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Nickel is a naturally found mineral that has become widely used for many electronic 

devices.  As use and subsequent discarding of nickel containing products continues exposure to 

nickel increases.  Nickel can cause external superficial symptoms but if it enters the body the 

potential exists for genomic damage to occur which could lead to mutation and cancer.  Nickel 

can act by generation of reactive oxygen species, interacting with DNA and altering chromatin 

wrapping.  By utilizing a strain of C. elegans with a ced-1::gfp fusion protein, that detects 

apoptotic cells in the germ line, the deleterious effects of nickel can be analyzed.  Analyses of 

varying concentrations of a water-soluble and an insoluble form of nickel have been done.  

Insoluble nickel is held to be more hazardous because while soluble easily enters and exits the 

cell insoluble nickel can remain in the cell for extended periods allowing for much greater 

damage.  The results of this study were inconclusive about the effects of soluble versus insoluble 

nickel.  Previous testing using the C. elegans germline to assess the effects of nickel have used  

12 hour exposures (Kezhou et al. 2010).  Tests completed in this study exposed animals to lower 

concentrations of nickel for their full development.  A rise in cell deaths is seen as nickel 

concentration increases which was quantified with ced-1::gfp and Syto12.  Analysis using a 

strain with resistance to heavy metals had no significant increase in engulfments when exposed 



 
 

to nickel, which shows nickel exposure to have been the cause of increased engulfments seen in 

the wild-type.  A lack of increased engulfments in a strain with a mutation to cep-1, the C. 

elegans homolog of p53, indicated damage from nickel is recognized by the p53 damage 

pathway.          
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Introduction 

Nickel 

Nickel is the 24
th

 most commonly found element in the Earth’s crust (Kasprzak and 

Sunderman et al. 2003).  Initial studies of the effects of Nickel analyzed workers at Nickel 

refineries and smelting plants (Sunderman 1981).  The effects of Nickel upon living organisms 

are of concern due to the prevalence of Nickel in the manufacturing of electronics, coins, 

batteries and other products 

(EPA).  The creation and 

improper disposal of these 

items, as well as the burning of 

fossil fuels, causes air, ground 

and water pollution (Kasprzak 

and Sunderman et al. 2003). 

Nickel is most harmful 

as part of a compound, though 

the metallic form can cause skin 

irritation (Denkhaus and 

Salnikow 2002).  The toxicity 

of nickel is based in part on the solubility of the compound with less soluble compounds having 

more harmful effects (Kasprzak et al. 2003). Particle size also influences the effects of Nickel 

exposure.  Nanoparticles have a diameter of 1 to 100 nanometers.  Their small size means they 

have massive amounts of surface area per unit of volume, making them more reactive, and can 

Figure 1.  Image showing routes for soluble and insoluble 

forms of nickel to enter a cell.  Note the localization of 

phagocytized insoluble nickel near the nucleus.  Image 

from Kasprzak and F. W. Sunderman et al. 2003 
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pass more easily through biological barriers than larger particles (Oberdörster et al. 2005).  This 

study uses NiCl2, a soluble compound, and powdered NiO, an insoluble form with an average 

particle diameter of roughly 800 nm.  This powdered form has a lot of surface area but less than 

nanoparticles.  Primary routes of human exposure are inhalation, ingestion and direct skin 

contact.  Nickel exposure can lead to dermatitis, lung fibrosis as well as increasing risk of lung, 

nasal or other cancers (Sunderman 1981, Denkhaus and Salnikow 2002, Kasprzak 2003, Lin and 

Costa 1994).  Cellular uptake of soluble nickel occurs via diffusion and ion transport through 

calcium and iron channels (DMT-1), whereas insoluble nickel enters by phagocytosis (Figure 1, 

Kasprzak et al. 2003).  Soluble nickel also exits the cell more readily than phagocytized 

insoluble nickel (Kasprzak et al. 2003).  Vacuoles containing this phagocytized nickel 

congregate near the nucleus of the cell where acidic conditions solubilize the nickel compounds 

over an extended period (Lin and Costa 1994).  Dissolving these insoluble particles can lead to 

very high concentrations of nickel in the cell (Cangul et al. 2002).  Proximity means the, now 

soluble, nickel can enter the nucleus and cause genomic damage indirectly by generation of 

reactive oxygen species, which can bind to DNA or other cellular components.  Nickel can also 

affect it directly by intercalating with the DNA, cross-linking DNA, base changing, increasing 

DNA methylation, which can cause gene inactivation, and altering chromatin binding by 

attaching to histones, which can silence gene expression (Kasprzak et al. 2003, Nackerdien et al. 

1991, Costa et. Al 2003, Cangul et al. 2002)).  Such effects can be mutagenic or carcinogenic 

unless detected and repaired by the cell. 

Recently testing was done by Chandler Douglas on how Nickel exposure affects 

survivorship and brood counts of Caenorhabditis elegans and Pristionchus pacificus, another 

species of Nematode (Rudel et al. unpublished).  In his work he noted that fecundity decreased in 
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worms exposed to Nickel, which may, among other things, indicate higher levels of cell death in 

the germ line. 

Caenorhabditis elegans 

Caenorhabditis elegans is a ground dwelling roundworm commonly used for toxilogical 

assays.  They have a rapid, well documented life cycle, and are easily cultured in a laboratory 

setting (Figure 2).  Their short life cycle means they can be evaluated throughout development.   

They can also be frozen for long term storage.  They occur as hermaphrodites (XX) and Males 

(XO).  Males appear due to nondisjunction during meiosis. 

C. elegans serves as a useful model organism because many of its molecular pathways 

have been mapped, using easily acquired mutants, and are homologous to other organisms.  The 

C. elegans genome has been fully sequenced which allows for analysis of gene expression and 

generation of transgenes containing GFP.  Additionally, due to the level of study on C. elegans 

powerful tools are available, such as Wormbook, Wormbase, Wormatlas and the Caenorhabditis 

Genetics Center at the University of Minnesota for strain acquisition, as well as the expertise of 

many researchers in institutions around the world. These factors, and the presence of nematodes 

in every environment, make C. elegans useful for analyzing the effects of soil contaminants on 

humans.   
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C. 

elegans has a 

fixed cell 

lineage; each 

hermaphrodite 

produces 1090 

somatic cells 

(Meier et al. 

2000).  

However, 

during 

development 

131 of these 

cells are 

removed by 

apoptosis.  After this point programmed cell death generally will not occur in somatic cells, as 

the worm lacks the ability to regrow lost or damage somatic cells (Gartner et al. 2000).  Once 

fully grown, cell death only happens to germ cells in the gonadal arms. 

 C. elegans hermaphrodites have two rotationally symmetrical gonadal arms, while males 

only have one.  Hermaphrodite gonadal arms begin dorsal of the vulva, extend half the body 

length then reflex and return to the vulva (Fig 3.)   The gonadal arm is enclosed by a layer of 

sheath cells to separate the developing oocytes from the rest of the body.  Hermaphrodites 

produce roughly 300 sperm during early adulthood, which get stored in the spermatheca, 

Figure 2. Complete developmental cycle for C. elegans hermaphrodite at 

22°C.  Gonadal arm development appears in dark blue.  At 20°C 60 hours 

pass between L1 hatching and initial egg deposition. Taken from 

Wormatlas.org. 
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afterwards only oocytes are produced.  This means a hermaphrodite cannot continue producing 

offspring after it has used all its sperm, unless inseminated by a male.  Additionally, male sperm 

are larger and outcompete the hermaphrodite's sperm (Lamunyon and Ward 1999).  The gonadal 

arms are enclosed by a layer of sheath cells to separate the germ cells from the rest of the body 

and direct them as they undergo development. 

Oocytes are 

constantly generated 

by germline stem 

cells in the distal 

portion of the adult 

hermaphrodite gonad 

(Fig. 3).  These germ 

cells are not entirely 

enclosed by 

membranes; they 

share a common 

cytoplasm (Gartner et 

al. 2000).  They exit 

the mitotic region and 

enter the meiotic zone around the bend of the arms.  In this region, assessment of their genomic 

stability and general suitability occurs.  If the checkpoint is passed the oocyte will continue 

through the gonadal arm be fertilized and deposited.  If the oocytes are unsuitable or 

programmed to die, as in the case with nurse cells which get destroyed to provide their nutrients 

Figure 3.  This diagram provides a schematic of the shape and 

setup of the gonadal arm.  The distal tip cell provides a niche for 

stem cells.  Sperm are stored in the spermatheca next to the vulva.  

Taken from Gartner et al. 2008 
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to other cells, the cell cycle stops and they undergo apoptosis then engulfment by the 

surrounding sheath cells. 

Cell Death pathway 

The mechanisms of Programmed Cell Death (PCD) were originally elucidated by Robert 

Horvitz and John Sulston (Sulston and Horvitz 1977, Sulston et al. 1983).  While mapping the 

lineages of all the cells in C. elegans, Sulston noticed that certain cells always undergo PCD (131 

of 1090 cells generated), which provided reliable subjects for studying the apoptotic processes.  

The factors involved during apoptosis in C. elegans are highly conserved in other animals.  

 The process PCD, in C. elegans, is made up of four steps: Decision, Death, Engulfment 

and Degradation (Fig. 4).  

During the 

decision/specification phase 

factors, like CEP-1, C. Elegans 

P-53 like protein, a homolog of 

the human p53 tumor 

suppressor gene, detect DNA 

damage or other problems and 

make the choice to kill the cell 

(Derry et al. 2001).  CEP-1 is 

required for DNA damage 

induced apoptosis; 

(Schumacher 2001).  p53 

Figure 4. Diagram of the C. elegans cell death pathway and 

human homologs.  Multiple factors can influence CED-9 

but afterwards the cell fate is largely decided. Modified 

from Gartner et al. 2008 

Decision 

Death 

Execution 

Engulfment 
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checks the genome for damage and can initiate repair, stop the cell cycle or initiate apoptosis; 

p53 is mutated in over 50% of all human cancers (Elmore 2007).  During the death phase, EGL-1 

bind to CED-9 (CEll Death abnormality 9, Bcl-2 in humans) so it can no longer inhibit CED-4 

(Apaf-1 in humans), from activating the CED-3 caspase (Lettre et al. 2004, Meier et al. 2000, 

Conradt and Xue 2005).  The caspase triggers cascade of cellular degradation and DNA 

fragmentation.  The final step involves a neighboring cell engulfing the apoptotic cell due to “eat 

me” signals on the cell surface (Conradt and Xue 2005).  CED-1 is a cell surface receptor that 

detects an unknown factor expressed by apoptotic cells (Reddien and Horvitz 2004).  When this 

factor is detected CED-1 expression increases and a neighboring cell begins engulfing the dying 

cell.  This increased expression of ced-1 and its localization to the cell surface provides an easy 

means for generation of a GFP fusion protein to track cell engulfments (Gartner et al 2008).  

Fusion proteins are made by inserting the sequence for another protein onto the end of the 

sequence for a gene of interest.  These two proteins get transcribed as a single mRNA then 

translated as a single peptide.  In humans the engulfment of dying cells is done by macrophages.  

In C. elegans this process is carried out by neighboring cells, such as sheath cells in the gonadal 

arms.  Finally, after the cell has been engulfed its degradation is completed by the engulfing cell. 
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Objectives 

1. Determine if nickel increases germline cell death 

 Syto12 staining and a ced-1::gfp fusion protein detecting dying cells were used to 

quantify the number of cell deaths occurring. 

2. Determine whether insoluble nickel results in more cell death than soluble nickel. 

 Comparisons were made between the deaths caused by NiCl2 (soluble) and NiO 

(insoluble). 

3. Determine if inhibiting the activity of nickel leads to no increase in cell death. 

 A strain of worms resistant to heavy metal toxicity, from increased cellular histidine, 

provided a means to show whether nickel exposure caused increased cell deaths. 

4. If nickel is causing cell deaths via genomic damage then increased cell deaths should be 

abrogated by knocking out the pathway that detects such damage. 

 Used a cep-1 (p53) mutant strain to analyze cell deaths from  nickel exposure without the 

inclusion of deaths related to genomic integrity. 
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Methods 

Stock Maintenance 

 All worm stocks are maintained at 20°C on 60mm NGM agar plates with the OP50 strain 

of Escherichia coli for food until needed for experimentation (Brenner et. Al 1974).  Stocks are 

maintained as hermaphrodite cultures unless needed for genetic crosses. 

Worm stocks 

 Three strains of GFP worms were acquired from Dr. Brett Keiper at the Brody School of 

Medicine.  These strains were MD701 (bcIs39 V [Plim-7::ced-1::gfp; lin-15(+)] V), KX110 

(ced-9(n1653) mab-5(mv114) III, bcIs39 V [Plim-7::ced-1::gfp; lin-15(+)] V), and KX84 ((ced-

3(n2452), bcIs39 V [Plim-7::ced-1::gfp; lin-15(+)] V).  A cep-1 mutant, XY1054 (cep-1 

(1g12501) I) was received from the Caenorhabditis Genetics Center (CGC).  Additionally, the 

WU970 (haly-1(am132) X) strain, which has a modified histidine ammonia lyase gene, was 

received from Drs. John Murphy and Kerry Kornfeld at Washington University in Saint Louis. 

Gonadal death experiments 

Gravid adults and eggs were washed, using M9 buffer, into 15 mL conical vials.  Tubes 

were centrifuged at 800 g for 10 minutes, to pellet the worms and eggs, then supernatant was 

removed.  1 mL of bleaching solution (five parts Sodium hypochlorite, two parts 1M Sodium 

Hydroxide, three parts water) was added to the 15 mL tubes which then get mixed vigorously 

until only eggs remain.  Adult bodies dissolve then three cycles of washing with M9 buffer and 

centrifuging assure that remaining bleach solution is removed and intact eggs remain.  After the 

final centrifugation the excess M9 is removed and the eggs are transferred onto an unseeded 

plate. 
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 The next day, 50, or more, L1 larvae were removed from the unseeded plate and placed 

onto an experiment plate seeded with OP50.  The worms grew for four days at 20 °C, or 3 days 

at 25°C in the case of the Kx110 strain.  25°C causes the mutated CED-9 protein to misfold and 

lose functionality.  Finally, the gonadal cell deaths were counted using fluorescent microscopy 

on a compound scope (Fig. 5). 

  

A 

B 

C 

D 

 E 

Wt, ced-1::gfp on NGM 

Wt, ced-1::gfp on 21.1 NiO 

Wt, ced-1::gfp on NGM (Syto12) 

Wt, ced-1::gfp on 21.1 NiO (Syto12) 

N2 on NGM (Syto12) 

F 

N2 on 21.1 NiO (Syto12) 

Figure 5. Images showing ced-1::gfp 

engulfments (circles), and apoptotic nuclei 

stained by Syto12 for wild-type strains.  All 

deaths and engulfments indicated by white 

arrows. 
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Strain construction 

 When attempting to crossbreed strains heavily populated, but not starved, plates were 

placed at 37°C for 30 to 45 minutes, to cause the nondisjunction that generates males.  Portions 

of agar from these plates were then placed onto large plates and placed at 20°C.  Two to three 

days later males were searched for and moved to fresh plates with hermaphrodites to maintain a 

male stock, as 50% of mated offspring are males.  When attempting crosses, eight or more males, 

of one strain, were placed on a plate with two or three L4 hermaphrodites from another strain.  

After 10-12 hours at 20°C the males were removed and each P0 hermaphrodite was put on a 

separate plate.  The F1 generation will be heterozygous for both mutations provided mating 

occurred, which can be seen by the presence of males (Fig. 6).  Eight to ten F1 L4 

I 

cep-1, ced-1::gfp on 21.1 NiO 

J 

am132, ced-1::gfp on 21.1 NiO 

 

ced-9ts, ced-1::gfp on 21.1 NiO 

G 

H 
Ced-3,  ced-1::gfp on 21.1 NiO 

Figure 5 continued. Images with ced-1::gfp engulfments labeled for mutant strains 
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hermaphrodites were placed on separate plates and allowed to deposit eggs.  It is important to 

pick L4s as they will not have been mated with by males. 

 The rest of this procedure involves checking adults in successive generations for each 

mutation then continuing their lines.  An adult worm (first round with F2s) gets assessed for ced-

1::gfp by looking at the gonadal arms under fluorescence.  If GFP was present this worm was 

placed on a new plate and allowed to deposit all of its eggs.  When the worm had laid all or most 

of its clutch the adult was removed and assessed for the second mutation.  DNA was harvested 

from the adult worm using 2 mg/mL proteinase K in Single worm lysis buffer at 60°C for 

45minutes.  Deletion mutations were tracked using PCR, as smaller strands traverse further 

during gel electrophoresis, while point mutations required sequencing to ensure their presence.  

If the desired mutation was found the worm's progeny were allowed to grow to L4s then 5-20 of 

them were then scored for GFP and moved to new plates.  This cycle of checking an adult for 

Figure 6. Diagram showing what proportions of each generation should have with desired 

genes.  Boxes in lower portion show F2s lacking either GFP or cep-1 mutation. 
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GFP, letting it deposit its clutch, and then assessing it for the second mutation continued until the 

likelihood of it being homozygous for both traits seemed high (likely F6 or F7).  At this point, 

multiple progeny (30+) were selected and assessed for GFP and the mutation.  If both were 

found in all tested individuals then that group of worms would be given a new strain name, used 

for testing, and monitored to make sure the desired traits remained in later generations. 

Syto12 staining 

 Adults were placed in 33 μM SYTO 12 in M9 for 1 hour at 20°C and then then returned 

to the plate they were harvested from for 2 hours at 20°C.  Syto12 stains nucleic acids in 

apoptotic nuclei. The gonadal arms of the worms were then assessed for localized Syto12, which 

appears as bright green dots. 

Microscopy 

At test completion worms, or excised gonadal arms, were moved into a drop of 30 mM 

Sodium Azide in M9, on 4% noble agar pads, before adding a cover slip.  Slides were viewed 

under a GFP cube and either cell engulfments, visible as cell-sized circles in the gonadal arms, or 

Syto12 dots, were counted at 400x using a Nikon Microphot-FX scope with an HBO 100 W light 

source and GFP filter cube (Figure 5).  To ensure accounting of all deaths and engulfments the 

fine focus must be used to view all focal planes of the gonadal arm.  Images were taken using a 

Zeiss Axio Obserer Z1 scope with HXP 120C fluorescence cube, and Nikon Digital Sight DS-U3 

camera. 
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Soil Survival Analysis 

 Tests have been done to assess the effect of varying food and sediment quantity on 

Nematode survival in traditional sediment tests.  The protocol is an alteration of Hoss et. al 2009.  

In accordance with the experiments conducted by Chandler Douglas all tests are done with 10 

synchronized L1 larvae and run for 96 hours at 20° C (Rudel et al. unpublished).  Tests contain 

varying quantities of antibiotic killed OP50.  The food added contains ~10
10

 bacteria and 10 ug 

Cholesterol per mL. 

 First, the desired amount of sediment is spread across the bottom of each well in a 12-

well plate.  Next, Food and worms are added before placing the plate on a shaker table in a 20° C 

incubator.  For each treatment six replicate wells are used per test. 

 After 96 hours the plates were removed and the contents of each well rinsed out into a 15 

mL conical vial.  The sediment samples were mixed with a silica based solution (2:1 of 

Water:Ludox) and centrifuged at 800g for 10 minutes in three successive washes. Adults and 

larvae float in the Ludox while the sediment pellets out.  Supernatant was poured onto unseeded 

100mm NGM plates and adults and larvae were harvested and counted. The adults were then 

measured.  Length measurements following the gut tube and width at the anterior-posterior 

center position of the vulva are found using NIS Elements BR3.2 software with a Nikon 

Microphot-FX scope. 

Statistical analysis 

 Statistical comparison was done using univariate analysis of variance in SPSS 19 with 

Tukey post-hoc analysis.  All statistical significance was based around a value of 0.05. 
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Results 

Nickel induces germline apoptosis 

 To assess the effect(s) of 

nickel on living organisms, worms 

grew on agar plates laced with 

varying quantities of NiCl2 and 

then visible engulfments, in the 

gonadal arms, were counted.  The 

wild-type ced-1::gfp strain, 

MD701, showed increased 

levels of programmed cell  

Ni Type/Conc. (um) Average deaths St. Error N 

NGM 5.05 0.3 153 

0.84 Cl 5.69 0.21 353 

0.84 O 7.19 0.3 150 

1.69 Cl 6.83 0.32 150 

1.69 O 7.51 0.3 150 

3.37 Cl 7.97 0.31 153 

3.37 O 8.04 0.37 100 

8.43 Cl 10.91 0.32 150 

8.43 O 8.96 0.3 150 

21.1 Cl 10.29 0.31 152 

21.1 O 7.85 0.3 150 

Figure 7. Data for MD701 shows a significant increase in 

engulfments with exposure to Nickel Chloride and Nickel 

Oxide.  Letters denote groupings based on Tukey post-hoc 

analysis. 

CD 

F EF 

DE 

CD CD 
BC 

C 

AB A 

BC 
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death as the level of Nickel increased, with the exception 0.84 μM NiCl2 (Figure 7).  Initial 

testing doubled the concentration of NiCl2 between levels until 3.37 μM was reached.  This 

Strain/ Conc. NiCl2 

(uM) 

Avg. 

Deaths 

St. 

Error N 

ced-9ts 20°C NGM 8.9 0.35 151 

Wt NGM 5.05 0.25 153 

ced-9ts 25°C NGM 21.08 1 150 

ced-3 NGM 0.052 0.02 155 

Wt 0.84 5.69 0.2 353 

ced-3 0.84 0.049 0.02 205 

Wt 1.69 6.83 0.32 150 

ced-9ts 25°C 1.69 18.37 0.4 92 

Wt 3.37 7.97 0.28 153 

ced-3 3.37 0.019 0.01 154 

Wt 8.43 10.91 0.38 150 

ced-3 8.43 0.02 0.01 200 

Wt 21.1 10.28 0.33 152 

ced-9ts 25°C 21.1 27.08 0.41 99 

ced-3 21.1 0.02 0.01 152 

Figure 8.  Removal of ced-3 or ced-9 results in 

strong effect on engulfments.  A shows data for 

strains on media without nickel.  All significantly 

different from each other.  B shows data for strains 

on Nickel.  All mutant strains showed statistically 

significant difference from wild-type at each 

treatment level.  ced-3 showed no significant 

difference in engulfments at any treatment level.  * 

indicates lack of statistically significant difference 

from no nickel for wild-type and ced-9ts. 

* 

* 

B 

A 
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concentration was the largest added to sediment samples during previous experiments in this lab 

(Rudel et.  

unpublished).  Above this level concentrations increased by 2.5x between treatments and caused 

a statistically significant increase in engulfments from 3.37 μM to 8.43 μM.  Finally, the effect of 

NiCl2 decreased between 8.43 μM and 21.1 um, though not significantly.  

Strain/Conc. NiCl2 

(uM) 

Avg. 

Deaths St. Error N 

wt, ced-1::gfp NGM 1.35 0.08 147 

N2 NGM 2.81 0.1 318 

wt, ced-1::gfp 3.37 3.17 0.18 125 

N2 3.37 3.11 0.16 139 

wt, ced-1::gfp 21.1 3.13 0.17 136 

N2 21.1 3.68 0.14 128 

B 

A 

BC C B BC 

Figure 9. Analysis of changes in cell 

death via Syto12 staining for N2 and wt, 

ced-1::gfp strains.  Groups generated by 

Tukey post-hoc analysis. 
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 To confirm the validity of the circles seen as programmed cell deaths, a strain lacking 

Caspase-3 (KX84) and a strain with a temperature sensitive mutation to an element inhibiting 

programmed cell death (Bcl-2 in KX110), that had been generated and validated by the Keiper 

lab, were analyzed after growing on plates with nickel (Contreras et al 2011).  The strain lacking 

Caspase-3 served as a negative control because no programmed cell death should occur without 

the primary effector caspase.  In this strain circles occurred once in every 20 to 50 animals and 

no significant increase in engulfments was seen with the addition of Nickel (Figure 8).  On the 

other hand, when Switched from growing at 20°C to 25°C, the ced-9ts strain showed a 

significantly increased numbers of circles.  To observe the increase in circles required removal of 

the gonadal arms by decapitating worms in 0.25mM levamisole in PBS, so the gonadal arms 

could be observed without the gut tube affecting visibility.  Based on these results, no circles 

without the Caspase and many more without Bcl-2, we conclude the circles visualized were in 

fact cell engulfments and indicated cell deaths.  

Confirmation by Syto12 

 To further confirm results seen from counting GFP engulfments the effects of nickel 

exposure were tested using Syto12 staining.  For both N2 and ced-1::gfp wild-type a significant 

increase in cell deaths was seen when exposed to nickel (Fig 9).  This confirmed that the circles 

seen in the gonadal arms of ced-1::gfp strains were cell engulfments. 

Insoluble versus Soluble nickel 

 To compare how solubility of nickel affects cell engulfment levels we repeated the same 

procedure as above.  GFP wild-type, worms (MD701) were grown on plates laced with the same 

concentrations of NiO (insoluble) as had been used for NiCl2 (soluble).  Initial results for lower 
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levels of NiO showed greater effect than NiCl2 (Fig. 7).  However, as concentration increased the 

effect from NiO tapered off and on 8.43 and 21.1 μM the effect of NiO was less than that of 

NiCl2.  As previously seen with NiCl2 treatments, fewer engulfments were seen in worms 

exposed to 21.1 μM NiO than 8.43 μM NiO.  Further research with more concentrations will be 

done to better assess this relationship.  

Cell deaths caused by Nickel 

 To ensure that the increase in engulfments happened as a result of nickel exposure, a 

A 

C 
CD 

D 

B 

CD 

Figure 10. Figure 10. Mutation of an 

ammonia lyase increases basal 

engulfment levels.  When exposed to 

nickel no significant increase in 

engulfments was seen.  Letters denote 

groupings based on Tukey post-hoc 

analysis. 
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cross was done using a strain with a mutated histidine ammonia lyase (WU970) and wild-type 

ced-1::gfp.  The altered lyase gene contained a point mutation that was proposed impart 

resistance to heavy metals (Murphy et al. 2011).  When tested, the resulting strain showed higher 

levels of engulfments, than ced-1::gfp wild-type, on agar without nickel.  However, it showed no 

increase in engulfments when exposed to nickel (Figure 10).  This trend continued even on high 

nickel, when the wild-type had more engulfments than the nickel resistant strain.  These data 

indicate that increases seen in engulfments for wild-type worms happened as a result of nickel 

exposure.  

Cell deaths result of genotoxicity 

  In an effort to learn how nickel damage is assessed, XY1054 (cep-1) animals were 

crossed with wild-type ced-1::gfp to generate a strain without a functional genomic damage 

repair pathway.  When subjected to the same tests as wild-type ced-1::gfp ths strain showed no 

change in gonadal engulfments even when subjected to high levels of nickel (Figure 11).    

Engulfment counts remained the same for this strain on nickel as wild-type on NGM.  This 

indicates that nickel’s toxic effects are assessed by the p53 pathway, which disagrees with 

findings from other labs.  Therefore, further testing using mutants for other parts of the DNA 

damage repair pathway will occur.  
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Discussion 

Using ced-1::gfp to assess nickel exposure 

 Counting GFP engulfments provided a simple straightforward assay for the nonlethal 

effects of nickel.  The wild-type ced-1::gfp strain showed that nickel exposure did increase 

engulfments.  Although not extreme, the increases in engulfments showed statistical significance 

even on low nickel.  Previous research by Wang and Wang (2008) showed that exposure to 

Strain/ Conc. 

NiCl2 (um) Avg Deaths St. error N 

Wt NGM 5.05 0.25 153 

cep-1 NGM 5.58 0.23 149 

Wt 3.37 9 0.28 153 

cep-1 3.37 5.88 0.20 152 

Wt 8.43 10.91 0.38 149 

cep-1 8.43 5.84 0.25 150 

B 

B 

A 
A A A 

 

Figure 11.  Removal of cep-1 activity 

lead to nickel exposure not affecting the 

number of engulfments occurring.  This 

indicates that nickel has genotoxic 

effects.  Letters denote groupings based 

on Tukey post-hoc analysis. 

 



22 

 

NiSO4, ranging in concentration from 2.5 μM to 200 μM, could shorten the lifespans, decrease 

brood size, cause movement defects, and alter chemotactic plasticity in exposed animals as well 

as their progeny.  Their analysis, using a soluble nickel compound, showed that the nickel 

entered the eggs.  Analysis, in this study, showed an increase in engulfments at low levels, of 

soluble and insoluble nickel, that tapered off at higher levels.  It is possible that even higher 

levels of nickel, like the 75 μM and 200 μM concentrations used by Wang and Wang (2008) 

would show higher or lower levels of engulfments.  Higher levels of cell death would be 

generally expected, especially considering that most previous testing used higher concentrations 

than this study and saw worms survive long enough to reproduce (Wang and Wang 2008, Brown 

2004).  For engulfment levels to decrease at levels above 21.1 μM raises the question that the 

worms may have been generating fewer oocytes due to stress from the nickel (Kezhou et al. 

2010).  

 Mutating factors in the apoptotic pathway drastically changed the number of visible 

engulfments.  Removal of caspase activity reduced engulfments to zero regardless of 

biochemical affront.  On the other end of the spectrum, loss of function mutations of the 

apoptotic inhibitor ced-9 caused high levels of engulfments to the point of overshadowing the 

toxic effects of the nickel (Fig. 8).  A statistically significant increase in engulfments was seen 

for the ced-9ts strain on a higher concentration of nickel.  However, anecdotal accounts of large 

data ranges in tests question the significance of this increase.  Whereas tests, for other strains, 

saw maximum ranges of 10-20 engulfments between individuals, some tests for ced-9ts had 

ranges above 40; which shows this mutation has a strong capacity to influence initiation of 

apoptotic engulfments. 

NiO versus NiCl2 
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 Comparisons between NiCl2 and NiO at these levels remain inconclusive. Low levels of 

NiO and NiCl2 initially indicated that NiO would have a greater effect but at higher levels the 

difference in effect dropped and eventually NiO showed less effect than NiCl2.  Kasprzak et al. 

2003 states, “As a rule, insoluble compounds, such as NiS, NiO, and Ni3S2, are better 

carcinogens than soluble compounds, Ni(II) acetate, chloride or sulfate.”  It is possible that the 

methodology of this experiment increased the effective toxicity of NiCl2.  Soluble forms of 

nickel are believed to be less toxic because they exit the cell just as readily as they enter.  In this 

test the worms were constantly exposed to the nickel, so when some left more could enter.  This 

may have allowed the soluble nickel a similar mode of effect to insoluble nickel.  It is also 

possible that the large particle size of the NiO used in this study could have decreased its 

toxicity.  To assess this possibility future testing will be done with NiO nanoparticles. 

Effect of cellular histidine on nickel 

 Increasing cellular histidine can allow worms to withstand higher levels of heavy metals 

(Murphy et al. 2011).  Analysis by Murphy et al. has previously shown that increasing cellular 

levels of histidine increases the number of worms growing to adulthood when exposed to zinc 

and nickel (2011).  Their data showed that cellular levels of zinc and nickel were unaffected by 

increased histidine, from either dietary intake or mutation.  They hypothesized that the histidine 

effectively chelated excess zinc and nickel, thereby reducing deleterious effects on the cell. In 

analysis of this mutant, baseline engulfment levels were higher than those of wild-type, but this 

is likely a result of the mutation; increasing the levels of histidine present, particularly in 

developing oocytes with shared cytoplasm, may have a toxic effect.  When exposed to nickel no 

significant increase in engulfments was observed.  At higher levels of nickel the average number 

of engulfments occurring in wild-type worms was greater than that of individuals with this 
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mutation.  This data indicates that by increasing cellular levels of histidine ameliorates the 

effects of heavy metals. 

Is p53 involved? 

 Removal of a DNA checkpoint protein removes the effect of nickel on gonadal 

engulfments.  Previous analysis of nickel exposure on germline apoptosis in C. elegans indicated 

that increased deaths did not occur due to genomic damage (Kezhou 2010).  In this study, cep-1 

mutants showed increased levels of apoptosis, as determined by acridine orange staining, when 

exposed to NiSO4 for 12 hours.  In the current study there was no increase in engulfments when 

exposed to nickel (Fig 10).  A recent study using human lung epithelial cells also concluded that 

nickel causes genomic damage that is assessed by the p53 pathway (Ahamed et al. 2011).  Their 

study found that nickel exposure lead to an increase in p53 and caspase expression, using QRT-

PCR, as well as increased caspase activity in the exposed cells.  A study by Nackerdien et al. 

noted that nickel and cobalt exposure lead to DNA damage in isolated chromatin by hydroxyl 

radicals (1991).  In the study by Kehzou et al. their cep-1 mutant showed higher levels of 

engulfments, even without nickel exposure, as did their egl-1 mutant, compared to wild-type.  

Both egl-1 and cep-1 are pro-apoptotic factors.  The data acquired in this study indicates that 

nickel does cause damage which is assessed by the cep-1 pathway; as when cep-1 was removed 

there was no increase in engulfments, with nickel exposure.  To insure the credibility of this 

claim further testing will be done using mutants for other pro-apoptotic factors such as hus-1, 

mpk-1, mek-1, and  pmk-1. 

Future considerations 
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As manufacturing and use of electronics containing nickel continues environmental levels 

will increase.  With the potential for nickel to harm organisms and environmental integrity it is 

important to understand the mechanisms that cause harm as well as the effects of increasing 

levels.  This study indicates that nickel does harm living organisms and some portion of the 

damage done is genomic.  It is also important to note that the damage affects not just the exposed 

organism but also its progeny.  The potential for debilitating mutations to occur is increased in 

young and developing organisms.  Therefore if people desire the safety of their children and 

grandchildren the effects of environmental toxins and the potential for damage to be passed 

down should be considered when designing policy or products that involve nickel.  Proper 

disposal of items containing nickel compounds or other heavy metals could reduce toxic effects 

and improve both the survival and quality of life for generations of humanity to come. 
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