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Multiple sclerosis (MS) is considered to be a T cell-mediated autoimmune disease 

directed against myelinated nerves within the central nervous system.  Current therapies 

available to MS patients have low efficacy and are immunosuppressive.  Novel therapies that 

negatively regulate or delete autoreactive T cells, i.e., induce antigen-specific T cell tolerance, 

are key for the development of more efficacious and perhaps curative therapies.  Our laboratory 

has developed a vaccine platform comprised of cytokine-antigen fusion proteins to promote T 

cell tolerance.  In this study, GM-CSF and M-CSF cytokines were tested as domains in cytokine-

neuroantigen (NAg) fusion proteins to assess targeting of NAg to different antigen presenting 

cell (APC) subsets.  Fusion proteins were designed with a cytokine N-terminal domain and the 

encephalitogenic peptide 69-88 of guinea pig myelin basic protein (GP69-88) as the C-terminal 



domain.  Studies measuring T cell activation in vitro, prevention of experimental 

autoimmune encephalomyelitis (EAE), and treatment of EAE showed that GMCSF-NAg 

was the most potent fusion protein, with the following rank order of activity (GMCSF-

NAg > MCSF-NAg > GP69-88).  GMCSF-NAg was 1000-fold more potent than GP69-

88 in stimulating myelin basic protein (MBP)-specific T cell proliferation.  The 

mechanism by which GMCSF-NAg promoted T cell activation involved cytokine 

receptor-mediated uptake of NAg by APC, since free GM-CSF inhibited the GMCSF-

NAg potentiated response.  GMCSF-NAg potently targeted NAg to dendritic cells and 

macrophages in vitro, but not to B or T cell APC.  Covalent linkage between GM-CSF 

and NAg was required for enhanced potency of GMCSF-NAg in vitro and for the 

prevention and treatment of EAE in vivo.  In conclusion, GMCSF-NAg potently targeted 

self-antigen to myeloid APC subsets and caused profound antigen-specific tolerance in 

EAE.  In the future, cytokine-NAg fusion proteins may provide a novel tool to develop 

antigen-specific, tolerogenic vaccines for the treatment of MS.     
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CHAPTER 1 

INTRODUCTION 

 

1.1 MULTIPLE SCLEROSIS: A BRIEF OVERVIEW  

 In the late 14th century, patients presenting with multiple sclerosis-like symptoms were 

documented as exhibiting paraplegias, a vague descriptor referring to paralysis of the lower 

extremities (1).  Jean-Martin Charcot first comprehensively characterized multiple sclerosis in 

1868 as ‘sclerose en plaques’.  He compiled clinical observations with detailed microscopic 

illustrations of disease lesions from the central nervous system of patients upon autopsy.  

Charcot found multiple sclerosis to be distinct from other neurological disorders based on these 

clinical and pathological observations (1).   

The classification of multiple sclerosis (MS) has evolved over time and it is now 

characterized as a chronic, inflammatory demyelinating disease of the central nervous system 

(CNS) (2).  Patients with MS commonly exhibit multiple plaques or lesions, defined as areas of 

inflammation and demyelination, within the white matter of the CNS.  White matter 

predominantly consists of nerve axons encased in a lipid sheath, i.e. myelin, which aids in the 

conduction of nerve impulses from the brain to the periphery.  Based on the pattern of 

demyelination, a patient may present with numbness, muscle weakness and spasticity, bladder 

and bowel dysfunction, cognitive and speech impairment, pain, and vision impairment among 

other symptoms.  Approximately 85% of patients are initially diagnosed with a relapsing-

remitting course of disease marked by an acute attack of neurological dysfunction that is 

followed by a remission of symptoms for at least 30 days before a subsequent relapse (2).  Other 

forms of the disease include: primary progressive MS, marked by neurological dysfunction that 



  
 

increases in severity without distinct relapses; secondary progressive MS, marked by relapsing-

remitting disease that eventually progresses in the absence of distinct relapses; and progressive 

relapsing MS, described as a steady increase in neurological dysfunction with acute relapses (3).  

The clinical course of MS can vary among patients and usually culminates in a progressive loss 

of neurologic dysfunction over time (3).   

Currently, MS is proposed to be a CD4+ Th1 T cell mediated autoimmune disease (2).  

This hypothesis is based on studies in animal models and is supported by the histopathology of 

lesions from the CNS of MS patients.  Histologically, human lesions are comprised of T 

lymphocytes, characterized with CD4+ or CD8+ (cluster of differentiation) co-receptors, plus 

macrophage (foam cells) infiltrates and are marked by the loss of myelin with or without axonal 

damage.  In some MS patients however, there is evidence of B cell mediated pathology due to 

the presence of antibody and complement at sites of demyelination.  Antibodies found in patient 

lesions and sera exhibit antigenic reactivity to proteolipid protein (PLP), myelin oligodendrocyte 

glycoprotein (MOG), myelin associated glycoprotein (MAG), glycolipids and heat shock 

proteins, however these antibodies are not specific to MS patients.  Future research is needed to 

elucidate the complex immunopathology of the disease in order to determine if MS is one 

disease that evolves over time or if it is a disease that incorporates multiple, distinct diseases (2, 

4).  Understanding the pathology of MS will be important for providing patients with efficacious 

treatments (4).    

MS is estimated to affect approximately 1.1 – 2.5 million people worldwide and 350, 000 

people in the United States (5).  A gender bias is seen among MS patients where women are 

approximately twice as likely to develop the disease than men (2). The age of onset is typically 

between 20 to 40 years, but children are also susceptible.  All ethnicities are prone to developing 
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MS but there is a higher incidence of disease found in people of northern European descent, i.e. 

Scandinavia, Iceland, North America and the British Isles.  High incidences of MS among select 

populations indicates a role for genetic and environmental factors in the etiology of the disease 

(2).  

The etiology of MS is not currently known.  A number of susceptibility factors have been 

suggested, but no one factor has been identified as a causative agent of MS (2).  This has caused 

speculation that multiple sclerosis could be a polygenic disease, where multiple genes act in 

concert to influence disease susceptibility.  Susceptibility genes most reproducibly associated 

with MS are HLA (human leukocyte antigen or major histocompatibility complex) class II 

alleles DQβ1*0602, DQα1*0102, DRβ1*1501, and DRβ1*0101.  Non-HLA candidates include 

genes that encode for receptors of T cell growth factors (i.e., IL-2 receptor alpha and IL-7 

receptor alpha) as well as immune response genes (i.e., inducible nitric oxide synthase, 

chemokines and their receptors, and the MHC II transcriptional activator CIITA).  The increased 

risk of MS among families and populations may be the culmination of genetic and environmental 

factors.  Potential environmental factors include exposure to toxins, organic solvents and 

infectious agents, yet there has been no direct evidence linking these factors to MS (2). 

 

1.2 EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS: THE ANIMAL 

MODEL OF MULTIPLE SCLEROSIS 

 MS is a difficult disease to study in human patients due to the inability of obtaining CNS 

samples.  Therefore animal models are a crucial alternative for providing insights into MS 

pathogenesis.  The animal model for MS, known as experimental autoimmune encephalomyelitis 

(EAE), has features in common with the human disease.  These features include damage to the 
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myelin sheath and nerve fibers, lymphocyte infiltration in the CNS, and multiple perivascular 

CNS lesions (6).  Discrepancies between EAE and MS pertain to the clinical course and 

immunopathology of the disease, the lack of genetic variation in the animal models, and that 

EAE has to be induced while MS is considered to be spontaneous; although EAE can be 

spontaneous in TCR transgenic models (7, 8).  It is important to keep in mind that the clinical 

and pathological presentations are variable among MS patients such that it is unlikely to have 

one animal model replicate all aspects of MS (7).  Despite the discrepancies, EAE prevails as a 

relevant model to study the mechanism of disease onset and recovery, immunopathology and 

genetics of the disease, as well as novel therapeutic strategies.  EAE can continue to provide 

insights into MS but the relevance will ultimately have to be supported by clinical studies (7).           

The animal model for MS was initially developed in monkeys during the 1930s in order 

to understand the etiology of acute disseminated encephalomyelitis that was seen in patients 

recovering from infection with small pox and measles or following rabies vaccination (9, 10).  

Acute disseminated encephalomyelitis (ADEM) is defined by an acute attack of the central 

nervous system leading to demyelination and inflammation of the brain.  ADEM was induced in 

monkeys through repeated (greater than 50) intramuscular injections of brain extracts from 

normal rabbits (9-11).  In 1944, Ferraro postulated that the induced encephalomyelitis was an 

allergic response to antigens within the brain tissue and thus coined the term experimental 

allergic encephalomyelitis (EAE) (12).  With the advent of Complete Freund’s Adjuvant (CFA; 

Mycobacterium in an oil-in-water emulsion) in 1942, the efficiency of EAE induction in 

monkeys was enhanced significantly (13).  The field of EAE was advanced when researchers 

showed that the disease could be induced in smaller animal models including rabbits, guinea 

pigs, mice, rats, dogs, sheep and chickens (14). 
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  Researchers suspected that EAE was an immunological based disease (ie, an allergic 

response, or a CFA induced humoral response to brain tissue) but there was no supporting 

evidence (15).  Lymphocyte involvement in encephalomyelitis came to the forefront in 1960.  

Paterson showed that EAE could be transferred to naïve recipients through the adoptive transfer 

of lymph node cells from donor rats presenting with EAE (15).  Subsequent research established 

that T cells were required for the induction of EAE.  For instance, neonatal rats were refractory 

to EAE when thymectomized and sublethally irradiated (16, 17).  Susceptibility to EAE was 

restored when rats were reconstituted with syngeneic thymocytes and not when reconstituted 

with normal B cells (16-18).  Furthermore, B cells and antigen presenting cells (APC) from EAE 

donors were unable to adoptively transfer disease to thymectomized and irradiated recipients 

(18).  Additional studies supported the role for T cells in EAE pathogenesis.  Treatment of rats 

and mice with anti-CD4 antibodies, post encephalitogenic challenge, diminished EAE severity 

and duration when compared to treatment with non-specific antibodies (19, 20).  Furthermore, 

CD4+ T cells have been detected in CNS lesions of EAE induced mice (14).     

Research examining T cell mediated induction of EAE was advanced with the 

identification of specific protein antigens, as opposed to whole brain homogenates, that were 

capable of inducing encephalomyelitis in the presence of adjuvant.  In 1947, Kabat postulated 

that myelin was the source of encephalitogenic antigen because monkeys injected with emulsions 

of fetal rabbit brain, known to be devoid of myelin, did not induce encephalomyelitis (21).  By 

1977 myelin basic protein (MBP; 17 kDa) was shown to induce EAE in numerous animal 

models (14, 22).  The major encephalitogenic determinant of myelin basic protein in Lewis rats, 

the model utilized in this project, was localized to amino acids 68-88 (14, 22).  In the 1980s 

MBP specific T cell clones were found to be encephalitogenic and served as a platform for future 
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studies regarding T cell mediated pathogenesis in EAE (14).  Based on these data, EAE was 

proposed to be an autoimmune response orchestrated by CD4+ T cells specific for myelin self 

peptides (23).   

Theoretically, autoreactive T cells of low and high affinity for antigen are present in the 

periphery, despite thymic selection, and could potentially become activated in the absence of 

peripheral tolerance mechanisms (23).  Typically T cells with low affinity for self-antigen:MHC 

complexes are positively selected for survival by thymic stromal cells, while potentially 

autoreactive T cells with high affinity for self-antigen:MHC complexes are negatively selected / 

deleted.  However, autoreactive, high affinity T cells may escape thymic selection as a result of 

inefficient negative selection.  For instance, if antigen inefficiently binds MHC then the T cell 

may exhibit weak affinity for the antigen:MHC complex and be positively selected (23).  On the 

other hand, low affinity, autoreactive T cells that are positively selected in the thymus can 

become activated in the presence of high dose antigen: MHC complexes present within the CNS, 

in the case of MS (24).  Low affinity T cells recruited to the CNS are postulated to sustain an 

autoimmune response thought to be previously initiated by high affinity autoreactive T cells (24).    

In the EAE model, naïve, autoreactive T cells are activated in the presence of 

neuroantigen in CFA.  Naïve CD4+ T cell activation occurs when TCR and CD4 recognize / bind 

antigen:MHC II complexes concurrently with co-stimulatory signaling between CD28, on T 

cells, and B7 molecules, on APC, for example (25).  CFA promotes enhanced phagocytosis and 

maturation of APC, resulting in increased antigen uptake, expression of MHC class II and co-

stimulatory molecules required to differentiate naive CD4+ T cells into Th1 effector T cells (25).  

Effector T cells then migrate through blood vessels via interactions between upregulated 

adhesion molecules on T cells (i.e., LFA-1 and VLA-4) and endothelium (i.e., ICAM-1 and 
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VCAM-1) (2).  Activated T cells produce matrix metalloproteinases (MMP-2 and MMP-9) that 

promote diapedesis through the blood brain barrier.  Effector T cells become reactivated in the 

CNS upon recognition of antigen:MHC II complexes on microglial cells (aka, resident CNS 

macrophages).  Effector CD4+ T cells are thought to indirectly promote demyelination via the 

production of inflammatory cytokines (i.e., IFNγ and TNFα) that activate effector cells, i.e. 

macrophages, within the CNS and through the production of chemokines (i.e., RANTES and IP-

10) that recruit additional macrophages.  Activated macrophages can mediated cellular damage 

through enhanced phagocytosis and release of oxygen radicals (2).  Research suggests that T 

cells may directly mediate cellular damage in the CNS through the production of cytotoxic / 

cytostatic cytokines such as IFNγ and TNFβ (14).           

 

1.3 THERAPIES CURRENTLY AVAILABLE FOR MULTIPLE SCLEROSIS 

PATIENTS 

 Currently there are no curative therapies for MS patients.  The most effective therapies 

available, IFNβ-1α (Avonex and Rebif), IFNβ-1β (Betaseron and Extavia), and an anti-VLA-4 

monoclonal antibody (Tysabri) are generally immunosuppressive (2).  IFNβ is generally well 

tolerated although patients have presented with flu-like symptoms, reactions at the injection site, 

liver toxicity and antibodies that neutralize IFNβ (2).  IFNβ is established as an effective 

treatment to reduce MS activity (lesions measured by MRI) and disease severity during onset of 

MS.  IFNβ is a cytokine typically considered to have antiviral properties, yet IFNβ also exerts 

antiproliferative and immunomodulatory effects that may account for the beneficial effects in 

MS patients (26, 27).  For instance, IL-10 expression was upregulated in MS patients that 

received IFNβ therapy, which potentially promoted a switch from the pathogenic Th1 response 
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to a non-pathogenic, Th2 humoral response (26, 27).  This idea of immune deviation is 

controversial because the humoral response is seen in MS lesions and has a role in exacerbating 

EAE.  The antiproliferative effects of IFNβ, potentially via cell cycle regulation as documented 

in hematopoietic progenitors, and cytotoxic effects on T cells may be a more plausible 

mechanism of IFNβ in MS patients (26, 28).   

Tysabri is a humanized monoclonal antibody against the α4 subunit of VLA-4 (α4 β1) 

and is postulated to block adhesion between immune cells (B cells, T cells, NK cells, 

macrophages) and vasculature endothelium, thereby inhibiting leukocyte migration into the CNS 

(2).  Tysabri has proven to be effective in reducing MS activity and disease severity.  However 

approximately 1 in 1,000 patients treated with Tyasbri for 18 months developed progressive 

multifocal leukoencephalopathy, a fatal inflammation of the CNS caused by reactivation of a 

latent JC (John Cunningham isolate) polyomavirus (2).  

Other therapies available to MS patients include Copaxone (glatiramer acetate) and 

mitoxantrone.  Mitoxantrone is a chemotherapeutic drug that promotes DNA damage by 

introducing double stranded breaks and DNA crosslinking.  It has the potential to reduce disease 

activity and severity in some patients but carries an increased risk of cardiotoxicity and cancer 

(2).  Copaxone is a random polypeptide of tyrosine, glutamic acid, lysine and alanine designed to 

mimic MBP and compete for binding on MHC class II molecules; based on the hypothesis that 

Copaxone would antagonize MBP specific T cell clones an inhibit their activation (2, 29).  

Copaxone is well tolerated by patients yet the efficacy of the drug in reducing disease severity is 

controversial (2).  The mechanism of Copaxone activity is also unclear, however the drug 

appears to non-specifically suppress T cell activation by a mechanism associated with anergy 

and Th2 cytokine bias (29).   
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The treatments available confer some therapeutic relief to patients, however the benefits 

are dependent on frequent administration.  The need for repeated administration indicates that the 

drugs have low efficacy.  For instance, Avonex (IFNβ-1α) is administered intramuscularly once 

a week, while Rebif (IFNβ-1α), Betaseron and Extavia (IFNβ-1β) are administered 

subcutaneously every other day (30).  Copaxone is administered subcutaneously once a day and 

Tysabri is administered intravenously once a month.  Mitoxantrone is administered intravenously 

once every three months, however patients can only receive a limited number of doses due to 

toxicity (30).  Overall, the therapies available to MS patients are not highly effective, are 

typically immunosuppressive, and have potential serious side effects.  This highlights the need to 

develop alternative therapies that specifically target the autoimmune response, leaving adaptive 

immunity intact. 

 

1.4 NOVEL, ANTIGEN-SPECIFIC THERAPEUTIC APPROACHES DEVELOPED IN 

EAE MODELS 

Neuroantigen specific therapies are considered an important alternative to 

immunosuppressive drugs (31).  The idea is to specifically delete or inhibit the autoreactive T 

cell repertoire and restore tolerance to autoantigens in order to develop a more efficacious and 

perhaps curative therapy.  Antigen-specific therapies studied in the EAE model have included 

myelin proteins, synthetic peptides, altered peptide ligands, MHC variant peptides, plasmid DNA 

encoding myelin proteins, and antibody-antigen fusion proteins (discussed below).  A number of 

peripheral tolerance mechanisms have been associated with these antigen-specific therapies 

including deletion through apoptosis, anergy, immune deviation and induction of a regulatory T 

cell response.  In perspective, EAE has been a significant animal model for the development of 
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MS therapies because three of the six FDA approved drugs were developed after successful trials 

in EAE models (9).      

Administration of self antigen (myelin basic protein or altered myelin peptide), 

subcutaneously or intravenously, at high doses during or after an encephalitogenic challenge 

suppressed the autoimmune response in EAE through a mechanism associated with apoptosis of 

both T cells and oligodendrocytes (myelin producing cells) (32, 33).  This form of tolerance, 

known as high dose tolerance, involved the upregulation of IFNγ, TNFα and iNOS transcripts in 

the CNS (33, 34).  Nitric oxide production, associated with increased apoptosis and EAE 

recovery, can be induced through iNOS via Th1 proinflammatory cytokines IFNγ and 

TNFα (33).  A drawback of high dose tolerance is that the mechanism of tolerance is transiently 

cytotoxic and does not establish active tolerance (2).  This means that antigen-specific memory 

would not be established and that high dose antigen would have to be administered regularly to 

be efficacious.   

The amount of self-antigen administered also influences the tolerogenic mechanism.  For 

instance, mucosal tolerance induced by the administration of low dose antigen occurs via a 

mechanism that promoted an antigen-specific regulatory T cell phenotype (35).  Antigen-specific 

regulatory T cells can be induced in the periphery in the presence of antigen plus IL-10 and 

TGFβ during an immune response or after encountering a tolerogenic, IL-10 secreting DC (36).  

Induced regulatory T cells suppress T cell responses by a cytokine dependent manner through the 

secretion of IL-10 and TGFβ (36).  Oral or intranasal administration of low dose MOG antigen, 

prior to encephalitogenic challenge, suppressed EAE by a regulatory T cell phenotype marked by 

increased IL-10 and decreased Th1 cytokines IFNγ and IL-2 (37).  Furthermore, the development 

of severe EAE was prevented in naïve mice that received CD4+ T cells from MOG fed donors 
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prior to encephalitogenic challenge (37).  A drawback of oral tolerance is that some models have 

indicated a limited window in which orally administered antigens effectively induce tolerance 

(35, 38).  In fact, a previous clinical trial with a combination of bovine derived myelin, MBP and 

PLP was ineffective in MS patients in a placebo controlled trial (35).  Nasal tolerance may 

provide a promising alternative because nasal administration of self antigen was also tolerogenic 

(35).   

Antibody-antigen fusion proteins have been found to expand regulatory T cells and 

diminish autoimmunity in animal models of EAE (39).  For example, initial studies with IgG-

PLP indicated enhanced PLP uptake via the Fcγ receptor and augmented antigen presentation to 

PLP specific T cells in vitro (40).  Aggregated IgG-PLP was more effective at inducing PLP 

specific tolerance than soluble Ig-PLP, and tolerance induction was associated with the 

production of the IL-10 tolerogenic cytokine by macrophages and dendritic cells (40).  Upon 

further study with transgenic EAE models, aggregated IgG-PLP was found to promote expansion 

of antigen-specific regulatory T cells (CD4+ CD25+ CTLA-4+ T cells) in vivo (39).  These 

regulatory T cells suppressed proliferation of antigen-specific CD4+ CD25- in vitro and promoted 

bystander suppression of T cells against CNS homogenate, MOG and MBP in vivo.  Bystander 

suppression against MOG and MBP was mediated only when regulatory T cells were reactivated 

in vitro with PLP (39).  The discovery of bystander suppression, where one regulatory T cell 

clone can potentially mediate suppression of heterogeneous, autoreactive T cell clones, is an 

advancement for the field because it is unclear which neuroantigens should be targeted to 

alleviate disease in MS patients. 

Antigen-specific T cell tolerance has also been manipulated by altering the strength of 

binding between the TCR and peptide:MHC complex via altered peptide ligands  (24).  The idea 

 11



  
 

being that altering amino acid (s) in contact with the TCR will be nonstimulatory and prevent 

activation of antigen-specific T cells (41).  EAE severity was significantly diminished by altered 

peptide ligands of PLP (41), MOG (42), and MBP(43).  Drawbacks of APL therapies included 

switching from a pathogenic Th1 to a nonpathogenic Th2 cytokine response, which could 

promote hypersensitivity reactions and anaphylaxis (41).  Additionally, some altered peptide 

ligands activated myelin reactive T cell clones in vivo, which is a concern when trying to prevent 

disease through the regulation of myelin reactive clones (41).  In fact, clinical trials were halted 

when patients presented with exacerbated disease symptoms and hypersensitivity reactions after 

treatment with altered peptide ligands (44).  An alternative to altered peptide ligands is MHC 

variant peptides, which have amino acid modifications at sites in contact with the MHC binding 

pocket, as opposed to sites in contact with the TCR.  MHC variant peptides have shown promise 

in ameliorating EAE by promoting anergy in polyclonal T cell populations, but it is unclear if 

this therapy will stimulate the same side effects seen in clinical trials with altered peptide ligands 

(45, 46). 

DNA vaccines encoding myelin antigens were devised as an alternative means to 

suppress EAE (47-49).  These vaccines utilized bacterial plasmid DNA where unmethylated 

CpG served as an adjuvant to enhance Th1 and Th2 responses.  Antigen-specific DNA vaccines 

were postulated to circumvent disease by either increasing IFNγ production, which has been 

shown to suppress EAE as IFNγ knockout mice exhibit worse disease, or by promoting the 

switch to a nonpathogenic Th2 response (50).  DNA vaccines encoding myelin antigens (MBP, 

MOG, PLP, MAG) were mildly tolerogenic.  To improve efficacy, plasmids encoding IL-4 were 

co-injected with plasmids encoding MOG or PLP in order to drive a Th2 immune response.  This 

strategy significantly enhanced tolerance in comparison to individual vaccines of MOG, PLP, or 
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IL-4 (47-49). However, one report indicated that pre-treatment with DNA vaccines encoding 

MOG enhanced EAE upon encephalitogenic challenge 4-6 weeks later possibly due to enhanced 

MOG antibodies or IFNγ production (51).  Despite the concern that DNA vaccines may worsen 

disease, plasmid DNA vaccines encoding MBP were well tolerated in Phase II clinical trials (52).  

Patients exhibited diminished activity (lesions) in the CNS and reduced numbers of MBP 

reactive antibodies in the cerebral spinal fluid (52). 

The successful development of antigen-specific therapies for the treatment of 

autoimmune diseases, such as multiple sclerosis, will represent an advancement for the field of 

immunology.  Antigen-specific therapies hold promise to selectively inhibit autoimmune 

responses against self antigens, leaving adaptive immunity intact.  Drawbacks to antigen-specific 

therapies include potential worsening of disease, hypersensitivity reactions, sensitization to 

additional myelin epitopes and the uncertainty of which antigens to therapeutically target in 

patients.  The hope is that continued research will alleviate the concerns associated with antigen-

specific therapies and ultimately provide a effective or curative therapy for MS patients by 

promoting tolerance to self antigens.      

 

1.5 DEVELOPMENT OF CYTOKINE-NEUROANTIGEN FUSION PROTEINS IN THE 

LEWIS RAT MODEL OF EAE 

 Our laboratory has generated cytokine-NAg fusion proteins as a means to inhibit the 

autoreactive T cell response against myelin epitopes in the Lewis rat model of EAE.  Studies in 

other laboratories had previously shown the importance of cytokines to modulate the T cell 

response in various EAE models.  For instance Th2 cytokines such as IL-4, IL-10 and IL-13 have 

been shown to diminish EAE severity.  Plasmids encoding IL-4 synergistically enhanced 
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tolerogenic activity of myelin based DNA vaccines in the EAE model (47, 48).  Additionally, 

intranasal administration of the IL-4 cytokine plus MBP peptide during disease onset was shown 

to reduce EAE (53).  The tolerogenic mechanism was associated with increased expression of 

tolerogenic cytokines IL-10 and TGFβ concurrent with decreased IFNγ protein production by 

lymph node mononuclear cells 14 days post challenge (53).  Encephalitogenic T cell clones 

transduced with IL-10, under control of the IL-2 promoter, suppressed EAE when administered 

as a pre-treatment or treatment regimen (54).  Furthermore, transgenic mice expressing IL-10 

under the MHC promoter were resistant to EAE induction on the BALB / c and SJL / J 

backgrounds (55).  IL-13 transfected Chinese hamster ovary cells reduced EAE severity when 

administered concurrently during encephalitogenic challenge of Lewis rats, as compared to non-

transfected controls (56).   

IFNα and IFNβ have also been shown to diminish EAE severity when administered as a 

treatment after disease onset (57, 58).  These effects were dose dependent such that EAE 

suppression was seen at higher doses of IFN.  The mechanism of action was associated with 

decreased cellular infiltrates in the CNS, which was associated with reduced expression of 

VCAM-1 and ICAM-1 adhesion molecules on brain endothelial cells (59).  These studies 

indicated the potential of cytokines to modulate the T cell mediated autoimmune response.  

Cytokine therapies could be improved by targeting the cytokine effects to antigen-specific T 

cells through covalent linkage between the cytokine and antigen.   

Cytokine – antigen fusion proteins have been explored for the development of novel 

adjuvants in viral and cancer vaccines.  For instance, an anti-viral vaccine comprised of the 

HSV-1 surface glycoprotein D covalently linked to IL-2 enhanced viral specific antibody 

production at titers comparable to or better than glycoprotein D in alum, an adjuvant approved 
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for human use (60).  The fusion of glycoprotein D to IL-2 also enhanced the cytolytic response 

against virally infected macrophages and protected mice from a lethal challenge with HSV when 

compared to glycoprotein D or glycoprotein D plus IL-2 as separate molecules (60).  In cancer 

vaccines, fusion proteins comprised of cytokines and a malignant B cell antigen, such as a tumor 

specific idiotype, have been shown to enhance immunity against tumors.  For instance, fusion of 

GM-CSF to the CH3 domain of a humanized monoclonal antibody comprised of hIgG1 plus the 

VH+L region of the murine 38C13 B cell tumor sIg, enhanced antibody production against the 

tumor immunoglobulin and significantly protected mice from a lethal tumor challenge (61, 62).  

Fusion between the cytokine and antigen domain was necessary because tumor immunity was 

not enhanced by pre-treatment with the humanized monoclonal antibody (hmAb) alone, hmAb 

plus GM-CSF as separate molecules and hmAb fused to a carrier protein (61, 62).  The adjuvant 

effect of cytokine – antigen fusion proteins were not known, but the requirement for covalent 

linkage between the cytokine and antigen domains suggested a role for cytokine mediated 

targeting of the B cell tumor antigen to specific cell subsets (61, 62).       

To develop a therapy for EAE, our hypothesis was to fuse the encephalitogenic peptide of 

MBP to anti-inflammatory cytokines or cytokine antagonists in order to inhibit autoreactive T 

cells and promote antigen-specific tolerance.  Laboratory members previously designed and 

studied fusion proteins comprised of the encephalitogenic domain of guinea pig MBP (NAg) 

fused to IL-2, IL-4, IL1-RA, IL-10, IL-13, IL-16 and IFNβ (28, 63-65).  IL-2 was chosen for its 

requirement to maintain self tolerance (66) while IL-4, IL-10 and IL-13 were chosen to promote 

the switch from a pathogenic Th1 response to a nonpathogenic Th2 response (28, 63-65).  IL-10 

was additionally postulated to drive a regulatory T cell phenotype.  IFNβ was selected because of 

the therapeutic benefit to some MS patients and IL1-RA was chosen because it is a receptor 
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antagonist of IL-1, a potent inflammatory cytokine in EAE that when blocked by IL1-RA, 

reduced EAE severity (67).  IL-16 was studied for its association in reducing T cell proliferation 

and for a possible role in promoting chemotaxis (68, 69).     

Genetic constructs encoding the various cytokine - NAg fusion proteins were covalently 

linked by PCR, expressed in baculoviral expression systems, purified by affinity chromatography 

and found to be biologically active at the cytokine domain and / or NAg domain.  Pre-treatment 

and treatment experiments with cytokine – NAg fusion proteins in the Lewis rat model of EAE 

revealed the following rank order of tolerogenic activity: NAg-IL16 > IL2-NAg > IL1RA-NAg, 

IL13-NAg > IL10-NAg, intact guinea pig MBP and NAg (65).  In a separate experiment, pre-

treatment and treatment regimens of IL2-NAg were shown to have greater tolerogenic activity 

than IL4-NAg; the tolerogenic activity of IL4-NAg was comparable to the NAg and GPMBP 

controls (64).  Pre-treatment and treatment regimens of IFNβ-NAg were also found to be more 

tolerogenic than individual regimens of IFNβ and NAg (28).  Overall, NAg-IL16 and IL2-NAg 

were the most potent tolerogens at reducing paralytic disease in the Lewis rat model of EAE.  

The tolerogenic activity of NAg-IL16 and IL2-NAg were dependent on covalent linkage 

between the cytokine and neuroantigen domains.  Rats pretreated with IL2-NAg or NAg-IL16 

were protected from the development of paralytic disease when compared to rats pretreated with 

a combination of cytokine and NAg domains as separate molecules (64, 65).  Furthermore, IL2-

NAg or NAg-IL16 treatment during disease onset prevented severe EAE when compared to rats 

treated with the cytokine and NAg domains as separate molecules.  The requirement for covalent 

linkage suggested that the tolerogenic nature of the fusion proteins was not due to inhibitory 

effects of the cytokine alone.  The tolerogenic effect was most likely due to cytokine mediated 
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targeting of the NAg domain to antigen presenting cell subsets, increasing NAg presentation to 

responding T cells.   

In vitro data suggested that the cytokine domains of NAg-IL16 and IL2-NAg targeted 

NAg to activated / blastogenic T cells, expressing MHC II, and promoted RsL.11 (NAg specific) 

T cell responses (64, 65).  These data suggested that the tolerogenic mechanism of T cell 

presentation in vivo may be the result of T cell fratricide and subsequent elimination of 

autoreactive T cell clones.  In other words activated, encephalitogenic T cells presenting NAg on 

MHC II would be killed upon recognition by another NAg specific T cell.  Research supporting 

this hypothesis showed that adoptive transfer of MBP-loaded, MHC II+ T cells prior to 

encephalitogenic challenge reduced EAE severity in Lewis rats (70).  Furthermore, data 

indicated that NAg specific T cell responders induced apoptosis in T cells presenting MBP (71).           

The tolerogenic mechanism of IFNβ-NAg differed from the mechanism associated with 

NAg-IL16 and IL2-NAg because the effects of IFNβ-NAg were not dependent on covalent 

linkage between the cytokine and NAg domains (28).  Pre-treatment or treatment with IFNβ-

NAg diminished EAE severity comparable to IFNβ plus NAg concurrently administered as 

separate molecules.  These data suggested that cytokine mediated targeting of NAg to APC 

subsets was not likely part of the tolerogenic mechanism of IFNβ-NAg.  In vitro analyses 

examining T cell fratricide revealed that the tolerogenic effect of IFNβ-NAg may be due to the 

independent actions of IFNβ and NAg.  In other words NAg and IFNβ concurrently promoted 

killing of T cells due to the cytotoxicity of IFNβ and T cell fratricide of T cells presenting MBP.  

Data also showed that IFNβ was cytotoxic to select T cell clones, suggesting that the clinical 

effectiveness of IFNβ may be dependent on subsets of encephalitogenic T cells (28).         
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1.6 THE CONCEPT OF DESIGNING FUSION PROTEINS WITH GM-CSF AND M-CSF 

CYTOKINE DOMAINS  

 In this study, cytokine-NAg fusion proteins were designed with GM-CSF and M-CSF 

cytokine domains to potentially target NAg to dendritic cell and macrophage APC in order to 

subsequently modulate NAg specific T cell responses.  GM-CSF and M-CSF have been shown 

to suppress T cell responses in vivo through a mechanism associated with dendritic cell and 

macrophage antigen presenting cells.  Dendritic cells have been identified as the fundamental 

APC that mediates tolerance induction, however the role for macrophages in tolerance induction 

has recently come to fruition and cannot be ruled out as a significant mediator of T cell tolerance.   

GM-CSF and M-CSF are traditionally classified as hematopoietic growth factors but 

have additional effects on mature myeloid populations (72).  GM-CSF expression typically 

requires stimulation by LPS, TNF or IL-1 and is produced by activated T cells, endothelial cells, 

polymorphonuclear cells, mast cells, macrophages and bone marrow stromal cells (73).  M-CSF 

on the other hand is constitutively expressed by macrophages, fibroblasts, endothelial cells and 

bone marrow stromal cells (72).  Cells that respond to these cytokines are largely the same cells 

that secrete them.  For instance monocytes, macrophages and polymorphonuclear cells respond 

to GM-CSF, while monocytes and macrophages respond to M-CSF.  Generally, GM-CSF and 

M-CSF have been shown to increase cell survival and proliferation, cell differentiation, 

chemotaxis and activation of responder cells (72).    

A number of dendritic cell subsets have been identified that vary in origin, tissue 

distribution and function (74).  Dendritic cells originate from lymphoid or myeloid precursors 

and respectively differentiate into plasmacytoid dendritic cells (CD11c- CD123+) or Langerhans 

(CD11c+ CD1a+; located in epidermis), interstitial (CD11c+ CD1a-; located in the dermis and 
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tissues) and CD14+ monocyte-derived (CD11c+ CD1a-) dendritic cells.  Immature dendritic cells, 

irrespective of origin, have been shown to induce peripheral T cell tolerance, known as the 

steady state hypothesis.  The idea being that immature dendritic cells are unable to efficiently 

present antigen to T cells due to low expression of MHC II and B7 co-stimulatory molecules.  

Immature DC are thought to drive antigen-specific T cells to become anergic, to be deleted, or to 

acquire a regulatory T cell phenotype (74).   

Targeting antigen to dendritic cells in vivo resulted in CD4+ and CD8+ T cell tolerance 

(75, 76).  DEC205, a lectin receptor expressed highly on CD11+ DC, but not B cell or T cells, 

was used to target antigen to steady state dendritic cells in vivo via an anti-DEC205 antibody.  

Anti-DEC205-Ag fusion proteins activated antigen-specific T cells in vivo, however the T cells 

were unresponsive to antigen when reactivated in vitro.  The authors suggested this antigenic 

tolerance was associated with T cell anergy or deletion, based on bioassays and flow cytometry 

respectively (75, 76).  In the EAE model, anti-DEC205-MOG fusion proteins targeted MOG to 

CD11+ dendritic cells in vivo, presumably in the steady state, as determined by MOG specific 

bioassays.  Pre-treatment of mice with anti-DEC205-MOG seven days before challenge 

diminished severe EAE and reduced the number of CD4+ T cells in the spinal cord when 

compared to mock treated mice.  Tolerance was suggested to be the result of T cell anergy that 

was associated with the expression of CD5, a negative regulator of T cell activation (77).  

 Additional support for dendritic cells as mediators of tolerance was evident when 

adherent, bone marrow derived dendritic cells loaded with MBP induced tolerance, compared to 

an unpulsed dendritic cell control, after administration as a pre-treatment in the Lewis rat model 

of EAE (78, 79).  Antigen loaded dendritic cells were not found to be encephalitogenic during a 

four week evaluation period.  Furthermore, adherent, bone marrow derived dendritic cells from 
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EAE rats mediated tolerance when adoptively transferred as a pre-treatment to naïve rats four 

weeks before encephalitogenic challenge.  The authors suggested that MBP specific T cell clones 

were deleted via apoptosis, as shown by flow cytometry, and the apoptotic mechanism was 

correlated with increased nitric oxide and IFNγ production by blood mononuclear cells (78, 79).  

In experimental autoimmune thyroiditis, another autoimmune disease model, GM-CSF 

and dendritic cells were shown to synergistically expand FoxP3+ regulatory T cells that 

specifically inhibited anti-thyroglobulin immune responses in vitro and in vivo (80).  CD11+ 

CD8- dendritic cells isolated from GM-CSF treated mice expanded FoxP3+CD4+CD25+ 

regulatory T cells from transgenic CD4+ T cells in vitro.  These derived regulatory T cells were 

capable of suppressing thyroglobulin specific T cells in vitro.  The CD11+ CD8- dendritic cells 

isolated from GM-CSF treated mice suppressed autoimmune thyroiditis when administered three 

days before a subsequent challenge with thyroglobulin in CFA.  Overall, GM-CSF acting 

through CD11+ CD8- dendritic cells mediated suppression in the experimental autoimmune 

thyroiditis model, as well as the NOD diabetic model of type 1 diabetes, and was associated with 

increased number of CD4+ T cells expressing a regulatory phenotype (80, 81).   

 M-CSF was tested for the ability to drive tolerogenic dendritic cells because of its 

overlapping functions with GM-CSF (82).  Human monocytes cultured in the presence of M-

CSF and IL-4 yielded a dendritic cell phenotype characterized by expression of cell surface 

markers, CD14low CD64low HLA-DRhigh, and endocytosis of FITC-dextran.  Immature (not 

activated with LPS) MCSF-DC induced a regulatory T cell phenotype when compared to mature 

(LPS activated) dendritic cells.  These T cells were capable of suppressing a mixed lymphocyte 

reaction between naïve CD4+ T cells and allogeneic stimulators.  The tolerogenic mechanism 

was associated with IL-10 production by MCSF-DC that potentially drove a regulatory T cell 
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response.  These results indicated a tolerogenic role for M-CSF through the differentiation of 

monocyte derived dendritic cells (82).  Support for this observation was found when 

administration of M-CSF increased graft survival via a mechanism associated with decreased 

CD14+ monocytes and TNF production (83).   

 In EAE, peritoneal macrophages treated with M-CSF and MOG reduced MOG specific 

transgenic T cell proliferation in vitro with respect to controls (84).  A pre-treatment regimen of 

M-CSF + MOG peritoneal macrophages significantly protected mice from developing severe 

EAE when compared to peritoneal macrophages individually treated with M-CSF or MOG.  The 

tolerogenic mechanism was associated with the capacity of MCSF + MOG treated peritoneal 

macrophages to induce CD4+ (CD25+FoxP3+) and CD8+ (CD122+) regulatory T cells in vitro 

when compared to macrophage controls treated individually with M-CSF or MOG.  CD4+ and 

CD8+ T cells, isolated from EAE donor mice pretreated with MCSF + MOG peritoneal 

macrophages, conferred tolerance to EAE in recipient mice when adoptively transferred three 

days post encephalitogenic challenge.  Splenocytes from the recipient mice exhibited diminished 

T cell proliferation upon restimulation with antigen in vitro.  Additional support for the 

monocyte / macrophage lineage and T cell tolerance came from in vitro assays with myeloid 

suppressor cells (85).  Splenic CD11b+ cells isolated from EAE mice, 10 days post-challenge, 

were capable of suppressing CD4+ T cells activated with antibodies against CD3 and CD28.  

Cells of this monocyte lineage were further characterized as CD11b+ Gr-1+, specifically CD11b+ 

Ly6-Chigh Ly6-G-, and were capable of inducing T cell apoptosis in association with nitric oxide 

production by the myeloid suppressor cells (85).  Overall, these data suggested that M-CSF and 

macrophages are a potential therapeutic target for the induction of antigen-specific tolerance in 

EAE (84).    
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1.7 RESEARCH PROPOSAL          

The objective of this project was to design a platform to study and develop novel 

therapies in the Lewis rat model of EAE for the ultimate treatment of multiple sclerosis.  We 

hypothesized that the GM-CSF and M-CSF cytokines could potentially be used to target NAg to 

dendritic cell and macrophage antigen presenting cells, in order to modulate NAg specific T cell 

responses and induce tolerance to myelin self antigens.  GM-CSF and M-CSF were chosen for 

their ability to act on cells of the monocyte and macrophage lineage in addition to their ability to 

suppress T cell responses in vivo.  We proposed that GM-CSF and M-CSF fused to NAg could 

potentially influence T cell responses by targeting NAg specifically to those antigen presenting 

cells bearing the cytokine receptor and by the biological activity of the cytokine domain.      

Signaling through the cytokine-receptor complex can influence T cell responses in our 

model by regulating expression of co-stimulatory molecules on antigen presenting cells and by 

increasing antigen uptake and presentation of antigen on MHC II via enhanced cytokine-receptor 

mediated endocytosis.  In more detail, GM-CSF and M-CSF binding to their respective 

receptors, GM-CSF receptor (αβc) and M-CSF receptor (CSF-1R homodimer), would result in 

autophosphorylation of tyrosine residues and subsequent activation of downstream signaling 

cascades including MAPK, PI3-K and JAK-STAT (73, 86).  Signaling through these pathways 

may lead to the upregulation of HLA-II, and other surface molecules following the addition of 

M-CSF or GM-CSF (87, 88).  GM-CSF and M-CSF receptor endocytosis and degradation is the 

means by which receptor signaling is controlled.  Receptors are downregulated following 

receptor activation (i.e., phosphorylation of tyrosine residues) whereby the cytoplasmic domains, 

containing the tyrosine residues, are ubiquitinated and degraded.  The truncated receptor-ligand 

complex is subsequently endocytosed and degraded in the lysosomal compartment where, in our 
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model, NAg can be processed and loaded onto MHC class II for subsequent presentation to NAg 

specific T cells (73, 86).   

The objectives of this dissertation were as follows: AIM 1 included generation of the 

GMCSF-NAg and MCSF-NAg fusion proteins, assessment of their biological activity and 

necessity of the fusion between the cytokine and NAg domains to modulate antigenic T cell 

proliferation in vitro; AIM 2 was designed to determine which antigen presenting cell subsets 

(macrophages, dendritic cells, B cells or T cells) were targeted by the cytokine-NAg fusion 

proteins and to determine the ability of targeted subsets to modulate antigenic T cell responses in 

vitro; and AIM 3 was designed to evaluate the ability of GMCSF-NAg and MCSF-NAg to 

modulate the cell mediated and humoral immune responses in the Lewis rat model of 

experimental autoimmune encephalomyelitis.  This research showed that GMCSF-NAg and 

MCSF-NAg were biologically active and that fusion between the cytokine and NAg domains 

were required to enhance antigenic T cell responses in vitro.  In vivo, pre-treatment and treatment 

regimens of GMCSF-NAg and MCSF-NAg promoted antigen-specific tolerance, preventing the 

development of severe paralytic EAE.  Covalent linkage between the cytokine and NAg domains 

was required for the induction of tolerance, in vivo, through a mechanism that was associated 

with the GM-CSF and M-CSF cytokine domains targeting the tethered NAg to dendritic cell and 

macrophage antigen presenting cells.      
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CHAPTER 2 

MATERIALS AND METHODS 
 

 
2.1 ANIMALS AND REAGENTS 

Lewis rats were bred and maintained at East Carolina University Brody School of 

Medicine (Greenville, NC.).  Animal care and use were performed in accordance with the 

guidelines set forth by the East Carolina University Institutional Animal Care and Use 

Committee.  Injections were administered to Lewis rats while under isoflurane (Abbott 

Laboratories, Chicago, IL.) anesthesia.  Guinea pig myelin basic protein (GPMBP) was purified 

from the spinal cords of guinea pigs (Rockland, Gilbertsville, PA.).  The synthetic peptide GP69 

- 88 (Y-G-S-L-P-Q-K-S-Q-R-S-Q-D-E-N-P-V-V-H-F) was purchased from Quality Controlled 

Biologicals, Inc. (Hopkinton, MA.).  Mouse anti-rat B cell hybridoma supernatants containing 

the OX-6 anti-I-A (RT1B) IgG1 mAb, OX-33 anti-CD45 (B cell form) IgG1 mAb, OX-8 anti-

CD8-alpha IgG1, OX-1 anti-CD45 (rat leukocytes) IgG1, W3 / 25 anti-CD4 IgG1 were 

concentrated by ultrafiltration through Amicon spiral wound membranes with a 100 kDa size 

exclusion (Millipore, Billerica, MA.).  Hybridomas were obtained from the European Collection 

of Cell Cultures (Health Protection Agency Culture Collections, Salisbury, UK).  Mouse anti-rat 

CD11c (MCA1441) IgG2a was purchased from AbD Serotec (Raleigh, NC).  Mouse anti-rat 

B7.1 (3H5) IgG1, anti-B7.2 (24F) IgG1, anti-CD161a (10 / 78) IgG1, and anti-CD3 (G4.18) 

IgG3 monoclonal antibodies were purchased from PharMingen (San Diego, CA).  FITC-

conjugated goat anti-mouse IgG1 and PE-conjugated goat anti-mouse IgG2a (Southern 

Biotechnology Associates, Birmingham, AL) were used as secondary staining reagents to detect 



  
 

primary antibody.  B cells were FACS sorted with PE conjugated goat anti-rat IgG + IgM (H+L) 

(Southern Biotechnology Associates, Birmingham, AL.) to label surface Ig and FITC-goat anti-

mouse IgG1  (Southern Biotechnology Associates) was used as a secondary staining reagent to 

stain OX33-labeled B cells.  Indirect ELISA was performed with the secondary antibody goat 

anti-rat IgG + IgM (H+L) conjugated to alkaline phosphatase (Southern Biotechnology 

Associates).   

 

2.2 CELL LINES AND CULTURE CONDITIONS  

 The RsL.11 MBP-specific T cell clone was a primary, IL-2 dependent line derived from 

Lewis rats sensitized with rat MBP in CFA (71).  The R1T T cell clone was a blastogenic, IL-2 

dependent clone derived from the Lewis rat T cell clone GP2.E5 / R1 derived from rats 

sensitized with guinea pig MBP (89).  R1T constitutively expressed high levels of the IL2 

receptor CD25, MHC class II glycoproteins (MHCII), B7.1, and B7.2 (90).  CTLL T cells were 

an IL-2 dependent line of murine T cells (American Type Culture Collection, Manassas, VA.).  

The aforementioned T cell lines were propagated in complete RPMI {10% heat-inactivated fetal 

bovine serum, 2 mM glutamine, 100 μg / ml streptomycin, 100 U / ml penicillin (Whittaker 

Bioproducts, Walkersville, MD), 50 uM 2-ME (Sigma-Aldrich)} supplemented with 

recombinant rat IL-2, 0.4% v / v Sf9 supernatant (91).  IL-6 specific T1165 plasmacytoma cell 

line was a generous donation from Richard Nordan and Michael Potter (National Cancer 

Institute, Bethesda, MD.).  T1165 mouse plasmacytoma cells were propagated in complete RPMI 

supplemented with recombinant rat IL6-NAg (0.4% v / v Sf9 supernatant).  BW5147 thymoma 

cells, derived from an AKR / J mouse T cell lymphoma (American Type Tissue Culture 

Collection, Manassas, VA.), were propagated in complete RPMI.  Sf9 (Spodoptera frugiperda) 
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insect cells were cultured with Sf-900 II SFM (Invitrogen, Carlsbad, CA.) in the absence of 

antibiotics and serum. 

 

2.3 STRUCTURE AND DESIGN OF RECOMBINANT PROTEINS 

Two GM-CSF based fusion proteins (GMCSF-NAg and GM-CSF, Table 2.1) were used 

in this study.  The GMCSF-NAg fusion protein was designed with the mature rat GM-CSF 

domain (126 amino acids) at the N-terminus and the major encephalitogenic 68-87 epitope of 

GPMBP (i.e., the NAg domain) plus 6 histidine residues (6 his-tag) at the C-terminus.  The 

numbering system for GPMBP was based on accession number P25188 

(www.ncbi.nlm.nih.gov).  The GM-CSF fusion protein was designed with the mature rat GM-

CSF domain at the N-terminus and a 7 his-tag at the C-terminus.  The rat GM-CSF domain of 

both fusion proteins was based on a partial Lewis rat mRNA sequence (accession number 

U00620) that encoded the mature rat cytokine, but not the rat signal sequence.  The signal 

sequence of mouse GM-CSF was inserted by standard PCR cloning procedures, prior to my 

joining the laboratory, in order to ensure proper processing and secretion of the fusion protein.  

The rat GM-CSF signal sequence, made available later, contained an AGT-TTC sequence that 

encoded S15-F16, while the mouse signal sequence contained an AGC-CTC sequence encoding 

S15-L16.  The mouse GM-CSF signal sequence supported efficient expression of rat GM-CSF 

fusion proteins in Sf9 insect cells, despite the one amino acid sequence difference. 

 Two M-CSF fusion proteins (MCSF-NAg and M-CSF, Table 2.1) were also used in 

this study and were based on the Brown Norway rat M-CSF sequence (accession number 

NM_023981).  The N-terminal domain of both fusion proteins contained the 220 amino acid N-

terminal domain of M-CSF, which forms the secreted, biologically-active homodimer, and the 
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native rat 33 amino acid M-CSF signal sequence.  The M-CSF domain lacked the 

transmembrane and cytoplasmic domains of full-length M-CSF.  The C-terminal domain of the 

MCSF-NAg fusion protein contained the major encephalitogenic 68-87 epitope of GPMBP plus 

a 6 his-tag.  The C-terminal domain of the M-CSF fusion protein was designed with a 7 his-tag 

in the absence of the encephalitogenic peptide.  These M-CSF fusion proteins lacked the 

transmembrane and cytoplasmic domains of full-length M-CSF.   

Two additional fusion proteins were generated during this experiment, IL6-NAg and IL2-

NAg-GFP (Table 2.1).  The IL6-NAg fusion protein was designed with the native rat IL-6 signal 

sequence and the mature rat IL-6 domain (221 amino acids) at the N-terminus.  The C-terminus 

contained the major encephalitogenic 68-87 epitope of GPMBP plus a 6 his-tag.  The rat IL-6 

domain was based on the Brown Norway rat mRNA sequence (accession number NM_012589).   

The IL2-NAg-GFP fusion protein was designed with IL2-NAg (Mannie, 2007) at the N-terminus 

and cycle 3 GFP plus an 8 his-tag at the C-terminus.   

Several additional cytokine-NAg fusion proteins (Table 2.1) were used in this study, 

including IL1RA-NAg, IL2-NAg, IL4-NAg, IL10-NAg, IL13-NAg (63), and IFNβ-NAg (28).  

These fusion proteins contained the respective rat cytokine as the N-terminal domain linked to a 

C-terminal domain that included the 73-87 encephalitogenic peptide (P-Q-K-S-Q-R-S-Q-D-E-N-

P-V-V-H).  The aforementioned fusion proteins had a C-terminal 6 his-tag to facilitate 

purification.  An additional fusion protein, NAgIL-16 (65), was comprised of a N-terminal 7 his-

tag, the 69-87 encephalitogenic peptide of MBP, and the rat IL-16 cytokine C-terminus.   
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Table 2.1: Cytokine-NAg Fusion Constructs 
Name N-to C- terminal domain structure Mutations 

GMCSF-NAg native signal sequence-GMCSF-(GP68-87)-6 his tag - 
MCSF-NAg native signal sequence-MCSF-(GP68-87)-6 his tag - 
IL1RA-NAg native signal sequence-IL1RA-EK-(GP73-87)-6 his tag - 

IL2-NAg native signal sequence-IL2-(GP73-87)-6 his tag - 
IL4-NAg native signal sequence-IL4-(GP73-87)-6 his tag - 
IL6-NAg native signal sequence-IL6-(GP68-87)-6 his tag - 

IL10-NAg native signal sequence-IL10-EK-(GP73-87)-6 his tag - 
IL13-NAg native signal sequence-IL13-EK-(GP73-87)-6 his tag - 
NAg-IL16 honey bee mellitin signal sequence-7 his tag-(GP69-87)-IL16 - 
GM-CSF native signal sequence-GMCSF-7 his tag - 
M-CSF native signal sequence-MCSF-7 his tag - 

IL2-NAg-GFP native signal sequence-IL2-(GP73-87)-GFP-8 his tag - 
Native signal sequence, specific rat cytokine signal sequence; EK, enterokinase linker domain; his, 
histidine, GP73-87, GP69-87, encephalitogenic sequence of guinea pig myelin basic protein  

 

2.4 GENERATION OF CYTOKINE - NAg PLASMID CONSTRUCTS    

The gene encoding GP68-87 was digested from the Lag3-GP68-87.5.10 pFastBac-1 

plasmid using Spe I and Dpn I restriction endonucleases (Invitrogen, Carlsbad, CA.).  Dpn I was 

used to liberate the GP68-87 gene because Dpn I sites flank the gene.  Spe I was used to digest 

the remainder of the pFastBac-1 plasmid at various Spe I sites.  The reaction mix included 1.0 μg 

of Lag3-GP68-87 plasmid, 1.0 unit of Dpn I, 1.0 unit of Spe I, and 1x React Buffer 4 (Invitrogen, 

Carlsbad, CA.) in a final volume of 10 μl.  The digestion was performed at 37oC for 6 hours 

followed by heat inactivation of the enzymes at 75oC for 20 minutes.  Concentration of the DNA 

was determined by absorbance at 260 nm {absorbance x 50 (μg / ml) / absorbance x dilution 

factor}.   

GP68-87 was fused to the GM-CSF, M-CSF and IL-6 genes by a two step, overlap and 

extension polymerase chain reaction.  In step 1, GP68-87 was amplified from the Lag3-GP68-87 

digest using fusion primers (Invitrogen Custom Primers, Carlsbad, CA.) with specificity to the 

GM-CSF, M-CSF or IL-6 sequences and / or GP68-87 (Table 2.2).  The upstream GMCSF-NAg 
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primer 19F02 encoded for 10 amino acids of the rat GM-CSF C-terminus (single underlined) and 

8 amino acids of the GP68-87 N-terminus.  The downstream GMCSF-NAg primer 17H03 

consisted of a CTT buffer sequence, a Kpn I restriction enzyme site (double underlined), a stop 

codon, a 6 histidine sequence (bold) and the sequence encoding 7 amino acids of the GP68-87 C-

terminus.  The upstream MCSF-NAg primer 19F04 encoded for 10 amino acids of the rat M-

CSF C-terminus (single underlined) and 8 amino acids of the GP68-87 N-terminus.  The 

upstream IL6-NAg primer 19F03 encoded for 10 amino acids of the rat IL-6 C-terminus (single 

underlined) and 8 amino acids of the GP68-87 N-terminus.  The downstream primers for MCSF-

NAg 17H01 and IL6-NAg primer 17H02 were identical to the downstream GMCSF-NAg primer 

17H03.  The PCR mix included 1.0 nM of the Lag3-GP68-87 digest, 0.5 μM of the forward 

primer (19F02, 19F03, 19F04), 0.5 μM of the reverse primer (17H01, 17H02, 17H03), 1.0 mM 

MgSO4, 0.3 mM dNTP, sterile molecular grade water, 1.3 units Platinum Pfx DNA polymerase, 

and 1x Pfx amplification buffer (Invitrogen) in a final volume of 50 μL.  The molar 

concentration of DNA used in the restriction digest was determined for future use with PCR {(μg 

/ μL) x (106 μL / L) x 1 μmole / (# base pairs x 660 μg)}.  Thermocycler (Bio-Rad, Hercules, 

CA.) conditions for the amplification of GP68-87 included an initial denaturation step of 95oC 

for 3 minutes, followed by an amplification cycle of 30 seconds at 95oC, 30 seconds at 59oC, and 

30 seconds at 68oC for 30 cycles, followed by an extension step of 68oC for 10 minutes.  

Platinum Pfx DNA polymerase provided a hot start reaction due to the presence of an antibody 

bound to the polymerase, which was released during a 94oC denaturation step.   

In the second PCR step, the amplified GP68-87 products served as extension primers to 

covalently link GP68-87 to GM-CSF, M-CSF, or IL-6.  The amplicons encoded the specific 

cytokine sequence provided by the GM-CSF (19F04), M-CSF (19F02), or IL-6 (19F03) primers, 
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the entire NAg domain, histidine tag, stop codon, Kpn I restriction enzyme site, and CTT buffer 

sequence.  The GP68-87 amplicons served as extension primers due to their ability to overlap the 

cytokine sequences encoded by pFastBac-1 plasmids.  The PCR mix included 300 ng to 450 ng 

of plasmid template, 10 μL of the respective GP68-87 amplicon, 1.0 mM MgSO4, 0.3 mM 

dNTP, sterile molecular grade water, 1.3 units Platinum Pfx DNA polymerase, and 1x Pfx 

amplification buffer (Invitrogen, Carlsbad, CA.) in a final volume of 50 μL.  The PCR Enhancer 

solution (Invitrogen) was additionally used in the IL-6 extension reaction at a final 1x 

concentration to aid this problematic extension reaction.  Thermocycler conditions for the 

extension reaction included an initial denaturation step of 94oC for 3 minutes, followed by an 

amplification cycle of 1 minute at 94oC, 30 seconds at 60oC, and 7 minutes at 68oC for 39 cycles, 

followed by an extension step of 68oC for 10 minutes.  Concentrations of the pFastBac-1 

plasmids were determined by absorbance at 260 nm.    

 

2.5 GENERATION OF THE IL2 - NAg - GFP PLASMID CONSTRUCT    

In order understand the mechanism of cytokine targeting to APCs, we proposed to detect 

localization of the cytokine-NAg fusion proteins to particular APC subsets by means of flow 

cytometry.  We designed cytokine-NAg fusion proteins with a GFP tag to facilitate detection by 

flow cytometry.  The cycle 3 GFP domain was provided by the pcDNA-DEST53 vector 

(Invitrogen, Carlsbad, CA.).  GFP was fused to IL2Ekdel.1 (IL2-NAg) by a two step, overlap 

and extension polymerase chain reaction.  In step 1, GFP was amplified from the 

TorA3D5scFvGFP.6 pFastBac-1 plasmid using fusion primers (Invitrogen Custom Primers, 

Carlsbad, CA.) with specificity to the sequences encoding GFP and / or NAg (Table 2.2).  The 

upstream NAg-GFP primer (2850) encoded for 11 amino acids of the GP73-87 C-terminus (no 
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underline) and 9 amino acids of the GFP N-terminus (single underline).  The downstream NAg-

GFP primer (2852) consisted of a sequence that complimented 6 amino acids of the pFASTBac-1 

plasmid, a stop codon, a sequence that complimented the 8 his-tag (bold), and a sequence that 

complimented 8 amino acids at the GFP C-terminus (single underline).  The PCR mix included 

0.7 nM of the TorA3D5scFv-GFP.6 pFASTBac-1 plasmid, 0.5 μM of the forward primer (2850), 

0.5 μM of the reverse primer (2852), 1.0 mM MgSO4, 0.3 mM dNTP, sterile molecular grade 

water, 1.3 units Platinum Pfx DNA polymerase, and 1x Pfx amplification buffer (Invitrogen, 

Carlsbad, CA.) in a final volume of 50 μL.  The thermocycler conditions for the amplification of 

GFP included an initial denaturation step of 95oC for 3 minutes, followed by an amplification 

cycle of 30 seconds at 95oC, 30 seconds at 59oC, and 30 seconds at 68oC for 30 cycles, followed 

by an extension step of 68oC for 10 minutes.   

In step 2, the amplified GFP product served as the extension primer to covalently link 

GFP to IL2-NAg.  The amplicon encoded the C-terminus of GP73-87, the entire GFP domain, 

the histidine tag, stop codon, and a portion of the pFastBac-1 sequence.  The PCR mix included 1 

μL of IL2-NAg plasmid template, 5 μL of the respective GFP amplicon, 1.0 mM MgSO4, 0.3 

mM dNTP, sterile molecular grade water, 1.3 units Platinum Pfx DNA polymerase, 1x Pfx 

amplification buffer (Invitrogen), and 1x PCR Enhancer solution in a final volume of 50 μL.  

Thermocycler conditions for the extension reaction included an initial denaturation step of 94oC 

for 3 minutes, followed by an amplification cycle of 1 minute at 94oC, 30 seconds at 60oC, and 7 

minutes at 68oC for 39 cycles, followed by an extension step of 68oC for 10 minutes.   
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Table 2.2: Primer Design 
Primer Name                   Primer Sequence 5’ – 3’ 

 

pFastBac (8B08)                   TATTCCGGATTATTCATACC 
pFastBac (56E12)                 TGTGGTATGGCTGATTATGATCCTC 
GMCSF-NAg (19F02)         CCTTTTGACTGCTGGAAGCCGGTCCAGAAA/TATGGCTCCCTGCCCCAGAAGTCG 
GMCSF-NAg (17H01)        CTTGGTACCTTAGTGATGGTGATGGTGATG/GTGGACTACAGGGTTTTCATC 
MCSF-NAg (19F04)            GAGGACCCAGGCAGTGCTAAGCAGCGACCG/TATGGCTCCCTGCCCCAGAAGTCG 
MCSF-NAg (17H03)           CTTGGTACCTTAGTGATGGTGATGGTGATG/GTGGACTACAGGGTTTTCATC 
IL6-NAg (19F03)                 AAGGTCACTATGAGGTCTACTCGGCAAACC/TATGGCTCCCTGCCCCAGAAGTCG 
IL6-NAg (17H02)                CTTGGTACCTTAGTGATGGTGATGGTGATG/GTGGACTACAGGGTTTTCATC 
NAg-GFP (2850)                 CAGCGGTCCCAAGATGAAAACCCTGTAGTCCACATGGCCAGCAAAGGAGAAGAACTTTTC 
NAg-GFP (2852)                 CGACAAGCTTGGTACCTTAGTGATGGTGATGGTGATGGTGATGTTTGTAGAGCTCATCCATGCCATG 
 

Single underlined sequences highlighted respective cytokine or GFP domains.  Restriction enzyme sites are accentuated by a double 
underline.  Bold sequences encoded for histidine residues. 



  
 

2.6 PURIFICATION AND SEQUENCING OF CYTOKINE-NAg CONSTRUCTS 

Parental plasmids (GM-CSF, M-CSF, IL-6, and IL2-NAg pFastBac-1) were digested 

from the GMCSF-NAg, MCSF-NAg, IL6-NAg, and IL2-NAg-GFP extension products with the 

Dpn I restriction enzyme in Buffer 4 (Invitrogen, Carlsbad, CA.).  First, MicroCon YM100 

Centrifugal Filter Devices (Millipore, Billerica, MA.) were used to wash the extension reactions 

in sterile molecular grade water according to manufacturer’s instructions.  MicroCon YM100 

were used to remove salt and small molecular weight fragments; the devices had a 125 base pair 

cut off for double-stranded DNA and a 100 kDa cut off for proteins.  Desalting the extension 

reactions was necessary to prepare the DNA for restriction enzyme digestion.  The restriction 

enzyme digest contained 2 units of Dpn I, Buffer 4 (diluted 1 / 10) and 1.0 – 5.0 μg DNA from 

the extension reaction.  Parental DNA was digested for 6 hours at 37oC, followed by a heat 

inactivation of Dpn I at 75oC for 20 minutes.  Parental DNA was digested in order to increase 

transformation efficiency of the pFastBac-1 plasmids encoding GMCSF-NAg, MCSF-NAg, IL6-

NAg, and IL2-NAg-GFP.  Plasmid DNA was transformed into electrocompetent Top10 E. coli 

(Invitrogen) by means of the Micropulser Electroporator (BioRad, Hercules, CA.).  2 μL of the 

restriction enzyme digest was mixed with 40 μL of Top 10 E. coli and then subjected to a 1.8 

kilovolt pulse.  Immediately after electroporation, E. coli were mixed with 500 μL of S.O.C. 

media (super optimal broth with catabolite repression) {2% w / v bacto-tryptone, 0.5% w / v 

bacto-yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl, 20 mM glucose, pH 7.0} and then 

cultured at 37oC with agitation for 1 hour.  Bacterial cultures were subsequently diluted and 

cultured on LB - ampicillin plates {200 μg / mL ampicillin in Luria – Bertani broth} at 37oC for 

24 hours.  Transformants were selected in ampicillin because pFastBac-1 encodes for β-

lactamase, an enzyme that can hydrolyze and inactivate β-lactam antibiotics such as ampicillin.   
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Colonies selected in the presence of ampicillin were PCR screened for the respective 

cytokine-NAg fusion construct.  First, individual colonies were grown in a 100 μL mini-culture 

of LB – ampicillin at 37oC for 4 hours.  The culture was generated to provide a crude template 

for the PCR screening.  The PCR mix included 2.5 μL of culture, 0.5 μM of the reverse primer 

17H03 (NAg - plasmid specific) or 2852 (GFP - plasmid specific), 0.5 μM of the forward primer 

19F02 (GM-CSF specific), 19F03 (IL-6 specific), 19F04 (M-CSF specific), or 2850 (NAg-GFP 

specific), 1.5 mM MgCl2, 0.2 mM dNTP, sterile molecular grade water, 1.5 units Platinum Taq 

DNA polymerase, and 1x PCR buffer (Invitrogen) in a final volume of 50 μL.  Thermocycler 

conditions included an initial denaturation step of 94oC for 2 minutes, followed by an 

amplification cycle of 30 seconds at 94oC, 30 seconds at 62oC, and 30 seconds at 72oC for 39 

cycles, followed by an extension step of 72oC for 10 minutes.    

The 100 μL mini-cultures were also used to inoculate cultures for the isolation of plasmid 

DNA.  10 μL of the mini-culture was used to inoculate a 3 mL LB – ampicillin culture.  The 

Marligen MiniPrep Kit (Marligen, Rockville, MD.) was used to lyse E. coli {200 mM NaOH, 

1% SDS, 20mg / ml Rnase A} and purify plasmid DNA according to manufacturer instructions.  

Absorbance at 260 nm was used to determine the concentration of plasmid DNA {absorbance x 

50 (μg / ml) / absorbance x dilution factor}.  Plasmids (1.0 – 3.0 μg) were sequenced at the 

Genomics Core Facility (East Carolina University, Greenville, NC.).  The sequencing primers 

8B08 (forward primer) and 56E12 (reverse primer) were complimentary to sites on the 

pFastBac-1 plasmid that flanked the cytokine-NAg construct.  Sequencing primers were used at a 

concentration of 5.0 μM.     
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2.7 PROTEIN EXPRESSION AND PLAQUE PURIFICATION OF BACULOVIRUS 

Recombinant proteins were expressed by means of Bac-to-Bac baculovirus expression 

systems (Invitrogen, Carlsbad, CA.).  Ultimately the cytokine constructs were translocated from 

pFastBac-1 plasmids into a baculovirus (bacmid) shuttle vector.  Baculovirus encoding the 

designated constructs were used to infect Sf9 cells (Spodoptera frugiperda army worm).  Sf9 

cells expressed and secreted fusion proteins into the culture media such that the proteins were 

readily available for purification by affinity chromatography. 

In the first step, purified pFastBac-1 plasmids were transformed into electrocompetent 

DH10Bac E. coli to facilitate site-specific transposition of the fusion constructs into the 

baculoviral vector.  Plasmids encoding GMCSF-NAg, MCSF-NAg, IL6-NAg, and IL2-NAg-

GFP were transformed into electrocompetent DH10Bac E. coli by means of the Micropulser 

Electroporator (BioRad, Hercules, CA.).  2 μL of the purified plasmid were mixed with 40 μL of 

DH10Bac E. coli and then subjected to a 1.8 kilovolt pulse.  Immediately after electroporation, 

E. coli were mixed with 500 μL of S.O.C. (super optimal broth with catabolite repression) media 

and then cultured at 37oC with agitation for 1 hour.  Cultures were subsequently diluted and 

cultured on LB Select plates {10 μg / mL tetracycline, 50 μg / mL kanamycin, 7 μg / mL 

gentamicin, 100 μg / mL Bluo-Gal, and 40 μg / mL IPTG, in Luria – Bertani broth} at 37oC for 

24 hours.  Transformants were selected on LB Select plates because of the antibiotic resistance 

genes carried by the transformed DH10Bac.  The pFastBac-1 plasmid encoded for gentamicin 

resistance, the bacmid plasmid (bMON14272) encoded for kanamycin resistance and the helper 

plamid (pMON7124) encoded the transposase and tetracycline resistance genes.   

Site-specific transposition was mediated by the Tn7 transposase (DDE transposase) 

encoded within the helper plasmid.  Tn7 translocated cytokine constructs from the pFastBac 
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plasmid to the bacmid DNA via a cut and paste mechanism.  The cytokine construct (i.e., the 

transposon) was flanked by the inverted repeats Tn7R and Tn7L, which were recognized and cut 

by the Tn7 transposase generating a linear, excised transposon.  Tn7 facilitated the insertion of 

the cytokine construct into the bacmid vector between two staggered nicks at the mini-attTn7 site 

(Curcio, 2003).  The mini-attTn7 site was positioned within the gene encoding LacZα.   

Transposition at the mini-attTn7 site lead to disruption of the lacZα gene resulting in the lack of 

β-galactosidase (a tetramer of two LacZα and LacZΩ proteins).  β-galactosidase activity was 

visualized as a blue colony that resulted form the cleavage of Bluo-gal into galactose and an 

insoluble blue product.  Bluo-gal cleavage was possible only in the presence of IPTG, which 

repressed the constitutively active LacZ repressor (LacI).  Transposition was indicated by the 

presence of white colonies on the LB Select plates.  White colonies were cultured in order to 

purify bacmid plasmid DNA.  In the case of IL6-NAg and IL2-NAg-GFP, white colonies were 

additionally PCR screened for the presence of cytokine constructs as discussed previously.   

DH10Bac bacmid DNA was purified according to the Bac-to-Bac Baculovirus 

Expression System (Invitrogen) protocol.  Briefly, white colonies were cultured in 5 mL of LB 

Select media (in the absence of Bluo-Gal and IPTG) overnight at 37oC with agitation.  Cultures 

were lysed in a solution containing 15 mM Tris-HCl (pH 8.0), 10 mM EDTA, 100 μg / ml 

RNase A, 1% SDS, and 0.2 N NaOH.  Proteins in the lysate were precipitated with 3 M 

potassium acetate (pH 5.5).  The soluble DNA fraction was removed from the protein and 

precipitated in isopropanol.  The DNA pellet was washed in 70% ethanol and ultimately 

resuspended in sterile molecular grade water.  DNA concentrations were determined by 

spectrophotometry at 260 nm.   
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Purified bacmid DNA was transiently transfected into Sf9 insect cells according to 

manufacturer’s instructions.  Briefly, 5 μL of bacmid DNA was mixed with 100 μL of SFM 

(Invitrogen, Carlsbad, CA.) and immediately combined with a mixture of 6 μL CellFectin 

Reagent (lipid suspension) plus 100 μL of SFX.  The DNA-lipid mixture was added to 1 x 106 

Sf9 cells and incubated for 5 hours at 27oC.  After the incubation, the media was changed and 

Sf9 cultures were monitored for signs of baculovirus infection.  Bacmid DNA encoded viral 

particles that would establish a visible infection throughout the Sf9 culture in 3-7 days.   

Single viruses were isolated by limiting dilution of baculovirus (i.e., plaque purification) 

stock from the Sf9 transfection supernatant.  Sf9 insect cells (104 cells / well) were infected with 

a limiting dilution of baculovirus (10-5 - 10-8) in SFM.  On day 9 of infection, supernatants from 

individual wells were tested to determine the biological activity of the fusion proteins encoded 

by individual baculoviruses.  Biological activity of the NAg domain was tested using an assay 

comprised of irradiated splenic APC (5x105  cells / well), NAg-specific RsL.11 T cells (2.5x104  

cells / well), cRPMI, and supernatant from wells of the Sf9 plaque purification.  Cultures were 

pulsed with [3H]thymidine (1 μCi / well, Perkin Elmer, Waltham, MA.) on day 2 of a 3-day 

culture in order to quantitate RsL.11 proliferation.  [3H]thymidine incorporation into DNA was 

measured by use of a Wallac 1450 Microbeta Plus liquid scintillation counter.  M-CSF and GM-

CSF cytokine activity was assessed through a bioassay comprised of peritoneal exudate cells 

(4x103 cells / well), cRPMI, and supernatant from the wells of the Sf9 plaque purification.  10 

days later, cultures were pulsed with 10 μL of MTS / PMS (Promega, Madison, WI) for at least 6 

hours.  Reduction of MTS by dehydrogenase in metabolically active cells generates an insoluble 

formazan product that can be quantitated at 490 nm.  GFP fluorescence of IL2-NAg-GFP 
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infected Sf9 cells was detected by flow cytometry seven days post-transfection.  GFP 

fluorescence was excited at 488 nm and detected with the FITC filter set at 530 nm.   

 

2.8 PROTEIN EXPRESSION AND PURIFICATION   

Individual baculoviruses encoding for M-CSF, GM-CSF, MCSF-NAg, GMCSF-NAg, 

IL6-NAg, and IL2-NAg-GFP were expanded in order to generate viral stocks for protein 

expression.  Baculovirus from transfection supernatants (10 μL) were expanded in Sf9 cells (10 x 

106) cultured in 20 mL of SFM plus 5 % heat inactivated newborn calf serum for seven days.  

Only 10 μL were expanded so as to prevent the expansion of replication defective virus particles.  

Supernatant and cells were harvested and frozen at –25oC until used in protein expression 

cultures.  Proteins were expressed in 4-day cultures of Sf9 cells (40 x 106) plus 1.0 mL of the 

respective baculovirus expansion supernatant in 20 mL of SFM.  After 4 days, supernatant and 

cells were harvested and cells were clarified from the supernatant by centrifugation (1000 rpm x 

8 minutes).  Clarified supernatants were stored at –25oC until they were processed for protein 

purification.     

Proteins in the clarified supernatant were concentrated to an approximate 20 mL volume 

in pressurized Amicon Stir Cells (Millipore, Billerica, MA.).  A YM10 Ultrafiltration Membrane 

(Millipore) with a cut off of 10,000 kDa was used, during concentration, to remove low 

molecular weight proteins.  The sizes of the recombinant proteins were between 15.4 to 55.1 

kDa.  Protein concentrates were hard spun (3,000 rpm for 20 minutes) and sterile filtered with 

0.22 μm bottle top filter in order to remove insoluble material.   

GM-CSF, M-CSF, GMCSF-NAg, MCSF-NAg, and IL2-NAg-GFP were purified via two 

affinity chromatography steps using resins with specificity for the C-terminal his-tag.  Proteins 
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were initially purified with a chitin column composed of an anti-histidine monoclonal antibody 

(scFv, single chain variable domain) that was immobilized on chitin beads (New England 

BioLabs, Ipswich, MA.).  The monoclonal antibody (see below) was a recombinant protein 

comprised of an N-terminal scFv monoclonal antibody domain (VH + VL) fused by a linker to 

two, tandem chitin-binding domains (CBD) at the C-terminus (Blank 2002). Chitin columns 

were washed with 8.0 mL TBST buffer {50 mM Tris-HCl (pH 8.0), 1M NaCl, 0.1 mM EDTA, 

1% Triton X} and equilibrated with 8.0 mL MBS buffer {20 mM MES, 500 mM NaCl, 0.1 mM 

EDTA, pH 6.5} prior to the addition of the sterile filtered protein concentrate.  Following the 

addition of concentrate, the column was washed with 12.0 mL MBS buffer.  Proteins were 

subsequently eluted from the column in a 4 mL fraction with CAPS elution buffer {50 mM 

CAPS, 500 mM NaCl, 500 mM EDTA, pH 10.0}.  Proteins were eluted from the chitin column 

under basic pH in order to disrupt the noncovalent bonds between the antibody and C-terminal 

histidine tag.  

The scFv-CBD fusion protein was encoded by the E. coli K12 strain SB536 transformed 

with the pKB2scFvCBD plasmid (a generous gift from the laboratory of Dr. Andreas Pluckthun).  

SB536 were cultured in 3 mL of SB media {20 g / L tryptone, 10 g / L yeast extract, 5 g / L 

NaCl, 50 mM K2HPO4} plus 30 μg / mL chloramphenicol at 37oC with agitation.  Expression of 

scFv-CBD was induced with 1 mM IPTG when bacteria reached an optical density of 1.5 at 550 

nm.  Protein expression occurred over 3 hours before cultures were harvested (5,500 rpm for 15 

minutes at 4oC) and bacterial pellets resuspended in TBST (1.0 mL / 1.0 gram pellet weight).  

Bacteria were subsequently lysed in order to liberate the scFv-CBD fusion proteins.  Bacterial 

pellets were first treated with PMSF {100 mM PMSF in DMSO} and DNase I {1 mg / mL in 

glycerol}.  PMSF (Sigma-Aldrich, St. Louis, MO.) is a serine protease inhibitor required to 
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reduce protein lysis and DNase I (Roche Diagnostics, Palo Alto, CA.) was required to reduce 

viscosity, resulting from the liberated DNA, of the bacterial lysates.  Bacterial lysates were 

generated by French press lysis at 10,000 psi.  Insoluble material was removed in two steps, 

centrifugation (11,000 rpm for 30 minutes) at 4oC and sterile filtration with a 0.22 μm bottle top 

filter.  Sterile filtered lysates were incubated with chitin beads overnight at 4oC with agitation.  

Chitin beads plus scFv-CBD were moved to a BioRad PolyPrep column (BioRad, Hercules, 

CA.), washed in TBST and stored in a TBST plus 0.02% NaN3 buffer.               

After elution from the chitin column, GM-CSF, M-CSF, GMCSF-NAg, and MCSF-NAg 

(not IL2-NAg-GFP) were subjected to a final affinity chromatography step using Ni-NTA 

agarose columns (Qiagen, Valencia, CA.).  The Ni-NTA agarose binds with high affinity to the 

imidazole ring in each residue of the 6 his-tag.  The nickel ion can simultaneously bind two 

imidazole rings.  Ni-NTA columns were equilibrated with 10.0 mL wash buffer {50 mM 

NaH2PO4 (monobasic and anhydrous), 500 mM NaCl, 10.0 mM imidazole, pH 8.0} before the 

addition of the chitin elution fraction.  Low levels of imidazole were added to the wash buffer in 

order to reduce / disrupt non-specific binding of native proteins comprised of random histidine 

residues.  Following the addition of the chitin elute, the Ni-NTA column was washed with 8.0 

mL wash buffer and protein was subsequently eluted in 6 x 1.0 mL fractions with IMAC elution 

buffer {50 mM NaH2PO4 (monobasic and anhydrous), 500 mM NaCl, 250 mM imidazole, pH 

8.0}.  Proteins were eluted in the presence of a high imidazole concentration in order to compete 

away fusion proteins with a histidine tag.    

 Protein purity was shown by SDS-PAGE.  Ni-NTA elution fractions (10.0 μL) were 

diluted 1:2 in loading buffer {100 mM Tris-HCl, 4% SDS, 0.2% bromophenol blue, 20% 

glycerol, 200 mM beta-mercaptoethanol} before being denatured at 95oC for 5 minutes.  After 
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heat denaturation, the samples were added to SDS-PAGE gels with a 5% stacking layer and a 

resolving gel that ranged from 10% - 15% acrylamide, depending on the respective protein size.  

Gels were made with the following reagent stocks, 30% bisacrylamide, Tris-HCl (pH 6.8 or 8.8), 

10% SDS, 10% ammonium persulfate, TEMED, and MilliQ water.  The Benchmark Pre-stained 

protein ladder (Invitrogen, Carlsbad, CA.) was loaded as a molecular weight standard.  Samples 

were run through the stacking gel at approximately 15 milliamps until the samples were stacked 

on top of the resolving gel.  Protein was run through the resolving gel at approximately 22 

milliamps.  Gels were subsequently fixed in a solution of 50% methanol and 8% acetic acid for 

30 minutes before being washed and stained overnight in Gel Code Blue Stain Reagent (Thermo-

Fisher Scientific, Rockford, IL.), a coomassie-based dye.  After excess Gel Code was removed, 

the gel was incubate in storage buffer {10% glycerol and 20% ethanol in water} for 30 minutes 

before sealing the gel in cellophane (Research Products International, Mount Prospect, IL.) for 

long term storage.      

Ni-NTA protein elution fractions were concentrated (3690 rpm for 35 minutes) and then 

diafiltrated (sterile MilliQ water: IL6-NAg, MCSF-NAg, and M-CSF or sterile PBS: GMCSF-

NAg and GM-CSF) in Amicon Ultra-15 centrifugal filter devices (Millipore, Billerica, MA.).  

Proteins were diafiltrated at least 3 times in order to dilute the total imidazole concentration to 

less than 0.05 mM.  Imidazole was diluted to circumvent an immune response against imidazole 

contaminants in our protein preparations.  IL2-NAg-GFP was concentrated in chitin elution 

buffer and not diafiltrated because this fusion protein was to be used for diagnostic purposes 

only.   

Total purified protein was quantified via BCA (bicinchoninic acid) assay (Thermo-Fisher 

Scientific, Rockford, IL.) or absorbance at 280 nm.  The BCA assay took advantage of the Cu 
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(II) ion to deprotonate peptide bonds and generate a Cu (I) ion complex under alkaline 

conditions.  Cu (I) could then be bound by two molecules of BCA resulting in a colored product 

that could be detected at 560nm.  A standard curve was used to assess the concentration of our 

protein samples.  The BSA standard was serially diluted from 1124 μg / mL to 11 μg / mL by a 

factor of 1.78.  The mixed BCA solution was added at 200 μL / well to the standard curve and 

the protein samples before being incubated at 37oC for 30 minutes.  The BCA solution was 

mixed at a ratio of 50:1 Reagent A (BCA in an alkaline solution): Reagent B (cupric sulfate).  

Optical density was read at 562 nm using the Ultraspec 2000 spectrophotometer (Pharmacia 

Biotech).  The standard curve was plotted and the linear portion of the curve was used to obtain 

the concentration of our protein samples.  As an alternative to the BCA assay, protein 

concentrations were determined by absorbance {A280 x absorbance coefficient (mg / mL)} using 

the NanoDrop ND 1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE.).     

  

2.9 MYELOID, B CELL AND NK CELL APC 

Bone marrow cells were obtained from the tibias and femurs of Lewis rats in order to 

isolate myeloid-derived DC or macrophages.  An 18G needle filled with Hanks Buffered Saline 

Solution {HBSS (Sigma-Aldrich) plus 0.35 g NaHCO3, pH 7.4} was used to liberate and break 

up the bone marrow.  Cells were washed two times in HBSS (1,000 rpm for 10 minutes) and 

insoluble material was removed.  Bone marrow cells were cultured in cRPMI in the presence or 

absence of 0.1% v / v GM-CSF or M-CSF baculovirus supernatant or 50 nM of purified 

GMCSF-NAg or MCSF-NAg for at least 7 days.  Fresh media and cytokine supplements were 

added after 3 days of culture.  Adherent populations were detached from plastic surfaces by 
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incubation in 3 mM EDTA-HBSS and were used as a source of dendritic cells or macrophages.  

Enriched cells were either used as APC in bioassays or analyzed by flow cytometry.   

Cell surface markers for the dendritic cell and macrophage derived lines were analyzed 

by flow cytometry.  Cells (1 x 105 cells / tube) were initially incubated with 5% heat inactivated 

normal rat serum for 20 minutes at 4oC in order to block Fc receptors.  Afterward, cells were 

stained with the respective primary antibody at 4oC for 45 minutes.  Cells were stained with the 

following primary antibody combinations: anti-CDllc (2.5 μg / mL) alone, no primary antibody, 

or anti-CDllc in combination with purified monoclonal antibodies anti-B7.1 (2.5 μg / mL) and 

anti-B7.2 (2.5 μg / mL), or anti-CDllc in combination with OX-1, OX-6, OX-8, or W3 / 25 

hybridoma supernatant diluted 1:20.  Cells were washed twice in HBSS-1% fetal bovine serum 

and then blocked with 5% heat inactivated normal rat serum prior to the addition of secondary 

antibodies.  FITC conjugated anti-IgG1 (2.5 μg / mL) and PE conjugated anti-IgG2a (2.5 μg / 

mL) secondary antibodies were incubate with the cells for 45 minutes at 4oC and then washed 

twice prior to analysis by flow cytometry.  All washes were performed at 4oC.  Data were 

acquired with a Becton Dickinson FACScan (San Jose, CA) flow cytometer and analyzed with 

CellQuest software.  Dead cells were excluded by forward versus side scatter profiles.  All 

experimental conditions were compared to isotype control, i.e., cells that were incubated with 

secondary but not primary antibody.    

OX33+ or OX33+Ig+ B cell APC were purified from Lewis rat splenocytes by 

fluorescence activated cell sorting.  The spleen was harvested and made into a single cell 

suspension by passing the organ through a wire mesh.  Red blood cells were removed using 

density gradient centrifugation (Histopaque, Sigma-Aldrich).  Cells (100 x 106) were washed two 

times in HBSS (1,000 rpm for 10 minutes) and then blocked with 5% heat inactivated normal rat 
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serum.  Cells were labeled with the primary antibody OX-33 (1:200 dilution of hybridoma 

supernatant) for 45 minutes at 4oC.  Cells were then washed 2 times in HBSS-1% fetal bovine 

serum prior to incubation with the secondary antibodies FITC-conjugated goat anti-mouse IgG1 

(2.5 μg / mL) and / or R-PE conjugated goat anti-rat IgG + IgM (H+L) (2.5 μg / mL) for 45 

minutes at 4oC.  Cells were then washed twice prior to sorting with Beckton Dickinson 

FACSVantage flow cytometer (San Jose, CA).  Purified B cells were greater than 95% pure.  

Dead cells were excluded from the sort by forward versus side scatter patterns.    

NK cells were purified from Lewis rat splenocytes.  The spleen was made into a single 

cell suspension by passing the spleen through a wire mesh.  Red blood cells were removed using 

density gradient centrifugation.  Cells (40 x 106) were washed two times in HBSS (1,000 rpm for 

10 minutes) and then blocked with 5% heat inactivated normal rat serum.  Cells were labeled 

with primary antibodies anti-CD161a (2.5 μg / mL) and anti-CD3 (2.5 μg / mL) for 45 minutes 

at 4oC.  CD161 is a marker for NK cells and T cells, therefore anti-CD3 was used to distinguish 

T cells from NK cells.  Cells were washed twice in HBSS-1% fetal bovine serum and then 

blocked with 5% heat inactivated normal rat serum before the addition of secondary antibodies.  

Cells were stained with 2.5 μg / mL of the secondary antibodies RPE-conjugated goat anti-

mouse IgG1 and FITC conjugated goat anti-rat IgG3 for 45 minutes at 4oC.  Cells were washed 

twice with HBSS-1% fetal bovine serum prior to sorting with Beckton Dickinson FACSVantage 

flow cytometer (San Jose, CA).  Purified NK cells were greater than 96% pure.  Dead cells were 

excluded from the sort by forward versus side scatter patterns.    
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2.10 MEASUREMENT OF CYTOKINE SPECIFIC RESPONSES 

Biological activities of the GM-CSF, M-CSF, GMCSF-NAg, MCSF-NAg, and IL6-NAg 

cytokine domains were tested with specific indicator cells.  Biological activity of the GM-CSF 

and M-CSF domains were assessed with Lewis rat bone marrow cells (105 cells / well) or 

splenocytes (5x105 cells / well) plus designated concentrations of purified protein (100 nM – 10 

fM) or baculovirus supernatant (10-2 - 10-7).  Bone marrow and splenocytes were harvested and 

directly added to bioassay wells.  Each data point was performed in triplicate or quadruplicate.  

Cultures were pulsed with [3H]thymidine (1 μCi / well, Perkin Elmer, Waltham, MA.) on day 2 

of a 3-day culture.  Cultures were harvested onto filters by use of a Tomtec Mach III harvester 

and [3H]thymidine incorporation into DNA was measured with the Wallac 1450 Microbeta Plus 

liquid scintillation counter.  These data were representative of at least two experiments.  IL-6 

specific T1165 hybridoma cells (104 cells / well) were cultured with serially diluted IL6-NAg 

baculoviral supernatants (10-2 - 10-8).  Each data point was performed in triplicate.  This 

experiment was performed once.  IL-2 specific CTLL indicator cells (104 cells / well) were 

cultured with purified IL2-NAg-GFP or IL2-NAg titrated on a log scale from 100 nM – 10 fM.  

This experiment was performed once an each data point was performed in triplicate.  Cultures 

were pulsed with MTS / PMS after 48 hours and MTS reduction was quantitated by 

spectrophotometry at 492 nm.   

 

2.11 MEASUREMENT OF NEUROANTIGEN-SPECIFIC RESPONSES  

Biological activity of the NAg domain was measured by antigenic proliferation of NAg 

specific T cell clone (RsL.11).  To measure antigen-specific proliferation, RsL.11 T cell 

responders (2.5 x 104 / well) were cultured with irradiated splenic APC (3000 rads, 2.5 x 105 / 
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well), myeloid APC (1.5 x 104 / well), or purified B cells (2.5 x 105 / well) in the presence of 

designated antigen concentrations.  Cultures were pulsed with 1 μCi / well of [3H]thymidine 

(Perkin Elmer, Waltham, MA.) during the last 24 hours of a 3-day culture.  Cells were harvested 

onto filter mats and DNA incorporation of [3H]thymidine was measured by a scintillation 

counter.  IL-2 production by RsL.11 T cells was measured after 24 hours of culture in the 

aforementioned conditions.  24 hour supernatants (20 μl) were incubated with the IL-2 

dependent T cell clone CTLL.  IL-2 bioactivity was measured by the ability of the supernatant to 

support the viability and growth of CTLL cells over 3 days.  Prior to the set up of the IL-2 

bioassays, CTLL cells were washed 2 times in HBSS (1,000 rpm x 8 minutes).  Cultures were 

pulsed with 10 μL of MTS / PMS (Promega, Madison, WI) on day 2 of the 3-day culture.  CTLL 

viability was measured by the reduction of MTS / PMS (Promega, Madison, WI) into a colored 

product that was measured at 290 nm.  Error bars represented standard deviations of triplicate 

sets of wells.   

RsL.11 responses in the presence of T cell APC were measured by a T cell killing assay.  

In this assay, T cell APC (R1T) that presented NAg on MHC II were killed by RsL.11 T cells 

(Mannie, 2007).  Prior to assay setup, R1T cells were cultured for 24 hours in complete RPMI 

(without IL-2) to allow the clearance of IL-2 from cell surface receptors.  This was necessary to 

allow binding of IL2-NAg to IL-2 receptors without hindrance.  R1T cells (2.5 x 104 / well) were 

then cultured with irradiated (1,000 rads; 5.0 x 104 / well) RsL.11 T cells in the presence of 

designated concentrations of antigen.  After 4 hours of culture, IL-2 (0.4% v / v IL-2 baculovirus 

supernatant) was added to all wells because this assay measured IL-2 dependent proliferation of 

R1T cells unless they were killed by irradiated RsL.11 responders (71).  In the absence of IL-2, 

R1T would die independently of RsL.11 mediated killing.  Cultures were pulsed with 
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[3H]thymidine on day 2 of a 3-day culture.  Cells were harvested and DNA incorporation of 

[3H]thymidine was measured by a scintillation counter.  Error bars represented standard 

deviations of triplicate sets of wells.   

 Sorted CD161+CD3- NK cells (96% pure population; 4.3x104 / well) were cultured with 

100nM of designated fusion proteins (IL4-NAg was mistakenly added at 230 nM) for 72 hours.  

Next, RsL.11 T cells (5 x 104cells / well) were stained with 1 μM CFSE (Invitrogen, Carlsbad, 

CA.) at 37oC for 15 minutes plus agitation.   CFSE stained RsL.11 were washed and 

subsequently co-cultured with NK cells for an additional 72 hours.  RsL.11 antigenic 

proliferation was measured with a Becton Dickinson FACScan flow cytometer and analyzed 

with CellQuest software (San Jose, CA.).  RsL.11 T cells were stained with CFSE according to 

the manufacturer’s protocol.  This experiment was performed one time.  

 

2.12 INDUCTION AND ASSESSMENT OF EAE 

EAE was induced in Lewis rats by the subcutaneous injection of an emulsion comprised 

of 50 μg of DHFR-NAg fusion protein in a total 100 μL volume of Complete Freund’s Adjuvant 

{200 ug of Mycobacterium tuberculosis in Incomplete Freund’s Adjuvant (Difco, Detroit, MI.)}.  

Two injections of 50 μl were administered on either side of the base of the tail.  DHFR-NAg 

consisted of an N-terminal mouse dihydrofolate reductase domain and a C-terminal 

encephalitogenic peptide (GP69-87) domain (63-65).  The GM-CSF-based and M-CSF-based 

fusion proteins were tested for tolerogenic activity by subcutaneous injection in saline without 

adjuvant according to designated schedules and doses listed in the results section.  EAE was 

monitored by disease severity and weight loss.  The following scale was used to score clinical 

signs of EAE:  distal limp tail (0.25), limp tail (0.5), ataxia (1.0), partial hind limb paralysis 
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(2.0), and full hind limb paralysis (3.0).  Partial hind limb paralysis was defined as the retention 

of some voluntary ambulatory movement in the hind limbs without the ability to ambulate 

upright.  Full hind limb paralysis manifested as complete flaccid hind limb paralysis.  Weight 

loss was measured by placing the rats on a Sartorius balance (Goettingen, Germany). 

 The mean cumulative group score was calculated by summing the daily scores for each 

rat and then averaging the cumulative scores within a group.  The mean maximal group score 

was calculated by averaging the most severe EAE score for each rat within a group.  Weight loss 

was calculated as a percent daily weight divided by the maximal weight for each rat.  The group 

mean percent weight loss was calculated by averaging the percent weight loss for each rat within 

a group.  Group mean values were reported with the standard deviation.  Severe EAE was 

defined as the incidence of ataxia (A; 1.0), hind-leg paralysis (EP; 2.0) or full hind-limb paralysis 

(P; 3.0).  Compiled data from three replicate experiments (Tables 3.2 and 3.3) were used to 

assess differences in the mean cumulative score, mean maximal score, and the mean number of 

days with severe EAE between treatment groups from the three experiments.  Significance of the 

compiled data was analyzed by parametric two-way ANOVA (experiment versus treatment 

group) based on ranked data.  The median cumulative scores and median maximal scores, of the 

compiled data, were listed as the median values for all rats in a treatment group and significance 

was measured by nonparametric two-way ANOVA based on ranked data.  Differences among 

treatment groups within one experiment (Table 3.1 and experiment 1 of Table 3.3) were analyzed 

by one-way parametric ANOVA for the categories of mean cumulative score, mean maximal 

score, and the mean number of days with severe EAE; the significance of mean cumulative and 

mean maximal scores were based on ranked data.  The median cumulative scores and median 

maximal scores, of experiment 1 of Table 3.3, were listed as the median values for all rats within 
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a treatment group.  Daily scores and percent weight loss among treatment groups (Figure 3.16) 

were respectively analyzed by parametric one-way ANOVA.  Daily scores and daily percent 

weight loss (Figures 3.17 and 3.18) were analyzed by nonparametric and parametric two-way 

ANOVA.  ANOVA analyses were analyzed with the Bonferroni Post-Hoc Test.  The incidence 

of severe EAE was analyzed pair-wise with the Fisher’s Exact Test.  Statistical analyses were 

performed with SPSS software (Chicago, IL.)   

 

2.13 SERUM REACTIVITY TO NAg 

Serum samples were obtained from Lewis rats by a terminal intracardiac puncture at the 

conclusion of the experiment.  Lewis rats were anesthetized with isoflurane during the 

intracardiac puncture with a 20G1” needle.  Rats were immediately euthanized following the 

terminal bleed.  Blood samples were left to clot inside the syringe for at least one hour at room 

temperature.  Serum was removed from the clot and centrifuged (2,000 rpm 15 minutes) to 

separate residual blood cells.  Serum samples were stored at –80oC until analyzed by ELISA. 

ELISA were performed to detect serum reactivity to NAg in Lewis rats treated with 

GMCSF-NAg, GMCSF + NAg, GM-CSF, MCSF-NAg or NAg either before or after 

encephalitogenic challenge.  5.0 μg / mL of GP69-88 peptide antigen was covalently linked to 

Nunc Immobilizer Amino plates (Rochester, NY.) in the presence of sodium carbonate buffer 

{100 mM Na2CO3 in MilliO water, pH 9.6} for at least 1 hour at 37oC.  Wells were then washed 

with PBST {PBS plus 0.05% Tween} before diluted serums (10-1 – 10-5) were added to the plate.  

Tween was added to the wash in order to block exposed plastic where the peptide did not bind.  

Next, serum antibodies were incubated with the covalently bound peptide for 2 hours at 37oC.  

Unbound serum was washed away with PBST before the addition of the secondary antibody goat 
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anti-rat IgM + IgG (H + L) conjugated to alkaline phosphatase.  The secondary antibody (diluted 

1:2000 in PBS) was incubated with the primary antibody for 2 hours at 37oC.  Wells were 

washed 3 times with PBS before incubation with the chromophore substrate p-

nitrophenylphosphate {3 mM pNPP, 50 mM Na2CO3, 0.5 M MgCl2} at room temperature for 1 

hour.  Color changes were recorded at 405 nm with the Thermo Multiskan Ex plate reader plus 

Ascent software (Thermo-Fisher Scientific, Rockford, IL.).  Statistical analyses were performed 

with parametric, one-way ANOVA and Bonferroni post-hoc tests.   

         

2.14 SPECIFICITY OF IL2-NAg-GFP  

 IL2-NAg-GFP was assessed as a flow cytometry tool to detect expression of the IL-2 

receptor on the cell surface of splenocytes and purified T cell clones.  R1T (1 x 105 / well) and 

BW5147 (1 x 105 / well) were plated overnight in a 96 well plate (Corning, Lowell, MA.) in 

cRPMI.  R1T were cultured overnight in cRPMI (without IL-2) in order to empty the IL-2 

receptors prior to the addition of IL2-NAg-GFP.  The next day, 100 nM of IL2-NAg-GFP were 

incubated with the cells for one hour at 37oC before analysis by flow cytometry.  Cells were not 

washed after the addition of IL2-NAg-GFP. 

When Lewis rat splenocytes were used, the splenocytes were activated with 2.5 mg / ml 

Concanavalin A (Sigma-Aldrich, St. Louis, MO.) and 10.0 mg / ml lipopolysaccharide (List 

Biologicals, Campbell, CA.) for 24 hours.  Concanavalin A and lipopolysaccharide served as 

mitogens for T cells and B cells, respectively.  Red blood cells were depleted from leukocytes by 

density centrifugation.  After activation, splenocytes were washed and cultured overnight in 

cRPMI without IL-2.  Splenocytes (1 x 105 / well) were pretreated with 100 nM of GM-CSF, M-

CSF, IL-4, IL-2 or no cytokine for 3 hours at 37oC.  After the pre-treatment, 100 nM of IL2-
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NAg-GFP was added to the splenocyte cultures for 1 hour at 37oC.  Cells were not washed after 

the addition of IL2-NAg-GFP.  The Becton Dickinson LSRII flow cytometer (San Jose, CA.) 

was used to detect GFP fluorescence.  GFP fluorescence was excited at 405 nm and detected 

with the AmCyan filter at 530 / 30 nm.  Cells were stained with 2.0 μg / ml of propidium iodide 

to discern the dead cell population by flow cytometry.   Propidium iodide fluorescence was 

excited at 488 nm and detected with the PE-Cy5 filter at 660 / 20 nm.  Data were analyzed with 

the FLOWJO software program (Ashland, OR.).  All experimental conditions were performed in 

duplicate. 
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CHAPTER 3 

RESULTS 
 

3.1 GENERATION OF THE CYTOKINE - NAg CONSTRUCTS 

The main hypothesis of this dissertation was that NAg targeted to dendritic cells could 

regulate NAg specific T cell responses in EAE.  This hypothesis was formed in light if the role 

of dendritic cells in the induction of tolerance.  We chose to generate cytokine-NAg fusion 

proteins with the GM-CSF and M-CSF cytokines in order to target NAg to myeloid APC.  IL-6 

was additionally used as a cytokine domain because of its ability to target activated B cells.  

GMCSF-NAg, MCSF-NAg, and IL6-NAg fusion proteins were constructed by covalently 

linking the genes encoding GM-CSF, M-CSF, and IL-6 with NAg (the encephalitogenic peptide 

of guinea pig myelin basic protein).  All cytokines were covalently linked to a C-terminal 6 his-

tag.  The DNA encoding NAg was fused to the GM-CSF, M-CSF, and IL-6 genes (encoded in 

pFastbac-1 plasmids) by a two-step, overlap and extension PCR.  The overlap and extension 

PCR was performed with cytokine-NAg fusion primers.  The sequences of the upstream fusion 

primers (54 base pairs in length) contained a 5’ end complimentary to the C-terminus of the 

cytokine domain and a 3’ end complimentary to the N-terminus of the NAg domain.  The 

downstream primer (51 base pairs in length) was composed of a 5’ – 3’ sequence that 

complimented the pFastBac-1 plasmid sequence, a stop codon, a 6 his-tag and the NAg C-

terminus.  Ultimately, the upstream and downstream fusion primers converged at the NAg 

domain.   In the first PCR step, NAg was amplified from the Lag3 plasmid (encoding NAg) 

using the GMCSF-NAg (19F04), MCSF-NAg (19F02), or IL6-NAg (19F03) upstream fusion 

primers plus the downstream fusion primer.  The predicted amplification product of the first step 



  
 

PCR was 117 base pairs, which ran just above the 100 base pair standard on the agarose gel 

(Figure 3.1).   

In the second PCR step, the amplified NAg PCR product, from Figure 3.1, served as the 

extension primer.  The NAg PCR product encoded a stop codon, a 6-histidine tag, and the entire 

NAg domain (amino acids 68 – 88) covalently linked to the specified cytokine sequence 

provided by the GM-CSF (19F04), M-CSF (19F02), or IL-6 (19F03) primer.  The NAg PCR 

product was extended into the parental pFastBac-1 plasmids encoding GM-CSF, M-CSF, and IL-

6.  The resulting products were 5.2–5.5 kilobases in length and fell well above the 2027 base pair 

Hind III fragment (Figures 3.2 and 3.3).   

Parental plasmids remaining from the extension reaction were digested with DpnI prior to 

transformation.  The digestion was performed to increase transformation efficiency of the 

cytokine-NAg extension product into electrocompetent Top10 E. coli by digesting away the 

parental plasmid.  Restriction enzyme digestion of the extension product did not result in visible 

digest products of the parental plasmid, presumably due to the low level of contaminating 

parental plasmid.  Therefore positive and negative controls, i.e. parental plasmid in the presence 

or absence of restriction enzyme, were run to test for enzyme efficacy.   

Top10 E. coli transformed with pFastBac-1 plasmids that encoded GMCSF-NAg, MCSF-

NAg, or IL6-NAg were selected in ampicillin, and screened by PCR for the presence of NAg 

(Figure 3.4).  Colonies were screened with the downstream NAg primer and the upstream GM-

CSF (19F04), M-CSF (19F02), or IL-6 (19F03) primer.  Colonies that were positive for 

GMCSF-NAg, MCSF-NAg, or IL6-NAg yielded an amplicon of approximately 117 base pairs.  

Plasmids were isolated from the NAg positive colonies and subsequently sequenced.  Point 
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mutations were not identified in the GMCSF-NAg, MCSF-NAg, and IL6-NAg fusion constructs.  

Asterisks denoted the colonies that contained cytokine-NAg constructs without point mutations. 
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Figure 3.1: PCR amplification of the NAg using cytokine-NAg fusion primers.  Cytokine-

NAg fusion proteins were generated by a 2-step overlap and extension PCR process.  In the first 

PCR step, NAg was amplified the Lag3 plasmid using designated cytokine-NAg fusion primers.  

The upstream primers contained a 5’ end complimentary to the C-terminus of the cytokine 

domain IL-6 (primer 19F03, Lane 2), M-CSF (primer 19F02, Lane 3), or GM-CSF (primer 

19F04, Lane 4), and a 3’ end complimentary to the N-terminus of the NAg domain.  The 

downstream primer was composed of a 5’ end that complimented the plasmid DNA, a stop 

codon, and 6 his-tag plus a 3’ end that complimented the C-terminus of the NAg domain.  Lane 1 

contained the 100-base pair ladder.  Ultimately, the upstream and downstream fusion primers 

converged at the NAg domain.  The predicted amplification product of the first step PCR was 

117 base pairs, which ran just above the 100 base pair standard on the 1.0 % agarose gel. 
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Figure 3.2: PCR Extension of NAg into the pFastBac-1 plasmids encoding GM-CSF and 

M-CSF.  Cytokine-NAg fusion proteins were generated by a 2-step PCR process.  In the second 

PCR step, the amplified NAg PCR product, from Figure 3.1, served as the extension primer.  The 

NAg PCR product encoded a portion of the pFastBac-1 plasmid, a stop codon, a 6 his-tag, and 

the entire NAg domain covalently linked to the specified cytokine sequence provided by the 

upstream primer.  The NAg PCR product complimented the cytokine sequence within the 

respective pFastBac-1 plasmid encoding M-CSF (Lane 2) and GM-CSF (Lane 3), resulting in the 

high molecular weight products of MCSF-NAg (5.5 kilobases) and GMCSF-NAg (5.2 

kilobases).  Methylated parental plasmids (without the NAg insert) were digested from the 

extension reaction with the Dpn I restriction enzyme to increase downstream transformation 

efficiency of plasmids encoding the cytokine-NAg constructs.  Lanes 4 and 5 showed the DpnI 

digest products from the GMCSF-NAg (Lane 4) and MCSF-NAg (Lane 5) extension reactions.  

The M-CSF parental plasmid digested with Dpn I (Lane 6) in addition to the M-CSF parental 

plasmid in the absence of Dpn I (Lane 7) served as controls for the restriction enzyme digest.  

Lane 1 contained the 100 base pair standard on the 1.0 % agarose gel.  The high molecular 

weight bands of GMCSF-NAg and MCSF-NAg appeared as high molecular weight bands above 

the 2027 base pair standard.  
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Figure 3.3: PCR Extension of NAg into the pFastBac-1 plasmid encoding IL-6.  Cytokine-

NAg fusion proteins were generated by a 2-step PCR process.  In the second PCR step, the 

amplified NAg PCR product, from Figure 3.1, served as the extension primer.  The NAg PCR 

product (Figure 3.1) encoded a portion of the pFastBac-1 plasmid, a stop codon, a 6 his-tag, and 

the entire NAg domain covalently linked to the specified cytokine sequence provided by the 

upstream primer.  NAg was extended into the pFastBac-1 plasmid encoding IL-6 (Lane 2) as 

shown by generation of IL6-NAg, a high molecular weight product of ~ 5.4 kilobases.  

Methylated parental plasmids (without the NAg insert) were digested from the extension reaction 

with the Dpn I restriction enzyme to increase downstream transformation efficiency of plasmids 

encoding the IL6-NAg construct.  Lane 4 shows the Spe I and Dpn I digest product from the IL6-

NAg (Lane 4) extension reaction.  The IL-6 parental plasmid was digested with Spe I and DpnI 

(Lane 5) as a positive control for the restriction enzyme digest.  Lanes 1 and 3 contained 100 

base pair standard on the 1.0 % agarose gel.  The high molecular weight band IL6-NAg appeared 

as high molecular weight band above the 2027 base pair standard.
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Figure 3.4: PCR screen on E. coli transformed with pFastBac-1 plasmids encoding MCSF-

NAg, GMCSF-NAg, or IL6-NAg.  Top 10 E. coli were transformed with pFastbac-1 plasmids 

that encoded MCSF-NAg, GMCSF-NAg, or IL6-NAg.  Colonies were selected for ampicillin 

resistance encoded by the pFastBac-1 plasmid.  Colonies were screened with the downstream 

NAg primer and the respective upstream cytokine fusion primer, M-CSF fusion primer (primer 

19F02, Lanes 1-7), GM-CSF fusion primer (primer 19F04, Lanes 8-15), and IL-6 fusion primers 

(primer 19F03, Lanes 16-18).  Colonies that exhibited bands around 117 base pairs were 

considered positive for transformation.  A positive transformation yielded a band located above 

the 100 base pair standard.  PCR products were run on a 1.0 % agarose gel.  Asterisks denote 

those positive colonies that contained no point mutations.   
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3.2 GENERATION OF BACULOVIRAL EXPRESSION SYSTEMS 

 The DNA encoding GMCSF-NAg, MCSF-NAg, IL6-NAg, GM-CSF without NAg, or 

M-CSF without NAg were transposed from pFastBac-1 into a baculoviral vector within 

DH10Bac E. coli.  First, pFastBac-1 plasmids were electroporated into DH10Bac E. coli.  Site-

specific transposition was mediated by the Tn7 transposase encoded in a helper plasmid within 

DH10Bac E. coli.  The transposase Tn7 translocated the cytokine fusion protein constructs 

(flanked by mini-Tn7 sequences) from pFastBac-1 into the bacmid DNA vector (containing a 

mini-attTn7 site).  Colonies that had undergone transposition were detected through blue and 

white screening in the presence of Bluo-Gal and the LacI repressor IPTG.  White colonies were 

likely positive for baculoviral vectors encoding GMCSF-NAg, MCSF-NAg, IL6-NAg, GM-CSF, 

or M-CSF because transposition at the bacmid attTn7 site disrupted the lacZα gene, such that β-

galactosidase was not present.  In the absence of β-galactosidase, white colonies were generated 

because Bluo-gal could not be cleaved into an insoluble blue product.  Transformed DH10Bac 

colonies were selected in the presence of kanamycin, gentamicin, and tetracycline.   

The baculoviral vectors encoding GM-CSF, M-CSF, GMCSF-NAg, MCSF-NAg, or IL6-

NAg were transfected into Sf9 insect cells.  Baculoviruses were released into the media after 

establishing a lytic infection within the Sf9 culture.  Individual viruses encoding designated 

fusion proteins were isolated by plaque purification.  In other words, individual viruses were 

isolated by co-culturing Sf9 insect cells with limiting dilutions of baculovirus supernatant.  

Viruses were selected based on their ability to promote a strong lytic infection and generate 

protein.  Fusion proteins were designed to be secreted into the supernatant of infected Sf9 

cultures in order to make the fusion proteins readily available for biological testing.  Bioassays 

were performed on plaque assay supernatants in order to assess the biological activity of the 
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cytokine or NAg protein domains.  RsL.11 T cells were co-cultured with irradiated, Lewis rat 

splenic APC plus supernatant from the plaque purification assay (Figures 3.5A - C) in order to 

assess biological activity of the NAg domain.  Antigenic proliferation of RsL.11 T cells was 

detected by [3H]thymidine incorporation into the DNA.  Cultures were pulsed with 

[3H]thymidine on day 2 of a 3-day culture.  Fusion protein supernatants were tested for cytokine 

bioactivity (Figures 3.5D and 5E) using Lewis rat peritoneal exudate cells as indicator cells.  

Peritoneal exudate cells were cultured with supernatant from the plaque assay.  The growth and 

survival of peritoneal exudate cells, as evaluated by MTS reduction, showed that GM-CSF and 

M-CSF were biologically active.  On day 10 of culture, peritoneal exudate cells were pulsed with 

MTS / PMS and color production read at 492 nm.  Highlighted data represented the individual 

baculoviruses selected for virus expansion (Figure 3.5).  M-CSF.1.B5 was chosen based on 

visual observations.   
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Figure 3.5: Plaque purification of baculovirus encoding GMCSF-NAg, GM-CSF, MCSF-

NAg, M-CSF, or IL6-NAg.  Individual baculovirus encoding GMCSF-NAg, GM-CSF, MCSF-

NAg, M-CSF, or IL6-NAg were plaque purified.  (A - E) Sf9 insect cells (104 / well) were 

infected with a limiting dilution of designated baculovirus (10-5 - 10-8).  On day 9 of infection, 

supernatants from individual wells were tested for biological activity or the NAg or cytokine 

domains.  Fusion proteins were secreted into the supernatant of baculoviral infected Sf9 insect 

cells and therefore readily available for biological testing by either a NAg or cytokine specific 

bioassay.  (A - C) Irradiated splenic APC (5x105 / well) and NAg-specific RsL.11 T cells were 

cultured with supernatant from wells of the plaque purification assay.  Cultures were pulsed with 

[3H]thymidine on day 2 of a 3-day culture, in order to assess RsL.11 proliferation.  (D - E) 

Peritoneal exudate cells (4x103 / well) were cultured with supernatant from wells of the plaque 

purification assay.  Cultures were pulsed 10 days later with MTS / PMS.  Reduction of MTS 

resulted in a color change that was read at 492 nm.  Growth and survival of the peritoneal 

exudate cells indicated GM-CSF and M-CSF bioactivity.  (A - E) Shaded wells designate the 

baculoviruses chosen for expansion.  M-CSF.1.B5 was chosen based on visual observations.   
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3.3 PURIFICATION OF FUSION PROTEINS 

Plaque purified baculoviruses were expanded in Sf9 cells for 6-8 days to generate viral 

stocks for future protein expressions.  Proteins were expressed in large-scale Sf9 cultures that 

were infected with baculovirus for four days.  On day four of culture, supernatants were 

harvested and clarified of Sf9 cells.  Supernatants were ultimately concentrated and purified by 

two affinity chromatography steps.  All proteins were engineered with a C- terminal 6 his-tag for 

protein purification.  The first affinity column contained an immobilized single-chain antibody 

against the C-terminal histidine tag, and the second column consisted of immobilized nickel ions.  

SDS-PAGE was run on the GMCSF-NAg, MCSF-NAg, IL6-NAg, M-CSF, and GM-CSF 

elutions from the nickel column in order to check for protein purity and size (Figure 3.6).  

Mature GMCSF-NAg (17.5 kDa) and GM-CSF (15.4 kDa) are estimated to have one N-linked 

glycosylation site, while MCSF-NAg (27.9kDa) and M-CSF (25.8 kDa) are estimated to have 

three N-linked glycosylation sites.  Conversely, the SDS-PAGE showed that GM-CSF and M-

CSF fusion proteins exhibited two and four bands respectively.  The banding pattern did coincide 

with the number of N-linked glycosylation (N x S, or N x T) sites in the cytokine domain of the 

fusion protein; the NAg domain did not contain N-linked glycosylation sites.  Protein expression 

overwhelms the Sf9 cells, resulting in incomplete glycosylation.  We postulate that when the Sf9 

system became overwhelmed by protein production, incomplete glycosylation would result in 

bands representing the glycosylated and unglycosylated forms of the protein.  For instance, we 

postulated that GMCSF-NAg exhibited two bands because one band represented the 

glycosylated form of GMCSF-NAg while the other band represented the unglycosylated form.  

IL6-NAg (24.8kDa) had no potential N-linked glycosylation sites, and therefore has only one 

band.  Importantly, SDS-PAGE indicated that the fusion proteins had minimal contaminants.   
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Protein purity is essential to prevent lymphocyte reactivity to contaminants during in vitro and in 

vivo experimentation. 
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Figure 3.6: The purity of GMCSF-NAg, MCSF-NAg, M-CSF, GM-CSF, and IL6-NAg was 

determined by SDS-PAGE.  Recombinant fusion proteins were expressed in large-scale Sf9 

insect cell cultures.  Supernatants were concentrated and subsequently purified by means of a 6 

his-tag engineered at the C-terminus of all fusion proteins.  Two affinity chromatography 

matrices were used to purify the proteins.  The first affinity column contained an immobilized 

single-chain Fv antibody against the C-terminal histidine tag, and the second column was 

comprised of immobilized nickel ions.  Purified GMCSF-NAg, MCSF-NAg, M-CSF, GM-CSF, 

and IL6-NAg were analyzed on 10% - 15% SDS-PAGE.  Mature GMCSF-NAg (17.5 kDa) and 

GM-CSF (15.4 kDa) have one N-linked glycosylation site, while MCSF-NAg (27.9kDa) and M-

CSF (25.8 kDa) have 3 N-linked glycosylation sites.  The banding pattern coincided with the 

number of N-linked glycosylation sites.  We postulated that the Sf9 system became overwhelmed 

by protein expression and resulted in glycosylated and unglycosylated forms of the fusion 

proteins, yielding two or four bands respectively.  IL6-NAg (24.8kDa) had no potential N-linked 

glycosylation sites and therefore exhibited only one band.  SDS-PAGE indicated that the fusion  

proteins had minimal contaminants.  Protein bands were visualized after staining the SDS-PAGE 

gels in Gel Code, a coomasie-based protein stain.  
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3.4 BIOLOGICAL ACTIVITY OF THE CYTOKINE DOMAINS 

Purified proteins were assessed for biological activity of the cytokine domain prior to use 

with in vitro and in vivo experiments.  The cytokine domains of purified GMCSF-NAg, MCSF-

NAg, GM-CSF, and M-CSF were shown to be biologically active by facilitating the survival and 

growth of bone marrow progenitors (Figure 3.7A).  Lewis rat bone marrow cells were cultured 

with purified proteins titrated on a log scale from 100 nM – 10 fM.  Cultures were pulsed with 

[3H]thymidine on day 2 of a 3-day culture.  The biological activities of GMCSF-NAg and 

MCSF-NAg exhibited a bell shaped curve of growth.  The biological activity of GM-CSF and 

GMCSF-NAg titrated to a concentration of 1 pM, while M-CSF and MCSF-NAg titrated to a 

concentration of 100 pM.  Proteins containing the GM-CSF cytokine were at least 10 fold more 

potent than proteins containing the M-CSF cytokine.  High concentrations of GM-CSF and M-

CSF diminished bone marrow cell viability, presumably due to activation of myeloid APC and 

subsequent release of cytotoxic mediators.  Fusion of NAg to either GM-CSF or M-CSF did not 

diminish biological activity of the cytokine.  For instance, the cytokine domain of GM-CSF or 

M-CSF exhibited similar response curves to GMCSF-NAg or MCSF-NAg respectively.  

Similarly, the cytokine activity of IL-6 was not abolished by fusion to NAg, as shown by the 

sigmoidal survival curve of the IL-6 dependent T1165 hybridoma cell line (Figure 3.7B).  T1165 

hybridoma cells were cultured with serially diluted IL6-NAg baculoviral supernatants from 

plaque purified viruses C12 and D10.  Cultures were pulsed with MTS / PMS after 48 hours and 

the color production was read at 492 nm.  IL6-NAg activity was present when diluted 100,000 

fold.  Peak survival of T1165 was seen when IL6-NAg baculoviral supernatants were diluted 

10,000 fold.  Overall, the cytokine domains of GMCSF-NAg, MCSF-NAg, GM-CSF, M-CSF, 

and IL6-NAg exhibited biological activity. 
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An alternative way to assess cytokine bioactivity was to test the specificity of GM-CSF 

and M-CSF to act as growth factors for immature APC.  Therefore the effects of GM-CSF and 

M-CSF were compared between immature bone marrow APC and mature splenic APC (Figure 

3.8).  Lewis rat bone marrow cells or splenocytes were cultured with designated concentrations 

of M-CSF (Figure 3.8A) and GM-CSF (Figure 3.8B) baculoviral supernatant, or purified MCSF-

NAg (Figure 3.8C) and GMCSF-NAg (Figure 3.8D).  Cultures were pulsed with [3H]thymidine 

on day 2 of a 3-day culture.  The cytokine domains of GM-CSF, GMCSF-NAg, M-CSF, and 

MCSF-NAg facilitated a specific proliferative effect on bone marrow cells, but not splenic APC.  

Proteins containing GM-CSF (Figure 3.8B and D) were at least 10 fold more potent than those 

proteins containing M-CSF (Figure 3.8A and C).  For instance, purified GMCSF-NAg exhibited 

a half maximal proliferative effect around 100 pM and MCSF-NAg around 1 nM.  Overall, these 

results are consistent with the fact that GM-CSF and M-CSF proteins act as survival and growth 

factors for hematopoietic progenitors that express the cytokine receptors.   

The cytokine domains of GMCSF-NAg and MCSF-NAg supported the differentiation of 

distinct APC subsets (Figure 3.9).  Bone marrow cells were cultured with 50 nM GMCSF-NAg 

(left panel) and 50 nM MCSF-NAg (right panel) for ten days.  Surface markers of adherent APC 

were analyzed by flow cytometry.  CD11c+ myeloid APC derived with GMCSF-NAg had higher 

surface concentrations (approximately 10 fold) of MHC class II, B7.1, CD4, and CD8 as 

compared to APC derived with MCSF-NAg.  Both GMCSF-NAg and MCSF-NAg derived APC 

exhibited similar levels of CD45 and B7.2.  NAg alone did not promote survival or 

differentiation of bone marrow cells (data not shown).  Furthermore, the NAg domain of 

GMCSF-NAg or MCSF-NAg did not interfere with the ability of the GM-CSF or M-CSF 

domain to drive differentiation of distinct APC subsets.  These data are consistent with the idea 
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that GM-CSF and M-CSF would promote differentiation pathways to respectively generate 

dendritic cell and macrophage lineages, and that dendritic cells may serve as better APC than 

macrophages.
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Figure 3.7: Cytokine bioassay to assess the cytokine activity of the fusion proteins.  The 

cytokine domain of GMCSF-NAg, MCSF-NAg, and IL6-NAg exhibited biological activity.  (A) 

Lewis rat bone marrow cells (105 / well) were cultured with titrated of GMCSF-NAg, MCSF-

NAg, GM-CSF, M-CSF, 100 nM – 10 fM (x-axis).  Cultures were pulsed with [3H]thymidine on 

day 2 of a 3-day culture.  Biological activity of the cytokine domains facilitated survival and 

growth of bone marrow progenitors.  Fusion of NAg to either GM-CSF or M-CSF did not 

diminish biological activity of the cytokine.  (B) IL-6 specific T1165 hybridoma cells (104 / well) 

were cultured with serially diluted IL6-NAg baculoviral supernatants (10-2 to 10-8) from viruses 

C12 and D10.  Cultures were pulsed with MTS / PMS after 48 hours and color production, 

generated by MTS reduction, was read at 492 nm.  Cytokine activity of IL-6 was not abolished 

by fusion of IL-6 to NAg, as shown by the sigmoidal survival response curve of T1165  

hybridoma cell line.  This experiment was performed one time.  
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Figure 3.8: Cytokine bioassay to assess the activity of fusion proteins on immature bone 

marrow APC versus mature splenic APC.  The cytokine domains of GM-CSF, GMCSF-NAg, 

M-CSF, and MCSF-NAg facilitated a specific proliferative effect on bone marrow and not 

splenic APC.  These data indicated that GM-CSF and M-CSF acted specifically as growth 

factors for immature APC and not mature APC.  This was consistent with the fact that GM-CSF 

and M-CSF proteins act as survival and growth factors for hematopoietic progenitors that 

express the cytokine receptors.  (A-D) Lewis rat bone marrow cells (105 / well) or splenocytes 

(5x105 / well) were cultured with serially diluted M-CSF (A) and GM-CSF (B) baculoviral 

supernatant (10-2 to 10-8, x-axis), or purified MCSF-NAg (C) and GMCSF-NAg (D) titrated on a 

log scale from 100 nM to 1 pM.  Cultures were pulsed with [3H]thymidine on day 2 of a 3-day 

culture.  These data are representative of at least two experiments. 
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Figure 3.9: Characterization of the cell surface markers expressed on APC subsets that 

were derived with GMCSF-NAg and MCSF-NAg.  The cytokine domains of GMCSF-NAg 

and MCSF-NAg supported differentiation of two distinct APC subsets.  Bone marrow cells were 

cultured with 50 nM GMCSF-NAg (left panels) or 50 nM MCSF-NAg (right panels) for 10 days.  

Surface markers of adherent APC were analyzed with the Becton Dickinson FACScan flow 

cytometer along with the CELLQuest analysis software.  CD11c+ myeloid APC derived with 

GMCSF-NAg had higher surface concentrations (approximately 10 fold) of MHC class II, B7.1, 

CD4, and CD8 as compared to APC derived with MCSF-NAg.  Both GMCSF-NAg and MCSF-

NAg derived APC exhibited similar levels of CD45 and B7.2.  These data are consistent with the 

idea that GM-CSF and M-CSF would promote differentiation pathways to respectively generate 

the dendritic cell and macrophage lineages.  These data are representative of three experiments. 
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3.5 BIOLOGICAL ACTIVITY OF THE NAg DOMAINS  

Purified proteins were assessed for biological activity of the NAg domain prior to use for 

in vitro and in vivo experiments.  The NAg domains of GMCSF-NAg and MCSF-NAg were 

shown to be biologically active.  In vitro proliferative assays measured the antigenic response of 

NAg-specific RsL.11 T cell clones by tritiated thymidine incorporation (Figure 3.10).  Irradiated 

Lewis rat splenic APC and NAg-specific RsL.11 T cells were co-cultured with titrated GMCSF-

NAg, MCSF-NAg, NAg alone, or NAg in the presence or absence of 100 nM GM-CSF or 100 

nM M-CSF.  Cultures were pulsed with [3H]thymidine on day 2 of a 3-day culture.  Data 

revealed that the cytokine domains of GMCSF-NAg and MCSF-NAg enhanced RsL.11 

proliferative response greater than NAg alone.  GMCSF-NAg and MCSF-NAg respectively 

enhanced the half maximal proliferative response at least 1,000 fold and 10 fold greater than 

NAg alone.  Furthermore, NAg activity of the GMCSF-NAg and MCSF-NAg fusion proteins 

titrated to 1 pM and 10 pM concentrations, respectively.  These data indicated that the GM-CSF 

and M-CSF cytokine domains did not hinder NAg presentation by MHC class II; in fact the 

cytokine domains enhanced antigenic proliferation of RsL.11 T cells.  

IL-2 production was monitored as an additional endpoint of RsL.11 T cell activation.  In 

Figure 3.11, irradiated splenic APC and NAg-specific RsL.11 T cells were cultured with titrated 

GMCSF-NAg, MCSF-NAg, or GPMBP.  Assay supernatants were collected after 24 hours of 

culture and tested for IL-2 production.  IL-2 dependent CTLL T cells served as indicators of IL-2 

production.  CTLL T cells were cultured in the presence of 20 μl of the 24-hour supernatant, and 

then pulsed with MTS / PMS on day two of culture.  Viability of the CTLL T cells was 

determined via MTS reduction.  Data revealed that RsL.11 activation resulted in IL-2 production 

that mirrored the [3H]thymidine incorporation data seen in Figure 3.10.  In other words, the rank 
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order of potency (GMCSF-NAg > MCSF-NAg > NAg) as seen by the RsL.11 proliferative 

response was reflected by the strength of the IL-2 response.  GMCSF-NAg and MCSF-NAg 

respectively enhanced CTLL proliferation 1,000 fold and at least 10 fold greater than GPMBP.  

The potentiated antigenic responses induced by GMCSF-NAg and MCSF-NAg was likely due to 

enhanced uptake of NAg through the cytokine receptors.     

The hypothesis of enhanced NAg uptake through cytokine-receptor mediated endocytosis 

was supported by the data of Figure 3.10.  The data showed that covalent linkage between the 

cytokine and NAg domains was required to potentiate the RsL.11 antigenic response.  MCSF-

NAg potentiated the RsL.11 half maximal proliferative response at least 10 fold greater than 

NAg + M-CSF as separate molecules.  Likewise, GMCSF-NAg potentiated the proliferative 

response at least 1,000 fold greater than NAg + GM-CSF as separate molecules.  The potency of 

GMCSF-NAg and MCSF-NAg could not be explained by the independent actions of the 

cytokine or NAg domains on either the APC or T cell responders.  These data suggested that 

cytokine-receptor mediated uptake of NAg significantly increased the amount of NAg presented 

by APC, enhancing the T cell proliferative response.   

An inhibition assay was performed in order to address the hypothesis of cytokine-

receptor mediated endocytosis of NAg.  This assay was designed such that the GM-CSF or M-

CSF receptors on splenic APC were saturated or “inhibited” prior to the addition of GMCSF-

NAg or MCSF-NAg.  Receptor saturation would hypothetically prevent cytokine-receptor 

mediated uptake of GMCSF-NAg and MCSF-NAg, resulting in a diminished RsL.11 

proliferative response to the tethered NAg.  Co-cultures of irradiated splenic APC with RsL.11 T 

cells were pretreated with GM-CSF or M-CSF for 4 hours before the addition of GMCSF-NAg, 

MCSF-NAg, or NAg, respectively (Figure 3.12).  GM-CSF pre-treatment diminished the RsL.11 
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proliferative response to GMCSF-NAg by approximately 1,000 fold, from a half maximal 

concentration of 10 nM to 10 pM (Figure 3.12A).  M-CSF pre-treatment did not inhibit antigenic 

proliferation in the presence of GMCSF-NAg.  M-CSF pre-treatment did diminish the RsL.11 

proliferative response to MCSF-NAg by approximately 10 fold, from a half maximal 

concentration of 10 nM to 1 nM (Figure 3.12B).  RsL.11 proliferation in the presence of MCSF-

NAg was not inhibited by GM-CSF pre-treatment.  Pre-treatment with GM-CSF or M-CSF did 

not alter the RsL.11 proliferative response to NAg (Figure 3.12C).  These data supported the 

hypothesis that GMCSF-NAg and MCSF-NAg potentiated the RsL.11 proliferative response by 

cytokine-receptor mediated uptake.  Cytokine targeting was specific because the RsL.11 

proliferative response to MCSF-NAg or GMCSF-NAg was only inhibited when co-cultures were 

pre-treated with M-CSF or GM-CSF respectively.   
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Figure 3.10: Bioassay to assess the biological activity of the NAg domain and to determine 

the importance of the cytokine-NAg linkage.  Cytokine domains of GMCSF-NAg and MCSF-

NAg strongly promoted NAg-specific RsL.11 T cell reactivity to the covalently linked NAg.  (A-

B) Irradiated Lewis rat splenic APC (5x105 / well) and NAg-specific RsL.11 T cells (2.5x104 / 

well) were cultured with titrated GMCSF-NAg, MCSF-NAg, or NAg in the presence or absence 

of an additional 100 nM GM-CSF or 100 nM M-CSF.  Cultures were pulsed with [3H]thymidine 

on day 2 of a 3-day culture.  Data revealed that the cytokine domains of GMCSF-NAg and 

MCSF-NAg enhanced RsL.11 proliferative response greater than NAg alone and enhanced 

potentiation was due to covalent linkage of the cytokine and NAg domains.  These data are 

representative of three experiments.   
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Figure 3.11: GMCSF-NAg and MCSF-NAg potentiated the RsL.11 IL-2 response greater 

than NAg alone.  The cytokine domains of GMCSF-NAg and MCSF-NAg strongly enhanced 

RsL.11 T cell activation to the covalently linked NAg.  Irradiated Lewis rat splenic APC (5x105 / 

well) and NAg-specific RsL.11 T cells (2.5x104 / well) were cultured with titrated GMCSF-NAg, 

MCSF-NAg, or GPMBP from 100 nM to 10 fM.  Supernatants were collected after 24 hours of 

culture and tested for IL-2 production using CTLL T cells (104 / well) as indicators.  CTLL 

cultures were pulsed with MTS / PMS after 48 hours and color production was read at 492 nm.  

The rank order of potency (GMCSF-NAg > MCSF-NAg > NAg) as seen by the RsL.11 

proliferative response (Figure 3.10) was mirrored by the strength of the IL-2 response.  These 

data are representative of at least three experiments.  
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Figure 3.12: The cytokine domains of GMCSF-NAg and MCSF-NAg enhanced antigenic 

reactivity to NAg by a mechanism that was competitively blocked by the respective 

cytokine.  An inhibition assay was performed in order to address the hypothesis that potentiation 

of the T cell proliferative response was due to cytokine-receptor mediated uptake of NAg.  This 

assay was designed such that the GM-CSF or M-CSF receptors on splenic APC were saturated or 

“inhibited” prior to the addition of GMCSF-NAg or MCSF-NAg.  Receptor saturation would 

hypothetically prevent cytokine-receptor mediated uptake of GMCSF-NAg and MCSF-NAg, 

resulting in a diminished RsL.11 proliferative response.  (A-C) Irradiated Lewis rat splenic APC 

and RsL.11 T cells were cultured with 100 nM of GM-CSF, 100 nM M-CSF, or no cytokine 4 

hours before the addition of titrated GMCSF-NAg (A), MCSF-NAg (B), or NAg (C) (x-axis).  

Cultures were pulsed with [3H]thymidine on day 2 of a 3-day culture.  These data are 

representative of three experiments.  
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3.6 THE CYTOKINE DOMAIN TARGETS NAg TO VARIOUS APC SUBSETS 

We hypothesized that RsL.11 antigenic potentiation was dependent on specific APC 

subsets bearing the cytokine receptor based on the previous data.  Therefore, individual APC 

subsets (dendritic cell, macrophage, B cell and T cell APC) were cultured with cytokine-NAg 

fusion proteins to determine the ability of the APC to influence antigenic proliferation of RsL.11 

T cells.  Macrophage and dendritic cell APC were respectively derived from Lewis rat bone 

marrow cells cultured for 7 days with 0.1% M-CSF (Figure 3.13A) or GM-CSF (Figure 3.13B) 

baculovirus supernatant.  Bone marrow derived APC were co-cultured with RsL.11 T cells and 

purified fusion proteins titrated on a log scale.  Aminoguanidine, a specific iNOS inhibitor, was 

added to macrophage and dendritic cell assays to circumvent nitric oxide production, because 

increasing concentrations of GMCSF-NAg and MCSF-NAg resulted in nitric oxide production 

(data not shown).  Cultures were pulsed with [3H]thymidine on day 2 of a 3-day culture.   

The cytokine domains of GMCSF-NAg and MCSF-NAg effectively targeted NAg to 

macrophage and dendritic cell APC (Figure 3.13 A and B).  The cytokine domains of GMCSF-

NAg, MCSF-NAg, and IL4-NAg targeted NAg to macrophages and respectively potentiated the 

proliferative response at least 320 fold, 32 fold and 10 fold greater than GPMBP alone (Figure 

3.13A).  Specifically, the half maximal antigenic response of RsL.11 T cells to GMCSF-NAg, 

MCSF-NAg, IL4-NAg, and GPMBP were approximately 1 pM, 10 pM, 32 pM and 320 pM, 

respectively.  IL10-NAg, IFNβ-NAg, IL2-NAg, and IL1Rα-NAg cytokine domains did not 

target NAg to macrophages.  In fact these cytokines had lower antigenic potentiation than 

GPMBP, suggesting these cytokines may interfere with antigen processing and presentation by 

macrophages.  The cytokine domains of GMCSF-NAg, MCSF-NAg, and IL4-NAg targeted the 

tethered NAg domain to dendritic cells (Figure 3.13B).  GMCSF-NAg, MCSF-NAg and IL4-
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NAg respectfully potentiated the RsL.11 proliferative response at least 320 fold, 100 fold and 10 

fold greater than GPMBP alone.  Specifically, the half maximal antigenic response of RsL.11 T 

cells to GMCSF-NAg, MCSF-NAg, IL4-NAg, and GPMBP were approximately 10 pM, 32 pM, 

320 pM and 3.2 nM, respectively.  IL2-NAg, IL1Rα-NAg and IFNβ-NAg cytokine domains did 

not target NAg to dendritic cells.  It is important to note that the response curves of Figures 

3.13A and 3.13B exhibited a bell shape, marked by diminished T cell responses at the higher 

antigen concentrations.  This suggests that APC activation by antigen-stimulated T cells 

prompted the production of alternative inflammatory mediators (ie, IFNγ and TNF) other than 

nitric oxide.  Overall, these data indicate that GMCSF-NAg and MCSF-NAg can target NAg to 

myeloid APC and as a result, significantly enhance antigen presentation to NAg specific T cells.  

The ability of GMCSF-NAg and MCSF-NAg to target NAg to macrophages and dendritic cells 

is specific because other cytokine-NAg fusion proteins, such as IL2-NAg, IL1Rα-NAg and 

IFNβ-NAg did not efficiently target NAg to these APC subsets.   

GMCSF-NAg and MCSF-NAg were also tested for their ability to target NAg to B cell 

APC.  Splenic OX33+ B cells (Figure 3.13C) and OX33+Ig+ B cells (Figure 3.13D) were FACS 

sorted and co-cultured with RsL.11 T cells plus titrated protein. Cultures were pulsed with 

[3H]thymidine on day 2 of a 3-day culture.  IL4-NAg targeted NAg to FACS sorted B220+ B 

cells and B220+  / surface Ig+ B cells at least 1,000 fold greater than NAg alone.  Specifically, the 

half maximal antigenic response of RsL.11 T cells to IL4-NAg, and NAg were approximately 

3.2 pM and 10 nM in the presence of B220+ B cells or B220+  / surface Ig+ B cells respectively.  

GMCSF-NAg and MCSF-NAg did not efficiently target NAg to FACS sorted B220+ B cells.  

Alternatively, GMCSF-NAg, IL2-NAg, and IL6-NAg along with IL4-NAg targeted NAg to 

FACS sorted B220+  / surface Ig+ B cells.  Specifically, the half maximal antigenic response of 
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RsL.11 T cells to IL4-NAg, IL2-NAg, GMCSF-NAg, IL6-NAg and NAg were approximately 

3.2 pM, 100 pM, 320 pM, 1 nM and 10 nM.  The sorting of B220+ / surface Ig+ B cells 

potentially activated the B cell population through cross-linking of the surface Ig receptors, 

because B220+ / surface Ig+ B cells exhibited a distinct targeting profile from B220+ B cells.  

Certain cytokines, including IL10-NAg, IFNβ-NAg, IL1Rα-NAg, and MCSF-NAg cytokine 

domains did not target NAg to B220+ B cells or B220+  / surface Ig+ B cells.  Overall, these data 

showed that the cytokine domains of GMCSF-NAg and MCSF-NAg effectively targeted NAg to 

myeloid APC subsets and not to B cell APC.  Furthermore, the activation status of APC subsets 

can play a role in the targeting efficiency of cytokine-NAg fusion proteins.  

The specificity of GMCSF-NAg and MCSF-NAg to target macrophages and dendritic 

cells is supported by the inability of these fusion proteins to target NAg to MHC class II+ T cell 

APC (Figure 3.14).  This conclusion was revealed by a T cell killing assay, where irradiated 

RsL.11 T cells kill R1T cells (blastogenic MHC class II+ T cells) that present NAg on MHC 

class II.  In this assay, R1T cells were cultured for 24 hours in complete RPMI without IL-2 to 

allow clearance of IL-2 from cell surface receptors.  R1T cells were then cultured with irradiated 

RsL.11 T responders in the presence of titrated fusion protein or the NAg peptide.  After 4 hours, 

0.4% IL-2 baculovirus supernatant was added to all wells, because R1T cells were highly IL-2 

dependent and die upon IL-2 deprivation.  Therefore, this assay measured IL-2 dependent 

proliferation of R1T cells unless the R1T cells were killed upon antigen presentation to irradiated 

RsL.11 responders.  Cultures were pulsed with [3H]thymidine on day 2 of a 3-day culture.  IL2-

NAg enhanced RsL.11 mediated T cell killing 1,000 fold greater than NAg alone with a half 

maximal killing response of 3.2 pM versus 3.2 nM respectively (Figure 3.14A).  IFNβ-NAg and 
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IL4-NAg equally enhanced T cell killing 100 fold greater than NAg alone.  MCSF-NAg and 

GMCSF-NAg did not target NAg to R1T APCs when compared to NAg.   

RsL.11 mediated killing of R1T cells was dependent on NAg presentation by MHC class 

II expressed on R1T cells (Figure 3.14B).  Co-cultures of R1T, irradiated RsL.11 responders, and 

antigen were grown in the presence or absence of the anti-RT1B mAb (OX6; anti-I-A).  After 4 

hours, 0.4% IL-2 baculovirus supernatant was added to all wells.  Again, this assay measured IL-

2 dependent proliferation of R1T cells unless the R1T cells were killed upon antigen 

presentation.  Cultures were pulsed with [3H]thymidine on day 2 of a 3-day culture.  The 

monoclonal antibody against MHC class II blocked the RsL.11 mediated killing of R1T cells in 

the presence of NAg, IL2-NAg, and IL4-NAg (Figure 3.14B).  This is shown by greater R1T 

proliferation (i.e., reduced R1T killing) in the presence of OX6.  On the other hand, RsL.11 

mediated killing of R1T cells in the presence of IFNβ-NAg was dependent on the cytokine itself 

and not the NAg presentation.  Specifically, there was no difference between the RsL.11 

mediated killing of R1T cells in the presence or absence of OX6.  Overall, these data indicated 

that various cytokine-NAg fusion proteins could be used to target certain APC subsets and not 

others.  GMCSF-NAg was the most efficient fusion protein for targeting NAg to DC and 

macrophage lineages, while IL4-NAg and IL2-NAg were the most efficient for targeting NAg to 

B cell and T cell APC respectively.   

Cytokine-fusion proteins were also tested for their ability to target NAg to NK cells, 

because NK cells are postulated to regulate adaptive immune responses.  Sorted CD161+CD3- 

NK cells were cultured with 100 nM of NAg-IL16, IL2-NAg, MCSF-NAg, GMCSF-NAg, IL4-

NAg, or GPMBP for 72 hours.  After 72 hours, CFSE stained NAg-specific RsL.11 T cell clones 

were added to each culture.  RsL.11 antigenic proliferative responses were analyzed by flow 
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cytometry after an additional 2 days of culture.  CFSE (carboxyfluorescein succinimidyl ester) is 

a colorless dye that passively diffuses into cells and is cleaved by intracellular esterases to form a 

fluorescent product.  Fluorescent CFSE is retained in cells by forming fluorescent conjugates 

with cellular amines.  CFSE conjugates are vertically transferred through cell division, meaning 

that there is a successive loss of fluorescence with each cell division.  In other words, cells that 

have divided will exhibit weaker fluorescence than those cells that have not undergone division.  

In this experiment, the antigenic response of RsL.11 T cells was measured by a successive loss 

of fluorescent CFSE upon each cell division.  The peaks represent daughter cell populations of 

varying fluorescent intensities. 

Cytokine-NAg fusion proteins were found to differentially target NAg to NK cells.  Our 

data showed that NK cells could present NAg on MHC class II (Figure 3.15), which is contrary 

to the belief that NK cells do not function as antigen presenting cells.  The RsL.11 proliferative 

response, represented by consecutive peaks of decreasing fluorescence, was potentiated by 

GMCSF-NAg, IL4-NAg, and NAg-IL16 in comparison to GPMBP.  Specifically, in the presence 

of GMCSF-NAg and IL4-NAg, the RsL.11 proliferation profile was predominantly shifted to 

populations with lower fluorescence intensity, in comparison to GPMBP.  Furthermore, the 

GPMBP profile exhibited 5 fluorescent peaks with intensities between 80 and 1000, while the 

GMCSF-NAg and IL4-NAg profile exhibited 3 fluorescent peaks with intensities ranging from 

80 to 300.  These data indicated that the majority of the CSFE labeled parental cells had 

undergone antigenic proliferation in the presence of GMCSF-NAg and IL4-NAg, but not in the 

presence of GPMBP.  Note that the IL4-NAg data may be misleading because the fusion protein 

was added at 230 nM instead of 100 nM.  NAg-IL16 exhibited only a slightly higher number of 

lower fluorescent intensity peaks than GPMBP, but exhibited a similar profile to GPMBP.  IL2-
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NAg and MCSF-NAg had a similar RsL.11 proliferation profile to GPMBP, represented by 5 

fluorescent peaks with intensities between 80 and 1000.  The potentiated NAg response by NAg-

IL16, GMCSF-NAg, and IL4-NAg suggested that IL-16, GM-CSF, and IL-4 receptors mediated 

NAg uptake and presentation by NK cells.  These data are significant because it reveals that NK 

cells should not be ignored when dissecting the mechanism of antigen-specific tolerance induced 

 by GMCSF-NAg in our EAE models.  
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Figure 3.13: The cytokine domains of GMCSF-NAg and MCSF-NAg efficiently targeted 

NAg to myeloid APC subsets.  Individual APC subsets (dendritic cell, macrophage, B cell and 

T cell APC) were cultured with cytokine-NAg fusion proteins to determine the ability of the 

APC to influence antigenic proliferation of RsL.11 T cells.  Bone marrow cells were cultured 

with M-CSF (A) or GM-CSF (B) baculovirus supernatants (0.1% v / v) for 7 days and were used 

as APC.  Bone marrow derived APC (15 x 103 / well) were cultured with RsL.11 T cells and 2.5 

mM aminoguanidine in the presence of titrated proteins 100 nM - 100 fM.  Aminoguanidine, a 

specific iNOS inhibitor, was added to circumvent nitric oxide production by macrophage and 

dendritic cell populations.  (C & D) Splenic OX33+ B cells (C) and OX33+Ig+ B cells (D) were 

FACS sorted and cultured (2.5 x 104 / well) with RsL.11 T cells plus titrated fusion proteins or 

NAg 100 nM - 100 fM.  B cells sorted with surface Ig potentially activated the B cell population, 

resulting in a distinct targeting profile between B220+ / surface Ig+ B cells and B220+ B cells.  

These data are representative of three experiments. 
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Figure 3.14: The cytokine domains of IL2-NAg and IL4-NAg efficiently targeted NAg to 

R1T T- cell APC.  The specificity of GMCSF-NAg and MCSF-NAg to target macrophages and 

dendritic cells was supported by the inability of these fusion proteins to target NAg to MHC 

class II+ T cell APC.  This was revealed through a T cell killing assay, where irradiated RsL.11 T 

cells kill R1T cells (blastogenic MHC class II+ T cells) that present NAg on MHC class II.  (A & 

B) R1T cells were cultured for 24 hours in complete RPMI without IL-2 to allow clearance of 

IL-2 from cell surface receptors.  R1T cells were then cultured with irradiated RsL.11 T 

responders in the presence of fusion protein or NAg that were titrated from 100 nM to 10 fM 

concentrations.  After 4 hr, IL-2 (0.4% v / v IL2 bv supernatant) was added to all wells.  This 

assay measured IL-2 dependent proliferation of R1T cells unless these T cell APC were killed 

upon antigen presentation to irradiated RsL.11 responders.  Cultures were pulsed with 

[3H]thymidine at 48 hours of a 3-day culture.  (B) R1T, irradiated RsL.11 responders, and 

antigen were cultured in the presence or absence of the anti-RT1B mAb (OX6) (anti-I-A mAb).  

OX6 blocked RsL.11 mediated killing of R1T cells in the presence of NAg, IL2-NAg, and IL4-

NAg.  RsL.11 mediated killing of R1T in the presence of IFNβ-NAg was dependent on the 

cytokine itself and not the presentation of NAg.  These data are representative of three 

experiments.   
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Figure 3.15: GMCSF-NAg enhanced antigenic proliferation of RsL.11 T cells by targeting 

NAg to NK cells.  Our data showed that NK cells could present NAg on MHC class II and that 

cytokine-NAg fusion proteins were found to differentially target NAg to NK cells.  Sorted 

CD161+CD3- NK cells (96% pure population; 4.3x104 / well) were cultured with 100 nM of 

NAg-IL16, IL2-NAg, MCSF-NAg, GMCSF-NAg, IL4-NAg (IL4-NAg was mistakenly added at 

230 nM instead of 100 nM), or GPMBP for 72 hours.  After 72 hours, CFSE stained NAg-

specific RsL.11 T cell clones (5x104) were added per well.  RsL.11 antigenic proliferative 

responses were analyzed by flow cytometry after an additional 72 hours.  CFSE 

(carboxyfluorescein succinimidyl ester) conjugates are transferred only through cell division, so 

cells that divide will exhibit weaker fluorescence than those cells that have not undergone cell 

division.  CFSE was excited at 492 nm and emission was captured at 517 nm.  This experiment 

was performed one time.  
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3.7 GMCSF-NAg AND MCSF-NAg PRE-TREATMENT REGIMENS WERE 

TOLEROGENIC IN EAE 

EAE is the animal model for multiple sclerosis.  EAE is a CD4+ T cell mediated disease 

marked by inflammation in the CNS, resulting in demyelination and paralytic symptoms.  EAE 

does not spontaneously occur in Lewis rats, and is therefore induced through subcutaneous 

immunization with an emulsion of NAg and complete Freund’s adjuvant (incomplete Freund’s 

adjuvant plus Mycobacterium).  In Lewis rats, EAE presents as a monophasic disease 

characterized by an acute, paralytic disease from which the rats fully recover.  EAE is marked by 

weight loss during disease onset and disease progression.  EAE progression typically develops in 

the following order, distal limp tail, full limp tail, ataxic gait, partial hind limb paralysis, and full 

hind limb paralysis.  Forelimb paralysis is not common.  Relapses are rare, and if a relapse does 

occur it is typically mild, i.e. a distal limp tail or a full limp tail.   

For safety concerns it was important to demonstrate that the cytokine domains of 

GMCSF-NAg and MCSF-NAg did not act as an adjuvant to induce EAE in the absence of CFA.  

Initially 1.5 nmole of GMCSF-NAg, MCSF-NAg, or IL6-NAg fusion proteins were administered 

to Lewis rats in the absence of CFA to assess whether the fusion proteins alone could induce 

EAE.  GMCSF-NAg, MCSF-NAg, and IL6-NAg did not induce EAE in the absence of CFA 

(data not shown).  We thoroughly tested the encephalitogenic potential of GMCSF-NAg and 

MCSF-NAg via a number of manipulations, such as increasing the administered concentration of 

GMCSF-NAg or MCSF-NAg from 1.5 nmoles to 8.0 nmoles, administering four boosters of 

GMCSF-NAg or MCSF-NAg at concentrations of either 1.5 nmoles or 8.0 nmoles, or injecting 

8.0 nmoles of GMCSF-NAg and 8.0 nmoles of MCSF-NAg concurrently.  Furthermore, we 

examined whether a subcutaneous versus intravenous delivery route of GMCSF-NAg or MCSF-
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NAg (1.5 nmoles) influenced EAE development.  Despite the manipulations, GMCSF-NAg, 

MCSF-NAg, or the combination of GMCSF-NAg and MCSF-NAg were unable to induce EAE 

in the absence of CFA (data not shown).     

Moreover, it was important to determine if GMCSF-NAg and MCSF-NAg fusion 

proteins were on the cusp of being encephalitogenic in Lewis rats.  If this were the case, then 

alternative adjuvants (other than CFA) might drive GMCSF-NAg and MCSF-NAg to become 

encephalitogenic.  The encephalitogenic potentials of GMCSF-NAg and MCSF-NAg were 

examined in the presence of several adjuvants, including 400 ng alum (adjuvant approved for 

human use), 1.5 nmoles IL-2 (T cell growth factor), and 0.15 nmoles IL1-α (cytokine mediator 

of EAE).  Pertussis toxin (200 ng and 500 ng) was also tested as an adjuvant with GMCSF-NAg 

and MCSF-NAg, for the reason that pertussis toxin is required, as an adjuvant, for the induction 

of EAE in mice.  We also examined whether a subcutaneous versus an intraperitoneal delivery 

route of pertussis toxin (200 ng) influenced EAE development in the Lewis rat.  Despite the 

aforementioned manipulations, alternative adjuvants did not drive GMCSF-NAg or MCSF-NAg 

to induce EAE in the absence of CFA (data not shown). 

Next, we tested the potential of GMCSF-NAg in CFA and MCSF-NAg in CFA to induce 

EAE in comparison to NAg in CFA (Table 3.1).  We hypothesized that GMCSF-NAg in CFA 

and MCSF-NAg in CFA could potentiate EAE due to the ability of GMCSF-NAg and MCSF-

NAg to potentiate T cell responses in vitro.  Lewis rats were challenged with 0.5 nmoles of 

GMCSF-NAg, MCSF-NAg, or NAg in CFA and monitored daily for symptoms of EAE.  Rats 

challenged with GMCSF-NAg in CFA and MCSF-NAg in CFA exhibited less severe disease as 

compared to the rats that received NAg in CFA.  For instance, 50% of the rats challenge with 

GMCSF-NAg developed EAE in comparison to the rats challenged with MCSF-NAg and NAg 
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in CFA, which exhibited full incidence of EAE.  Furthermore, only 25% of the GMCSF-NAg 

challenged rats developed severe EAE as compared to the MCSF-NAg and NAg challenged rats 

that exhibited 75% and 100% incidence of severe EAE, respectively.  Compared with NAg, 

GMCSF-NAg (P < 0.001 for all comparisons) and MCSF-NAg (P < 0.038 for all comparisons) 

significantly diminished mean cumulative scores, maximal scores and the number of days rats 

exhibited severe EAE.  Overall, GMCSF-NAg emerged as a strong inhibitor of EAE, even more 

so than MCSF-NAg.  The data from this experiment provided the first indication that GMCSF-

NAg and MCSF-NAg could be tolerogenic.  Furthermore, these data complimented the 

observations that GMCSF-NAg and MCSF-NAg do not induce EAE.  

To further explore the tolerogenic potential of GMCSF-NAg and MCSF-NAg, the fusion 

proteins were administered to Lewis rats as a pre-treatment regimen prior to the induction of 

EAE.  Rats were pretreated with 4.0 nmoles of NAg, MCSF-NAg or GMCSF-NAg on days 21, 

14 and 7 before challenge with 50 μg DHFR-NAg in CFA on day 0.  Rats were monitored daily 

for clinical manifestations of EAE, which included disease severity and weight loss.  The NAg 

pre-treatment control group exhibited a typical disease progression characterized by severe EAE 

(ataxia, partial or full hind limb paralysis) on days 11.5 – 15 and significant weight loss (defined 

as a 10 - 20% weight loss) between days 14 and 23 (Figure 3.16).  The daily group EAE scores 

and the daily percent maximal weight loss (Figure 3.16) showed that GMCSF-NAg (EAE scores: 

P < 0.037 for days 12 – 14; Weight loss: P < 0.035 for days 11 - 28) and MCSF-NAg (EAE 

scores: P < 0.017 for days 10.5, 12 – 13; Weight loss: P < 0.042 for days 15 - 22) pre-treatment 

regimens significantly reduced EAE severity when compared to the NAg pre-treatment group.  

GMCSF-NAg was significantly more protective than MCSF-NAg with respect to EAE scores (P 

< 0.029 on day 14) and EAE associated weight loss (P < 0.029 for days 16 - 23).  More 
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specifically, GMCSF-NAg (P < 0.001) and MCSF-NAg (P < 0.008) pre-treatment groups 

exhibited considerably less severe EAE than the NAg pre-treatment group with respect to 

cumulative and maximal disease scores, incidence and duration of disease, and percentage 

weight loss (Table 3.2, combined experiments 1-3).  GMCSF-NAg presented as a more profound 

inhibitor of EAE than MCSF-NAg (P < 0.013) with respect to cumulative and maximal disease 

scores, and percentage weight loss (Table 3.2, combined experiments 1-3).  Overall, analysis of 

the pre-treatment regimens indicated that GMCSF-NAg was more effective than MCSF-NAg 

and NAg at inhibiting the development of severe EAE.       

Next we examined whether the tolerogenic mechanism of GMCSF-NAg and MCSF-

NAg, in Lewis rats, was dependent on the covalent linkage between cytokine and NAg domains.  

Rats were pretreated with 4.0 nmoles of NAg, MCSF-NAg, ‘MCSF + NAg’ as separate 

molecules, GMCSF-NAg or ‘GM-CSF + NAg’ as separate molecules on days 21, 14 and 7 

before challenge with 50 μg DHFR-NAg in CFA on day 0.  EAE severity and weight loss were 

assessed daily.  As previously mentioned, the NAg pre-treatment control group exhibited a 

typical disease progression characterized by severe EAE (ataxia, partial or full hind limb 

paralysis) on days 11.5 – 15 and significant weight loss (10 - 20% weight loss) between days 14 

and 23 (Figure 16).  The ‘GM-CSF + NAg’ pre-treatment group exhibited significant weight loss 

between days 11 and 18, and a notable early onset of severe EAE beginning on day 9.5 and 

continuing through day 13.  The ‘M-CSF + NAg’ group exhibited a more typical progression of 

EAE characterized by severe EAE on days 11.5 – 13.5 and significant weight loss on days 12 - 

20 (Figure 3.17).   

The tolerogenic mechanism of the GMCSF-NAg and MCSF-NAg pre-treatment 

regimens required covalent linkage between the cytokine and NAg domains (Figure 3.17 an 
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Table 3.2).  Analysis of the daily group EAE scores and the daily percent maximal weight loss 

revealed that GMCSF-NAg was a significantly better tolerogen than the ‘GMCSF + NAg’ (EAE 

scores: P < 0.002 for days 9 - 12; Weight loss: P < 0.029 for days 9 - 19) and ‘MCSF + NAg’ 

(EAE scores: P < 0.003 for days 9,5, 11 – 13.5; Weight loss: P < 0.012 for days 12 - 21) pre-

treatment regimens (Figure 3.17).  In more detail, groups that received the GMCSF-NAg pre-

treatment regimen exhibited significantly less severe disease than those that received ‘GM-CSF 

+ NAg’ (P < 0.001) and ‘M-CSF + NAg’ (P < 0.001), regarding cumulative and maximal disease 

scores, incidence and duration of disease, and percentage weight loss (Table 3.2, combined 

experiments 1-3).  Furthermore, the groups that received the MCSF-NAg pre-treatment regimen 

exhibited significantly less severe disease than those that received ‘MCSF + NAg’ (P < 0.033) 

and ‘GMCSF + NAg’ (P < 0.008) with respect to maximal disease scores, incidence and duration 

of disease, and percentage weight loss (Table 3.2, combined experiments 1-3).  MCSF-NAg was 

additionally more tolerogenic than ‘GM-CSF + NAg’ (P < 0.008) with respect to the overall 

cumulative disease score.  Analysis of the daily scores and weight changes (Figure 3.17) 

confirmed that MCSF-NAg was a significantly better tolerogen than ‘GMCSF + NAg’ (EAE 

scores: P < 0.007 for days 9 – 10.5; Weight loss: P < 0.017 for days 9 – 10, 12) and ‘MCSF + 

NAg’ (EAE scores: P < 0.016 on day 9.5).  Altogether, these data showed that the tolerogenic 

nature of GMCSF-NAg and MCSF-NAg required covalent linkage between the cytokine and 

NAg domains, and was not due to the intrinsic activity of the cytokine alone. 

 105



  
 

Table 3.1: GMCSF-NAg and MCSF-NAg in CFA promoted a tolerogenic response when 

compared to NAg in CFA.  We tested the potential of GMCSF-NAg in CFA and MCSF-NAg 

in CFA to induce EAE when compared to NAg in CFA.  Lewis rats were challenged with 0.5 

nmoles GMCSF-NAg, MCSF-NAg, or NAg in CFA.  Rats were scored at daily for 4 weeks.  

Severe EAE was defined as the incidence of partial paralysis or full hind-limb paralysis.  Rats 

challenged with GMCSF-NAg in CFA and MCSF-NAg in CFA exhibited less severe disease as 

compared to the rats that received NAg in CFA.  Compared with NAg, GMCSF-NAg (P < 0.001 

for all comparisons) and MCSF-NAg (P < 0.038 for all comparisons) significantly diminished 

mean cumulative scores, maximal scores and the number of days rats exhibited severe EAE.  The 

data from this experiment provided the first indication that GMCSF-NAg and MCSF-NAg had 

tolerogenic potential.  Statistical analyses were performed with one-way ANOVA with 

Bonferroni post-hoc tests.  This experiment was performed one time.   
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Incidence Mean Median Mean Median Mean Day Incidence Mean #
Challenge of Cumulative Cumulative Maximal Maximal of of Severe Days with

EAE Score Score Intensity Intensity Onset EAE Severe EAE

2.8 ± 0.4 11.4 ± 0.910.2

5

NAg in CFA 5 of 5 10.6 ± 2.1 3.0 ± 0.0 5 of 5 3.2 ± 0.8

MCSF-NAg in CFA 4 of 4 5.0 ± 2.0 2.0 ± 0.8 2.2 ± 0.3 9.0 ± 6.0 3 of 4 1.5 ± 1.0

0.6 2.0 ± 0.0 6.5 ± 7.5 1 of 4 0.3 ± 0.5GMCSF-NAg in CFA 2 of 4 1.2 ± 1.6 0.6 ± 1.0



  
 

Figure 3.16: GMCSF-NAg was a potent tolerogen that prevented the development of severe 

EAE.  Rats were pre-treated with 4 nmoles of GMCSF-NAg, MCSF-NAg, and NAg on days -

21, -14 and -7 days before challenge with 50 μg of DHFR-NAg in CFA on day 0.  Rats were 

scored twice a day at approximate 12 hour intervals and weights were recorded daily.  Shown are 

the time-courses of clinical scores (A) and weight loss (B) for experiment 1 (Table 3.2).  The 

NAg pre-treatment control group exhibited a typical disease progression characterized by severe 

EAE (ataxia, partial or full hind limb paralysis) on days 11.5 – 15 and significant weight loss 

(defined as a 10 - 20% weight loss) between days 14 and 23.  The daily group EAE scores and 

the daily percent maximal weight loss showed that GMCSF-NAg (EAE scores: P < 0.037 for 

days 12 – 14; Weight loss: P < 0.035 for days 11 - 28) and MCSF-NAg (EAE scores: P < 0.017 

for days 10.5, 12 – 13; Weight loss: P < 0.042 for days 15 - 22) pre-treatment regimens 

significantly reduced EAE severity when compared to the NAg pre-treatment group.  GMCSF-

NAg was significantly more protective than MCSF-NAg with respect to EAE scores (P < 0.029 

on day 14) and EAE associated weight loss (P < 0.029 for days 16 - 23).  Statistical analyses 

were performed with one-way ANOVA with Bonferroni post-hoc tests.   
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Table 3.2:  GMCSF-NAg was a potent tolerogen that required covalent linkage between the 

cytokine and NAg domains when administered before encephalitogenic challenge.  Rats 

were pre-treated with 4 nmoles of GMCSF-NAg, MCSF-NAg, NAg, ‘GM-CSF + NAg’ as 

separate molecules, and ‘M-CSF + NAg’ as separate molecules on days -21, -14 and -7 days 

before challenge on day 0.  Rats were scored twice a day at approximate 12 hour intervals and 

weights were recorded daily.  Severe EAE was defined by disease scores of 1.0 - 3.0.  

bExperiments 1-3 were combined for statistical analysis.  Statistical significance with respect to 

cumulative and maximal disease scores, incidence and duration of disease, and percentage 

weight loss between pre-treatment groups is listed as follows: GMCSF-NAg (P < 0.001) and 

MCSF-NAg (P < 0.008) pre-treatment regimens were significantly more tolerogenic than NAg, 

the GMCSF-NAg pre-treatment regimens was significantly more tolerogenic than the ‘GM-CSF 

+ NAg’ (P < 0.001) and ‘M-CSF + NAg’ (P < 0.001) regimens, and the MCSF-NAg pre-

treatment regimen was significantly more tolerogenic than the ‘MCSF + NAg’ (P < 0.033) and 

‘GMCSF + NAg’ (P < 0.008) regimens.  GMCSF-NAg presented as a more profound inhibitor 

of EAE than MCSF-NAg (P < 0.013) with respect to cumulative and maximal disease scores, 

and percentage weight.  No significant differences were noted among treatment groups regarding 

day of onset.    
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Exp. 
 

Pre-Treatment  a 
 

Incidence 
 

Mean 
Cum. 
Score 

Median 
Cum. 
Score 

Mean 
Max. 
Score 

Median 
Max. 
Score 

% Weight 
Loss 

Incidence 
of Severe 

EAE 

Mean # Days 
with Severe 

EAE 

          
1 NAg 8 of 8 16.9 ± 5.8 17.3 2.8 ± 0.7 3.0 18.8 ± 5.5 8 of 8 2.9 ± 1.0 

 MCSF-NAg  5 of 5 4.3 ± 0.9 4.0 0.8 ± 0.7 0.5 10.1 ± 2.9 1 of 5 0.2 ± 0.5 

 GMCSF-NAg  5 of 5 1.8 ± 0.8 1.5 0.3 ± 0.0 0.3 0.6 ± 1.9 0 of 5 0.0 ± 0.0 
     

2 NAg 7 of 7 15.4 ± 5.2 16.0 2.9 ± 1.0 3.0 17.2 ± 2.8 7 of 7 2.7 ± 0.9 

 GM-CSF + NAg  4 of 4 14.9 ± 4.4 16.4 2.9 ± 0.3 3.0 15.9 ± 1.6 4 of 4 2.8 ± 0.3 

 M-CSF + NAg  4 of 4 10.6 ± 4.0 11.6 2.5 ± 1.0 3.0 14.9 ± 1.7 4 of 4 2.3 ± 0.5 

 MCSF-NAg  4 of 4 6.7 ± 3.7 7.8 2.1 ± 1.3 2.5 13.4 ± 2.1 3 of 4 1.4 ± 1.0 

 GMCSF-NAg  4 of 4 1.3 ± 0.5 1.1 0.3 ± 0.1 0.3 5.3 ± 3.2 0 of 4 0.0 ± 0.0 

          
3 NAg  6 of 6 12.5 ± 8.2 12.9 2.1 ± 1.0 2.5 18.0 ± 2.0 6 of 6 2.2 ± 1.2 

 GM-CSF + NAg  6 of 6 14.9 ± 5.8 12.9 3.0 ± 0.0 3.0 17.7 ± 2.0 6 of 6 2.8 ± 0.9 

 M-CSF + NAg 6 of 6 12.4 ± 7.3 13.9 2.3 ± 1.2 3.0 19.7 ± 1.6 5 of 6 2.3 ± 1.3 

 MCSF-NAg  5 of 5 6.0 ± 7.0 2.7 1.2 ± 1.2 0.5 14.5 ± 1.3 2 of 5 1.0 ± 1.4 

 GMCSF-NAg  2 of 6 0.5 ± 0.8 0.0 0.1 ± 0.1 0.0 7.8 ± 4.4 0 of 6 0.0 ± 0.0 

1-3 b NAg 21 of 21 15.1 ± 6.3 17.3 2.6 ± 0.7 3.0 17.9 ± 3.8 21 of 21 2.6 ± 1.0 

 GM-CSF + NAg  10 of 10 14.9 ± 5.0 14.3 3.0 ± 0.2 3.0 17.0 ± 2.0 10 of 10 2.8 ± 0.7 

 M-CSF + NAg 10 of 10 11.7 ± 6.0 12.8 2.4 ± 1.1 3.0 17.8 ± 2.9 9 of 10 2.3 ± 1.0 

 MCSF-NAg  14 of 14 5.6 ± 4.4 4.1 1.3 ± 1.1 0.5 12.6 ± 2.8 6 of 14 0.8 ± 1.1 

 GMCSF-NAg  11 of 15 1.2 ± 0.9 1.3 0.2 ± 0.1 0.3 5.0 ± 4.3 0 of 15 0.0 ± 0.0 

          



  
 

Figure 3.17: The tolerogenic potential of GMCSF-NAg required covalent linkage between 

the GM-CSF and NAg domains.  Rats were pre-treated with 4 nmoles of GMCSF-NAg, 

MCSF-NAg, a mixture of GM-CSF and NAg (GM-CSF + NAg), or a mixture of M-CSF and 

NAg (M-CSF + NAg) on days -21, -14 and -7 days before challenge day 0.  Rats were scored 

twice a day at approximate 12 hour intervals and weights were recorded daily.  Shown are the 

time-courses of clinical scores (A) and weight loss (B) for experiments 2 and 3 (reference Table 

3.2).  Analysis of the daily group EAE scores and the daily percent maximal weight loss revealed 

that GMCSF-NAg was a significantly better tolerogen than the ‘GMCSF + NAg’ (EAE scores: P 

< 0.002 for days 9 - 12; Weight loss: P < 0.029 for days 9 - 19), ‘MCSF + NAg’ (EAE scores: P 

< 0.003 for days 9,5, 11 – 13.5; Weight loss: P < 0.012 for days 12 - 21), and MCSF-NAg (EAE 

scores: P < 0.02 for days 13.5 and 14.5; Weight loss: P < 0.012 for days 14 - 20) pre-treatment 

regimens.  MCSF-NAg was a significantly better tolerogen than ‘GMCSF + NAg’ (EAE scores: 

P < 0.007 for days 9 – 10.5; Weight loss: P < 0.017 for days 9 – 10, 12) and ‘MCSF + NAg’ 

(EAE scores: P < 0.016 on day 9.5).  Together, these data showed that the tolerogenic nature of 

GMCSF-NAg and MCSF-NAg required covalent linkage between the cytokine and NAg 

domains, and was not due to the intrinsic activity of the cytokine alone. 
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3.8 GMCSF-NAg AND MCSF-NAg TREATMENT REGIMENS WERE TOLEROGENIC 

AFTER THE ONSET OF EAE 

We additionally investigated whether the tolerogenic potential of GMCSF-NAg and 

MCSF-NAg could be utilized to treat Lewis rats with active EAE.  GMCSF-NAg was 

emphasized in the treatment experiments due to its greater tolerogenic potential than MCSF-

NAg, as seen in the pre-treatment experiments.  In the treatment experiments, rats were 

challenged subcutaneously with 50 μg DHFR-NAg in CFA at the base of the tail on day 0 (Table 

3.3, experiments 1 – 3) with an additional administration of 400 ng pertussis toxin 

intraperitoneally on days 0 and 1 (Table 3.3, experiment 3).  Pertussis toxin was administered to 

induce hyperacute EAE, a more severe form of EAE characterized by severe paralytic disease 

and high mortality.  The hyperacute model was examined because it presented a more rigorous 

test for the tolerogenic activity of GMCSF-NAg.  Rats were monitored for the early 

manifestations of EAE (distal limp and full limp tail).  On the day of initial treatment, rats were 

matched into treatment groups based on early clinical signs of EAE.  In other words, the rats 

matched in one treatment group exhibited an average disease score comparable to the rats in 

another treatment group.  Rats were treated with equal molar doses of MCSF-NAg, GMCSF-

NAg, ‘GM-CSF + NAg’ as separate molecules or NAg alone.  Specifically, the rats in 

experiment 1 and 2 (Table 3.3) were treated with 1 nmole of designated protein (s) on days 9, 10, 

12, and 14 (experiment 1), and on days 10, 11 and 13 (experiment 2).  The rats in experiment 3 

(Table 3.3) were treated with 4 nmoles on day 8 and 1 nmole on day 11.  The variations in dose 

concentration and treatment duration between experiments 1, 2, and 3 were made to assess the 

minimum number of doses required to induce tolerance.   
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Rats were monitored for clinical manifestations of EAE, which included EAE severity 

and weight loss.  The GMCSF-NAg treatment was significantly more protective than ‘GM-CSF 

+ NAg’ (P < 0.020), or NAg (P < 0.004) with respect to cumulative and maximal disease scores, 

incidence and duration of disease, and percentage weight loss (Table 3.3, combined experiments 

1 - 3).  Additionally, MCSF-NAg was significantly more protective than NAg (P < 0.05) with 

respect to cumulative and maximal disease scores, incidence and duration of disease, and 

percentage weight loss (Table 3.3, experiment 1).  There was no significant difference between 

the MCSF-NAg and GMCSF-NAg treatment groups.  Overall, these data indicated that GMCSF-

NAg must be covalently linked in order to effectively block the development of severe EAE.  

The treatment duration of 4 days versus 3 days between experiments 1 and 3 (Table 3.3) 

respectively did not influence the treatment outcome.  The GMCSF-NAg treatment regimen for 

experiment 3 (Table 3.3) appeared to be slightly less effective than the regimens for experiments 

1 and 2.  This difference is mostly like due to the fact that experiment 3 tested the ability of 

GMCSF-NAg to induce tolerance in the hyperacute EAE model (DHFR-NAg in CFA plus 

pertussis toxin), a more severe EAE model, in comparison with the traditional EAE model 

(DHFR-NAg in CFA) studied in experiments 1 and 2.  The fact that GMCSF-NAg was 

tolerogenic in both the traditional and hyperacute EAE models supports the idea that GMCSF-

NAg is a potent tolerogen.       

The daily group EAE scores (experiments 1 – 3 combined) and the daily percent maximal 

weight changes (experiments 1 – 3 combined) for rats treated with GMCSF-NAg, ‘GM-CSF + 

NAg’, or NAg also indicated that EAE severity was significantly diminished by the GMCSF-

NAg treatment regimen (Figure 3.18).  The NAg treatment control group exhibited severe EAE 

(ataxia, partial or full hind limb paralysis) on days 10.5 – 12.5 and significant weight loss (10 - 
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25% weight loss) between days 11 and 18 (Figure 3.18).  The ‘GM-CSF + NAg’ treatment group 

exhibited severe EAE on days 12.5 – 13.5 and significant weight loss (10 - 25% weight loss) 

between days 11 and 18.  The GMCSF-NAg group exhibited significant weight loss between 

days 12 and 17, but did not exhibit severe EAE.  In comparison of the daily average scores, all 

treatment groups exhibited some reduction of EAE severity.  Typically, the average peak of EAE 

severity for a no treatment control group would be between a score of 2 – 3 (data not shown).  

Yet EAE severity for the NAg treatment group peaked at a score of ~1.4 on day 11.5, the ‘GM-

CSF + NAg’ treatment group peaked at ~1.2 on day 13, and the GMCSF-NAg peaked at a score 

of 0.5.  Overall, GMCSF-NAg was a more significant tolerogen than ‘GM-CSF + NAg’ (EAE 

scores: P < 0.022 for days 11 – 13.5; Weight loss: P < 0.022 for days 12, 13, 15 – 18) or NAg 

(EAE scores: P < 0.015 for days 10 – 12.5; Weight loss: P < 0.007 for days 12, 13, 15 – 18), 

indicating that the effectiveness of GMCSF-NAg treatment was due to covalent linkage between 

GM-CSF and NAg.  This experiment showed that GMCSF-NAg could promote antigen-specific 

tolerance under inflammatory conditions, which contradicts the dogma that tolerance can only be 

 induced in the steady state.  
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Table 3.3: GMCSF-NAg was a potent tolerogen that required covalent linkage between the 

cytokine and NAg domains when administered during the onset of EAE.  aRats were 

challenged with 50 μg of DHFR-NAg in CFA on day 0 (experiments 1-3) and also with pertussis 

toxin (400 ng i.p.) on days 0 and 1 (experiment 3).  During disease onset, rats were matched for 

clinical signs of EAE such that the rats in one treatment group exhibited an average disease score 

comparable to the rats in another treatment group.  The range of average clinical scores per 

group for experiments 1 - 3 respectively was 0.36 - 0.39, 0.28 - 0.29, and 0.29 on the day of the 

initial treatment.  Rats were treated with 1 nmole of the designated proteins on days 9, 10, 12, 

and 14 (experiment 1), days 10, 11 and 13 (experiment 2), or 4 nmoles on day 8 and 1 nmole on 

day 11 (experiment 3).  GM-CSF and NAg in the ‘GMCSF + NAg’ regimen were administered 

as a mixture of equal molar doses.  bExperiment 1: MCSF-NAg was significantly more 

protective than NAg with respect to mean and median cumulative scores (P ≤ 0.003), mean and 

median maximal scores (P < 0.05), percent weight loss (P < 0.001), the incidence of severe EAE 

(P = 0.0256), and mean number of days with severe EAE (P < 0.001) (experiment 1).  

cCombined experiments 1 – 3: The GMCSF-NAg treatment was significantly more protective 

than ‘GM-CSF + NAg’ (P < 0.020), or NAg (P < 0.004) with respect to cumulative and maximal 

disease scores, incidence and duration of disease, and percentage weight loss.     
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Exp. 
 

Treatment a 
 

 
Incidence 

 

Mean 
Cum. 
Score 

Median 
Cum. 
Score 

Mean 
Max. Score 

Median 
Max. 
Score 

% Weight 
Loss 

Incidence 
of Severe 

EAE 

Mean # 
Days with 

Severe 
EAE 

1 b NAg 7 of 7 9.4 ± 3.3 8.3 2.4 ± 0.8 3.0 20.3 ± 3.0 7 of 7 2.1 ± 0.5 

 MCSF-NAg 8 of 8 3.6 ± 2.4 2.6 1.1 ± 1.2 0.4 13.7 ± 4.5 3 of 8 0.4 ± 0.7 

 GM-CSF + NAg 8 of 8 4.4 ± 2.2 3.5 1.0 ± 1.0 0.5 20.9 ± 2.4 3 of 8 0.5 ± 0.8 

 GMCSF-NAg 9 of 9 2.8 ± 0.8 2.5 0.6 ± 0.6 0.5 12.7 ± 3.8 2 of 9 0.1 ± 0.2 
     

2 NAg 9 of 9 6.4 ± 5.1 4.5 1.6 ± 1.1 1.0 18.2 ± 2.6 7 of 9 1.7 ± 1.5 

 GM-CSF + NAg 7 of 7 9.0 ± 5.7 11.0 2.1 ± 1.2 3.0 21.3 ± 3.6 5 of 7 1.6 ± 1.5 

 GMCSF-NAg 8 of 8 2.2 ± 0.5 2.3 0.4 ± 0.1 0.4 13.6 ± 2.2 0 of 8 0.0 ± 0.0 

3 NAg 6 of 6 9.2 ± 6.9 6.4 1.9 ± 1.2 2.0 26.2 ± 2.9 5 of 6 1.8 ± 1.3 

 GM-CSF + NAg 7 of 7 10.6 ± 5.3 10.8 2.4 ± 1.0 3.0 25.1 ± 1.7 7 of 7 1.9 ± 0.8 

 GMCSF-NAg 7 of 7 5.1 ± 3.6 3.5 1.4 ± 1.2 1.0 19.8 ± 4.7 5 of 7 0.6 ± 0.7 

1-3 c NAg 22 of 22 8.1 ± 5.1 6.6 2.0 ± 1.1 2.0 21.1 ± 4.3 19 of 22 1.8 ± 1.2 

 GM-CSF + NAg 22 of 22 7.8 ± 5.2 6.1 1.8 ± 1.2 2.0 22.3 ± 3.2 15 of 22 1.3 ± 1.2 

 GMCSF-NAg 24 of 24 3.3 ± 2.3 2.6 0.8 ± 0.8 0.5 15.1 ± 4.7 7 of 24 0.2 ± 0.5 



  
 

Figure 3.18: GMCSF-NAg required covalent linkage between the cytokine and NAg 

domains to effectively block the progression of EAE when treatment was initiated after 

disease onset.  Rats were challenged with 50 μg of DHFR-NAg in CFA on day 0 (experiments 1 

- 3) and with pertussis toxin (400 ng i.p.) on days 0 and 1 (experiment 3).  On the day of initial 

treatment, rats were matched into treatment groups based on clinical signs of EAE.  Rats were 

treated with 1 nmole of the designated proteins on days 9, 10, 12, and 14 (experiment 1), days 

10, 11 and 13 (experiment 2), or 4 nmoles on day 8 and 1 nmole on day 11 (experiment 3).  

Shown are the compiled time-course data for clinical EAE scores (A) and weight loss (B) for 

experiments 1, 2, and 3 of Table 3.3.  GMCSF-NAg was a more significant tolerogen than ‘GM-

CSF + NAg’ (EAE scores: P < 0.022 for days 11 – 13.5; Weight loss: P < 0.022 for days 12, 13, 

15 – 18) or NAg (EAE scores: P < 0.015 for days 10 – 12.5; Weight loss: P < 0.007 for days 12, 

13, 15 – 18), indicating that the effectiveness of GMCSF-NAg treatment was due to covalent 

linkage between GM-CSF and NAg.   

 119



A

B

6 8 10 12 14 16 18

Se
ve

ri
ty

 o
f E

A
E

0.0

0.5

1.0

1.5

Days since encephalitogenic challenge
6 8 10 12 14 16 18

Pe
rc

en
t I

ni
tia

l W
ei

gh
t

70

75

80

85

90

95

100

GMCSF-NAg
GM-CSF + NAg
NAg 



  
 

3.9 GMCSF-NAg DID NOT ENHANCE NAg SPECIFIC ANTIBODY PRODUCTION 

EAE results from cell mediated damage against neuroantigens in the CNS, however the 

presence of neuroantigen-specific antibodies can exacerbate EAE.  Therefore, antibody 

production against neuroantigens is an important consideration in the pathogenesis of EAE.  We 

examined whether pre-treatment with NAg, GMCSF-NAg, or MCSF-NAg prior to 

encephalitogenic challenge (50 μg DHFR-NAg in CFA on day 0) significantly altered antibody 

production against NAg (Figure 3.19A).  Serum samples were obtained from terminal bleeds of 

GMCSF-NAg and MCSF-NAg pretreated rats from experiment 1 (Table 3.2 and Figure 16).  

Terminal bleeds were performed four weeks post-challenge, when the rats had fully recovered 

from EAE.  ELISA was used to analyze serum IgG and IgM reactivity against NAg.  NAg (P < 

0.005) and MCSF-NAg (P < 0.002) pre-treatments resulted in significant decrease in antibody 

between the titration points of 1 / 1,000 and 1 / 10,000 when compared to the no pre-treatment 

control serum.  GMCSF-NAg (P < 0.002) pre-treatment also resulted in a significant decrease in 

antibody between the titration points of 1 / 10 and 1 / 1,000 when compared to the no pre-

treatment control serum.  For all samples, the serum reactivity against NAg titrated to 1 / 10,000.  

These data showed that pre-treatment with NAg, MCSF-NAg, and GMCSF-NAg did not 

enhance NAg specific antibody production.    

Next we examined whether the GMCSF-NAg, GM-CSF, ‘GM-CSF + NAg’, or NAg 

treatment regimens altered NAg specific antibody titers (Figure 3.19B).  Rats were challenged 

with 50 μg DHFR-NAg in CFA on day 0 and subsequently monitored for the early 

manifestations of EAE (distal limp and full limp tail).  On the day of initial treatment, rats were 

matched into treatment groups based on early clinical signs of EAE.  Rats were treated with 

equal molar doses of GMCSF-NAg, ‘GM-CSF + NAg’ as separate molecules, GM-CSF, or NAg 
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on days 9, 10, 12, and 14 (Table 3.3, experiment 1).  Terminal bleeds were performed four weeks 

post-challenge, when the rats had fully recovered from EAE.  ELISA was used to analyze serum 

IgG and IgM reactivity against NAg.  GM-CSF (P < 0.006), ‘GM-CSF + NAg’ (P < 0.001), and 

GMCSF-NAg (P < 0.001) treatments resulted in significant decrease in antibody between the 

titration points of 1 / 100 and 1 / 1,000 when compared to the no treatment control serum.  The 

NAg (P < 0.002) treatment alone resulted in a significant decreased antibody at 1 / 100 when 

compared to the no treatment control serum.  For all samples, the serum reactivity against NAg 

titrated to 1 / 10,000.  These data showed that treatment with NAg, GMCSF-NAg, ‘GM-CSF + 

NAg’ as separate molecules, GM-CSF, or NAg did not enhance NAg specific antibody 

production.    
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Figure 3.19: Pre-treatment and treatment with GMCSF-NAg does not enhance NAg 

specific antibody production in Lewis rats.  Terminal bleeds were performed four weeks post-

challenge, when the rats had fully recovered from EAE.  ELISA was performed to test serum 

reactivity against NAg.  Goat anti-rat IgM+ IgG conjugated to NPP was used as the secondary 

antibody to detect rat serum reactive to the NAg peptide.  (A) Rats were pre-treated with 4 

nmoles of GMCSF-NAg, MCSF-NAg, or NAg on days -21, -14 and -7 days before challenge on 

day 0.  Serum samples were obtained from terminal bleeds of pretreated rats from experiment 1 

(Table 3.2).  The NAg (P < 0.005) and MCSF-NAg (P < 0.002) pre-treatment resulted in a 

significant decrease in antibody titers between 1 / 1,000 and 1 / 10,000 when compared to the no 

pre-treatment control serum.   Titers from the GMCSF-NAg (P < 0.002) pre-treatment group 

were significantly diminished between 1 / 10 and 1 / 1,000 when compared to the no pre-

treatment control serum.  These data were representative of two experiments.  (B) Rats were 

challenged on day 0.  On the day of initial treatment, rats were matched into treatment groups 

based on clinical signs of EAE.  Rats were treated with 1 nmole of the GMCSF-NAg, ‘GM-CSF 

+ NAg’, GM-CSF, or NAg on days 9, 10, 12, and 14 post-challenge (Table 3.3, experiment 1).  

GM-CSF (P < 0.006), ‘GM-CSF + NAg’ (P < 0.001), and GMCSF-NAg (P < 0.001) treatments 

resulted in a significant decrease in antibody titers between 1 / 100 and 1 / 1,000, while antibody 

titers from the NAg (P < 0.002) treatment only resulted in a significant decreased antibody at 1 / 

100 when compared to the no treatment control serum.  This experiment was performed once.
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3.10 GENERATION OF IL2-NAg-GFP CONSTRUCTS 

We have designed GFP tagged cytokines as tools for potential applications that might 

involve tracking specific cell populations by immunohistochemistry or flow cytometry.  We have 

engineered and expressed five GFP tagged cytokines, including GMCSF-NAg-GFP, MCSF-

NAg-GFP, GFP-NAg-IL16, IL4-NAg-GFP, and IL2-NAg-GFP.  Only the experiments 

describing the IL2-NAg-GFP data will be presented because it was the most successfully studied 

fusion protein.  The significance of IL2-NAg-GFP fusion proteins lies with the ability of IL-2 to 

target GFP to T cells bearing a functional IL-2 receptor.  The capacity of IL2-NAg-GFP to label 

T cells could be utilized in studies that examine the localization of encephalitogenic T cells or 

regulatory T cells.    

The IL2-NAg-GFP fusion protein was constructed by covalently linking the genes 

encoding GFP and IL2-NAg (previously generated on the pFastBac-1 plasmid) by a two-step, 

overlap and extension PCR.  The overlap and extension PCR was performed with NAg-GFP 

fusion primers.  The sequences of the upstream fusion primers (60 base pairs in length) contained 

a 5’ end complimentary to the NAg domain and a 3’ end complimentary to the N-terminus of the 

GFP domain.  The downstream primer (69 base pairs in length) was composed of a 5’ – 3’ 

sequence that complimented the pFastBac-1 plasmid sequence, a stop codon, the C-terminal 

histidine tag of IL2-NAg, 2 additional histidine residues, and a 3’ end that complimented C-

terminus of the GFP domain.  Ultimately, the upstream and downstream primers converged at 

the GFP domain.  In the first PCR step, GFP was amplified from the pKB2 plasmid (encoding 

GFP) using the NAg-GFP (2850) upstream fusion primer plus the downstream GFP fusion 

primer (2852).  The predicted amplification product of the first step PCR was 795 base pairs, 

which ran out around the 800 base pair standard on the agarose gel (Figure 3.20).  The high 
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molecular weight band (~1,600 base pairs) seen in the gel could have been the result of 

dimerized GFP PCR products.   

In the second PCR step, the amplified GFP product served as the extension primer.  The 

GFP PCR product encoded NAg, GFP, an 8 histidine tag, a stop codon, and a portion of the 

pFastBac-1 plasmid sequence.  The GFP PCR product was extended into the parental pFastBac-1 

plasmid encoding IL2-NAg.  The resulting product was ~5.9 kilobases in length and fell around 

the 4361 base pair Hind III fragment (Figure 3.21).  Parental plasmids remaining in the extension 

reaction were digested with DpnI prior to transformation.  The digestion was performed to 

increase transformation efficiency of the IL2-NAg-GFP extension product into electrocompetent 

Top10 E. coli by digesting away the parental plasmid.  Restriction enzyme digestion of the 

extension product did not result in visible digest products of parental plasmid, presumably due to 

the low level of contaminating parental plasmid.  Therefore, positive and negative controls, i.e. 

parental plasmid in the presence or absence of restriction enzyme, were run to test for enzyme 

reactivity.  Colonies of Top10 E. coli transformed with pFastBac-1 plasmids were selected in 

ampicillin, and PCR screened for the presence of GFP (Figure 3.22).  Colonies were screened 

with the upstream NAg-GFP fusion primer (2850) and the downstream GFP fusion primer 

(2852).  Colonies that were positive for IL2-NAg-GFP yielded an amplicon around 800 base 

pairs.  Plasmids were isolated from the GFP positive colonies, and were subsequently sequenced.  

No point mutations were identified in the IL2-NAg-GFP fusion construct.  Asterisks denoted the 

colony that contained the IL2-NAg-GFP construct without mutation.   
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Figure 3.20: Amplification of GFP using NAg-GFP fusion primers.  IL2-NAg-GFP fusion 

proteins were generated by a 2 step PCR process.  In the first PCR step, GFP was amplified 

using an upstream primer that consisted of two domains.  The 5’ domain was complimentary to 

the NAg domain and a 3’ domain complimentary to the N-terminus of GFP.  The 5’ to 3’ 

sequence of the downstream primer complemented the pFastBac-1 plasmid sequence, a stop 

codon, the C-terminal his-tag of IL2-NAg, and the C-terminus of the GFP domain.  The 

predicted band size for the GFP amplicon was 795 base pairs, which ran near the 800 base pair 

standard on the 1.0 % agarose gel.  Lane 1 contained the 100-base pair ladder.  Lanes 2 - 4 

contained the GFP PCR products run on the gel in triplicate. 
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Figure 3.21: Extension of GFP into the pFastBac-1 plasmid encoding IL2-NAg.  IL2-NAg-

GFP fusion proteins were generated by a 2-step PCR process.  In the second PCR step, the 

amplified GFP PCR product, from Figure 3.20, served as the extension primer.  The GFP 

amplicon encoded for NAg, GFP, an 8 his-tag, a stop codon, and a portion of the pFastBac-1 

plasmid sequence.  Lane 2, GFP was extended into the pFastBac-1 plasmid encoding IL2-NAg, 

as shown by generation of the high molecular weight product of approximately 5.9 kb.  

Methylated parental plasmids (without the GFP insert) were digested from the extension reaction 

with the Dpn I restriction enzyme.  Lane 4 showed the DpnI digest product from the IL2-NAg-

GFP extension reaction.  Lanes 5 and 6 served as controls for the restriction enzyme digest.  

Lane 6 showed the GM-CSF pFastBac-1 parental plasmid digested with DpnI (positive control) 

and GM-CSF parental plasmid in the absence of Dpn I (negative control).  Lanes 1 and 3 

contained the Hind III molecular weight standards on the 1.0 % agarose gel.  The high molecular 

weight band of IL2-NAg-GFP appeared as high molecular weight band above the 4361 base pair 

standard. 
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Figure 3.22: PCR screen of E. coli transformed with IL2-NAg-GFP.  Top 10 E. coli colonies 

were transformed with pFastbac-1 plasmids encoding IL2-NAg-GFP.  Colonies were selected for 

ampicillin resistance encoded by the pFastBac-1 plasmid.  Colonies were screened with the 

upstream NAg-GFP fusion primer (2850) and the downstream GFP fusion primer (2852).  Lane 

1 contained the 100 base pair molecular weight standard.  (Lanes 2 - 7) Colonies that exhibited 

bands around 800 base pairs were considered positive for transformation with the pFastBac-1 

plasmid encoding IL2-NAg-GFP.  Lane 3 did not exhibit a GFP amplicon and was therefore 

considered to be negative for the transformation.  The bands that appeared below the 100 base 

pair standard were considered to be primer dimers.  PCR products were run on a 1.0% agarose 

gel.  Asterisks denoted the positive colony that contained no point mutations.  
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3.11 GENERATION OF AN IL2-NAg-GFP EXPRESSION SYSTEM  

The DNA encoding IL2-NAg-GFP was transposed from pFastBac-1 into a baculoviral 

vector within E. coli DH10Bac.  The pFastBac-1 plasmids encoding IL2-NAg-GFP were 

electroporated into E. coli DH10Bac.  Site-specific transposition was mediated by the Tn7 

transposase encoded in a helper plasmid within DH10Bac E. coli.  The transposase Tn7 

translocated the IL2-NAg-GFP constructs (flanked by mini-Tn7 sequences) from pFastBac-1 

into the bacmid DNA vector (containing a mini-attTn7 site).  Colonies that had undergone 

transposition were detected through blue and white screening in the presence of Bluo-Gal and the 

LacI repressor IPTG.  White colonies were presumably positive for baculoviral vectors that 

encoded IL2-NAg-GFP because transposition at the bacmid attTn7 site disrupted the lacZα gene, 

such that β-galactosidase was not present.  Transformed DH10Bac colonies were selected in the 

presence of kanamycin, gentamicin and tetracycline, and were subsequently PCR screened for 

GFP.   

Baculoviral vectors encoding IL2-NAg-GFP were transfected into Sf9 insect cells.  Seven 

days post-transfection, biological activity (i.e., fluorescence) of the GFP domain was tested by 

flow cytometry of infected Sf9 insect cells.  GFP fluorescence was excited at 488 nm and 

emission was detected with the FITC filter set at 530 nm using the Becton Dickinson FACScan 

flow cytometer.  Sf9 cells transfected with the IL2-NAg-GFP1.7 or IL2-NAg-GFP3.3 

baculovirus exhibited GFP fluorescence when compared to untransfected Sf9 cells (Figure 3.24).  

Untransfected Sf9 cells displayed a mean fluorescence intensity of 9.5, while IL2-NAg-GFP1.7 

and IL2-NAg-GFP3.3 transfected Sf9 cells exhibited a mean fluorescence of 22.9 and 36.7 

respectively.  The GFP domain was not overwhelming fluorescent.  This is likely due to the fact 
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that 488 nm excites GFP at the secondary excitation peak (395 nm is the primary excitation 

peak), perhaps resulting in a weak emission.  

Baculoviruses were released into the media after establishing a lytic infection within the 

Sf9 culture.  Individual viruses that encoded IL2-NAg-GFP were isolated by plaque purification.  

In other words, individual viruses were isolated by co-culturing Sf9 insect cells with limiting 

dilutions of baculovirus supernatant.  Viruses were selected based on their ability to promote a 

strong lytic infection and generate protein.  IL2-NAg-GFP proteins were designed to be secreted 

in the supernatant of baculoviral infected Sf9 insect cells, which made the fusion proteins readily 

available for biological testing.  Bioassays were performed on supernatants from the plaque 

purification assay in order to assess the biological activity of the NAg domain (Figure 3.24).  

RsL.11 T cells were co-cultured with irradiated, splenic APC (Lewis rat) plus supernatant from 

the plaque assay.  Antigenic proliferation of RsL.11 T cells was detected by [3H]thymidine 

incorporation.  Cultures were pulsed with [3H]thymidine on day 2 of a 3-day culture.   

The plaque purified IL2-NAg-GFP.1.7.D4 baculovirus was expanded in Sf9 cells for 6-8 

days to generate viral stocks for future protein expressions.  Proteins were expressed in large-

scale Sf9 cultures that were infected for four days with the baculovirus.  On day four of culture, 

supernatants were harvested and clarified of Sf9 cells.  Supernatants were ultimately 

concentrated and purified by affinity chromatography column consisting of immobilized single-

chain antibodies against the C-terminal histidine tag of IL2-NAg-GFP.  Purified IL2-NAg-GFP 

was analyzed on 12% SDS-PAGE to check for protein purity and size (Figure 3.25).  Protein 

purity was not essential for the use of IL2-NAg-GFP with in vitro applications, therefore only 

one purification step was performed.  Mature IL2-NAg-GFP (45.3 kDa) had no N-linked 

glycosylation sites and therefore the major band represented in the gel was likely an 
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unglycosylated form of IL2-NAg-GFP.  IL2-NAg-GFP appears as a band located between the 37 

kDa and 48 kDa molecular weight standards.  There are contaminating bands in this preparation 

due to purification by only one affinity column.   
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Figure 3.23: Biological activity of the GFP domain of IL2-NAg-GFP.  Baculoviral vectors 

encoding IL2-NAg-GFP were transfected into Sf9 insect cells.  Seven days post-transfection, 

biological activity of the GFP domain was assessed by flow cytometry using infected Sf9 cells.  

GFP fluorescence was excited at 488 nm and detected with the FITC filter set at 530 nm using 

the Becton Dickinson FACScan.  Data were analyzed with the CELLQuest software program.  

Untransfected Sf9 cells (represented by the filled in peak) displayed a mean fluorescence 

intensity of 9.5, while IL2-NAg-GFP1.7 and IL2-NAg-GFP3.3 transfected Sf9 cells exhibited a 

mean fluorescence of 22.9 and 36.7 respectively. 
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Figure 24: Plaque purification of baculoviruses that encoded IL2-NAg-GFP.  Individual 

baculoviruses that encoded IL2-NAg-GFP were plaque purified.  Sf9 insect cells (104 / well) 

were infected with a limiting dilution of designated baculovirus (10-5 - 10-8).  On day 9 of 

infection, supernatants from individual wells were tested for bioactivity.  Fusion proteins were 

secreted into the supernatant of baculoviral infected Sf9 insect cells and therefore readily 

available for biological testing by a NAg specific bioassay.  Irradiated splenic APC (5x105 / well) 

and NAg-specific RsL.11 T cells were cultured with supernatant from wells of the plaque 

purification assay.  Cultures were pulsed with [3H]thymidine on day 2 of a 3-day culture in order 

to assess RsL.11 proliferation.  The shaded well designated the baculovirus chosen for 

expansion.   
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Figure 3.25: The purity of IL2-NAg-GFP was determined by SDS-PAGE.  IL2-NAg-GFP 

fusion proteins were expressed in large-scale Sf9 insect cell cultures.  Supernatants were 

concentrated and subsequently purified by means of the 8 his-tag engineered at the C-terminus.  

IL2-NAg-GFP was purified by an affinity column consisting of immobilized single-chain 

antibodies against the C-terminal histidine tag.  Purified IL2-NAg-GFP was analyzed on 12% 

SDS-PAGE.  Lanes 1, 2, and 3 were respectively loaded with the protein ladder, purified IL2-

NAg-GFP, and the affinity column flow thru.  Purified  IL2-NAg-GFP (45.3 kDa) had no N-

linked glycosylation sites.  IL2-NAg-GFP appears as a band located between the 37 kDa and 49 

kDa molecular weight standards.  There are upper contaminating bands present at weights of 49 

kDa and greater.  Lower contaminating bands are also present.   
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3.12 BIOLOGICAL ACTIVITY OF THE IL-2 DOMAIN 

An IL-2 bioassay was performed on purified IL2-NAg-GFP in order to assess the 

biological activity of the cytokine domain (Figure 3.26).  CTLL indicator cells (104 / well) were 

cultured with IL2-NAg-GFP or IL2-NAg titrated on a log scale from 100 nM – 10 fM.  Cultures 

were pulsed with MTS / PMS after 48 hours and the color production was read at 492 nm.  

Biological activity of the IL-2 domains from IL2-NAg-GFP and IL2-NAg facilitated the survival 

and growth of CTLL cells.  Biological activity of IL2-NAg-GFP titrated to a concentration of 1 

nM, while IL2-NAg titrated to a concentration of 100 pM.  The half maximal IL-2 activity of 

IL2-NAg-GFP was diminished 10 fold when compared to the half maximal activity of IL2-NAg.  

The 10 fold reduction was potentially due to hindrance of the IL-2 domain by the covalently 

linked GFP or due to the diminished purity of IL2-NAg-GFP in comparison to IL2-NAg (data 

not shown). 

The cytokine activity of IL2-NAg-GFP was alternatively tested for the ability to target 

GFP to cells expressing the high affinity IL-2 receptor (α, β, γ subunits).  The IL-2 dependent 

R1T T cell clone and the BW5147 thymoma cell line, an IL-2 independent T cell hybridoma, 

served as the experimental variables (Figure 3.27).  BW5147 cells and IL-2 starved R1T cells 

(105 / well) were cultured with 100 nM IL2-NAg-GFP for 1 hour at 37oC.  R1T and BW5147 

were stained with propidium iodide to discern the dead cell population by flow cytometry.   The 

mean fluorescence intensity of unstained BW5147 (represented by the filled in peak) was 47 and 

IL2-NAg-GFP stained BW5147 was 70.  The mean fluorescence intensity of unstained R1T 

(represented by the filled in peak) was 80 and IL2-NAg-GFP stained R1T was 327.  These data 

indicated that IL2-NAg-GFP could be effectively utilized as a fluorescent ligand to identify those 

cells that express the high affinity IL-2 receptor.     
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The idea that IL2-NAg-GFP could target GFP specifically to cells expressing the high 

affinity IL-2 receptor was supported by an inhibition assay (Figure 3.28).  This assay was 

designed such that the IL-2 receptors on splenic APC were saturated or “inhibited” prior to the 

addition of IL2-NAg-GFP.  IL-2 receptor saturation would hypothetically prevent IL2-NAg-GFP 

from binding to the high affinity IL-2 receptor, resulting in diminished GFP fluorescence.  Lewis 

rat splenocytes (devoid of red blood cells) were activated with ConA and LPS for 24 hours.  

ConA and LPS served as mitogens for T cells and B cells, respectively.  After activation, 

splenocytes were washed and cultured overnight in the absence of IL-2, in order to empty the IL-

2 receptors.  Splenocytes (105 / well) were pre-treated with 100 nM of GM-CSF, M-CSF, IL-4, 

IL-2 or no cytokine for 3 hours at 37oC before incubation with 100 nM IL2-NAg-GFP for 1 hour.  

Cells were stained with propidium iodide to discern the dead cell population by flow cytometry.  

The mean fluorescence intensities of IL2-NAg-GFP labeled splenocytes with no cytokine pre-

treatment, with GM-CSF, M-CSF, or IL-4 pre-treatment were 470, 475, 471, and 486 

respectively.  Splenocytes pretreated with IL-2 prior to staining with IL2-NAg-GFP exhibited a 

mean fluorescence intensity of 216.  The decreased fluorescence indicated that IL-2 

competitively blocked IL2-NAg-GFP from binding the high affinity IL-2 receptor.  GM-CSF, M-

CSF, and IL-4 pre-treatment did not competitively inhibit IL2-NAg-GFP binding and therefore 

exhibited no decrease in GFP intensity.  Therefore, IL2-NAg-GFP was a specific marker of for 

cells that expressed the high affinity IL-2 receptor because the cytokine domain of IL2-NAg-

GFP targeted GFP to APC by a mechanism that was competitively and specifically blocked by 

IL-2.  
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Figure 3.26: IL-2 bioassay to assess the cytokine activity of IL2-NAg-GFP.  CTLL indicator 

cells (104 / well) were cultured with IL2-NAg-GFP or IL2-NAg titrated on a log scale from 100 

nM – 10 fM (x-axis).  Cultures were pulsed with MTS / PMS after 48 hours and color production 

resulting from MTS reduction was read at 492 nm.  Biological activity of the IL-2 domains from 

IL2-NAg-GFP and IL2-NAg facilitated the survival and growth of CTLL.  The half maximal IL-

2 activity of IL2-NAg-GFP was diminished 10 fold in comparison to the half maximal activity of 

IL2-NAg.  This experiment was performed once.   
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Figure 3.27: IL2-NAg-GFP specifically stained R1T cells that expressed surface IL-2 

receptors.  IL-2 starved R1T cells, an IL-2 dependent T cell clone, and BW5147 thymoma cells, 

an IL-2 independent T cell hybridoma, (105 / well) were cultured with 100 nM IL2-NAg-GFP for 

1 hour.  Cells were not washed after the hour incubation period.  R1T and BW5147 cells were 

stained with 2.0 μg / ml of propidium iodide to discern the dead cell population.   The Becton 

Dickinson LSRII flow cytometer was used to detect propidium iodide and GFP fluorescence.  

GFP fluorescence was excited at 405 nm and detected with the AmCyan filter at 530 / 30 nm.  

Propidium iodide fluorescence was excited at 488 nm and detected with the PE-Cy5 filter at 660 

/ 20 nm.  Data were analyzed with the FLOWJO software program.  The mean fluorescence 

intensity of unstained BW5147 (represented by the filled in peak) was 47 and IL2-NAg-GFP 

stained BW5147 was 70.  The mean fluorescence intensity of unstained R1T (represented by the 

filled in peak) was 80 and IL2-NAg-GFP stained R1T was 327.  All experimental conditions 

were performed in duplicate.   
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Figure 3.28: The cytokine domain of IL2-NAg-GFP targeted GFP to APC by a mechanism 

that was competitively and specifically blocked by IL-2.  Lewis rat splenocytes (devoid of red 

blood cells), were activated with 2.5 μg / ml ConA and 10.0 μg / ml LPS for 24 hours.  ConA 

and LPS served as mitogens for T cells and B cells, respectively.  After activation, splenocytes 

were washed and cultured overnight in cRPMI (without IL-2).  Splenocytes (105 / well) were 

pretreated with 100 nM of GM-CSF, M-CSF, IL-4, IL-2 or no cytokine for 3 hours before the 

addition of IL2-NAg-GFP (100 nM).  Cells were not washed after the hour incubation period.  

Splenocytes were stained with 2.0 μg / ml of propidium iodide to discern the dead cell 

population.  Splenocytes were analyzed with the Becton Dickinson LSRII flow cytometer along 

with the FLOWJO analysis software.  The mean fluorescence intensities of IL2-NAg-GFP 

labeled splenocytes with no cytokine pre-treatment, with GM-CSF, M-CSF, or IL-4 pre-

treatment were 470, 475, 471, and 486 respectively.  Splenocytes pretreated with IL-2 prior to 

staining with IL2-NAg-GFP exhibited a mean fluorescence intensity of 216.  This indicated that 

IL-2 competitively blocked IL2-NAg-GFP.  Therefore, IL2-NAg-GFP was a specific marker of 

for cells that expressed the IL-2 receptor.  All experimental conditions were performed in 

duplicate.  
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CHAPTER 4 

DISCUSSION 

 

4.1 SIGNIFICANCE 

 Cytokine-antigen fusion proteins have been previously studied as therapeutic vaccines to 

promote immunity against cancer and infectious agents (60-62).  More recently, cytokine-antigen 

fusion proteins have proven to be efficacious as tolerogenic vaccines in the EAE autoimmune 

disease model (28, 64, 65).  Data presented here showed that GMCSF-NAg, and to a lesser 

extent MCSF-NAg, prevented the development of severe paralytic EAE in the Lewis rat model 

when administered before or after disease onset.  The novelty of the cytokine-antigen fusion 

proteins was that they could promote antigen-specific tolerance during both steady state and 

inflammatory environments.  The ability to induce tolerance in an inflammatory environment 

was significant because it contradicted the dogma that tolerance is induced under steady state, 

i.e., non-inflammatory conditions.  Furthermore, the ability of a GM-CSF fusion protein to 

regulate tolerance induction was novel because GM-CSF is considered to be a critical mediator 

of EAE.  The mechanistic data revealed that GMCSF-NAg, and to a lesser extent MCSF-NAg, 

could enhance antigenic proliferation of T cell clones, in vitro, by targeting the tethered NAg 

domain to APC via the respective cytokine receptor.  We proposed that APC targeting likely 

accounted for the tolerogenic response elicited by GMCSF-NAg in vivo.  A unique feature of 

GMCSF-NAg was that it could target NAg to specific APC subsets, including dendritic cells, 

macrophages, activated B cells and NK cells, unlike other laboratories that target one APC type, 

specifically dendritic cells.  Overall, these fusion proteins provide a potential platform for 

understanding how to regulate the balance between tolerance and immunity.        



  
 

4.2 TARGETING ANTIGEN TO ANTIGEN PRESENTING CELL SUBSETS BY 

MEANS OF FUSION PROTEINS 

 The ability to target antigen to APC, particularly DC, by means of fusion proteins is not a 

new concept.  Antigen can be targeted to APC through protein or DNA based strategies that take 

advantage of cell surface receptors that are endocytosed upon binding ligand (92, 93).  In brief, 

numerous cell surface molecules have been targeted including C-type lectin receptors, integrins, 

Fcγ receptors, T cell and APC co-stimulatory molecules, toll-like receptors, MHC molecules, 

molecules associated with antigen processing pathways, as well as cytokine and growth factor 

receptors (Table 4.1).  The idea being that these fusion proteins would target antigen to APC and 

enhance processing and presentation of antigen by MHC class I or class II molecules (or both) in 

order to augment immune responses.  In addition to antigen targeting, fusion proteins could 

potentially initiate different APC activation programs i.e., promoting APC maturation in order to 

enhance T cell activation or promoting the expression of chemoattractants to increase the number 

of immune responders (92, 93).   

Extensive research has been performed with antigen fusion proteins that target C-type 

lectins, specifically DEC-205.  Nussenzweig’s laboratory showed that targeting antigen to DC by 

antibodies against DEC-205 enhanced antigen presentation by a specific CD8+ DC subset and in 

turn augmented T cell proliferation (75, 94).  Augmented presentation was associated with the 

ability of DEC-205 to localize to late endosomes and lysosomes that contain MHC class II 

molecules, thereby facilitating antigen loading on MHC class II (95).  Noteworthy is that in vivo 

administration of anti-DEC205-Ag promoted a significant antigenic burst of T cells within 48 

hours but the antigen-specific T cells were not sustained over time (7 to 20 days) (75).  The 

tolerogenic mechanism was associated with the induction of T cell anergy or deletion.  This 
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mechanism may be applicable to what we have seen in our studies with GMCSF-NAg.  GMCSF-

NAg, and to a lesser extent MCSF-NAg, significantly augmented proliferation of T cell clones in 

vitro yet preliminary in vivo data did not reflect a sustained NAg-specific T cell repertoire (data 

not shown).  In this preliminary experiment rats were challenged with GP69-88, MCSF-NAg or 

GMCSF-NAg in CFA (see Table 3.1).  The rats challenged with GMCSF-NAg or MCSF-NAg 

exhibited significantly reduced disease than the GP69-88 control group.  Rats were monitored for 

one month, after which lymph nodes were harvested and tested for NAg activity, i.e. T cell 

priming.  The assay suggested that lymph node cells from the GMCSF-NAg group exhibited 

diminished activity when compared to the proliferative response of the GP69-88 and MCSF-

NAg groups.  Potentially, NAg-specific T cells were being deleted or anergized as a result of 

GM-CSF targeting NAg to DC and macrophages.  The overall importance of antigen fusion 

proteins is that they provide a tool to target antigen to APC in vivo with the endpoint of 

influencing T cell immune responses to be immunogenic or tolerogenic. 
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Table 4.1: Published studies of antigen fusion proteins.

Category Target Ag Fusion Type Effect Mechanism 

DEC-205 
αDEC205 / OVA (75, 
76, 95) 

Protein vaccine Enhanced CD4+ and CD8+ T cell 
priming, facilitated Ag cross 
presentation 

Targeting steady state CD11c+ DC 
and localization to endosomal / 
lysosomal compartment 

C-type lectin 

DCIR2 
33D1 Ab / avidin (96) Protein vaccine Enhanced Ab response against 

avidin and promoted 
immunological memory 

DC targeting and endocytosis 

Integrin CD11c αCD11c / goat IgG (97) Protein vaccine Enhanced Ab response against 
goat IgG 

APC targeting and endocytosis 

Fc receptors Fcγ receptor 

OVA / αOVAIgG (98) 
 
 
 
 
HBVe / IgG (99) 
 
 
 
hαFcγRI (CD64) / PSA 
(100) 

Protein vaccine 
 
 
 
 

DNA vaccine 
 
 
 

Protein vaccine 

Enhanced DC maturation, 
enhanced Ag cross presentation by 
DC and MHC class II presentation 
of Ag by B cells  
 
Enhanced Ag cross presentation in 
vivo, enhanced Ab response 
against HBV 
 
Enhanced Ag presentation by 
HLA-A 

APC targeting (DC and B cell 
examined in vitro), phagocytosis 
and DC activation 
 
 
CD11c+ DC targeting and 
phagocytosis 
 
 
Targeting APC and phagocytosis 

CD3 
Protein vaccine Enhanced Ab response against 

avidin 
T cell targeting and endocytosis αCD3 / avidin (96) 

CD4 
αCD4 / avidin (96) Protein vaccine Enhanced Ab response against 

avidin 
T cell and APC targeting, 
endocytosis 

T cell co-
stimulatory 
molecules 

Protein vaccine Enhanced Ab response against 
avidin 

Leukocyte targeting and 
endocytosis 

αCD45 / avidin (96) 
CD45 

Abbreviations: α (anti-), Ab (antibody), Ag (antigen), OVA (ovalbumin), 33D1 (monoclonal Ab against DC1R2), DCIR2 (DC 
inhibitory receptor 2), Fc (Ab fragment crystallizable), HBVe (hepatitis B virus protein e), hα FcγRI (human anti-Fcγ receptor I), 
PSA (prostrate specific antigen) 



Category Target Ag Fusion Type Effect Mechanism 

Protein vaccine Enhanced Ab response against 
avidin 

B cell targeting and endocytosis αIgG2a / avidin (96) 
sIgG2a 

B cell targeting (in vitro) Protein Enhanced Ag uptake and 
presentation, that involves BCR 
targeting to MIIC 
compartment(102) 

B cell receptor Pc / αIg (101) 
sIg 

αI-A/E / avidin, αI-Ak / 
avidin, αI-Ab / avidin 
(96) 

Enhanced Ab response against 
avidin and promoted 
immunological memory 

APC targeting and endocytosis Protein vaccine 
  
  MHC class II     
B cell targeting (in vitro) Enhanced Ag uptake and 

presentation 
Protein Pc / αI-A (101) 

Increased CD4+ and CD8+ T cell 
responses in vitro and in vivo and 
the DC vaccine diminished tumor 
load in mice  

Retroviral 
transduced DC 
vaccine (103) 

Enhanced loading on MHC class II 
by intracellularly targeting E7 to 
lysosome/MIIC compartment 

Signal peptide of 
LAMP1 / HPV E7 
protein / LAMP-1 Lysosome-

endosomal 
compartment 

   
 
 
 
 

 
Recombinant 
vaccinia virus 

(104) 

 
Increased CD4+ and CD8+ T cell 
responses in vitro and in vivo, 
enhanced E7 antibody 

MHC 
molecules or 

antigen 
processing 
pathways Enhanced CD8+ T cell activation 

in vivo, enhanced E7 antibody 
response, protected against tumor 
challenge 

Targeted to MHC class I 
processing pathway 

Calreticulin / HPV E7 
protein (105) 

DNA vaccine 
 

   
   

  MHC class I 
processing 
pathway 

  
Enhanced CD8+ T cell activation 
in vivo, protected against tumor 
challenge 

Targeted to MHC class I 
processing pathway 

E7 / Hsp70 (106) DNA vaccine 
  

   
    
B cell targeting (in vitro) Protein Enhanced Ag uptake and 

presentation 
Pc / αI-K (101) 

Abbreviations: BCR (B cell receptor), Pc (pigeon cytochrome c), MIIC (MHC class II compartment), I-A/E (MHC class II 
molecules), LAMP-1 (lysosomal associated membrane protein –1), HPV E7 (human papillomavirus protein E7), I-K (MHC class I 
molecule)  



Category Target Ag Fusion Type Effect Mechanism 

DNA-protein 
vaccine 

Targeting to and maturation of 
APC  

Unmethylated CpG / 
gp120 (107) 

Enhanced serum IFNγ levels, 
enhanced Ab response and 
enhanced CD8+ T cell response to 
gp120 

  
  
   
APC targeting, particularly DC (in 
vivo) and B cells, maturation of 
APC, targeting to endosomal / 
lysosomal compartment 

Enhanced Ag uptake by CD11c+ 
DC, enhanced Ag presentation on 
MHC class I and enhanced DC 
maturation, protected against 
lethal challenge with LM-OVA. 
CD8+ T cell response was 
dependent on TLR9 but TLR9 was 
not required for APC targeting. 

OVA / unmethylated 
CpG (108-111)  Toll-like 

receptors TLR9 

Enhanced E7 specific CD8+ T cell 
tumor immunity, FL (pre-
treatment and treatment) protected 
against lethal tumor challenge 

APC targeting (DC examined in 
vitro) and endocytosis 

Flt3 ligand / HPV E7 
protein (112) 

DNA vaccine 

Flt3 receptor 

GM-CSF / sIg of 38C13 
B cell tumor Ag (62) 

Protein vaccine Enhanced antibody production 
against the tumor antigen, 
protected from a lethal tumor 
challenge 

APC targeting 
GM-CSF 
receptor 

Cytokines or 
growth factors 

IL2 / HSV glycoprotein 
D (60) 

Protein vaccine Enhanced antibody titers and the 
CD8+ T cell response 

T cell targeting or T cell activation 
IL-2 receptor 

APC targeting and endocytosis DNA vaccine Enhanced Ab response against 
hIgG  

CTLA4 / hIgG (113) 
 

 B7  
Enhanced Ab response against HA 
& enhanced viral clearance 

CTLA4 / hIgG / HA 
(114) APC co-

stimulatory 
molecules APC targeting (DC examined in 

vitro) and endocytosis 
Adenovirus based 

DNA vaccine 
Enhanced MOI, induced DC 
maturation, 40AdE7 infected DC 
(pre-treatment and treatment) 
protected mice against lethal 
tumor challenge  

(40AdE7) bispecific Ab 
conjugate αCD40-αAd 
fiber knob protein /  
adenovirus expressing 
HPV E7 protein (115) 

CD40 

Abbreviations: CpG (cytosine, guanine oligodeoxynucleotides), gp120 (Human Immunodeficiency Virus glycoprotein 120), LM-
OVA (Listeria monocytogenes expressing OVA), FL (Flt 3 ligand), hIgG (human IgG), HA (influenza hemagglutinin), Ad 
(adenovirus), MOI (multiplicity of infection)    
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4.3 CYTOKINE – ANTIGEN FUSION PROTEINS: HANGING IN THE BALANCE 

BETWEEN TOLERANCE AND IMMUNITY 

 Cytokine-antigen fusion proteins were initially designed to enhance the immunogenicity 

of weak antigens without the need for adjuvants and carrier proteins.  For instance, fusion 

proteins comprised of IL-2 fused to viral glycoproteins, bacterial or cancer antigens enhanced 

production of antigen-specific antibody titers and protected animals from a lethal challenge with 

the respective infectious agent or tumor cell line when compared to controls (60, 62, 116).  In 

contrast we showed IL2-NAg fusion proteins to be significantly tolerogenic in the EAE model 

(64, 65).  IL2-NAg prevented a cell-mediated autoimmune response against NAg when 

administered as a pre-treatment or treatment regimen (64, 65).  This balance between tolerance 

and immunity was also seen with GMCSF-antigen fusion proteins.  GM-CSF fusion proteins 

acted as an adjuvant to enhance antigen-specific immunity against viral, bacterial and cancer 

antigens, while inducing antigen-specific tolerance in EAE (61, 62, 116, 117).  The dichotomy of 

cytokine-antigen fusion proteins in regulating immunity versus tolerance raises the concern of 

how to effectively employ this platform technology to prevent rather than enhance an 

autoimmune response.   

In the previous examples, the common variable between the immunogenic and 

tolerogenic models was the cytokine domain.  This leads one to believe that the cytokine domain, 

while influencing the immune response, is not the only consideration for regulating the balance 

between immunity and tolerance.  In other words, the antigenic domain maybe an important 

consideration in the design of cytokine-antigen fusion proteins (117).  For instance, self-antigen 

has been shown to drive regulatory T cell responses (37, 118).  Oral administration of low dose 

self antigen prior to encephalitogenic challenge suppressed paralytic EAE by a regulatory T cell 



  
 

phenotype (37).  Additionally, intrathymic injection of MBP into Lewis rats before, but not after, 

encephalitogenic challenge significantly protected rats from the development of severe EAE 

when compared to controls (118, 119).  The mechanism potentially involved the induction of 

thymus-derived, regulatory T cells because removal of the thymus 72 hours after intrathymic 

injection abrogated the protective effect (118).   

The use of APL or altered self-antigens, on the other hand, have been controversial due to 

the exacerbation of MS in clinical trials (44).  Single amino acid changes to self peptide can 

result in a heteroclitic response, depending on the alteration (120, 121).  A heteroclitic response 

could occur if the APL elicits a greater immune response than the immunizing self antigen (117).  

For instance, the T cell clone Q1.1B6 generated a heteroclitic response to the altered PLP ligand 

(L144) when compared to the cognate PLP peptide (Q144).  The TCR of Q1.1B6 exhibited a 

similar affinity for the immunizing Q144 peptide and L144, yet L144 behaved as a superagonist 

by enhancing T cell proliferation and increasing IFNγ, IL-2 and IL-4 expression when compared 

to the cognate peptide.  This heteroclitic response was seen in different T cell clones and was 

therefore not specific to Q1.1B6.  Interestingly, T cell activation during the heteroclitic response 

had little to no requirement for co-stimulatory molecules.  These data may have implications for 

the etiology of autoimmune disease such that foreign antigen / self protein mimic could cross 

react and hyperstimulate autoreactive T cells with little co-stimulation, resulting in a pathogenic 

Th1 immune response (120, 121).     

Pulmonary alveolar proteinosis (PAP) is an example where self-antigen can be used 

therapeutically during an autoimmune response.  PAP is classified as a rare autoimmune disease 

marked by the accumulation of lipid material in lung alveoli (122).  The pathology of PAP is 

associated with a GM-CSF deficiency mediated by autoantibodies against the cytokine (122, 
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123).  Treatment with subcutaneous GM-CSF improved lung function in some patients without 

significant side effects (122, 123).  Currently the therapeutic effect of GM-CSF is associated 

with increased lipid catabolism by alveolar macrophages.  A role for GM-CSF in regulating T 

cell and B cell responses in PAP has not been examined in detail, however data have shown that 

GM-CSF treatment could reduce anti-GMCSF antibody titers in a subset of patients (123).  In 

our study GM-CSF fused to the NAg self peptide (GMCSF-NAg) was able to significantly 

protect animals from EAE.  These data imply that administration of self-antigen such as GM-

CSF in the case of PAP and GMCSF-NAg in the case of EAE has the potential to regulate an 

ongoing autoimmune response.   

The ability of GM-CSF, as a component of GMCSF-NAg, to promote tolerance in EAE 

contradicts the dogma that GM-CSF is a critical mediator of the disease.  For instance, GM-CSF 

knockout mice were found to be resistant to the induction of EAE and disease susceptibility was 

restored after subcutaneous administration of GM-CSF (124).  Furthermore, T cells were shown 

to be the major source of GM-CSF required for the induction of EAE (125, 126).  The 

requirement for GM-CSF was mostly associated with T cell reactivation in the CNS, i.e., the 

effector phase of the disease.  During the effector phase, encephalitogenic T cells enter the CNS 

and become reactivated upon recognition of neuroantigen:MHC complexes on APC.  MBP 

specific T cells from GM-CSF knockout mice were unable to induce severe disease upon 

adoptive transfer into irradiated, wild type mice (125).  T cell derived GM-CSF was apparently 

required for the activation of APC within the CNS in order to promote inflammation (125).  

These data were supported by the fact that encephalitogenic T cells transduced with GM-CSF 

promoted chronic EAE (126).  Collectively, these data and our GMCSF-NAg data suggested that 

GM-CSF may have a unique role in regulating the balance between immunity and tolerance.   
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The finding that GMCSF-NAg could promote tolerance during an on-going autoimmune 

response was significant because it contradicted the belief that tolerance could only be induced 

under steady state or non-inflammatory conditions.  Tolerance induced by steady state dendritic 

cells via anti-DEC205-Ag fusion proteins resulted in antigen-specific T cell anergy that was 

reversed by increased co-stimulation delivered by an anti-CD40 antibody, in vitro (75).  This 

research supported the idea that inflammatory conditions, marked by enhanced co-stimulation, 

could inhibit the development of tolerance, at least in the case of anergy-induced tolerance.  On 

the contrary, there is growing support for the induction of tolerance under inflammatory 

conditions.  For instance, mature, activated dendritic cells expressing high levels of co-

stimulatory molecules could promote T cell tolerance via mechanisms that involved deletion or 

expansion of regulatory T cell populations (74).  Autologous, LPS matured DC promoted the 

development of T cells capable of suppressing an allogeneic mixed lymphocyte reaction via a 

contact independent mechanism associated with increased FOXP3 expression by T cells (127).  

Alternatively, LPS matured DC could be differentiated into a regulatory DC phenotype in the 

presence of splenic endothelial cells (128).  The differentiated regulatory DC inhibited T cell 

proliferation via a mechanism associated with increased nitric oxide production (128).  Overall, 

these examples support the possibility that self-antigen could theoretically be used to induce 

antigen-specific tolerance in patients with on-going autoimmune disease.    

  

4.4 ANTIGEN PRESENTING CELL SUBSETS AND NK CELLS: EVIDENCE FOR 

REGULATING TOLERANCE 

 The GM-CSF domain of GMCSF-NAg potentially enhanced the tolerogenic nature of the 

tethered NAg self-peptide by targeting NAg to specific APC subsets.  In this study we saw that 
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GMCSF-NAg largely targeted NAg to dendritic cells and macrophages.  Other laboratories have 

indicated a tolerogenic role for these APC subsets in EAE, as previously discussed.  In addition 

to dendritic cells and macrophages, our studies also indicated that perhaps activated B cells and 

NK cells could have a role in tolerance induction.  GMCSF-NAg weakly targeted NAg to 

activated B cells and NK cells, while T cell APC were not targeted by GMCSF-NAg at all.  The 

fact that GMCSF-NAg could target NAg to a variety of APC in vitro suggested that the 

tolerogenic nature of GMCSF-NAg in vivo may be associated with a collaborative effort among 

APC subsets.  In this way, our APC targeting strategy differs from other laboratories that focus 

on targeting antigen to one APC subset, specifically dendritic cells.  Targeting antigen to 

dendritic cells has been effectively used to induce tolerance in animal models, however it 

precludes the role of other cell types (macrophages, B cells and NK cells) in the induction of 

tolerance.  In fact, NK cells and B cells have been examined for tolerogenic roles in EAE.    

 Clinically there is indirect evidence supporting a regulatory role for NK cells in MS 

patients.  For instance, patients exhibited reduced brain inflammation during clinical trials with 

daclizumab, a mAb to the high affinity IL-2 receptor α subunit, via a mechanism that correlated 

with a significant increase in peripheral blood CD56bright NK cells and a modest decrease in 

CD4+ and CD8+ T cells (129).  In vitro assays indicated that CD56bright NK cells were potentially 

responsible for the therapeutic effects of daclizumab.   The T cell cytotoxicity mediated by NK 

cells appeared to be contact dependent; cytotoxicity was enhanced by the activation of NK and T 

cells in the presence of IL-2 (129).  Some EAE models have also supported a role for NK cells 

and tolerance (130, 131).  Deletion of NK cells, and inadvertently NK-T cells, in C57B6 mice by 

the administration of an antibody against NK1.1 (C-type lectin integral membrane protein) one 

day before challenge significantly enhanced EAE severity and mortality compared to isotype 
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controls (130).  Furthermore, β2m knockout mice, purportedly deficient in CD8+ T cells and NK-

T cells, only exhibited severe EAE and increased mortality in the presence of anti-NK1.1.  This 

suggested that NK cells, rather than NK-T cells or CD8+ T cells, were involved in preventing 

severe EAE in mice (130).  In another example, activated NK cells were associated with the 

suppression of EAE in SJL mice following Hsp70-pc (heat shock protein 70 - protein complexes 

derived from CNS of EAE mice) treatment as compared to Hsp70 alone and Hsp70-pc from 

normal mice (132).  NK cells from Hsp70-pc treated mice reduced PLP specific T cell 

proliferation in vitro and suppressed EAE in vivo when NK cells were adoptively transferred 

after disease onset (132).         

B cells have also been associated with the regulation of tolerance in EAE.  For instance, 

B cell deficient mice (μ knockout) did not spontaneously recover after an acute phase of EAE 

when compared to wild type B10.PL controls (133).  The data suggested that B cells somehow 

played a role in spontaneous recovery / tolerance in this mouse model.  In another experiment, B 

cells retrovirally transfected with MOG were tolerogenic when administered as a pre-treatment 

or treatment suggesting a role in tolerance in two different animal models C57B6 and PL10 

(134).  The B cells in this study were likely activated because the cells were transduced in the 

presence of LPS.  The aforementioned studies lend support for the role of multiple cell types (B 

cells, NK cells, macrophages and DC) in the induction of tolerance within the EAE model, 

particularly after the administration of GMCSF-NAg.   

 

4.5 CONCLUSION 

 GMCSF-NAg fusion proteins were potent inducers of antigen-specific tolerance in the 

Lewis rat model of EAE.  The tolerogenic mechanism is not fully understood at this point, 
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however in vivo data indicated that the fusion of NAg to GM-CSF was crucial for tolerance 

induction.  Based on in vitro data, we propose that the delivery of NAg to APC subsets, in vivo, 

likely accounted for the tolerogenic mechanism of GMCSF-NAg.  The in vitro assays indicated 

that NAg was targeted to specific APC subsets, namely macrophages and dendritic cells, via the 

GM-CSF cytokine domain.  The fact that GM-CSF largely targeted NAg to dendritic cells and 

macrophages suggests that the tolerogenic mechanism could involve myeloid suppressor cells.  

Myeloid (dendritic cells or macrophages) suppressor cells could then drive tolerance through the 

induction of antigen-specific regulatory T cells or through high dose, deletional tolerance 

resulting from enhanced NAg uptake and presentation by APC.  Furthermore, it is unclear 

whether the tolerogenic mechanism associated with the GMCSF-NAg pre-treatment regimen 

would be the same as the mechanism associated with the treatment regimen.   Perhaps there is a 

novel tolerogenic mechanism at work because GMCSF-NAg was capable of targeting various 

APC subsets, i.e., DC, MO, activated B cells, and NK cells.  The ability of cytokine-antigen 

fusion proteins to promote antigen-specific tolerance in both steady state and inflammatory 

environments suggested that these fusion proteins could be important tools for understanding 

how to regulate the balance between tolerance and immunity.      

The purpose of this research was to design a tolerogenic vaccine that would promote a 

neuroantigen-specific regulatory response, which is proposed to be deficient in MS patients.  

Whether GMCSF-NAg could be used to treat human patients is debatable, due to safety concerns 

with GM-CSF and the uncertainty of which neuroantigen to therapeutically target.  Despite the 

fact that GM-CSF is used in cancer patients to promote hematopoietic recovery following 

radiation therapy, the involvement of GM-CSF in the inflammatory processes of autoimmune 

disease models, including EAE, cannot be ignored.  Perhaps APC can be loaded ex vivo and then 
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administered back to the patient in order to avoid safety concerns regarding the systemic 

administration of GM-CSF.  This has been done in clinical trials with another GMCSF-fusion 

protein GMCSF-PAP (prostatic acid phosphatase) (135).  Furthermore, a consideration for our 

research is identifying the appropriate neuroantigen(s) to target because the antigen specificity 

may change over time (epitope spreading) and may differ among patients.  At the least, our 

technology presents a tool for basic science research to study the mechanisms that promote 

antigen-specific tolerance.  Despite the potential future hurdles, we cannot ignore the success we 

have seen with GMCSF-NAg in our EAE models.  
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