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Our lab was interested in creating a reproducible mechanism for obtaining neural 

crest cells in culture from cultured hindbrain explants of zebrafish.  We have 

characterized the population of cells migrating from the explants as neural crest using a 

genetic variant of zebrafish with a GFP tag SOX-10, as well as immunostaining using 

HNK-1, a known neural marker for neural crest cells.  We have also devised a modified 

protocol of in-situ hybridization that can be used for cells in culture for determining 

specific genes cells express in culture.  

 Based on previous studies by Bingham et al., hindbrain explants have been 

extensively studied for preservation of their native (endogenous) cellular environments as 

well as the behavior of individual cell types.  Biopidy ceramide labeling of live embryos 

has been used to extensively monitor and record cell shapes and organization in the 

developing zebrafish neural tube (Cooper et al).  Studies by Bingham et al. have shown 

that morphogenesis of the neural tube in the zebrafish hindbrain is unaffected by the 

explantation of the hindbrain into a culture medium.  The expression of krox20 and 

hoxb1a, which are expressed in the developing embryo in the hindbrain in rhombomeres 



 
 

3 and 5 and rhombomere 4 respectively have been found to be unaffected when the 

hindbrain is explanted into a culture media.  It has also been shown that valine expressing 

neural crest cells migrate normally out of r6.  These results demonstrate that 

morphogenesis and patterning of the explanted hindbrain occur normally following the 

explanation of the hindbrain into a culture media (Bingham et al).  Our lab has carried out 

dissections to remove the hindbrain from the developing embryo 15-18 hours post 

fertilization.  We have found that it is possible to dissect the hindbrain out of a 

developing embryo and have cells migrate from these explants.  We have also shown that 

these cells express Sox10 and are stained when using an antibody for HNK-1, which is 

known to be a neural crest cell marker.  Our lab has also developed a working protocol of 

in-situ hybridization on cells in culture for Caco 2 and HT-29 using RNA probes for 

human beta actin and Hox A10.   
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Background 
 

Neural crest cells are cells that delaminate and migrate extensively from a 

transient embryonic cell population of neural-ectoderm.   These cells migrate and 

populate the face, pharyngeal aches, the gut, the heart, among many other regions, 

participating in production of bones, cartilage, nerves, blood vessels, and connective 

tissue (Dupin 2007).  Their extensive migration and ability to differentiate into a large 

variety of cell types have made the neural crest (NC) a main topic in developmental 

embryological studies, and they have even been referred to as the fourth germ layer.  

zebrafish (Danio rerio)  have long been extensively used as the ideal species for 

observing development due to their transparency and relatively short development phase.  

It is for this reason many developmental biologists have used zebrafish while studying 

NCCs.  

During development in vertebrates, the central nervous system develops from a 

specialized region of the ectoderm called the neuroectoderm or the neural plate, which is 

formed in the process of gastrulation.  In most teleosts, ectodermal epithelial cells thicken 

and columnize to form a classic neural plate, and eventually into a neural keel (Kimmel 

1995).  Following the neural keel formation the neural tube begins to form and separate 

from the surrounding ectodermal epithelium in a process called neurulation.  Figure 1 

depicts the process of neurulation leading to the neural tube formation.  Formation of the 

neural tube leads to a population of cells found at the dorsal margin of the neural fold that 

undergo an epithelio-mesenchymal transition.  These cells are called the neural crest 

(NC) and are responsible for the production of neural crest cells (NCCs).  These NCCs 

receive signals from the neural plate border as well as the non-neural ectoderm and 
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mesoderm that cause them to lose adhesion molecules and to migrate extensively.  

Rostral caudal positioning along the neural tube determines which signals these cells will 

receive and how extensively they will migrate (Table 1 lists many of the fates of NCCs) 

(Duband 2009). 

 

Discovery of the Neural Crest 
 

In 1868 while studying embryo development in the chicken, Wilhelm His 

identified a band of cells between the developing neural tube and the future dorsal 

epidermal ectoderm that was responsible for the production of spinal and cranial ganglia 

(Hall 2008).  His identified this band as Zwischenstrang, the intermediate chord.  

Wilhelm was the first to provide an explanation for the process of embryonic 

development, physiology of embryonic development and characterization of germinal 

regions for predetermined organ-formation.  In the 1890’s a woman by the name of Julia 

Platt claimed that the cartilages of the craniofacial and pharyngeal arch skeletons and the 

dentine-forming cells (odontoblasts) of the teeth of the mudpuppy, Necturus maculosus, 

arose from the ectoderm adjacent to the neural tube (Platt 1893, 1894, 1897).  It wasn’t 

until the 1920’s and 1930’s that Platt’s conclusions about the neural crest being the 

source of mesenchyme, connective tissue and cartilage were demonstrated in studies done 

by Landacre (1921), Stone (1926, 1929) and Raven (1931, 1936).  Presently, the neural 

crest is referred to by many developmental biologists as the fourth germ layer confined to 

vertebrates (Hall 2006).   
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Neural Crest Regions 
 
        In vertebrates the NC is divided into 4 regions (Figure 2), each region responsible 

for producing cells that will populate and differentiate into specified cell types.  The 

trunk neural crest, which is responsible for producing cells that that will take one of two 

pathways during migration.  Cells that delaminate from this region can migrate 

dorsolaterally into the ectoderm to the ventral midline and will differentiate into the 

pigment-synthesizing melanocytes.  Additionally cells that delaminate from this region 

can migrate ventrolaterally through the anterior of the sclerotome and will remain in the 

sclerotome (pre-vertebral cartilage of the spine) to become the dorsal root ganglia 

containing the sensory neurons, the sympathetic ganglia, the adrenal medulla and nerve 

clusters surrounding the aorta.   

The vagal and sacral neural crest is another region of the neural crest, which is 

responsible for generating the parasympathetic ganglia of the gut.  Failure in 

development of this region of the neural crest will result in the inability of the organism 

to undergo peristaltic movements.   

The cardiac neural crest, which is located between the cranial and trunk neural 

crest is primarily responsible for producing the entire musculoconnective tissue wall of 

the larger arteries that arise from the heart.  It is also responsible for producing cells that 

will populate the septum, which is necessary in separation of the pulmonary circulation 

from the aorta.  This region of neural crest is also responsible for producing cells that can 

develop into melanocytes, neurons, cartilage, and connective tissues.   

The fourth region of the neural crest is referred to as the cranial neural crest, or 

cephalic neural crest, which is located in the anterior portion of the head.  Cells that 
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migrate out from the CNC will migrate dorsolaterally to produce the craniofacial 

mesenchyme that differentiates into the cartilage, bone, cranial neurons, glia, and 

connective tissues of the face. These cells enter the pharyngeal arches and pouches to 

give rise to thymic cells, odontoblasts of the tooth primordia, and the bones of gill 

support structures and the jaw.  The CNC is the only portion of the neural crest that is 

responsible for the production of bone and cartilage (Figure 3).   

 

Fate Mapping Studies on Cephalic Neural Crest 
 
 Many studies have been conducted to determine and test the cell fates within the 

neural crest in many organisms.  Transplant studies have been conducted to determine the 

fate of cells that migrate from different regions of the neural crest.  Studies done by Le 

Douarin (1969), used developing embryos from quail and duck.  Regions of the neural 

tube were excised out of one embryo and placed in the same region of another embryo to 

form a quail-chick chimera (Figure 4).  These chimeras were then allowed to develop, 

and differences in development could be visualized after hatching.  Based on the region 

of the neural tube being replaced, and the phenotypic outcome of the chick’s, regions of 

the neural crest could be characterized as to what portion of the developing embryo they 

contributed to.   

In one of Le Douarin’s studies, the cephalic neural crest from duck and quail were 

used to form chimera.  Results showed that quail embryos transplanted with duck 

cephalic neural crest cells formed beaks that more closely resembled duck beaks.  

Reciprocally, duck embryos transplanted with quail cephalic neural crest cells formed 

beaks that more closely resembled quail beaks (Figure 5).  These studies were among the 
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first to show that the cephalic neural crest was responsible for making up the bones and 

cartilage of the facial skeleton, and to effectively map the regions of the neural crest.   

Later studies by Daghiani(1987) used electron microscopy and transplantation 

studies in Xenopus to show that regions of the neural crest as well as neural crest cell 

derivatives and migration patterning were conserved between different species of birds, 

but also across different vertebrate species.   

 

Hindbrain Patterning  
 

During the early stages of vertebrate development, three streams of CNCs migrate 

from a structure in the developing head referred to as the hindbrain (Creuzet 2006).  The 

hindbrain is transiently divided into seven distinct neuroepithelial segments called 

rhombomeres.  Each rhombomere takes on distinct molecular and cellular properties, 

which causes cells in these regions to express a different set of gene expression.  

Differentiation and cell fate studies have shown CNCs migrate from the ectoderm 

overlaying the dorsal neural tube in three distinct streams.  Cells that migrate out of 

rhombomere 2 migrate into the first pharyngeal arch (mandibular arch) forming the bones 

of the jaw, Meckel’s cartilage, and the palatoquadrate.  Cells migrating out of 

rhombomere 4 populate the second pharyngeal arch (hyoid arch) responsible for 

formation of the basihyal, ceratohyal, and hyosymplectic cartilage responsible for making 

up the hyoid bone. Cells migrating out of rhombomere 6 migrate into the third and fourth 

pharyngeal arches to form the support structures for the gill (Figure 3)(Creuzet 2006).  
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NCC Plasticity 
 

The plasticity of migrating NCCs has been studied extensively for the possible 

characterization of NCCs as stem cells.  Studies done by Schilling (2001) removed single 

and groups of cranial neural crest cells from developing zebrafish embryos.  Contrary to 

previous hypothesis that neural crest cells had predetermined expression patterns, 

Schilling found that transplanted cells were capable of changing their gene expression 

depending on the cell expression patterns of the surrounding cells.  These studies seem to 

be consistent with similar transplant studies performed in chick, and mouse (Schilling 

2001).   

Researchers have focused their attention on neural crest cells because of the 

extensive range of cell types they are capable of differentiating into as well as their 

essential role during vertebrate embryonic development.  Although the role of neural 

crest cells in vivo has been extensively studied, the factors influencing their 

differentiation into a variety of cell types still needs to be completely characterized. 

These studies will be facilitated if we were able to maintain and propagate NCC in 

culture.  Such a cell culture system will be a useful tool to study their differentiation and 

characterize the factors involved in vitro.   Such system will also permit to analyze the 

effect of pharmaceutical drugs on NCC, differentiation and possibly migration.   

 

Previous Explant Studies 
 
 Although zebrafish embryos are transparent and superficial developmental 

processes can easily be visualized, it is difficult to observe many of the later deep tissue 

developmental processes in the embryo.  Late developmental processes also became 
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problematic to view because of movement within the embryo.  Langenberg et al devised 

a technique to visualize and image live brain development and organogenesis using 

whole explanted zebrafish embryos.  Langenberg began by removing the chorion and the 

yolk sack and dissecting the entire head region.  He then embedded the whole head 

explant into a bed of agar and positioned it according to what he wanted to observe 

(Figure 6).  He found that removal of the chorion, the detachment of the embryo from the 

yolk sack and removal of the head had no developmental effects on organogenesis.  The 

success of this technique led Bingham et al. to devise a new technique to view the 

extensive migration of the neural crest cells from the neural crest.  Bingham et al. (2003) 

found it was not only possible to remove a whole intact head regions of the embryo, but it 

was also possible to simply excise a specific portion of the head, mount in agar and grow 

in a culture dish.  Studies by Bingham showed that removal of specific segments of the 

developing embryo did not affect the cellular migration patterns of neural crest cells 

within the explant (Figure 7).  The success of this technique opened the doors to many 

developmental biologists interested in the study of the migration of neural crest cells, or 

the effects of pharmaceuticals on the migration and differentiation of neural crest cells.   

 

Visualizing streams of NCCs 
 

The importance of NCCs has lead to the development of many techniques used to 

visualize these cells both in vitro and in vivo.  Early research lead to the development of 

HNK-1, an antibody that detects a carbohydrate compound found in cell adhesion 

molecules.  Expression studies done by Morikawa et al. (2001) has shown HNK-1 to be 

expressed on the surface of migrating NCCs.  This immunohistochemical method of 
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detecting NCCs is a useful and valuable technique for distinguishing NCCs from other 

cell types both in culture and in vivo, but falls short when trying to distinguish between 

the three different streams of neural crest cells that migrate out of the hindbrain.   

Sry-related HMG box (Sox) genes code for an important group of transcription 

factors.  These Sox genes can be grouped into many different subfamilies based on their 

sequence and function.  In vertebrates, SoxE genes, which include Sox8, Sox9, and Sox10, 

have been best studied due to their activity in developmental processes, and can be linked 

to many congenital diseases.   Although each of these SoxE genes have been found to be 

expressed during development, Sox10 function has been examined in all major vertebrate 

model systems.  Sox10 is highly conserved across the vertebrates studied, including 

zebrafish, and highly dynamic.  Across all vertebrates studied, Sox10 is expressed in all 

pre-migratory NCCs including both medial and dorsolateral migration pathways.  

Although Sox10 gene expression is rapidly downgraded post-migration (with the 

exception of glial cell derivatives), it has been used widely as a genetic marker for pre-

migratory NCC.  Thus, visualization of the Sox10 gene can be used at early stages of 

development to more clearly distinguish NCCs from other cell types in vivo, however 

like HNK-1, Sox10 expression does not allow us to distinguish between the three streams 

of CNCs.   

In the developing embryo’s hindbrain, each rhombomere express a different 

combination of genes (Figure 8).  For example cells in rhombomere (r) 2 express hoxa2, 

cells in r4 express hoxa2, hoxb1, hoxb2, while cells in r6 express hoxa2 and hoxb3.  In 

most instances NCC express a similar set of genes than the compartment they originate 

from (Figure 9).  In the hindbrain of a developing zebrafish embryo, hoxa2 expression is 
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seen in the NCCs emigrating out of r4 and r6.  In the posterior hindbrain hoxb3 is 

expressed again in both the posterior rhombomeres (r5, 6 and 7) as well as the NCCs 

migrating from r6, but is not expressed in the NCCs emigrating out of r4 or r2.  The 

difference in expression between these two genes can be used to distinguish cells based 

on which of the three streams of NCCs they belong.  Those cells, which have emigrated 

from r2, will express neither the hoxa2 gene nor the hoxb3 gene.  Cells, which have 

emigrated from r4, will express only the hoxa2 gene, and those cells that have emigrated 

from r6 will show expression for both hoxa2 and hoxb3.  These differences in gene 

expression can be used as a tool in characterizing and distinguishing between the 

different streams of CNCs.   

 

Importance of Neural Crest Cells in Culture 
 

Although many techniques have been used to suggest possible modes of 

differentiation of neural crest cells during development, there have been no studies to 

show which populations of neural crest cells are able to be cultivated from hindbrain 

explants. Characterization of these migrating cells is necessary for further studies to 

continue on the testing of developmental processes dealing with neural crest cells in 

zebrafish.  Once cultures of neural crest cells can be maintained further differentiation 

studies can be done to characterize developmental pathways.  These developmental 

pathways can open the door to study many developmental defects, or pharmaceutical 

interactions and their effects on developmental pathways.  
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Objective 1 
 

My first objective is to develop a NCC culture system from explanted zebrafish 

embryo hindbrains.   

 

Objective 2 
 
 In order to characterize the different type of NCC migrating out of the explants, I 

will develop an in situ hybridization method for cells in culture to analyze the genes 

expressed in the cells migrating out of the embryonic hindbrain explants.  The method 

will be first developed using cells we are routinely maintaining in culture in the 

laboratory, such as Caco-2 or HT29 (2 human colon cancer cell lines).   



 
 

Materials and Methods: 
 

Zebrafish: 
 

Maintenance and Care:  
 

Wild type zebrafish were purchased from Carolina Biological, and sox-10-GFP 

transgenic zebrafish were obtained as embryo’s from Dr. Shilling’s laboratory at 

University of California at Irvine.  Transgenic embryos were raised to adulthood 

according to protocols found in The Zebrafish Book (Westerfield, 2000).  Following 

adulthood, the transgenic line was treated to the same care protocol as the wild type 

(D237).  The wild type zebrafish strain was separated into three ten gallon tanks, each 

tank containing ten males and ten females.  Tank water was prepared using Instant 

Ocean® salt stock (.2g/L) according to The Zebrafish Book (Westerfield, 2000).  Tanks 

were kept at 28.5°C with a pH of 7.6.  Ammonia levels were monitored using API® 

ammonia test kits to ensure all tanks maintained a concentration of ammonia of ~0parts 

per million.  Once a week ¼ of the water in the tank was replaced with fresh stock water 

and biological filters were gently rinsed of debris.  All fish were maintained on a constant 

photoperiod of fourteen hours of light and ten hours of darkness.  Feedings occurred three 

times a day during their light cycle using a mixture of high protein ground food (Kyowa 

B, Kyowa Hakko Kogyo Co., Ltd, Tokyo, Japan) and live young artemia (GSL Brine 

Shrimp, Ogden Utah). 
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Spawning:  
 

The day before spawning the fish were fed three times using only live young 

artemia.  After the last feeding a large mouse cage (6’’x10’’x3’’) with a false bottom 

(Figure 10) was completely filled with one half inch diameter marbles.  After the third 

feeding of the day a quarter of the tank water was replaced with new stock water.  The 

mouse cage was placed in the tank and allowed to sit overnight through the dark cycle on 

as seen in Figure 10.  One hour after lights were turned on, the mouse cage was removed 

from the tank the false bottom with the marbles was removed and rinsed with distilled 

water.  The runoff was collected in the bottom of the mouse cage.  The contents of the 

mouse cage, containing the fertilized eggs, was run through a fine mesh net and was 

transferred to a 155x15 mm petri-dish containing a solution of 10% Hank’s embryo 

media.  The Hank’s solution was prepared according to The Zebrafish Book (Westerfield, 

2000).  Eggs were isolated from waste and staged using a dissecting microscope.  The 

isolated eggs were placed in fresh 10% Hank’s containing methylene blue and incubated 

at 28°C until the embryos reached the 14 somite stage.   

 

Embryo Dissection:  
 

Preparation: 
 

 The day before dissections were performed, DMEM growth media containing 

15% Fetal Bovine Serum and supplemented with 100ug/ml Penicillin/Streptomycin 

(pen/strep) cocktail and 100µg/ml of Fungizone was prepared and stored at 4°C.  A 

twenty µg/mL solution of human fibronectin in PBS was also prepared and stored at 4°C.   
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The day of the dissection a sterile 24 well tissue culture plate was fitted with glass 

cover slips in each well.  Three hundred uL of the human fibronectin solution (20µg/ml) 

was placed in each well covering the cover slip and placed in a 37°C incubator for 1 hour.  

Immediately before the dissection, the tissue culture plates were removed from the 

incubator, the fibronectin solution removed and replaced with 500 uL of prepared media.   

Fifteen hours post fertilization (hpf), the developing embryos were removed from 

the incubator, washed with fresh 10% Hank’s solution without the addition of methylene 

blue and were placed on ice until the dissection was to be carried out.  The dissection was 

performed with a micro-scalpel and a tungsten needle that were sterilized by immersion 

in 100% ethanol until the dissection was to be carried out.   

 

 

Dissections:  
 

Dissections were carried out in a 35 mm petri dish.  One mL of fresh media was 

was deposited in three separate spots in the petri dish to form three “bubbles”.  One mL 

of 10% Hank’s solution containing approximately 10 embryos was placed to form a 

bubble in a separate area on the petri dish.  Figure 11 shows a depiction of the set up 

used.  Using a tungsten needle and a micro-scalpel one embryo was dechorionated in the 

Hank’s 10% bubble on the petri dish.  The embryo was dechorionated it was transferred 

using a transfer pipette to the first bubble of fresh media.  Dissection was performed in 

this bubble using the otic vesicle as a landmark to determine the position of the hindbrain.  

A tungsten needle was used to make cuts to remove the head and the trunk regions 

surrounding the otic vesicle as seen in Figure 12.  Once this segment was removed the 
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tungsten needle was used to scrape away some of the ventral ectoderm.  Once the explant 

was completely removed from the embryo, it was transferred to the second bubble of 

fresh media using a transfer pipette.  This step was repeated, transferring the explant to 

the third bubble of clean media before the explant was finally placed on top of the 

fibronectin-coated coverslip in the 48 well culture dish using a transfer pipette.   

Dissections were carried out in this manner until the ten embryos had been 

dissected.  Each well in the tissue culture plate contained no more than 4 explants.  Once 

the ten embryos had been dissected the petri dish was washed using distilled water and 

dried using a wipe.  Ten additional embryos were transferred to the cleaned petri dish and 

the dish was set up using the same procedure previously indicated.  Dissections continued 

until embryos matured past sixteen hours post fertilization. 

 

Controls: 
 

 Initial experiments were performed using whole embryos to ensure natural 

embryo development after dechorionation.  Embryos were allowed to develop to 15hpf.  

After 15hpf embryos were dechorionated and placed in a cleaned petri dish.  Once 

embryos were transferred to the petri dish they were placed in a 28°C incubator and 

allowed to develop for 24 hours.   
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Cell Culture: 
 

Explant: 
 

 Once the dissection was completed the culture plate was immediately transferred 

to a 28°C incubator in 5%CO2 for 24 hours.  After 24 hours each coverslip was 

transferred to a larger petri dish containing prepared media.  Cell migration was observed 

using bright field and fluorescence microscopy.  Explants were monitored for up to seven 

days to gage cell migration and possibly cell proliferation.  The media was changed once 

every other day.  

 

Caco2 Media:  
 

Cells were stored in DMEM supplemented with 20% fetal bovine serum with a 

1% penicillin/streptomycin (pen/strep) cocktail.  After preparation, media was filtered 

sterilized and stored at 4°C.   

 

Caco2 Maintenance:  
 

Cells were obtained from Dr. Scemama (??) and maintained in a 37°C incubator 

in 5%CO2.  Cells were grown in 75mm flasks until cells became confluent.  Cells were 

routinely passaged every week.   

 

Immuno-Staining: 
 
 Cells were fixed in a 4% PFA solution in 1X PBS for 10 minutes.  A vector ABC 

staining kit for HNK-1 was used to characterize NCC according to manufacturer.  
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Briefly, cells were incubated for thirty minutes in a 0.3% solution of peroxide in distilled 

water.  Cells were incubated in buffer provided by the kit for 5 min.  Cells were then 

incubated in blocking solution provided by the kit for twenty minutes.  Cells were then 

incubated for 30 minutes with primary HNK-1 mouse antibody diluted 1:2000 in buffer 

provided by kit.  Cells were then washed in buffer for 5 minutes.  Cells were then 

incubated for thirty minutes in biotinylated secondary anti-mouse antibody solution.  

Cells were then washed in buffer for five minutes.  Cells were then incubated with the 

ABC reagent for thirty minutes.  Cells were again washed in buffer for five minutes.  

DAB solution was used to develop the antibody staining until cells were brown.  

 

In-Situ Hybridization: 
 

Solutions:  
 
 PBS: .1X phosphate buffer + .9% NaCl 

 Triton X-100 (.3%): 300 µL Triton X-100 (Sigma) in 100mL PBS 

 50 mM EDTA: 1.46g EDTA to 100mL of .1M Tris buffer pH 7.5 

 Diluent for proteinase K: 50mM Tris with 2mM calcium chloride 

 Proteinase K Stock: 500µg proteinase K powder in 1mL diluent 

 Proteinase K working: 100µL stock in 5mL diluent (10µg/ml solution) 

 4% paraformaldehyde(PFA): 4.0g PFA in 100mL PBS 
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RNA Probes:  
 

Fluorescein-labeled antisense probe was generated for human β-actin by enzyme 

digestion of the pCR II vector with EcoRV and synthesis with RNA polymerase SP6 

(Blader et al., 1997) and for human HOX A10 by enzyme digestion using Xho1 and 

synthesis with RNA polymerase T7 (Blader et al., 1997).   

 

Day 1:  
 

Caco2 cell line was used to perform in situ hybridization.  Cells were grown on 

coverslips in a 48 well tissue culture dish to confluency.  Cells were first fixed to 

coverslips using 2.5% glutaraldehyde in .1X PBS for thirty minutes.  They were then 

washed in a 4.5% sucrose solution in PBS for fifteen minutes four times.  The cells were 

then placed in .1X PBS for five minutes and then placed in a .3% TritonX-100 solution 

for fifteen minutes at room temperature.  A PBS wash was then performed for three 

minutes twice while shaking.  A 15 µg/ml solution of proteinase K was added to the cells 

for fifteen minutes at room temperature.  Cells were then fixed again in 4%PFA for five 

minutes.  After fixation cells were rinsed in .1X PBS for three minutes twice while 

shaking.  A .25% solution of acetic anhydride in .1X PBS was added to each of the wells 

for ten minutes while shaking.  Cells were then washed in 50% formamide in 2x standard 

sodium citrate (SSC) for ten minutes and then placed in 37°C.  Cells were then placed in 

a hybridization buffer composed of 50% formamide, 10% 20x SSC, 25% 1M tris pH 7.5, 

15% deionized water, containing 200ng/ml of appropriate probe and incubated overnight 

at 37°C while shaking.   
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Day 2:  
 

Cells were washed in 4XSSC for fifteen minutes three times shaking the last five 

minutes of the wash.  A blocking solution containing 1% FBS and .01% Sheep Serum in 

PBT was used for fifteen minutes at room temperature.  Cells were then washed in .1X 

PBS solution composed of phosphate buffered solution supplemented with .08% NaCl, 

for three minutes twice.  Cells were then incubated at 37°C while shaking with a 1/2500 

dilution of fluorescein Fab fragment by sigma diluted in the blocking serum for one hour.  

Cells were then washed in .1X PBS for 10 minutes four times.  After the wash cells were 

equilibrated in AP buffer composed of 2M tris pH 9.5, 1M MgSO4, 5M NaCl, 20% 

Tween 20 in water, for two minutes.   

 

Visualization: 
 

 Developing was performed using NBT/BCIP tablets in AP buffer under foil 

rocking gently for two hours.  Cell staining was continuously monitored.  The reaction 

was stopped by washing the cells two times in PBT for ten minutes two times at room 

temperature.  Coverslips with the cells were then transferred to a microscope slide and 

mounted using 70% glycerol.   

 

 

 

 



 

Results 

 
Control Sox10-GFP Development 
 
 Embryos expressing sox-10-GFP were allowed to develop and images were taken every 

12 hours for 72 hours.  Figure 13 shows a 24hpf embryo under brightfield (a), using a 

GFP filter (b), and then a merged image to show where GFP expression is located in the 

developing embryo.  Figure 14 shows an embryo at 72hpf under brightfield (a), using a 

GFP filter (b) and a merged image to show where GFP expression is located in the 

embryo 72hpf.  These images show clear expression of GFP in the basihyal, 

ceratobranchial, ceratohyal, hyosymplectic, Meckel’s cartilage, ,palatoquadrate as well as 

the gill cartilages and the pectoral fins.  Expression can also be seen in regions of the 

lower tail region surrounding the neural tube.   

 

Development of the Dissection Method 
 
Control of dechorionation:  
 

Initial experiments were carried out using Leibovitz L-15 media supplemented with 10% 

FBS.  Fifteen hpf embryos that had been dechorionated and placed in this media for 24 

hours fully developed and continued to develop for 72 hours (Figure 15). 

 
Media Development:  
 

The first series of dissections were carried out in Dr. Scemama’s lab using a 

dissecting microscope.  The cranial region of the embryo was excised, using the otic 

vesicle as a landmark, cutting directly on either side of it.  These explants were placed in 
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individual wells of a 24 well tissue culture dish containing Leibovitz L-15 media 

containing 10%FBS.  After 24 hours every dissection had become contaminated, and no 

visible migration from the explant could be observed.  The explants did not attach to the 

bottom of the plates.   

To limit contamination, we used a dissecting microscope in a laminar flow hood.  

Again 24 hours after dissections every well was contaminated.  The source of 

contamination was thought to be from the embryo itself so modification of pre-incubation 

period was made.   

After collection, the embryos were treated with a .01% solution of Chlorox for 

5minutes.  The Chlorox was replaced with 10% Hank’s solution three times to ensure all 

Chlorox was removed.  The embryo’s were then placed in 10% Hank’s solution with an 

addition of Methylene Blue and stored at 28°C.  After 15 hours of incubation the chorion 

of the embryos appeared shriveled and embryos appeared affected by the Chlorox wash.  

Dissections were done under a laminar flow hood and in open air.  After dissections, no 

visible migration could be seen and explants had not attached to the bottom of the wells.  

After 24 hours all wells were contaminated.   

In addition to the Chlorox treatment, a less stringent method was also tested.  It 

was considered that maybe the contamination was coming from the media that had been 

sitting in the incubator.  Prior to dissections, but after the 15 hour incubation period, all of 

the 10% Hank’s media was removed and replaced with fresh media.  Results showed that 

although it delayed contamination further than the other tested methods, contamination 

still resulted and no visible adherence or migration could be seen.  The results for these 

experiments are summarized in table 2.   
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In order to stop contamination, antibiotics were going to be needed in small 

concentrations.  Experiments were done testing the minimum concentration of a 

penicillin and streptomycin cocktail necessary to prevent bacterial contamination to 

prevent any adverse interactions on developmental processes.  Results of these 

experiments showed that a concentration of at least 5% (250µg/ml) in solution was 

necessary to prevent bacterial contamination.  Such a high concentration compared to 

other cell culture protocols, led to experiments on different antibiotics.  Gentamicin was 

used in a solution of .01% weight by volume and found to prevent bacterial 

contamination.    

Dissections were carried out using media with the supplemented 50µg/ml 

Gentamicin.  After 24 hours there was no contamination, however there were also no 

cells adhering to the bottom of the petri dish.  After 48 hours every well had 

contamination.  Observation of the contaminants under the microscope led us to believe 

they were yeast.   

Media was supplemented with Fungizone to a final concentration of 50µg/ml.  

Dissections were carried out using the media supplemented with both Gentamicin and 

Fungizone.  After 24 hours no contamination was seen, however none of the explants had 

adhered to the plate.  All explants developed contracting cells in the area that would be 

consistent with heart development.  48 hours after dissections there was still no 

contamination, however explants had balled up and turned black, indicating cell death.  

No cell migration could be visualized.  Summary of these results can be seen in table 3. 
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Explant Adherence: 
 

 Coverslips were used in each of the wells on the tissue culture plate.  The 

coverslips were incubated with varying concentrations of fibronectin ranging from 0 to 

100µg/ml in PBS (table 4).  After 24 hours there was no contamination and explants in 

the wells containing a concentration of 50µg/ml or greater had stuck to the coverslips.  

All explants contained contracting cells, again in the area that would correspond to the 

development of the heart.  After 24 hours cell adhesion could be visualized, however 

migration was sparse.  In the wells with coverslips that had been treated with a 

concentration greater than 50µg/ml of fibronectin, there was a lot of debris from the 

breakdown of the fibronectin matrix.  The rhythmic beating cells lasted in culture for up 

to 72 hours before cells started lifting and dying.  Results of these experiments are 

summarized in table 4. 

 

Dissection Protocol:  
 

Contamination was believed to be caused by the embryo’s themselves so 

dissection protocols were modified to try to prevent this.  As seen in figure 11 a series of 

washes of media were set up on the petri dish at the time of dissection to dilute and wash 

off any contamination found within the embryo.  Embryo’s were dechorionated in the 

fresh Hank’s media and then transferred to the first wash of media.  In this first wash of 

media on the petri dish, dissections were carried out.  Once the explant was removed 

from the embryo, it was transferred using a micro-pipette to the next wash on the dish.  It 

was allowed to sit for a thirty seconds and then transferred again using a different micro-
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pipette to the third wash.  Following this wash another micro-pipette was used to transfer 

the explant to a well of the tissue culture plate.   

 After 24 hours, explants could be seen adhering to the coverslips and cell 

migration again could be seen in sparse amounts.  After 72 hours there was no 

contamination, however the explants began to detach from the coverslips.  After 5 days 

all the explants had lifted off of the coverslips, however there was still no contamination 

that could be visualized.   

 

Dissection of the Embyro:  
 

 Initial dissections carried out left explants with intact heads.  Inconsistent and 

sparse cell migration was believed to be caused by cells being trapped in the head region 

of the explant (undergoing normal migration).  The next set of dissections removed the 

head region above the otic vesicle (Figure 12).  Although these dissections gave more 

migration on occasion, results were variable.   

 In the normal NCC migration pattern of the developing embryo, NCCs migrate 

dorsolaterally as well as dorsoventrally.  Therefore again it was believed that the explant 

being removed contained NCCs that were being trapped inside the ectoderm according to 

normal migration patterns.  A new set of dissections were carried out according to 

previous landmarks, however after the explant was excised from the embryo, a tungsten 

needle was used to scrape away some of the ventral ectoderm to allow cell migration out 

of the explant.  These dissections showed much more consistent migration out of the 

explant, and cell numbers increased.  Results are summarized in table 5. 
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Objective 2: 

Development of In Situ Hybridization Method 
 
Hybridization Buffer: 
 
 Initial hybridization buffer was prepared as follows: 

  100mL Formamide  

  100mL 4X SSC 

  7.88g Tris salt 

 Solution was stirred and heated to 37°C 

  .5g BSA 

  .5g Ficol-400 

  .5g PVP-360 

  1g Sodium Pyrophosphate 

  1g SDS 

Components were mixed together while heated for 60min until everything was in 

solution.   

This recipe was obtained from Dr. Gwen V. Childs at the University of Arkansas protocol 

for in-situ hybridization on thin tissue sections (2006).   

  

Protocol: 
 
 Initial protocol was tested on HT-29 Human colon cancer cell line.  Cells were 

fixed in 4%PFA prior to in-situ protocol.  After the initial testing using cells fixed in 

4%PFA, cells had become detached from the coverslips so we tested a different fixative 
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(2.5% glutaraldehyde) to see if the fixative would make a difference in cells staying 

attached to the coverslip.  Figure 22 shows coverslips where cells were initially fixed 

with 4%PFA and coverslips which were initially fixed with 2.5% glutaraldehyde.  

Protocol was modified to fix cells initially in 2.5% glutaraldehyde.   

 Experiments were performed to test the optimal concentration of proteinase K 

needed for the protocol.   Each experiment was done using the probe for human actin.  

No staining of the cells was observed for proteinase K concentrations of 0, 2.5 or 5 

µg/ml.  While we observed staining in every cells for concentration ranging from 10  to 

20 µg/ml.  Because we did not noticed significant differences between the 10 to 20 µg/ml 

concentrations, we decided to use the lowest dose of10 µg/ml in the rest of the 

experiments. 

   

Sensitivity: 
 
 To develop the protocol in our lab, we used a probe targeting the mRNA encoding 

β actin, a gene we knew will be strongly expressed in every cells.  To test the sensitivity 

of the assay, we performed the same experiment with a probe targeting Hoxa10 gene. 

Figure 26 shows the results of these tests.  Arrows represent staining inside the nucleus of 

cells expressing Hoxa10, where arrow heads show the cells that have not been stained or 

are not expressing Hoxa10 in the nucleus.  These images show that not every cell 

expresses the gene for Hoxa10, and those that do express the gene, the staining is only 

found in the nucleus.  The absence of staining in the cytosol may be due to the low 

concentration of mRNA present.   
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Additional Cell Lines: 
 
 In addition to testing HT29 cells, it was necessary to see if this technique was able 

to be applied to other cells in culture. We used an additional colon cancer cell line Caco2 

to show this technique could be used across cell lines.  Actin staining on Caco2 cell lines 

also shows positive results for the anti-sense probe for beta actin.  Negative controls 

shows no staining indicating the stained portions were not due to background, but due to 

the binding of our probe to the actin mRNA suggesting this technique can be used on 

other cell lines.  
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Discussion 

 The purpose of this research was to develop a reproducible method for cultivation 

of cranial neural crest cells as well as a method for distinguishing cell populations in cell 

culture.  The research reported in this thesis has demonstrated that our protocol developed 

for cranial neural crest cell cultivation is viable and reproducible.  We have shown using 

a GFP-SOX10 transgenic line of zebrafish that cells migrating out of the cranial explants 

show GFP expression, which is consistent with previous documented results showing 

SOX10 expression in cranial neural crest cells (Baroffio 1991).  We have also shown 

cells, as well as explants, expressing the neural cell marker HNK-1 consistent with 

previous documented results showing neural crest cells expression of HNK-1(B. 

Sadaghiani 2009).  Using β-actin as a positive control, we further develop a method to 

distinguish cell populations in cell culture using in-situ hybridization based on 

differential gene expression.  We tested the sensitivity of our assay by analyzing the 

expression of a gene expressed at lower levels than β-actin. 

   

Development and analysis of explant protocol 
 
 Previously, Langenberg et al. showed that it was possible to dechorionate 

zebrafish embryo, remove their yolk sack and have the embryo development continue 

through organogenesis and cellular migration.  Bingham et al. showed that it was also 

possible to take that whole embryo and excise specific portions of it out and allow it to 

develop with normal cellular migration.  Although each study showed that explantation 

of the developing embryo was possible, both studies had embedded their explants in agar 
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and solely visualized developmental processes that took place inside of the developing 

embryo.   

 Dissections began with excision of the head region as seen in the first column of 

table 5.  These dissections led to full development for up to 48 hours in the explant, but 

no cells had migrated from the explant and no explant had attached to the coverslips on 

the bottom of the wells.  There was also a lot of contamination problems following 24 

hours of incubation.  Future dissections were carried out with a more specific landmark, 

the hindbrain (Figure 12).  Again with the exception of a few cells migrating out of the 

explants but not sticking to the coverslips, for the most part dissections were 

unsuccessful.   

 Contamination problems were approached on two fronts, the first being the actual 

dissection technique and sterility, and the second being additives to the media.  At first 

the contamination seemed to be bacterial, so dissections were moved to under a fume 

hood where gloves and a mask were worn.  Everything, including the dissecting 

microscope were sprayed with seventy percent ethanol and allowed to air dry.  The 

embryos were treated with a Chlorox bath prior to bringing them under the fume hood for 

dissections to try and ward off any bacteria getting in through the embryo media.  The 

Chlorox made the embryos brittle and affected the development and was stopped.  

Instead new 10% Hank’s media was used to replace the media the embryos had been 

developing in for 15 hours.  Although this kept contamination down for about 24 hours, 

contamination occurred in every well post 24 hours.  Table 2 shows the results of 

experiments that were done both under a laminar flow hood, and in open air.  The results 

showed that although exchanging the 10% Hank’s media did not ward off all bacterial 
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contamination, it prolonged the cultures longer than any other treatment.  Table 2 also 

shows that the best results were obtained under a laminar flow hood.   

 Our next stage of dealing with contamination was on additives to the media.  

Although many antibiotics affect developmental processes the addition of small 

concentrations of antibiotics were necessary to prevent contamination.  We added a 

cocktail of penicillin and streptomycin at first at very low concentrations (1% in 

solution).  These low concentrations had little effect on keeping bacterial contamination 

down.  As much as a 5% concentration of the cocktail had to be used in order to keep 

contamination at bay.  As it is known that pen/strep cocktails in high concentrations can 

have an effect on cellular morphology and possibly differentiation of cells, this 

supplement was much too high.  Gentamicin is a more broad-spectrum antibiotic than 

penicillin and streptomycin.  Although it has been shown to be lethal to cells in culture at 

high concentrations, at low concentrations it is more effective than the pen/strep cocktail.  

We used a very small concentration of Gentamicin (>.01%), which stopped bacterial 

contamination completely for seven days, however 24 hours later we found yeast 

contamination.  Another additive was necessary for the prevention of fungal 

contamination and so the media was supplemented with fungizone.  Table 3 shows the 

results of these experiments.  All experiments reported on Table 3 were conducted under 

a laminar flow hood, and all dissections were carried out using the replacement of Hank’s 

media procedure as previously discussed.  Contamination was prevented for up to seven 

days although the adhesion of the explant and cellular migration was non-existent.   

 Fibronectin has been used in many cell-culturing techniques to help cells adhere 

to smooth surfaces more easily.  Different concentrations of fibronectin were tested for 
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the optimal concentration of fibronectin needed for the protocol (Table 4).  Optimization 

was determined by cellular adherence vs contamination found in the media as fibronectin 

begins to break down after 24 hours.  Wells that had coverslips treated with fibronectin in 

concentrations of over 50ug/ml showed explant adhesion and sparse cellular migration.  

After 24 hours wells were monitored for debris from the breakdown of fibronectin.  It 

was found that above 50ug/ml debris from the breakdown of the fibronectin matrix was 

excessive and a threat to the cells cultured on the plate once the excess began to lift into 

the media.  50ug/ml of fibronectin was used in all further dissections.  Table 4 

summarizes all of these results.  All experiments from table 4 were conducted using the 

optimal media found in table 3 as well as the optimal techniques found in table 2 and 

discussed in previous sections.   

 With the addition of the fibronectin coating on the coverslips, we were now 

capable of getting the explants to adhere.  The adhesion of the explant however did not 

lead to many gains for the cultivation of cranial neural crest cells.  After many hours of 

dissections and fine-tuning of the boarders and boundaries of our landmarks there was 

still little migration to show.  When studying the migration patterns of neural crest cells 

out of the hindbrain, it occurred to us that maybe the cells were migrating, however 

because the explant was whole, the cells were migrating inside the explant and were 

unable to breach the ectoderm and therefore not able to migrate out on to the coverslips.  

After visualizing the GFP-Sox10 embryos at 13 and 14 hpf, it was clear that all of the 

neural crest cells began their journey at the ventral portion of the hindbrain.  16 and 17 

hpf the neural crest cells could be seen migrating dorsally.  A modification of the 

dissections were made to scrape away some of the dorsal ectoderm to allow for cellular 
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migration.  With the addition of this piece our protocol allowed for cultivating and 

migrating cells from our explant.  Table 5 summarizes the results found during these 

experiments.  All experiments from table 5 were kept under the optimal conditions found 

in the previous sections.   

 Once our system was in place for collecting migrating cells, it was necessary to 

distinguish what type of cells we were in fact cultivating.  The process of cell 

identification occurred in two ways, one using our GFP line of transgenic fish, and the 

other using a known neural crest cell marker for immunostaining.   

 Sox10 is a gene that has been linked to neural crest cells.  It has been 

demonstrated to be an integral part for neural crest cell production and for them to remain 

in their undifferentiated states (Hong 2005).  During development sox10 has been 

characterized in both early and late migrating neural crest cells, and has also been shown 

in glial cells of the adult zebrafish (Hong 2005).  Therefore cells that express sox10 can 

be said to be either neural crest cells, or a derivative of neural crest cells.  Schilling’s lab 

created a transgenic line of zebrafish that coupled the GFP gene to a Sox10 promoter.  

Therefore those cells which express Sox10 would also express GFP and could be 

visualized under a GFP filtered microscope.  Cells that fluoresce under the GFP filter can 

also be said to be neural crest cells, or neural crest cell derivatives.    

We have shown that a large number of our cells that migrate from the explants 

express GFP and therefore express or have expressed at one time sox10.  Figure 18 shows 

an explant that was allowed to develop for 24 hours as well as cells that have migrated 

from this explant.  Figure 18A is a brightfield image of this explant at 100X which shows 

adhesion of the explant as well as migration.  Figure 18B shows the same brightfield 
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image under a GFP filter showing GFP expression.  Figure 19 shows merged brightfield 

and GFP filtered images, further showing these cells are expressing GFP.  These figures 

indicates that cells that have migrated from this explant are expressing, or have expressed 

GFP indicating they have or are expressing Sox 10.     

 In development, the ectoderm is split into segments, the ectoderm, the neural 

ectoderm, and the ectoderm.  During neurulation, the neural ectoderm invaginates 

bringing the non-neural ectoderm regions together.  This process of neurulation creates 

the neural tube, and a region found at the top of the invagination of neural ectoderm, 

which will become the neural crest and neural crest cells (Figure 16).  HNK-1 is a 

monoclonal antibody that recognizes an antigen that is specific for tissues of neuro-

ectodermal origin, which is why HNK-1 has been used as a marker for the neural crest 

and neural crest cells.  Figure 20 and figure 21 show examples of cell explants and 

migrating cells that have been stained with HNK-1.  We have shown that cells that 

migrate from our explant as well as portions of our explant stain positive for HNK-1.   

Together with the results from the sox10 visualization, we can strongly suggest 

that the cells we have migrating onto coverslips in culture are of neural crest origin.  

Further studies need to be done in order to fully and correctly characterize these cell 

populations to determine what cells have migrated out of the explants, and what state 

they are in once adhered to the coverslip (differentiated or undifferentiated).   

 After seven days in culture the cells would all begin to detach and die off without 

dividing or replicating.  Our lab tested the addition of L-glutamine, a known additive to 

media to help stimulate division.  We tested concentrations as high as 10% by volume 

and in each case we were unable to stimulate cell division.  Our lab also investigated the 
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possibility of addition of neurogenin1, known to stimulate division in neural crest cells in 

vivo.  Again with concentrations as high as 200ng/ml we were unable to stimulate 

division.  Further studies need to be done on prolonging the cells to remain in culture and 

replicate.  There are many studies done on proliferation of neural crest cells in vivo, but 

we did not succeed to get these cells to proliferate in vitro.   Additional studies need to be 

done on these cells in culture in order to develop a more stable environment for cell 

proliferation, or the creation of an immortalized cell line.   

 

Development of in-situ hybridization on cells in culture 
 
 Our labs initial intention was to develop a system of in situ hybridization in cell 

culture that could be used on our explants to characterize cell populations migrating from 

our explants.  Methods for in situ hybridization on whole mount embryos were taken 

from Dr. Capehart, and Dr. Scemama, and methods for in situ hybridization on thin 

section slices were taken from Dr. G Childs (2006) and combined to create a 

hybridization buffer as well as a starting point for a protocol.   

 A probe was developed for beta actin using amplified cDNA from HT-29 cell 

lines.  The probe was tested using a dot blot assay and found to be at a concentration of 

250ng/ul.  The same procedure was used to create a probe for human HoxA10.   

 Investigation into the components of the protocol led to a hypothesis that the 

initial PFA fixation was not sufficiently keeping the cells intact during the hybridization 

step and the subsequent washes.  After investigation of other alternatives, our lab 

hypothesized that if cells were initially fixed with a glutaraldehyde fixative, and then 

secondarily fixed with PFA the cells would remain attached to the coverslips.  Testing of 
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this hypothesis led to positive results for cells that had been first fixed with 

glutaraldehyde, however staining remained spotty and insufficient when using the beta 

actin probes.   

Further investigation into the components of the protocol led to the belief that the 

concentration of the proteinase K was not sufficient to allow every cell to be 

permeabilized thus allowing the probe to infiltrate the cell and hybridize with the 

complimentary RNA.  Testing began on different concentrations of proteinase K starting 

from the removal completely of proteinase K to the addition of a 20ug/mL solution.  Over 

perforation of the cells could result in non-specific staining as well as cells being lifted 

off of the coverslips, so optimization testing was done to show the most optimized 

solution for proteinase K.  As indicated in our results, 10ug/mL led to full staining of 

every cell, while keeping the cells attached to the coverslip.  Below 10ug/ml, staining 

was insufficient and spotty and above 10ug/ml cells began to detach.  Figure 24 shows 

positive results for human beta actin staining as well as the negative control.  This image 

also shows the ability of the technique to maintain cells on the coverslips during the 

frequent washes and hybridization.  

Once the protocol had been sufficiently worked out to produce positive results for 

beta actin in the majority of the cells, sensitivity testing was done to see how specific this 

method for in situ hybridization could be.  A probe for Hox A10 was used to show that 

genes that were not as widely expressed across the cell line could also be used to 

characterize individual cells.  Our results indicate that Hox A10 is capable of being used 

as a probe to gain positive results on HT-29 cells.  As seen in figure 25 the full arrows 

indicate staining inside the nucleus of cells, where the arrowheads indicate cells which 
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had no staining inside the nucleus.  Although our results indicate some cells with staining 

inside the nucleus and some cells that do not show staining, our results do not show if the 

fact that some cells do not show staining indicates that the cells are not expressing Hox 

A10 because of a possibility of incomplete staining.  Further testing needs to be done on 

the sensitivity and accuracy of this protocol before it can be sufficiently used to show 

accurate results.   

Our lab wanted to show that this positive testing we were getting from human 

beta actin on HT-29 cells could be transferred across cell lines.  We hypothesized that if 

we had in fact created a probe for beta actin, and our in situ hybridization protocol had 

been worked out, then we should be able to get positive results for beta actin on another 

human cell line.  We tested the Caco2 cell line with our human beta actin probe and again 

received positive results.  These positive results indicate that this method for cell 

characterization might be one day perfected and used as an additional method for cell 

characterization on cells in culture. 
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Conclusion 
 
 The studies presented in this thesis are an important addition to the scientific 

community and could possibly lead to many exciting endeavors in developmental 

understanding.  It is in understanding processes and pathways that occur during 

development that we can begin to troubleshoot problems that arise in developmental 

processes.  Characterization of these pathways in zebrafish is the beginning in 

understanding similar pathways in higher organisms.  Treatments for many 

developmental defects involving cranial neural crest cells such as cleft pallet, Pierre 

Robin syndrome, Warding Shah syndrome and many others can be found simply by 

understanding what goes wrong during these developmental processes in neural crest cell 

migration and differentiation.   

 Characterization of the differentiation of cranial neural crest cells can also lead to 

advances in the treatment for Alzheimer.  Understanding of the differentiation of neural 

crest cells into neurons and understanding neurogenesis that goes on within these cells 

can lead to possible advances and possible treatments for the regeneration of neurons 

within adults.   

 Although the suggestions made in this thesis for future application of this research 

is in the distant future, this research is the groundwork that will be necessary for 

development of future progression in developmental studies.  
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Figure 1 

 

Neurulation and Neural Development: The process of neurulation: 1) and 2) ectodermal 
epithelium condensation and columnization; 3) and 4) neural keel formation and 

separation from the surrounding ectodermal epithelium (edited from Gilbert 2000) 
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Table 1 

 

Table 1: List of some of the cell types that can arise from Neural Crest Cells (neurones, 
glial cells, pigment cells, endocrine cells, and mesenchymal cells)(Column 1) and some 

of the cell types those derivatives can differentiate into (column 2) 
 

 

 

 

Arise From NC Differentiates into 

• Neurones Peripheral nervous system (PNS): sensory, 

sympathetic and enteric ganglia 

• Glial cells PNS satellite glial cells and Schwann cells 

of peripheral nerves 

• Pigment cells Skin melanocytes 

• Endocrine cells C cells of the thyroid, Catecholaminergic 

cells of the adrenal gland 

• Mesenchymal cells in head and neck Cartilages and bones 

Odondoblasts 

Dermis 

Connective tissues in muscles and glands 

Meninges of the forebrain 

Vascular smooth muscle cells 

Adipocytes 
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Figure 2 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Regions of the Neural Tube and Cell Derivatives from these Regions: Different regions 
of the neural crest and what cell types they are responsible for differentiating into based 

on location within the embryo (edited from Gilbert 2000) 
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Figure 3 

 
 

Craniofacial Bones and Cartilages Derived from the Cranial Neural Crest: Bones 
colored in blue represent PA1-derived bones.  Bones colored in red represent PA2-

derived bones.  Bh, basihyal; cb, ceratobranchial; ch, ceratohyal; hs, hyosymplectic; Mc, 
Meckel’s cartilage; pq, palatoquadrate;(Schilling 2001) 
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Figure 4 

 

Figure 4: Transplantation method done on quail and chick embryos.  Part of the 
developing embryo’s neural tube was dissected out and fused with a host embryo.  The 

resulting organism is a chimera of both embryos. These studies dissected different 
portions of the neural tube to distinguish each portions role in the developmental process 

(Le Douarin 1969). 
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Figure 5 
 

 
Chick Quail Chimera Formed from Neural Crest Transplant Studies: Top left shows 
the organisms used in Le Douarin’s study a normal chick compared to a normal quail 

hatchling.  The top right shows the chimera formed after a segment of the cranial neural 
tube had been transplanted from a quail into a chick embryo.  The facial features 

resemble that of a quail while the body resembles that of a chick.  The bottom photo is 
another chimera where the trunk region of the neural tube from a quail was transplanted 
into the embryo of a chick.  The resulting hatchling resembles the midsection of a quail 
and the rest of a chick.  These studies show what regions are responsible for what parts 

developmentally (Le Douarin 1969). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
43 

 
 

Figure 6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Langenberg et al Explant Experimental Procedures and Results: The image to the left 
indicates the procedure followed by Langenberg et al to create whole head explants 
mounted in agarose to visualize organogenesis of the brain.  The image to the right 

shows the normal developmental processes of organogenesis of the brain in the head 
explants of zebrafish embryos (Langenberg 2003). 
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Figure 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bingham et al Experiments on Explantation and Gene Patterning on Explants: This 
figure is a study done by Bingham et al testing the morphology, migration, and 

development of wild type zebrafish embryos vs explanted zebrafish embryos.  The column 
to the left shows a normal developing embryo where the column to the right shows the 

explant. In all cases there is no clear difference in gene patterning, morphology or 
migration between the wild type and the explants (Bingham et al 2003). 
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Figure 8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gene Expression in Hindbrain Rhombomeres: Hox expression in the rhombomeres of 
the developing mouse embryo (Edited from Santagati 2003). 
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Figure 9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gene Expression of Cells Migrating out of Hindbrain: Hox expression of the cranial 
neural crest cells that migrate from the rhombomeres of the mouse hindbrain  (Edited 

from Santagati 2003). 
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Figure 10 

 
Egg Collection System: Egg collection system that was used in the tanks to collect 

embryos for dissection experiments.  The top left shows the bottom of the mouse cage 
which is solid followed by the image to the right of that showing the grated insert with 

pores that allow eggs to fall through. 
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Figure 11 

 
Petri Dish Setup for Dissections: Setup of the petri dish used during zebrafish hindbrain 
dissections.  The blue indicates embryos in 10% Hank’s solution.  The purple indicates 

fresh media.  The embryos were dechorionated in the blue and brought to one of the 
purples where the dissections took place.  Once dissected out, the explant was moved to a 

second, and a third wash station before being placed in a well in a tissue culture dish. 
The embryos were then placed in dissecting wells and allowed to develop for 24 hours. 
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Figure 12 

 

Schematic of Explant Dissections: Portion of the developing embryo that was used as 
the hindbrain explant during dissections. The red indicates a cut that had been done to 

the embryo.  In between the red hash marks is the otic vesicle which was used as a 
dissecting landmark. 
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Figure 13 

 
GFP Expression in 24hpf Zebrafish Embryo: A) 24hpf embryo under brightfield, B) 
same embryo under a GFP filter, and C)  a merged image showing GFP expression in 

the developing embryo 24hpf 
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Figure 14 

 
GFP Expression in 72hpf Zebrafish Embryo: A) 72hpf embryo under brightfield, B) 

same embryo under a GFP filter and C)  merged image of the two.  C shows GFP 
expression in the developing embryo 72hpf. 
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Figure 15 
 

 
Developing Embryo 24hpf in Dissecting Media: Embryo that was dechorionated after 

15hpf and allowed to develop 24hpf in dissecting media. 
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Table 2 
 
 

 No 
Hood 

No Hood 
+ .01% 
Chlorox 

No Hood 
+ 

Exchange 
10% 

Hank’s 

Hood Hood + 
.01% 

Chlorox 

Hood + 
Exchange 

10% 
Hank’s 

 
Contamination 

(After 24h) 

 
X 

 
X 

 
X 

 
X 

 
X 

 
Prolonged 

 
Adhesion 

 
No 

 
No 

 
No 

 
No 

 
No 

 
No 

 
Migration 

 
No 

 
No 

 
No 

 
No 

 

 
No 

 
No 

 
 

Table 2: Table shows the results of a group of experiments testing for affect on 
contamination, adhesion, and migration.  No Hood refers to experiments that were not 

done under a laminar flow hood, .01% Chlorox refers to a rinsing of the embryos before 
incubation with a Chlorox solution (see materials and methods), and Exchange of 10% 
Hank’s refers to an exchange of the old media the embryos were developing in prior to 

dissection with new media before dissections were carried out. 
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Table 3 
 

 1% Pen/strep +5% Pen/strep .01% 
Gentomyocine 

.01% 
Gentomyocine 

+.01% 
Fungizone 

Contamination 
(Bacterial) 

 
Yes 

 
No 

 
No 

 
No 

Contamination 
(Fungal) 

 
Yes 

 
Yes 

 
Yes 

 
No 

 
Adhesion 

 
No 

 
No 

 
No 

 
No 

 
Migration 

 
No 

 
No 

 
No 

 
No 

 
Table 3: Table summarizes the results of experiments done testing different 

concentrations of antibiotic cocktails on contamination, adhesion, and migration. 
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Table 4 
 

  
0µg 

 
25µg 

 
50µg 

 
75µg 

 
100µg 

 
Contamination 

of media 

 
No 

 
No 

 
No 

 
Yes 

 
Yes 

 
Adhesion 

 
No 

 
No 

 
Yes 

 
Yes 

 
Yes 

 
Migration 

 
No 

 
No 

 
Some 

 
Some 

 
Some 

Table 4: Summarizes experiments done on the concentration of fibronectin in µg/ml of 
PBS ‘vs’ contamination of the media by the fibronectin excess, adhesion of the explant, 

and migration from the explant. 
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Table 5 
 

 

   
 

Contamination 
 

No 
 

No 
 

No 

 
Adhesion 

 
Yes 

 
Yes 

 
Yes 

 
Migration 

 
No 

 
Little 

 
Yes 

 
Table 5: Summarizes the results of contamination, adhesion, and migration on the 
explant location.  The first dissection landmark was just behind the otic vesicle, the 

second was in front of and behind the otic vesicle, and the third was using the same as 
the second, but scraping away some of the ectoderm on the ventral side. 
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Figure 16 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Process of Neurulation and Production of the Neural Crest and Neural Crest Cells: 
This image shows the differentiation and formation of the neural crest, neural crest cells 
and the neural tube in a process called neurulation which occurs by the invagination of 

the neural plate.  This invagination results in the coming together of two portions of 
neural ectoderm which results in the formation of the neural crest (image edited from 

Gilbert 2000). 
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Figure 17 

 

 

 
 

Explant with Migrating Cells: Three different examples of zebrafish hindbrain explants 
that had been dissected 15hpf and allowed to develop in media for 24 hours.  These 

images show migrating cells emigrating from adhered explants. 
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Figure 18 

 

 
GFP Expression in Explant and Migrating Cells: Explant from a 15hpf sox 10-GFP 

transgenic zebrafish embryo after placed in media and allowed to develop for 24 hours 
after dissection.  Figure A) shows a brightfield image of explant 24 hours after 

dissection.  Figure B) Shows the same image under a GFP filter.  These images show 
migrating cells which are expressing GFP. 
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Figure 19 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GFP Overlay of Brightfield and GFP Filtered Images: Hindbrain explant from a sox 
10-GFP transgenic zebrafish embryo after allowed to develop 24 hours in media.  This 

shows a merged image of the brightfield and the GFP filtered images.  The overlap shows 
a large majority of cells that have or are expressing GFP. 
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Figure 20 

 

 
 

HNK-1 Stained Explant and Migrating Cells: Hindbrain explant from a sox 10-GFP 
transgenic zebrafish embryo 15hpf and allowed to develop in media 24 hours after 

dissection.  Image shows an explant with migrating cells that have all been stained with 
HNK-1. 
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Figure 21 

 

 
HNK-1 Stained Explant and Migrating Cells: Hindbrain explant from a sox 10-GFP 

transgenic zebrafish embryo 15hpf and allowed to develop in media 24 hours after 
dissection.  This image shows an example of an explant with migrating cells stained with 

HNK-1 
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Figure 22 

 

 
Remaining Cells After Pre-fixed in 4%PFA and 2.5% Glutaraldehyde and Exposed to 

In Situ Protocol: The image on the left shows a coverslip with HT-29 cells that have been 
fixed with 4%PFA initially.  The image to the right show a coverslip with HT-29 cells 

that have been fixed with 2.5% glutaraldehyde.  After initial fixation protocol for in situ 
hybridization was performed. 
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Figure 23 

 

 
Experimental Setup Testing Concentrations of Proteinase K: This shows a set up for an 
experiment testing the concentration of proteinase K (along the bottom) in µg/ml in the 

protocol for in situ hybridization. 
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Figure 24 

 

 
 

Positive Staining of Human Beta Actin on HT-29 Cells: The first and the second image 
show positive staining for human beta actin on the HT-29 human colon cancer cell line.  

The third image shows a negative control for human beta actin. 
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Figure 25 

 

 
 

Positive Nucleus staining of hox a10 on HT-29 Cells: HT-29 human colon cancer cells 
that have been exposed to an in situ hybridization protocol with probes for Hox A10.  The 

arrows show positive staining in the cell nucleus while the arrow heads show cells 
without staining. 
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