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The intricate neural pathways involved in obsessive-compulsive disorder (OCD) 
affect areas of our brain that control executive functioning, organization, and 
planning. OCD is a chronic condition that can be debilitating, afflicting millions 
of people worldwide. The lifetime prevalence of OCD in the US is 2.3%. OCD 
is predominantly characterized by obsessions consisting of intrusive and 
unwanted thoughts, often with impulses that are strongly associated with anxiety. 
Compulsions with OCD encompass repetitive behaviors or mental acts to satisfy 
their afflicted obsessions or impulses. While these factors can be unique to each 
individual, it has been widely established that the etiology of OCD is complex as it 
relates to neuronal pathways, psychopharmacology, and brain chemistry involved 
and warrants further exploration.
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Introduction

The intricate neural pathways involved in obsessive-compulsive disorder (OCD) affect areas 
of our brain that control executive functioning, organization, and planning. OCD is a chronic 
condition that can be  debilitating, afflicting millions of people worldwide. The lifetime 
prevalence of OCD in the US is 2.3% (Obsessive-Compulsive Disorder (OCD), 2017). OCD is 
predominantly characterized by obsessions consisting of intrusive and unwanted thoughts, often 
with impulses that are strongly associated with anxiety. Compulsions with OCD encompass 
repetitive behaviors or mental acts to satisfy their afflicted obsessions or impulses (Stein et al., 
2019). While these factors can be unique to each individual, it has been widely established that 
the etiology of OCD is complex as it relates to neuronal pathways, psychopharmacology, and 
brain chemistry involved and warrants further exploration.

Areas of the brain implicated in OCD

With the use of imaging modalities such as positron emission tomography (PET), single-
photon emission computerized tomography (SPECT), and functional magnetic resonance 
imaging (fMRI), we have elucidated some of the areas of the brain involved in OCD. The areas 
involved are the orbitofrontal cortex (OFC), anterior cingulate cortex, caudate nucleus, and 
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thalamus (Saxena et al., 2001; Maia et al., 2008), with these structures 
connected via established neuroanatomic circuitry (Alexander et al., 
1986). Recent findings from animal studies also indicate that other 
areas, such as the hypothalamus (Mangieri et al., 2018; Cassidy et al., 
2019; Islam et al., 2022), hippocampus (Thompson et al., 2019; Mu 
et al., 2020), amygdala (Hong et al., 2014; Ullrich et al., 2018; Sun et al., 
2019; Folkes et al., 2020), and spinal cord are involved as well (Xie 
et al., 2022).

Saxena et al. reviewed early neuroimaging studies in patients 
with OCD that were completed during rest, symptom provocation, 
as well as pretreatment and post-treatment (Saxena and Rauch, 
2000). Baseline PET studies included in their review have uncovered 
significantly increased metabolic activity in the bilateral OFC 
(Baxter et al., 1987, 1988; Nordahl et al., 1989; Swedo et al., 1989; 
Sawle et al., 1991), basal ganglia (Baxter et al., 1987, 1988; Perani 
et al., 1995), and thalamus (Swedo et al., 1989; Perani et al., 1995), 
with comorbidity of significant depression potentially altering 
results (Baxter et al., 1987, 1988; Baxter et al., 1990; Martinot et al., 
1990). The baseline SPECT studies reveal abnormalities in the 
frontal cortex (Machlin et al., 1991; Rubin et al., 1992; Lucey et al., 
1997) and basal ganglia, particularly the caudate (Rubin et al., 1992; 
Adams et al., 1993; Lucey et al., 1997), while MR Spectroscopy found 
abnormal activity in the anterior cingulate cortex (Ebert et al., 1997) 
and striatum (Ebert et  al., 1997; Bartha et  al., 1998). For the 
neuroimaging symptom provocation studies, there is a robust 
positive correlation between OCD symptomatology and activation 
of the OFC, while the findings involving the basal ganglia, thalamus, 
limbic and paralimbic structures are less concordant (Zohar et al., 
1989; McGuire et al., 1994; Rauch et al., 1994; Hollander et al., 1995; 
Breiter et  al., 1996; Cottraux et  al., 1996). Lastly, neuroimaging 
studies on pretreatment and post-treatment patients have shown 
that, regardless of treatment modality, there is decreased activity in 
both the OFC (Hollander et al., 1989; Benkelfat et al., 1990; Baxter 
et al., 1992; Squire, 1992; Schwartz et al., 1996; Saxena et al., 1999) 
and caudate post-treatment (Hollander et al., 1989; Benkelfat et al., 
1990; Baxter et al., 1992; Schwartz et al., 1996; Moore et al., 1998; 
Saxena et al., 1999).

In a review of the role of dopamine in OCD, Koo et al. examined 
neuroimaging studies in the context of OCD pathophysiology (Koo 
et al., 2010). Volumetry reports have determined that the OFC, globus 
pallidus, anterior cingulate cortex (ACC), caudate, and thalamus were 
decreased in volume, with these areas consisting of the frontostriatal 
circuit (Scarone et al., 1992; Robinson et al., 1995; Szeszko et al., 1999; 
Kwon et al., 2003; Choi et al., 2004; Kang et al., 2004). SPECT/PET 
research has shown increased metabolic rates in the mediofrontal 
cortex in OCD, specifically the dorsal parietal cortex, left 
posterofrontal cortex, OFC, left inferofrontal cortex, medial frontal 
cortex, and left parietal cortex (Rubin et al., 1992; Harris et al., 1994; 
Lucey et al., 1995). These findings suggest the frontostriatal circuit, 
along with the basal ganglia, is the primary brain region altered in 
OCD pathology following treatment (O’Regan, 1970; Rivers-Bulkeley 
and Hollender, 1982; Swedo et al., 1992).

Additional PET studies on treated and treatment-naive patients 
found similar metabolic rates in the OFC and caudate, areas closely 
linked to reward and learning processing and rich in dopaminergic 
and serotonergic nerve fibers (Benkelfat et al., 1990; Hansen et al., 
2002). Furthermore, dopamine transporter binding abnormalities 
in OCD patients have been found in the putamen and caudate, 

while dopamine transporter availability abnormalities were found 
to be replicated in the striatum of treatment-naive OCD patients 
(van der Wee et  al., 2004; Hesse et  al., 2005; Kim et  al., 2007). 
Following SSRI treatment in particular, dopamine transporter 
expression is found to be increased, indicating that pharmacological 
agents in OCD treatment act through the dopaminergic system and 
that there is a reciprocal action of dopamine and serotonin in the 
subcortex of patients with OCD (Pogarell et  al., 2005; Kim 
et al., 2007).

It is important to note that there appears to be  varying 
involvement of the subregions of the OFC and ACC in the 
pathophysiology of OCD (Milad and Rauch, 2012). Studies utilizing 
fMRI have found hyperactivity of the lateral OFC (LOFC) to 
be positively correlated with symptom severity in OCD subjects, 
with the medial OFC (mOFC) appearing inversely correlated (Adler 
et al., 2000; Milad and Rauch, 2007; Rauch et al., 2007). The lesser 
extent of hyperactivity in the LOFC prior to selective serotonin 
reuptake inhibitor (SSRI) treatment has also been associated with 
better treatment response (Rauch et al., 2002). Although other fMRI 
studies appear to contradict this model by showing hypoactivation 
in the LOFC (Remijnse et al., 2006; Chamberlain et al., 2008), they 
all still suggest that there is dysfunction in both the lateral and 
medial regions of the OFC in OCD. The dorsal region of the ACC 
(dACC) is the region of the ACC found to be most relevant to the 
psychopathology of OCD (Milad and Rauch, 2012). Studies support 
hyperactivity of the dACC in OCD (Fitzgerald et al., 2005, 2010; 
Schlösser et al., 2010), and SSRI treatment-responsive OCD patients 
have been found to have reduced metabolism in the dACC following 
treatment (Perani et al., 1995).

In a recent study analyzing the resting-state functional 
connectome of OCD patients, Bruin et al. further strengthen findings 
of regional involvement in the previous studies using machine 
learning (Graybiel and Rauch, 2000; Milad and Rauch, 2012; van den 
Heuvel et al., 2016; Bruin et al., 2023). However, their results show a 
lesser degree of subcortical involvement in OCD and suggest the most 
significant hypo-connectivity to be found within the cortico-striato-
thalamo-cortical (CSTC) sensorimotor network when measured via 
resting-state fMRI (Bruin et al., 2023). With these new innovative 
models incorporating machine learning with fMRI to map the 
involvement of brain areas in OCD patients, new pathways are open 
in the field of OCD research to locate key regions and identify specific 
circuitry to target in the development of novel pharmacological 
treatments and show potential to provide a stronger understanding of 
the pathophysiology behind OCD.

Animal studies are opening the doors to previously unexplored 
areas of involvement in OCD through the study of OCD-like 
behaviors. Hypothalamic involvement is one region that has been 
proposed through this research, particularly in the lateral 
hypothalamus (LH) and paraventricular hypothalamus (PVH) 
(Mangieri et  al., 2018; Cassidy et  al., 2019; Islam et  al., 2022). 
Additionally, the ventral subiculum of the hippocampus (Thompson 
et  al., 2019; Mu et  al., 2020), the posteromedial and basolateral 
subdivisions of the amygdala (Hong et al., 2014; Ullrich et al., 2018; 
Sun et al., 2019; Folkes et al., 2020), and the trigeminal nucleus of the 
spinal cord (Xie et al., 2022) have all gained support through animal 
studies in having regional involvement in the psychopathology of 
OCD. More will be  discussed on the specific circuitry uncovered 
through these studies in the Pathways section below.
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Pathways

The most widely accepted albeit intricate pathways that have thus 
far been elucidated involve a CSTC loop as the core mechanism in the 
pathophysiology of OCD (Alexander et  al., 1986; Middleton and 
Strick, 2001; Milad and Rauch, 2012; Goodman et al., 2021). The 
current evidence suggests that OCD is a disorder where its dysfunction 
is a byproduct of defective neural networks rather than a single region 
of the brain (Goodman et al., 2021). Obsessions and compulsions can 
vary widely in terms of the nature of the thoughts, mental acts, 
motives, and drives behind the obsessive thought that then provokes/
leads to the compulsive behavior or mental act. Based on the nature 
and the presentation of obsessions and compulsions it is reasonable to 
expect involvement of different neuronal pathways.

Milad and Rauch have established a conceptual and 
investigatory framework for understanding these networks and 
analyzing their dysfunctions in OCD using the CSTC loops motif 
and associated brain regions (Milad and Rauch, 2012). Their 
proposed framework consists of 3 circuit loops: affective circuit 
(ACC/ventromedial PFC, nucleus accumbens, thalamus), involved 
in affective and reward processing; dorsal cognitive circuit 
(dorsolateral PFC, dorsal caudate, thalamus), involved in working 
memory an executive function; ventral cognitive circuit 
(anterolateral OFC, putamen, thalamus), involved in motor 
response and inhibition. The use of this framework has largely 
shown consistent results with the imaging studies reviewed in the 
previous section (Milad and Rauch, 2012). Other conceptual 
frameworks have been proposed such as the more recent 
neurocircuit-based taxonomy proposed by Shephard et  al. for 
guidance in the treatment of OCD (Shephard et al., 2021). This 
model consists of the following 5 circuits and their associated 
functions: fronto-limbic (amygdala and ventromedial PFC), 
emotional responses such as fear and anxiety; sensorimotor 
(supplementary motor area, putamen, thalamus), motor behavior 
and sensory integration; ventral cognitive (inferior frontal gyrus, 
ventrolateral PFC, ventral caudate, thalamus), control of self-
regulatory behavior; ventral affective (orbitofrontal cortex, nucleus 
accumbens, thalamus), reward processing and response; dorsal 
cognitive (dorsolateral PFC, dorsomedial PFC, dorsal caudate, 
thalamus), executive function and emotional regulation. These 
frameworks can serve as guides in better understanding the 
complex interplay of these networks in OCD when conducting 
imaging, animal, and clinical research.

As stated in the previous section, animal models of OCD-like 
behavior play an important role in uncovering potential brain 
regions and specific pathways, their function, and neurotransmitters 
associated with OCD neuropsychopathology. In a recent animal 
study examining midbrain dopaminergic neurons and OCD-like 
behavior, Xue et al. identified the location and circuitry of repetitive 
behaviors in mice OCD animal models (Xue et al., 2022). The results 
indicate dopaminergic neuronal projections from the substantia 
nigra pars compacta (SNc) to the ventromedial striatum (VMS) and 
LOFC control repetitive behavior via a dual-gating mechanism. 
Grooming behavior in mice is modulated by CSTC circuit 
dysfunction and is reasoned to be a stereotypical behavior involved 
in OCD (Robinson et al., 1995; Kang et al., 2004; Szeszko et al., 
2004). Xue et al. found that the dopaminergic projections of the 
SNc-VMS pathway act on D1 receptors to promote grooming, while 

projections of the SNc-LOFC pathway act on D2 receptors to 
suppress grooming, uncovering this reciprocal acting dual-gating 
function. While approximately half of OCD patients fail to have a 
clinically significant response to SSRI treatment in practice (Jenike, 
2004), these treatment-resistant patients have displayed a response 
to dopamine antagonists (Maina et al., 2008; Goodwin et al., 2009). 
Although it is unknown whether dopaminergic alteration is 
ubiquitous among patients, these findings suggest potential novel 
target regions for future pharmacologic and brain stimulation 
interventions in the treatment of OCD.

In a study examining hypothalamic involvement in compulsive 
behavior in transgenic mice, Mangier et al. uncovered a dual circuit 
originating from the lateral hypothalamus (LH) and targeting the 
paraventricular hypothalamus (PVH) that modulates feeding and 
compulsive self-grooming (Mangieri et  al., 2018). They found 
GABAergic LH → PVH stimulation to promote feeding while 
glutamatergic stimulation induces self-grooming, with rapid shifts 
from stress-induced self-grooming in GABAergic activation and from 
fasting-induced feeding in glutaminergic activation, suggesting a 
shared neural pathway underpinning both behaviors and implicating 
LH-PVH connections in these compulsive actions (Mangieri et al., 
2018). Additional animal studies have shown further support for the 
involvement of both the LH (Cassidy et al., 2019) and PVH (Islam 
et al., 2022) in these behaviors.

The hippocampus has also been an area of interest in recent 
animal studies with a newly discovered di-synaptic circuit linking 
the hippocampal ventral subiculum to the ventral lateral septum and 
then the hypothalamus tuberal nucleus, found to be  involved in 
regulating stress-induced self-grooming behaviors (Mu et al., 2020). 
Additionally, in a study on OCD-related behaviors and the BTB/
POZ domain-containing 3 (BTBD3) transcription factor, a potential 
risk gene for OCD and highly expressed in limbic CSTC circuits, it 
has been found that hippocampal BTBD3 expression selectively 
modulates both compulsive-like and exploratory behavior in mice 
(Thompson et al., 2019). BTBD3 has been found to guide dendrites 
toward active axon terminals and regulates the activity-dependent 
pruning of dendrites in the primary sensory cortex during neonatal 
development, aiding in the formation of neural circuitry (Matsui 
et al., 2013). However, it remains uncertain whether BTBD3 plays a 
similar role in other brain regions, particularly the limbic CSTC 
circuits (Thompson et al., 2019).

The role of the amygdala in OCD has also gained more attention 
with animal studies showing glutamatergic activity in the posterior 
subdivision of the medial amygdala influencing self-grooming 
behaviors (Hong et al., 2014), potential thalamo-amygdala circuitry 
involvement in self-grooming behaviors (Ullrich et al., 2018), and 
projections from the basolateral amygdala to both the medial 
prefrontal cortex and nucleus accumbens influencing checking 
behaviors and self-grooming behaviors, respectively (Sun et al., 2019; 
Folkes et al., 2020). Lastly, although the involvement of the spinal cord 
in these behaviors was previously largely unknown, new findings 
released by Xie et al. uncover a neural circuit from the caudal aspect 
of the spinal trigeminal nucleus to the cervical spinal cord found to 
maintain repetitive self-grooming behaviors in mice (Xie et al., 2022). 
Although the extent of proposed regional neural involvement in 
OCD-like behaviors supports the multifaceted complexity of the 
disorder, further research is needed to identify the implications of 
these pathways in human subjects.
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Cell types and molecules 
(neurotransmitters)

In patients with OCD, their symptoms may be  attributed to 
neurotransmitters including serotonin and dopamine predominantly, 
as evidenced in multiple studies. Serotonin 1B and 1D receptors are 
implicated in the exacerbation of OCD symptom severity. This is well-
established, as SSRIs are the first-line therapy in patients with OCD 
and are shown to benefit nearly 50% of patients and improve their 
outcomes (Soomro et al., 2008; Pittenger et al., 2011; Okutucu et al., 
2023). Furthermore, when serotonin 1B and 1D receptors are 
stimulated, OCD symptoms are profoundly exacerbated (Koran et al., 
2001; Gross-Isseroff et  al., 2004; Zohar et  al., 2004; Pittenger 
et al., 2011).

Studies have demonstrated that dopamine and dopaminergic 
systems in the midbrain play a key role in OCD; specifically, patients 
experience an activation of D1 receptors. Studies in rodents have 
found a decrease in excessively stereotyped grooming or “OCD-like” 
activities when D1 receptors have been knocked out (Berridge and 
Aldridge, 2000; Zike et al., 2017; Xue et al., 2022). Additionally, this 
has been determined by receptor binding research using radioisotopes; 
evidence indicates that dopamine transporter binding ability is 
compromised in OCD, specifically in subcortical areas of the putamen 
and caudate (van der Wee et  al., 2004; Koo et  al., 2010). Overall, 
studies have shown that monotherapy with SSRIs in treating OCD 
may not fully treat patients, and many patients benefit from the 
addition of an antipsychotic medication that displays a dopaminergic 
mechanism of action due to the interaction of serotonin and dopamine 
(Korsgaard et al., 1985; Koo et al., 2010).

Recent clinical trials have aimed at targeting the glutaminergic 
system (O’Neill, 2020). Glutamate is the primary excitatory 
neurotransmitter in the brain of adults and its dysfunction has been 
identified as a potential link to the etiology of OCD (Pittenger et al., 
2011). In addition to the inhibitory neurotransmitter GABA, 
glutamatergic pathways play a crucial role in the intricate connections 
within the CSTC circuit, as stated previously to be implicated in the 
development of OCD (Goodman et al., 2021). In addition, several 
glutamate-related genes have been associated with OCD risk and have 
been studied for decades (Pittenger et al., 2011).

Treatment

There are several published guidelines for the management of 
OCD. These include the American Psychiatric Association, Canadian 
Psychiatric Association, and National Institute for Health and Clinical 
Excellence (National Institute for Health and Care Excellence, 2005; 
Koran et al., 2007; Katzman et al., 2014). Pharmacotherapy with SSRIs 
and cognitive-behavioral therapy are considered the standard first-line 
treatments for OCD.

Glutamate-modulating pharmacotherapy such as 
U.S. FDA-approved Riluzole, for example, was one of the first of these 
agents to be tested in the treatment of OCD, with the overall effect 
exhibiting increased glutamate clearance (Goodman) (Goodman 
et al., 2021). In addition, studies have suggested that this treatment for 
OCD may be efficacious for many common comorbid conditions, 
including major depressive disorder, bipolar depression, and 
generalized anxiety (Pittenger et al., 2011).

Pharmacotherapy

A meta-analysis comparing the effectiveness of SSRIs and placebo 
showed that SSRIs are effective for treating OCD (Soomro et al., 2008). 
Skapinakis et al. completed a network meta-analysis and determined 
there were no significant differences between SSRIs in the treatment 
of OCD (Skapinakis et al., 2016). Usually, higher doses of SSRI are 
needed for OCD as compared to depression (Bloch et al., 2010). If the 
patient is unresponsive to the first SSRI, guidelines recommend a trial 
of a second SSRI. Most recommendations advise switching to a 
second-line choice if a second SSRI fails. These include venlafaxine or 
clomipramine. Although previously considered to be a first-line agent, 
clomipramine is a second-line agent due to its more difficult side effect 
profile. In the US and Canada, mirtazapine is also recommended as a 
second-line alternative medication (Koran et al., 2005; van Roessel 
et al., 2023). A meta-analysis in 2015 found augmentation of SSRIs 
with antipsychotics to be beneficial, particularly with haloperidol, 
aripiprazole, and risperidone (Dold et al., 2015). A literature review 
suggested there may be some benefit to using ondansetron as shown 
in five therapeutic studies (Serata et al., 2015).

Memantine is being considered for the treatment of OCD 
although not yet established. In a systematic review, Modarresi et al. 
concluded that augmentation with memantine was safe and effective 
for OCD treatment in moderate to severe disease (Modarresi et al., 
2019). Riluzone and ketamine are also being considered for use in 
refractory OCD (Pittenger, 2021). Sharma et al. used several IV 
ketamine infusions to treat SSRI-resistant OCD. They found that the 
Yale-Brown Obsessive Compulsive Scale (YBOCS) total score 
significantly decreased. Control trials with larger sample sizes are 
required to investigate the effectiveness of ketamine and find 
indicators of ketamine responsiveness (Sharma et al., 2020). Before 
any recommendations for the use can be made for these medications, 
more comprehensive, higher-quality investigations are required.

Non-invasive brain stimulation

Despite the effectiveness of current pharmacological and behavioral 
treatments, many patients are still unresponsive. Steuber et al. set out 
to evaluate the benefit of repetitive transcranial magnetic stimulation 
(rTMS) on OCD patients. The study showed that when compared to 
sham, rTMS showed a 3 times greater probability of treatment response 
and a modest therapeutic impact for the severity of OCD symptoms. 
The therapeutic effects of rTMS on the intensity of OCD symptoms 
were correlated with improvements in comorbid depression severity. 
To maximize treatment, it is crucial to take into account the variables 
that affect the therapeutic benefits (Steuber and McGuire, 2023).

A total of two hundred and nineteen OCD patients participated 
in a post-marketing investigation to assess the effectiveness in real-
world practice. The response measured as at least a 30% decrease in 
Y-BOCS score from baseline to the endpoint, was the main outcome. 
First response and sustained response for 1 month. After 29 sessions, 
22 clinical sites discovered a response rate of 72.6%. Continued 
reduction of OCD symptoms was seen by prolonging the course past 
29 sessions. Hence, showing the possibility of usefulness for treatment 
in non-responders. In this study, physicians had the possibility of 
utilizing augmentation medications or increasing the rate of therapy 
which has not been permitted in sham-controlled studies. This may 
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have been a contributing factor in the increased response rate 
observed in real-world practice (Roth et al., 2021).

Psychotherapy

The only type of psychotherapy for which there is solid evidence 
in OCD is cognitive-behavioral therapy, which is also the most 
effective treatment for OCD. This is most likely because the most 
effective form of treatment for OCD, behavioral therapy is a 
cornerstone of cognitive-behavioral therapy. The most crucial element 
of CBT is exposure response therapy. Hence, guidelines recommend 
using CBT as a first-line treatment option.

Models of compulsive behavior

OCD has long been associated with a plethora of compulsions that 
are central to symptomatology and disease subtypes. Compulsive 
behavior and obsessional thoughts are not only associated with OCD, 
but are present in several other neuropsychiatric disorders sometimes 
referred to as “impulsive-compulsive disorders,” including but not 
limited to: OCD, Tourette syndrome, addiction, substance use 
disorders, behavioral addiction such as gambling and internet 
addiction, and compulsive eating (Robbins et al., 2019). Models of 
different compulsions are being studied, including but not limited to 
foraging, hoarding, grooming, washing, checking, drug seeking, 
feeding, mating-related, aggression, gaming, and smartphone use 
(Radomsky et  al., 2007; Figee et  al., 2016; Robbins et  al., 2019; 
Benaroya-Milshtein et al., 2020; Kuty-Pachecka, 2021).

Animal models, including genetic, pharmacological, ethological, 
and stress-induced models, are frequently used to study compulsive 
behaviors and assist in the development of our current understanding 
of the neuropsychological basis of OCD and compulsive behaviors 
(Camilla d’Angelo et al., 2014; Robbins et al., 2019). d’Angelo et al. 
identified some of these mentioned animal model subtypes in their 
review on OCD. Ethological models provide researchers with the 
ability to study naturally occurring behavioral processes compared to 
those that are artificially induced (Camilla d’Angelo et al., 2014), such 
as canine acral lick dermatitis in dogs which is a representative model 
of excessive grooming behavior (Rapoport et  al., 1992). Drug-
induced behavioral models can be  used to induce specific OCD 
symptoms in humans such as compulsive checking, increased anxiety, 
indecision, and preservation (Camilla d’Angelo et  al., 2014). An 
example of this can be  seen in rats treated with sub-chronic 
quinpirole, a D2/D3 receptor agonist, which induces increased 
checking behavior (Szechtman et al., 1998; Eagle et al., 2014). Genetic 
models are more difficult to use due to the presumed polygenetic 
involvement and varying heritability estimates in OCD (Jonnal et al., 
2000; Hettema et al., 2001; Camilla d’Angelo et al., 2014). Knockout 
of the Sapap3 gene in mice is one of the most studied genetic models 
used in OCD research and induces excessive grooming and anxiety 
(Burguière et al., 2013; Pinhal et al., 2018). In a recent study, Manning 
et al. found a correlation between deficits in reversal learning and 
increased c-fos activity within the medial PFC of this model, 
associating it with the correlation between deficits in fear reversal 
increased vmPFC activity in OCD patients (Apergis-Schoute et al., 
2017; Manning et al., 2019). Although no single model can be used 

as an all-inclusive representative of OCD, the different models allow 
for the study of specific symptomatology and are useful in acquiring 
a better understanding of pathophysiology for individual subsets as 
well as assisting with the development of targeted 
pharmacologic interventions.

In a network analysis of obsessive-compulsive symptoms and 
beliefs, using the OBQ-44 and OCI-R to uncover those most central 
to OCD, Bunmi et al. found that “having intrusive thoughts means I’m 
out of control” and “having nasty thoughts means I  am  a terrible 
person” to be the most central and statistically significant symptoms 
within the network (Olatunji et al., 2019). These findings support past 
research suggesting that distorted beliefs surrounding an individual’s 
thoughts is more predictive of OCD symptoms, rather than 
dysfunctional beliefs concerning perfectionism or uncertainty (Myers 
et al., 2008). Although these core symptoms are representative of 
distorted beliefs, these obsessive beliefs are thought to contribute to 
and predict the development of OCD symptoms over time (Rachman, 
1998; Salkovskis, 1998; Abramowitz et  al., 2006). Intriguingly, 
hoarding, although traditionally identified as a symptom of OCD, was 
found to have low centrality in the network and empirical studies do 
not show consistency in its relationship with OCD (Grisham et al., 
2005; Wu and Watson, 2005; Saxena, 2007; Abramowitz et al., 2008).

Sexual obsessions in OCD are characterized by egodystonic 
intrusive thoughts or images that can include sexual content related to 
inappropriate sexual activity with family, children, or animals, fears 
surrounding sexual orientation, or aggressive sexual behaviors 
(Williams, 2008; Real et al., 2013). It is important to note that these 
obsessions are not pleasant for the patient, and the associated 
compulsions do not bring pleasure, but instead reduce anxiety (Kuty-
Pachecka, 2021). The patient finds themself acting out the compulsion 
in an attempt to gain control over the activity of their mind and to 
neutralize the negative emotions that arise as a consequence of feeling 
responsible for the obsession, which, as a result, increases the probability 
of future intrusions and consolidates the belief of responsibility 
(Salkovskis, 1999). In a study examining trait anger and anger expression 
in individuals with OCD with primary checking compulsions, 
Radomsky et al. found that trait anger, but not anger expression, was 
greater in these individuals compared to controls (Radomsky et al., 
2007). Studies have also found that children with tic disorders and 
comorbid OCD have an increased probability of aggressive behavior 
compared to those with tic disorder alone (Budman et al., 2000; Freeman 
et al., 2000; Budman et al., 2015; Benaroya-Milshtein et al., 2020).

OCD has also been proposed by some researchers to 
be conceptualized as a behavioral addiction (Holden, 2001; Denys 
et al., 2004), as well as other disorders that share compulsivities such 
as pathological gambling, compulsive eating, sexual behavior, and 
computer use (Holden, 2001; Grant et  al., 2006). In a review on 
compulsivity in OCD and addictions, Figee et  al. examined the 
neurobiologic overlap between compulsivity in OCD, substance-use 
disorders, and behavioral addictions, as stated above (Figee et  al., 
2016). Their reviewed data suggests that compulsivity in these 
disorders involves dysfunctional reward and punishment in the ventral 
striatum with associated attenuation of dopamine release (Figee et al., 
2011, 2013), along with negative reinforcement within the limbic 
system (Kennett et  al., 2013; Koob, 2015), providing a potential 
explanation for the involvement of repetitive self-destructive behaviors 
(Figee et al., 2016). This compulsivity is also found to involve cognitive 
and behavioral inflexibility (Chamberlain et al., 2006; Menzies et al., 
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2007), with the possible underlying mechanism of co-occurring 
impairment of top-down regulation in the vmPFC (Figee et al., 2013; 
Harrison et al., 2013; Sakai et al., 2020), serotonergic defects in the 
prefrontal cortex (Figee et al., 2010; Pelloux et al., 2012), as well as 
excessive dopamine and glutamate signaling (Wu et al., 2012; Sesia 
et al., 2013). Lastly, they show that habitual responding plays a role in 
compulsivity with imbalances between ventral and dorsal frontostriatal 
recruitment (Everitt and Robbins, 2005; Everitt et al., 2008; Gillan et al., 
2011, 2014; Willuhn et al., 2012; Sjoerds et al., 2013; Voon et al., 2015).

Anxiety and compulsive behavior

Anxiety and anxiety disorders, including generalized anxiety 
disorder (GAD), are strongly associated with OCD not only 
epidemiologically, but also within clinical settings (Fontenelle and 
Hasler, 2008; Sharma et al., 2021). Anxiety and compulsive behaviors 
as seen in conditions like OCD have many similarities and most 
predominantly overlap in the notion of repetitive and intrusive 
thoughts; chronic worrisome thoughts in GAD are thought to 
be  similar to unwanted obsessions in OCD (Sharma et  al., 2021; 
American Psychiatric Association, 2022). In addition, the main 
function of compulsive behavior within OCD is often to relieve 
unwanted anxiety (Starcevic et  al., 2011). Many mental processes 
within OCD begin in response to having anxiety and are centered 
around preventing it from occurring (American Psychiatric 
Association, 2022; Okutucu et al., 2023). However, distinctive features 
between anxiety and compulsive behaviors exist. In those who have 
anxiety, worries commonly involve rational and logical thoughts 
occurring in one’s daily life and the future. Conversely, intrusive 
thoughts and compulsive behaviors within OCD are ego-dystonic and 
may be bizarre (Lee and Kwon, 2003; Sharma et al., 2021).

Movement disorders and OCD

Relationships between movement disorders and OCD have been 
widely established, as many of the same neurotransmitters are implicated 
in the pathophysiology of both and exhibit great overlap. In patients 
with idiopathic Parkinsonism, when given medications such as L-dopa, 
OCD symptoms can be exhibited and aggravated due to its action on 
the basal ganglia (Andén et al., 1970; Sacks and Kohl, 1970; Koo et al., 
2010). Tourette’s syndrome also has its origin in the basal ganglia and 
frontal cortex. In children with Tourette’s, over half also have remarkable 
OCD symptoms and meet diagnostic criteria. Additionally, obsessive-
compulsive symptoms were found to be more rampant in Huntington’s 
disease, independent of movement disorder manifestations (Beglinger 
et al., 2007; Fibbe et al., 2012). This neurotransmitter overlap is not 
limited to movement disorders, as many medical diseases may also 
present with OCD-like features when affecting the basal ganglia, 
including Sydenham’s chorea from rheumatic fever secondary to group 
A beta-hemolytic streptococcal infection.

Conclusion and clinical trials

In this review we  summarized implicated areas of the brain, 
potential novel target regions for future pharmacologic and brain 

stimulation intervention, pathways and neurotransmitters involved, 
and models of compulsive behaviors in OCD. These neural pathways, 
psychopharmacology, and brain chemistry involved in the etiology 
of OCD are complicated and call for additional studies. Several 
clinical trials are currently under investigation. Reinhart and his team 
are conducting a clinical trial utilizing a novel neuromodulation 
method, based on reward-related rhythms of the OFC, for the 
reduction of OCD symptoms (Reinhart, 2023). Reinhart and his team 
are using high-definition transcranial alternating current stimulation 
(HD-tACS), a non-invasive brain stimulation technique that uses 
alternating current to modulate brain activity, guided by 
electroencephalogram (EEG) brain wave recordings to test whether 
repetitive modulation of relevant rhythm activity in the OFC can 
result in rapid and sustainable symptom production (Reinhart, 2023). 
The OBSESS trial is another clinical trial that is recruiting OCD 
patients who meet established surgical criteria to implant permanent 
DBS leads and temporary stereo-EEG electrodes to investigate 
personalized DBS programming (Sheth, 2023). The trial seeks to 
demonstrate the efficacy of data-derived DBS programming in 
reducing symptoms while collecting chronic on-device recordings to 
understand physiological signatures, therapeutic response, uncover 
biomarkers reflecting symptom severity, and guide future therapies 
in OCD (Sheth, 2023). While there is still much to be uncovered in 
the field of OCD research, these trials shed light to the direction of 
novel interventions and provide hope to the millions who continue 
to suffer from OCD worldwide.
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