally, if ϕ, ψ ∈ P (F4,C),

we will let τ(ϕ ⇒ ψ) = 1 if, and only if, τ(ϕ) ̸> τ(ψ); otherwise τ(ϕ ⇒ ψ) = 0. Thus,

the truth table for p⇒ q is

p⇒ q q = 0 a b 1
p = 0 1 1 1 1
a 0 1 1 1
b 0 1 1 1
1 0 0 0 1

By the functional completeness of C ∪ F4, there is a formula for ⇒ in terms of the

connectives over F4. We will show that ⇒ models the axioms of the material implication.

Theorem 6. The connective ⇒ models the axioms of the material implication.

Proof. The first three axioms can be verified with truth tables as follows:

9Equivalently B2.
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[0 ⇒ [p⇒ q]] ⇒ [[0 ⇒ p] ⇒ [p⇒ q]] 0 a b 1
0 1 1 1 1
a 1 1 1 1
b 1 1 1 1
1 1 1 1 1

[a⇒ [p⇒ q]] ⇒ [[a⇒ p] ⇒ [p⇒ q]] 0 a b 1
0 1 1 1 1
a 1 1 1 1
b 1 1 1 1
1 1 1 1 1

[b⇒ [p⇒ q]] ⇒ [[b⇒ p] ⇒ [p⇒ q]] 0 a b 1
0 1 1 1 1
a 1 1 1 1
b 1 1 1 1
1 1 1 1 1

[1 ⇒ [p⇒ q]] ⇒ [[1 ⇒ p] ⇒ [p⇒ q]] 0 a b 1
0 1 1 1 1
a 1 1 1 1
b 1 1 1 1
1 1 1 1 1

p⇒ (q ⇒ p) 0 a b 1
0 1 1 1 1
a 1 1 1 1
b 1 1 1 1
1 1 1 1 1

[¬q ⇒ ¬p] ⇒ [p⇒ q] 0 a b 1
0 1 1 1 1
a 1 1 1 1
b 1 1 1 1
1 1 1 1 1

We must now show that MP is sound. Consider the truth table:

p ∧ (p⇒ q) q = 0 a b 1
p = 0 0 0 0 0
a 0 a a a
b 0 b b b
1 0 0 0 1

Since, for all p, q, τ(p ∧ (p⇒ q)) ̸> τ(q), MP is sound over ⇒, as needed.

Since F4 has a material implication, we can begin to determine the rules of inference

over F4.
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3.4 Derivations for Standard Rules of Inference

We now have a sufficiently developed inferential structure to produce some basic rules

of inference over F4. Many of the inference rules covered here will be familiar. However,

we will begin with a rule that differs subtly from its F2 counterpart.

Theorem 7. Let ϕ, ψ ∈ P such that ϕ ≡ ψ. Then the inference rules

ϕ ≡ ψ

∴ ϕ⇒ ψ
and

ϕ ≡ ψ

∴ ψ ⇒ ϕ

are sound.

Proof. Since ϕ ≡ ψ, it follows that τ(ϕ ≡ ψ) = 1 and that τ(ϕ) = τ(ψ) for all τ . Since

τ(p⇒ p) = 1 for all τ , it follows that

τ(ϕ⇒ ψ) = (τ(ϕ) ⇒ τ(ψ)) = (τ(ϕ) ⇒ τ(ϕ)) = 1.

Thus, the rule of inference is sound. The converse holds by similar reasoning.

Theorem 7 is true in F2. However, we cannot infer ϕ ≡ ψ from ϕ ⇒ ψ and ψ ⇒ ϕ.

Suppose τ(ϕ) = a and τ(ψ) = b for all τ . Then, ϕ⇒ ψ and ψ ⇒ ϕ. But, it is clear that

ϕ ̸≡ ψ.

Since ϕ∧ ψ = ϕ · ψ and ϕ∨ ψ = ϕ+ ψ + ϕ · ψ, it follows that the empty conjunction

equals the empty product and the empty disjunction is the sum of the empty sum and

the empty product. By convention, the empty product is 1 and the empty sum is 0.

Thus,
∧

∅ = 1 and
∨

∅ = 0 + 1 = 1.

Theorem 8. Suppose τ(ϕ) = 1 for all τ . Then the inference rule
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∴ ϕ

is sound. Put another way, we may deduce a 1-tautology from the empty set of premises.

Proof. Since τ(ϕ) = 1, it follows that ϕ ≡ (p ⇒ p). Thus, by Theorem 7, (p ⇒ p) ⇒ ϕ.

Since p ⇒ p is deducible from the empty set of premises, we can deduce ϕ from the

empty set of premises by MP.

We can now prove two important rules of inference, namely Double Negation and

DeMorgan’s Law. We will omit the proof for DeMorgan’s Law, as it is qualitatively

identical to the proof of Double Negation.

Theorem 9. Let ϕ ∈ P . Then

ϕ

∴ ¬(¬ϕ)
and

¬(¬ϕ)

∴ ϕ

Proof. By Theorem 1, ϕ ≡ ¬(¬ϕ). Thus, by Theorem 8, we can deduce ϕ ≡ ¬(¬ϕ) from

the empty set of premises. By Theorem 7, we can deduce ϕ ⇒ ¬(¬ϕ) and ¬(¬ϕ) ⇒ ϕ.

Suppose we have ϕ. Then, by MP, we can deduce ¬(¬ϕ). On the other hand, suppose

we have ¬(¬ϕ). By MP, we can deduce ϕ. By Lemma 5, the deductions are sound rules

of inference, as needed.

Theorem 10. Let ϕ, ψ ∈ P . Then

¬(ϕ ∧ ψ)

∴ ¬ϕ ∨ ¬ψ
and

¬ϕ ∨ ¬ψ

∴ ¬(ϕ ∧ ψ)
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¬(ϕ ∨ ψ)

∴ ¬ϕ ∧ ¬ψ
and

¬ϕ ∧ ¬ψ

∴ ¬(ϕ ∨ ψ)

A standard rule of deduction in F2 is simplification which states that from a conjunc-

tion we can deduce the conjuncts. This fails over F4. Suppose, for some truth function

τ , we have τ(ϕ) = a and τ(ψ) = b. Then

ϕ ∧ ψ

∴ ϕ

is not sound since τ(ϕ ∧ ψ) > τ(ϕ). Thus, F4 does not admit simplification. However,

F4 does admit what we will call pseudo-simplification.

Corollary 4. Suppose Γ, ϕ ∧ ψ ⊢ λ, for Γ a set of formulas and ϕ, ψ, and λ formulas.

Then Γ, ϕ, ψ ⊢ λ.

Proof. By Lemma 4, ϕ, ψ ⊢ ϕ ∧ ψ. The corollary follows immediately.

We are now in the position to prove the Deduction Theorem, which demonstrates

an important property of the ⊢ relationship. The proof given here is heavily inspired by

the proof given in Church (1970), but is changed to fit our inferential structure.

Theorem 11. Let Γ be a set of formulas and ϕ, ψ ∈ P . Suppose Γ, ϕ ⊢ ψ. Then

Γ ⊢ ϕ⇒ ψ.

Proof. Let π1, π2, π3, . . . , πn be a proof of ψ. By the definition of a proof, we may

conclude

1. πn = ψ,

2. There is some k ≤ n such that {π1, π2, . . . , πk} = Γ ∪ {ϕ}.
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Construct the sequence {ϕ ⇒ πi}1≤i≤n. We will now prove that every element of the

sequence can be proved from the elements of Γ. As a consequence, ϕ⇒ ψ.

Suppose ψ ∈ Γ. Then, by substitution of axiom 2, ψ ⇒ (ϕ ⇒ ψ). Thus, by MP, we

can deduce ϕ⇒ ψ. That is, for any premise ψ, we can prove ϕ⇒ ψ.

Fix j ∈ N such that every formula in {ϕ ⇒ πi}i<j has been proved. We will prove

ϕ ⇒ πk. Suppose ϕ = πj. Then, ϕ ⇒ πj. Suppose πj is an axiom under some

substitution of its variables. Then, τ(πj) = 1 and πj can be deduced from the empty set

of premises. By substitution of axiom 2, πj ⇒ (ϕ⇒ πj); by MP, we deduce ϕ⇒ πj.

Suppose πj is deducible by MP from πm and πn, for m,n < j. Then, without loss

of generality, assume πm is of the form πn ⇒ πj. Note that, by assumption, we have

shown ϕ ⇒ πn and ϕ ⇒ (πn ⇒ πj). By several substitutions in axiom 1, we deduce

(ϕ ⇒ (πn ⇒ πj)) ⇒ ((ϕ ⇒ πn) ⇒ (ϕ ⇒ πj)). Thus, by two applications of MP, we

deduce ϕ⇒ πj.

Suppose πj is deducible from πm, for m < j, by substitution. By assumption, we

have deduced ϕ⇒ πm. Thus, by equivalent substitution, we deduce ϕ⇒ πj.

Since every element of {ϕ⇒ πi}1≤i≤n can be proved from the premises in Γ, it follows

that ϕ⇒ ψ can be proved from the premises in Γ. Thus, Γ ⊢ ϕ⇒ ψ, as needed.

Under F2, the converse of the Deduction Theorem holds; that is, if Γ ⊢ ϕ → ψ,

then Γ, ϕ ⊢ ψ. This relation does not necessarily hold in F4. Suppose Γ ⊢ ϕ ⇒ ψ

and τ (
∧

Γ) = τ(ψ) = a and τ(ϕ) for some truth function τ . Then, τ (
∧

Γ ∧ ϕ) = 1

and τ (
∧

Γ ∧ ϕ) > τ(ψ). Since an argument is a proof only if it is valid, it follows that

Γ, ϕ ̸⊢ ψ. We can avoid this complication by restricting the formula that admit the

converse of the deduction theorem to those bearing the relation Γ ∪ {ϕ} |=bc ψ. We

summarize this result with the following corollary

Corollary 5. The converse of the deduction theorem holds when Γ ∪ {ϕ} |=bc ψ.
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We will conclude this section by discussing how the Deduction Theorem can be used

in a proof. Since a proof is just a valid argument, if we have Γ, ϕ ⊢ ψ, it follows that

τ(∧Γ) ̸> τ(ϕ ⇒ ψ). Thus, we can use the Deduction Theorem in a way similar to a

rule of inference.10 The procedure for using the Deduction Theorem in a proof will be

as follows:

1. List the premises of the argument as usual.

2. Enter in however many antecedents are required to prove the theorem.

3. Once the consequent has been proven, use the Deduction Theorem, cited as DT ,

to infer successive implications.

We will use this method to deduce transitivity of the material implication. That is,

for ϕ, ψ, γ ∈ P , that the formula (ϕ ⇒ ψ) ⇒ ((ψ ⇒ γ) ⇒ (ϕ ⇒ γ)) is deducible from

the empty set of premises.

1. ϕ⇒ ψ {1} P (for use of DT)

2. ψ ⇒ γ {2} P (for use of DT)

3. ϕ {3} P (for use of DT)

4. ψ {1, 3} 1, 3,MP

5. γ {1, 2, 3} 2, 4,MP

6. ϕ⇒ γ {1, 2} 3, 5, DT

7. (ψ ⇒ γ) ⇒ (ϕ⇒ γ) {1} 2, 6, DT

8. (ϕ⇒ ψ) ⇒ ((ψ ⇒ γ) ⇒ (ϕ⇒ γ) { } 1, 7, DT

There are two important obeservations here. First that τ((ϕ ⇒ ψ) ⇒ ((ψ ⇒ γ) ⇒

(ϕ ⇒ γ))) = 1 for all τ . Note that τ((ϕ ⇒ ψ) ⇒ ((ψ ⇒ γ) ⇒ (ϕ ⇒ γ))) ∈ {0, 1} for all

τ . For τ((ϕ⇒ ψ) ⇒ ((ψ ⇒ γ) ⇒ (ϕ⇒ γ))) = 0, it must be the case that τ(ϕ⇒ ψ) = 1

10Strictly speaking, the Deduction Theorem is not a rule of inference since Γ, ϕ ⊢ ψ is not a sentence
in the language of F4.
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and τ((ψ ⇒ γ) ⇒ (ϕ⇒ γ)) = 0. By the same token, for τ((ψ ⇒ γ) ⇒ (ϕ⇒ γ)) = 0, it

must be the case that τ(ψ ⇒ γ) = 1 and τ(ϕ⇒ γ) = 0. In short, this means that there

is some valuation τ such that #(ϕ) ≤ #(ψ) and #(ψ) ≤ #(γ) but #(ϕ) > #(γ). This

is a contradiciton. Therefore, τ((ϕ⇒ ψ) ⇒ ((ψ ⇒ γ) ⇒ (ϕ⇒ γ))) = 1 for all τ .

Second, notice that ϕ ⇒ ψ, ψ ⇒ γ ⊢ ϕ ⇒ γ. It follows by two applications of the

Deduction Theorem, ∅ ⊢ (ϕ⇒ ψ) ⇒ ((ψ ⇒ γ) ⇒ (ϕ⇒ γ)). Since τ(p⇒ q) ∈ {0, 1} for

all τ and τ(
∧

∅) = 1, it follows that τ((ϕ ⇒ ψ) ⇒ ((ψ ⇒ γ) ⇒ (ϕ ⇒ γ))) = 1. By the

same token, it is clear that τ((ϕ⇒ ψ)∧ (ψ ⇒ γ)) ̸> τ(ϕ⇒ γ). Therefore, the following

theorem holds

Theorem 12. Let ϕ, ψ, γ ∈ P (F4,C). Then

ϕ⇒ ψ

ψ ⇒ γ

∴ ϕ⇒ γ

is a sound rule of inference.

3.5 The Soundness and Completeness Theorems

We are now in a position to prove the Soundness and Completeness Theorems. Over

F4, the full Completeness Theorem holds. However, we need to qualify the Soundness

Theorem. Consider the following example. Suppose τ(∧Γ) = a, τ(ϕ) = a, and Γ ⊢ ϕ.

If we choose some ψ such that τ(ψ) = b, there exists a proof of ϕ from the set Γ ∪ {ψ}

(namely, the proof of ϕ from Γ alone). However Γ∪ {ϕ} ̸|=bc ϕ since τ(
∧

(Γ∪ {ϕ})) = 1.

Thus, we must restrict Γ to only those formulas that are required to prove ϕ; that is,

we must restrict our consideration to any Σi(Γ, ϕ). Once we make this restriction, the

Soundness theorem states:

Theorem 13. Let Γ be a set of formulas and ϕ a formula. If Γ ⊢ ϕ then there exists a

Σi(Γ, ϕ) ⊂ Γ such that Σi(Γ, ϕ) |=bc ϕ.
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Proof. Suppose Γ ⊢ ϕ. Then, there is a Σi(Γ, ϕ) ⊂ Γ such that the premises in Σi(Γ, ϕ) ⊢

ϕ. Then there is a finite sequence of inferences {in} that, when applied to the formulas in

Σi(Γ, ϕ), yield ϕ. Since each in is sound, in+1 ◦ in is sound. Thus, τ (
∧

Σi(Γ, ϕ)) ̸> τ(ϕ)

for all τ . Therefore, Σi(Γ, ϕ) |=bc ϕ.

We should note that, for Γ and ϕ such that Γ ⊢ ϕ, if we construct Γ′ = Γ∪Θ such that Θ

consists of only 0 or 1-tautologies, then Γ′ ⊢ ϕ implies Γ′ |= ϕ since adding a 1-tautology

will not affect the value of the conjunction, thereby not affecting if Γ′ |= ϕ, and adding

a 0-tautology will change the evaluation to 0, leaving Γ′ |= ϕ as trivially true. Thus, the

reduction of Γ to Σi(Γ, ϕ) is necessary only because a ∧ b = 1.

Theorem 14. Let Γ be a set of formulas and ϕ be a formula. If Γ |=bc ϕ then Γ ⊢ ϕ.

Proof. Let Γ |=bc ϕ. Then τ (
∧

Γ) ̸> τ(ϕ) for all truth functions ϕ. Observe that

τ (
∧

Γ ⇒ ϕ) = 1. That is,
∧

Γ ⇒ ϕ is a 1-tautology. Since all 1-tautologies can be

deduced from the empty set of premises, it follows that ⊢
∧

Γ ⇒ ϕ. Thus, by the

converse of the Deduction Theorem,
∧

Γ ⊢ ϕ (this holds since the empty conjunction is

1). By Theorem 4, Γ ⊢
∧

Γ. Thus, by the transitivity of ⊢, Γ ⊢ ϕ, as needed.

A useful consequence of the Completeness Theorem is that we can rewrite any 1-

tautology with ⇒ as the major connective as a sound rule of inference. Let ϕ, ψ ∈

P (F4,C) such that ϕ ⇒ ψ be a 1-tautology. By the definition of ⇒, we know ϕ |=bc ψ.

Therefore, ϕ ⊢ ψ. It follows immediately that

ϕ

∴ ψ

is a sound rule of inference.
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4 Some Considerations for Further Development

Having proved the Soundness and Completeness of F4, we conclude by discussing how

the study of F4 might progress. We will begin with a discussion of some of the classic

problems posed for two-valued propositional logics. One such problem asks whether there

is an effective procedure for generating all tautologies over F4. There are two possible

forms this procedure could take. The first is a strictly logic form. By Corollay 2, this is

equivalent to generating all polynomials p(x) over F4 that satisfy p(x) + 1 = 0.

Another such problem is the formal introduction of predicates and quantifiers. With

the introduction of predicates and quantifiers to F4, we can define models and cary out

model theoretic operations over F4, effectively allowing us to talk about mathematics

over F4. With the introduction of quantifiers, we can also investigate whether predicate

calculus over F4 is sound and complete.

We may also consider questions unique to F4. One benefit of inferences over F2 is

that, if there exists a proof of ϕ from Γ and the formulas in Γ are all true, ϕ is also

true. Since F4 has more than two truth values, there can be no such procedure this

simple over F4. One method for determining the truth value of the conclusion is to

determine the truth values of the premises, determine which truth functions allow that

set of valuations, and apply those truth functions to the conclusion. However, this is a

labor-intensive process. Thus, it would be much more efficient to develop an algebra of

truth values, in which one needs merely to state the truth values of the premises and

follow the rules of inference to find the truth value of the conclusion.

Finally, we can consider further extensions of F2. Consider the procedure used to

construct F4. We constructed F4 as the quotient field of F4[x] by “dividing out” by the

ideal ⟨x2 + x+ 1⟩, where 1 is the generator of F2. Suppose we repeat this construction.

We seek to construct a chain of fields, each embedded in all of its successors, of the

general form Fqn = Fqn−1 [x]/(x2 + x+ γn−1), where qn is the size of the field and γn−1 is



a generator of Fqn−1 .

Theorem 15. The general element Fqn−1 = F22n−2 [x]/(x2 + x+ γn−1) = F22n−1 , where i

is the place of the field in the chain and γn−1 is the generator of F22n−2 .

Proof. We proceed by induction. We can see that [F4 : F2] = 22−1 = 2 since F4 =

{ u+ vx | u, v ∈ F2 }. Let Fqn be a member of the chain. Suppose [Fqn : F2] = 2n−1. We

can see that

[Fqn+1 : F2] = [Fqn+1 : Fqn ] · [Fqn : F2]

= [Fqn+1 : Fqn ] · 2n−1.

It is sufficient to show that [Fqn+1 : Fqn ] = 2. Since Fqn+1 = Fqn [x]/(x2 + x + γn), by

Euclidean Division, the polynomails are equivalent to linear terms with coefficients in

Fqn ; that is,

Fqn+1 = { u+ vγn+1 | u, v ∈ Fqn }.

Thus, [Fqn+1 : Fqn ] = 2, as needed. By a theorem from (Serre 1973, p. 3), |Fqn| = 22n−1
.

Therefore, Fqn = F22n−1 .

From this theorem, we can see that the chain proceeds as

F2 ↪→ F4 ↪→ F16 ↪→ F256 ↪→ F65,536 ↪→ . . .

We may investigate several aspects of the elements of the chain. Suppose we define ∧, ∨,

and ¬ over Fqn as we have for F2 and F4. To show that an inferential system over Fqn with

connectives ∧, ∨, and ¬ is sound and complete, we must show that Fqn admits functional

completeness, a partial order, and a definition of semantic implication. Supposing that

a single variable formula χα(p) can be constructed such that χα(p) = 1 when τ(p) = α
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and 0 otherwise for every α ∈ Fqn , the proof given for functional completeness will hold

for Fqn . It remains to find each χα(p).

Since qn = 22n , there exists a Boolean algebra Bqn such that |Bqn| = |Fqn|. Thus, to

induce a partial order over Fqn , we must show the diagram

B2 B4

F2 F4

f

h σ

g

commute with f , g, h, and σ defined as they in Section 3.1.

Once Fqn has been given a partial order, we need to define semantic implication. As

was shown in Section 3.1, the relations |=card and |=bc are equivalent over F4. However,

over F16, they are not. As we can see in Fig. 1d, the element {1, 2} |=bc {3}, since

{1, 2} ̸> {3}, but {1, 2} ̸|=card {3}, since |{3}| < |{1, 2}|. By similar reasoning, |=card

and |=bc are not equivalent in any Fqn beyond F4. Thus, to determine how to define

semantic implication over Fqn , a comparative study of |=card and |=bc must be conducted.

Supposing each Fqn admits functional completeness, can be imbued with a partial

order, and has a clear notion of semantic implication, many of the proofs presented in

this paper will hold in Fqn . By functional completeness, we can define ⇒ such that

it models the axiom scheme of the material implication, from which we can prove the

Deduction Theorem. Furthermore, if Corollary 5 can be proved over Fqn , then the

Soundness and Completeness Theorems follow as above. That is, each Fqn is imbued

with a well-behaving inferential system if we can prove the set C ∪ Fqn is functionally

complete, imbue Fqn with a Boolean partial order, and find a suitable notion of semantic

implication.
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