USING HYBRID SCRUM TO MEET WATERFALL PROCESS DELIVERABLES
by
Emil Moster
May, 2013
Director of Thesis/Dissertation:  Dr. Nasseh Tabrizi
Major Department: Department of Computer Science

System Development Life Cycles (SDLCs) for organizations are often based
upon traditional software development models such as the waterfall model. These
processes are complex, heavy in documentation deliverables, and are rigid and less
flexible than other methods being used in modern software development.

Consider by contrast, agile methods for software development. In essence, agile
methods recommend lightweight documentation and simplified process. The focus
shifts to completed software as the “measure of success” for delivery of product in
software projects, versus accurate and comprehensive documentation, and the
accomplishment of static milestones in a work breakdown structure.

This thesis implements, explores, and recommends a hybrid agile approach to
Scrum in order to satisfy the rigid, document-laden deliverables of a waterfall-based
SDLC process. This hybrid Scrum is a balance of having enough documentation and
process - but not too much - to meet SDLC deliverables, while at the same time
focusing on timely product delivery and customer interactions that come from an agile

approach to software development.






USING HYBRID SCRUM TO MEET WATERFALL PROCESS DELIVERABLES

A Thesis
Presented to the Faculty of the Department of Computer Science

East Carolina University

In Partial Fulfillment of the Requirements for the Degree

Master of Science in Software Engineering

by
Emil Moster

May, 2013



© Emil Moster, 2013



USING HYBRID SCRUM TO MEET WATERFALL PROCESS DELIVERABLES

by

Emil Moster

APPROVED BY:

DIRECTOR OF THESIS:

COMMITTEE MEMBER:

M.H. Nassehzadeh Tabrizi, PhD

COMMITTEE MEMBER:

Junhua Ding, PhD

COMMITTEE MEMBER:

Sergiy Vilkomir, PhD

CHAIR OF THE DEPARTMENT

OF COMPUTER SCIENCE:

Karl Abrahamson, PhD

DEAN OF THE GRADUATE SCHOOL.:

Karl Abrahamson, PhD

Paul J. Gemperline, PhD



TABLE OF CONTENTS

CHAPTER Page
LIST OF FIGURES ...... .ottt et e e e e e e e e e e ne e e e e nne e e e anneeas ii
CHAPTER 1: INTRODUCTION ...ttt ettt e s e eesnneeeaneee s 1
CHAPTER 2: RELATED WORK ...ttt sttt sneee e e 3
CHAPTER 3: CURRENT PROJECT BACKGROUND .......ccoiiiiiiiiieeiie e 11
CHAPTER 4: HYBRID SCRUM METHODOLOGY ......cooiiiiiiiieiieeeeiieesiee e seee e 15
CHAPTER 5: CONCLUSION .....oiiiiieiiit ettt e e sneee s 31

REFERENGES ... .o e e e e e e 34



LIST OF FIGURES

1. ThE USCG SDLC ...ttt e e e e e rneee e 4
2. SCrum ProCess MOAEI .........uuuiiiiiiiiiiiiee et 4
3. ISD Production Promotion ProCeSS ............eeiiiiiiiiiiiiieeeiiiiieeee e 5
4. Hybrid SCrum MOAEL..........uueeiii i 15
5. Predefined Release Schedule.............ooiiieeeee e 18
6. The Release Backlog Inserted into the Process ..........ccooovvvviiiiiiiiiiiiciceeeee, 21
7. Sprint Planning Review Artifact...........cccoooooi i 23
8. Requirements Traceability 10 UATS ........oooiiiiiiiiiieeeeeee e 24
9. Sprint Review Artifact ...........ooommiiiiiii e 26
10. Requirements per REICASE ...........uuceiiiiiiiiiiii e 28

11. Cumulative Requirements per Release, Baseline Revision 1.......................... 29



CHAPTER 1: INTRODUCTION

The United States Coast Guard (USCG) has a system development process
defined called the System Development Life Cycle (SDLC) [1]. The USCG SDLC is
based upon a waterfall process model which is defined and maintained by CG-6, by
authority of USCG Headquarters. CG-6 is the authoritative entity within the USCG for
Enterprise Information Systems. All system development projects which CG-6
undertakes must follow the SDLC. This process is complex, heavy in documentation
deliverables, and it is rigid and less flexible than other methods being used in modern
software development.

Consider by contrast, agile methods for software development. In essence, agile
methods recommend lightweight documentation and simplified process. The focus
shifts to completed software as the “measure of success” for delivery of product in
software projects, versus accurate and comprehensive documentation and the
accomplishment of static milestones in a work breakdown structure (WBS).

The Aviation Logistics Center Information Systems Division (ALC ISD), is one of
the three data centers for the USCG. It is investing in using agile methods - specifically
Scrum - to produce and deliver systems with projects, and it is incorporating agile
methods within its existing processes. Where the conflict between “becoming agile” and
“adhering to rigid process” occurs is where ALC ISD serves as the System Development
Agent (SDA) for the Coast Guard Logistics Information Management System (CG-LIMS)
project, and the Project Management Office (PMO) of this same project must adhere to
the SDLC. Scrum doesn't fit neatly within the framework of the SDLC and it doesn’t

satisfy the expected deliverables of this waterfall process.



These conflicts are evident in numerous ways throughout the project. Trying to
align SDLC milestones and deliverables with Scrum deliverables, trying to report
metrics from Scrum which satisfy SDLC requirements, and trying to align requirements
defined with the IEEE-830 standard [2] with user stories created to represent the work
completed in agile sprints are but a few of the challenges. The conflicts manifest
themselves in numerous ways, ranging from confusion within the PMO about how
success is measured, to frustration within the Development Team due to lack of
familiarity with new methods.

This thesis implements, explores, and recommends a hybrid agile approach to
Scrum in order to satisfy the rigid, document-laden deliverables of the waterfall-based
SDLC process. This hybrid Scrum is a balance of having enough documentation and
process - but not too much - to meet SDLC deliverables, while at the same time
focusing on timely product delivery and customer interactions that come from an agile
approach to software development. The two need not be at odds and conflict with each
other; there can be a happy middle ground where quality, timely software products and
customer satisfaction are delivered, while at the same time satisfying the SDLC process

to ensure the proper safety, maintainability, and accountability of an enterprise system.



CHAPTER 2: RELATED WORK

The USCG is not alone in it's desire to become agile with software systems
development. In 2009, 76% of organizations reported using agile methods to
accomplish software development [3]. The software industry recognizes that there is
value to be gleaned by setting aside traditional, sequential development models such as
waterfall, and adopting one of the many agile process models such as Scrum, Extreme
Programming (XP), Crystal, and Agile Unified Process (AUP) to name a few. Waterfall,
with it's heavy documentations requirements, rigidly structured sequential approach,
and phase exit reviews (PER) which gate the phase exits and entries has been the
cause of many a failed system development project. The Department of Homeland
Security (DHS) - the parent organization of the USCG - realized this and formed the
DHS Agile Working Group, who worked together to draft a whitepaper on using agile
methods in DHS [4]. Interestingly, this effort by DHS was happening simultaneously as
the USCG was beginning the CG-LIMS project. While DHS was formulating a proposal
for a solution to replace their waterfall Systems Engineering Life Cycle (SELC) with an
agile process based on Scrum, the USCG was also embarking on, empirically proving
how two processes - waterfall-based SDLC and agile Scrum (see Figures 1 and 2) -

could coexist.



Conceptual Planning

Planning and
@ Requirements
Definition

Development and
Testing

Functional

Requirements Implementation

Test & Evaluation
Master Plan Operations and
Maintenance
Systemn
Dispasition or
Documentation » po

System Retirement

Figure 1: The USCG SDLC

Iterations
User Story
Workshop
A

Product Backlog
-Story 1
“story2 Sprint
- Story 3 Sprint Backlog
-Story 4 - Story 1
- Story 5 i i
-Story 5| SpintPlanning »l-story 2 > Daily Scrums || Sprint Review
Story 6 Session _Story 3
- Story ...
-Epic1 _ e e S e e e e e | [
Epic Shippable
—_ Product

Figure 2: Scrum Process Model

Since the USCG’s ALC ISD had already recognized the need to implement agile

methodologies in working projects to modernize its legacy systems, their teams had



more freedom to implement Scrum in a pure manner; unconstrained by having to
adhere to the rigid SDLC waterfall process. ALC ISDs support process (effectively their
own SDLC) is not based on a waterfall process (see Figure 3). It is an incremental
approach to software development, delivering incremental portions of software in three

month phases. While ISD was not using the waterfall process for its projects, it found

Support

C" User Requirement

l

Initial Entry Initial CCB Action
1) (a) »|  Analysis » (3) (10) —
(2)

L Work Plan
Assignment

)

A Deveiopment

Development Peer Review CcM Build VDD
(5) (b) (11) (8) (c) Check-In —l

(c)

PVCS Status Sequence
Functional Integration (1) Unassigned

L | Test »  Test - (2) Analysis

(7) (d) (e) (3)CCB < (10) On-Hold
(4) Assigned

(5)WIP <« (11) Return
(6) Review

7)In QA

Acceptance Production (8) In Stage

L Test Ready - (9) Closed

(8) ()

Checklists / Worksheet
(a) Requirement

(b) Development Worksheet Production
(c) Peer Review
Close Out (d) Functional Test
p  (9)(f)(a) (e) Integration Test
(f) Staging

Figure 3: ISD Production Promotion Process

Production

that building software increments in three month phases was still too long of a cycle
without delivering potentially shippable product to the customer. Customer reviews and
feedback were infrequent, and led to “mini-waterfall” pitfalls such as scope creep,
engineering delights, large amounts of rework due to developer/customer

misunderstandings, and delays in software deliveries.



In the same respect that DHS could not completely drop its SELC and adopt
agile methodologies overnight [5], the USCG could not drop its SDLC and adopt Scrum
overnight. The USCG ALC ISD could, however, adopt agile Scrum into the
Development phase of its support process (see Figure 3) essentially overnight, as long
as the remainder of the process remained intact as required for its current ISO 9001
certification.

As the DHS Agile Working Group continued to formulate its position in its draft
white paper, the working group benefited from one of its contributors being the Project
Manager for the CG-LIMS project. And so, while the working group was not embarking
on it's own empirical study, they were getting empirical input from one of it's contributors
who was “living the dream” day-in and day-out with the CG-LIMS project. DHS also
was not trying to come up with a solution to make waterfall SDLC and Scrum coexist;
rather they were preparing a solution to replace the waterfall SDLC with Scrum. This is
the primary difference between the effort at DHS and the CG-LIMS project.

It was a given by June 2011 that ALC ISD would be developing the solution for
the CG-LIMS project, and it was expected that it would be using agile Scrum to
accomplish the project. It was not specifically determined, however, how Scrum would
be used to satisfy waterfall SDLC requirements. Lessons were taken from Cohn’s [6]
experience with making two process models coexist. He notes that most organizations
which have a sequential process implemented and choose to migrate to agile
methodologies will not be able to do so overnight, so they must coexist together if for
even a short while. Sliger [7] suggests three different ways that coexisting processes

interact: waterfall-up-front, waterfall-at-end, and waterfall-in-tandem. The CG-LIMS



project team chose to follow the waterfall-in-tandem scenario as it best satisfied the
need for continual benefits from agile methods, while continually keeping the SDLC
deliverables satisfied. It was not an option to give a “handshake” to the waterfall SDLC
at the beginning of the project and then wave goodbye to it, nor to put it off until the end
of the project. Cohn notes that this is the most difficult of the three approaches to take,
as one team works from the perspective of the sequential approach (in the case of CG-
LIMS, the PMO did this) and they prefer to communicate through meetings and
documents. The other team (the CG-LIMS Scrum Team) chose to communicate
informally but frequently to progressively define work and functionality - agility.

While this was not optimal, it did satisfy this particular projects needs. Consider
what may have been an example of an optimal situation, by contrast, albeit a story of a
dark cloud with a silver lining. The Federal Bureau of Investigations (FBI) had a long-
delayed waterfall project - the Sentinel project [8] - which was plagued with many of the
challenges of an IT project gone awry: missed deadlines, budget overruns, and
shortfalls on promised features. The decision was made in September 2010 to turn the
project to agile methods, and the FBI credits this decision to do so as the ultimate
reason for completing the project. In the FBIs case, they did not have to make process
models coexist, and they turned their failing project around with overwhelming success
using agile methods only. Sentinel is now functioning bureau-wide as the FBls digital
case management system. Their project not only delivered faster, but it was also within
budget for the project.

One of the major complaints about large, failed waterfall projects is that too much

time is spent upfront on documentation which may not ever define an actual working



system. If and when it does, the documentation will be obsolete as the requirements
most likely have changed. The Agile Manifesto [9] states that “[we] value working
software over comprehensive documentation.” McMichael and Lombardi [10], using
agile methods while working on Primavera Systems quality management system noted
there were significant concerns with violating this principle, but they provided just
enough documentation to be a useful reference; to help with enforcing the existing
process, but no more than that. This was the approach the CG-LIMS Scrum Team took
as well; just enough documentation to satisfy the SDLC process needs. Again, not an
optimal solution as Scrum would forego documentation to this extent, but one that would
prevent the inevitable roadblock that the team would meet at the first PER requiring
satisfactory documentation. While some might think that developers implementing agile
methods would be completely averse to accomplishing documentation for the system, a
field survey of software professionals actually showed the opposite [11]. Respondents
in the survey actually noted that, had they had the time, and resources were assigned to
tasks appropriately, they would have rather spent more time in planning and
documentation versus coding and debugging. This gives credence to the fact that
documentation is recognized as being good and necessary; but only the right
documentation lends value to the project. If it does not bring specific value, then it is not
necessary.

Members of the CG-LIMS Scrum Team and the PMO had previous experience
with delivering a developed enterprise system and the customer interactions necessary
to be successful with this. For this reason, the team knew that Scrum would provide

that type of interaction again, which would be necessary for success. Saving customer



interaction for only a few touch points that waterfall SDLC would provide - System
Requirements Generation, Preliminary Software Review, Critical Software Review, and
Final Software Acceptance Review - [12] would be disastrous to the project. As the CG-
LIMS project has proven and continues to prove, constant customer interaction
throughout all the steps of the process does not inhibit or encumber the Scrum Team,
but rather liberates them to develop a solution that quickly and ultimately satisfies the
customer. Essentially, the customer cannot find issues with that which they’ve defined
all along the way, and to which they’ve contributed in the decision-making. Mann and
Maurer [13] showed in a 2 year study of the industry that Scrum provided an increase in
customer satisfaction, primarily due to being involved throughout the process of
developing functionality. The customers appreciated more involvement throughout, in
comparison to their previous roles, which were only limited to acceptance testing.
Without a specific implementation of a hybrid Scrum model which exercised team
agility, yet also met waterfall SDLC documentation requirements, the CG-LIMS Team
deemed it necessary to take lessons learned from current industry studies, standards,
and best practices regarding agile software development, and others’ experience with
navigating waterfall SDLC processes, and to create a hybrid Scrum model which
satisfied both camps. While DHS had not actually implemented their agile framework
which was being proposed, it was convenient for the CG-LIMS Team to leverage
concepts that DHS had proposed in formulating and implementing its hybrid Scrum
model. Some elements brought specific, realized value to the the hybrid Scrum model,
while others were yet to be realized. So the hybrid Scrum model specifically benefited

from the research done by DHS, and in turn the CG-LIMS Team empirically gained data



and vetted some of the concepts for DHS. What also came to light during this research
and as a result of the actual implementation of the hybrid Scrum model is that not only
does it facilitate the coexistence of two process models - Scrum and waterfall - but it
also serves the purpose of method organizations can use for migration from waterfall to
Scrum methodology. Cohn [6] notes that many organizations cannot completely drop
the existing processes that they’ve had in place for years; they need an incremental
transition which eases the burden and cost of taking their organization from waterfall to
Scrum (or to other agile methods). And so hybrid Scrum is offered up as a solution to
facilitate this transition, where it may be a period of many years that the organization
must take in proving out the viability of Scrum in eventually replacing their waterfall

process.

10



CHAPTER 3: CURRENT PROJECT BACKGROUND
3.1 ALMIS - The Existing Legacy System

The Asset Logistics Management Information System (ALMIS) is an organically
developed conglomerate of various systems, both old and new, which have been
loosely integrated over years to meet the specific needs of the USCG fleet and
personnel. The fleet includes airplanes, helicopters, boats, cutters, unmanned aerial
vehicles (UAVs), and Digital Global Positioning System (DGPS) towers; currently well
over 1,000 complex assets are maintained in ALMIS. The existing user base is over
16,000 customers performing various tasks and duties related to logistics management
within the system.

Asset configuration management and scheduled maintenance management are
supported by the Asset Configuration Management System (ACMS) subsystem. ACMS
is a two-part system: a “green screen” character-based application, and a thick-client
graphical user interface (GUI) application. The system uses a combination of Ingres
Applications By Forms (ABF), Ingres Open Rapid Object Application Development
(OpenROAD), and the Ingres Relational Database Management System (RDBMS).
Supply chain management, including inventory control, purchasing and requisition,
financial management, and transportation are supported by the Asset Maintenance
Management Information System (AMMIS) subsystem. AMMIS is primarily based upon
Ingres ABF and Ingres RDBMS. Both of these subsystems are over 20 years old, and
have reached the end of their sustainable life cycles. They are in need of replacement

with a modern system.



Operations, mission tracking, training and qualifications, and unscheduled
maintenance are supported by the Electronic Asset Logbook (EAL) subsystem. EAL is
a web-based system which has been developed on a combination of Microsoft Active
Server Page (ASP) pages and Personal Home Page (PHP) pages. Decision support
needs including reporting, dimensional analysis, and business intelligence (Bl) in all
business areas are supported by the Decision Support System (DSS) subsystem. DSS
is programmed and maintained using the IBM COGNOS Bl Suite. Since both of these
subsystems are based upon current technology, there is not an immediate need to
replace either of them with a modern system.

Technical Information Management is currently accomplished with multiple
subsystems for various needs. Arbortext is the system used to Author the content for
technical information used in ALMIS. Asset Technical Information Management System
(ATIMS) is currently the system which is used to accomplish content management of
technical information. Technical Manual Application System (TMAPS) is a Department
of Defense (DoD)-owned system which is used by the USCG to store and deliver
technical documentation used in logistics management for USCG assets. The USCG
pays an annual fee to DoD in order to use the TMAPS system.

Each of these subsystems, while related by business processes implemented
around the subsystems, are not directly integrated with each other from a technical
aspect. Asingle, main database is used for the ACMS, AMMIS, and EAL subsystems,
but data structure overlap and reuse is minimal where business processes actually
overlap. The DSS subsystem uses a separate, synchronized reporting database to

offload report processing from the transactional database. ATIMS and TMAPS use

12



separate databases entirely. So from the perspective of system integration, efficiency,
and reduction of waste, the legacy system does not employ the optimal model. Itis
quite disparate when compared with Commercial-Off-The-Shelf (COTS) logistics
systems which are offered on the market today.

Giving consideration to this architecture and it’s lack of efficiency, the cost and
effort to maintain this aging system warrant the decision made by the USCG to acquire
and implement a new logistics system - a COTS solution - which would replace the
legacy system.

3.2: CG-LIMS - The New Replacement System

The Coast Guard Logistics Information Management System (CG-LIMS) project
began in 2008 as a major acquisition for the USCG [14]. CG-LIMS is a technology
refresh of ALMIS, and would be a Commercial-Off-The-Shelf (COTS)-based enterprise
logistics system using the Oracle E-Business Suite, which will replace the existing
logistics system. The new system will provide the same support as the existing system
for asset lifecycle configuration management and maintenance management, supply
chain management, technical information management, and decision support, without
all the inefficiencies or shortcomings identified with the legacy system.

While CG-LIMS is a COTS-based system solution, it is still an enterprise logistics
system, and requires significant configuration in order to implement it with the specific
business of the U.S. Coast Guard. Additionally, there is significant software
development which must be done in order to interface the system with legacy data, and
to migrate/convert this data into usable data - with integrity - into CG-LIMS. So while

the configuration and development effort on the part of the Development Team is

13



minimal compared to a completely organic solution which is built from the ground up,
there is still significant software development and configuration which must be
accomplished within the project, in a controlled and phased implementation.

In June 2011, the CG-LIMS project was presented to ALC ISD as a project in
which ISD would be the System Support Agent (SSA) as well as the System
Development Agent (SDA). This was done for several reasons: ISD is physically
collocated in proximity to a nucleus of the logistics customers, ISD has first-hand
experience in implementing new system solutions for logistics management in the
USCG, and ISD has experience in agile development. As ISD accepted the project, it
officially kicked off on January 17, 2012 with a new Scrum Team - the CG-LIMS
Development Team - comprised of existing Developers, Analysts, and a ScrumMaster.
Additionally, Subject Matter Expert (SME) Consultants were hired with specific expertise
in the COTS product to be implemented. Their role would be to begin delivering the first
products of the COTS implementation using agile methodologies to gain customer and
stakeholder confidence early, and to continually deliver in a high but sustainable pace
for the life of the project. Given these expectations, and the known encumbrance of the
governance from the USCG SDLC, the viable solution was to define and implement a
hybrid solution which leveraged agile methods, and satisfied waterfall deliverables as

well.

14



CHAPTER 4: HYBRID SCRUM METHODOLOGY

Based on the desired results for the CG-LIMS project, and considering the given
constraints of satisfying the USCGs existing waterfall SDLC, a hybrid Scrum
methodology was implemented in order to leverage the full benefits of an agile
approach to software development while providing acceptable conformance to the
governance of the SDLC. The hybrid Scrum model is depicted in Figure 4. In this

model, the modified or additional elements of the hybrid Scrum model which are not

Release Planning CI Hybrid Artifact
ﬂ Hybrid Process Element
Predefined Release
> Schedule b Waterfall Deliverable
y

Product Backlog .
-RaT1 Project
-RQT 2 Management Plan
-RQT 3

-RAT...

A Iterations
User Story
Workshop
Release Backlog
-Story 1
i i, L Sprint
Story 2 g P
-Story 3 Sprint Backlog
- Story 4 -Story 1
-Story 5 int Planni i
: s'wye Sprint I.annlng »!-story 2 » Da | I S crums Sprint Review
ory > Session -Story 3
- Story ...
- Epicl \_/_\ O (P PPN P (VAR (PR S PR P = 7
o Z|Z|2|Z|2|2|&|&|&|2 :
- Epic .. Shippable
< v v Product

Sprint Planning Traceable UAT Sprint Review
Review Artifact Artifact Artifact
Functional Functional Test & Evaluation System
Requirements Requirements Master Plan Documentation
Figure 4: Hybrid Scrum Model

part of Scrum-proper are highlighted in yellow. The deliverables of the waterfall SDLC

which they satisfy are referenced in the blue oval callouts. Aydin, et. al [15] note that



many organizations tailor what is necessary with agile methods in order to meet the

needs of their organization, and to still implement agile methods. Optimally, the CG-

LIMS Scrum Team would be tailoring Scrum to meet the needs of the project purely for

efficiency and quality sake. This hybrid approach, however, is for coexistence sake; to

be able to satisfy both processes for the foreseeable life of the project.
The hybrid Scrum methodology proceeds as follows:

« Release Planning - a hybrid process element - is a series of planning sessions
conducted prior to each release cycle. Planning is initially accomplished with IEEE
830 requirements only.

 Predefined Release Schedule - a hybrid artifact - is a regularly refined product of each
Release Planning. At a high level, this shows the entire release schedule for the
project.

 Product Backlog - a hybrid artifact - is a change to the normal Scrum Product Backlog.
It is populated with IEEE 830 Requirements, and it is groomed each release cycle
through the Release Planning.

« User Story Workshop - a normal Scrum process element.

« Release Backlog - a hybrid artifact - is an additional backlog which is used to define
the scope of the current release. It is populated by the Scrum Team and PMO in
User Story Workshops, and it serves the purpose that a Product Backlog serves in
normal Scrum.

« Sprint Planning Session - a normal Scrum process element.

« Sprint Planning Review Artifact - a hybrid artifact - is a product of the Sprint Planning

Session which captures the scope of the current sprint which was just captured.

16



« Sprint Backlog - a normal Scrum process element.

« Sprint and Daily Scrums - are normal Scrum process elements.

« Traceable UAT Artifact - a hybrid artifact - is a clearly defined UAT for each user story
which is used to test features and trace their verification from the signed UAT back
to the IEEE 830 requirements which they satisfy.

« Sprint Review - a normal Scrum process element.

« Sprint Review Artifact - a hybrid artifact - is a product of the Sprint Review which
captures the satisfactory accomplishment and acceptance of each of the stories in
the sprint, with traceability back to original IEEE 830 requirements.

« Shippable Product - a normal Scrum process element.

The overarching concern of the PMO is that, as the Agile Manifesto states [9],
“[valuing] individuals and interactions over processes and tools”, and “[valuing] working
software over comprehensive documentation.” Doing so will produce a product which
customers feel that they “own” because they took part in the development, rather than
being brought in at certain touch points in the project to provide blind reviews and
feedback. Doing so will also generate product faster, putting smaller increments in the
customers hands sooner than later, rather than waiting until the end of a multi-year
project to “turn on the switch” of a complete system. This way customer confidence is
increased, as well as continued support by customers and sponsors alike as feedback
comes in throughout the duration of the project, rather than at the end. Thus, working
with the constraints of the waterfall SDLC and taking this hybrid Scrum approach was

imperative to the PMO (Product Owner) in being successful.

17



4.1 Predefined Release Schedule

Normally, an agile approach to development does not plan the entire project out
from start to finish as in traditional software development models. The traditional WBS
which lays out milestones, tasks, dependencies, resource loading, and predecessors is
abandoned for the creation of a Product Backlog of features. The challenge which the
PMO faced, and specifically the Project Manager (an O-6 Captain) who answers to an
Executive Steering Committee (ESC) made of flag-level officers, was to present a
forward looking plan, and report progress to-date in a manner which instilled confidence
in the success and continued funding of the project. This meant presenting an end-to-
end sequential plan of releases scheduled for the entire project. While this is not
optimal, there is still a way to accomplish the scheduling of releases and still remain
agile.

Reference Figures 4 and 5 for this discussion. The high level release schedule

FY 2012

Q1 Q2 Q3
Oct

FY 2013 FY 2014 FY 2015

Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q4
Jan Apr Jan Apr Oct Jan Oct Jan Apr Jul

Master Unit (O-level) Depot (D-level) Parts Repair Ucm
Configuration Configuration Maintenance Maintenance Integration

Inventory Mgmt Internal New Buys & Transportation
Warehousing Requistions Repair Activity & Distribution

HC144 #2314
Maintained in CG-LIMS

CONFIGURATION

Content Mgmt Content Library
(Workflows) Integration Management

Figure 5: Predefined Release Schedule
depicted satisfies the need for this type of planning for oversight and governance

purposes. The Scrum Team and PMO participate in Release Planning sessions prior to

18




each release cycle begins in order to accomplish high level planning based upon the
IEEE 830 requirements already defined for the project. In these sessions, which
normally encompass a weeks worth of meetings, the IEEE 830 requirements are
reviewed for relevancy to anticipated scope for the oncoming release, and initially
prioritized into the release if they are relevant. Focus is concentrated on the oncoming
release, with less attention paid to requirements being specifically “bucketed” into future
releases. Future releases are discussed, but in increasing generality as releases lay
out into the future. From this effort, a high level release schedule like the one that
displayed in Figure 5 is produced. |IEEE 830 requirements primarily make up the
Product Backlog, along with the occasional epic, but not the normal user stories
represented in normal Scrum implementations.

This divergence from the Scrum approach does not violate any agile principles;
in combination with the Release Backlog, this solution still satisfies agility by keeping
the focus on the closest work to current day - the oncoming release. Granted, a picture
based on the team’s best guesstimates is painted of the entire project end-to-end, and
this picture can change as clarity of the scope of each release comes into view through
the project, but it satisfies a specific deliverable for the waterfall SDLC - the Project
Management Plan. The primary difference between an end-to-end WBS for a traditional
project and the predefined release schedule for the hybrid Scrum approach is that no
firm expectations are specifically promised for later releases beyond the next one which
is upcoming. Team and Stakeholders alike are educated on the concept of having the
“furious four” variables of a project - Time, Budget, Quality, and Scope [16]. The high

level release schedule being defined as it is suggests that time and budget are

19



generally going to be fixed, and quality is always expected, so that can be considered
fixed as well. This leaves scope to be leveraged each release to the Product Owner’s
satisfaction. The scope of future releases isn’t known or considered relevant beyond
the oncoming release. The defined scope for a release can be determined when it is
relevant to the team; just before the future release is about to become the oncoming
release.
4.2 The Release Backlog

The Release Backlog is a new element of the hybrid Scrum methodology. Scrum
normally employs two backlogs - the Product Backlog and the Sprint Backlog. The
need to be able to transition IEEE 830 requirements into epics and eventually user
stories is facilitated by having this new backlog. See Figure 6 for the placement of the

Release Backlog in the process defined for the CG-LIMS project.

20



e

iz Google

1

CG-LIMS CM/MM - Process - AgileZen

Ll

Apple

CG-LIMS CM/MM - Process - AgileZen

%4
¢ | Reader || ©
Google Maps Outdoors ¥ Automotive ¥ Personal ¥ Friends ¥ Finances ¥ >

r.;.""

AglieZen

O O
<> @ @J [EJ (" htps @ agilezen.com
&2 M

Emil Moster a
Dashboard - Settings — Help & Support — Log Out

CG-LIMS CM/MM v Work Performance People
Process © Add Phase
Product Release Sprint Working Complete
BaCkIOQ BaCKIOQ BaCKIOQ Stories that are Stories within
Stories outside Stories which Stories assigned currently being the current
the scope of the comprise the to the current worked on in sprint which
current release. scope of the sprint. the current have been
work to sprint. completed.
complete for the

current release.

Archive

Stories that are
history.

Figure 6: The Release Backlog Inserted into the Process

Only the current release is considered close enough and relevant enough to give
detail to, so the Scrum Team and PMO conduct User Story Workshops for the current
release to create, prioritize, and estimate epics and stories from the IEEE 830
requirements in the Product Backlog. These go into the Release Backlog, and define
the more detailed scope of the oncoming or current release. The Release Backlog is
populated each release cycle; as it runs empty for the current release, it is filled from the
Product Backlog in User Story Workshops prior to the next release cycle. The Release

Backlog is prioritized and groomed in the same manner as the Product Backlog in

21



normal Scrum is. When it is time to plan a sprint, the Scrum Team selects from the
Release Backlog versus the Product Backlog.

The Release Backlog, with its detailed information captured for each user story,
represents functional requirements defined for the system. They are more detailed than
the IEEE 830 requirements for the project, referencing specific features and business
functionality which will be delivered in the given release. This satisfies the Functional
Requirements deliverable in the waterfall SDLC process, for the Design PER.

4.3 Sprint Planning Review Artifact

The Sprint Planning Review Artifact is a signed document that is created after
each Sprint Planning Session to represent the stories and work scoped into the current
sprint. It captures notes relevant to the execution of the stories, and also defines the
acceptance criteria which the development team will satisfy for each story in the sprint
(see Figure 7). In hybrid Scrum, this artifact in addition to the Release Backlog satisfies
the Functional Requirements documentation for the waterfall SDLC, where there is no

element of normal Scrum which satisfies this deliverable otherwise.

22



@ce-ums Sprint 20 Planning Review (SPR) Artifact 20130321 (3)pdf - Adobe Reader W 8 g (o]

File Edit View Window Help ®
@@@D‘%-’ !‘/Z‘f‘!' 95-5%|’ = E'HE Tools . Sign ;| Comment
@ Signed and all signatures are valid. % Signature Panel
-
Sprint dates: MAR 21 - APR 3, 2013 10 Stories
Sprint days: 10 54 Story points
# ID Selected Stories Priority Acceptance Criteria Points Notes / Risks i
MM-US1 - As a Maintenance Customer, | need Written confirmation from Myriad challenges trying to complete this
to generate an MDL report so that | can plan customer that dev reports story over the last two sprints: data
and schedule upcoming maintenance (ORD UID: bring back the data synchronization, system interfaces,
MM-01-29, MM-01-11). requested. compliance. Once completed in Dev 1,
the solution will need to be implemented
in Proto environment for the Pilot
Program. Working to have this
1 |360 1.01 8 completed by Pilot Program Kickoff on
Mar 26, 2013. If unable, MDL will be
introduced to pilot participants as soon as
completed (see Sprint 19 demo for
detailed discussion regarding MDL and
Pilot Program).
As a Maintenance Analyst, | need to confirm Demonstrate loaded data in Will occur after technical solution (See
Maintenance Requirements for the C-144 asset system. #9: Story 541, "most challenging yet") is
2 | 542 [type so that we can maintain these assets. (ORD 1.03 1 d . Unable to complete this
UID: MM-01-30) sprint or last.
As a Configurator, | need to exercise Review changes made in
Maintenance Requirements and change the Maintenance Requirements
defined business accordingly so that new for RUP5/6.
3 730 d y fields with RUP5 are confirmed and 1.05 5 v
——— ——=

Figure 7: Sprint Planning Review Artifact

4.4 Traceable UAT Artifact

In the hybrid Scrum approach, IEEE 830 requirements which are kept in the

Product Backlog must trace forward to the UATs which are performed to verify that

requirements are met, and likewise, the UATs must trace backwards to the requirements

which they satisfy. This traceability is accomplished through multiple steps in the hybrid

Scrum model. First, IEEE 830 requirements in the Product Backlog are decomposed in

User Story Workshops into epics, and then eventually into the multiple user stories

which develop and implement the features for the given requirement (see Figure 8).

The number of epics and eventually user stories which represent the features of the

requirement are dependent on each requirement. In the CG-LIMS project, requirements

23



have decomposed to as few as one story, and as many as twelve stories. Note in

Figure 8 that as epics and stories are created, they are assigned the UID for the

IEEE 830 Requirement
“The system shall...”
CM-02-01

Epic 1
“As a Supervisor, | need to do this,..”

“As a Clerk, | need to do that,..”

(UID CM-02-01) {UID CM-02-01)

Story 1 Story 2 Story 3
“As a Supervisor, | “As a Supervisor, | “As a Clerk, | need
need to...” need to..." to..."
(UID CM-02-01) (UID CM-02-01) {UID CM-02-01)

UAT 1 UAT 2 UAT 3
“As a Sup- visor, | “As a Sup~ visor, | “As a Cler' | | need
nee to.." nee to..." Tl

(UIL .m-02-01) (Ul .Mm-02-01) {UIL .M-02-01)

Story 4
“As a Clerk, | need
to..."
{UID CM-02-01)

UAT 4
"“As a Cler! | | need
{1l
{(UIL .M-02-01)

Traceability
AJiqeases

Figure 8: Requirements Traceability to UATs

requirement in the Product Backlog. As stories are worked in respective sprints, the

UATs for those stories are written as well. UATSs, likewise, are given the UID of the

requirement to which they trace so as to have end-to-end traceability for satisfaction of

requirements. Considering there may be two or more stories and their UATs which trace

to a given requirement, status of the completion of stories and their UATs must be

tracked in order to determine when a requirement is completely satisfied by the related

UATs. Based on priorities and logical grouping, some requirements may carry over

multiple sprints before they are completed fully. The CG-LIMS Team utilizes IBM

24



DOORS as their Requirements Management tool/repository, so a status flag denoting
that a requirement is complete, based upon the stories being defined for a given
requirement is set on the requirement when it is decomposed to all of its related stories.
This way, it can be traced in the tool that a requirement is complete when the UATs are
captured for each of the stories.

Normally, the Scrum approach to creating user stories is to conduct a User Story
Workshop where brainstorming and other methods are used to draw features out of
Product Owners and customers during the session. Our method uses the IEEE 830
requirements as a basis for defining features, and Product Owners and customers lend
input into the creation of epics and user stories which come from the requirements.
Furthermore, testing in a purely Scrum approach would not develop significant testing
artifacts. Testing would be satisfied by simply scribing constraints to be met and
validations to be confirmed on the back of index cards. This would not satisfy the
waterfall SDLC requirement for a Test and Evaluation Master Plan (TEMP), but UATs
which trace through user stories to requirements do. And so the TEMP deliverable
which is required for the PER of the Development and Testing phase is satisfied.

4.5 Sprint Review Artifact

Scrum has a sprint review “ceremony” where the Scrum Team reviews the work
that has been completed with the customers, Product Owner, and stakeholders to
demonstrate developed features. This is a normal meeting, but the results of the review
and demonstration are not normally tracked in an artifact. The hybrid Scrum approach
creates the Sprint Review Artifact (see Figure 9) which itemizes the stories completed,

notes regarding the review of the stories, and positive confirmation that acceptance

25



criteria was met for each story of the sprint. This artifact supports the traceability of the

completion of stories/UATs, as it is signed as well and held as a project artifact.

Additionally, it supports System Documentation deliverable for the PER of the

Implementation waterfall SDLC phase. It does not stand alone in this purpose,

57 CG-LIMS Sprint 20 Review and Demonstratio

(SRD) Arfact 20130404 - Adobe Reader. s M 2 )
) Artfoct 20130404t - Adobe Reader

baseline of the Gold instance of CG-LIMS so that it is

up.

1| 737 Lavaitable for rebaselining in the future. 108 3 Y
[42 2 Configurator, | need to exercize Maintenance Review changez mace in See attached document in AgileZen for|
Requirements and change the defined buzinesz [Mzintenance Requirements for etailed test plan, rezults, 3nd screen
sccorcingly so that new mandatory fields with RUPS are RUPS/6. zhots. Configurations worked in new
lconfirmed and incorporated. (story created from RUPS RUP 5/6 environment without
2 | 730 [opic s583) 105 s Y modification. UPK needs to be
updated to reflect changed screen
views, but not critical at thiz time since|
funcrionality did not change.
[z 2 Configurator, | need to exercize the Unit [Review changez mace in Unit Same 3z 730.
Maintenance Plan and change the defined buzinezs [Mzintenance Pian for RUPS/.
5 | 73y [Fecoreinsly zo that new fields and caiculation methodz | | s Y
with RUPS are confirmed and incorporated. [story .
[created from RUPS epic 583)
42 2 Configurator, | need to exercize Work Orcers and Review changez in Work Orderz Same 33 730.
[change the defined buziness accordingly 50 that new with RUPS/6.
4 | 733 [mandatory fields with RUPS are confirmed and 108 5 Y
incorporated. (story created from RUPS epic 583
[MM-US1 - Az 3 Maintenance Customer, | need to Team zupport during ATC Mobile Pilot
[generate an MDL report 20 that | can plan and schedule Program Kickoff hindered sprint
upcoming maintenance (ORD UID: MM-01-29, MM-01- e c
11).
This story iz cloze to being finizhed
Regquires 1-2 more work days.
5 |3s0 101 g [2013. ¥ unable, MDL will be N

introduced to pilot participants 33

File Edit View Window Help *
@@@B@’ !IZ‘T -!-| ’, @’@ Tools%SigniComment
@ Signed and all signatures are valid. L’yﬁ Signature Panel
Sprint 20 Review and Demonstration (SRD)
Sprint dates: MAR 21 - APR 3, 2013 10 Stories planned 0 Stories added 4 Stories completed
Sprint days: 10 54 Story points planned 0 Story points added 16 Story points completed £
__# 1D Selected Stories Priority Criteria Points Planning Notes / Risks Done Notes / Changes Required
|Az 3 Configurator, | need to define and backup 3 Gold Instance created and backed

Figure 9: Sprint Review Artifact

however. Significant documentation captured from COTS documentation, story details,

and specifications written in developing interface solutions all provide the necessary

detail to satisfy system documentation needs.

4.6 Requirements metrics tracked

Metrics which are innate to Scrum are the Sprint Burndown, Team Velocity, and

the Release Burndown. Consider the metrics which are not normally tracked in Scrum -

26




those metrics which are innate to a waterfall process model. Requirements defined with
the IEEE 830 standard are not normally a part of Scrum. IEEE 830 requirements are
tracked in the hybrid Scrum approach, however. It is necessary to track requirement
completion to satisfy the waterfall SDLC and its customers; the normal way to track
progress in Scrum - story point completion - only provides value to the Scrum Team.

While it is necessary to track requirements completed per sprint and per release,
it is not necessary to track requirements completed in a daily Sprint Burndown; this level
of granularity is too low to provide value. Likewise, it is not necessary to track Team
Velocity based upon requirements completion. Team Velocity is used for planning
purposes by the Scrum Team and the PMO, and there is no value for tracking velocity
with a second unit of measure.

Requirements traceability through user stories to UATs and back facilitates the
ability to make the jump from points to system requirements counts. UATs are
completed for stories which are based upon points, and these trace to requirements
which are the target unit. Another adaptation made to facilitate requirements completion
based upon story completion was giving partial credit for requirements completed. As
demonstrated in Figure 8, stories, and thus UATs can be completed successfully, but a
single story or even multiple stories may not constitute satisfying a requirement
completely. If a given system requirement was decomposed to four user stories and
four UATs, the decision could be made to give partial credit for a requirement
completion if some, but not all of the stories were complete. This allowed the PMO to

report progress being made from sprint to sprint even if only in 1/2 credit units (the

27



consensus was that giving less than 1/2 credit was not valuable in improving the
tracking of requirements completion progress).
The first metric tracked in hybrid Scrum is Requirements per Release (see Figure

10). As project success is ultimately measured in requirements from the ORD being

. O Planned Actual
56.5
50 49
L 44.5
a : 43
2
Y 40
a7
S
Q
QL
@30
o
Q
=
)
520 6
=
o
[P]
(a4
10
8
5 5
0
Release 1 Release 2 Release 3 Release 4 Release 5 Release 6 Release 7
Jun 2012 Jan 2013 Jun 2013 Jan 2014 Jun 2014 Jan 2015 Jun 2015

Figure 10: Requirements per Release
completed, this metric uses requirements as the unit of measure. As requirements trace
directly to stories and UATs, and stories are planned for releases, requirements planned
can be tracked. Likewise, as stories are completed for a release, and their UATs are
signed off, the requirements which trace to these stories and UATs are also tracked for

completion. In this manner, the traceability which is a hybrid Scrum artifact provides the

28



mechanism for accomplishing this waterfall deliverable, simply by doing the normal
activities of Scrum.
The second metric which tracks requirements is Cumulative Requirements

accomplished. This chart, shows planned and actual completed requirements per

CPlanned Actual -=-Baseline Revision 1
250
222
vy 200
=
=
O
= 165
]
=
"5 150
oy
é’ 122,
S
‘= 100
S
= 73.
=
-
O 50
29
13
8
i L
0
Release 1 Release 2 Release 3 Release 4 Release 5 Release 6 Release 7
Jun 2012 Jan 2013 Jun 2013 Jan 2014 Jun 2014 Jan 2015 Jun 2015

Figure 11: Cumulative Requirements per Release, Baseline Revision 1
release, and additionally, it shows the desired cumulative total of requirements through
the extent of the project. This particular chart shows an actual change to the baseline
requirements for the project - Revision 1. Re-baselining requirements is a waterfall
process activity, yet the metrics for such activities can still be shown in relation to the

progress of the Scrum Team in a hybrid Scrum approach.

29



As simple as the two new metrics may seem in this hybrid Scrum approach, there
is measurable value in communicating to project Sponsors and Stakeholders the
progress made in the project in terms to which they can relate - completed
requirements. This is especially the case when governance directed in the SDLC
requires that progress be measured a certain way. These metrics are not arbitrary
either; they are directly correlated and traceable to the work being accomplished with
agile methods.

And so it is clearly demonstrated that the hybrid Scrum methodology has
significant, tangible elements which provide specific value in a situation where the
disparity between two coexisting processes could be considered otherwise
insurmountable. Changes in the normal Scrum process afford the team the activities
which accommodate waterfall activities and deliverables; just enough to be able to
satisfy requirements and PERs, but not so much as to make hybrid Scrum
unrecognizable as an agile methodology. Additional document artifacts are
implemented in a manner which minimizes the disruption to the agility of the team, while
satisfying waterfall SDLC process requirements, and specifically satisfying project

Sponsors and stakeholders.

30



CHAPTER 5: CONCLUSION

Defining and implementing a hybrid Scrum methodology was quintessential to
the success of the project in the case study. While the existing SDLC was in place and
in force in organization, it was also evident at the beginning of the project that if the
project team did not deliver successes quickly, the project was in jeopardy of being
cancelled. In this respect, the organization’s policies made it it's own worst enemy.
Taking a waterfall approach to development would not have generated the successes
early enough to keep the project off the chopping block. Out of necessity was born the
hybrid Scrum methodology. To date, the project has not completed, but it continues to
track successfully from release to release. Features continue to be delivered, and
customers on the ground level who use the CG-LIMS in day to day activities appreciate
the attention spent in customer interaction; a benefit of agile methods. In the same
vein, Product Owner, Sponsor, and Stakeholder appreciate the visibility and
participatory role they play in Scrum and hybrid Scrum activities, as well as the
confidence that the standard to which they know the project is ultimately held - the
SDLC process - is being satisfied. The benefits of the hybrid Scrum approach are being
realized: regular and frequent customer interaction, potentially shippable product being
delivered every two weeks, and substantive releases being delivered every six months.
With the transparency that the Scrum Team provides to all teams and Stakeholders,
surprises are minimized, deficiencies are detected early and addressed, and Scrum
Team morale is high, contributing to a high operations tempo at a sustainable pace.

Key to the success of the hybrid Scrum approach is to clearly define what

deliverables from the waterfall process are required, and then clearly defining how the



team will accomplish meeting and delivering them. A highly disciplined Scrum Team is
also a key to success; adopting agile methodologies, and leaving behind inefficiencies
of “the way it has always been done” takes dedication from team members and
management alike. In the hybrid Scrum implementation used for CG-LIMS, six specific
methods or artifacts were modified or added in order to meet the specific needs of the
USCG SDLC, but as hybrid Scrum is applied in organizations in need of the same
results, other methods may be modified as well in order to meet other specific
organizational needs.

Another specific benefit of the experience of this implementation is the realization
that not only does hybrid Scrum provide a means for two disparate processes - Scrum
and waterfall - to coexist for an organization, but it also provides a transitory mechanism
for organizations to migrate from a waterfall process to Scrum in an incremental
approach. Organizations can’t always afford to “flip the switch” and turn off a waterfall
process overnight and to turn on an agile Scrum approach the next day. Inhibitors to
doing so could include budgetary reasons, organization logistics, training, and political
reasons. As with most successful process change implementations in IT organizations,
success does not volunteer organically; it usually is carried to the forefront by a
champion who will be ever-vigilant in overcoming minor setbacks for the bigger wins
which come with patience and perseverance. Based on the experience of implementing
hybrid Scrum with the CG-LIMS project, it is easy to envision other entities having
champions who use hybrid Scrum to transition their own organizations from waterfall to

Scrum.

32



While the study is conclusive in its limited scope, one major shortcoming is just
that - its limited scope. A further, more thorough study may reveal even more value to
be gleaned in satisfying more SDLC/waterfall deliverable requirements with additional
modifications or improvements to the hybrid Scrum approach. This thesis does
conclude that combining the two approaches - Scrum and waterfall - can be

accomplished, and even show success with both processes.

33



REFERENCES

[1] “Command, Control, Communications, Computers and Information Technology
(C4&IT) System Development Life Cycle (SDLC) Policy” - Commandant Instruction
5230.66A, United States Coast Guard, 11 December 2009, http://www.uscg.mil/
directives/ci/5000-5999/Cl_5230_66A.pdf

[2] “IEEE Recommended Practice for Software Requirements Specifications” - IEEE
Standard 830-1998, IEEE, 1998, http://lieeexplore.ieee.ora/xpl/mostRecentlssue.jsp?
punumber=5841.

[3] “Scaling Agile: An Executive Guide”, Ambler, IBM agility@scale Whitepaper, 2010,

https://www.ibm.com/developerworks/mydeveloperworks/blogs/ambler/entry/
scaling_agile_an_executive_guide10.

[4] “Agile Methodologies in DHS (Draft)”, Schwartz, et al. (DHS Agile Working Group),
2011.

[5] “Homeland Security Tackles Agile Development”, Hoover, Information Week
Government, February 28, 2012, http://www.informationweek.com/government/
enterprise-architecture/homeland-security-tackles-agile-developm/232601660.

[6] “Chapter 19: Coexisting with Other Approaches”, Cohn, Succeeding with Agile:
Software Development Using Scrum, Addison-Wesley, 2010.

[7]1 “Bridging the Gap: Agile Projects in the Waterfall Enterprise”, Sliger, Better Software,
July/August 2006, pp. 26-31.

[8] “FBI's Sentinel Project: 5 Lessons Learned”, Foley, Information Week Government,
August 3, 2012, http://www.informationweek.com/government/enterprise-applications/

fbis-sentinel-project-5-lessons-learned/240004888.

[9] “The Agile Manifesto”, The Agile Alliance, 2001, http://www.agilemanifesto.org.

[10] “ISO 9001 and Agile Development”, McMichael and Lombardi, Proceedings of the
Agile 2007 Conference, IEEE Computer Society, 2007, pp. 262-265.

[11] “Empirical Studies in Software Development Projects: Field Survey and OS/400
Study”, Phan, Vogel, and Nunamaker, Information & Management, Volume 28, Issue 4,

April 1995, pp. 271-280, http://www.sciencedirect.com/science/article/pii/
037872069400046L.

[12] “Managing the Development of Large Software Systems”, Royce, IEEE Computer
Society Press, 26 August 1970, http://dl.acm.org/citation.cfm?id=41765.41801.



http://www.uscg.mil/directives/ci/5000-5999/CI_5230_66A.pdf
http://www.uscg.mil/directives/ci/5000-5999/CI_5230_66A.pdf
http://www.uscg.mil/directives/ci/5000-5999/CI_5230_66A.pdf
http://www.uscg.mil/directives/ci/5000-5999/CI_5230_66A.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5841
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5841
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5841
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5841
https://www.ibm.com/developerworks/mydeveloperworks/blogs/ambler/entry/scaling_agile_an_executive_guide10
https://www.ibm.com/developerworks/mydeveloperworks/blogs/ambler/entry/scaling_agile_an_executive_guide10
https://www.ibm.com/developerworks/mydeveloperworks/blogs/ambler/entry/scaling_agile_an_executive_guide10
https://www.ibm.com/developerworks/mydeveloperworks/blogs/ambler/entry/scaling_agile_an_executive_guide10
http://www.informationweek.com/government/enterprise-architecture/homeland-security-tackles-agile-developm/232601660
http://www.informationweek.com/government/enterprise-architecture/homeland-security-tackles-agile-developm/232601660
http://www.informationweek.com/government/enterprise-architecture/homeland-security-tackles-agile-developm/232601660
http://www.informationweek.com/government/enterprise-architecture/homeland-security-tackles-agile-developm/232601660
http://www.informationweek.com/government/enterprise-applications/fbis-sentinel-project-5-lessons-learned/240004888
http://www.informationweek.com/government/enterprise-applications/fbis-sentinel-project-5-lessons-learned/240004888
http://www.informationweek.com/government/enterprise-applications/fbis-sentinel-project-5-lessons-learned/240004888
http://www.informationweek.com/government/enterprise-applications/fbis-sentinel-project-5-lessons-learned/240004888
http://www.agilemanifesto.org
http://www.agilemanifesto.org
http://www.sciencedirect.com/science/article/pii/037872069400046L
http://www.sciencedirect.com/science/article/pii/037872069400046L
http://www.sciencedirect.com/science/article/pii/037872069400046L
http://www.sciencedirect.com/science/article/pii/037872069400046L
http://dl.acm.org/citation.cfm?id=41765.41801
http://dl.acm.org/citation.cfm?id=41765.41801

[13] “A Case Study on the Impact of Scrum on Overtime and Customer Satisfaction”,
Mann and Maurer, Proceedings of the Agile Development Conference, IEEE Computer
Society, pp. 70-79, http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=1609806&isnumber=33795.

[14] “Coast Guard Logistics Management Information System”, USCG, http://
www.uscg.mil/acquisition/cglims/.

[15] “An Agile Information Systems Development Method in Use”, Aydin, Harmsen,
Slooten, and Stegwee, Turkish Journal of Electrical Engineering and Computer Science,
Volume 12, Issue 2, 2004, pp. 127-138, http://journals.tubitak.gov.tr/elektrik/issues/
elk-04-12-2/elk-12-2-5-0404-6.pdf.

[16] “The Furious Four”, Rasmusson, The Agile Samurai, The Pragmatic Bookshelf,
2011.

35


http://ieeexplore.ieee.org.jproxy.lib.ecu.edu/stamp/stamp.jsp?tp=&arnumber=1609806&isnumber=33795
http://ieeexplore.ieee.org.jproxy.lib.ecu.edu/stamp/stamp.jsp?tp=&arnumber=1609806&isnumber=33795
http://ieeexplore.ieee.org.jproxy.lib.ecu.edu/stamp/stamp.jsp?tp=&arnumber=1609806&isnumber=33795
http://ieeexplore.ieee.org.jproxy.lib.ecu.edu/stamp/stamp.jsp?tp=&arnumber=1609806&isnumber=33795
http://www.uscg.mil/acquisition/cglims/
http://www.uscg.mil/acquisition/cglims/
http://www.uscg.mil/acquisition/cglims/
http://www.uscg.mil/acquisition/cglims/
http://journals.tubitak.gov.tr/elektrik/issues/elk-04-12-2/elk-12-2-5-0404-6.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-04-12-2/elk-12-2-5-0404-6.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-04-12-2/elk-12-2-5-0404-6.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-04-12-2/elk-12-2-5-0404-6.pdf




