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Abstract 

Breast cancer is one of the leading causes of deaths in women worldwide. 5-flourouracil 

(5-FU) is a classic chemotherapeutic drug that has been widely used in the treatment of breast 

cancer patients. In this study, using several biochemical techniques, we studied the global effects 

of 5-FU treatment on MCF7 breast cancer cells. The dose-response curve obtained after the 

treatment of MCF7 cells with 23 different 5-FU concentrations for 48 hours showed an atypical 

bimodal or biphasic curve, thus indicating a plausible dual mechanism of action for 5-FU. After 

48 hours of treatment with 5-FU, the cells were found to be apoptotic, with a distinct reduction in 

the cell size, compromised anchorage ability but no significant alteration in the cell cycle 

progression. These findings provided evidence of the global inhibitory effects of 5-FU on human 

breast cancer cells in vitro and warranted further evaluation to study the molecular basis of  

aberrant expression of protein-coding genes previously reported after 5-FU treatment. We 

hypothesized that microRNAs (miRNAs), the newly identified class of small regulatory RNAs, 

might play a mediator role in inducing the cytotoxicity of 5-FU, by regulating the expression of 



 

 

its target genes. Using a combined advanced microarray and quantitative real time PCR (qRT-

PCR) technology, we found for the first time that 5-FU significantly altered the global 

expression profile of miRNAs in MCF7 breast cancer cells. After 48 hours of treatment with a 

low dose (0.01µM), 42 miRNAs were differentially expressed in MCF7 cells (23 up-regulated, 

19 down-regulated). A majority of these miRNAs have been previously associated with cancer 

development, and were predicted to potentially target many oncogenes and tumor suppressor 

genes. To further understand the connection between miRNA dysregulation and 5-FU therapy, 

we investigated the dose- and time-dependent modification in the miRNA expression levels after 

5-FU treatment. Eleven miRNAs (let-7g, miR-10b, miR-15a, miR-16, miR-21, miR-27a, miR-

365, miR-374b, miR-483-5p, miR-574-3p and miR-575) previously identified in the microarray 

to be differentially expressed after treatment were selected to analyze their responsiveness to 

eight different 5-FU dosages of 0.001, 0.005, 0.01, 0.1, 0.7, 1, 5 and 10µM. Of these, miR-10b, 

miR-21, miR-365 and miR-483-5p were shown to be significantly regulated in a beneficial way. 

Time-response data was also generated for miR-10b, miR-21, miR-483-5p, miR-574-3p and 

miR-575 following 12, 24, 36, 48, 60 and 72 hours treatment with 0.1, 0.7 and 10µM 5-FU. The 

data obtained suggested that miRNA expression in MCF7 cells is sensitive to 5-FU therapy at 

low doses and shorter treatment durations. The down-regulation of an important oncomir, miR-

21; and alteration in the expression of three new miRNAs with no previous breast cancer 

association, miR-483-5p, miR-574-3p and miR-575 indicates that miRNA might play an 

important role in 5-FU therapy. In conclusion, miRNAs were shown to play an important 

regulatory role in 5-FU induced cytotoxicity and fit in perfectly in the intricate network of 5-FU 

activity. 
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Chapter 1: Review of Breast Cancer, Chemotherapy and MicroRNAs 

Breast cancer: An Overview 

Breast cancer is one of the leading causes of deaths worldwide. It is the most common 

cause of death in women between the ages of 45 and 55. The American Cancer Society reported 

465,000 deaths worldwide due to breast cancer alone in 2007. Breast cancer incidence in women 

in the United States is about 1 in 8 (~13%). Although it is a common form of cancer in women, 

male breast cancer cases have also been reported and it accounts for about 1% of all cancer 

deaths in men (American Cancer Society). Breast cancer is the cancerous growth of the tissue in 

the breasts, which can be benign or malignant. Benign breast tumors result in fibrocystic 

deposition in the breast, causing lumpiness of the breast. Malignant breast tumors can spread 

(metastasize) to different tissues or organs by the blood stream or lymph system; the most 

common sites are the bones, liver, lungs, and brain. According to the American Cancer Society, 

an estimated 192,370 new cases of breast cancer were diagnosed and approximately 40,170 

women died from breast cancer in the year 2009. 

There are several risk factors associated with breast cancer. Genetic mutation and 

heredity is one of the major reason causing breast cancer; for example, genetic mutations in the 

BRCA1 and BRCA2 genes. However, only about 5-10% of breast cancers are hereditary; other 

causes include age, alcohol consumption, obesity, hormone replacement therapy, and birth 

control pills consumption. Early breast cancer does not show any significant symptoms. Gradual 

development of the cancer results in formation of a lump in the breasts, change in shape, size, 

color or texture of breast or discharge from nipple. Breast cancer can be diagnosed by careful 

physical examination, mammography, ultrasonography, Magnetic Imaging Resonance (MRI) 

and breast biopsy. With recent technological advances, gene expression profiling is also used to 
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detect early breast cancer and predict their prognostic outcomes. Three such gene expression–

based prognostic breast cancer tests have been licensed for use: Oncotype DX (Genomic Health, 

Redwood City, California), MammaPrint (Agendia BV, Amsterdam, the Netherlands), and H/I 

(AvariaDX, Carlsbad, California). 

Types of breast cancer 

There are several types of breast cancer, but the most common types are ductal carcinoma 

and lobular carcinoma. The other types of breast cancers are relatively rare. Some of these 

cancers are in situ carcinomas, which mean that the cancer cells remain confined to ducts or 

lobules and do not grow into deeper tissues in the breast or spread to other organs in the body. 

These are sometimes referred to as non-invasive or pre-invasive breast cancers. The more 

aggressive breast cancers are the invasive or infiltrating carcinomas which have spread to the 

other breast tissues and other organs of the body.  

The following list entails the different types of breast cancers: (American cancer Society, 

Inc.; National Breast Cancer Foundation, Inc.; Breastcancer.org)  

Ductal carcinoma: This is the cancer of the ducts, the passageway which carries milk 

from the milk-producing lobules to the nipple. It can be non-invasive (in situ) or invasive 

(infiltrative). It is the most common type of cancer, accounting for about 85 – 90% of breast 

cancer cases. 

Lobular carcinoma: It arises in the lobules, the milk-producing gland of the breast. It is 

the second most common type of breast cancer, occurring in about 8% of the cases. 

Inflammatory breast cancer: This is an uncommon type of invasive breast cancer, in 

which the cancer cells block the lymph vessels around the breast, making the breast look red, 
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warm and with a pitted appearance. There is usually no lump or tumor found, and it accounts for 

about 1-3% of all breast cancer cases. 

Medullary carcinoma: This is a rare type of invasive ductal carcinoma in which the 

cancer cells are morphologically different and bigger than the normal breast cells, and there is a 

well defined boundary observed between the cancerous cells and normal cells. 

Metaplastic carcinoma: This type of breast cancer includes a range of cancers of mixed 

epithelial (cells lining the breast) and mesenchymal (connective tissue if the breast) cells, which 

then change into squamous (nonglandular) cells. This cancer does not have estrogen receptors 

(ERs), progesterone receptors (PRs), or HER2/neu protein. 

Mucinous (colloid) carcinoma: It is the cancer of the mucus-producing cells. They are 

usually estrogen receptor positive and HER2/neu negative. 

Tubular carcinoma: This is a rare type of invasive ductal carcinoma in which the cancer 

cells have a tubular microscopic appearance. Tumors are generally small, estrogen receptor 

positive and HER2/neu negative. 

Papillary carcinoma: It is a type of rare ductal carcinoma in situ in which the cells are 

arranged in small, finger-like projections (papilla) when viewed under the microscope. These are 

rarely invasive and are more prominent in older women. 

Adenoid cystic (adenocystic) carcinoma: These cancers have both glandular (adenoid) 

and cylinder-like (cystic) features under the microscope. They make up less than 1% of breast 

cancers and are rarely invasive. 
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Phyllodes (phylloids) tumor or cystosarcoma phyllodes: It is a rare sarcoma, cancer of the 

stroma (connective tissue), which is usually benign. 

Angiosarcoma breast tumor: A breast angiosarcoma is a rare type of breast cancer which 

starts in cells that line the blood vessels within the breasts. 

 Molecular genetics of breast cancer 

 Carcinogenesis is a multistep process which usually involves genetic alterations that 

influence important cellular pathways. About 10% of the breast cancer cases are shown to be 

hereditary, which results mainly due to genetic defects or mutations in the genome inherited 

from the parent. Women with these mutations have up to 80% risk of developing breast cancer 

during their lifetime. About 90% of breast cancers are due not to heredity, but mainly sporadic 

cancers, resulting from acquired somatic mutations or genetic abnormalities that happen as a 

result of aging process and life in general. More recently, using advanced technologies such as 

comparative genome hybridization (CGH), fluorescence in situ hybridization (FISH), 

chromosome painting and microsatellite marker analysis, the genome of the breast cancer cells 

have been shown to be highly unstable (Hedley, Rugg et al. 1987; Tirkkonen, Johannsson et al. 

1997; Ingvarsson, Geirsdottir et al. 1998; Lingle, Barrett et al. 2002). These are due to mutations 

or other alterations in the tumor suppressor genes and amplification of the oncogenes. Alterations 

in the tumor suppressor genes would cause loss-of-function effects, while oncogenes cause gain-

of-function effect that contribute to the malignant breast cancer phenotype. Table 1.1 gives the 

list of different oncogenes and tumor suppressor genes which usually undergo alterations in 

breast cancer. 
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Strategies for breast cancer treatment 

There are several treatment options available for the management of breast cancer. It can 

be treated either locally or systemically. Local treatment includes surgery (mastectomy or 

lumpectomy) and radiation therapy; while systemic treatment includes chemotherapy and 

hormone replacement therapy. There are several chemotherapeutic drugs used for the treatment 

of breast cancer (Table 1.2) that are usually used as an adjuvant therapy along with surgery.  In 

many cases, a combination of two or more medicines will be used as chemotherapy treatment for 

breast cancer (Table 1.3). However there are several side-effects associated with treatment with 

chemotherapeutic drugs, like anemia, hair loss, nausea, vomiting, diarrhea, etc . Hormonal 

therapy is also widely used for the management of breast cancers that are sensitive to hormones. 

These are usually estrogen and progesterone-receptors positive breast cancers. Table 1.4 gives 

the list of drugs used in hormone therapy. 

Recent advances in research and technology has seen the development of targeted drug 

therapies such as bevacizumab (Avastin – anti-angiogenesis drug designed to inhibit the 

signaling of cancer cells to new blood vessels); lapatinib (Tykerb – targets the protein HER2) 

and trastuzumab (Herceptin – targets the protein HER2), which are more specific for breast 

cancer treatment and are less likely to harm normal, healthy cells. More work is needed to 

improve chemotherapy for breast cancer and to develop new therapies to alleviate breast cancer 

and improve the general quality of living. 
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Chemotherapy and 5- Fluorouracil 

Several chemotherapeutic drugs are used for the treatment of breast cancer. 5-fluorouracil 

(5-fluoro-1H-pyrimidine-2,4-dione or 5-FU) is an important chemotherapeutic drug which is 

widely used for the treatment of different cancers, mainly breast (Fumoleau, Bonneterre et al. 

2003), colorectal (Wils, O'Dwyer et al. 2001) and head and neck cancers (Posner, Colevas et al. 

2000). It was first synthesized in 1957 by (Heidelberger, Chaudhuri et al. 1957). It has been in 

use for about 50 years and is available in market under different trade names – Adrucil®, 

Efudex®, Fluoroplex®, and Carac™. The drug can be administered as IV (intravenous) infusion 

or bolus, or applied topically, depending on the type of cancer treated. The patients are usually 

subjected to a continuous drug infusion at the constant rate of 450 – 966 mg/m2/day, causing 5-

FU plasma concentration to reach values of order of magnitude of 5µM or more (Petit, Milano et 

al. 1988). However, the daily dose of 5-FU is not to exceed 800 mg. 

5-FU is an antimetabolite drug. These drugs are cell-cycle specific, which affects cells 

only when they are in the S-phase or getting divided. Since the cancerous cells divide more 

rapidly compared to the normal cells, they take up these antimetabolites more rapidly than the 

normal cells, and hence are more toxic to them. 5-FU is a pyrimidine antagonist. It is an 

analogue of uracil, in which the hydrogen at C-5 position is substituted with a fluorine atom 

(Figure 1.1), hence called a Fluoropyrimidine. Its cytotoxicity has been ascribed to its inhibition 

of the thymidylate synthase (TS) and misincorporation into RNA and DNA, finally inducing 

cell-cycle arrest and apoptosis. 
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Mechanism of action 

Following administration, 5-FU enters the cell through the same facilitated transport 

mechanism as used by uracil (Wohlhueter, McIvor et al. 1980). It is then converted 

intracellularly into 3 different active metabolites: fluorodeoxyuridine monophosphate (FdUMP), 

fluorodeoxyuridine triphosphate (FdUTP) and fluorouridine triphosphate (FUTP) (Figure 1.2).  

The first step in the activation on 5-FU is its conversion to fluorouridine monophosphate 

(FUMP). This conversion can occur in two ways: a) Direct conversion: by action of orotate 

phosphoribosyltransferase (OPRT) with co-factor phosphoribosyl pyrophosphate (PRPP); and b) 

Indirect conversion: through sequential conversion from 5-FU to fluorouridine (FUR) and then to 

FUMP by the action of enzymes uridine phosphorylase (UP) and uridine kinase (UK) 

respectively (Daher, Harris et al. 1990). FUMP can then be phosphorylated to fluorouridine 

diphosphate (FUDP), which can be converted to the active compound fluorouridine triphosphate 

(FUTP), causing the cytotoxic effects. FUDP can also be converted to fluorodeoxyuridine 

diphosphate (FdUDP) by ribonucleotide reductase (RR). FdUDP can then be phosphorylated or 

dephosphorylated to give the active compounds fluorodeoxyuridine triphosphate (FdUTP) or 

fluorodeoxyuridine monophosphate (FdUMP) respectively. Alternatively, 5-FU can also be 

converted to FdUMP by thymidine phosphorylase (TP) catalysed conversion of 5-FU to 

fluorodeoxyuridine (FUDR), which is then phosphorylated to FdUMP by thymidine kinase (TK). 

The three active metabolites, FdUMP, FdUTP and FUTP elicit the cytotoxicity of 5-FU in 

cancerous cells. 
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Inhibition of thymidylate synthase (TS) 

TS is a 36kDa dimeric protein which contains a nucleotide – binding site and a folate – 

binding site. It catalyses the conversion of deoxyuridine monophosphate (dUMP) to 

deoxythymidine monophosphate (dTMP). dUMP undergoes reductive methylation to dTMP with 

N5,N10-methylenetetrahydrofolate (CH2THF) serving as the methyl donor. This reaction is a part 

of the de novo synthesis of thymidine and is the only source of thymidine, which is required for 

DNA replication and repair.  

FdUMP actively binds to the nucleotide-binding site of TS, which results in the formation 

of a stable ternary complex of TS, FdUMP and CH2THF (Figure 1.3). Binding of FdUMP to TS 

prevents the binding of the normal substrate dUMP to TS, resulting in inhibition of dTMP 

synthesis (Santi, McHenry et al. 1974; Sommer and Santi 1974). Reduction in the level of dTMP 

causes succesive reduction in dTTP levels, which in turn induces imbalances in the 

deoxynucleotide pool (dATP, dCTP and dGTP) and particularly dATP/dTTP ratio (Yoshioka, 

Tanaka et al. 1987; Houghton, Tillman et al. 1995). These imbalances result in inhibition of 

DNA synthesis and repair, and thus cause DNA damage. 

Misincorporation into DNA and RNA 

FdUTP gets misincorporated into the DNA strands in place of dTTP during DNA 

replication. Additionally, accumulation of dUMP results in allevated levels of dUTP inside the 

cells (Mitrovski, Pressacco et al. 1994; Aherne, Hardcastle et al. 1996). This causes 

misincorporation of dUTP in DNA strands. This misincorporation cannot be corrected / repaired 

by nucleotide excision due to the high dUTP/dTTP ratios, and this ultimately results in DNA 

strand breaks and cell death. 
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Further, FUTP is extensively misincorporated in RNA strands, which disrupts the normal 

RNA processing. This results in disruption of the further synthesis and processing of mRNAs 

(Doong and Dolnick 1988; Patton 1993), tRNAs (Randerath, Tseng et al. 1983; Santi and Hardy 

1987) and rRNAs (Kanamaru, Kakuta et al. 1986; Ghoshal and Jacob 1994) and in inhibition of 

post-transcriptional conversion of uridine to pseudouridine in these RNAs (Samuelsson 1991). 

This results in RNA toxicity and imbalances, causing variability in cellular metabolism and 

functioning. 

Inactivation of 5-FU 

5-FU is primarily catabolized in the liver, where the enzyme dihydropyrimidine 

dehydrogenase (DPD) is present in abundance. DPD catalyses the conversion of 5-FU to inactive 

compound dihydrofluorouracil (Diasio and Harris 1989) (DHFU, Figue 2). 

Dosage and clinical pharmacokinetics  

 5-FU is generally administered as an intravenous injection. The actual doses are 

dependent on the weight of the patient. Usually, 12 mg/kg of 5-FU are given intravenously once 

daily for 4 successive days. The daily dose should not exceed 800 mg. If no toxicity is observed, 

six mg/ml are given on the 6th, 8th, 10th and 12th days. Therapy is then discontinued at the end of 

12th day (Fluorouracil Injection, USP; Gensia Sicor Pharmaceuticals, Inc., Irvine, CA 92618). 

 Following intravenous injection, 5-FU gets distributed mainly into the tumors, bone 

marrow, liver, intestinal mucosa and other tissues in the body. It also diffuses readily across the 

blood brain barrier and gets distributed into the CSF (cerebrospinal fluid). Seven to 20% of the 

parent drug is excreted unchanged in the urine in about 6 hours (Diasio and Harris 1989), while 

60-90% of the administered dose is excreted in urine within 24 hours, primarily as α-fluoro-β-
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alanine (Heggie, Sommadossi et al. 1987). The mean half life of elimination from plasma is 

dose-dependent and in the range eight to 20 min (Heggie, Sommadossi et al. 1987; Diasio and 

Harris 1989). No intact drug can be detected in the plasma after three hours of intravenous 

injection (Heggie, Sommadossi et al. 1987; Diasio and Harris 1989). However, 5-FU active 

metabolites have prolonged elimination half lives (Heggie, Sommadossi et al. 1987). 

5-FU modulations / Improvements 

5-FU drug treatment is associated with varied side effects, ranging from mild to severe. 

Common side effects include nausea, vomiting, diarrhea, weakness, mouth sores, poor appetite, 

discoloration of the vein through which the medication is given, sensitivity to light 

(photophobia), reduced white and red blood cell and platelet counts which can cause increased 

risk of infections. More rare side effects include skin reactions like hyperpigmentation 

(darkening of skin), dryness or cracking of skin; discoloration of nails; thinning of hair and hand 

and foot syndrome. Several strategies have been adopted to improve the 5-FU therapy (Figure 

1.4). These include adjunct therapy of 5-FU with other chemotherapeutic drugs like Leucovorin, 

Methotrexate or Irinotecan. Oxaliplatin, 5-FU and Leucovorin adjunct therapy have also been 

used for advanced colorectal cancer. Various 5-FU pro-drugs have been synthesized, like 

Capecitabine and tegafur, which improves the targeted delivery of 5-FU and significantly 

reduces the associated side effects.  

Effect of 5-FU on gene expression 

5-FU has been shown to modify the expression of protein-coding genes. 5-FU may alter 

the gene expression levels of its target enzyme, TS and its metabolic enzymes, DPD, OPRT, TP 

and UP (Inokuchi, Uetake et al. 2004; Mauritz, van Groeningen et al. 2007). In a previous study, 
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five 5-FU-inducible transcriptional targets have been identified: SSAT (spermine / spermidine 

acetyl transferase), annexin II, thymosin β-10, chaperonin-10 and MAT-8 (Maxwell, Longley et 

al. 2003). Further, p53 have been shown to be a potential target of 5-FU (Hernandez-Vargas, 

Ballestar et al. 2006). 5-FU also upregulates FAS expression (Tillman, Petak et al. 1999). 

Another study reported differential expression of a set of genes between 5-FU sensitive and 5-FU 

resistant colon carcinoma cell line, including ornithine decarboxylase, spermine/spermidine 

synthases, spermine/spermidine acetyltransferase, p21/WAF1, mdm2, Fas, mic-1, EphA2, and 

ferredoxin reductase (Zhang, Ramdas et al. 2003). Most importantly, they reported role of p53 

and tumor necrosis factor (TNF) regulation in 5-FU treatment (Zhang, Ramdas et al. 2003). A 

study performed global gene expression pattern following 5-FU treatment on MCF7 cells 

(Hernandez-Vargas, Ballestar et al. 2006). A total of 300 genes were shown to be regulated at 

any time point following treatment at 10µM and 500µM of 5-FU (Hernandez-Vargas, Ballestar 

et al. 2006). Many of these genes were found to be related with the p53 transcription factor. A 

dose- and time-dependent pattern was observed in the gene expression, with gene expression 

changes correlated with cell cycle and cell death parameters (Hernandez-Vargas, Ballestar et al. 

2006). Thus, 5-FU modifies the expression levels of several protein–coding genes. However, the 

molecular mechanism of this effect is still unknown. 

 

MicroRNAs 

 MicroRNAs (miRNAs) are an important class of endogenous, non- protein-coding RNA 

molecules which play a regulatory role in gene expression. They are small RNA molecules, 

about19-25 nucleotides in length, which negatively regulate gene expression by binding to the 
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3’-Untranslated region (3’-UTR) of the target mRNAs, and causing mRNA degradation or 

translational repression. Most of the miRNAs are highly conserved interspecies. It has been 

predicted that miRNAs constitute more than 1% of the total protein coding gene, while they 

target more than 30% protein coding genes (Lewis, Shih et al. 2003). 

  The first miRNA, lineage-deficient-4 (lin-4), was discovered by Victor Ambros’s group 

in Caenorhabditis elegans in 1993 (Lee, Feinbaum et al. 1993). The lin-4 RNA showed near 

perfect antisense complementarity with the 3’ – UTR of mRNA of the lin-14 gene, which is 

important for regulation of developmental timing in C. elegans. Since its discovery, thousands of 

miRNAs have been discovered in animals, plants and several viruses. These miRNAs play an 

important role in multiple biological processes, including developmental timings, 

embryogenesis, cell differentiation, organogenesis, metabolism, apoptosis and various diseases, 

including cancers. 

Biogenesis of microRNAs 

MiRNAs are transcribed from miRNA genes, which can be transcribed as autonomous 

transcription units, or as clusters from a polycistronic transcription unit (Bartel 2004; Kim and 

Nam 2006). miRNA genes can be divided into three groups based on their genomic location: 

first, genes located in the exonic region of non-coding transcriptions units; second, genes located 

in the intronic regions of non-coding transcription units; and third, genes located in the intronic 

region of protein-coding transcription units (Kim 2005; Kim and Nam 2006). A majority of them 

are, however, located in the intronic region of a protein-coding gene. miRNA genes are generally 

transcribed by RNA polymerase II (pol II) (Cai, Hagedorn et al. 2004; Lee, Kim et al. 2004), or 

sometimes by RNA polymerase III (pol III) (Borchert, Lanier et al. 2006); to give primary 
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miRNA transcript, called pri-miRNA (Figure 1.5). These pri-miRNAs are usually several 

thousand bases long and consists of a local hairpin structure. They may also contain a 5’-cap and 

3’-poly(-A) tail (Cai, Hagedorn et al. 2004; Lee, Kim et al. 2004). This stem-loop structure is 

then cleaved by a Microprocessor complex to give precursors of microRNA, called pre-miRNAs 

(Denli, Tops et al. 2004; Gregory, Yan et al. 2004). The Microprocessor complex is composed of 

nuclear RNase III Drosha and double-stranded RNA binding domain protein DGCR8 (DiGeorge 

syndrome critical region 8). Drosha is a 160kDa protein consisting of two RNase III domains 

(RIIIDs) and a catalytic double-stranded RNA binding domain (dsRBD); whereas DGCR8 is a 

120kDa human protein which consists of two dsRBDs (Han, Lee et al. 2004). Drosha binds to 

the pri-miRNA and cleaves it at approximately two helical turns (about 22 nt) from the terminal 

loop, to give the pre-miRNAs (Zeng, Yi et al. 2005). The flanking regions are degraded in the 

nucleus. DGCR8 is supposed to aid substrate recognition by Drosha, by assisting in binding of 

microprocessor complex to RNA or orientating the complex to RNA (Denli, Tops et al. 2004; 

Gregory, Yan et al. 2004; Landthaler, Yalcin et al. 2004). These pre-miRNAs have a typical 

stem-loop secondary structure, comprising of a about 22bp stem, a terminal loop and a 3’-

overhang of around 2 nt (Lee, Ahn et al. 2003). The pre-miRNAs thus processed are then 

exported to the cytoplasm by the nuclear transport receptor, Exportin-5 (Yi, Qin et al. 2003; 

Lund, Guttinger et al. 2004).  

Exportin-5 binds cooperatively with the pre-miRNAs and its cofactor GTP-bound-Ran in 

the nucleus (Bohnsack, Czaplinski et al. 2004). This complex then transports the pre-miRNAs 

across the nuclear membrane through the nuclear pore complexes. Following export, the GTP is 

hydrolyzed to GDP and in the process, pre-miRNAs are released into the cytoplasm. The 

secondary stem-loop structure and short 3’-overhang of the pre-miRNAs are significant 
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structural requirements for their transport by Exportin-5 (Zeng and Cullen 2004). Following their 

export from the nucleus, these pre-miRNAs are further processed to about 22 nucleotide 

miRNA:miRNA* duplexes by the cytoplasmic RNase III enzyme Dicer, and its dsRBD TRBP 

(the human immunodeficiency virus transactivating response RNA-binding protein) (Hutvagner, 

McLachlan et al. 2001; Chendrimada, Gregory et al. 2005). Dicer is a about 160kDa protein, 

consisting of two RIIIDs, a dsRBD and a long N-terminal segment that contains a Dead-Box 

RNA helicase domain, a DUF283 domain and a PAZ domain. It cleaves the pre-miRNAs at 

approximately 2 helical turns (about 22 nucleotides) from the 3’-terminus to give the 

miRNA:miRNA* duplex. One strand of the duplex is then selected as the mature miRNA and the 

other strand is degraded in the cytoplasm by unknown mechanism. Studies on siRNA duplexes 

have shown that the relative thermodynamic stability of the two ends of the duplex plays a role 

in strand selection (Khvorova, Reynolds et al. 2003; Schwarz, Hutvagner et al. 2003). The strand 

with relatively unstable base pairs at the 5’-end is usually selected as mature miRNA, while the 

other miRNA* strand is degraded. The mature miRNA then gets incorporated into the 

ribonucleoprotein complexes (RNPs) called microRNA-RNPs (miRNPs) or into miRNA-induced 

silencing complexes (miRISCs), which bring about gene regulation. The Agronaute (Ago) 

proteins are an important protein constituent of these complexes.  

Mechanism of miRNA-mediated gene regulation 

MiRNAs interact with their target mRNAs by base pairing (Figure 1.6). In plants, a 

majority of miRNAs base pair with near perfect complementarity with the mRNAs, but in 

animals there is imperfect base pairing which follows certain rules in most miRNAs, as shown 

by experimental and bioinformatic analysis (Brennecke, Stark et al. 2005; Lewis, Burge et al. 

2005; Grimson, Farh et al. 2007) (Figure 1.7). The miRNAs bind perfectly with the mRNAs 
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between nucleotides 2 and 8, known as the “seed” region (Bartel 2004; Doench and Sharp 2004; 

Brennecke, Stark et al. 2005). The seed region is generally devoid of any mismatching base pairs 

or bulges. It is flanked by an A or U residue on positions 1 and 9, which may help in improving 

site efficiency (Lewis, Burge et al. 2005; Grimson, Farh et al. 2007). The bulges or mismatches 

may be present in the central region of the miRNA-mRNA duplex. Finally, the 3’-end of miRNA 

should bind complementarily with the mRNA to stabilize the interaction (Brennecke, Stark et al. 

2005; Grimson, Farh et al. 2007). The miRNA-mRNA duplex thus formed brings about the gene 

regulation. 

Eukaryotic translation 

The process of eukaryotic translation consists of three basic steps: initiation, elongation 

and termination. Initiation of translation involves recognition of the mRNA 5’-terminal 7-

methylguanosine (m7G) cap by eukaryotic initiation factor 4E (eIF4E) subunit of initiation factor 

eIF4F. Other important initiation factors are eIF4A, eIF4G, eIF3 and eIF6. Interaction of eIF4G 

with eIF3 results in recruitment of 40S ribosomal subunit, which identifies the start codon. 

Another important role of eIF4G is its ability to interact with the polyadenylate-binding protein 1 

(PABP1), which is associated with the poly(A) tail. Simultaneous interaction of eIF4G with 

eIF4E and PABP1 causes circularization of the mRNA, increasing the proximity of eIF4E and 

5’-m7G cap, and thus stimulating initiation of translation. Identification of start codon is 

followed by association of the large 60S ribosomal subunit and the start of elongation step. As 

translation proceeds, newly synthesized proteins (nascent polypeptides) emerge from the large 

ribosomal subunit. Several ribosomes can translate a single mRNA at the same time, resulting in 

formation of ‘Polysomes’ (ribosome clusters). Termination occurs when an elongating ribosome 
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encounters the stop codon; the ribosome dissociates from the mRNA, and the completed protein 

is released. 

Presently there are four proposed mechanisms of miRNA-mediated gene repression. 

mRNA cleavage 

MiRNAs that bind perfectly with their target mRNAs bring about direct cleavage of a 

phosphodiester bond in the mRNA (Figure 1.6). In plants, most miRNAs bind to target mRNAs 

with near perfect complementarity, and the mRNA is cleaved endonucleolytically in the middle 

of the miRNA-mRNA duplex (Jones-Rhoades, Bartel et al. 2006).  This cleavage occurs between 

the residues base paired to the 10 and 11 nucleotides of the miRNAs (counting from the 5’- end 

of miRNA) (Elbashir, Martinez et al. 2001). This cleavage is caused by the ‘slicer’ activity of the 

RISC. The Agronaute proteins (Ago) are an important constituent of this RISC. Ago are about 

100 kDa proteins which contain the PAZ and PIWI domains (Carmell, Xuan et al. 2002). The 

PAZ domain contains an oligonucleotide-binding fold which binds the single-stranded 3’- end of 

miRNAs (Lingel and Sattler 2005), while the PIWI domain has a conserved pocket for binding 

the 5’-phosphate of miRNAs (Parker, Roe et al. 2005). Thus, the miRNAs is lodged between the 

PAZ and PIWI domains of the Ago protein. In addition, the PIWI domain also shows the 

presence of a catalytic site which functions similar to RNase H enzyme, capable of cleaving the 

RNA strand. Thus, the ‘slicer’ activity of the RISC complex is associated with the Ago proteins. 

However, only Ago-2 protein complexes are capable of inducing mRNA cleavage (Meister, 

Landthaler et al. 2004). In human, mRNA cleavage is not the usual method of miRNA-induced 

gene silencing. miR-196 is the only miRNA which binds perfectly to 3’-UTR of the Hoxb8 
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mRNA, causing its cleavage (Yekta, Shih et al. 2004). All others miRNA induce gene silencing 

by imperfect binding.  

Translational repression 

Another mechanism of mRNA silencing by miRNA is by interfering with their 

translation (Elbashir, Lendeckel et al. 2001). This was first suggested by the observation that 

miRNA lin-4 reduced the amount of LIN-4 protein without significantly affecting the amount of 

lin-4 mRNA (Lee, Feinbaum et al. 1993). Presence of multiple miRNA binding sites on target 

mRNAs further supports this model. Translational repression generally occurs in the absence of 

perfect complementarity between miRNA and the target mRNA. Currently two main models of 

translational inhibition by miRNAs are available: repression at initiation step or at post-initiation 

step. Studies performed in various labs have provided support for both the mechanisms. It is still 

unclear as to which mechanism is more prevalent and what factors determine as to which 

mechanism will be followed. 

Translational repression at initiation step is proposed to be affected by two possible 

mechanisms. First mechanism is by suppression in recognition of 5’-m7G cap by the eIF4E 

(Humphreys, Westman et al. 2005; Pillai, Bhattacharyya et al. 2005) . It has also been reported 

that Ago2 can bind to the 7mGpppN cap via a motif resembling a cap-interacting sequence of the 

initiation factor eIF4E, preventing the cap–eIF4E interaction, and thus stopping the recruitment 

of the small ribosomal subunit to mRNA (Kiriakidou, Tan et al. 2007). Inefficient repression of 

mRNA containing IRES (Internal ribosome entry site) or a nonfunctional cap further supports 

this model. Briefly, miRNAs are supposed to prevent the synergy between the 5’-cap and the 3’-
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poly(A) tail. An alternative mechanism for translational repression is by obstructing the joining 

of 60S subunit, which is affected by eIF6 protein (Chendrimada, Finn et al. 2007) 

Translational repression has also been showed to occur post-initiation. The observation 

that lin-14 and lin-28 mRNAs, targets of lin-4 miRNA, remain associated with polysomes 

despite reduction in their protein products (Olsen and Ambros 1999; Seggerson, Tang et al. 

2002) supports this model. A ‘drop-off’ mechanism of post-initiation repression has been 

proposed by many researchers, which states that miRNAs cause ribosomes to become prone to 

premature termination of translation (Petersen, Bordeleau et al. 2006).  Another possible 

mechanism includes the slowing down of ribosome elongation (Mootz, Ho et al. 2004). 

The research does not unequivocally state the exact mechanism of translational 

repression. One possible reason for the ambiguity could be adoption of different experimental 

techniques for the study. Another possible explanation could be that miRNA function through 

multiple mechanisms. The complementary binding with the target mRNA, and the Ago and 

GW182 proteins may play a role in deciding the mechanism of miRNA silencing. Further, there 

isn’t enough evidence to support that initiation and post-initiation mechanisms are mutually 

exclusive. 

Cotranslational protein degradation by Proteolysis 

Another method of gene silencing by miRNA is at the protein production stage. Certain 

proteins can be found associated as polysomes after the binding of miRNA to its target mRNA 

(Olsen and Ambros 1999). These polysomes or nascent peptides are continuously synthesized 

from the mRNAs, but are not accumulated. They undergo rapid degradation by the proteases in 
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the cytosol (Nottrott, Simard et al. 2006). The association of miRISC or miRNP with the target 

mRNAs recruits the proteases and promotes its activity and affinity for the polysomes. 

Deadenylation and Decapping 

 mRNA destabilization is another possible mechanism of miRNA-induced gene silencing. 

The destabilization is a sequential process, with the initial step being shortening of the 3’-

Poly(A) tail (Giraldez, Mishima et al. 2006; Wu, Fan et al. 2006). This is followed by 

degradation step which can occur via two possible pathways: the mRNA can be progressively 

degraded in 3’-5’ direction by an exosome, or it can be first 5’-decapped , followed by 5’-3’ 

degradation by the exonuclease XRN1(Parker and Song 2004) .The degradation step usually 

occurs in the P bodies, cellular structure involved in mRNA catabolism and translational 

repression (Parker and Sheth 2007) . The GW182 protein and the Ago PIWI domain are 

important constituents for this mechanism. 

Thus miRNA-mediated gene silencing can be brought about by many different mechanisms 

(Figure 1.8).  

 

miRNAs, Breast cancer and 5-FU 

 Thousands of miRNAs have been detected and characterized in plants, animals and 

viruses (Zhang, Pan et al. 2006). miRNAs play a very important role in many biological 

processes, including developmental timing, organ development, stem cell maintenance and 

differentiation, disease, cell proliferation, apoptosis and response to different stresses (Ambros 

2001; Bartel 2004; Alvarez-Garcia and Miska 2005; Cheng, Tavazoie et al. 2005). miRNA has 

also been reported to play a role in cancer initiation and progression (Calin and Croce 2006) and 
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cancer metastasis (Cheng, Byrom et al. 2005). 50% of miRNA genes are localized in cancer-

associated genomic regions or in fragile sites (Calin, Sevignani et al. 2004). miRNA expression 

profiles have helped in classifying human cancers and development of a miRNA signature for 

different types of cancers (Lu, Getz et al. 2005). In most cancers, miRNAs show aberrant levels 

of expression. Those which are over-expressed in tumors are thought to be oncogenic in nature, 

called as ‘Oncomirs’, such as miR-17-92 cluster, which targets the E2F1 oncogenes in 

lymphoma, or miR-21, which targets PTEN tumor suppressors in hepatocellular carcinoma 

(O'Donnell, Wentzel et al. 2005; Meng, Henson et al. 2007). Those miRNAs whose expression is 

reduced in tumors are thought to be Tumor suppressors or ‘TSmirs’, such as in case of miR-15a 

and miR-16-1 which targets the BCL2 oncogene in Chronic Lymphocytic Leukemia (CLL) or 

let-7 family which target RAS oncogene in lung cancers (Johnson, Grosshans et al. 2005; Calin 

and Croce 2006).  

miRNAs also play an important role in breast cancer. miRNA signature pattern have been 

shown to predict estrogen, progesterone and HER2/neu receptor status in breast cancer (Lowery, 

Miller et al. 2009) (Ma, Teruya-Feldstein et al. 2007) showed that miR-10b initiates breast 

cancer invasion and metastasis. On the other hand, breast cancer metastasis is suppressed by 

miRNAs such as miR-335 and miR-126 (Tavazoie, Alarcon et al. 2008). Further, miR-373 and 

miR-520c stimulate cancer cell migration and invasion (Huang, Gumireddy et al. 2008). miRNA 

gene expression levels are also aberrantly altered in breast cancer. miR-21, miR-10b are over-

expressed (Ma, Teruya-Feldstein et al. 2007); whereas miR-125b and miR-145 are reduced in 

breast cancer (Iorio, Ferracin et al. 2005). These studies highlight the importance of miRNAs as 

both stimulators and inhibitors in breast cancer. Currently, a growing body of evidence has 

suggested the importance of miRNAs in modulating the chemosensitivity and chemoresistance 
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of tumor cells (Meng, Henson et al. 2006; Blower, Verducci et al. 2007; Blower, Chung et al. 

2008). (Si, Zhu et al. 2007) reported that suppression of miR-21 sensitized MCF7 cells to 

anticancer drug topotecan. Similar studies have been reported for the drugs gemcitabine, 

doxorubicin and tamoxifen (Kovalchuk, Filkowski et al. 2008; Miller, Ghoshal et al. 2008; Zhao, 

Lin et al. 2008) illustrating the importance of miRNAs in drug sensitivity and resistance. Further, 

miRNAs such as miR-15b and miR-16 have been shown to modulate multidrug resistance by 

targeting the anti-apoptotic bcl2 gene (Xia, Zhang et al. 2008). These studies reveal the intrinsic 

role of miRNAs in managing the efficiency of chemotherapy in several human cancers. 

 Currently, no work has been reported on the effect of 5-FU on miRNAs. 5-FU has been 

widely used for treatments of various types of cancer, including breast cancer. However, its exact 

mechanism of toxicity at the molecular level is still not clearly understood. Also, the mechanism 

of cancer cell resistance to drug is still eluded. 5-FU has been shown to modify the expression of 

protein-coding genes (Longley, Harkin et al. 2003; Maxwell, Longley et al. 2003; Hernandez-

Vargas, Ballestar et al. 2006; Rossi, Bonmassar et al. 2007), but the regulatory mechanism is 

unknown. Further, 5-FU was recently reported to modify the expression of several miRNAs in 

colon cancer cells (Rossi, Bonmassar et al. 2007), indicating the potential ability of 5-FU in 

altering miRNA expression. However, there is no report on the effect of 5-FU on miRNAs in 

human breast cancer. Considering the critical role of miRNAs in cancer and drug 

chemosensitivity, we hypothesized that the cytotoxicity of 5-FU in breast cancer may be partially 

elicited by regulation of miRNA expression levels.  Determination of the effects of 5-FU on 

expression of miRNAs can help to identify the miRNAs which play a role in chemosensitivity 

and resistance of 5-FU in particular, and other chemotherapeutic drugs in general. It may also 

help to improve the efficacy of 5-FU treatment, by reducing its side-effects or by decreasing the 
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incidence of 5-FU resistant cancers. Finally, the data can be extrapolated to other 

chemotherapeutic drugs, and targeted delivery systems, which can target these specific miRNAs, 

can be synthesized. 

 

Hypothesis 

5-FU induces its cytotoxicity partially by altering the expression levels of microRNAs 

associated with breast cancer, which accounts for the modification of the gene expression levels 

induced by 5-FU. 5-FU also modifies the expression of target mRNAs transcripts and proteins of 

associated miRNAs, which could play an important role in inducing 5-FU cytotoxicity. 

 

Research Objectives 

The goal of this proposed research project is to elucidate the molecular mechanism of 5-

FU and its effect on the global microRNA expression profile. A combined experimental and 

computational approach will be employed to achieve the following specific objectives: 

Specific Aim 1: To investigate the effects of 5-FU treatment on MCF7 breast cancer cells 

(Chapter 2) 

The sensitivity of MCF7 breast cancer cells to 5-FU treatment was analyzed using 

Trypan blue dye exclusion assay and MTT dye reduction assay. Modifications in the cell growth 

and proliferation after 5-FU exposure were studied by determining the inhibitory concentrations 

of 5-FU and the dose- and time-dependence of these responses. The effect on cell cycle and 

induction of apoptosis was also studied using Flow cytometry and Acridine Orange/Ethidium 
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Bromide (AO/EB) dye staining assay. This study helped us to classify the general effect of 5-FU 

treatment on MCF7 breast cancer cells. 

Specific Aim 2: To identify the miRNAs which are differentially expressed after 5-FU 

treatment (Chapter 3) 

In this objective, a comparative analysis of the expression pattern of miRNAs in normal 

and 5-FU treated MCF7 cells was performed using miRNA microarray technology. Six potential 

miRNAs, miR-575, miR-671-5p, miR-483-5p, miR-574-3p, miR-365 and miR-374b, which 

showed maximum differential expression after 5-FU treatment, were selected based on fold – 

change and statistical analysis. The differential expression levels of these miRNAs post – 5-FU 

treatment will be validated by qRT-PCR technique. 

Specific Aim 3: To determine the dose-dependence and time-dependence of the miRNA 

expression response to 5-FU treatment (Chapter 4) 

The dose and time dependence of the expression levels of the miRNAs selected in 

Objective 2 after 5-FU treatment were analyzed at different concentrations and for varying time 

periods using the qRT-PCR analysis. This study helped to identify any significant pattern in the 

expression levels of miRNA following 5-FU treatment.  

 

Experimental model 

The model for my experiment is the MCF7 human breast adenocarcinoma cell line. 

MCF7 cell line was originally isolated in 1970 from the pleural effusion of a 69-year old 

Caucasian woman with metastatic mammary carcinoma (Soule, Vazguez et al. 1973).  These 

cells are positive for estrogen receptor, progesterone receptor, epidermal growth factor receptor 

and E-cadherin expression. They lack expression of apoptotic enzyme caspase-3 and basic 
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fibroblast growth factor. It is an adherent cell line which grows in monolayer. MCF7 breast 

cancer cells are widely used as an in vitro model of breast cancer, mainly to study the role of 

estrogen in breast cancer due to the presence of well-characterized estrogen receptors. They are 

easy to culture and maintain, and show many genetic and morphological similarities to the breast 

cancer cells. 
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Table 1.1: Oncogenes and tumor suppressor genes and their functions in breast cancer (modified 

from (Osborne, Wilson et al. 2004)) 

Gene Classification Function 
HER2 Oncogene Tyrosine kinase receptor; involved in signal 

transduction pathways of cell growth and 
differentiation 

Ras Oncogene G Protein involved in cellular signal transduction 
important in cell growth, differentiation and survival 

PI3K Oncogene Kinase involved in cellular functions such as cell 
growth, proliferation, differentiation, motility, survival 
and intracellular trafficking 

Akt Oncogene Kinase regulating cell-cycle, cell survival, metabolism 
and in angiogenesis 

eIF-4E Oncogene Initiator of protein translation 
Cyclin D1 Oncogene Cell-cycle mediator required for cell cycle G1/S 

transition; interacts with tumor suppressor gene Rb 
Cyclin E Oncogene Cell-cycle mediator required for cell cycle G1/S 

transition 
c-myc Oncogene Transcription factor which binds with Enhancer box 

sequence (E-boxes) and recruits Histone 
acetyltransferases (HATs) 

c-fos Oncogene Transcription factor 
p53 Tumor suppressor 

gene 
Transcription factor; response to DNA damage and 
stress; induces cell-cycle arrest; cell-cycle checkpoint 
activation; triggers/facilitates apoptosis 

p27 Tumor suppressor 
gene 

Inhibit cyclin-dependent protein kinases; arrest cell 
cycle in G1 phase;  

BRCA1 Tumor suppressor 
gene 

Regulates DNA transcription; acts in DNA repair; 
interacts with Rad 51 protein; involved in cell cycle 
control and apoptosis 

BRCA2 Tumor suppressor 
gene 

Acts in DNA repair; interacts with Rad 51 protein; also 
involved in transcriptional regulation 

CHK2 Tumor suppressor 
gene 

Cell cycle checkpoint kinase; activates p53 after DNA 
damage 

ATM Tumor suppressor 
gene 

Checkpoint kinase; acts in DNA repair; activates 
CHK2; induction of p53; phosphorylation of BRCA1 

PTEN Tumor suppressor 
gene 

Phosphatase; negative regulator of Akt kinase; controls 
PIP3 pathway in cell growth 

Rb Tumor suppressor 
gene 

Retinoblastoma gene, repressor of cell cycle and 
protein translation 
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Table 1.2: Common chemotherapeutic drugs used for the treatment of breast cancer 

Chemical 
name 

Brand names Class Mechanism 

Capecitabine Xeloda Antimetabolite Pro-drug for 5-fluorouracil, an 
antimetabolite 

Carboplatin Paraplatin Alkylating 
agents 

Forms DNA intrastrand 

crosslinks, inhibits replication 

Cyclophospha
mide 

Cytoxan, 
Neosar 

Alkylating 
agents 

Forms DNA intrastrand 

crosslinks, inhibits replication 

Daunorubicin Cerubidine, 
DaunoXome 

Anthracyclins Prevents cell division by disrupting the 

structure of the DNA in two ways: 

intercalate into the base pairs in the DNA 

minor grooves; and cause free radical 
damage of the ribose in the DNA. 

Docetaxel Taxotere Taxanes 

(Mitotic 
inhibitor) 

Disrupts microtubules, arrests 

mitosis in metaphase 

Doxorubicin Adriamycin, 
Doxil, Rubex 

Anthracyclins Prevents cell division by disrupting the 

structure of the DNA in two ways: 

intercalate into the base pairs in the DNA 

minor grooves; and cause free radical 
damage of the ribose in the DNA. 

Epirubicin Ellence, 
Pharmorubicin 

Anthracyclins Prevents cell division by disrupting the 

structure of the DNA in two ways: 

intercalate into the base pairs in the DNA 

minor grooves; and cause free radical 
damage of the ribose in the DNA. 

Fluorouracil 

or 5-
fluorouracil 

Adrucil; 

Efudex; 

Fluoroplex; 
Carac 

Antimetabolite Pyrimidine analog, interferes with DNA 
synthesis 

Gemcitabine Gemzar Antimetabolite Pyrimidine analog, interferes with DNA 
synthesis 

Idarubicin Idamycin Anthracyclins Prevents cell division by disrupting the 

structure of the DNA in two ways: 
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intercalate into the base pairs in the DNA 

minor grooves; and cause free radical 
damage of the ribose in the DNA. 

Ixabepilone Ixempra Epothilones 

(microtubule 
inhibitor)  

Disrupts microtubules 

Methotrexate Amethopterin, 
Mexate, Folex 

Antimetabolite Inhibits folate metabolism, 

blocks nucleoside synthesis 

Mitoxantrone Novantrone Type II 

topoisomerase 
inhibitor 

Intercalates with DNA; disrupts DNA 
synthesis and DNA repair 

Mitomycin Mutamycin Cell-cycle 
inhibitors 

Inhibits DNA synthesis by inhibiting cell-
cycle transition 

Paclitaxel Abraxane, 
Taxol 

Taxanes 

(Mitotic 
inhibitor) 

Disrupts microtubules, arrests 

mitosis in metaphase 

Thiotepa Thioplex Alkylating 
agents 

Forms DNA intrastrand 

crosslinks, inhibits replication 

Vincristine Oncovin, 

Vincasar PES, 
Vincrex 

Mitotic 
inhibitor 

Disrupts microtubules, arrests 

mitosis in metaphase 

Vinorelbine Navelbine Mitotic 
inhibitor 

Disrupts microtubules, arrests 

mitosis in metaphase 
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Table 1.3: Standard chemotherapy drug combination regimens used for the treatment of breast 

cancer (American cancer Society, Inc.) 

• AT: Adriamycin and Taxotere 

• AC ± T: Adriamycin and Cytoxan, with or without Taxol or Taxotere 

• CMF: Cytoxan, methotrexate, and fluorouracil 

• CEF: Cytoxan, Ellence, and fluorouracil 

• FAC: fluorouracil, Adriamycin, and Cytoxan 

• CAF: Cytoxan, Adriamycin, and fluorouracil  

(The FAC and CAF regimens use the same medicines but use different doses and frequencies) 

• TAC: Taxotere, Adriamycin, and Cytoxan 

• GET: Gemzar, Ellence, and Taxol 
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Table 1.4: Hormone therapy treatment used for the treatment of breast cancer 

Drug class Mechanism Examples 
Selective Estrogen-
Receptor Modulators 
(SERMs) 

Binds to the estrogen receptors in breast 
cancer cells, thus blocking the effects of 
estrogen on breast cancer cells 

Nolvadex (Tamoxifen) 
Evista (Raloxifene) 
Fareston (Toremifene) 

Aromatase Inhibitors Inhibits the enzyme aromatase, which 
prevents the production of estrogen in 
adrenal glands 

Aromasin (Exemestane) 
Femara (Letrozole) 
Arimidex (Anastrozole) 
Megace (Megestrol) 

Hormone agonists Causes an initial increase in the production 
of hormones by the body, which is then 
subsequently suppressed due to negative 
feedback loop mechanism of the body. 

Zoladex (Goserelin) 
Lupron (Leuprolide) 

Estrogen receptor 
antagonist 

Binds to the ER and prevents ER 
dimerization, which leads to the rapid 
degradation of the fulvestrant-ER complex, 
producing the loss of cellular ER 

Faslodex (Fulvestrant) 
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Figure 1.1: Structure of 5-fluorouracil, a fluoropyrimidine, in which the hydrogen atom at the 5th 

carbon is replaced by a fluorine atom. 
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Figure 1.2: Metabolism of 5-FU to active products FdUMP, FdUTP and FUTP (Longley, Harkin 

et al. 2003). 
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Figure 1.3: Inhibition of TS by 5-FU metabolite FdUMP (Longley, Harkin et al. 2003). 
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Figure 1.4: Summary of some of the strategies investigated for improving the efficiency of 5-FU 

treatment: Leucovorin (LV), Eniluracil, Uracil, Methotrexate (MTX), Interferones (IFNs), 

Capecitabine (Longley, Harkin et al. 2003). 
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Figure 1.5: Biogenesis of miRNAs (modified from (Filipowicz, Bhattacharyya et al. 2008). 
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Figure 1.6: Mechanism of miRNA-induced gene silencing based on complementarity with target 

mRNAs (modified from (Bartel 2004). 
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Figure 1.7: Imperfect base-pairing of miRNA and its target mRNA in animals 
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Figure 1.8: Mechanism of gene regulation by miRNA in animals (modified from (Filipowicz, 

Bhattacharyya et al. 2008). 



 

 

Chapter 2: Effects of 5-fluorouracil on Growth, Cell Cycle Progression and Apoptosis of 

MCF7 Breast Cancer Cells 

Abstract 

Breast cancer is one of the leading causes of deaths in women worldwide. 5-flourouracil 

(5-FU) is an important chemotherapeutic drug used in the treatment of breast cancer patients. In 

this study, using several biochemical techniques, we studied the global effects of 5-FU treatment 

on MCF7 breast cancer cells. The dose-response curve obtained after the treatment of MCF7 

cells with 23 different 5-FU concentrations for 48 hours showed a dose-dependent decrease in 

cell proliferation. However, an atypical bimodal or biphasic curve was obtained, with two 

distinct curves observed between 0.001-0.1µM and 0.7-2000µM, thus indicating that 5-FU might 

act via a dual mechanism. Two different IC50 (Inhibitory concentration 50 %) values were 

calculated to be 0.007 and 2.8µM. A similar bimodal inhibition of the cellular metabolism of 

MCF7 cells was also observed after 48 hours of treatment using the MTT assay. The acridine 

orange/ethidium bromide nuclei staining assay determined that the mechanism of cell death 

induced was mainly by apoptosis after 48 hours. The morphology of the cells also showed a 

distinct reduction in the cell size, with compromised anchorage ability. The cell cycle 

progression however remained unaffected even after treatment with high 5-FU doses after 48 

hours of exposure. These findings provide evidence of the global inhibitory effects of 5-FU on 

human breast cancer cells in vitro and warrant further evaluation to study the molecular basis of 

its cytotoxicity. 

Keywords: 5-fluorouracil, breast cancer, MCF7, bimodal, viability, apoptosis, cell cycle 
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Introduction 

Chemotherapy with antineoplastic (or cytotoxic) drugs has been extensively used in the 

palliative treatment and management of breast cancer. Chemotherapeutic drugs having varying 

mechanisms of action are used for the treatment of breast cancer. Of the several classes of drugs, 

antimetabolites are one of the most effective first-line drugs. They are used as monotherapy as 

well as in combination regimens with other drugs. Fluoropyrimidines, mainly 5-fluorouracil (5-

fluoro-2,4(1H,3H)-pyrimidinedione or 5-FU) is one such antimetabolite which is widely used 

mainly for the treatment of breast (Fumoleau, Bonneterre et al. 2003), colorectal (Wils, O'Dwyer 

et al. 2001) and head and neck cancers (Posner, Colevas et al. 2000). It is mainly used to treat 

more aggressive forms of breast cancer, but can be used to treat any stage of breast cancer as a 

part of the combination therapy of CAF (Cyclophosphamide, Adriamycin and 5-fluorouracil); 

CMF (Cyclophosphamide, Methotrexate and 5-fluorouracil) and CEF (Cytoxan, Ellence, and 

fluorouracil) (Smalley, Lefante et al. 1983; Falkson, Falkson et al. 1992). Extensive research has 

been performed to improve the effectiveness of these combination strategies for the treatment of 

breast cancer. The combination of 5-FU with other newly developed anticancer drugs such as 

irinotecan, tomudex (TDX), and oxaliplatin has also help improve the response rates for breast 

cancer (Longley, Harkin et al. 2003). 

At the cellular level, 5-FU is a pyrimidine antagonist which is rapidly taken inside 

actively dividing cancerous cells by facilitated transport similar to uracil (Wohlhueter, McIvor et 

al. 1980). Once inside the cancer cells, 5-FU is converted intracellularly into three cytotoxic 

metabolites: fluorodeoxyuridine monophosphate (FdUMP), fluorodeoxyuridine triphosphate 

(FdUTP) and fluorouridine triphosphate (FUTP) by the sequential action of different enzymes, 

orotate phosphoribosyltransferase (OPRT), uridine phosphorylase (UP), uridine kinase (UK), 
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ribonucleotide reductase (RR) and thymidine kinase (TK) (Daher, Harris et al. 1990). These 

three metabolites account for all the cytotoxic effects of 5-FU. The primary mechanism of 

cytotoxicity of 5-FU is the inhibition of enzyme thymidylate synthase (TS) activity by FdUMP, 

resulting in inhibition of dTMP de novo synthesis (Santi, McHenry et al. 1974; Sommer and 

Santi 1974) and subsequent imbalances in the deoxynucleotide pool, particularly dATP/dTTP 

ratio (Yoshioka, Tanaka et al. 1987; Houghton, Tillman et al. 1995). This in turn inhibits DNA 

synthesis and repair, and thus causes DNA damage. In addition, FdUTP and FUTP gets 

misincorporated into the DNA strands in place of dTTP during DNA replication, resulting in 

allevated levels of dUTP inside the cells (Mitrovski, Pressacco et al. 1994; Aherne, Hardcastle et 

al. 1996). Further, FUTP is extensively misincorporated in RNA strands, which disrupts the 

normal RNA processing. This results in disruption of the further synthesis and processing of 

mRNAs (Doong and Dolnick 1988; Patton 1993), tRNAs (Randerath, Tseng et al. 1983; Santi 

and Hardy 1987) and rRNAs (Kanamaru, Kakuta et al. 1986; Ghoshal and Jacob 1994) and in 

inhibition of post-transcriptional conversion of uridine to pseudouridine in these RNAs 

(Samuelsson 1991). This results in RNA toxicity and imbalances, causing variability in cellular 

metabolism and functioning. 

Cell cycle arrest and induction of apoptosis are the primary mechanisms of inhibition of 

cell growth by most of the anti-cancer drugs (Barry, Behnke et al. 1990; Hickman 1992; 

Lundberg and Weinberg 1999; Shapiro, Koestner et al. 1999; Qin and Ng 2002). Previous 

studies have demostrated the ability of 5-FU to arrest the cell cycle pregression of human breast 

cancer and colorectal cancer cells. It mainly causes a G1/S phase arrest in the cancer cells (Grem, 

Nguyen et al. 1999; Tokunaga, Oda et al. 2000; Mirjolet, Didelot et al. 2002; Hernandez-Vargas, 

Ballestar et al. 2006). Further, previous studies have attributed the cellular effects of 5-FU as 
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well as 5-FU in combination with other drugs to changes in p53 and p53 target molecules (Lowe, 

Ruley et al. 1993; Lowe, Bodis et al. 1994; Grem, Nguyen et al. 1999; Petak, Tillman et al. 2000; 

Tokunaga, Oda et al. 2000; Backus, Dukers et al. 2001; Yoshikawa, Kusunoki et al. 2001; 

Yukimoto, Nakata et al. 2001; Mirjolet, Didelot et al. 2002; Zhang, Ramdas et al. 2003; 

Hernandez-Vargas, Ballestar et al. 2006). Another study has reported that the induction of 

apoptosis by 5-FU has been linked with FAS regulation, a member of the Tumor-necrosis factor 

(TNF) receptor superfamily (Maxwell, Longley et al. 2003). It has also been shown to induce 

overexpression of several p53 target genes involved in apoptosis and cell cycle regulation, like 

APAF1, BCL2, BAK1; and repression of the c-Myc gene (Hernandez-Vargas, Ballestar et al. 

2006). 

Unfortunately, 5-FU is rarely used as a monotherapy now-a-days, and is mainly used in 

combination with other drug regimens. Recent research has been focussed on improving the 

efficacy of therapeutic drugs with fewer side effects and more specific action in cancer cells 

only. In this process, several prodrugs have been synthesized which have a lower hydrophobicity 

and more specific action in cancer cells to improve 5-FU therapy. These include Tegafur, S1, 

Capecitabine, Eniluracil, and several other compounds (Miwa, Ura et al. 1998; Cunningham and 

James 2001; O'Shaughnessy, Twelves et al. 2002; Dominguez, Marchal et al. 2003; Marchal, 

Rodriguez-Serrano et al. 2007). Studying the molecular effects of 5-FU on breast cancer cells 

will help better understand the mechanism of 5-FU cytotoxicity, which in turn would help to 

improve the efficacy of 5-FU treatment.  

The aim of this study was to investigate the global effects of 5-FU on MCF7 breast 

cancer. The MCF7 breast cancer cell line has been shown to be an excellent experimental model 

to study breast cancer (Horwitz, Costlow et al. 1975; Engel and Young 1978; Gioanni, Le 
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Francois et al. 1990; Levenson and Jordan 1997; Simstein, Burow et al. 2003). Hematocytometer 

cell counts, microscopy, flow cytometry and staining assays were performed to determine the 

effect of 5-FU on cell proliferation, morphology, cell cycle progression and induction of 

apoptosis. The results of our study illustrated that 5-FU inhibits cell proliferation and induces 

apoptosis in a dose-dependent manner. However, no significant effect was observed on the cell 

cycle clock of the cells. Thus, the data helps to better appreciate the biological effects of 5-FU 

and confirms its efficiency in treatment of breast cancer. 

 

Materials and Methods 

Cell line and cell culture 

All cell culture reagents were purchased from Invitrogen, Inc, Carlsbad, CA.  The human 

breast adenocarcinoma cell line MCF7 (HTB-22™) was obtained from the American Type 

Culture Collection (ATCC, Rockville, MD). They were cultured in RPMI 1640 media containing 

L-Glutamine and 25 mM HEPES, and supplemented with 10% Fetal Bovine Serum (FBS), 10 

µg/ml gentamicin and 4 µg/ml insulin and sterilized using a 0.22µM polyethersulfone filter 

(Corning Inc., Corning, NY). The cells were maintained at 37˚C in a humidified incubator with 

5% CO2. The media was replaced every 48 hours, and the cells were passaged once a week by 

trypsinization using 0.05% trypsin/0.02% EDTA (Sigma, St. Louis, MO). 

Growth Curve Analysis 

The growth curve and the doubling time of MCF7 cells were determined by monitoring 

the growth of the cells for 5 days. For this purpose, cells were seeded at 1.5x104 cells/cm2 
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(9.6x104 cells/well) in flat-bottom 6-well plates in 2ml of RPMI 1640 complete media. After 

every 24 hours interval thereafter, the cells were harvested using 0.05% trypsin/0.02% EDTA 

and counted by the Trypan blue dye exclusion assay as described below. The media was replaced 

every 48 hours. The experiment was performed in triplicates on four separate occasions. 

5-fluorouracil Drug treatment 

5-fluorouracil (5-FU) was purchased from Sigma-Aldrich (St. Louis, MO) and stored at 

4˚C, away from light and moisture. For cell treatments, a 10 mM stock solution of 5-FU was 

prepared in RPMI complete media and stored at 4˚C for not more than two weeks. The stock was 

filtered through a 0.22µM polyethersulfone filter prior to further dilution. The effect of 5-FU on 

the growth curve of MCF7 cells was assessed every 24 hours using the MTT dye reduction assay 

as described below. In the preliminary experiment, we determined that the trypan blue dye 

exclusion assay for cell viability correlates well with the MTT dye reduction assay. Briefly, the 

cells were seeded at 1.5x104 cells/cm2 (4800 cells/well) in flat-bottom 96-well plates in 100µl of 

complete media without phenol red; and after 24 hours, treated with four different concentrations 

of 5-FU (0.01µM, 1µM, 10µM and 50µM) as described below. In order to determine the cell 

number in each sample following the 5-FU treatments, the cells were treated with MTT (as 

described below) and the Optical Density (OD) was measured directly at a wavelength of 540nm 

using a microplate reader (Multiscan MCC/340, Fisher Scientific, Pittsburg, PA). The OD was 

measured before treating the cells (control), and at 24 and 48 hours. The OD of each sample was 

then compared with a standard curve, in which the OD was directly proportional to the actual 

cell numbers. The experiment was performed in triplicates in five separate trials. 
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Cell morphology analysis 

Briefly, 5x105 cells were seeded in a 25cm2 cell culture flask (2.0x104 cells/cm2) in 5ml 

of complete media.  After 24 hours, the fresh media was replaced in control flasks and media 

with 5-FU was replaced in the treatment flasks. The control MCF7 cells and cells treated with 

different concentrations of 5-FU (1µM and 50µM) for 48 hours were observed using a light 

microscope with a CCD camera.  

Cell proliferation assays 

The different inhibitory concentrations of 5-FU were then determined by generating 

dose-response curves after treating the cells with increasing concentration of 5-FU and analyzing 

the cell sensitivity using the Trypan blue dye exclusion and the MTT [3-(4,5-dimethylthiazolyl-

2)-2,5-diphenyltetrazolium bromide] dye reduction assays.  

For the trypan blue dye exclusion assay, the cells were seeded at 2.5x104 cells/cm2 

(9.5x104 cells/well) in flat-bottom 12-well plates in 1ml of complete media. After 24 hours, the 

media was replaced with fresh media containing different 5-FU concentrations (0-2000µM); a 

negative control (containing cells and only media but no drug) was also included. After 48 hours, 

the cells were detached by trypsinization, appropriately diluted with 0.4% trypan blue dye 

(Sigma-Aldrich, St. Louis, MO) and 10µl of this mixture was loaded on the counting chambers 

of the Hematocytometer. The viable cells were then visually counted using a microscope and the 

percentage of unstained treated cells compared to the unstained control cells was calculated. The 

cells were counted in three individual experiments in triplicates. The following formula was used 

to determine the number of viable cells/well: 

Number of viable cells/ml = (Total number of viable cells counted/4) * Dilution factor * 10,000 
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The dose-response for 5-FU was confirmed using the MTT dye reduction assay. The 

technique originally developed by (Mosmann 1983) was followed. Briefly, cells were seeded at 

1.5x104 cells/cm2 (4800 cells/well) in flat-bottom 96-well plates in 100µl of complete media 

without phenol red. After 24 hours, they were treated with various concentrations of 5-FU for 48 

hours. Negative controls (containing cells and only media but no drug) and blank controls 

(containing only media and no cells) were also included. After 48 hours of drug treatment, 20µl 

of 5 mg/ml MTT (Sigma-Aldrich, St. Louis, MO) in Phosphate-Buffered Saline (PBS) (12mM) 

was added to each well and incubated for 4 h at 37˚C with 5% CO2. The drug and MTT 

containing media was then removed and 100µl of dimethyl sulfoxide (DMSO) was added to each 

well to dissolve the formazan crystals. The absorbance of the plates was measured at 540nm 

using a microplate reader (Multiscan MCC/340, Fisher Scientific, Pittsburg, PA) and the % cell 

viability was calculated compared to the negative control. All experiments were performed five 

separate times in triplicates.  

% Cell viability = [(OD of treated group – OD of blank) / (OD of control group – OD of blank)] * 100 

OD = Optical density obtained using the Microplate reader. 

Detection of Apoptosis and Necrosis 

 The induction of apoptosis and necrosis in MCF7 cells by 5-FU was determined 

morphologically using a Fluorescent microscope after labeling the cells with acridine orange and 

ethidium bromide dyes to detect nuclear changes characteristic of apoptosis in the cells as 

described by (Duke 1992). Briefly, cells were treated with 0.01µM, 0.3µM, 2µM and 50µM 5-

FU solutions for 48 hours, floating and attached cells were then collected by trypsinization, 

washed in PBS and resuspended in 25µl of complete media. 100µg each of acridine orange and 

ethidium bromide was dissolved in 1ml of PBS and 5µl of this dye mixture was mixed with 25µ 
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of the cell suspension. Ten µl of this mixture was loaded on a microscopic glass slide and 

examined under the 20X dry objective of the Fluorescent microscope using the epillumination 

and a filter combination suitable for observing fluorescein. A minimum of 300 cells were scored 

for each sample preparation and each concentration was treated in triplicates.  

Acridine orange intercalates into the DNA staining it green, and binds to the RNA 

making it appear red.  Ethidium bromide is taken up only by dead (nonviable) cells and stains 

them orange-red (Duke 1992). Cells were scored as live normal (bright green nuclei with intact 

structure), live apoptotic (bright green nuclei with condensed chromatin), dead apoptotic 

(red/orange nuclei with condensed chromatin) and dead necrotic (red/orange nuclei with intact 

structure). 

Flow cytometric analysis of cell cycle progression 

5-FU induced changes in the cell cycle of MCF7 cells were determined by using BD 

FACScan™ Flow Cytometer (Becton-Dickinson, Franklin Lakes, NJ). Briefly, 5x105 cells were 

seeded in a 25cm2 cell culture flask (2.0x104 cells/cm2) in 5ml of complete media.  After 24 

hours, the media was discarded and fresh media without serum (FBS) was added. Cells were 

synchronized by serum starvation for 5 days (120 hours), after which they were treated with 

0.01µM, 2µM and 50µM 5-FU solutions in complete media (different ICs of 5-FU) or with fresh 

complete media (control) for 48 hours. After 48 hours, the cells were detached by trypsinization, 

centrifuged, washed with PBS and fixed by passing through a 23G needle into cold 70% ethanol, 

followed by incubating at -20˚C for 30 mins. The cells were then resuspended in 1 ml PBS 

containing 10µg/ml RNase (Sigma-Aldrich, St. Louis, MO) and 10µg/ml Propidium iodide (PI) 

(Sigma-Aldrich, St. Louis, MO) and incubated in dark for 30 mins at room temperature (RT), 

after which they were refrigerated until analyzed on a FACScan Flow cytometer. Ten thousand 
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events were captured and the data was analyzed using the CellQuest software. Each 

concentration was repeated five times. 

Statistical Analysis 

All data are expressed as mean ± S.E.M. (Standard error of the mean). Statistical 

significance of the differences between the control and treated groups was determined by one-

way analysis of variance (ANOVA) using the PASW (Predictive Analytics SoftWare) Statistics 

17.0 (SPSS Inc., Chicago, IL). Differences were considered significant if P < 0.05. 

 

Results 

MCF7 growth curves 

The MCF7 breast cancer cell line is a moderately aggressive adherent cell line which 

grows in monolayer. The normal growth curve of the cells was determined over a time period of 

5 days using the Trypan blue dye exclusion assay. The cells were counted every 24 hours and the 

cells/well was calculated. Figure 2.1 shows the summarized growth curve for four independent 

experiments. As shown in the figure, the MCF7 cells entered log growth phase ~ 24 hours after 

plating and continued to grow exponentially even after 5 days. Our data showed that the 

doubling time of the cells was approximately 31 hours. Our data concurs with the ATCC 

guidelines, which state that the doubling time for MCF7 cells is about 29 hours. 

Growth inhibitory effect of 5-FU on MCF7 cells 

The effect of 5-FU on the growth of MCF7 cells was determined using the MTT dye 

reduction assay. For this purpose, the cells were treated with different 5-FU concentrations, the 
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optical density was measured at times 0, 24 and 48 hours (Figure 2.2a), and the actual cells/well 

was calculated by comparing the optical density to a standard curve (Figure 2.2b). Figures 2.2a 

and c show the dose-response curves of MCF7 cells at 24 and 48 hours. These figures illustrates 

that cells treated with 5-FU exhibit a dose- and time-dependent reduction in their proliferation 

rate. A reduction in cell growth compared to control untreated cells was observed at 24 hours 

itself. However, a significant reduction in the cell number was observed following 48 hours of 

exposure to 5-FU (p < 0.05). Concentration as low as 0.01µM of 5-FU was shown to be 

sufficient to inhibit cell growth. Further, a higher inhibition of cell growth was observed with 

increasing 5-FU concentrations. The growth inhibitory rate of 50µM 5-FU amounted to around 

50% inhibition compared to control cells at 48 hours. Thus, the data suggest an increase in drug 

effect with higher drug concentrations and longer exposure. 

Changes in cell morphology following 5-FU treatment 

The changes in morphology of the MCF7 cells after 5-FU exposure was analyzed using 

phase contrast microscopy. The cells were treated with 1µM and 50µM 5-FU for 48 hours and 

observed directly using a light microscope. Figure 2.3a shows the control untreated adherent 

MCF7 cells and Figure 2.3b shows the control cells that have been detached by trypsinization. 

The untreated MCF7 cells are circular when unattached, and variously shaped when attached to 

the culture plate. Figures 2.3c and 2.3d show MCF7 cells treated with 1µM and 50µM 

respectively. As shown in the figures (arrow marks), cells exposed to 5-FU exhibited an obvious 

change in their morphological characteristics. Cells were shrunken and rounded which increased 

in a dose-dependent manner. Further, it was observed that 5-FU treated MCF7 cells exhibited 

compromised anchorage to the culture plate, and increased amount of floating cells were 

observed with higher 5-FU concentrations. 
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Dose-response curve of MCF7 cells after 5-FU treatment 

 To further study the anti-proliferative effects of 5-FU on MCF7 cells, the cells were 

treated with different 5-FU concentrations over a broad range (0-2000µM) for 48 hours and the 

cell viability was measured using the Trypan blue dye exclusion and the MTT dye reduction 

assays. The trypan blue dye exclusion assay distinguishes between live, viable cells with intact 

cell membrane which exclude the trypan blue dye, and the non-viable cells which will take up 

the dye. Alternatively, the MTT dye reduction assay considers the ability of the viable cells to 

metabolically reduce the MTT dye to an insoluble colored compound, which can then be 

measured spectrophotometrically. The viable cell counts were calculated compared to the control 

untreated MCF7 cells as described under Methods and Materials and the data were plotted vs. 

log drug concentrations to give the dose-response curves from which the Inhibitory 

concentrations (ICs) values for 5-FU were determined. The IC50 was defined as the drug 

concentration required to reduce the cell number by 50% as compared to the control untreated 

cells; the other ICs for 5-FU were defined similarly. 

 Figure 2.4 shows the dose-response curve of 5-FU treatment in MCF7 cells. As shown in 

the figure, treatment of MCF7 cells with increasing concentrations of 5-FU for 48 hours gave an 

atypical dose-dependent decrease in cell number (p < 0.001). It was observed that with 

increasing 5-FU concentrations, the cell numbers decreased initially (0-0.5µM), followed by an 

increase (0.7µM) and then again a decrease in the cell numbers (1-2000µM). Concentrations as 

low as 0.005µM and 0.01µM 5-FU induced a significant reduction in MCF7 cell numbers, ~ 

35% and 72% inhibition respectively compared to the control cells (p < 0.001). 0.01-0.5µM 5-

FU caused a significant decrease in MCF7 cell number (~ 75% inhibition), but little difference 

was observed among these treatments, thus creating a plateau phase in the curve. However, 
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treatment with 0.7µM 5-FU showed a significant increase in the cell counts, with only 30% cells 

inhibited compared to the control MCF7 cells (p < 0.001). This rise in the cell numbers was 

followed again by a decline in a dose-dependent manner with increasing 5-FU concentrations. 

The MCF7 cells were almost completed inhibited at concentrations greater than 50µM 5-FU. As 

a result of the bimodal dose-response curve, two separate IC50s of 5-FU were calculated, 

0.007µM and 2.8µM respectively. The results suggest that 5-FU is potent to inhibit growth of 

MCF7 cells even at an extremely low concentration. Table 2.1 gives the different ICs of 5-FU in 

MCF7 cells after 48 hours of treatment. 

In parallel with this assay, the effects of 5-FU on MCF7 cells were also examined by the 

MTT dye reduction assay. The results obtained with the MTT dye reduction assay were strongly 

correlated with those obtained by the Trypan blue dye reduction assay (n = 24, r = 0.779, p < 

0.001). Figure 2.5 shows the dose-response curve of 5-FU in MCF7 cells at 48 hours by the MTT 

dye reduction assay. The MCF7 cells exhibit a similar growth inhibition pattern as observed by 

the Trypan blue dye exclusion assay. 0-0.5µM 5-FU causes a partial reduction in the optical 

density of the cells, with highest inhibition of 25% at 0.5µM. A similar increase in the optical 

density of the cells was observed at 0.7µM, followed by a decline in a dose-dependent manner. 

This demonstrates that 5-FU significantly interferes with the metabolic activity of the MCF7 

cells. The data is consistent with that from the Trypan blue dye exclusion assay. However, even 

very high 5-FU concentrations failed to completely inhibit the cellular metabolism. 

Induction of apoptosis by 5-FU treatment 

 To determine if 5-FU induced apoptosis in MCF7 cells, the cells were exposed to varying 

concentrations of 5-FU (0-50µM) and evaluated for morphological changes characteristic of 
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apoptosis by AO/EB staining for fluorescence microscopy. Acridine orange (AO) enters live 

cells and stains them green, while Ethidium bromide (EB), a DNA-binding fluorescent dye, is 

taken up by only non-viable, dead cells and stains its DNA red. As shown in Figure 2.6, 

treatment of MCF7 cells with 5-FU led to four morphologically distinct populations of cells on 

AO/EB stained samples: uniformly green cells with normal nuclei (Live normal cells, Figure 

2.6a), Live apoptotic cells (Figure 2.6b), Dead apoptotic cells (Figure 2.6c) and Dead necrotic 

cells (Figure 2.6d), as described in the Materials and Methods section. Figure 2.7 gives the 

response of MCF7 cells to different 5-FU concentrations. Live, normal cells were observed 

mainly in control cells and their numbers decreased significantly following 5-FU treatment. 

Presence of live and dead apoptotic cells was evaluated to indicate induction of apoptosis in 

MCF7 cells. At 48 hours, 5-FU induced significant numbers of apoptotic cells in a concentration-

dependent manner. Early apoptotic cells were observed at concentrations as low as 0.002µM, 

and reaching 82% at 50µM (Figure 2.8). Alternatively, dead necrotic cells were not shown to be 

significantly increased following 5-FU treatment. Thus, both light microscopy and AO/EB 

staining assay together suggest that 5-FU is able to induce apoptosis in MCF7 cells even at low 

concentrations. 

Effect of 5-FU on cell cycle of MCF7 cells 

To determine the effect of 5-FU on the cell cycle of MCF7 cells, flow cytometric analysis 

was performed. Synchronized MCF7 cells were incubated with or without increasing 

concentrations of 5-FU for after 48 hours, and relative DNA content was analyzed by propidium 

iodide staining followed by flow cytometry. As shown in figures 2.9 and 2.10, no significant 

differences in cell cycle distribution were found after exposure to 5-FU (p = 0.166; p = 0.290; p 

= 0.160 for G1, S and G2 phases respectively). The data showed that control untreated sample 
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had a higher percentage of cells in the G0/G1 phase of the cell cycle. After treatment with 

increasing concentrations of 5-FU, the cells were still present in the G0/G1 phase of the cell 

cycle. All results were virtually indistinguishable from the control untreated cells. Further, no 

significant apoptosis was detected even at 50µM 5-FU. 

 

Discussion 

 The fluoropyrimidine 5-FU has been used in clinical practice for almost 50 yrs, and it has 

been shown that a good correlation exists between 5-FU plasma levels and the biological effects 

of 5-FU treatment. Presently, the standard approach for calculating the 5-FU drug dosage has 

been to use body surface area (mg/m2), which results in considerable variability in 5-FU plasma 

concentrations. 5-FU yields a 20% response rate in patients with metastatic breast cancer when 

given as a single drug by bolus i.v. injection (Ansfield, Klotz et al. 1977). (Finch, Bending et al. 

1979) reported that i.v. administration of a single dose of 5-FU (370 to 560 mg/m2) gives a peak 

plasma concentration of 13 to 130 µg/ml. Another study by (Muller, Mader et al. 1997) have 

demonstrated that administration of a single i.v. dose of 600 mg/m2 5-FU for 5 mins in breast 

cancer patients achieved a tumor concentration of 16.4 ( ± 6.7) µg/ml and plasma concentration 

of 27.3 ( ± 4.1) µg/ml. The plasma half-life is approximately 6 to 20 min and varies significantly 

among patients. Within 6 hours of administration, plasma concentrations fall below 0.13 µg/ml. 

Further, the major urinary metabolite, α–fluoro-ß-alanine (FBAL), has a plasma elimination half-

life of approximately 33 hours (Huan, Pazdur et al. 1989; Porter, Chestnut et al. 1992). However, 

single-agent bolus 5-FU does not seem to have much of a role in the treatment of breast cancer 
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(Rubens 1991), and this is partly related to the low response rates, about 29% (Cameron, Gabra 

et al. 1994). 

The short half life and S phase-specificity (Pinedo and Peters 1988) of 5-FU makes it 

pharmacokinetically suitable for administration as a continuous infusion which ensures 

prolonged cancer cell exposure and thereby enhances 5-FU cytotoxicity. Continuous infusion of 

5-FU is very well tolerated, as demonstrated by various studies. It is possible to administer doses 

of 1-1.4 g/m2/day up to 5 days; 500 mg/m2/day up to 30 days (Lokich, Bothe et al. 1981; 

McDermott, van den Berg et al. 1982; Hansen, Quebbeman et al. 1987; Chang, Most et al. 1989; 

Hatfield AK 1989; Huan, Pazdur et al. 1989; Jabboury, Holmes et al. 1989; J Berlie 1990; 

Lokich, Ahlgren et al. 1991; Cameron, Gabra et al. 1994; Ng, Cameron et al. 1994); and 250 

mg/m2/day for up to 3 weeks (Regazzoni, Pesce et al. 1996). (Petit, Milano et al. 1988) have 

reported a circadian rhythm-varying pattern in the plasma concentrations of 5-FU following a 

five-day continuous venous infusion. Some authors have reported that plasma peak levels of up 

to 584 ng/ml 5-FU were achieved by the continuous infusion of 450-955 mg/m2/day (Petit, 

Milano et al. 1988); while others have reported that maximum dose of only 300 mg/m2/day can 

be administered for a prolonged period of time without any side effects (Lokich, Ahlgren et al. 

1991), and this results in 5-FU plasma concentration of only 27 ng/ml (Harris, Song et al. 1990). 

Thus, a large variability have been shown to exist in the plasma levels of 5-FU following i.v. 

infusions. However, an optimal therapeutic window has been recommended by several 

pharmacokinetic clinical studies to obtain improved clinical outcomes and reduced toxicity. A 

consistent target range of AUC (area under the concentration range) of 20-25 mg.h/L or a plasma 

concentration of 450-550 µg/L have been established as most optimal despite different 
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administration modes (bolus/ infusion i.v. or oral) and time schedules (Gamelin, Delva et al. 

2008). 

 In the present study, we confirmed the anti-tumor properties of 5-FU in vitro and have 

shown that 5-FU inhibits the growth of MCF7 cells in a dose- and time-dependent manner. 

Treatment with different concentrations of 5-FU for 48 hours was observed to significantly 

inhibit MCF7 cell proliferation. A wide 5-FU concentration range, ranging from 0-2000µM, with 

small interval groups was selected to determine the minimum effective and maximum effective 

concentrations of 5-FU exposure. A unique dose-response curve was obtained following 5-FU 

treatment. The MCF7 cells displayed a bimodal dose-response curve after treatment with 5-FU 

for 48 hours. A significant decline in the cell number was observed at very low doses of 5-FU, 

followed by an increase in the cell number and further subsequent decrease as very high 5-FU 

concentrations were used. Thus two separate dose-response curves were obtained between 0-

0.5µM and 0.7-2000µM 5-FU. Doses as low as 0.005µM and 0.01µM were capable of inhibiting 

35% and 72% of MCF7 cell numbers respectively. A plateau stage was then observed between 

0.01 – 0.5µM 5-FU doses, indicating that these doses were equally capable of inhibiting MCF7 

growth (~ 75% inhibition). 

Two separate sets of ICs of 5-FU were calculated because of the bimodal response curve. 

The IC50s of 5-FU in MCF7 cells following 48 hours of exposure were calculated to be 

approximately 0.007 and 2.8µM. Several studies have been performed to determine the 

inhibitory concentrations of 5-FU on the MCF7 cells. (Wang, Cassidy et al. 2004) reported an 

IC50 of 1.2µM following exposure of MCF7 cells to 5-FU for 48 hours. Other studies have 

reported IC50 values of 10µM (Hernandez-Vargas, Ballestar et al. 2006) and 23µM (Raymond, 

Buquet-Fagot et al. 1997) following treatment for 48 hours. Different 5-FU IC50 have been 
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reported after treatment of MCF7 cells with 5-FU for longer period of time: 0.7µM after 3 days 

treatment (Akbulut, Tang et al. 2004); 13µM after 4 days treatment (Miwa, Ura et al. 1998); 

6.3µM after 5 days treatment (Etienne, Ilc et al. 2004); and 1.03µM after 7 days treatment 

(Patterson, Zhang et al. 1995). It is easy to understand that the IC50 is decreased as the time of 

treatment increased, however the variations in the IC50 values of 5-FU might be caused by cell 

culture maintenance conditions, cell passage number or treatment conditions. 

 A bimodal response has not been previously reported for 5-FU. The reason for this could 

be because the effects of 5-FU has not been studied over a very large concentration range, and 

over small concentration intervals. In this study, 23 different 5-FU concentrations were analyzed 

covering the range of 0-2000µM, which helped get a detailed dose-response curve for 48 hours 

time point. Gurevich (Gurevich 2001) discussed that low doses of certain biologically active 

substances sometimes function with a different mechanism of action as compared with the 

clinically relevant doses. A similar low-dose response curve was obtained between 0-0.5µM, 

suggesting that a low-dose treatment with 5-FU might function with a different mechanism 

compared to the clinical doses. A similar bimodal response has been reported for some other 

compounds. The alkaloid sanguinarine was shown to act via a bimodal cell death, apoptosis and 

oncosis, in human cervical cancer cells (Ding, Tang et al. 2002). 5-FU might act with a dual 

mechanism of action, which is dose-dependent; low doses elicit a different response than the 

higher doses. Further work needs to be performed in order to support this hypothesis. 

 The MTT dye reduction assay was also used to determine the effect of 5-FU on MCF7 

cell viability and proliferation. It is a spectrophotometric assay which helps to distinguish 

between metabolically active cells from the non-active cells depending on their ability to 

metabolically convert MTT. Thus, although there is an obvious difference in the MCF7 growth 
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curves obtained by Trypan blue dye exclusion assay and MTT assay, the MTT assay mainly 

demonstrates the effect of 5-FU on cell metabolism. The curves obtained by both the methods 

show the same trend in the growth curve and a bimodal response for 5-FU. Further, the results 

obtained with the MTT dye reduction assay show a strong correlation with those obtained by the 

Trypan blue dye reduction assay (n = 24, r = 0.779, p < 0.001). The results obtained from the 

morphological examination and AO/EB assay further confirm with these results. Higher 

concentrations of 5-FU are able to induce morphological changes and damage the ability of the 

cells to adhere. The results from the AO/EB assay look at the different stages of cell death 

induced after 5-FU exposure. A significant increase in the number of both live and dead 

apoptotic cells was observed following treatment with higher 5-FU concentrations. The study 

together confirms the ability of 5-FU to inhibit proliferation and induce apoptosis in MCF7 

breast cancer cells. 

 Flow cytometry was used to analyze the effect of 5-FU treatment on the cell cycle 

progression of MCF7 cells. The results obtained in this study suggested that 5-FU does not have 

an influence on cell cycle progression in MCF7 cells. Contrasting results have been previously 

reported by other studies. (Grem, Nguyen et al. 1999) demonstrated that 5-FU caused an 

accumulation of MCF7 cells in S-phase, along with induction of p53 and p21 proteins and DNA 

strand breaks. (Hernandez-Vargas, Ballestar et al. 2006) also reported a G1 phase block 

following 5-FU treatment. Similar effects of 5-FU have also been described in other cancer cell 

line (Tokunaga, Oda et al. 2000). However, no significant accumulation of cells in G1-S phase 

was observed after 5-FU treatment as compared to the control MCF7 cells. The reason for this 

inconsistency could be because of the technique used for cell synchronization prior to flow 

cytometric analysis. Cell synchronization by serum starvation results in accumulation of cells in 
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the G1 phase. As a result, the control cells also showed cells accumulated in the G1 phase, and 

no significant difference could be observed in 5-FU treated samples compared to the control. The 

data represented here thus cannot conclude anything about the effect of 5-FU on the cell cycle 

progression of MCF7 cells.  

 In summary, this study confirmed the anti-tumor activity of 5-FU in human breast cancer 

cell in vitro. Our results indicated that 5-FU significantly inhibited cell proliferation of MCF7 

cells in a dose-dependent manner, and with a plausible dual mechanism of action. Further work 

needs to be carried out to show this. Induction of apoptosis was shown to be one of the major 

mechanisms of cytotoxicity, as significant apoptosis was seen even at low doses of 5-FU. 

However, any effects on the cell cycle progression were not shown by our results. These 

experimental findings provide evidence of the global effects of 5-FU on human breast cancer 

cells in vitro and warrant further evaluation to study the molecular basis of its cytotoxicity. 

  



64 

 

References 

Aherne, G. W., A. Hardcastle, et al. (1996). "Immunoreactive dUMP and TTP pools as an index 
of thymidylate synthase inhibition; effect of tomudex (ZD1694) and a nonpolyglutamated 
quinazoline antifolate (CB30900) in L1210 mouse leukaemia cells." Biochem Pharmacol 
51(10): 1293-301. 

Akbulut, H., Y. Tang, et al. (2004). "Vector targeting makes 5-fluorouracil chemotherapy less 
toxic and more effective in animal models of epithelial neoplasms." Clin Cancer Res 
10(22): 7738-46. 

Ansfield, F., J. Klotz, et al. (1977). "A phase III study comparing the clinical utility of four 
regimens of 5-fluorouracil: a preliminary report." Cancer 39(1): 34-40. 

Backus, H. H., D. F. Dukers, et al. (2001). "5-fluorouracil induced Fas upregulation associated 
with apoptosis in liver metastases of colorectal cancer patients." Ann Oncol 12(2): 209-
16. 

Barry, M. A., C. A. Behnke, et al. (1990). "Activation of programmed cell death (apoptosis) by 
cisplatin, other anticancer drugs, toxins and hyperthermia." Biochem Pharmacol 40(10): 
2353-62. 

Cameron, D. A., H. Gabra, et al. (1994). "Continuous 5-fluorouracil in the treatment of breast 
cancer." Br J Cancer 70(1): 120-4. 

Chang, A. Y., C. Most, et al. (1989). "Continuous intravenous infusion of 5-fluorouracil in the 
treatment of refractory breast cancer." Am J Clin Oncol 12(5): 453-5. 

Cunningham, D. and R. D. James (2001). "Integrating the oral fluoropyrimidines into the 
management of advanced colorectal cancer." Eur J Cancer 37(7): 826-34. 

Daher, G. C., B. E. Harris, et al. (1990). "Metabolism of pyrimidine analogues and their 
nucleosides." Pharmacol Ther 48(2): 189-222. 

Ding, Z., S. C. Tang, et al. (2002). "The alkaloid sanguinarine is effective against multidrug 
resistance in human cervical cells via bimodal cell death." Biochem Pharmacol 63(8): 
1415-21. 

Dominguez, J. F., J. A. Marchal, et al. (2003). "Synthesis and evaluation of new 5-fluorouracil 
antitumor cell differentiating derivatives." Bioorg Med Chem 11(3): 315-23. 

Doong, S. L. and B. J. Dolnick (1988). "5-fluorouracil substitution alters pre-mRNA splicing in 
vitro." J Biol Chem 263(9): 4467-73. 

Duke, R. C., J.J. Cohen (1992). Morphological and biochemical assays of apoptosis. Current 
Protocols in Immunology. A. M. K. J.E. Coligan, D.H. Margulies, E.M. Shevach, W. 
Strober. New York, Greene Publishing/Wiley-Interscience. 3: 16. 



65 

 

Engel, L. W. and N. A. Young (1978). "Human breast carcinoma cells in continuous culture: a 
review." Cancer Res 38(11 Pt 2): 4327-39. 

Etienne, M. C., K. Ilc, et al. (2004). "Thymidylate synthase and methylenetetrahydrofolate 
reductase gene polymorphisms: relationships with 5-fluorouracil sensitivity." Br J Cancer 
90(2): 526-34. 

Falkson, C. I., H. C. Falkson, et al. (1992). "Cyclophosphamide, doxorubicin and fluorouracil 
(CAF) plus depo-buserelin in the treatment of premenopausal women with metastatic 
breast cancer." Ann Oncol 3(10): 849-53. 

Finch, R. E., M. R. Bending, et al. (1979). "Plasma levels of 5-fluorouracil after oral and 
intravenous administration in cancer patients." Br J Clin Pharmacol 7(6): 613-7. 

Fumoleau, P., J. Bonneterre, et al. (2003). "Adjuvant chemotherapy for node-positive breast 
cancer patients: which is the reference today?" J Clin Oncol 21(6): 1190-1; author reply 
1191-2. 

Gamelin, E., R. Delva, et al. (2008). "Individual fluorouracil dose adjustment based on 
pharmacokinetic follow-up compared with conventional dosage: results of a multicenter 
randomized trial of patients with metastatic colorectal cancer." J Clin Oncol 26(13): 
2099-105. 

Ghoshal, K. and S. T. Jacob (1994). "Specific inhibition of pre-ribosomal RNA processing in 
extracts from the lymphosarcoma cells treated with 5-fluorouracil." Cancer Res 54(3): 
632-6. 

Gioanni, J., D. Le Francois, et al. (1990). "Establishment and characterisation of a new 
tumorigenic cell line with a normal karyotype derived from a human breast 
adenocarcinoma." Br J Cancer 62(1): 8-13. 

Grem, J. L., D. Nguyen, et al. (1999). "Sequence-dependent antagonism between fluorouracil 
and paclitaxel in human breast cancer cells." Biochem Pharmacol 58(3): 477-86. 

Gurevich, K. G. (2001). "Low doses of biologically active substances: effects, possible 
mechanisms, and features." Cell Biol Int 25(5): 475-84. 

Hansen, R., E. Quebbeman, et al. (1987). "Continuous 5-fluorouracil infusion in refractory 
carcinoma of the breast." Breast Cancer Res Treat 10(2): 145-9. 

Harris, B. E., R. Song, et al. (1990). "Relationship between dihydropyrimidine dehydrogenase 
activity and plasma 5-fluorouracil levels with evidence for circadian variation of enzyme 
activity and plasma drug levels in cancer patients receiving 5-fluorouracil by protracted 
continuous infusion." Cancer Res 50(1): 197-201. 

Hatfield AK, J. P., Egner JR, Long CA (1989). Continuous 5-fluorouracil infusion in the 
treatment of far advanced metastatic breast carcinoma. Proceedings of the Annual 
Meeting of the American Society for Clinical Oncology. 8: A132. 



66 

 

Hernandez-Vargas, H., E. Ballestar, et al. (2006). "Transcriptional profiling of MCF7 breast 
cancer cells in response to 5-fluorouracil: relationship with cell cycle changes and 
apoptosis, and identification of novel targets of p53." Int J Cancer 119(5): 1164-75. 

Hickman, J. A. (1992). "Apoptosis induced by anticancer drugs." Cancer Metastasis Rev 11(2): 
121-39. 

Horwitz, K. B., M. E. Costlow, et al. (1975). "MCF7; a human breast cancer cell line with 
estrogen, androgen, progesterone, and glucocorticoid receptors." Steroids 26(6): 785-95. 

Houghton, J. A., D. M. Tillman, et al. (1995). "Ratio of 2'-deoxyadenosine-5'-
triphosphate/thymidine-5'-triphosphate influences the commitment of human colon 
carcinoma cells to thymineless death." Clin Cancer Res 1(7): 723-30. 

Huan, S., R. Pazdur, et al. (1989). "Low-dose continuous infusion 5-fluorouracil. Evaluation in 
advanced breast carcinoma." Cancer 63(3): 419-22. 

J Berlie, L. M., C Meyer, J Rouesse (1990). Protracted continuous infusion of 5-fluorouracil 
among breast cancer patients. Proceedings of the Annual Meeting of the American 
Society for Clinical Oncology. 9: A153. 

Jabboury, K., F. A. Holmes, et al. (1989). "5-fluorouracil rechallenge by protracted infusion in 
refractory breast cancer." Cancer 64(4): 793-7. 

Kanamaru, R., H. Kakuta, et al. (1986). "The inhibitory effects of 5-fluorouracil on the 
metabolism of preribosomal and ribosomal RNA in L-1210 cells in vitro." Cancer 
Chemother Pharmacol 17(1): 43-6. 

Levenson, A. S. and V. C. Jordan (1997). "MCF7: the first hormone-responsive breast cancer 
cell line." Cancer Res 57(15): 3071-8. 

Lokich, J., A. Bothe, et al. (1981). "Phase I study of protracted venous infusion of 5-
fluorouracil." Cancer 48(12): 2565-8. 

Lokich, J. J., J. D. Ahlgren, et al. (1991). "A prospective randomized comparison of protracted 
infusional 5-fluorouracil with or without weekly bolus cisplatin in metastatic colorectal 
carcinoma. A Mid-Atlantic Oncology Program study." Cancer 67(1): 14-9. 

Longley, D. B., D. P. Harkin, et al. (2003). "5-fluorouracil: mechanisms of action and clinical 
strategies." Nat Rev Cancer 3(5): 330-8. 

Lowe, S. W., S. Bodis, et al. (1994). "p53 status and the efficacy of cancer therapy in vivo." 
Science 266(5186): 807-10. 

Lowe, S. W., H. E. Ruley, et al. (1993). "p53-dependent apoptosis modulates the cytotoxicity of 
anticancer agents." Cell 74(6): 957-67. 

Lundberg, A. S. and R. A. Weinberg (1999). "Control of the cell cycle and apoptosis." Eur J 
Cancer 35(4): 531-9. 



67 

 

Marchal, J. A., F. Rodriguez-Serrano, et al. (2007). "Antiproliferative activity, cell-cycle 
dysregulation, and cellular differentiation: salicyl- and catechol-derived acyclic 5-
fluorouracil O,N-acetals against breast cancer cells." ChemMedChem 2(12): 1814-21. 

Maxwell, P. J., D. B. Longley, et al. (2003). "Identification of 5-fluorouracil-inducible target 
genes using cDNA microarray profiling." Cancer Res 63(15): 4602-6. 

McDermott, B. J., H. W. van den Berg, et al. (1982). "Nonlinear pharmacokinetics for the 
elimination of 5-fluorouracil after intravenous administration in cancer patients." Cancer 
Chemother Pharmacol 9(3): 173-8. 

Mirjolet, J. F., C. Didelot, et al. (2002). "G(1)/S but not G(0)/G(1)cell fraction is related to 5-
fluorouracil cytotoxicity." Cytometry 48(1): 6-13. 

Mitrovski, B., J. Pressacco, et al. (1994). "Biochemical effects of folate-based inhibitors of 
thymidylate synthase in MGH-U1 cells." Cancer Chemother Pharmacol 35(2): 109-14. 

Miwa, M., M. Ura, et al. (1998). "Design of a novel oral fluoropyrimidine carbamate, 
capecitabine, which generates 5-fluorouracil selectively in tumours by enzymes 
concentrated in human liver and cancer tissue." Eur J Cancer 34(8): 1274-81. 

Mosmann, T. (1983). "Rapid colorimetric assay for cellular growth and survival: application to 
proliferation and cytotoxicity assays." J Immunol Methods 65(1-2): 55-63. 

Muller, M., R. M. Mader, et al. (1997). "5-fluorouracil kinetics in the interstitial tumor space: 
clinical response in breast cancer patients." Cancer Res 57(13): 2598-601. 

Ng, J. S., D. A. Cameron, et al. (1994). "Infusional 5-fluorouracil in breast cancer." Cancer Treat 
Rev 20(4): 357-64. 

O'Shaughnessy, J., C. Twelves, et al. (2002). "Treatment for anthracycline-pretreated metastatic 
breast cancer." Oncologist 7 Suppl 6: 4-12. 

Patterson, A. V., H. Zhang, et al. (1995). "Increased sensitivity to the prodrug 5'-deoxy-5-
fluorouridine and modulation of 5-fluoro-2'-deoxyuridine sensitivity in MCF7 cells 
transfected with thymidine phosphorylase." Br J Cancer 72(3): 669-75. 

Patton, J. R. (1993). "Ribonucleoprotein particle assembly and modification of U2 small nuclear 
RNA containing 5-fluorouridine." Biochemistry 32(34): 8939-44. 

Petak, I., D. M. Tillman, et al. (2000). "p53 dependence of Fas induction and acute apoptosis in 
response to 5-fluorouracil-leucovorin in human colon carcinoma cell lines." Clin Cancer 
Res 6(11): 4432-41. 

Petit, E., G. Milano, et al. (1988). "Circadian rhythm-varying plasma concentration of 5-
fluorouracil during a five-day continuous venous infusion at a constant rate in cancer 
patients." Cancer Res 48(6): 1676-9. 

Pinedo, H. M. and G. F. Peters (1988). "Fluorouracil: biochemistry and pharmacology." J Clin 
Oncol 6(10): 1653-64. 



68 

 

Porter, D. J., W. G. Chestnut, et al. (1992). "Mechanism-based inactivation of dihydropyrimidine 
dehydrogenase by 5-ethynyluracil." J Biol Chem 267(8): 5236-42. 

Posner, M. R., A. D. Colevas, et al. (2000). "The role of induction chemotherapy in the curative 
treatment of squamous cell cancer of the head and neck." Semin Oncol 27(4 Suppl 8): 13-
24. 

Qin, L. F. and I. O. Ng (2002). "Induction of apoptosis by cisplatin and its effect on cell cycle-
related proteins and cell cycle changes in hepatoma cells." Cancer Lett 175(1): 27-38. 

Randerath, K., W. C. Tseng, et al. (1983). "Specific effects of 5-fluoropyrimidines and 5-
azapyrimidines on modification of the 5 position of pyrimidines, in particular the 
synthesis of 5-methyluracil and 5-methylcytosine in nucleic acids." Recent Results 
Cancer Res 84: 283-97. 

Raymond, E., C. Buquet-Fagot, et al. (1997). "Antitumor activity of oxaliplatin in combination 
with 5-fluorouracil and the thymidylate synthase inhibitor AG337 in human colon, breast 
and ovarian cancers." Anticancer Drugs 8(9): 876-85. 

Regazzoni, S., G. Pesce, et al. (1996). "Low-dose continuous intravenous infusion of 5-
fluorouracil for metastatic breast cancer." Ann Oncol 7(8): 807-13. 

Rubens, R. D. (1991). "Treatment of metastatic breast cancer and its complications." Curr Opin 
Oncol 3(6): 1029-34. 

Samuelsson, T. (1991). "Interactions of transfer RNA pseudouridine synthases with RNAs 
substituted with fluorouracil." Nucleic Acids Res 19(22): 6139-44. 

Santi, D. V. and L. W. Hardy (1987). "Catalytic mechanism and inhibition of tRNA (uracil-5-
)methyltransferase: evidence for covalent catalysis." Biochemistry 26(26): 8599-606. 

Santi, D. V., C. S. McHenry, et al. (1974). "Mechanism of interaction of thymidylate synthetase 
with 5-fluorodeoxyuridylate." Biochemistry 13(3): 471-81. 

Shapiro, G. I., D. A. Koestner, et al. (1999). "Flavopiridol induces cell cycle arrest and p53-
independent apoptosis in non-small cell lung cancer cell lines." Clin Cancer Res 5(10): 
2925-38. 

Simstein, R., M. Burow, et al. (2003). "Apoptosis, chemoresistance, and breast cancer: insights 
from the MCF7 cell model system." Exp Biol Med (Maywood) 228(9): 995-1003. 

Smalley, R. V., J. Lefante, et al. (1983). "A comparison of cyclophosphamide, adriamycin, and 
5-fluorouracil (CAF) and cyclophosphamide, methotrexate, 5-fluorouracil, vincristine, 
and prednisone (CMFVP) in patients with advanced breast cancer." Breast Cancer Res 
Treat 3(2): 209-20. 

Sommer, H. and D. V. Santi (1974). "Purification and amino acid analysis of an active site 
peptide from thymidylate synthetase containing covalently bound 5-fluoro-2'-
deoxyuridylate and methylenetetrahydrofolate." Biochem Biophys Res Commun 57(3): 
689-95. 



69 

 

Tokunaga, E., S. Oda, et al. (2000). "Differential growth inhibition by 5-fluorouracil in human 
colorectal carcinoma cell lines." Eur J Cancer 36(15): 1998-2006. 

Wang, W., J. Cassidy, et al. (2004). "Mechanistic and predictive profiling of 5-fluorouracil 
resistance in human cancer cells." Cancer Res 64(22): 8167-76. 

Wils, J., P. O'Dwyer, et al. (2001). "Adjuvant treatment of colorectal cancer at the turn of the 
century: European and US perspectives." Ann Oncol 12(1): 13-22. 

Wohlhueter, R. M., R. S. McIvor, et al. (1980). "Facilitated transport of uracil and 5-fluorouracil, 
and permeation of orotic acid into cultured mammalian cells." J Cell Physiol 104(3): 309-
19. 

Yoshikawa, R., M. Kusunoki, et al. (2001). "Dual antitumor effects of 5-fluorouracil on the cell 
cycle in colorectal carcinoma cells: a novel target mechanism concept for 
pharmacokinetic modulating chemotherapy." Cancer Res 61(3): 1029-37. 

Yoshioka, A., S. Tanaka, et al. (1987). "Deoxyribonucleoside triphosphate imbalance. 5-
Fluorodeoxyuridine-induced DNA double strand breaks in mouse FM3A cells and the 
mechanism of cell death." J Biol Chem 262(17): 8235-41. 

Yukimoto, K., B. Nakata, et al. (2001). "Apoptosis and thymidylate synthase inductions by 5-
fluorouracil in gastric cancer cells with or without p53 mutation." Int J Oncol 19(2): 373-
8. 

Zhang, W., L. Ramdas, et al. (2003). "Apoptotic response to 5-fluorouracil treatment is mediated 
by reduced polyamines, non-autocrine Fas ligand and induced tumor necrosis factor 
receptor 2." Cancer Biol Ther 2(5): 572-8. 

 

  



70 

 

Table 2.1: Different inhibitory concentrations (ICs) of 5-FU in MCF7 breast cancer cells 

IC values at 48hours 5-FU Concentrations (µM) 

LEC 0.005 

IC5 0.001 

IC10 0.002 

IC25 0.004 

IC50 0.007, 2.8 

IC75 0.15, 0.5, 6 

IC90 50 
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Figure 2.1: Growth curve of MCF7 cells. Cells were seeded in RPMI complete media, followed 

by harvesting them every 24 hours for 5 days and counted using a hematocytometer. The 

cells/well was calculated for each day and plotted against time to determine the growth curve of 

MCF7 cells. Results are mean ± SEM of four independent experiments. 
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Figure 2.2 Effect of 5-FU on the growth and proliferation of MCF7 cells at 24 and 48 hours. a) 

OD vs. incubation time for different 5-FU concentration. The OD of each treatment was 

compared with the OD of control cells and plotted against time. The results are mean ± SEM for 

five different experiments. b) The cells/well vs. different 5-FU concentrations (µM). The 

cells/well for each treatment was determined and plotted against different 5-FU concentrations to 

investigate the effect of 5-FU on proliferation rate of MCF7 cells following 24 and 48 hours. 

Results are mean ± SEM for five separate trials. p values are 0.848, 0.589, 0.003 for 0, 24 and 48 

hours of treatment with 5-FU respectively. 
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Figure 2.3: Morphological changes induced in MCF7 cells by 5-FU after 48 h treatment. Cells 

were seeded in a 5 cm2 flask and treated with 5-FU (0, 1 and 50µM) for 48 hours. Cells were 

then observed using a light microscope and photographed after 48 hours. a) Control (untreated) 

MCF7 cells after 48 hours. Attached cells grow in monolayer and appear big and variously 

shaped. b) Control (untreated) MCF7 cells when unattached by trypsinization and observed using 

a glass slide. c) MCF7 cells treated with 1µM of 5-FU for 48 hours. The cells appeared shrunken 

and more were found detached following 5-FU treatment. Affected cells are marked with arrows. 

d) MCF7 cells treated with 50µM of 5-FU for 48 hours. The number of detached and shrunken 

increased, in a dose-dependent manner. Affected cells are marked with arrows. 
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Figure 2.4: Dose-dependent effect of 5-FU on the growth of MCF7 breast cancer cells 

represented in a logarithmic graph. The cells were treated with different concentrations of 5-FU 

for 48 hours and IC values were calculated by using the Trypan blue dye exclusion assay. 

Percent inhibition was calculated compared to the control MCF7 cells. IC50 values have been 

shown in red in the graph. The results are mean ± SEM for triplicates in three different 

experiments (p < 0.001). Points with the same letter are not statistically different. 
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Figure 2.5: Dose-response curve for 5-FU in MCF7 breast cancer cells obtained from the MTT 

dye reduction assay and represented in a logarithmic graph. The cells were treated with different 

concentrations of 5-FU for 48 hours and the OD of each treated sample was compared to the 

control MCF7 cells to obtain the percent cell viability. The results are mean ± SEM for 

triplicates in five separate experiments (p < 0.001). Points with the same letter are not 

statistically different. 
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Figure 2.6: Morphological analysis of induction of apoptosis in MCF7 cells after treatment with 

5-FU for 48 hours using the Acridine orange / Ethidium bromide (AO/EB) nuclei staining assay. 

a) Live normal cells - bright green with an intact nucleus; b) Live apoptotic cells - bright green 

nuclei with condensed chromatin; c) Dead apoptotic cells - red/orange nuclei with condensed 

chromatin; d) Dead normal cells - red/orange nuclei with intact structure. 
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Figure 2.7: Acridine Orange/Ethidium Bromide Apoptosis analysis of MCF7 cells treated with 5-

FU for 48 hours. LN= live normal, LA= live apoptotic, DA= dead apoptotic, DN = Dead 

necrotic. The results are represented as mean ± SEM. Statistically significant differences in 5-FU 

concentration are represented by single letters on the error bars (p < 0.001). Values that share a 

letter are not statistically significantly different. 
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Figure 2.8: Total apoptosis induced following treatment of MCF7 cells with 5-FU for 48 hours. 

Both live apoptotic and dead apoptotic cells were included to estimate the total % apoptosis 

induced by 5-FU. The results are represented as mean ± SEM (p < 0.001). Values that share a 

letter are not statistically significantly different. 
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Figure 2.9: Flow cytometry analysis showing the DNA histogram and scatter plots for MCF7 

cells following treatment with four different 5-FU concentrations for 48 hours: a) Control MCF7 

cells; b) 10nM 5-FU; c) 2µM 5-FU; d) 50µM 5-FU 
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Figure 2.10: Cell cycle analysis of MCF7 cells treated with 5-FU for 48 hours. Cells were 

synchronized prior to 5-FU treatment using serum deprivation. Treated cells were then analyzed 

using the FACScan Flow cytometer. The results are represented as mean ± SEM of five 

individual experiments. (p = 0.166 for change in G1 phase; p = 0.290 for change in S phase; p = 

0.160 for G2 phase respectively). 
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Chapter 3: Effects of 5-fluorouracil Drug Treatment on MicroRNA Expression Profile in 

MCF7 Breast Cancer Cells 

Abstract 

5-fluorouracil (5-FU) is a classic chemotherapeutic drug that has been widely used for 

breast cancer treatment. Although aberrant expression of protein-coding genes was observed 

after 5-FU treatment, the regulatory mechanism is unknown. In this study, by using a combined 

advanced microarray and quantitative real time PCR (qRT-PCR) technology, we found for the 

first time that 5-FU significantly alter the global expression profile of miRNAs, one class of 

recently identified small regulatory RNAs, in human breast cancer cells. After 48 hours of 

treatment with a low dosage (0.01µM), we observed that 42 miRNAs were differentially 

expressed in MCF7 cells. Of these, 23 miRNAs were up-regulated with up to a 4.59-fold change, 

while 19 were down-regulated with up to a 1.89-fold change. The most up-regulated miRNAs 

are miR-575 (4.59-fold change), miR-671-5p (3.25-fold change), miR-483-5p (3.07-fold 

change), miR-574-3p (2.52-fold change); the most down-regulated miRNAs are miR-365 (1.89-

fold change) and miR-374b (1.62-fold change). A majority of miRNAs with differential 

expression are associated with cancer development, including breast cancer. Target prediction 

and GO analysis suggest that these differentially expressed miRNAs potentially targeted many 

oncogenes and tumor suppressor genes as well as protein-coding genes which are related to 

programmed cell death, activation of immune response and cellular catabolic process. 

Key words: 5-fluorouracil, microRNA, human breast cancer, gene regulation, microarray, 

MCF7 
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Introduction 

Chemotherapy with antineoplastic (or cytotoxic) drugs is the most extensively adopted 

practice for managing cancers. 5-fluorouracil (5-Fluoro-2,4(1H,3H)-pyrimidinedione or 5-FU) is 

one such chemotherapeutic drug which is widely used mainly for the treatment of breast 

(Fumoleau, Bonneterre et al. 2003), colorectal (Wils, O'Dwyer et al. 2001) and head and neck 

cancers (Posner, Colevas et al. 2000). 5-FU is a pyrimidine antagonist which is rapidly taken 

inside actively by dividing cancerous cells through facilitated transport similar to uracil 

(Wohlhueter, McIvor et al. 1980); in cancer cells, 5-FU is converted intracellularly into three 

cytotoxic metabolites: fluorodeoxyuridine monophosphate (FdUMP), fluorodeoxyuridine 

triphosphate (FdUTP) and fluorouridine triphosphate (FUTP). The cytotoxicity of 5-FU has been 

primarily attributed to the inhibition of enzyme thymidylate synthase (TS) activity by FdUMP, 

resulting in inhibition of dTMP de novo synthesis (Santi, McHenry et al. 1974; Sommer and 

Santi 1974) and subsequent imbalances in the deoxynucleotide pool, particularly dATP/dTTP 

ratio (Houghton, Tillman et al. 1995). This in turn inhibits DNA synthesis and repair, and thus 

causes DNA damage. In addition, 5-FU toxicity was also caused by misincorporation of FdUTP 

and FUTP into DNA (Aherne, Hardcastle et al. 1996) and RNA (Ghoshal and Jacob 1994) 

strands. 

Despite the widespread clinical use of 5-FU for over 40 years, its molecular mechanism 

of cytotoxicity in cancer cells has only been recently understood. Recent evidence suggests that 

additional mechanisms could be involved in the cytotoxic activity of 5-FU, including gene 

regulation. 5-FU has been recently shown to modify the expression levels of protein-coding 

genes (Lowe, Bodis et al. 1994; Petak, Tillman et al. 2000; Hwang, Bunz et al. 2001; Longley, 

Harkin et al. 2003; Maxwell, Longley et al. 2003; Inokuchi, Uetake et al. 2004; Hernandez-
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Vargas, Ballestar et al. 2006; Mauritz, van Groeningen et al. 2007; Rossi, Bonmassar et al. 

2007), but the underlying regulatory mechanisms of these protein-coding genes are still 

unknown. The recently identified class of post-transcriptional gene regulators, microRNAs 

(miRNAs), may play an important role in 5-FU induced alteration of gene expression. miRNAs 

are a group of small (20-22 nt) endogenous non-protein-coding RNA molecules that negatively 

regulate gene expression (Ambros 2004). These miRNAs usually bind to the 3’-untranslated 

region (3’-UTR) of the target mRNAs for mRNA cleavage or translation inhibition (Ambros 

2001; Zhang, Wang et al. 2007). It has been predicted that miRNAs may target more than 30% 

of protein coding genes (Lewis, Shih et al. 2003). 

  Extensive studies have indicated the significance of miRNAs in various biological 

processes, including developmental timing, organ development, stem cell maintenance and 

differentiation, disease, cell proliferation, apoptosis and response to different stresses (Ambros 

2001; Alvarez-Garcia and Miska 2005; Hatfield, Shcherbata et al. 2005; Hwang and Mendell 

2006; Zhang, Pan et al. 2006). miRNAs have also been reported to play a role in cancer initiation 

and progression (Calin and Croce 2006) and metastasis (Cheng, Byrom et al. 2005), with many 

miRNA genes being localized in cancer-associated genomic regions or in fragile sites (Calin, 

Sevignani et al. 2004). Aberrant miRNA expression levels have been reported in almost all 

human cancers (Iorio, Ferracin et al. 2005; Lu, Getz et al. 2005; Calin and Croce 2006; 

Blenkiron, Goldstein et al. 2007; Zhang, Pan et al. 2007). Many miRNAs targeting protein-

coding genes are oncogenes and tumor suppressor genes, which are involved in tumorigenesis 

(Calin, Dumitru et al. 2002).  Certain miRNAs have also displayed unique expression profiles in 

specific types of cancers (Lu, Getz et al. 2005), suggesting that miRNAs may be considered as a 

new biomarker for cancer diagnosis (Zhang and Farwell 2008). miRNA gene expression levels 



84 

 

are also aberrantly altered in breast cancer, miR-21, miR-10b are over-expressed (Ma, Teruya-

Feldstein et al. 2007); whereas miR-125b and miR-145 are down-regulated (Iorio, Ferracin et al. 

2005). Further, miRNAs also modulate breast cancer initiation, invasion and metastasis (Ma, 

Teruya-Feldstein et al. 2007; Huang, Gumireddy et al. 2008; Tavazoie, Alarcon et al. 2008). 

These studies highlight the importance of miRNAs as both stimulators and inhibitors in breast 

cancer. 

Currently, a growing body of evidence has suggested the importance of miRNAs in 

modulating the chemosensitivity and chemoresistance of tumor cells (Meng, Henson et al. 2006; 

Blower, Verducci et al. 2007; Blower, Chung et al. 2008). It is reported that suppression of miR-

21 sensitized MCF7 cells to anticancer drug topotecan (Si, Zhu et al. 2007). Similar studies have 

been reported for the drugs gemcitabine, doxorubicin and tamoxifen (Kovalchuk, Filkowski et al. 

2008; Miller, Ghoshal et al. 2008; Zhao, Lin et al. 2008) illustrating the importance of miRNAs 

in drug sensitivity and resistance. Further, miRNAs such as miR-15b and miR-16 have been 

shown to modulate multidrug resistance by targeting the anti-apoptotic bcl2 gene (Xia, Zhang et 

al. 2008). These studies reveal the intrinsic role of miRNAs in managing the efficiency of 

chemotherapy in several human cancers. 

In a recent study, 5-FU was reported to modify the expression of several miRNAs in 

colon cancer cells (Rossi, Bonmassar et al. 2007), indicating the potential role of 5-FU in altering 

miRNA expression. However, there is no report on the effect of 5-FU on miRNAs in human 

breast cancer. Considering the critical role of miRNAs in cancer and drug chemosensitivity, we 

hypothesized that the cytotoxicity of 5-FU in breast cancer may be partially elicited by regulation 

of miRNA expression levels. In this study, we have used miRNA microarray technology and 
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quantitative real time PCR (qRT-PCR) to investigate the effect of 5-FU exposure on the global 

expression profile of miRNAs in human breast cancer cell line MCF7.  

 

Materials and Methods 

Cell line and cell culture 

All cell culture reagents were purchased from Invitrogen Inc (Carlsbad, CA).  The human 

breast adenocarcinoma cell line MCF7 was obtained from the American Type Culture Collection 

(ATCC). They were cultured in RPMI 1640 media containing L-glutamine and 25 mM HEPES, 

and supplemented with 10% fetal bovine serum (FBS), 10 µg/ml gentamicin and 4 µg/ml insulin. 

The cells were maintained at 37˚C in a humidified incubator with 5% CO2. 

Drug treatment and cell viability assay 

5-fluorouracil (5-FU) was purchased from Sigma-Aldrich (St. Louis, MO) and stored at 

4˚C, away from light and moisture. For cell treatments, a 10 mM stock solution of 5-FU was 

prepared in RPMI complete media and stored at 4˚C for not more than two weeks. The different 

inhibitory concentrations of 5-FU were determined by generating dose-response curves after 

treating the cells with increasing concentrations of 5-FU and analyzing the cell sensitivity using 

trypan blue dye exclusion assays. Briefly, the cell suspension was appropriately diluted with 

0.4% trypan blue dye (Sigma-Aldrich, St. Louis, MO) and a hematocytometer was used to 

estimate the percentage of unstained treated cells compared to the control cells. The IC10 

(concentration of 5-FU to produce 10% cell inhibition) was determined and used for further 

analysis. All experiments were carried in triplicate. 
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RNA isolation 

Cells were seeded at 50,000 cells/cm2 (480,000 cells/well) in flat-bottom 6-well plates in 

2 ml of complete media. After 24 h, media was replaced with fresh media (control group) or with 

0.01µM 5-FU in complete media (treatment group) and cells were incubated for 48 hours, a 

traditional time points for most drug treatment. Total RNA was extracted from both groups with 

the mirVana™ miRNA Isolation Kit (Ambion, Austin, TX) according to manufacturer’s 

instructions. Briefly, the cells were detached from the wells by trypsinization and washed in cold 

PBS (phosphate buffer saline – 1X, pH-7.4, without Calcium chloride and magnesium chloride). 

Cells were lysed by adding 500 µl of Lysis/Binding Solution, followed by vortexing. 50 µl of 

miRNA Homogenate Additive was then added, mixed by vortexing and cells were incubated on 

ice for 10 min. The RNA was extracted by adding 500 µl of Acid-Phenol: Chloroform, vortexing 

for 60 sec and centrifuging for 5 min at 10,000 X g to separate the aqueous and organic phases. 

The upper (aqueous) phase (400 µl) was transferred to another 2ml micro-centrifuge tube and 

500 µl (1.25 volumes) of 100% ethanol at room temperature was added to precipitate the RNA. 

The total RNA was then filtered onto a filter cartridge by centrifugation, followed by multiple 

washings with Wash solutions 1 and 2/3. Finally, the total RNA was eluted with 50 µl of pre-

heated (95˚C) nuclease-free water. All the steps were performed on ice. RNA quantity and 

quality was analyzed using NanoDrop ND1000 Spectrophotometer (NanoDrop Technologies, 

Wilmington, DE) and immediately stored at -80˚C. The experiment was performed a minimum 

of three times. 

MicroRNA microarray expression analysis 

The miRNA Microarray Expression Analysis was performed by LC Sciences (Houston, 

Texas). The assay was performed on approximately 5 µg of total RNA sample. The total RNA 
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was size fractionated using a YM-100 Microcon centrifugal filter (Millipore, Billerica, MA) and 

RNA sequences with <30 nt were isolated. These small RNA were then extended at 3’-end with 

a poly(A) tail using poly(A) polymerase, followed by ligation of an oligonucleotide tag to the 

poly(A) tail for later fluorescent staining. Two different tags (Cy3 and Cy5) were used for the 

two different RNA samples (control and 5-FU treated RNA samples). The two RNA samples 

were then hybridized overnight on a µParaflo™ microfluidic chip using a microcirculation pump 

(Atactic Technologies Inc., Houston, TX). Each microfluidic chip contained detection probes, 

positive control probes and negative control probes. The detection probes were made in situ by 

photogenerated reagent (PGR) chemistry. These probes consisted of chemically – modified 

nucleotide coding sequences complementary to the target miRNAs (all 871 human miRNAs 

listed in the Sanger’s miRNA miRBase, Release 13.0 http://microrna.sanger.ac.uk/sequences/ ) 

and a spacer segment of polyethylene glycol to extend the coding sequence away from the 

substrate. A total of 50 positive and negative control probes were included to ensure uniformity 

of assay conditions and sample labeling. Chemical modifications of the probes were done to 

balance the melting temperatures of hybridization. RNA Hybridization was performed using 

100µl of 6X SSPE buffer (0.9 M NaCl, 6 mM EDTA, 60 mM Na2HPO4 , pH 6.8) containing 

25% formamide at 34 ˚C. After hybridization, control and 5-FU treated cells were dye-stained 

using tag – conjugating dyes Cy3 and Cy5 respectively. An Axon GenePix 4000B Microarray 

Scanner (Molecular Device, Union City, CA) was used to collect the fluorescent images, which 

were then digitized using the Array-Pro image Analysis software (Media Cybernetics, Bethesda, 

MD). Dye switching between control and treated RNA samples was performed in order to avoid 

dye bias. Each miRNA was analyzed four times and the controls were repeated four to sixteen 

times. 
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Statistical Analysis of miRNA microarray data 

The statistical analysis of the microarray data was also performed at LC Sciences. The 

microarray data was analyzed by subtracting the background and then the signals were 

normalized using a locally – weighed regression (LOWESS) filter as reported by Bolstad et al., 

2003. Detectable miRNAs were selected based on the following criteria: signal intensity higher 

than 3X (background standard deviation); spot CV < 0.5 (where CV = standard deviation/signal 

intensity); and signals from at least two out of the four replicates are above the detection level. 

To identify miRNAs whose expression differs between control and 5-FU treated MCF7 cells, 

statistic analysis was performed. The ratio of the two sets of detected signals (control and 

treated) was calculated and expressed in log2 scale (balanced) for each miRNA. The miRNAs 

were then sorted according to their differential ratios. The p-values of the t – test were also 

calculated. miRNAs with p-values < 0.01 and log2 ratio > 0.5 were considered to be significantly 

differentially expressed. 

Quantitative Real Time PCR (qRT-PCR) of miRNA expression 

The data obtained from miRNA microarray was confirmed by performing qRT-PCR on 

selected differentially expressed miRNAs. Total RNA was isolated using the mirVana™ miRNA 

Isolation Kit (Ambion, Austin, TX) as previously described. Detection and quantification of the 

miRNAs was performed using TaqMan® MiRNA Assays (Applied Biosystems, Foster City, 

CA). A single-stranded cDNA for a specific miRNA was generated by reverse transcription of 

500 ng of total RNA using a miRNA-specific stem-looped RT primer and the Applied 

Biosystems TaqMan® miRNA Reverse Transcription Kit. A Reverse transcription reaction 

mixture contains 500ng of total RNAs, 1.5µL 10X TR Buffer, 1mM of each dNTPs, 0.188µL 

RNase Inhibitor, 3µL 5X Taqman® miRNA RT primer for a specific miRNA and 1µL 
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MultiScribe™ Reverse Transcriptase (50U/µL). An Eppendorf Mastercycler Personal PCR 

(Westbury, NY) was used to conduct the reverse transcription reaction at the following 

temperature conditions: 16°C for 30 min, 42°C for 30 min followed by 85°C for 5 min and 

finally held at 4°C.   

Following reverse transcription reaction, quantitative RT-PCR was performed with 

Applied Biosystems 7300 Real-Time PCR system using the Taqman® MiRNA Assay kit. A total 

of 20µL qRT-PCR reaction mixture contains 3µL RT PCR product (diluted 1:7 times), 10µL 

Taqman® 2X Universal PCR Master Mix (No AmpErase® UNG), 2µL Taqman® MiRNA 

Assays 20X Taqman® Assay (qRT-PCR primers). Nuclease free water was used to adjust the 

final volume to 20µL. The reactions were incubated in a 96-well optical plate at 95°C for 10 min, 

followed by 40 cycles of 95°C for 15 sec and 60°C for 60 sec. RNU 48 was used as an 

endogenous reference gene for normalizing the results. The relative abundance of each miRNA 

was calculated using the comparative cycle threshold (2-∆∆Ct) method. The results are presented 

as fold change of each miRNA in 5-FU treated cells relative to the control MCF7 cells. 

Individual samples were assayed in triplicate with five independent biological replicates. 

Target prediction and function analysis 

The miRNAs which showed most dysregulation after 5-FU exposure were selected for 

target prediction. Two different computational programs, TargetScan (Lewis, Shih et al. 2003; 

Lewis, Burge et al. 2005); (Release 5.1, http://www.targetscan.org/) and MicroCosm Targets 

(Griffiths-Jones, Saini et al. 2008) (Version 5, http://www.ebi.ac.uk/enright-

srv/microcosm/htdocs/targets/v5/) were used to predict the targets. The reason for selecting two 

computational programs is that all current programs over-predict potential miRNA targets and 

two different computational programs would reduce the potential false positives and increase the 
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accuracy of prediction (Zhang and Pan 2009). During target prediction, we first generated two 

potential target lists using both computational programs. Second, the top 200 targets predicted by 

each program were compared and the common targets were selected. Third, top 50 targets of 

each list were compared to the entire list of the other program and the common targets were 

selected. Finally, the top 10 targets of each list that were not already included were added to the 

final list. The targets were sorted according to their total score obtained after adding up the 

individual scores from each program. The higher the total score a predicted gene has, more likely 

it is to be the actual target of the specific miRNA. 

The list of potential gene targets for each selected miRNA was compiled as explained 

above and the genes were then classified according to their biological function determined using 

the Gene Ontology system (http://www.geneontology.org/). To determine the possible 

overlapping of biological functions among these miRNAs, significantly overrepresented GO 

terms among all predicted gene targets for each individual miRNA were searched using the 

GOstat software (http://gostat.wehi.edu.au/cgi-bin/goStat.pl) (Falcon and Gentleman 2007). The 

program determines all the annotated GO terms associated with the target genes, and then counts 

the number of appearances of each GO term for these genes; a Fischer’s exact test is then 

performed to give the p-value for each GO term, representing the probability that the observed 

counts could have been due to chance. In addition, Pathway analysis of the target genes was 

performed using the DAVID Bioinformatics Resources 2008 (http://david.abcc.ncifcrf.gov/) 

(Dennis, Sherman et al. 2003; Huang da, Sherman et al. 2009). The program groups together 

related annotations (GO terms) for a similar set of genes, compares the GO processes if they 

might be related in a biological network and compiles a list of potential pathways for the effects 

of the target genes. 
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Results 

miRNA expression profile of MCF7 breast cancer cells 

The MCF7 breast cancer cells were analyzed for the expression of 871 human miRNAs 

listed in the Sanger’s miRNA miRBase, Release 13.0. A unique miRNA expression profile was 

observed in the cells. Of the 871 human miRNAs, only 223 (25.6%) miRNAs were detected 

(Figure 3.2, Table 3.1). Of these, majority of the miRNAs were expressed at low signal 

intensities. 148 (66%) miRNAs showed a signal intensity of less than 500. However, 11 miRNAs 

were highly expressed in human MCF7 breast cancer cells with signal intensities greater than 

10,000; these include miR-21, let-7f, let-7a, miR-1826, let-7d, miR-1979, miR-200c, let-7c, 

miR-191, miR-342-3p, and miR-26a. Among all 871 analyzed miRNAs, miR-21, let-7f and let-

7a showed the highest expression levels with signal intensities of 57,600, 21,201 and 20,206, 

respectively. The variation in the expression levels of miRNAs indicates that the abundance of 

these miRNAs varies significantly in MCF7 cells. Some miRNAs are expressed in many copies, 

while others are expressed only in few copies, thus exhibiting a distinct miRNA expression 

signature pattern in MCF7 breast cancer cells. 

Effect of 5-FU on human breast cancer cell MCF7 

To determine the sensitivity of MCF7 cells to anticancer drug 5-FU, we performed cell 

viability assays and generated a dose-response curve. From the data obtained, the concentration 

of 0.01µM of 5-FU was selected for determining the effect of 5-FU on the global expression 

levels of miRNAs in MCF7 cells. Since genetic changes are more sensitive as compared to 

cellular changes, a low concentration of 5-FU was selected to avoid the possibility of observing 
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alterations in miRNA expression levels due to cellular changes such as apoptosis or necrosis, 

which are generally induced at high 5-FU doses.  

Alteration of miRNA expression profiles in MCF7 cells after 5-FU treatment 

5-FU treatment significantly altered the miRNA expression profile in human breast 

cancer cell line MCF7. Of the 871 human miRNAs analyzed, a total of 309 miRNAs were 

detected (either in control or treated cells). The control cells expressed 223 miRNAs, while the 

treated cells expressed 289 miRNAs. This result shows that 5-FU exposure resulted in the 

expression of higher number of miRNAs as compared to the control. Among these, 193 miRNAs 

were expressed in both the control and treated cells, while 20 miRNAs were detected only in 

control cells, and 96 miRNAs were detected only in the treated cells (Table 3.2). Of the total 309 

miRNAs that were detected (either in control or treated cells), 55 were miRNA* sequences. 

miRNA* are usually degraded during miRNA biogenesis. The reason for detection of these 

miRNA* sequences after 5-FU exposure is unclear. 

 For most of the detected miRNAs, the expression levels were low, which is evident by 

their low signal intensities (less than 1000) during microarray analysis (Figures 3.3 and 3.4). Of 

the 223 miRNAs detected in control cells, 144 miRNAs emitted signals less than 1000, and only 

19 miRNAs gave signal more than 10,000. On the other hand, of the 289 miRNAs detected in 

treated cells, 219 gave signals below 1000, while 19 gave signals higher than 10,000. The signal 

intensities of the 20 miRNAs expressed only in control cells and the 96 miRNAs expressed only 

in treated cells were not high enough to consider them as being differentially expressed between 

control and treated cells, and hence will not be considered for further analysis. 

Along with the difference in number of detectable miRNAs, the expression levels of 

these miRNAs were also significantly altered after 5-FU exposure. Of the total 193 miRNAs that 
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were differentially expressed between the control and treatment groups, 115 were up-regulated, 

while 78 were down-regulated (Table 3.2). Statistical analysis of these differentially expressed 

miRNAs showed that 42 of these miRNAs (22%) were significantly dysregulated with p < 0.01 

and with more than one fold change, while the remaining 151 miRNAs were not significantly 

different (Figure 3.4). Fold-change comparisons of the significantly altered miRNAs are shown 

in Figure 3.5. Among these 42 miRNAs, 23 (55%) miRNAs were up-regulated and 19 (45%) 

miRNAs were down-regulated (Table 3.4). miRNAs showing at least two-fold difference (i.e. 

log2-fold change ≥ 1) in their expression levels between control and treated groups were selected 

for further analysis using qRT-PCR technique. For the up-regulated miRNAs, only four showed 

a more than two-fold increase: miR-575 (4.6 fold), miR-671-5p (3.25 fold), miR-483-5p (3.00 

fold) and miR-574-3p (2.5 fold). Since all the down-regulated miRNAs showed a less than two-

fold decrease in their expression, we selected miRNAs with at least a 1.5 fold decrease in their 

expression (i.e. log2-fold change ≥ 0.56) for further analysis.  These include following two 

miRNAs: miR-365 (1.9 fold) and miR-374b (1.6 fold). 

Validation of miRNA expression levels by qRT-PCR 

To validate the data obtained from miRNA microarray, qRT-PCR was performed on five 

differentially expressed miRNAs (two up-regulated: miR-575 and miR-574-3p; and three down-

regulated: miR-374b, miR-15a, miR-27a) and the results from microarray and qRT-PCR were 

compared. As shown in Figure 3.6, miR-15a, miR-27a and miR-374b were down-regulated, 

while miR-575 and miR-574-3p were up-regulated according to the qRT-PCR data. Our qRT-

PCR data is comparable with the microarray data and thus validated the results for these 

miRNAs obtained from miRNA microarray. 
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Prediction of target genes of differentially expressed miRNAs 

In order to determine the probable biological function of the differentially expressed 

miRNAs, we predicted the potential miRNA targets of six most 5-FU-regulated miRNAs (miR-

575, miR-671-5p, miR-483-5p, miR-574-3p, miR-365 and miR-374b) by using two different 

computational programs, TargetScan and miRBase Targets. After prediction by these programs 

as described, a total of 318 potential targets were identified for the five miRNAs with most 

differential expression after 5-FU treatment; about 50-60 protein-coding targets were predicted 

for each miRNA (Table 3.4). Generally speaking, 5-FU-up-regulated miRNAs targets many 

oncogenes, such as HMGA2, KRAS and MYC while 5-FU-down-regulated miRNAs targets many 

tumor suppressor genes. This suggests the role of 5-FU treatment in chemotherapy by targeting 

miRNA-mediated gene regulation. 

The basic biological function of each gene was also classified using the Gene Ontology 

system. Since a single gene is associated with many GO terms, the overrepresented GO terms for 

each miRNA were identified by GOstat software. Table 3.5 gives a few representative biological 

processes associated with each miRNA as predicted by the GOstat software. The targets of these 

miRNAs were further used for pathway analysis by DAVID Bioinformatics Resources. The 

program provides potential pathways of function for the target genes of the 5-FU responsive 

miRNAs. Based on the target analysis, we found that several important biological processes, 

such as programmed cell death, activation of the immune response, neurotransmitter metabolic 

process and cellular catabolic process were included as putative biological functions of the 

predicted potential genes. This result suggests an important role of these miRNAs in human 

health and disease regulation. Further, a pathway analysis suggests an important regulatory role 

of these miRNAs in different biological processes (Tables 3.5 and 3.6).  
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Discussion 

 miRNAs are an important class of gene regulators which have the potential to function as 

a diagnostic and prognostic tool for a variety of human cancers (Blenkiron and Miska 2007; 

Tricoli and Jacobson 2007; Lowery, Miller et al. 2008; Zhang and Farwell 2008). They 

constitute a novel target system for cancer treatment as each miRNA has the ability to regulate 

the expression of several hundred target genes, including several important oncogenes or tumor 

suppressor genes. Extensive research is currently being focused on identifying differential 

expressed miRNAs that play primary roles in cancer development and therapy. Thus, a study of 

the possible effects of chemotherapeutic drug treatment on the expression profile of miRNAs is 

of prime importance for cancer therapy and resistance. 

In this study, the effect of chemotherapeutic drug 5-FU on miRNA expression profile was 

investigated for the first time in human breast cancer cells. In this study, we found that 23 

miRNAs were up-regulated while 19 were down-regulated. Among the differentially expressed 

miRNAs, several miRNAs were well characterized and have been previously implicated in 

different cancers (Table 3.7). Of particular interest are the miRNAs that showed maximum 

dysregulation in their expression levels. Of the 42 differentially expressed miRNAs after 5-FU 

treatment, 26 miRNAs (62%) have been previously confirmed to be linked with different human 

cancers, most of them being differentially expressed between tumors and normal cells. 

Identification of such a high proportion of cancer-related miRNAs may suggest that these 

miRNAs may be involved in anti-cancer treatment.  

Many up-regulated miRNAs function as tumor suppressor genes by targeting oncogenes 

or genes involved in cell cycle and apoptosis. After 5-FU treatment, both miR-15 and miR-16 



96 

 

were overexpressed. Pervious study shows that miR15/16 induces apoptosis by targeting the bcl2 

gene (Cimmino, Calin et al. 2005), and also cause cell cycle arrest by regulating multiple cell 

cycle genes (Xia, Qi et al. 2009). miR-15b and miR-16 also modulate multidrug resistance by 

targeting the bcl2 gene (Xia, Zhang et al. 2008). Further, miR-200c regulates the expression of 

ZEB1 and ZEB2, which play an important function in breast cancer progression (Gregory, Bert 

et al. 2008). miRNA-23a and -23b on the other hand modulate the expression of proto-oncogene 

c-Met (Salvi, Sabelli et al. 2009). Additionally, miRNA let-7a has been found to be a tumor 

suppressor gene by targeting the oncogenes HMGA2 (High mobility group AT-hook 2), KRAS 

and Myc (Johnson, Grosshans et al. 2005; Lee and Dutta 2007; Sampson, Rong et al. 2007).  

In our study, 5-FU also reduced the expression of several important cancer-associated 

miRNAs, such as miR-21, miR-203, miR-24, miR-25 and miR-27a. All of these miRNAs target 

different tumor suppressor genes; for example, miR-21 targets PTEN (Phosphatase and tensin 

homolog) (Meng, Henson et al. 2007), TPM1 (Tropomyosin-1) (Zhu, Si et al. 2007) and PDCD4 

(Programmed cell death protein 4) (Asangani, Rasheed et al. 2008) while as p16 and p57 have 

been found to be modulated by miRNAs miR -24 (Lal, Kim et al. 2008) and miR -25 (Kim, Yu 

et al. 2009) respectively. Additionally, miR-27a is reported to be an oncogene targeting 

specificity transcription protein in breast cancer cells (Mertens-Talcott, Chintharlapalli et al. 

2007). The down-regulation of these miRNAs after 5-FU treatment aids the function of the 

tumor suppressor genes, and thus helps control cancer progression and metastasis. Further, 

several miRNAs are reported to be differentially expressed in breast cancer cells in comparison 

with normal breast cells. Our data identified 13 such miRNAs that are usually dysregulated in 

breast cancer. These include miR-16, let-7a, let-7d, let-7f and miR-200b, which are usually 

down-regulated; and miR-23a, miR-23b, miR-203, miR-21, miR-24, miR-27a, miR-30a and 
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miR-365, which are usually up-regulated. Most of these miRNAs, except miR-23a, miR-23b and 

miR-200b, have been shown to be inversely expressed in 5-FU treated cells compared to 

untreated breast cancer cells (Table 3.7).  

Previous studies have reported p53 to be an important molecular effector in 5-FU 

cytotoxicity. p53-mutated cells have demonstrated higher resistance to 5-FU treatment 

suggesting its role in 5-FU sensitivity (Lowe, Bodis et al. 1994). Further, p53 has been suggested 

to induce apoptosis and cause Fas upregulation after 5-FU treatment (Petak, Tillman et al. 2000). 

Moreover, several p53 regulated genes have been shown to be modified by 5-FU. Thus, there is 

evidence for the importance of the p53 regulatory process in 5-FU toxicity, but the molecular 

mechanism is still unclear. In this study, we found that 5-FU induced differential expression of 

several miRNAs that putatively target several p53-regulated genes. These genes include CASP8, 

SERPINB5, CASP9, CCND2, CCND3, CASP3, PTEN, CDK6, CCNE1 and CCND1 (Table 3.7). 

This observation suggests that miRNAs might be involved in the p53-5-FU interaction. Further 

investigations of the regulatory mechanism of miRNAs on these p53 -regulated genes are 

required to better understand the 5-FU regulated p53 pathway. 

The widespread deregulation of the miRNAome global expression profiles and the 

identification of several cancer-related deregulated miRNAs after low dose 5-FU treatment 

indicates that the cytotoxicity of 5-FU may be partially due to alteration in the miRNA 

expression levels. The observation that an antimetabolite drug is able to increase the expression 

of certain miRNAs is inconsistent with its DNA-synthesis-inhibiting mechanism. However, it 

has been previously suggested that incorporation of 5-FU into RNA is a major mechanism of 

cytotoxicity in MCF7 breast cancer cells (Kufe and Major 1981). Further, it is established that 

the 5-FU active metabolites, FdUTP and FUTP, get actively incorporated into growing DNA and 
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RNA molecules. Incorporation into RNA results in disruption of the further synthesis and 

processing of mRNAs, tRNAs and rRNAs (Randerath, Tseng et al. 1983; Kanamaru, Kakuta et 

al. 1986). Additionally, 5-FU has also been shown to be incorporated into the uridine-rich U2 

snRNA at pseudouridylation sites, thus inhibiting post-transcriptional conversion of uridine to 

pseudouridine in these RNAs (Samuelsson 1991), and greatly affecting the splicing mechanism. 

Assimilating together this knowledge of 5-FU activity, it can be hypothesized that the drug might 

be incorporated into the miRNA gene transcript (as FdUTP) or produce fluorinated mature 

miRNA, thus causing misexpression of miRNAs and altering their primary function. However, 

further work is needed to test this hypothesis and to elucidate the exact molecular mechanism. 

Determination of the effects of 5-FU on the expression profile of miRNAs in the human 

breast cancer cell can help to identify miRNAs that play a role in chemosensitivity and resistance 

of 5-FU in breast cancer cells in particular, and other chemotherapeutic drugs in general. This 

information might be helpful in improving the efficacy of 5-FU treatment, by reducing its side-

effects or by decreasing the incidence of 5-FU resistant cancers. The data also could be 

extrapolated to other chemotherapeutic drugs which could target these specific miRNAs. The 

research could be extended to predict the protein targets of the miRNAs whose expression levels 

are mainly altered by 5-FU treatment. On a broad consideration, the data could also be used to 

determine the oncogenic miRNAs or Oncomirs associated with breast cancer after 5-FU 

treatment. Specific targeted deliveries, such as artificial miRNAs or siRNAs that target these 

miRNAs and alter their expression levels in tumor cells can be synthesized, thus down-regulating 

the expression of these oncomirs and prevent breast cancer initiation and metastasis. Examples of 

such delivery systems that are currently under development include antisense oligonucleotide 
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(ASOs), siRNAs, miRNA mimics and antagomirs. Thus, our data demonstrates the potential of 

miRNAs as novel targets for cancer therapy. 

In summary, a low dosage of 5-FU induced the differential expression of a set of 

miRNAs, which in turn regulated the expression of oncogenes and tumor suppressor genes, 

potentially by multiple mechanisms. A proposed model showing the functional mechanism of 

action of 5-FU involving miRNA activity is shown in Figure 3.7. Although the mechanism of 

how 5-FU regulates miRNA expression is unclear, our results provide some interesting clues for 

chemotherapeutic drugs and their effects on miRNAs. Further investigation on the regulation 

mechanism of miRNAs on gene expression in breast cancer cells will provide new insights into 

cancer chemotherapy and designing new anti-cancer drugs. 
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Table 3.1: miRNA expression profile in MCF7 breast cancer cells 
 

Microarray 
signal 
intensity 

Number miRNAs 

> 10,000 11 
miR-21, let-7f, let-7a, miR-1826, let-7d, miR-1979, miR-200c, let-7c, 
miR-191, miR-342-3p, miR-26a 

5,000-10,000 14 
let-7e, miR-1977, miR-15b, miR-23a, miR-23b, miR-16, miR-1308, 
let-7b, miR-125a-5p, let-7i, miR-638, miR-1974, miR-25, miR-182 

1,000-5,000 34 

miR-26b, miR-200b, miR-92a, let-7g, miR-361-5p, miR-1975, miR-
151-5p, miR-103, miR-203, miR-320a, miR-99b, miR-107, miR-24, 
miR-1978, miR-93, miR-320c, miR-1280, miR-454, miR-27a, miR-
27b, miR-183, miR-106b, miR-320b, miR-7, miR-1915, miR-375, 
miR-425, miR-423-5p, miR-30b, miR-185, miR-320d, miR-98, miR-
30d, miR-92b 

< 1,000 164 

miR-20a, miR-1275, miR-30c, miR-17, miR-151-3p, miR-128, miR-
195, miR-197, miR-663, miR-15a, miR-106a, miR-720, miR-149*, 
miR-193a-5p, miR-374b, miR-125b, miR-365, miR-424, miR-130b, 
miR-1246, miR-342-5p, let-7d*, miR-1469, miR-181a, miR-877, miR-
625, miR-30a, miR-421, miR-574-5p, miR-29a, miR-200a, miR-1180, 
miR-503, miR-34a, miR-324-5p, miR-192, miR-378, miR-484, miR-
301a, miR-1268, miR-498, miR-489, miR-340, miR-652, miR-548m, 
miR-574-3p, miR-148a, miR-20b, miR-744, miR-222, miR-126, miR-
28-5p, miR-99a, miR-141, miR-193b*, miR-132, miR-532-5p, miR-
148b, miR-22, miR-345, miR-429, miR-625*, miR-29c, miR-140-3p, 
miR-1281, miR-18a, miR-486-5p, miR-505*, miR-149, miR-424*, 
miR-940, miR-194, miR-1307, miR-331-3p, miR-362-5p, miR-152, 
miR-629, miR-7-1*, miR-101, miR-125a-3p, miR-1277, miR-575, 
miR-16-2*, miR-27b*, miR-103-2*, miR-25*, miR-200b*, miR-671-
5p, miR-548d-3p, miR-1259, miR-548h, miR-30b*, miR-23a*, miR-
210, miR-181b, miR-605, miR-483-5p, miR-933, miR-455-3p, miR-
30e, miR-765, miR-15b*, miR-302f, miR-938, miR-500*, miR-106b*, 
let-7b*, miR-1289, miR-1825, miR-425*, miR-30e*, miR-32*, miR-
708, miR-138-1*, miR-30a*, miR-616*, miR-1973, miR-32, miR-19b, 
miR-760, miR-451, miR-296-5p, miR-501-5p, miR-191*, miR-183*, 
miR-550*, miR-361-3p, miR-193a-3p, miR-589*, miR-24-2*, miR-
133a, miR-29c*, miR-1249, miR-208a, miR-30c-2*, miR-200a*, miR-
330-3p, miR-30c-1*, miR-936, let-7f-1*, miR-30d*, miR-221, miR-
374a, miR-31*, miR-31, miR-2052, miR-629*, miR-28-3p, miR-1247, 
miR-302e, miR-365*, miR-2054, miR-150*, miR-1913, miR-302d, 
miR-302c, miR-146b-5p, miR-105, miR-376a, miR-29b-2*, miR-
302b, miR-513a-3p, miR-202, miR-1470 
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Table 3.2: Comparison of miRNA expression profiles between control and 5-FU treated groups 
 
miRNA 
category 

Number miRNAs 

Up-regulated 
miRNAs 

115 miR-181b, miR-151-5p, miR-421, miR-7-1*, miR-720, miR-
320b, let-7i, let-7b, miR-107, miR-484, miR-361-5p, miR-1975, 
miR-486-5p, miR-125b, miR-17, miR-425, miR-26a, let-7d, 
miR-106b, miR-1978, miR-148b, miR-1308, miR-744, miR-
1977, miR-183, miR-1979, let-7f, miR-28-5p, miR-149, miR-
148a, let-7a, miR-625, miR-130b, miR-342-3p, miR-532-5p, 
miR-15b, miR-28-3p, miR-126, miR-16, miR-1180, miR-99a, 
miR-708, miR-200c, miR-22, miR-23b, miR-192, miR-191, 
miR-365*, miR-342-5p, miR-141, miR-200b*, miR-18a, miR-
222, miR-1275, let-7b*, miR-23a, miR-16-2*, miR-362-5p, miR-
652, miR-503, miR-425*, miR-1307, miR-1826, miR-132, miR-
625*, miR-30e, miR-125a-3p, miR-302f, miR-106b*, miR-498, 
miR-345, miR-1246, miR-505*, miR-489, miR-1259, miR-194, 
miR-629, miR-140-3p, miR-936, miR-19b, miR-25*, miR-1915, 
miR-1281, miR-548m, miR-1268, miR-1469, miR-638, miR-
331-3p, miR-193a-3p, miR-940, miR-221, miR-24-2*, miR-574-
5p, miR-550*, miR-500*, miR-27b*, miR-501-5p, miR-23a*, 
miR-424*, miR-210, miR-149*, miR-152, miR-663, miR-200a*, 
miR-183*, miR-1277, miR-330-3p, miR-629*, miR-455-3p, 
miR-548h, miR-574-3p, miR-1289, miR-671-5p, miR-483-5p, 
miR-575 

Down-regulated 
miRNAs 

78 miR-30a*, miR-374a, miR-1249, miR-365, miR-374b, miR-361-
3p, miR-1913, miR-30b*, miR-589*, miR-1825, miR-150*, 
miR-146b-5p, miR-27a, miR-15a, miR-30a, miR-296-5p, miR-
29b-2*, miR-877,miR-21, miR-197 , miR-26b, miR-765, miR-
29c*, miR-15b*, miR-1247, miR-101, miR-98, miR-200b, let-7e, 
miR-7, miR-454, let-7g, miR-27b, miR-760, let-7d*, miR-203, 
miR-29c, miR-30b, miR-30c, miR-20b, miR-1280, miR-423-5p, 
miR-103-2*, let-7f-1*, miR-1974, miR-25, miR-193a-5p, miR-
181a, miR-200a, miR-193b*, miR-24, miR-93, miR-424, miR-
378, miR-340, miR-106a, miR-125a-5p, miR-99b, miR-301a, 
miR-29a, miR-92a, miR-92b, miR-195, miR-375, miR-182, let-
7c, miR-30d, miR-320a, miR-128, miR-320d, miR-103, miR-
20a, miR-185, miR-324-5p, miR-34a, miR-429, miR-320c, miR-
151-3p 

miRNAs 20 miR-105, miR-1470, miR-202, miR-2052, miR-2054, miR-208a, 
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expressed only 
in control group 

miR-302b, miR-302c, miR-302d, miR-302e, miR-30c-1*, miR-
30c-2*, miR-30d*, miR-30e*, miR-31, miR-31*, miR-32, miR-
32*, miR-376a, miR-513a-3p 

miRNAs 
expressed only 
in treatment 
group 

96 hsa-let-7a-2*, hsa-let-7c*, hsa-let-7g*, hsa-miR-100, hsa-miR-
1181,, hsa-miR-1200, hsa-miR-1207-5p, hsa-miR-1224-3p, hsa-
miR-1224-5p, hsa-miR-1226, hsa-miR-1227, hsa-miR-1228, hsa-
miR-1228*, hsa-miR-1229, hsa-miR-1231, hsa-miR-1233, hsa-
miR-1234, hsa-miR-1237, hsa-miR-1238, hsa-miR-1260, hsa-
miR-1267, hsa-miR-1271, hsa-miR-1285, hsa-miR-1287, hsa-
miR-1292, hsa-miR-1293, hsa-miR-129-3p, hsa-miR-1300, hsa-
miR-1301, hsa-miR-1303, hsa-miR-130a, hsa-miR-130b*, hsa-
miR-133a, hsa-miR-138-2*, hsa-miR-17*, hsa-miR-184, hsa-
miR-18b, hsa-miR-1908, hsa-miR-191*, hsa-miR-1910, hsa-
miR-1911*, hsa-miR-1973, hsa-miR-2110, hsa-miR-212, hsa-
miR-215, hsa-miR-23b*, hsa-miR-299-3p, hsa-miR-299-5p, hsa-
miR-323-5p, hsa-miR-324-3p, hsa-miR-328, hsa-miR-329, hsa-
miR-331-5p, hsa-miR-335, hsa-miR-339-3p, hsa-miR-339-5p, 
hsa-miR-33b*, hsa-miR-340*, hsa-miR-34a*, hsa-miR-34b*, 
hsa-miR-34c-5p, hsa-miR-362-3p, hsa-miR-371-5p, hsa-miR-
378*, hsa-miR-380*, hsa-miR-409-3p, hsa-miR-448, hsa-miR-
450a, hsa-miR-485-3p, hsa-miR-497, hsa-miR-500, hsa-miR-
502-3p, hsa-miR-502-5p, hsa-miR-517b, hsa-miR-548f, hsa-
miR-550, hsa-miR-553, hsa-miR-584, hsa-miR-605, hsa-miR-
627, hsa-miR-628-3p, hsa-miR-654-5p, hsa-miR-658, hsa-miR-
659, hsa-miR-660, hsa-miR-664*, hsa-miR-665, hsa-miR-671-
3p, hsa-miR-766, hsa-miR-769-3p, hsa-miR-769-5p, hsa-miR-
93*, hsa-miR-933, hsa-miR-935, hsa-miR-943, hsa-miR-96 
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Table 3.3: Significantly dysregulated miRNAs after 5-FU exposure 
 

Probe_ID Control 
Signal 

Treatment 
Signal 

Log2 
(Treatmen

t/ 
Control) 

Fold 
Change 

p-value 

Up-regulated (n=23) 
hsa-miR-575 31.68 145.42 2.22 4.59 4.11E-03 
hsa-miR-671-5p 42.18 136.96 1.70 3.25 3.60E-03 
hsa-miR-483-5p 43.41 133.14 1.62 3.07 2.14E-03 
hsa-miR-574-3p 190.02 479.10 1.40 2.52 3.94E-05 
hsa-miR-149* 761.77 1,380.01 0.78 1.81 4.72E-05 
hsa-miR-663 750.55 1,290.55 0.81 1.72 6.87E-07 
hsa-miR-1268 167.69 280.34 0.76 1.67 4.95E-03 
hsa-miR-1915 891.28 1,359.02 0.59 1.52 1.02E-04 
hsa-miR-574-5p 351.25 532.08 0.61 1.51 4.99E-03 
hsa-miR-638 5,497.66 8,256.06 0.56 1.50 5.55E-17 
hsa-miR-1246 770.27 1,043.87 0.45 1.36 4.28E-03 
hsa-miR-1826 22,510.52 27,941.79 0.33 1.24 2.07E-12 
hsa-miR-23a 10,898.44 13,085.57 0.23 1.20 1.32E-05 
hsa-miR-191 14,586.74 16,888.33 0.21 1.16 1.72E-05 
hsa-let-7a 24,215.14 27,545.79 0.19 1.14 1.91E-07 
hsa-miR-342-3p 15,599.63 17,665.54 0.18 1.13 1.01E-08 
hsa-miR-23b 10,734.11 12,153.14 0.15 1.13 1.06E-03 
hsa-miR-16 12,622.24 14,011.40 0.15 1.11 1.18E-04 
hsa-miR-1979 12,024.04 13,317.24 0.15 1.11 1.48E-04 
hsa-miR-15b 12,855.28 14,081.31 0.14 1.10 2.85E-03 
hsa-miR-200c 16,146.22 17,485.41 0.16 1.08 6.66E-04 
hsa-let-7d 19,259.32 20,608.62 0.10 1.07 2.37E-03 
hsa-let-7f 24,515.34 25,713.03 0.07 1.05 9.87E-04 

Down-regulated (n=19) 
hsa-miR-365 394.04 208.43 -0.83 -1.89 2.06E-03 
hsa-miR-374b 1,116.20 688.88 -0.76 -1.62 1.21E-04 
hsa-miR-30a 626.23 421.31 -0.57 -1.49 2.93E-04 
hsa-miR-15a 1,433.70 1,018.10 -0.50 -1.41 1.06E-03 
hsa-miR-197 1,231.67 906.19 -0.44 -1.36 1.46E-03 
hsa-miR-27a 4,197.58 3,093.67 -0.44 -1.36 1.43E-08 
hsa-miR-21 57,202.28 44,077.27 -0.38 -1.30 0.00E+00 
hsa-miR-26b 8,444.64 6,784.69 -0.33 -1.24 3.51E-06 
hsa-miR-203 5,749.60 4,644.42 -0.27 -1.24 1.78E-03 
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hsa-miR-1280 3,838.92 3,152.21 -0.21 -1.22 4.02E-04 
hsa-miR-454 4,618.90 3,860.29 -0.25 -1.20 7.08E-04 
hsa-miR-200b 8,059.98 6,745.94 -0.24 -1.19 7.45E-05 
hsa-miR-7 3,475.24 2,930.62 -0.25 -1.19 2.78E-03 
hsa-miR-27b 4,034.72 3,443.66 -0.21 -1.17 1.81E-03 
hsa-let-7g 7,585.57 6,538.32 -0.23 -1.16 2.50E-04 
hsa-let-7e 13,719.05 12,008.35 -0.25 -1.14 1.57E-04 
hsa-miR-25 8,505.37 7,512.26 -0.18 -1.13 1.03E-03 
hsa-miR-24 4,427.72 3,926.62 -0.17 -1.13 1.31E-03 
hsa-miR-125a-5p 11,138.55 10,205.68 -0.13 -1.09 4.05E-03 
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Table 3.4: Predicted targets of the selected miRNAs 

Gene 
name Description 

Gene 
name Description 

miR-575   
miR-671-
5p 

  

DENND1C DENN/MADD domain containing 1C CD79A 
B-cell antigen receptor complex-associated 
protein alpha-chain precursor (Ig-alpha) 

SLC7A7 
solute carrier family 7 [Y+L amino 
acid transporter 1 (y(+)L-type amino 
acid transporter 1)] 

CPNE2 Copine-2 (Copine II). 

FBXO15 F-box only protein 15 ZNF668 Zinc finger protein 668 

TMEM81 
transmembrane protein 81 
(TMEM81) 

POLR3D 
DNA-directed RNA polymerase III subunit 
D 

NENF 
Neudesin precursor (Neuron-derived 
neurotrophic factor). 

FES 
Proto-oncogene tyrosine-protein kinase 
Fes/Fps 

CPNE2 Copine-2 (Copine II) 
LGALS3B
P 

Galectin-3-binding protein precursor 
(Lectin galactoside-binding soluble 3-
binding protein) 

GPX3 Glutathione peroxidase 3 precursor CHCHD2 
Coiled-coil-helix-coiled-coil-helix domain-
containing protein 2 

MASP2 
Mannan-binding lectin serine 
protease 2 precursor 

MS4A8B 
Membrane-spanning 4-domains subfamily 
A member 8B 

FAM22G Protein FAM22G precursor CA7 Carbonic anhydrase 7 

KIR2DL4 
Killer cell immunoglobulin-like 
receptor 2DL4 precursor (MHC class 
I NK cell receptor KIR103AS) 

VPS25 
Vacuolar protein sorting-associated protein 
25 

HAGH Hydroxyacylglutathione hydrolase DGKZ Diacylglycerol kinase zeta  

DPH5 Probable diphthine synthase PITX3 
Pituitary homeobox 3 (Homeobox protein 
PITX3). 

DDT D-dopachrome decarboxylase C1QA 
Complement C1q subcomponent subunit A 
precursor. 

VEGFB 
Vascular endothelial growth factor B 
precursor 

SIPA1L1 
Signal-induced proliferation-associated 1-
like protein 1 

KIR2DL1 
Killer cell immunoglobulin-like 
receptor 3DL2 precursor (MHC class 
I NK cell receptor) 

HOOK2 Hook homolog 2 

IARS2 
Isoleucyl-tRNA synthetase, 
mitochondrial precursor 

KRT9 Keratin, type I cytoskeletal 9 

NEU4 Sialidase-4 HTR3E 5-hydroxytryptamine receptor 3 subunit E 

IL3RA 
Interleukin-3 receptor alpha chain 
precursor 

HOXB1 Homeobox protein Hox-B1 (Hox-2I). 

CDC45L 
CDC45 cell division cycle 45-like (S. 
cerevisiae) 

ACO2 
Aconitate hydratase, mitochondrial 
precursor 

DPP8 Dipeptidyl peptidase 8 CCDC114 coiled-coil domain containing 114 
FMO1 flavin-containing monooxygenase 1 SLC46A3 solute carrier family 46, member 3 
CSTA Cystatin-A ADCK2 Uncharacterized aarF domain-containing 
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protein kinase 2 

HSPBAP1 
HSPB1-associated protein 1 (27 KdA 
heat shock protein-associated protein 
1) 

C14orf124 UPF0105 protein C14orf124. 

RDH12 Retinol dehydrogenase SPTBN2 
Spectrin beta chain, brain 2 (Spectrin, non-
erythroid beta chain 2) 

KIR3DL1 
Killer cell immunoglobulin-like 
receptor 3DL1 precursor (MHC class 
I NK cell receptor) 

HYAL1 Hyaluronidase-1 precursor 

RAB25 Ras-related protein Rab-25 C2orf16 Uncharacterized protein C2orf16 
ACTL6A Actin-like protein 6A PCBP4 Poly (rC)-binding protein 4 (Alpha-CP4). 

TPT1 
Translationally-controlled tumor 
protein (TCTP) 

DVL3 
Segment polarity protein disheveled 
homolog DVL-3 (Dishevelled-3) (DSH 
homolog 3). 

PMM1 Phosphomannomutase 1 SIRT3 
NAD-dependent deacetylase sirtuin-3, 
mitochondrial precursor  

MRPL12 
39S ribosomal protein L12, 
mitochondrial precursor 

KCNA6 
Potassium voltage-gated channel subfamily 
A member 6 

SPAG11A 
sperm associated antigen 11B isoform 
H precursor 

USP36 Ubiquitin carboxyl-terminal hydrolase 36 

FOXRED1 
FAD-dependent oxidoreductase 
domain-containing protein 1 

SSBP1 
Single-stranded DNA-binding protein, 
mitochondrial precursor 

ALS2CR4 
Amyotrophic lateral sclerosis 2 
chromosomal region candidate gene 4 
protein 

C6orf129 
OTTHUMP00000016329 (Chromosome 6 
open reading frame 129). 

TFPI 
Tissue factor pathway inhibitor 
precursor 

C10orf25 
Uncharacterized protein C10orf25 
precursor. 

BID BH3-interacting domain death agonist BCAP31 
B-cell receptor-associated protein 31 
(BCR-associated protein Bap31) 

CCDC74A 
Coiled-coil domain-containing 
protein 74A 

SPTB 
Spectrin beta chain, erythrocyte (Beta-I 
spectrin). 

WDR57 
WD repeat protein 57 (Prp8-binding 
protein) 

RAB32 Ras-related protein Rab-32. 

GALR1 Galanin receptor type 1 TRIM47 Tripartite motif-containing protein 47 

RB1CC1 RB1-inducible coiled-coil protein 1 CRTC3 
transducer of regulated CREB protein 3 
isoform a 

ST8SIA1 
ST8 alpha-N-acetyl-neuraminide 
alpha-2,8-sialyltransferase 1 

MYOM3 myomesin family, member 3 

RAB6IP1 RAB6 interacting protein 1 ST8SIA5 Alpha-2,8-sialyltransferase 8E 

EPB41L5 
erythrocyte membrane protein band 
4.1 like 5 

SYPL2 Synaptophysin-like protein 2. 

UBAP2 ubiquitin associated protein 2 ACBD6 
Acyl-CoA-binding domain-containing 
protein 6. 

PCDH19 protocadherin 19 SATB2 
DNA-binding protein SATB2 (Special AT-
rich sequence-binding protein 2). 

TRAF3IP1 TNF receptor-associated factor 3 SLC30A6 solute carrier family 30 (zinc transporter), 
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interacting protein 1 member 6 

ZNF142 zinc finger protein 142 AAK1 
AP2-associated protein kinase 1 (Adaptor-
associated kinase 1). 

POLR3B 
polymerase (RNA) III (DNA 
directed) polypeptide B 

CFL2 Cofilin-2 (Cofilin, muscle isoform). 

STIL SCL/TAL1 interrupting locus TGOLN2 
Trans-Golgi network integral membrane 
protein 2 precursor  

GCLC 
GRIP and coiled-coil domain 
containing 2 

LIN9 
Lin-9 homolog (huLin-9) (hLin-9) (Beta-
subunit associated regulator of apoptosis) 

GCM2 
glial cells missing homolog 2 
(Drosophila) 

BCR Breakpoint cluster region protein 

IGSF6 
immunoglobulin superfamily, 
member 6 

SH3TC2 
SH3 domain and tetratricopeptide repeats-
containing protein 2. 

P2RY14 
purinergic receptor P2Y, G-protein 
coupled, 14 

ANKRD33 
Ankyrin repeat domain-containing protein 
33. 

NCAPH 
Condensin complex subunit 2 (Non-
SMC condensin I complex subunit H) 

PIK4CB Phosphatidylinositol 4-kinase beta 

ST7L 
suppression of tumorigenicity 7-like 
isoform 3 

NP_00101
7927.1 

hypothetical protein LOC447937 

ZYG11B zyg-11 homolog B (C. elegans) MAT1A 
S-adenosylmethionine synthetase isoform 
type-1  

BLID 
BH3-like motif containing, cell death 
inducer 

   

FLJ40296 FLJ40296 protein miR-574-
3p 

  

MICA 
MHC class I polypeptide-related 
sequence A 

C9orf19 chromosome 9 open reading frame 19 

C20orf57 
Dual specificity protein phosphatase 
15 

COL7A1 
collagen, type VII, alpha 1 (epidermolysis 
bullosa, dystrophic, dominant and 
recessive) 

    LAT linker for activation of T cells 
miR-483-
5p 

  CSE1L 
CSE1 chromosome segregation 1-like 
(yeast) 

    CBX8 
chromobox homolog 8 (Pc class homolog, 
Drosophila) 

ACBD6 
Acyl-CoA-binding domain-
containing protein 6. 

MAPK11 mitogen-activated protein kinase 11 

RUSC1 
RUN and SH3 domain-containing 
protein 1 

MADD MAP-kinase activating death domain 

BACE2 Beta-secretase 2 precursor TRPC4AP 
transient receptor potential cation channel, 
subfamily C, member 4 associated protein 

TACC3 
Transforming acidic coiled-coil-
containing protein 3 (ERIC-1). 

ADAMTS
17 

ADAM metallopeptidase with 
thrombospondin type 1 motif, 17 

ACO2 
Aconitate hydratase, mitochondrial 
precursor 

DEAF1 
deformed epidermal autoregulatory factor 
1 (Drosophila) 

SLC7A3 Cationic amino acid transporter 3 EXOC3 exocyst complex component 3 
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(CAT-3) (Solute carrier family 7 
member 3) 

CBS Cystathionine beta-synthase LRRC23 Leucine-rich repeat-containing protein 23 

IL1R1 Interleukin-1 receptor type I precursor GABBR1 
gamma-aminobutyric acid (GABA) B 
receptor, 1 

CYP2F1 Cytochrome P450 2F1 MAGEA6 melanoma antigen family A, 6 

LAIR2 
Leukocyte-associated 
immunoglobulin-like receptor 2 
precursor (LAIR-2) (CD306 antigen). 

MAGEA3 melanoma antigen family A, 3 

CCDC9 
Coiled-coil domain-containing 
protein 9. 

CSDC2 
cold shock domain containing C2, RNA 
binding 

PHOX2A 
Paired mesoderm homeobox protein 
2A (Paired-like homeobox 2A) 

MUM1 melanoma associated antigen (mutated) 1 

MEA1 Male-enhanced antigen 1 (MEA-1). IL6 interleukin 6 (interferon, beta 2) 

PARL 
Presenilins-associated rhomboid-like 
protein, mitochondrial precursor 

ELL2 elongation factor, RNA polymerase II, 2 

RSU1 
Ras suppressor protein 1 (Rsu-1) 
(RSP-1). 

NKG7 natural killer cell group 7 sequence 

CUTA 
Protein CutA precursor (Brain 
acetylcholinesterase putative 
membrane anchor) 

CLRN3 clarin 3 

MLLT1 
Protein ENL (YEATS domain-
containing protein 1). 

MMP3 
matrix metallopeptidase 3 (stromelysin 1, 
progelatinase) 

C19orf52 Uncharacterized protein C19orf52 SOHLH1 
spermatogenesis and oogenesis specific 
basic helix-loop-helix 1 

KLHDC3 
Kelch domain-containing protein 3 
(Protein Peas) (Testis intracellular 
mediator protein). 

ZDHHC18 zinc finger, DHHC-type containing 18 

PIP5K1A 
Phosphatidylinositol-4-phosphate 5-
kinase type-1 alpha 

CUL2 cullin 2 

NXF1 
Nuclear RNA export factor 1 (Tip-
associating protein) 

SLC2A11 
solute carrier family 2 (facilitated glucose 
transporter), member 11 

KIFC3 Kinesin-like protein KIFC3. TPRX1 tetra-peptide repeat homeobox 1 

ACAD9 
Acyl-CoA dehydrogenase family 
member 9, mitochondrial precursor 

C15orf27 chromosome 15 open reading frame 27 

CRTAP 
Cartilage-associated protein 
precursor. 

SLC41A3 solute carrier family 41, member 3 

MYOM2 Myomesin-2 (M-protein)  EPHB3 EPH receptor B3 

IQSEC2 
IQ motif and Sec7 domain-containing 
protein 2. 

DAK 
dihydroxyacetone kinase 2 homolog (S. 
cerevisiae) 

SHROOM
2 

Apical-like protein (Protein APXL). TMEM49 transmembrane protein 49 

TMEM143 
transmembrane protein 143 
(TMEM143), mRNA 

MIZF MBD2-interacting zinc finger 

TNN Tenascin-N precursor (TN-N). SSX3 synovial sarcoma, X breakpoint 3 
ACHE Acetylcholinesterase precursor STRN3 striatin, calmodulin binding protein 3 
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PDGFD 
Platelet-derived growth factor D 
precursor  

NAP1L4 nucleosome assembly protein 1-like 4 

UGT3A1 
UDP glycosyltransferase 3 family, 
polypeptide A1 

DKK3 dickkopf homolog 3 (Xenopus laevis) 

ICAM4 
Intercellular adhesion molecule 4 
precursor. 

SSX1 synovial sarcoma, X breakpoint 1 

ADRBK1 Beta-adrenergic receptor kinase 1  PMP22 peripheral myelin protein 22 
MAPK3 Mitogen-activated protein kinase 3  SSX4B synovial sarcoma, X breakpoint 4B 

ALCAM 
CD166 antigen precursor (Activated 
leukocyte-cell adhesion molecule) 
(ALCAM). 

SSX4 synovial sarcoma, X breakpoint 4 

GPT2 Alanine aminotransferase 2 SSX6 synovial sarcoma, X breakpoint 6 

PLA2G5 
Calcium-dependent phospholipase A2 
precursor  

ZSWIM5 zinc finger, SWIM-type containing 5 

IQCE IQ domain-containing protein E. FBXO34 F-box protein 34 
WDR92 WD repeat domain 92 MTM1 myotubularin 1 
CLCN3 Chloride channel protein 3 (ClC-3). CCDC39 coiled-coil domain containing 39 

SPAG11B 
Sperm-associated antigen 11 
precursor (EP2 protein) (Sperm 
antigen HE2). 

TMCC1 
transmembrane and coiled-coil domain 
family 1 

SPAG11A 
sperm associated antigen 11B isoform 
H precursor 

TMPRSS1
1D 

transmembrane protease, serine 11D 

AMICA1 
Junctional adhesion molecule-like 
precursor 

CLTC clathrin, heavy chain (Hc) 

    DCP1A 
DCP1 decapping enzyme homolog A (S. 
cerevisiae) 

miR-365   B4GALT5 
UDP-Gal:betaGlcNAc beta 1,4- 
galactosyltransferase, polypeptide 5 

COL7A1 
Collagen alpha-1(VII) chain 
precursor 

EP300 E1A binding protein p300 

BEST3 bestrophin 3 TCF25 
Transcription factor 25 (Nuclear localized 
protein 1) 

TBCEL 
Tubulin-specific chaperone cofactor 
E-like protein (EL) 

Q5JVI1_H
UMAN 

Novel protein (Fragment). 
[Source:Uniprot/SPTREMBL;Acc:Q5JVI1
] 

PSMD8 
26S proteasome non-ATPase 
regulatory subunit 8 

AIFM1 
Apoptosis-inducing factor 1, mitochondrial 
precursor 

SETX senataxin ESR2 Estrogen receptor beta (ER-beta) 

PTCRA pre T-cell antigen receptor alpha 
NP_94535
2.1 

RIKEN cDNA 2310002J15 gene 

ITGAD 
Integrin alpha-D precursor 
(Leukointegrin alpha D) (ADB2) 
(CD11d antigen) 

PLEKHG3 
pleckstrin homology domain containing, 
family G, member 3 

CPT2 carnitine palmitoyltransferase II SLC22A7 
solute carrier family 22 member 7 isoform 
a 

MUS81 Crossover junction endonuclease XR_01778 annexin A2 pseudogene 2 (ANXA2P2), 
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MUS81 4.1 misc RNA 
UBAC2 UBA domain containing 2    
MGA MAX gene associated miR-374b   

NUDT1 
7,8-dihydro-8-oxoguanine 
triphosphatase 

   

KIAA0391 Uncharacterized protein KIAA0391 MYC 
Myc proto-oncogene protein (c-Myc) 
(Transcription factor p64) 

DYNLL1 Dynein light chain 1, cytoplasmic GNL3 
Guanine nucleotide-binding protein-like 3 
(Nucleolar GTP-binding protein 3) 

HAPLN2 
Hyaluronan and proteoglycan link 
protein 2 precursor 

NETO1 neuropilin (NRP) and tolloid (TLL)-like 1 

FCRL1 Fc receptor-like 1 ACTR10 Actin-related protein 10 (hARP11) 

STYXL1 
Serine/threonine/tyrosine-interacting-
like protein 1 

SMPDL3A 
Acid sphingomyelinase-like 
phosphodiesterase 3a precursor  

TMEM106
C 

transmembrane protein 106C PSMC3IP TBP-1 interacting protein isoform 1 

PRPF40A 
PRP40 pre-mRNA processing factor 
40 homolog A (S. cerevisiae) 

MEP1B Meprin A subunit beta precursor 

CYP2C9 
cytochrome P450, family 2, 
subfamily C, polypeptide 9 

TIGD4 
Tigger transposable element-derived 
protein 4 

KCNQ1 
potassium voltage-gated channel, 
KQT-like subfamily, member 1 

GRAMD1
A 

GRAM domain containing 1A 

NLRP1 
NLR family, pyrin domain containing 
1 

CCL18 
Small inducible cytokine A18 precursor 
(CCL18) 

RAPGEF4 
Rap guanine nucleotide exchange 
factor (GEF) 4 

CCL11 chemokine (C-C motif) ligand 11 

RHEBL1 Ras homolog enriched in brain like 1 COPB2 Coatomer subunit beta 

CYP24A1 
cytochrome P450, family 24, 
subfamily A, polypeptide 1 

NOG Noggin precursor 

USP22 ubiquitin specific peptidase 22 C11orf71 Uncharacterized protein C11orf71 

DLAT dihydrolipoamide S-acetyltransferase NSUN3 
NOL1/NOP2/Sun domain family, member 
3 

ADD3 adducin 3 (gamma) TRMT11 
tRNA guanosine-2'-O-methyltransferase 
TRM11 homolog 

CCDC55 coiled-coil domain containing 55 BPNT1 3'(2'), 5'-bisphosphate nucleotidase 1 

MAK male germ cell-associated kinase ANKRD32 
Ankyrin repeat domain-containing protein 
32 

IHPK2 inositol hexaphosphate kinase 2 PCNX pecanex homolog (Drosophila) 

USP48 ubiquitin specific peptidase 48 SFRS15 
Splicing factor, arginine/serine-rich 15 
(CTD-binding SR-like protein RA4) 

ZNF680 zinc finger protein 680 PAXIP1 PAX interacting protein 1 

NUFIP2 
nuclear fragile X mental retardation 
protein interacting protein 2 

OCIAD1 OCIA domain containing 1 isoform 1 

C14orf142 
chromosome 14 open reading frame 
142 

ADD3 adducin 3 (gamma) 

DCP2 DCP2 decapping enzyme homolog NCK1 NCK adaptor protein 1 
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(S. cerevisiae) 

USP33 ubiquitin specific peptidase 33 DBR1 
debranching enzyme homolog 1 (S. 
cerevisiae) 

NSL1 
NSL1, MIND kinetochore complex 
component, homolog (S. cerevisiae) 

STK38L serine/threonine kinase 38 like 

LUC7L2 LUC7-like 2 (S. cerevisiae) RANBP6 RAN binding protein 6 

TRAM1 
translocation associated membrane 
protein 1 

DPY19L4 dpy-19-like 4 (C. elegans) 

TMOD3 tropomodulin 3 (ubiquitous) 7A5 putative binding protein 7a5 
MTMR2 myotubularin related protein 2 ACVR2B activin A receptor, type IIB 
TBK1 TANK-binding kinase 1 KIAA0999 KIAA0999 protein 
RBM11 RNA binding motif protein 11 VGLL3 vestigial like 3 (Drosophila) 
ACVR1 activin A receptor, type I SYT14L synaptotagmin XIV-like 
LPAR5 lysophosphatidic acid receptor 5 AHI1 Abelson helper integration site 1 

SGTB 
small glutamine-rich tetratricopeptide 
repeat (TPR)-containing, beta 

DCDC2 doublecortin domain containing 2 

MGC1305
7 

hypothetical protein MGC13057 
TMPRSS1
1B 

transmembrane protease, serine 11B 

PRUNE2 prune homolog 2 (Drosophila) DNAJC12 
DnaJ homolog subfamily C member 12 (J 
domain-containing protein 1) 

NFIB nuclear factor I SLC25A5 
ADP/ATP translocase 2 (Adenine 
nucleotide translocator 2) 

MYCBP c-myc binding protein VPS36 
Vacuolar protein sorting-associated protein 
36  

UBOX5 U-box domain containing 5 SLC26A5 
Prestin (Solute carrier family 26 member 
5) 

NP_05721
8.1 

plasma glutamate carboxypeptidase 
Q7Z2R7_
HUMAN 

MSTP131 

THBS3 Thrombospondin-3 precursor ATF2 
Cyclic AMP-dependent transcription factor 
ATF-2 

XR_01589
3.1 

similar to zinc finger protein 611 
(LOC731301), mRNA 

CYorf15A Putative testis protein CYorf15A 

NP_001006
948.1 

RIKEN cDNA E030041M21 gene C4orf20 Ufm1-specific protease 2 
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Table 3.5: Analysis of biological processes of the predicted miRNAs targets by GOstat 

miRN
As GO process Target genes 

Cou
nt 

Tota
l 

p-
value 

miR-
575 

GO:0065008: Regulation 
of biological quality 

vegfb rdh12 rb1cc1 tpt1 actl6a gclc 
tfpi gcm2 

8 953 0.028
1 

  GO:0048518: Positive 
regulation of biological 
process 

nenf masp2 vegfb bid rb1cc1 gclc 
mrpl12 

7 1062 0.056 

  GO:0012501: Programmed 
cell death 

bid rb1cc1 tpt1 gclc blid gcm2 6 862 0.056 

  GO:0009308: Amine 
metabolic process 

ddt iars2 rb1cc1 gclc slc7a7 5 636 0.056 

miR-
671-
5p 

GO:0051129: Negative 
regulation of cellular 
component organization 
and biogenesis 

sptbn2 sptb 2 52 0.061
1 

  GO:0002253 Activation of 
immune response 

c1qa cd79a 2 71 0.079 

miR-
483-
5p 

GO:0042133: 
Neurotransmitter 
metabolic process 

ache phox2a 2 32 0.029
6 

  GO:0009306: Protein 
secretion 

bace2 ache 2 57 0.034
5 

miR-
574-
3p 

GO:0050789: Regulation 
of biological process 

lat deaf1 csdc2 il6 cul2 tcf25 plekhg3 
ell2 ssx4 ep300 cbx8 tprx1 aifm1 
esr2 ssx1 dkk3 ssx3 mizf madd ssx6 
pmp22 gabbr1 sohlh1 

23 6731 0.018
5 

  GO:0010468: Regulation 
of gene expression 

deaf1 csdc2 ssx1 il6 mizf ssx3 ssx6 
tcf25 ell2 ssx4 ep300 tprx1 cbx8 esr2 
sohlh1 

15 3833 0.021
1 

  GO:0048468: Cell 
development 

deaf1 madd il6 cul2 ephb3 ep300 
aifm1 cse1l 

8 1242 0.030
6 

  GO:0048856: Anatomical 
structure development 

deaf1 col7a1 il6 dkk3 ephb3 mtm1 
tcf25 ep300 pmp22 esr2 

10 2005 0.045 

  GO:0012501: Programmed 
cell death 

ep300 madd il6 cul2 aifm1 cse1l 6 862 0.054
1 

miR-
365 

GO:0043687: Post-
translational protein 
modification 

acvr1 usp48 tbcel usp33 ubox5 
mtmr2 mak rapgef4 styxl1 tbk1 
usp22 

11 2815 0.067
8 
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  GO:0044248: Cellular 
catabolic process 

dlat dcp2 usp33 usp48 usp22 5 809 0.091
2 

  GO:0043067: Regulation 
of programmed cell death 

acvr1 ihpk2 nlrp1 prune2 4 576 0.091
2 

  GO:0006512: Ubiquitin 
cycle 

usp33 ubox5 usp48 usp22 4 549 0.091
2 

  GO:0048522: Positive 
regulation of cellular 
process 

acvr1 ihpk2 nlrp1 tbk1 prune2 5 954 0.095
1 

miR-
374b 

GO:0000287: Magnesium 
ion binding 

acvr2b stk38l kiaa0999 bpnt1 4 447 0.101 

  GO:0006968: Cellular 
defense response 

dcdc2 ccl11 2 72 0.101 

  GO:0042379: Chemokine 
receptor binding 

ccl18 ccl11 2 77 0.101 
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Table 3.6: Pathway analysis of the selected miRNAs using DAVID Bioinformatics software 

Category Term Count % PValue Genes 
miR-575           

KEGG_ 
PATHWAY 

hsa04650:Natural killer cell 
mediated cytotoxicity 5 8.47% 2.77E-03 

KIR2DL4, MICA, 
KIR2DL1, KIR3DL1, 
BID 

KEGG_ 
PATHWAY 

hsa04612:Antigen 
processing and presentation 3 5.08% 5.42E-02 

KIR2DL4, KIR2DL1, 
KIR3DL1 

miR-483-5p           
KEGG_ 
PATHWAY hsa04510:Focal adhesion 3 6.67% 1.23E-01 

PDGFD, TNN, 
MAPK3 

miR-574-3p           
KEGG_ 
PATHWAY 

hsa05040:Huntington's 
disease 2 3.77% 6.68E-02 EP300, CLTC 

KEGG_ 
PATHWAY 

hsa05211:Renal cell 
carcinoma 2 3.77% 1.48E-01 CUL2, EP300 

miR-374b           
KEGG_ 
PATHWAY 

hsa04350:TGF-beta 
signaling pathway 3 6.98% 1.47E-02 ACVR2B, NOG, MYC 

KEGG_ 
PATHWAY 

hsa04060:Cytokine-cytokine 
receptor interaction 3 6.98% 9.98E-02 

ACVR2B, CCL11, 
CCL18 
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Table 3.7: Significantly dysregulated miRNAs and the associated human cancers 
 

miRNAs 
(up / down 
regulation) 

Associated cancers Chromosome 
Location 

Validated Gene targets 

 Down regulation Up regulation   
miR-125a-
5p↓ 

Lung cancer (Wang, 
Mao et al. 2009) 

 19q13.41  

miR-15a↓ Chronic Lymphocytic 
Leukemia (CLL) 
(Calin, Liu et al. 2004; 
Calin, Pekarsky et al. 
2007; Calin, Cimmino 
et al. 2008)  
Pituitary adenoma 
(Bottoni, Piccin et al. 
2005) 
HCC (Budhu, Jia et al. 
2008) 
Prostate cancer 
(Bonci, Coppola et al. 
2008) 

Kidney cancer (Chow, 
Youssef et al. 2009) 

13q14.2 BCL2 (Cimmino, Calin 
et al. 2005; Calin, 
Pekarsky et al. 2007),  
CDC25A (Lee, Masyuk 
et al. 2008),  
CCND1(Bandi, 
Zbinden et al. 2009),  
CCND2(Bandi, 
Zbinden et al. 2009),  
CCNE1(Bandi, Zbinden 
et al. 2009),  
WNT3A(Bonci, 
Coppola et al. 2008),  
RARS(Calin, Dumitru 
et al. 2002; Bottoni, 
Piccin et al. 2005) 

miR-15b↑ CLL (Calin, Liu et al. 
2004; Calin, Pekarsky 
et al. 2007) 
Gastric cancer (Xia, 
Zhang et al. 2008) 

Colorectal cancer 
(Volinia, Calin et al. 
2006) 

3q25.33 BCL2 (Xia, Zhang et al. 
2008), 
CCNE1 (Xia, Qi et al. 
2009),  
eIF-4A (Xi, Shalgi et al. 
2006) 

miR-16↑ Breast cancer (Iorio, 
Ferracin et al. 2005) 
CLL (Calin, Pekarsky 
et al. 2007) 
Gastric cancer (Xia, 
Zhang et al. 2008) 
Pituitary adenoma 
(Bottoni, Piccin et al. 
2005) 
Prostate cancer 
(Porkka, Pfeiffer et al. 
2007; Schaefer, Jung 
et al. 2009) 

Lung cancer (Yanaihara, 
Caplen et al. 2006) 

miR-16-1: 
13q14.2; 
miR-16-2: 
3q25.33 

BCL2 (Cimmino, Calin 
et al. 2005; Xia, Zhang 
et al. 2008), 
Caprin-1 (Kaddar, 
Rouault et al. 2009), 
CGI-38 (Kiriakidou, 
Nelson et al. 2004),   
CCND1 (Liu, Fu et al. 
2008; Bandi, Zbinden et 
al. 2009), 
CCND3 (Liu, Fu et al. 
2008),  
CCNE1 (Liu, Fu et al. 
2008), 
CDK6 (Liu, Fu et al. 
2008),  
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HMGA1 (Kaddar, 
Rouault et al. 2009),  
WNT3A(Bonci, 
Coppola et al. 2008),  
RARS(Calin, Dumitru 
et al. 2002) 

miR-191↑ 
 

Kidney cancer (Chow, 
Youssef et al. 2009) 

Colorectal cancer 
(Volinia, Calin et al. 
2006; Xi, Formentini et 
al. 2006; Xi, Shalgi et al. 
2006) 
Gastric cancer (Volinia, 
Calin et al. 2006) 
Lung cancer (Volinia, 
Calin et al. 2006; 
Yanaihara, Caplen et al. 
2006) 
Pancreatic cancer 
(Volinia, Calin et al. 
2006) 
Pituitary adenoma 
(Bottoni, Piccin et al. 
2005) 
Prostate cancer (Volinia, 
Calin et al. 2006; Prueitt, 
Yi et al. 2008)  
Glioblastoma (Ciafre, 
Galardi et al. 2005) 

3p21.31  

miR-197↓ Glioblastoma (Ciafre, 
Galardi et al. 2005) 
OSCC (Kozaki, Imoto 
et al. 2008) 
Uterine leiomyeomas 
(Wang, Zhang et al. 
2007) 

Lung cancer (Yanaihara, 
Caplen et al. 2006) 
Pituitary adenoma 
(Bottoni, Piccin et al. 
2005; Bottoni, Zatelli et 
al. 2007) 

1p13.3 FUS1 (Du, Schageman 
et al. 2009),  
ACVR1(Weber, Teresi 
et al. 2006),  
TSPAN3(Weber, Teresi 
et al. 2006) 

miR-
200b↓ 
 

Breast cancer 
(Gregory, Bert et al. 
2008) 
CLL (Calin, Liu et al. 
2004) 
HCC (Murakami, 
Yasuda et al. 2006) 
Kidney cancer (Chow, 
Youssef et al. 2009) 
OSCC (Kozaki, Imoto 
et al. 2008) 

Colorectal cancer 
(Bandres, Cubedo et al. 
2006) 
Ovarian cancer (Iorio, 
Visone et al. 2007) 
Cholangiocarcinoma 
(Meng, Henson et al. 
2006) 

1p36.33 SIP1 (ZEB2) (Korpal, 
Lee et al. 2008),  
ZEB1(Korpal, Lee et al. 
2008), 
 ZFHX1B 
(Christoffersen, 
Silahtaroglu et al. 
2007),  
PDGFD (Kong, Li et al. 
2009),  
PTPN12 (Meng, 
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Henson et al. 2006) 
miR-
200c↑ 

Breast cancer 
(Hurteau, Carlson et 
al. 2007; Korpal, Lee 
et al. 2008) 
Lung cancer (Hurteau, 
Carlson et al. 2007) 
OSCC (Kozaki, Imoto 
et al. 2008) 

Ovarian cancer (Iorio, 
Visone et al. 2007) 

12p13.31 SIP1 (ZEB2) (Korpal, 
Lee et al. 2008),  
ZEB1 (Korpal, Lee et 
al. 2008),  
TUBB3 (Cochrane, 
Spoelstra et al. 2009) 

miR-203↓ Acute Lymphoblastic 
Leukemia (Bueno, 
Perez de Castro et al. 
2008) 
Chronic Myeloid 
Leukemia (Bueno, 
Perez de Castro et al. 
2008) 
Esophageal cancer 
(Feber, Xi et al. 2008) 
OSCC (Kozaki, Imoto 
et al. 2008) 
uterine leiomyoma 
(Wang, Zhang et al. 
2007) 

Bladder cancer (Gottardo, 
Liu et al. 2007) 
Breast cancer (Iorio, 
Ferracin et al. 2005) 
Colorectal cancer 
(Schetter, Leung et al. 
2008) 
Lung cancer (Yanaihara, 
Caplen et al. 2006) 
Pancreatic cancer 
(Greither, Grochola et al. 
2009) 

14q32.33 ABL1 (Bueno, Perez de 
Castro et al. 2008),  
SOCS3 (Sonkoly, Wei 
et al. 2007),  
p63 (TP63) (Yi, Poy et 
al. 2008) 

miR-21↓  Breast cancer (Iorio, 
Ferracin et al. 2005; Yan, 
Huang et al. 2008) 
Cervical cancer (Lui, 
Pourmand et al. 2007) 
Cholangiocarcinoma 
(Meng, Henson et al. 
2006) 
CLL (Marton, Garcia et 
al. 2008) 
Colorectal cancer 
(Volinia, Calin et al. 
2006) 
Diffuse large B cell 
lymphoma 
(DLBCL)(Lawrie, Gal et 
al. 2008) 
Esophageal cancer (Feber, 
Xi et al. 2008) 
Glioblastoma (Chan, 
Krichevsky et al. 2005; 
Ciafre, Galardi et al. 

17q23.2 BTG2 (Liu, Wu et al. 
2009),  
MARCKS (Li, Li et al. 
2009), 
SERPINB5 (Zhu, Wu et 
al. 2008), 
PDCD4 (Asangani, 
Rasheed et al. 2008; 
Chen, Liu et al. 2008; 
Yao, Xu et al. 2009), 
PTEN (Meng, Henson 
et al. 2007),  
TPM1 (Zhu, Si et al. 
2007; Zhu, Wu et al. 
2008),  
HNRPK 
(Papagiannakopoulos, 
Shapiro et al. 2008), 
TAp63 
(Papagiannakopoulos, 
Shapiro et al. 2008), 
LRRFIP1 (Li, Li et al. 
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2005; Chen, Liu et al. 
2008) 
Head & Neck cancer 
(Tran, McLean et al. 
2007; Chang, Jiang et al. 
2008) 
HCC (Meng, Henson et 
al. 2007) 
Kidney cancer (Chow, 
Youssef et al. 2009) 
Lung cancer (Yanaihara, 
Caplen et al. 2006) 
OSCC (Kozaki, Imoto et 
al. 2008) 
Ovarian cancer (Iorio, 
Visone et al. 2007) 
Pancreatic cancer 
(Bloomston, Frankel et al. 
2007) 
Prostate cancer (Volinia, 
Calin et al. 2006; Prueitt, 
Yi et al. 2008) 
Stomach cancer (Volinia, 
Calin et al. 2006) 
Uterine leiomyomas 
(Wang, Zhang et al. 2007) 

2009) 
JAG1 (Hashimi, 
Fulcher et al. 2009), 
WNT1 (Hashimi, 
Fulcher et al. 2009) 

miR-23a↑ CLL (Calin, Liu et al. 
2004) 
Prostate cancer 
(Volinia, Calin et al. 
2006; Porkka, Pfeiffer 
et al. 2007)  
OSCC (Kozaki, Imoto 
et al. 2008) 
 
 

Bladder cancer (Gottardo, 
Liu et al. 2007) 
Breast cancer (Iorio, 
Ferracin et al. 2005) 
Glioblastoma (Ciafre, 
Galardi et al. 2005) 
Head & Neck cancer 
(Tran, McLean et al. 
2007) 
Pancreatic cancer 
(Bloomston, Frankel et al. 
2007) 
Stomach cancer (Volinia, 
Calin et al. 2006)  

19p13.12 RING1 (Lin, Murtaza et 
al. 2009),  
CXCL12 (Lewis, Shih 
et al. 2003), 
FLJ13158 (Kiriakidou, 
Nelson et al. 2004) 

miR-23b↑ 
 

Prostate cancer 
(Porkka, Pfeiffer et al. 
2007) 
Renal cancer 
(O'Rourke, Swanson 
et al. 2006) 

Bladder cancer (Gottardo, 
Liu et al. 2007) 
Breast cancer (Iorio, 
Ferracin et al. 2005) 
CLL (Calin, Ferracin et 
al. 2005) 

9q22.32 uPA (Salvi, Sabelli et 
al. 2009), 
 c-met/MET (Salvi, 
Sabelli et al. 2009), 
 MOR1 (Wu, Law et al. 
2008) 
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OSCC (Kozaki, Imoto 
et al. 2008) 

Cervical cancer (Lui, 
Pourmand et al. 2007) 
Colon cancer (Volinia, 
Calin et al. 2006) 
Glioblastoma (Ciafre, 
Galardi et al. 2005) 
Head & Neck cancer 
(Tran, McLean et al. 
2007) 
Pancreatic cancer 
(Volinia, Calin et al. 
2006; Bloomston, Frankel 
et al. 2007) 
Stomach cancer (Volinia, 
Calin et al. 2006) 
Uterine leiomyomas 
(Wang, Zhang et al. 2007) 

miR-24↓ 
 

 Breast cancer (Iorio, 
Ferracin et al. 2005) 

miR-42-1: 
9q22.32;  
miR-24-2: 
19p13.13 

DHFR (Mishra, 
Humeniuk et al. 2007),  
E2F2, MYC, AURKB, 
CCNA2, CDC2, CDK4 
(Lal, Navarro et al. 
2009), 
 p16 (Lal, Kim et al. 
2008) 

miR-25↓ 
 

CLL (Calin, Liu et al. 
2004) 

Pancreatic cancer 
(Volinia, Calin et al. 
2006) 
Prostate cancer (Volinia, 
Calin et al. 2006) 
Stomach cancer (Volinia, 
Calin et al. 2006) 
Glioblastoma (Ciafre, 
Galardi et al. 2005) 
HCC (Li, Tan et al. 2009) 

7q22.1 p57 (Kim, Yu et al. 
2009),  
BIM (Li, Tan et al. 
2009) 

miR-26b↓ CLL (Calin, Pekarsky 
et al. 2007) 
OSCC (Kozaki, Imoto 
et al. 2008) 
Prostate cancer 
(Porkka, Pfeiffer et al. 
2007) 

Bladder cancer (Gottardo, 
Liu et al. 2007) 
Pituitary adenoma 
(Bottoni, Zatelli et al. 
2007) 

2q35  

miR-27a↓ OSCC (Kozaki, Imoto 
et al. 2008) 

Breast cancer (Mertens-
Talcott, Chintharlapalli et 
al. 2007; Guttilla and 
White 2009) 

19p13.12 Myt1 (Mertens-Talcott, 
Chintharlapalli et al. 
2007),  
MDR1(Zhu, Wu et al. 



131 

 

Kidney cancer (Chow, 
Youssef et al. 2009) 
Gastric cancer (Liu, Tang 
et al. 2009) 
Prostate cancer (Porkka, 
Pfeiffer et al. 2007) 
Uterine leiomyomas 
(Wang, Zhang et al. 2007) 

2008) , 
FOXO1 (Guttilla and 
White 2009),  
PHB (prohibitin) 
(Schaar, Medina et al. 
2009), 
ZBTB10 (Mertens-
Talcott, Chintharlapalli 
et al. 2007) 

miR-27b↓ 
 

Lung cancer 
(Yanaihara, Caplen et 
al. 2006) 
OSCC (Kozaki, Imoto 
et al. 2008) 
Prostate cancer 
(Porkka, Pfeiffer et al. 
2007; Prueitt, Yi et al. 
2008) 

 9q22.32 CYP1B1 (Tsuchiya, 
Nakajima et al. 2006) 

miR-30a↓ HCC (Budhu, Jia et al. 
2008) 

Uterine leiomyomas 
(Wang, Zhang et al. 2007) 

6q13  

miR-342-
3p↑ 

 Kidney cancer (Chow, 
Youssef et al. 2009) 

14q32.2  

miR-365↓  Breast cancer (Yan, 
Huang et al. 2008) 

miR-365-1: 
16p13.12; 
miR-365-2: 
17q11.2 

 

miR-7↓ Glioblastoma (Kefas, 
Godlewski et al. 2008) 

Bladder cancer (Veerla, 
Lindgren et al. 2009) 
Lung cancer (Crawford, 
Batte et al. 2009) 

miR-7-1: 
9q21.32; 
miR-7-2: 
15q26.1; 
miR-7-3: 
19p13.3 

PAK1 (Reddy, Ohshiro 
et al. 2008),  
EGFR (Kefas, 
Godlewski et al. 2008),  
SNCA (Junn, Lee et al. 
2009) 

let-7a↑ Breast cancer (Iorio, 
Ferracin et al. 2005) 
CLL (Marton, Garcia 
et al. 2008) 
Lung cancer  
(Takamizawa, Konishi 
et al. 2004) 
Prostate cancer 
(Porkka, Pfeiffer et al. 
2007) 
Burkitt’s Lymphoma 
(Sampson, Rong et al. 
2007) 

Cholangiocarcinoma 
(Meng, Henson et al. 
2007) 

let-7a-1:  
9q22.32;  
let-7a-2: 
11q24.1; 
 let-7a-3: 
22q13.31 

MYC (Sampson, Rong 
et al. 2007),  
caspase 3 (CASP3) 
(Tsang and Kwok 
2008), 
Integrinβ3 (Muller and 
Bosserhoff 2008), 
NIRF (UHRF2), NF2 
(He, Duan et al. 2009),  
HMGA2 (Motoyama, 
Inoue et al. 2008), 
PRDM1 (Blimp-1) 
(Nie, Gomez et al. 
2008) 
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let-7d↑ Breast cancer (Iorio, 
Ferracin et al. 2005) 
Head & Neck  
  Squamous Cell   
  Carcinoma (Childs, 
Fazzari et al. 2009) 
OSCC (Kozaki, Imoto 
et al. 2008) 

Prostate cancer (Porkka, 
Pfeiffer et al. 2007) 

9q22.32  

Let-7e↓ OSCC (Kozaki, Imoto 
et al. 2008) 
Ovarian cancer 
(Dahiya, Sherman-
Baust et al. 2008) 
Pituitary adenoma 
(Bottoni, Zatelli et al. 
2007) 

Acute myeloid leukemia 
(Dixon-McIver, East et al. 
2008) 
DLBCL (Roehle, Hoefig 
et al. 2008) 

19q13.33 SMC1L1 (SMC1A) 
(Kiriakidou, Nelson et 
al. 2004) 

let-7f↑ Breast cancer (Yan, 
Huang et al. 2008) 
Ovarian cancer 
(Dahiya, Sherman-
Baust et al. 2008) 
Prostate cancer 
(Porkka, Pfeiffer et al. 
2007) 

 let-7f-1: 
9q22.32;  
let-7f-2: 
Xp11.22 

 

let-7g↓ HCC (Budhu, Jia et al. 
2008) 
OSCC (Kozaki, Imoto 
et al. 2008) 
Prostate cancer 
(Porkka, Pfeiffer et al. 
2007) 

Colon cancer (Nakajima, 
Hayashi et al. 2006) 
Lung cancer 

9q22.32 HMGA2 (Kumar, 
Erkeland et al. 2008)  
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         Control        Treatment          Cy3/Cy5(Control/Treatment  

               comparison) 

 

Figure 3.1: Representative heat map diagram of miRNA expression levels in control and 5-FU 

treated MCF7 cells. The image was displayed in pseudo colors to expand visual dynamic range, 

and the signal intensity increases from blue to green, to yellow, and to red.



134 

 

 

Figure 3.2: miRNA expression profile in human MCF7 breast cancer cell line. 
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Figure 3.3: Signal distribution of all analyzed miRNAs in MCF7 cells by miRNA microarray 

assay. 
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Figure 3.4: Comparison of signal distribution between control and 5-FU-treatment human breast 

cancer cell MCF7. 
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Figure 3.5: Fold change in the expression of significantly altered miRNA after 5-FU exposure 
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Figure 3.6: Confirmatory studies of selected miRNAs by TaqMan Real-Time PCR. The results 

are represented as mean ± SEM of triplicate samples. 
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Figure 3.7: A proposed model showing the functional mechanism of 5

breast cancer treatment. 
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Chapter 4: Effect of 5-fluorouracil on the Expression of Selected MicroRNAs in a Dose- 

and Time- Dependent Manner 

Abstract 

MicroRNAs (miRNAs) are a newly identified class of gene regulators which have been 

shown to play an important role in human cancers. The ability of 5-fluororacil to alter the 

expression levels of miRNAs in MCF7 cells was previously observed. In this study, we further 

investigate the dose- and time-dependent modification in miRNA expression levels after 5-FU 

treatment. Eleven miRNAs previously identified in the microarray to be differentially expressed 

after treatment were selected to analyze their responsiveness to eight different 5-FU dosages of 

0.001, 0.005, 0.01, 0.1, 0.7, 1, 5 and 10µM. The selected miRNAs included miR-365, miR-374b, 

miR-483-5p, miR-574-3p and miR-575, which were shown to be highly dysregulated in the 

microarray analysis. Additionally, let-7g, miR-10b, miR-15a, miR-16, miR-21, miR-27a were 

investigated based on previous reports of their connection to breast cancer. Of these, miR-10b, 

miR-21, miR-365 and miR-483-5p were found to be significantly regulated in a beneficial way 

for cancer treatment. Time-response data was also generated for miR-10b, miR-21, miR-483-5p, 

miR-574-3p and miR-575 following 12, 24, 36, 48, 60 and 72 hours of treatment with 0.1 (low), 

0.7 (moderate) and 10 (high) µM 5-FU concentrations. At 0.7µM for short treatment duration, 

expression levels of miR-10b, miR-21, miR-574-3p and miR-575 were significantly altered; 

while treatment with high 5-FU dose for shorter time points showed a significant down-

regulation of miR-21and miR-574-3p. The data suggests that miRNA expression in MCF7 cells 

is sensitive to 5-FU therapy at low doses and shorter treatment durations. The down-regulation of 

an important oncomir, miR-21; and alteration in the expression of three new miRNAs with no 
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previous breast cancer association, miR-483-5p, miR-574-3p and miR-575 indicates that miRNA 

might play an important role in 5-FU therapy. 

Keywords: 5-fluorouracil, microRNA, qRT-PCR, breast cancer, MCF7 
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Introduction 

Breast cancer is one of the leading causes of deaths worldwide, claiming more than 

40,000 deaths in US in the year 2009 (Jemal, Siegel et al. 2009), and is expected to account for 

27% of all new cancer cases among women for 2009 (Jemal, Siegel et al. 2009). The breast 

cancer cases are principally graded based on the cellular histology and the expression pattern of 

specific proteins such as estrogen receptor (ER), progesterone receptor (PR) and human 

epidermal growth factor receptor 2 (HER2/neu). The expression profiles of these proteins play an 

important role in differentiating between benign and malignant breast tumors. About 65% of 

breast cancer cases are ER+ (Teixeira, Reed et al. 1995), which is important in predicting 

treatment options and final prognosis.  The absence of estrogen receptor in primary breast tumors 

is associated with early recurrence and poor prognosis (Knight, Livingston et al. 1977; Hahnel, 

Woodings et al. 1979). Approximately 15-20 % of breast cancers have an amplification of the 

HER2/neu gene or over-expression of its protein product (Slamon, Clark et al. 1987; Slamon, 

Godolphin et al. 1989); which, in turn, is associated with increased disease reoccurrence and 

poor prognosis (Slamon, Clark et al. 1987). Similarly, several other oncogenes and tumor 

suppressor genes have been identified which show a differential expression in breast tumors 

compared to normal breast tissues (Chapter I, Table 1.1). 

Several treatment options are available for breast cancer, mainly surgery, radiation 

therapy and chemotherapy. A combination of these approaches is usually adopted to achieve 

maximum therapeutic efficiency. However, the prevalent side effects due to chemotherapeutic 

drugs and the associated low quality of life after chemotherapy have urged an extensive need for 

more targeted and effective treatment options. Several drugs targeting the oncogenes and tumor 

suppressor genes have been designed. Trastuzumab (Herceptin®), a humanized monoclonal 
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antibody against HER-2/neu, has been shown to benefit patients with HER-2/neu-positive 

metastatic breast cancer (Slamon, Leyland-Jones et al. 2001; Vogel, Cobleigh et al. 2002; 

Baselga, Carbonell et al. 2005; Marty, Cognetti et al. 2005). Hormonal therapy with tamoxifen, a 

selective estrogen receptor modulator, showed a better prognosis in advanced metastatic breast 

cancer patients (Mouridsen, Palshof et al. 1978; Legha, Buzdar et al. 1979; Frasor, Weaver et al. 

2009). Recently, genetic screening tools, such as the Oncotype DX™, have also been used as 

diagnostic tools to predict recurrence prognosis and therapeutic response in breast cancer cases 

(Cronin, Sangli et al. 2007). Further research to identify novel intracellular targets and to design 

tumor specific drugs is needed to improve the effectiveness of cancer therapy. 

MicroRNAs (miRNAs) are small endogenous non-coding single-stranded RNA 

molecules which act as post-transcriptional gene regulators and cause a decrease in gene 

expression (Bartel 2004). As a new level of gene regulation mechanism, several diverse 

functions of miRNAs have been identified, including cellular differentiation, proliferation and 

apoptosis (Cheng, Byrom et al. 2005; Croce and Calin 2005). Thus, deregulation of miRNAs 

could lead to a variety of disorders, including cancers. For instance, miRNAs have been reported 

to play a role in cancer initiation, progression (Calin and Croce 2006) and metastasis (Cheng, 

Byrom et al. 2005), with about 50% of miRNA genes being localized in cancer-associated 

genomic regions or in fragile sites (Calin, Sevignani et al. 2004). Aberrant miRNA expression 

levels have been reported in almost all human cancers (Iorio, Ferracin et al. 2005; Lu, Getz et al. 

2005; Calin and Croce 2006; Blenkiron, Goldstein et al. 2007; Zhang, Pan et al. 2007). Certain 

miRNAs have also displayed unique expression profiles in specific types of cancers (Lu, Getz et 

al. 2005), making them important biomarkers for classifying these cancers. Many miRNAs target 

protein-coding genes which act as oncogenes or tumor suppressor genes, and are involved in 
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tumorigenesis (Zhang and Farwell 2008). For example, miR-21 targets important tumor 

suppressor genes such as PTEN (Meng, Henson et al. 2007) and TPM1 (Zhu, Si et al. 2007; Zhu, 

Wu et al. 2008); while miR-15a and miR-16 have been shown to regulate BCL2 (Cimmino, 

Calin et al. 2005; Calin, Pekarsky et al. 2007). These studies highlight the importance of 

miRNAs as both stimulators and inhibitors in breast cancer. 

5-fluorouracil (5-FU), an antimetabolite, is a clinically useful chemotherapeutic agent 

approved for treatment of breast (Fumoleau, Bonneterre et al. 2003), colorectal (Wils, O'Dwyer 

et al. 2001) and head and neck cancers (Posner, Colevas et al. 2000). It is a pyrimidine antagonist 

which inhibits the activity of enzyme thymidylate synthase (TS), resulting in arrest of the de 

novo DNA synthesis pathway (Santi, McHenry et al. 1974; Sommer and Santi 1974). In addition, 

5-FU toxicity is also caused by misincorporation of FdUTP and FUTP into DNA (Mitrovski, 

Pressacco et al. 1994; Aherne, Hardcastle et al. 1996) and RNA (Randerath, Tseng et al. 1983; 

Kanamaru, Kakuta et al. 1986; Santi and Hardy 1987; Doong and Dolnick 1988; Samuelsson 

1991; Patton 1993; Ghoshal and Jacob 1994) strands respectively. The advancement in genetic 

analysis techniques have helped discover the ability of several chemotherapeutic drugs to alter 

gene expression profile in different tumors. For instance, p53 and FAS have been shown to be a 

potential target of 5-FU (Hernandez-Vargas, Ballestar et al. 2006) (Tillman, Petak et al. 1999). 

Similar studies have also been performed on other antineoplastic drugs (Kudoh, Ramanna et al. 

2000; Daoud, Munson et al. 2003), suggesting a connection between disease prognosis, 

efficiency and resistance to chemotherapy and genetic expression profiles (Krajewski, Blomqvist 

et al. 1995; Thottassery, Zambetti et al. 1997). Currently, a growing body of evidence has 

suggested the importance of miRNAs in modulating the chemosensitivity and chemoresistance 

of tumor cells (Meng, Henson et al. 2006; Blower, Verducci et al. 2007; Blower, Chung et al. 
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2008). Si (Si, Zhu et al. 2007) reported that suppression of miR-21 sensitized MCF7 cells to 

anticancer drug topotecan. Similar studies have been reported for the drugs gemcitabine, 

doxorubicin and tamoxifen (Kovalchuk, Filkowski et al. 2008; Miller, Ghoshal et al. 2008; Zhao, 

Lin et al. 2008) illustrating the importance of miRNAs in drug sensitivity and resistance. Thus, it 

could be suggested that a distinct association is prevalent between cytotoxicity of chemotherapy 

drugs, their alteration of genetic profiles and the gene regulatory role of miRNAs. 

In our previous study, we have demonstrated that miRNA expression profile in MCF7 

breast cancer cells is sensitive to 5-FU treatment and a distinct set of miRNAs with differential 

expression after 5-FU treatment was identified using microRNA microarray and qRT-PCR 

(Chapter III). Further study was required to obtain a detailed understanding of the miRNA 

regulatory effects of 5-FU and to exploit its potential therapeutic implications. However, there 

has been no organized study examining the relevance of dosage and treatment duration of a 

chemotherapy drug on the expression profile of miRNAs. We have therefore investigated the 

miRNA expression profiles of MCF7 breast cancer cells in response to various 5-FU 

concentrations for different lengths of treatment using qRT-PCR analysis. We report a 

characteristic miRNA expression profile in response to 5-FU treatment, wherein miRNAs in 5-

FU treated cells show a different profile at all 5-FU variables compared to the control MCF7 

samples. Most importantly, miRNA regulation was shown to be highly sensitive to 5-FU 

treatment at low doses and shorter duration of exposure. This could be an important clinical 

consideration that is relevant in improving 5-FU therapy, and suggests a potential role of miRNA 

specific therapies in cancer treatment. 
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Materials and Methods 

Cell line and Cell culture 

All cell culture reagents were purchased from Invitrogen, Inc, Carlsbad, CA.  The human 

breast adenocarcinoma cell line MCF7 (HTB-22™) was obtained from the American Type 

Culture Collection (ATCC, Rockville, MD). They were cultured in RPMI 1640 media containing 

L-Glutamine and 25 mM HEPES, and supplemented with 10% Fetal Bovine Serum (FBS), 10 

µg/ml gentamicin and 4 µg/ml insulin and sterilized using a 0.22µM polyethersulfone filter 

(Corning Inc., Corning, NY). The cells were maintained at 37˚C in a humidified incubator with 

5% CO2. The media was replaced every 48 hours, and the cells were passaged once a week by 

trypsinization using 0.05% trypsin/0.02% EDTA (Sigma, St. Louis, MO). 

5-fluorouracil drug treatment 

5-fluorouracil (5-FU) was purchased from Sigma-Aldrich (St. Louis, MO) and stored at 

4˚C, away from light and moisture. For cell treatments, a 10 mM stock solution of 5-FU was 

prepared in RPMI complete media and stored at 4˚C for not more than two weeks. The stock was 

filtered through a 0.22µM polyethersulfone filter prior to further dilution. Further dilutions were 

made from the stock solution as required. 

Dose- and time-dependent miRNA response analysis 

 The dose-dependence of miRNA expression profile in MCF7 breast cancer cells was 

analyzed at eight different 5-FU concentrations. For this purpose, cells were seeded at 50,000 

cells/cm2 (480,000 cells/well) in flat-bottom 6-well plates in 2ml of RPMI 1640 complete media. 

After 24 hours, media was replaced with fresh media (control group) or with 5-FU in complete 
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media (treatment group) and cells were incubated for another 48 hours. The treatments included 

0.001, 0.005, 0.01, 0.1, 0.7, 1, 5 and 10µM 5-FU. After 48 hours of incubation, the cells were 

detached by trypsinization and stored in RNAlater-ICE at -20º C till RNA extraction was 

performed. Each treatment was performed minimum in triplicates. 

 For time-dependent miRNA expression response, MCF7 cells were treated with 0.1, 0.7 

and 10µM 5-FU and analyzed at six different time points: 12, 24, 36, 48, 60 and 72 hours. 

Briefly, cells were seeded at 50,000 cells/cm2 (480,000 cells/well) in flat-bottom 6-well plates in 

2ml of RPMI 1640 complete media. After 24 hours, media was replaced with fresh media 

(control group) or with 5-FU in complete media (treatment group) and cells were incubated. 

Cells were subsequently trypsinized after 12, 24, 36, 48, 60 and 72 hours respectively, and stored 

in RNAlater-ICE at -20º C till further analysis. Each treatment was repeated three times at each 

time point. 

RNA isolation 

Total RNA was extracted from both groups with the mirVana™ miRNA Isolation Kit 

(Ambion, Austin, TX) according to manufacturer’s instructions. Briefly, the cells were pelleted 

and RNAlater-ICE was removed by centrifugation. Cells were lysed by adding 500 µl of 

Lysis/Binding Solution, followed by vortexing. miRNA Homogenate Additive (50 µl) was then 

added, mixed by vortexing and cells were incubated on ice for 10 min. The RNA was extracted 

by adding 500 µl of Acid-Phenol: Chloroform, vortexing for 60 sec and centrifuging for 5 min at 

10,000 X g to separate the aqueous and organic phases. The upper (aqueous) phase was 

transferred to another 2ml micro-centrifuge tube and its volume was noted. Room temperature 

100% ethanol was added at 1.25 times the volume to precipitate the RNA. The total RNA was 

then filtered onto a filter cartridge by centrifugation, followed by multiple washings. The filter 
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cartridge was first washed with 700µl Wash solution 1, centrifuged briefly and the flow through 

was discarded. The washing was then repeated twice with 500µl of Wash Solution 2/3. Finally, 

the total RNA was eluted with 100 µl of pre-heated (95º C) nuclease-free water. All the steps 

were performed on ice. RNA quantity and quality was analyzed using NanoDrop ND1000 

Spectrophotometer (NanoDrop Technologies, Wilmington, DE) and immediately stored at -80˚C 

until further analysis. 

Quantitative Real Time PCR (qRT-PCR) of miRNA expression 

Eleven different miRNAs were analyzed for changes in their expression level following 

5-FU treatment. Primers for hsa-let-7g, hsa-miR-10b, hsa-miR-15a, hsa-miR-16, hsa-miR-21, 

hsa-miR-27a, hsa-miR-365, hsa-miR-374b, hsa-miR-483-5p, hsa-miR-574-3p, hsa-miR-575, and 

reference gene RNU48 were purchased from Applied Biosystems (Foster City, CA). The 

miRNAs were selected based on the microarray analysis (Chapter 3) and the importance of 

miRNAs in breast cancers. miR-365, miR-374b, miR-483-5p, miR-574-3p, miR-575 were shown 

to be differentially expressed with high fold change in the microRNA microarray data, while let-

7g, miR-10b, miR-15a, miR-16, miR-21, miR-27a have been reported to be associated with 

breast cancer. A single-stranded cDNA for a specific miRNA was generated by reverse 

transcription of at least 500 ng of total RNA using a miRNA-specific stem-looped RT primer and 

the Applied Biosystems TaqMan® microRNA Reverse Transcription Kit. A Reverse 

transcription reaction mixture contains total RNAs, 1.5µL 10X TR Buffer, 1mM of each dNTPs, 

0.188µL RNase Inhibitor, 3µL 5X Taqman® microRNA RT primer for a specific miRNA and 

1µL MultiScribe™ Reverse Transcriptase (50U/µL). An Eppendorf Mastercycler Personal PCR 

(Westbury, NY) was used to conduct the reverse transcription reaction at the following 
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temperature conditions: 16°C for 30 min, 42°C for 30 min followed by 85°C for 5 min and 

finally held at 4°C. 

Following reverse transcription reaction, quantitative RT-PCR was performed with 

Applied Biosystems 7300 Real-Time PCR system using the Taqman® MicroRNA Assay kit. 

The qRT-PCR reaction mixture contains 3µL RT PCR product (diluted 1:7 times), 10µL 

Taqman® 2X Universal PCR Master Mix (No AmpErase® UNG), 2µL Taqman® MicroRNA 

Assays 20X Taqman® Assay (qRT-PCR primers). The final volume was adjusted to 20µL with 

nuclease free water. The reactions were incubated in a 96-well optical plate at 95°C for 10 min, 

followed by 40 cycles of 95°C for 15 sec and 60°C for 60 sec. RNU 48 was used as an 

endogenous reference gene for normalizing the results. Each sample was analyzed in duplicate 

(technique replicates). The relative abundance of each miRNA was calculated using the 

comparative cycle threshold (2-∆∆Ct) method. The results are presented as fold change of each 

miRNA in 5-FU treated cells relative to the control MCF7 cells. 

Statistical Analysis 

All data are expressed as mean ± S.E.M. (Standard error of the mean). Statistical 

significance of the differences between the control and treated groups was determined by one-

way analysis of variance (ANOVA) using the PASW (Predictive Analytics SoftWare) Statistics 

17.0 (SPSS Inc., Chicago, IL). A two-way ANOVA analysis was also performed for the time-

response study using the PASW (Predictive Analytics SoftWare) Statistics 17.0 (SPSS Inc., 

Chicago, IL) to determine if there was any significant interaction between the concentration of 

treatment and the duration of treatment on the expression level of miRNAs in MCF7 breast 

cancer cells. Differences were considered significant if p < 0.05. 
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Results 

miRNA dose-response to 5-FU treatment 

 Eleven miRNAs (let-7g, miR-10b, miR-15a, miR-16, miR-21, miR-27a, miR-365, miR-

374b, miR-483-5p, miR-574-3p and miR-575) were analyzed to determine the dose-dependency 

of their expression profiles at eight different 5-FU treatments (0.001, 0.005, 0.01, 0.1, 0.7, 1, 5 

and 10µM) (Figures 4.1-4.11). Cells were treated with different 5-FU concentrations for 48 

hours, followed by RNA extraction, reverse transcription and qRT-PCR to determine the relative 

miRNA expression levels. Of the eleven miRNAs analyzed, three miRNAs (miR-10b, miR-21 

and miR-365) showed statistically significant alteration in their expression profile following 

treatment with different 5-FU concentrations. miR-10b showed up-regulation at 0.005 (40.4-

fold), while no major alteration was observed at other 5-FU concentrations. Conversely, miR-21 

showed a significant decrease in its expression levels in a dose-dependent manner (p = 0.026), 

with maximum down-regulation at 0.1µM (4.9-fold). This down-regulation decreased when 

treated with concentrations higher that 0.1µM 5-FU. miR-365 also showed a down-regulation 

compared to the control after 5-FU treatment, the highest down-regulation being at 0.005µM 

(4.4-fold, p = 0.03). 

miR-15a, miR-16, miR-483-5p and miR-575 were all up-regulated compared to the 

control following 5-FU treatment. miR-15a and miR-16 show a very similar bimodal trend in 

their expression profiles, with the fold change showing a peak at two separate concentrations. 

miR-483-5p shows a remarkable up-regulation between 0.001-0.7µM, with the highest increase 

at 0.1µM 5-FU (56.3-fold). miR-575 also shows an up-regulation between 0.001-1µM (up to 

17.7-fold). Let-7g, miR-27a, miR-374b and miR-574-3p showed a decrease in their expression 
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levels compared to control after treatment with 5-FU. let-7g and miR-27a both showed the 

highest down-regulation at 0.1µM (2-fold and 1.54-fold respectively). However, a slight up-

regulation was seen at 0.005 and 5µM for let-7g, and at 0.005, 0.7 and 10µM for miR-27a. miR-

374b, on the other hand, shows a dose-dependent increase in its down-regulation, with the 

maximum down-regulation between 0.01-0.7µM. The expression level however became similar 

to the normal control samples as the 5-FU concentration increased. miR-574-3p showed the 

highest decrease in its expression level at 0.005µM (1.9-fold) and at 10µM (2.7-fold) 

respectively. This study revealed that miRNA expression levels in MCF7 breast cancer cells 

were more sensitive to lower 5-FU concentrations, and these doses were sufficient to elicit an 

alteration in their expression levels. 

miRNA time-response to 5-FU treatment 

Based on the results obtained from the dose-dependent miRNA expression study, five 

miRNAs with high fold change (miR-10b, miR-21, miR-483-5p, miR-574-3p and miR-575) 

were selected to analyze any time-dependent changes in their expression. MCF7 cells were 

treated with 0.1, 0.7 and 10µM 5-FU for 12, 24, 36, 48, 60 and 72 hours, and analyzed for the 

expression levels of the selected miRNAs (Figure 4.12-4.26). 

At 0.1µM 5-FU treatment, the selected miRNAs did not show a significant change in 

their expression at different time points. The expression levels after treatment were almost 

similar to the control samples. Further, it was observed that treatment for more than 48 hours was 

required to elicit a small change in the expression at 0.1µM 5-FU. On the other hand, treatment 

with 0.7µM 5-FU showed an atypical behavior compared to the other two treatments. Of the five 

miRNAs analyzed, four (miR-10b, miR-21, miR-574-3p and miR-575) showed a significant 
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differential expression at 0.7µM. For miR-10b, the expression level was up-regulated after 

treatment up to 48 hours; however, the expression was down-regulated if the treatment was 

continued for 72 hours. Similarly, miR-21 was up-regulated after 12 and 24 hours of treatment, 

but showed a down-regulation when treated for 36 and 48 hours. Conversely, the expression 

levels returned to normal control levels if the treatment was continued for 72 hours. Further, 

miR-483-5p showed the highest up-regulation after treatment for 12 hours, which reduced with 

longer duration of exposure. A decrease in the expression was observed after 36 hours of 

treatment; however, this change in expression never significantly varied from the control. A 

similar trend was also seen for miR-574-3p and miR-575. The miRNAs were significantly up-

regulated after 12 and 24 hours of treatment, while the expression levels returned to normal if 

treated for longer duration of time.  

At the 10µM treatment level, miR-10b showed an increase in expression at 24 and 48 

hours of treatment, while the expression decreased after 60 and 72 hours of treatment, as was 

seen with the 0.1 and 0.7µM treatment. This suggests that expression of miR-10b is expressed 

differentially at different time points and is thus sensitive to duration of exposure to 5-FU. 

Similarly, miR-21 showed the highest down-regulation (7.1 fold) after 36 hours of treatment, 

while the expression decreased to control levels with increasing length of treatment. miR-483-5p, 

on the other hand, showed an up-regulation after 24 hours of treatment (2.4-fold), but the 

expression decreased significantly to 1.9-fold after 36 hours of treatment. These changes, 

however, were not significantly different from the control samples. Conversely, miR-574-3p 

showed a significant differential expression after treatment with 5-FU for different time 

durations (p < 0.001). The highest down-regulation was observed after 36 hours of treatment 

(4.4-fold), which reduced to 2-fold down-regulation after increasing length of treatment. Finally, 
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miR-575showed an up-regulation after treatment with 12 and 24 hours of treatment (2.3- and 

4.2-fold respectively), which was decreased to a down-regulation of 2.5-fold if the treatment was 

continued for 72 hours. 

The time-response data suggests that the expression of miRNAs in MCF7 breast cancer 

cells was more sensitive to shorter duration of treatment with 5-FU. The miRNAs showed a 

significant change in their expression levels when treated with 5-FU for shorter time length (p < 

0.01 and p < 0.05 for 12 and 24 hours of treatment, respectively) as compared to increased time 

durations. A two-way ANOVA analysis to investigate the effect of various 5-FU concentrations 

and duration of treatment with these concentrations revealed that expression of each miRNA 

analyzed was significantly affected by both 5-FU dosage and treatment durations (p < 0.05 for 

each miRNA). This confirms that miRNA expression in MCF7 cells is responsive to 5-FU 

treatment. Further, a significant interaction between treatment dose and duration was also 

observed for miR-21, miR-574-3p and miR-575. This shows that alteration in the expression 

levels of different miRNAs may play an important role in the therapeutic response to 5-FU.  

 

Discussion 

miRNAs constitute a novel target system for cancer treatment as each miRNA has the 

ability to regulate the expression of several hundred target genes, including several important 

oncogenes or tumor suppressor genes, and have the potential to function as a diagnostic and 

prognostic tool for a variety of human cancers (Blenkiron and Miska 2007; Tricoli and Jacobson 

2007; Lowery, Miller et al. 2008; Zhang and Farwell 2008). Extensive research is currently 

being focused on identifying differential expressed miRNAs that play primary roles in cancer 
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development and therapy. Thus, a study of the possible effects of chemotherapeutic drug 

treatment on the expression profile of miRNAs is of prime importance for cancer therapy and 

resistance. 5-FU is an important chemotherapeutic drug used for the treatment of breast cancer. 

Unfortunately, 5-FU is rarely used as a monotherapy now-a-days, and is mainly used in 

combination with other drug regimens. It has been shown to be a potent anti-proliferative agent 

capable of inducing apoptosis in MCF7 breast cancer cells (Chapter II). Further analysis to 

determine the role of miRNAs in the cytotoxicity of 5-FU in MCF7 cells showed that 5-FU is 

able to significantly dysregulate the expression levels of several miRNAs even at a low dose 

(Chapter III). In this study, we observed that higher and clinically relevant 5-FU doses also have 

a significant effect on the miRNA expression profiles in MCF7 breast cancer cells, but 

expression is more sensitive to lower treatment doses. The expression levels were also shown to 

be regulated by the time of exposure to 5-FU. The data presented here gives a detailed analysis 

of the expression profiles of miRNAs in response to 5-FU. 

Eleven miRNAs were selected to study their expression profiles in response to different 

5-FU concentrations. These include let-7g, miR-10b, miR-15a, miR-16, miR-21, miR-27a, miR-

365, miR-374b, miR-483-5p, miR-574-3p and miR-575, which were treated with 0.001, 0.005, 

0.01, 0.1, 0.7, 1, 5 and 10µM 5-FU. Of these, miR-10b, miR-15a, miR-16, miR-483-5p and miR-

575 were consistently up-regulated; while miR-21, miR-365 and miR-374b were consistently 

down-regulated at all 5-FU treatments. These results further confirm the microRNA microarray 

data obtained previously (Chapter III). Conversely, let-7g, miR-27a and miR-574-3p were 

differentially expressed at various 5-FU concentrations. This suggests that different miRNAs 

respond to 5-FU treatment in different ways. Recently, miR-10b was identified to be highly 

expressed in metastatic breast cancer cells and positively regulate cell migration, invasion and 
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metastasis (Ma, Teruya-Feldstein et al. 2007). However, MCF7 cells, which have little if any 

metastatic ability, were not shown to have a high expression of this miRNA (Ma, Teruya-

Feldstein et al. 2007). Up-regulation of miR-10b after 5-FU treatment was inconsistent with 5-

FU cytotoxicity and could play an important role in the resistance of certain metastatic breast 

cancers to 5-FU treatment. Further time-based study was performed to understand the role of 

miR-10b in response of 5-FU. On the contrary, miR-21, miR-27a and miR-365 have been shown 

to be up-regulated in breast cancer cells (Iorio, Ferracin et al. 2005; Mertens-Talcott, 

Chintharlapalli et al. 2007; Yan, Huang et al. 2008; Guttilla and White 2009). Down-regulation 

of these miRNAs after 5-FU treatment further confirms the active function of miRNAs in 5-FU 

induced cytotoxicity. Further, miR-16 is highly down-regulated in breast cancer (Iorio, Ferracin 

et al. 2005), but was up-regulated following 5-FU treatment. Finally, let-7g, miR-15a, miR-374b, 

miR-483-5p, miR-574-3p and miR-575 have not been previously implicated in breast cancers, 

but show differential expression with 5-FU treatment, suggesting their potential role in 5-FU 

activity. Thus, based on their fold change levels or their novelty in breast cancers, we selected 

five miRNAs (miR-10b, miR-21, miR-483-5p, miR-574-3p and miR-575) for further time-

dependent study. 

An important miRNA that was chosen for dose- and time-dependent study is miR-10b. It 

was not classified to be differentially expressed between control and 5-FU treated samples after 

microRNA microarray analysis due to the low signal intensity; however, a significant variation 

in its expression profile was observed after 5-FU treatment. miR-10b has been previously 

implicated in several human cancers (Table 4.1), including breast cancer (Iorio, Ferracin et al. 

2005; Ma, Teruya-Feldstein et al. 2007). Previous literature has also displayed a positive 

correlation between the expression of miR-10b and metastatic or invasive behavior of primary 
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breast carcinomas (Ma, Teruya-Feldstein et al. 2007), thus classifying it as an oncogenic miRNA 

or Oncomir. This has been partially correlated to the regulation of miR-10b by transcription 

factor Twist (Ma, Teruya-Feldstein et al. 2007), which is a master regulator of morphogenesis 

and plays an essential role in tumor metastasis (Yang, Mani et al. 2004). Several gene targets 

have also been identified for miR-10b. These targets include HOXD10 (Homeobox D10) (Ma, 

Teruya-Feldstein et al. 2007), which has been found to be progressively lost in breast tumors 

with increased malignancy (Carrio, Arderiu et al. 2005; Makiyama, Hamada et al. 2005) and 

regulates several genes that promote invasion, migration and tumor promotion, including uPAR 

and RhoC (Myers, Charboneau et al. 2002); and KLF4 (Krüppel-like factor 4) (Tian, Luo et al.), 

a zinc finger protein which is important in cell cycle regulation, differentiation, and in response 

to DNA damage (Shields, Christy et al. 1996; Zhang, Geiman et al. 2000). 

miR-10b showed a highly differential expression following 5-FU treatment. A significant 

up-regulation was observed compared to the control after 5-FU treatment at different 

concentrations (p < 0.01) (Figure 4.2). The expression level showed a significant increase at 

0.005µM (40-fold) compared to the control. Other treatments did not show considerable increase 

compared to the control. Up-regulation of an oncogenic miRNA after treatment with very low 

doses of 5-FU indicates that 5-FU could aggravate the disease state. Since miR-10b plays an 

important role in migration and invasion of breast cancer cells, this up-regulation could also 

suggest a role of the miRNA in acquired 5-FU resistance observed in certain metastatic breast 

cancer cases. Further, the return of the expression levels to normal at higher 5-FU concentrations 

implies that treatment with higher doses of 5-FU would be more beneficial for the therapeutic 

effect of 5-FU. A time-dependent analysis was carried out to further understand the expression of 

miR-10b in response to 5-FU.  
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A time-based response analysis was performed every 12 hours for 72 hours at 

concentrations 0.1, 0.7 and 10µM 5-FU to obtain further insights into the expression profile of 

miR-10b (Figures 4.12-4.14). At each 5-FU concentration, shorter duration of treatment (< 48 

hours) showed a significant difference in the expression levels compared to the expression 

changes after longer treatments for 60 and 72 hours. This indicates that treatment with 5-FU for 

longer duration would lead to beneficial miRNA regulation, while miR-10b does not seem to 

play an important role in 5-FU cytotoxicity if treated for shorter durations. A two-way ANOVA 

analysis showed that there was a significant main effect of the concentration of the treatment [F 

(3, 56) = 3.192, p < 0.05] as well as the duration of treatment [F (6, 56) = 4.760, p < 0.01] on the 

expression level of miR-10b in MCF cells. Conversely, no significant interaction effect of the 

concentration and duration of treatment [F (18, 56) = 1.531, p = 0.114] was observed. Thus, 

treatment with high 5-FU doses for a higher time span (such as a continuous i.v. infusion for 3 or 

4 days) would lead to a beneficial expression of miR-10b, while treatment for shorter length of 

time (a single dose i.v. infusion) could invoke potential problems.  

miR-21 is another important miRNA whose expression levels are highly dysregulated 

after 5-FU treatment. Extensive study has been carried out on miR-21 and it stands out as a 

miRNA most often found over-expressed in solid tumors (Volinia, Calin et al. 2006), and also in 

most of the human cancers (Table 4.1). Furthermore, miR-21 have also been reported to play an 

imported role in cancer-related processes such as cell proliferation, migration, apoptosis and 

tumor growth in breast, gastric and hepatocellular cancers (Meng, Henson et al. 2007; Si, Zhu et 

al. 2007; Zhang, Li et al. 2008). In breast cancer, miR-21 is found to be highly up-regulated in 

tumors as compared to the normal breast tissues (Iorio, Ferracin et al. 2005). It has been directly 

implicated in promoting tumor growth (Si, Zhu et al. 2007) and is also associated with advanced 
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clinical stage lymph node metastasis and poor patient prognosis (Yan, Huang et al. 2008). It has 

been found to target several important genes (Table 4.1). For importance are the tumor 

suppressor genes PDCD4 (Programmed Cell Death 4) (Asangani, Rasheed et al. 2008; Chen, Liu 

et al. 2008; Yao, Xu et al. 2009); PTEN (phosphatase and tensin homolog) (Meng, Henson et al. 

2007); and TPM1 (Tropomyocin 1) (Zhu, Si et al. 2007; Zhu, Wu et al. 2008). Based on its 

expression in cancers and its gene target, miR-21 can thus be classified as an oncogenic miRNA 

or oncomir. Down-regulation of an oncomir by 5-FU treatment suggests an important role of 

miRNA in 5-FU activity. 

From our dose-dependent results, miR-21 was shown to be significantly down-regulated 

compared to the control after treatment with all the 5-FU concentrations (p < 0.05) (Figure 4.5). 

The highest down-regulation was observed between 0.01-1µM 5-FU, which continued even at 

higher concentrations. Further, the bimodal dose-response curve of the MCF7 cells in response 

to 5-FU (Chapter II) can also be partially explained by the miRNA expression response to 

different 5-FU doses. The initial 5-FU dose-dependent reduction in the MCF7 cell numbers 

between 0.001-0.5µM (Chapter II, Figure 2.4) can be correlated with the dose-dependent 

decrease in the expression level of miR-21 at the same concentration range, with the highest 

down-regulation observed at 0.01µM. This decrease in the fold change gradually reduced in a 

dose-dependent manner after treatment with higher concentrations of 5-FU, which gave a second 

dose-response curve in Figure 2.4. Thus, miR-21 was shown to be sensitive to different 5-FU 

doses and might play a role in the bimodality of 5-FU. Further, the effective concentration range 

for the regulation of miR-21 expression in response to 5-FU was shown to be 0.01-1µM, which 

is much lower than the doses required to elicit 5-FU cytotoxicity in cancerous tissues. This 
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shows that miRNA expression displays greater sensitivity to 5-FU treatment and this could be 

used to reduce 5-FU dosage and thus eliminate the side effects associated with it. 

In order to further study the effect of 5-FU on miR-21, a detailed time-based response 

was performed at 0.1, 0.7 and 10µM 5-FU. The cells were treated with these 5-FU 

concentrations and the expression profile of miR-21 was analyzed every 12 hours for 3 days 

(Figures 4.15-4.17). Of these treatments, 0.7 and 10µM showed a significant alteration in the 

expression fold change as the time of exposure to 5-FU increased. Treatment with 0.1 and 10µM 

displayed a similar trend in the expression profile of miR-21. A decrease in the expression level 

compared to the control was observed till 48 hours of treatment, followed by an up-regulation if 

the treatment was continued till 72 hours. A significant difference in the expression between 

shorter and longer treatment durations was again observed. This shows that treatment with 5-FU 

concentration for shorter duration of time was enough to elicit a beneficial miR-21 regulation. 

Further, it also shows that a lower concentration of 5-FU (0.1µM) was capable of inducing a 

similar response as 10µM 5-FU. However, a different time-based response was observed 

following treatment of MCF7 cells with 0.7µM 5-FU. A significant up-regulation was observed 

at 12 and 24 hours of treatment, followed by a significant down-regulation between 36-48 hours, 

and finally the expression levels became similar to control if treatment was continued further till 

72 hours. This distinct miRNA expression profile at 0.7µM provides additional explanation to 

the atypical increase in cell numbers of MCF7 cells observed during growth analysis at the same 

concentration. The two-way ANOVA analysis demonstrated that there was a significant main 

effect of the concentration of the treatment [F (3, 56) = 4.727, p < 0.01] as well as the duration of 

treatment [F (6, 56) = 4.454, p < 0.01] on the expression level of miR-21. A significant 

interaction effect of the concentration and duration of treatment was also observed on the 
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expression level of miR-21 [F (18, 56) = 4.759, p < 0.01]. Thus, both concentration and duration 

of treatment with 5-FU were shown to play an important role in the regulation of miR-21 

expression levels in the MCF7 breast cancer cells. 

Another miRNA whose expression levels were shown to be notably altered following 5-

FU treatment is miR-483-5p. Recently, it has been identified to play an important role in 

differentiating between adrenocortical adenomas and adrenocortical carcinomas and also as a 

predictor of poor prognosis in adrenocortical cancers (Soon, Tacon et al. 2009). However, no 

definite role of miR483-5p has been recognized in breast cancers. Also, no potential targets of it 

have been identified yet. Thus, miR-483-5p has been identified for the first time in MCF7 breast 

cancer cells and alteration of its expression levels in response to 5-FU may indicate an important 

role for it in 5-FU efficacy.  

miR-483-5p was previously identified as one of the most up-regulated miRNAs in the 

miRNA microarray analysis of MCF7 cells treated with 0.01µM 5-FU for 48 hours (Chapter III). 

Those results are further supported by the dose-dependent study. It continues to be the most up-

regulated miRNA after treatment with various 5-FU concentrations (Figure 4.9). The highest up-

regulations were observed at 0.01 (56.4-fold) and 0.001 (33.8-fold)µM respectively. The up-

regulation became less substantial as the concentration increased, indicating that miR-483-5p 

expression in MCF7 cells was more sensitive to lower doses of 5-FU. The time-based study also 

showed similar results (Figures 4.18-4.20). 5-FU treatment for 12 hours was enough to elicit an 

up-regulation in its expression, suggesting that treatment for shorter time length was important 

for sensitivity to 5-FU. The expression levels were statistically significantly different after longer 

treatments compared to shorter treatments for each 5-FU concentration. On the contrary, a two-

way ANOVA analysis showed that there was a significant main effect of the concentration of the 
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treatment [F (3, 56) = 5.401, p < 0.01] as well as the duration of treatment [F (6, 56) = 2.609, p < 

0.05] on the expression level of miR-483-5p in MCF cells. No significant interaction effect of 

the concentration and duration of treatment [F (18, 56) = 1.188, p = 0.302] was observed. 

miR-574-3p was identified as one of the most up-regulated miRNAs in the microRNA 

microarray analysis previously performed (Chapter III). It has been shown to play an important 

role in liver development (Tzur, Israel et al. 2009), non-alcohol fatty liver disease (Estep, 

Armistead et al.), and myocardial infarction (Bostjancic, Zidar et al. 2009). Recently, it has also 

been identified to show a stage specific differentially expression in B cell lymphomas 

(Malumbres, Sarosiek et al. 2009). However, no direct gene targets have been identified to 

explain the role of miR-574-3p in cancer development or expression. Modification in its 

expression levels after 5-FU treatment may serve to better understand the function of miR-574-

3p in breast cancer in specific and human cancers in general. 

Dose-response analysis revealed that miR-574-3p is differentially expressed through 

different 5-FU concentrations (Figure 4.10). However, the expression levels were not found to be 

significantly different compared to control level by One-way ANOVA. An independent samples 

t-test showed a significant down-regulation in the expression levels at 0.005 and 10µM 5-FU 

concentrations. Time-response analysis showed a significant effect of duration of treatment at 

0.7µM and 10µM 5-FU (Figures 4.21-4.23). Higher down-regulation was observed with 

increased duration of treatment, indicating that longer exposure times were needed to induce an 

expression change in miR-574-3p after 5-FU treatment. The highest down-regulation was 

observed after 36 hours of treatment with both, 0.7µM (1.9-fold) and 10µM (4.4-fold) 5-FU 

respectively. However, a significant increase in the expression was observed after treatment with 

0.7µM 5-FU for 12 and 24 hours. The two-way ANOVA analysis demonstrated that there was a 
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significant main effect of the concentration of the treatment [F (3, 56) = 15.555, p < 0.001] as 

well as the duration of treatment [F (6, 56) = 7.067, p < 0.001] on the expression level of miR-

574-3p. A significant interaction effect of the concentration and duration of treatment was also 

observed on the expression level of miR-574-3p [F (18, 56) = 5.134, p < 0.001]. 

 miR-575 also showed a 5-FU responsive increase in its expression level. It is a novel 

miRNA which has not been previously linked to human breast cancer. It has, however, been 

shown to be down-regulated in gastric cancer cell line (Hong-chun Luo 2009) and meningiomas 

(Saydam, Shen et al. 2009). It is also differentially induced by 4-hydroxynonenal (Pizzimenti, 

Ferracin et al. 2009), and in lupus nephritis (Dai, Sui et al. 2009) and myocardial infarction 

(Bostjancic, Zidar et al. 2009). In our previous study, miR-575 was shown to be highly up-

regulated in the microRNA microarray of MCF7 cells after treatment with 0.01µM 5-FU. The 

dose-response data agree with the microarray data as miR-575 was consistently up-regulated at 

all 5-FU treatments (Figure 4.11). The maximum up-regulation was seen at 0.1µM (17.8-fold) 

and 0.7µM (17.6-fold) of 5-FU. The expression levels were however not found to be 

significantly different than normal control MCF7 cells. The time-response data also confirm with 

the dose-response data, as miR-575 was significantly up-regulated at 0.7µM and 10µM of 5-FU 

(Figures 4.24-4.26). However, expression was found to be more sensitive to short duration of 

treatment and the changes in the expression reduced if the treatment was continued for 72 hours. 

This is similar to expression profile of other miRNAs analyzed, suggesting that these miRNAs 

could help in improving 5-FU therapy in breast cancer patients. The two-way ANOVA analysis 

revealed a significant main effect of the concentration of the treatment [F (3, 56) = 6.279, p < 

0.01], the duration of treatment [F (6, 56) = 5.720, p < 0.001] as well as the interaction effect 

among the two variables [F (18, 56) = 2.383, p < 0.01] on the expression level of miR-574-3p. 
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 In our previous study, 5-FU was shown to have an atypical inhibitory on the proliferation 

of MCF7 breast cancer cells (Chapter II, Figures 2.4 and 2.5). An abnormal increase in cell 

number was observed at 0.7µM 5-FU treatment. We had hypothesized that 5-FU acts with a 

bimodal mechanism, wherein the lower 5-FU concentrations (0.001-0.1µM) act with a different 

method as compared to the higher doses (0.7-2000µM). This hypothesis was partially supported 

by the dose- and time-dependent data obtained in this study. Most of the miRNAs analyzed in 

the dose-response study showed a distinct expression profile at lower 5-FU doses than higher 

doses, for example, let-7g, miR-15a, miR-16 and miR-21. This could signify that a different 

inhibitory mechanism is adopted by 5-FU. The time-response results of some miRNAs further 

supported this observation. The time-based expression profile at low 5-FU dose (0.1µM) showed 

a different pattern as compared to the other two concentrations (0.7µM and 10µM), for example, 

miR-21, miR-574-3p and miR-575. Therefore, future studies will have to be performed to 

evidently explain the anomalous behavior of 5-FU in MCF7 breast cancer cells. 

The results presented here provide a detailed analysis of the miRNA expression profile in 

MCF7 breast cancer cells in response to 5-FU treatment. Several important miRNAs which have 

been previously linked with different human cancers were identified to play an important role in 

response to 5-FU treatment, such as miR-10b and miR-21. More importantly, each of these 

miRNAs was shown to be beneficially regulated after 5-FU treatment as compared to control 

breast cancer cells. This suggests an important therapeutic potential of these miRNAs in breast 

cancer treatment. In addition, novel miRNAs were identified for the first time to play a role in 

breast cancer and breast cancer chemotherapy. These include miR-483-5p, miR-574-3p and miR-

575. Further studies to determine the potential gene targets of these miRNAs are required to 

clearly understand their role in breast cancer chemotherapy. The dose- and time-dependent 
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response of miRNA expression illustrated that the expression profile changes were highly 

sensitive to 5-FU treatment, and that treatment with lower 5-FU doses for shorter durations was 

enough to obtain a beneficial miRNA response. This observation could be very helpful in 

improving 5-FU efficacy. The 5-FU drug regimen, which is rarely used as a monotherapy now-a-

days due to serious side effects and increased incidence of resistance, could be monitored and 

used at lower concentrations for shorter time spans if targeted delivery could be achieved. This 

would ensure a significant miRNA expression change and a subsequent change in the target 

genes, while eliminating the side-effects associated with high 5-FU doses. Thus our data further 

substantiates the importance of miRNA in chemotherapy and the potential application of 

miRNAs as novel targets for cancer therapy. 
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Table 4.1: Cancer association and verified gene targets of miRNAs selected for dose- and time-

dependent study 

miRNAs (up / 
down 
regulation) 

Associated cancers Validated Gene targets 

 Down regulation Up regulation  
let-7g↓ HCC (Budhu, Jia et 

al. 2008) 
OSCC (Kozaki, 
Imoto et al. 2008) 
Lung cancer 
(Kumar, Erkeland et 
al. 2008) 
Prostate cancer 
(Porkka, Pfeiffer et 
al. 2007) 

Colon cancer (Nakajima, 
Hayashi et al. 2006) 
 

HMGA2 (Kumar, Erkeland et al. 
2008)  

miR-10b 
(differentially 
expressed) 

Colorectal cancer 
(Arndt, Dossey et al. 
2009) 

Breast cancer (Ma, Teruya-
Feldstein et al. 2007) 
Chronic Lymphocytic 
Leukemia (CLL) (Calin, 
Liu et al. 2004; Calin, 
Pekarsky et al. 2007; Calin, 
Cimmino et al. 2008) 
Glioblastoma (Chan, 
Krichevsky et al. 2005; 
Ciafre, Galardi et al. 2005; 
Chen, Liu et al. 2008) 
Ovarian cancer (Dahiya, 
Sherman-Baust et al. 2008) 
Pancreatic cancer 
(Bloomston, Frankel et al. 
2007) 
Prostate cancer (Volinia, 
Calin et al. 2006; Prueitt, 
Yi et al. 2008) 

HOXD10 (Ma, Teruya-Feldstein 
et al. 2007) 
KLF4 (Tian, Luo et al.) 

miR-15a↑ CLL (Calin, Liu et 
al. 2004; Calin, 
Pekarsky et al. 2007; 
Calin, Cimmino et 
al. 2008)  
Pituitary adenoma 
(Bottoni, Piccin et 
al. 2005) 
HCC (Budhu, Jia et 

Kidney cancer (Chow, 
Youssef et al. 2009) 

BCL2 (Cimmino, Calin et al. 
2005; Calin, Pekarsky et al. 
2007),  
CDC25A (Lee, Masyuk et al. 
2008),  
CCND1 (Bandi, Zbinden et al. 
2009),  
CCND2(Bandi, Zbinden et al. 
2009), 
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al. 2008) 
Prostate cancer 
(Bonci, Coppola et 
al. 2008) 

CCNE1(Bandi, Zbinden et al. 
2009),  
WNT3A(Bonci, Coppola et al. 
2008),  
RARS (Calin, Dumitru et al. 
2002; Bottoni, Piccin et al. 2005) 

miR-16↑ Breast cancer (Iorio, 
Ferracin et al. 2005) 
CLL (Calin, 
Pekarsky et al. 2007) 
Gastric cancer (Xia, 
Zhang et al. 2008) 
Pituitary adenoma 
(Bottoni, Piccin et 
al. 2005) 
Prostate cancer 
(Porkka, Pfeiffer et 
al. 2007; Schaefer, 
Jung et al. 2009) 

Lung cancer (Yanaihara, 
Caplen et al. 2006) 

BCL2 (Cimmino, Calin et al. 
2005; Xia, Zhang et al. 2008), 
Caprin-1 (Kaddar, Rouault et al. 
2009), 
CGI-38 (Kiriakidou, Nelson et 
al. 2004),   
CCND1 (Liu, Fu et al. 2008; 
Bandi, Zbinden et al. 2009), 
CCND3 (Liu, Fu et al. 2008),  
CCNE1 (Liu, Fu et al. 2008), 
CDK6 (Liu, Fu et al. 2008),  
HMGA1 (Kaddar, Rouault et al. 
2009),  
WNT3A (Bonci, Coppola et al. 
2008),  
RARS (Calin, Dumitru et al. 
2002) 

miR-21↓  Breast cancer (Iorio, 
Ferracin et al. 2005; Yan, 
Huang et al. 2008) 
Cervical cancer (Lui, 
Pourmand et al. 2007) 
Cholangiocarcinoma 
(Meng, Henson et al. 2006) 
CLL (Marton, Garcia et al. 
2008) 
Colorectal cancer (Volinia, 
Calin et al. 2006) 
Diffuse large B cell 
lymphoma (DLBCL) 
(Lawrie, Gal et al. 2008) 
Esophageal cancer (Feber, 
Xi et al. 2008) 
Glioblastoma (Chan, 
Krichevsky et al. 2005; 
Ciafre, Galardi et al. 2005; 
Chen, Liu et al. 2008) 
Head & Neck cancer (Tran, 
McLean et al. 2007; Chang, 
Jiang et al. 2008) 

BTG2 (Liu, Wu et al. 2009),  
MARCKS (Li, Li et al. 2009), 
SERPINB5 (Zhu, Wu et al. 
2008), 
PDCD4 (Asangani, Rasheed et 
al. 2008; Chen, Liu et al. 2008; 
Yao, Xu et al. 2009), 
PTEN (Meng, Henson et al. 
2007),  
TPM1 (Zhu, Si et al. 2007; Zhu, 
Wu et al. 2008),  
HNRPK (Papagiannakopoulos, 
Shapiro et al. 2008), 
TAp63 (Papagiannakopoulos, 
Shapiro et al. 2008), 
LRRFIP1 (Li, Li et al. 2009) 
JAG1 (Hashimi, Fulcher et al. 
2009), 
WNT1 (Hashimi, Fulcher et al. 
2009) 
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HCC (Meng, Henson et al. 
2007) 
Kidney cancer (Chow, 
Youssef et al. 2009) 
Lung cancer (Yanaihara, 
Caplen et al. 2006) 
OSCC (Kozaki, Imoto et al. 
2008) 
Ovarian cancer (Iorio, 
Visone et al. 2007) 
Pancreatic cancer 
(Bloomston, Frankel et al. 
2007) 
Prostate cancer (Volinia, 
Calin et al. 2006; Prueitt, 
Yi et al. 2008) 
Stomach cancer (Volinia, 
Calin et al. 2006) 
Uterine leiomyomas 
(Wang, Zhang et al. 2007) 

miR-27a↓ OSCC (Kozaki, 
Imoto et al. 2008) 

Breast cancer (Mertens-
Talcott, Chintharlapalli et 
al. 2007; Guttilla and White 
2009) 
Kidney cancer (Chow, 
Youssef et al. 2009) 
Gastric cancer (Liu, Tang et 
al. 2009) 
Prostate cancer (Porkka, 
Pfeiffer et al. 2007) 
Uterine leiomyomas 
(Wang, Zhang et al. 2007) 

Myt1 (Mertens-Talcott, 
Chintharlapalli et al. 2007),  
MDR1(Zhu, Wu et al. 2008) , 
FOXO1 (Guttilla and White 
2009),  
PHB (prohibitin) (Schaar, 
Medina et al. 2009), 
ZBTB10 (Mertens-Talcott, 
Chintharlapalli et al. 2007) 

miR-365↓  Breast cancer (Yan, Huang 
et al. 2008) 

No previously reported targets 

miR-374b No previously reported association No previously reported targets 
miR-483-5p↑  Adrenocortical cancers 

(Soon, Tacon et al. 2009) 
No previously reported targets 

miR-574-3p↓  B cell lymphomas 
(Malumbres, Sarosiek et al. 
2009) 

No previously reported targets 

miR-575↑ Gastric cancer cell 
line (Hong-chun Luo 
2009) 
Meningiomas 
(Saydam, Shen et al. 
2009) 

 No previously reported targets 
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Figure 4.1: Average fold change in expression of let-7g in response to 5-FU concentrations from 

0.0001µM to 10µM. The results are represented as mean ± SEM. Statistically significant changes 

in the expression between concentrations are designated by single letters on error bars (p ≤ 0.05). 
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Figure 4.2: Average fold change in expression of miR-10b in response to 5-FU concentrations 

from 0.0001µM to 10µM. The results are represented as mean ± SEM. Statistically significant 

changes in the expression between concentrations are designated by single letters on error bars (p 

≤ 0.05). 
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Figure 4.3: Average fold change in expression of miR-15a in response to 5-FU concentrations 

from 0.0001µM to 10µM. The results are represented as mean ± SEM. Statistically significant 

changes in the expression between concentrations are designated by single letters on error bars (p 

≤ 0.05). 
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Figure 4.4: Average fold change in expression of miR-16 in response to 5-FU concentrations 

from 0.0001µM to 10µM. The results are represented as mean ± SEM. Statistically significant 

changes in the expression between concentrations are designated by single letters on error bars (p 

≤ 0.05). 
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Figure 4.5: Average fold change in expression of miR-21 in response to 5-FU concentrations 

from 0.0001µM to 10µM. The results are represented as mean ± SEM. Statistically significant 

changes in the expression between concentrations are designated by single letters on error bars (p 

≤ 0.05). 
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Figure 4.6: Average fold change in expression of miR-27a in response to 5-FU concentrations 

from 0.0001µM to 10µM. The results are represented as mean ± SEM. 
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Figure 4.7: Average fold change in expression of miR-365 in response to 5-FU concentrations 

from 0.0001µM to 10µM. The results are represented as mean ± SEM. Statistically significant 

changes in the expression between concentrations are designated by single letters on error bars (p 

≤ 0.05). 
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Figure 4.8: Average fold change in expression of miR-374b in response to 5-FU concentrations 

from 0.0001µM to 10µM. The results are represented as mean ± SEM. 
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Figure 4.9: Average fold change in expression of miR-483-5p in response to 5-FU concentrations 

from 0.0001µM to 10µM. The results are represented as mean ± SEM. Statistically significant 

changes in the expression between concentrations are designated by single letters on error bars (p 

≤ 0.05). 

 

a

ab

ab

a

b

ab

a

a a

0

10

20

30

40

50

60

70

80

90

0 0.001 0.005 0.01 0.1 0.7 1 5 10

A
ve

ra
ge

 F
ol

d 
C

ha
ng

e

5-FU Treatments (µM)

miR-483-5p
p = 0.069



186 

 

 

Figure 4.10: Average fold change in expression of miR-574-3p in response to 5-FU 

concentrations from 0.0001µM to 10µM. The results are represented as mean ± SEM. 

Statistically significant changes in the expression compared to the control is indicated by 

asterisks (by Independent samples t-test). 
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Figure 4.11: Average fold change in expression of miR-575 in response to 5-FU concentrations 

from 0.0001µM to 10µM. The results are represented as mean ± SEM. 
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Figure 4.12: Average fold change in expression of miR-10b after treatment with 0.1µM of 5-FU 

for 12, 24, 36, 48, 60 and 72 hours. The results are represented as mean ± SEM. Statistically 

significant changes in the expression between concentrations are designated by single letters on 

error bars (p ≤ 0.05). 
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Figure 4.13: Average fold change in expression of miR-10b after treatment with 0.7µM of 5-FU 

for 12, 24, 36, 48, 60 and 72 hours. The results are represented as mean ± SEM. Statistically 

significant changes in the expression between concentrations are designated by single letters on 

error bars (p ≤ 0.05). 
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Figure 4.14: Average fold change in expression of miR-10b after treatment with 10µM of 5-FU 

for 12, 24, 36, 48, 60 and 72 hours. The results are represented as mean ± SEM. Statistically 

significant changes in the expression between concentrations are designated by single letters on 

error bars (p ≤ 0.05). 
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Figure 4.15: Average fold change in expression of miR-21 after treatment with 0.1µM of 5-FU 

for 12, 24, 36, 48, 60 and 72 hours. The results are represented as mean ± SEM. Statistically 

significant changes in the expression between concentrations are designated by single letters on 

error bars (p ≤ 0.05). 

 

ab

a
a

ab

a

b
b

0

0.5

1

1.5

2

2.5

0 12 hrs 24 hrs 36 hrs 48 hrs 60 hrs 72 hrs

A
ve

ra
ge

 F
ol

d 
C

ha
ng

e

Time of treatment

miR-21 at 0.1 µM 5-FU

p = 0.103



192 

 

 

Figure 4.16: Average fold change in expression of miR-21 after treatment with 0.7µM of 5-FU 

for 12, 24, 36, 48, 60 and 72 hours. The results are represented as mean ± SEM. Statistically 

significant changes in the expression between concentrations are designated by single letters on 

error bars (p ≤ 0.05). 
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Figure 4.17: Average fold change in expression of miR-21 after treatment with 10µM of 5-FU 

for 12, 24, 36, 48, 60 and 72 hours. The results are represented as mean ± SEM. Statistically 

significant changes in the expression between concentrations are designated by single letters on 

error bars (p ≤ 0.05). 
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Figure 4.18: Average fold change in expression of miR-483-5p after treatment with 0.1µM of 5-

FU for 12, 24, 36, 48, 60 and 72 hours. The results are represented as mean ± SEM. 
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Figure 4.19: Average fold change in expression of miR-483-5p after treatment with 0.7µM of 5-

FU for 12, 24, 36, 48, 60 and 72 hours. The results are represented as mean ± SEM. Statistically 

significant changes in the expression between concentrations are designated by single letters on 

error bars (p ≤ 0.05). 
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Figure 4.20: Average fold change in expression of miR-483-5p after treatment with 10µM of 5-

FU for 12, 24, 36, 48, 60 and 72 hours. The results are represented as mean ± SEM. Statistically 

significant changes in the expression between concentrations are designated by single letters on 

error bars (p ≤ 0.05). 
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Figure 4.21: Average fold change in expression of miR-574-3p after treatment with 0.1µM of 5-

FU for 12, 24, 36, 48, 60 and 72 hours. The results are represented as mean ± SEM. 
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Figure 4.22: Average fold change in expression of miR-574-3p after treatment with 0.7µM of 5-

FU for 12, 24, 36, 48, 60 and 72 hours. The results are represented as mean ± SEM. Statistically 

significant changes in the expression between concentrations are designated by single letters on 

error bars (p ≤ 0.05). 
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Figure 4.23: Average fold change in expression of miR-574-3p after treatment with 10µM of 5-

FU for 12, 24, 36, 48, 60 and 72 hours. The results are represented as mean ± SEM. Statistically 

significant changes in the expression between concentrations are designated by single letters on 

error bars (p ≤ 0.05). 
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Figure 4.24: Average fold change in expression of miR-575 after treatment with 0.1µM of 5-FU 

for 12, 24, 36, 48, 60 and 72 hours. The results are represented as mean ± SEM. 
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Figure 4.25: Average fold change in expression of miR-575 after treatment with 0.7µM of 5-FU 

for 12, 24, 36, 48, 60 and 72 hours. The results are represented as mean ± SEM. Statistically 

significant changes in the expression between concentrations are designated by single letters on 

error bars (p ≤ 0.05). 
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Figure 4.26: Average fold change in expression of miR-575 after treatment with 10µM of 5-FU 

for 12, 24, 36, 48, 60 and 72 hours. The results are represented as mean ± SEM. Statistically 

significant changes in the expression between concentrations are designated by single letters on 

error bars (p ≤ 0.05). 
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