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Rivers transport water, sediment, and other constituents from the continent to the sea, but 

in route material can often become stored temporarily or permanently. Along the Atlantic Coast 

of the United States, coastal plain rivers such as the Tar River are characterized as low-gradient 

meandering systems that develop wide floodplains which are subjected to frequent and 

prolonged flooding. As a result, these rivers are believed to experience storage of sediment, 

particularly near their estuarine mouths. The lower portion of rivers and their attached estuaries 

are also environmentally and economically important serving as critical habitat (e.g., nurseries 

for fish), recreational areas, and transportation pathways. Excess sediment is often considered a 

significant pollutant and can have adverse effects on biota. Suspended sediment also can supply 

excess nutrients and trace metals from anthropogenic activity. 

Previous work in North Carolina suggests that alluvial storage can make up the majority 

(>50%) of the total sediment delivered to rivers. This study more closely examines the nature of 

lower floodplain sediment storage and more specifically focuses on calculating sediment 

accumulation along the Tar River. Cores were collected from three sites along seven different 

transects perpendicular to the main channel. Analysis of 210Pb and 137Cs were employed to 

calculate sediment accumulation rates, and grain-size data were made to inform radionuclide and 



sedimentation interpretations.  Sedimentation rates within the study area range from 0.09 to 1.08 

cm/yr.  However, several sites appear to have non-steady-state deposition possibly due to major 

overbank flood events. Grain-size data indicate a mixture of sand and mud at all sites with some 

variability in the nature of sediment accumulating.  Using core observations and LiDAR 

topographic data, storage across the system is estimated to be approximately 1.26 x 105 t/yr or 

roughly 66% of the total incoming sediment measured at Tarboro, NC (1.89 x 105t/yr) in 

previous works. 
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1. Introduction 

 

Rivers are the main mechanism for the transportation of water, sediment, and 

other constituents from land to the sea. Along the Atlantic Coast of the United States, the 

coastal plain is characterized by low-gradient meandering rivers that develop wide 

floodplains subject to frequent and prolonged flooding (Simmons, 1993; Hupp, 2000; 

Johnson, 2007; O’Driscoll et al., 2010). In North Carolina, rivers such as the Tar 

typically have low stream power with available accommodation space in coastal plain 

river reaches allowing for storage of sediment upstream of estuaries, resulting in low 

sediment yields and loads at river mouths (Simmons, 1993; Phillips, 2006).  

The lower portion of rivers and their attached estuaries are environmentally and 

economically important, acting as vital habitat (e.g., nurseries for fish), recreational areas 

(e.g., fishing grounds), and transportation pathways (e.g., personal and commercial 

vessels) (Giese et al., 1979). Pollutants are stressors on these environments and can have 

adverse effects on the associated ecosystem. Excess sediment is often considered a 

significant pollutant in rivers (Servizi and Martens, 1992; Watts et al, 2003, Walling, 

2004; Walling, 2005) and estuaries (EPA, 1992; 1994; Daskalakis and O’Conner, 1995; 

Hupp, 2000) and can have adverse effects on biota (Clark et al., 1985; Sear, 1993; 

Soulsby et al., 2001; Walling, 2004). Suspended sediment also can contribute to pollution 

in the form of excess nutrients (Allan, 1986; Walling, 2004; Walling, 2005; Horowitz, 

2008) and trace metals from anthropogenic activity (Allan, 1986; Cooper, 2004). To 

better protect these important natural resources, knowledge of the sediment dynamics 
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within the lower river system needs to be better understood. Floodplains in particular are 

expected to play an important role in most rivers with respect to sediment sequestration. 

Floodplains have been reported to be a significant sink for sediment within river 

systems (Wolman and Leopold, 1957; He and Walling, 1996; Walling and He, 1997; 

Allison, 1998; Goodbred and Kuehl, 1998; Walling et al., 1998; Hupp, 2000; Walling, 

2004; Knox, 2006; Mizugaki et al., 2006). Previous studies have reported deposition rates 

of 2-3 mm/yr in the Roanoke River of North Carolina (Hupp, 1999) and 0-10 mm/yr on 

British floodplains (Nicholas and Walling, 1997). Table 1 shows a collection of 

floodplain sediment accumulation rates from around the world. Although the 

accumulation rates appear relatively small, floodplain sedimentation when extrapolated 

over areas of several square kilometers can remove a large fraction of the total sediment 

delivered to streams, as seen in Phillips (1991).  

Floodplains are characterized as very dynamic systems with large variability 

between locations and even within sites (Wolman and Leopold, 1957; He and Walling, 

1996; Walling and He, 1997; Allison, 1998; Goodbred and Kuehl, 1998; Walling et al., 

1998; Hupp, 2000; Walling, 2004; Knox, 2006; Mizugaki et al., 2006). Table 1 presents 

the considerable variation in sedimentation of rivers. This can be attributed to the large 

variability in the nature of floodplains due to their complex behavior, topography, and 

morphology. Phillips (2007) investigated the flow regime in the coastal plain of the 

Trinity River in Texas. Phillips found that during high flow events coastal backwater 

effects and tributaries becoming distributaries complicated the overall flow patterns 

which would ultimately complicate the sediment dynamics. As a result, it is necessary to 
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gain a system-specific understanding of sediment dynamics, and this is the main focus of 

this study, to characterize floodplain sedimentation within the Tar River system. 

 

 
Table 1: Sediment accumulation rates in select floodplains around the world. 

Location Sediment accumulation 
Rate 

Citation 

Lower Mississippi Alluvial 
Valley, TN 

0.09 to 6.20 cm/yr Pierce and King, 2008 

Ganges-Brahmaputra, 
Bangladesh 

0.0 to 1.47 cm/yr Goodbred and Kuehl, 1998 

River Ouse, Yorkshire, UK 0.11 to 1.04 cm/yr Owens et al., 1999 

Quebec, Canada 0.21 to 10.75 cm/yr Saint-Laurent et al., 2008 

Brahmaputra-Jamuna River 0.67 to 1.15 cm/yr Allison et al.,  1998 

Tar River, NC, USA Average 2 mm in one event Leece et al., 2004 

Black Swamp, AR 0.01 to 0.6 cm/yr Hupp and Morris, 1990 

Western TN 0.0 to 0.6 cm/yr Hupp and Bazemore, 1993 

Missouri River 0.03 to 0.64 cm/yr Heimann and Roell, 2000 

Kushiro Mire, Northern Japan 1.9 to 8.9 cm/yr Mizugaki et al., 2006 

Roanoke River, North Carolina 0.23 cm/yr Hupp et al., 1999 

 

This study has three main objectives: 1) characterize the morphology of the active 

floodplain in the lower Tar River system, 2) evaluate the variability of sediment 

accumulation rates within the floodplain, and 3) use these sediment accumulation rates to 

estimate the amount of sediment storage within the system. 

 

2. Importance and Background 

 The Tar River is an important source of freshwater and material to the Albemarle-

Pamlico Estuarine System (APES), the second largest estuarine system in the United 

States (Giese et al., 1979; Simmons, 1993; O’Driscoll et al., 2010). Ranking third in 

overall flow into the APES, the Tar River (153 m3/s) discharges less water than the 
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Roanoke (252 m3/s) and Neuse rivers (173 m3/s), but more than the Chowan River (130 

m3/s) (Giese et al., 1979). As previously stated, excess sediment can have adverse effects 

on biota within river and estuarine systems (Servizi and Martens, 1992; EPA, 1992; 

1994; Daskalakis and O’Conner, 1995; Hupp, 2000; Watts et al., 2003; Walling, 2005). 

The APES is an important resource with regards to the commercial fishing industry 

which accounts for a large portion of the revenue and jobs in North Carolina. North 

Carolina accounted for approximately 70% and 51%, respectively, of the total weight 

landed and total value of commercial fish in the southeast region of the United States in 

2001 (NMFS 2002). State-managed fish species generated a commercial landings 

revenue of over $103 million in 2002 (Burgess and Bianchi, 2004). Commercial fishing 

provides many jobs and important income for North Carolina families in several coastal 

counties (Diaby, 1997; Diaby, 1999; Bianchi, 2003; Burgess and Bianchi, 2004). In 2001, 

there where over 4800 commercial fishermen registered in North Carolina (Bianchi, 

2003). To protect this industry and the associated jobs a better understanding of stressors 

on the fishing industry is imperative.  

Sediment is a key pollutant to coastal areas, and much of it is generated from 

erosion far upstream, however, the volume of sediment eroded within a drainage basin is 

not equal to the amount of sediment transported out of a system, rather it is typically a 

much smaller amount. The fraction of sediment that escapes a system is known as the 

Sediment Delivery Ratio (SDR), and this value typically ranges from 7 % to 16 % for 

North Carolina Rivers (Phillips, 2006; Brown et al., 2009) (Fig. 1).  
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Figure 1: Box diagram modeled after Phillips (1991). Diagram shows gross erosion, 
subdivided into the main sinks such as colluvium and alluvium and the main transport 
pathways from gross erosion to sediment yield from the system. 

 

During flood events, water overflows the river banks onto the floodplain and begins 

to decrease in velocity. Suspended sediment in this standing water begins to settle out and 

deposits on the floodplain. Sediment accumulated during these events has been shown to 

represent a significant fraction in annual floodplain sediment budgets (Wolman and 

Leopold, 1957; He and Walling, 1996; Walling and He, 1997; Allison, 1998; Goodbred 

and Kuehl, 1998; Walling et al., 1998; Hupp, 2000; Walling, 2004; Knox, 2006; 

Mizugaki et al., 2006). Sediment accumulation rates are commonly highest in areas 

adjacent to a channel and diminish with increasing distance from the channel perimeter 

(Allen, 1964; Kesel et al., 1974; James, 1985; Pizzuto, 1987; Allison et al., 1998; Walling 

and He, 1998; Walling et al., 1998; Hupp, 2000; Mizugaki et al., 2006). Accumulation 

rates have also been show to be affected by floodplain topography (Allison et al., 1998; 
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Walling and He, 1998; Walling et al., 1998) and the magnitude and frequency of flooding 

(Lambert and Walling, 1987; Asselman and Middelkoop, 1995; Allison et al., 1998; 

Asselman and Middelkoop, 1998; Walling et al., 1998). Distance from the channel also 

can affect the quality of material reaching a floodplain. For example, particle diameter 

has been reported to fine with increasing distance from channel (Allen, 1964; Kesel et al., 

1974; Lambert and Walling, 1987; Pizzuto, 1987; Asselman and Middelkoop, 1995; 

Asselman and Middelkoop, 1998; Walling and He, 1998; Walling et al., 1998). 

Radionuclides 210Pb and 137Cs have been shown to be useful tools in measuring 

sediment accumulation rates in floodplains (He and Walling, 1996; Walling and He, 

1997; Allison, 1998; Goodbred and Kuehl, 1998; Mizugaki et al., 2006). These method 

allow for rates to be measured as far back as 100 years or ~5 half lives of  210Pb. 

Goodbred and Kuehl, 1998 showed how 210Pb and 137Cs geochronology could be used to 

measure accretion in the Ganges-Brahmaputra River, rates of greater than 1.47 cm/yr to 

no accumulation were measured within the floodplain. Similarly Mizugaki et al., 2006 

used 210Pb and 137Cs radionuclides coupled with dendrochronology to evaluate the 

impacts of anthropogenic influences on sedimentation within the Kushiro Mire in 

Northern Japan, this study revealed that sedimentation rates have increased since 

channelization occurred within the area. 

To estimate sedimentation rates, steady-state accumulation is commonly assumed; 

however, during flood events massive deposition can occur (Aalto et al., 2003; Saint-

Laurent et al., 2007). For example, 15 to 35 mm of sediment accumulated on floodplains 

within basins in southern Quebec during spring flooding (Saint-Laurent et al., 2007). 

However, these values are much higher than those reported for the Tar-Pamlico River 
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during an extreme flood event following Hurricane Floyd in 1999, where sediment 

deposition averaged 2 mm (Lecce et al., 2004). The fact is a range in sedimentation 

behavior is evident, and radionuclides can help decipher individual systems. 

The Piedmont of North Carolina has long been seen as a region of severe erosion 

(Meade and Trimble, 1974). Precipitation within the watershed causes raindrop impact 

erosion, sheet erosion, and rill erosion to occur (Simmons, 1993). This eroded sediment 

has two different fates. A fraction of sediment remains on hill slopes as colluvium, while 

the remaining sediment is transported to the adjacent river, stream, or other water body. 

Once supplied to a river, sediment can either be stored in the river channel or floodplain 

as alluvium or be transported out of the system to an estuary (e.g., the APES), lake, or the 

ocean (Figure 1) (Phillips, 1991). Alluvial storage both in channel and floodplain can 

account for as much as approximately 75% of the total sediment delivered to the main 

channel of the river or stream, however, the fraction of this sediment that is stored in the 

floodplain is more likely to be sequestered over a decadal timescale (Phillips, 1991). By 

quantifying the total amount of sediment sequestered annually on a floodplain, a more 

accurate sediment budget for a river can be developed and better management strategies 

can be devised to protect the associated resources. 

 

3. Study Area 

North Carolina can be divided into three main physiographic provinces: Mountains 

(e.g., the Blue Ridge), Piedmont, and Coastal Plain (Figure 2; Simmons, 1993; Harman et 

al., 1999; Hupp, 2000). A large fraction (approximately 45%) of the State is comprised of 

the Coastal Plain province, which is characterized by low relief and gentle topography. 
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Erosion of the Mountains and Piedmont provinces from the Mesozoic to present provides 

the sediment that has formed the modern Coastal Plain. Geomorphologic and hydrologic 

processes, predominately driven by climate and sea level fluctuations, have molded this 

landscape since the Cretaceous (Horton and Zullo, 1991; Hupp 2000). Close to the coast, 

within ~80 kilometers, the average altitude is approximately 6 meters above sea level 

(Simmons, 1993). Rivers flowing from the Piedmont to the Coastal Plain are relatively 

well incised until the Fall Line some, however, are still incised in the Coastal Plain 

(Figure 3). Past this position the downstream river gradient lessens, and rivers are thought 

to deposit more sediment both temporarily (e.g., within the channel) and permanently 

within floodplains (Simmons, 1993; Hupp 2000). 

  

Mountains 

Piedmont 

Coastal Plain 

VA 
NC border 

Figure 2: Map of the four major drainage basins supplying water and sediment to 
the APES. The inset base map depicts the three provinces of North Carolina: the 
Mountains, Piedmont, and Coastal Plain (Simmons, 1993). The black dashed box 
shows the study area, shown in greater detail in Figure 5. Thick black lines show 
the boundaries between the three provinces shown. 
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Figure 3: Long profile for the Tar River with distance upstream from the 17 bridge in 
Washington, NC, the Fall Line is indicated by vertical black dashed line representing 
transition between the Piedmont and the Coastal Plain Provinces. 

Figure 4: Basin map of the Tar River Basin. Black polygon shows the perimeter 
of the basin whose elevation reaches 200 meters above sea level. Note, solid 
white line dividing the drainage basin represents the approximate location of the 
Fall Line, whereas, the black polygon represents the drainage basin area. Circles 
represent gauging stations within the drainage basin. 

Tarboro 

Greenville 

Grimesland 

Washington 

Piedmont Coastal Plain 
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The Tar River Valley is topographically asymmetric with the river incised into the 

southwestern side of the valley (Figure 5, O’Driscoll et al., 2010). Over the Quaternary, 

the Tar River channel has migrated southward on the Coastal Plain leaving behind a 

series of floodplain terraces to the north (O’Driscoll et al., 2010). Like other rivers in the 

southeastern United States, braided river deposits just north of the present river channel 

were deposited during cold glacial periods between 17-70 ka (Maddry, 1979; Leigh and 

Feeney, 1995; Leigh et al., 2004; Leigh, 2006; Leigh, 2008; Moore, 2009). The current 

Tar-Pamlico River watershed originates in the Piedmont and traverses the Coastal Plain 

province, encompassing an area of approximately 11,500 km2 (Giese et al., 1979) (Figure 

4 and 5). The study area encompasses a 69 km long reach of river that extends across the 

Coastal Plain province, from Tarboro to Washington. The elevation ranges from ~36 

meters to sea level along this extent (Figure 5). Seven study sites were selected along this 

river reach (Figure 5); sites were chosen on three criteria: 1) how well the site represents 

the reach of river within the system, 2) ease of accessibility, and 3) proximity to 

established gauging stations within the river. Study sites are labeled with Site 1 near 

Tarboro with numbers increasing downstream to Site 7 near Washington. USGS river 

gauges are found within or are immediately adjacent to several of the sites: Tarboro 

gauge (Site 1), 264 Bypass Northwest gauge (Site 3), Greenville gauge (Site 4), 

Grimesland gauge (Sites 5 and 6), and the Tranters Creek gauge near Washington (Site 

7). Land use within the Lower Tar River basin is estimated to be comprised of 40% 

forest, 43% cropland, 11% wetland, and 6% other (Developed and Water) (McMahon 

and Lloyd, 1995) (Figure 6), and these land uses are known to influence the solute and 

sediment load to the river (Simmons, 1993; McMahon and Lloyd, 1995). 
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  Figure 5: Base map of study area showing the seven individual study sites in red 

boxes. Note, site numbers increase downstream from Site 1 near Tarboro to Site 7 
near Washington. 
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  Figure 6: Satellite im
age (left) and land-cover (right) of the Tar R

iver study area. A
erial photo of study area show

ing the land 
cover by cities, agriculture, and undeveloped. N

ote the roughly even m
ixture of agriculture and forest across the study area. 
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Geomorphological and hydrological processes driven by climate and sea level 

change, play a key role in the sedimentation processes within the present floodplain. For 

example, the frequency and magnitude of flooding may be expected to vary with base 

level. Floodplain sedimentation usually results in net sequestration during periods of sea 

level rise (Hupp, 2000). Landforms created by geomorphological processes such as 

flooding and river migration range from small channels to vast floodplains. Hydrological 

conditions and associated sedimentation are responsible for creating and shaping 

landforms such as scroll topography, point bars, and crevasse splays. These landforms 

affect floodplain topography which in turn influences future sedimentation within the 

floodplain by changing flood water behavior (e.g., percent time flooded) (Allison et al., 

1998; Walling and He, 1998; Walling et al., 1998). 

The average rainfall for North Carolina is 125 cm annually; however, it can vary 

significantly within the state, ranging from 96 cm in Asheville to 210 cm at Highlands 

(Simmons, 1993). The Coastal Plain receives a more consistent range of precipitation 

between 112 and 140 cm per year (Simmons, 1993). The upper Tar-Pamlico watershed 

has an annual rainfall of 115 to 120 cm (Phillips, 1991). Drainage from the watershed 

produces an annual discharge of 153 m3/s with a total sediment load of 1.89 x 105 t/yr 

(Giese et al., 1979). The Tar-Pamlico river, during low flow events, is tidally influenced 

as far up stream as Greenville (approx. 95 km upstream) (Giese et al., 1979). Wind 

influences both water levels and sediment resuspension in the estuary head in both the 

Tar-Pamlico and neighboring Neuse estuaries where large fetch is present (Giese et al., 

1979). 
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Ultimately, hydrology is the main factor controlling floodplain sedimentation (Allison 

et al., 1998; Walling and He, 1998; Walling et al., 1998; Hupp, 2000). A time-series 

hydrograph of the past 15 years at Greenville, NC, shows the stage height exceeded the 

flood level (~4m) approximately 22 times (Figure 7). The river was in flood (and 

therefore the floodplain was likely inundated) 5.6 months of the 15 yr period or 3.1 % of 

the time. Note the 1% time flooding (at ~ 5 m) was only reached during the Floyd flood 

of 1999 (Figure 8). 
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Figure 7: Hydrograph of gauge station at Greenville, NC. Dashed line shows the 
National Weather Service Floodstage. Arrows identify hurricane Floyd flood levels 
(1999 hurricane season) and the flood investigated in this study that occurred on 
12/12/2009. Note a data gap indicated by dashed box. 

Figure 8: Cumulative percent graph showing daily stage height frequency and percent 
time versus elevation. Note ~ 3.1 % of the time stage heights were at or above the 4m 
flood stage. 
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4. Methods 

4.1 Characterizing the Active Floodplain 

Daily stream gauge data was obtained from the USGS online data archive (http: 

//www.usgs.gov/) for the following gauges: Tarboro, the 264 Bypass Northwest of 

Greenville, Greenville, Grimesland, and Washington. The most recent 10 years of stage 

height data were used in the analysis, except for Grimesland which only had 7 years of 

data available. Data were inspected for data gaps and other problems (e.g., due to 

equipment failure). Where mean stage data were not available, maximum stage data were 

used (e.g., Site 4, Greenville gauge). Stage data were adjusted to the actual elevation 

(NAVD88) based on the reference level for the gauge station reported on the USGS web 

site. For each data set, a cumulative frequency curve of the stage height data was created 

using Excel’s statistical package to evaluate the percent time the water level was at or 

below a given elevation, i.e., the percent time of inundation (Figure 9). These percentages 

were then used to define the active floodplain on a digital elevation model (DEM) (Figure 

9). More specifically, LiDAR (Light Detection and Ranging) DEM datasets for each sub-

area (in NAVD88 datum) were obtained from the North Carolina Department of 

Transportation (NC DOT) and were converted into percent-time-flooded maps using the 

raster calculator tool in Arc GIS (Figure 10). Once the LiDAR DEMs had been converted 

into percent-time-flooded rasters, the active floodplain was differentiated by outlining the 

area where flooding occurred more than one percent of the time at each location. This 

portion of the map is referred to as the “active floodplain”. A 1% time of flooding was 

used to attempt to capture areas that were more frequently flooded and thus are likely to 

have more steady sedimentation over time.
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Active Floodplain ~3.5 meters 

Figure 9: Histogram of stage heights (m) for the Tar River (left) and DEM data at Site 4 encompassing the USGS Greenville, NC gauge. The 
“active floodplain” was estimated to be below the 1% time flooded elevation (~ 3.5-m elevation at this site). Note this level in the graph and 
outlined in the map at the right and in Figure 10. 
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 Figure 10: Map showing percentage of time flooded for Site 4. Note, core 
numbers are labeled on the map and increase with distance from the main channel. 
Note position of the “active floodplain” is shown by the black line. 
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To gain insight on the overall characteristics of the active floodplain (i.e. relief, 

percent time flooded, and elevation) DEM data were clipped in to the active floodplain 

Arc GIS. Attribute tables were then imported into Sigma Plot to create histograms at each 

site. Mean and standard deviation for the floodplain elevation data at each site was 

calculated from these data using Excel. 

 

4.2 Sediment Analysis 

At each site, cores were collected on transects perpendicular to the main channel 

of the Tar River. Typically a core was obtained at the river’s edge (within 1 to 2 meters 

of the water during low flow) and subsequent cores were spaced 50-m apart along 

transect.  Cores were numbered with increasing values with distance from the channel. 

The site number was included in the core names for identification. For example, Site 4 

has cores 401-405 moving landward from the river channel (Figure 10). Typically, three 

cores were collected along each transect, however, the Site 4 transect has five cores. 

Cores were obtained by driving an aluminum irrigation pipe (~7 cm interior 

diameter) into the ground with a sledge hammer until either refusal or total penetration 

(usually ~ 1 m). In areas where sediments were very compacted, a Russian coring system 

was used. Russian sub-cores were collected in half-meter increments with an overlap of 

10 cm. 

Cores collected were split, photographed, and down-core changes in lithology and 

organic matter were described. Cores were then sub-samples at 2-cm intervals. Core 

sections that had evident layering were sub-sampled at the increments of the laminations, 

e.g., approximately every 1 cm (Cores 302 and 401). 
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Grain-size analysis was performed on cores to obtain sedimentological insight and 

to evaluate potential influences on radionuclide activities. All grain size samples were 

sonicated in a 0.05% calgon solution for 10 minutes. Samples were then wet sieved 

through a 63-micron sieve, removing the fine fraction from the sample. The sand fraction 

was then transferred to a pre-weighed boat, dried in a 90°C desiccating oven over night 

(at least 12 hours) and weighed.  

To investigate the effect of sediment grain size on radionuclide data which has 

been shown affect overall activities seen in sediment. One core collected in close 

proximity (within ~1 m of the original core location) of Core 602 was analyzed by pipette 

analysis following the methods described in Folk (1974). Samples were placed in 100 ml 

jars with a 50 ml solution of 10% calgon (100g calgon / 1000ml deionized water), shaken 

vigorously, and sonicated for 10 minutes. The sample was sieved with deionized water 

through a 63-micron sieve into a glass cylinder, and then the volume was brought up to 

1000 ml. After shaking vigorously for 1 minute, a 20 ml aliquot was taken at a depth of 

20 cm and subsequent samples were collected at specific times and depths over a 5-day 

period. Each 20-ml aliquot was dried in a pre-weighed boat at 90°C desiccating oven 

(~12 hrs). Samples were then re-weighed, and the mass of the sediment, after subtracting 

for the dispersant mass, was calculated. Data were reduced to obtain the sand, silt, and 

clay percentages within each sample. Aliquots were corrected for volume and differenced 

to obtain the mass of each phi size lost. The sand percentage was calculated by dividing 

sand mass (all sediment trapped on the 63-micron sieve) by the total calculated sediment 

mass.  
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4.3 Sediment Accumulation 

Samples were analyzed for 210Pb (half life 22.3 yrs) and 137Cs (half life 30.1 yrs) 

activities down core, allowing for rates to be calculated back approximately 100 yrs and 

50 yr respectively. Alpha spectroscopy was used to quantify 210Pb following a modified 

method from Flynn (1962) and Nittrouer et al., (1979). Approximately 1- 1.5 g of 

sediment was spiked with 1 ml of 209Po as a yield determinant. Samples were partially 

digested with 8 molar nitric acid by microwave heating, and Po was electrodeposited onto 

nickel disks in a dilute hydrochloric acid solution. Supported activity was determined by 

plotting total 210Pb activity versus depth (Figure 11), and the average activity remained 

constant (i.e., became a consistent value with depth), this was assumed to be the 

supported level and the average activity and a standard deviation were determined. This 

supported level was subtracted from the total activity to calculate the “excess” activity of 

210Pb.  
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The activities of 210Pb and 137Cs were measured via direct gamma spectroscopy. 

Samples were dried, homogenized, and packed into a standardized counting vessel. 

Samples were counted on one of four low-background, high-efficiency, high-purity 

Germanium detectors (BEGe-, Coaxial-, LEGe-, and Well-type) coupled with a 

multichannel analyzer (Meriwether et al., 1988, Corbett et al., 2004). 226Ra activities were 

measured to determine supported values for 210Pb. Samples were allowed to equilibrate 

for no less than three weeks before counting, 226Ra is then determined by counting 

gamma emissions of its granddaughters, 214Pb (295 and 351 keV) and 214Bi (609 keV) 

(Corbett et al., 2006). 137Cs activities were calculated based on the net counts at the 661.7 

keV photopeak (Corbett et al., 2004). 

Figure 11: Ideal profile of 210Pb activity versus depth down core for a site with steady-
state sedimentation. The supported 210Pb is denoted by the dotted line, and the surface 
mix layer (SML) is labeled at the top of the core. The dotted box shows the area where 
the 210Pb activity is averaged to attain the “supported” value. 
 

210Pb dpm/g 
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Where steady-state sedimentation was apparent (i.e., a down core log-linear 

profile was observed) excess 210Pb activity was regressed to calculate the vertical 

sediment accumulation rate. The rate is determined by dividing the decay constant by the 

slope (- λ / slope of the regression line), following the simple model (Appleby and 

Oldfield, 1992; Corbett et al., 2006) Equation 1: 

                     (1) 

Where Az and A0 (dpm/g) equal the excess 210Pb activity at a given depth x and 0-cm 

depth respectively; λ is the decay constant of 210Pb (0.031/yr); s is the accumulation rate 

(cm/yr). For most cores 210Pb activities determined by alpha spectroscopy were employed 

for the analysis of sedimentation rates, but, where alpha spectroscopy data could not be 

used due to apparent fluctuations in the supported activity, gamma spectroscopy data was 

used to obtain 226Ra and excess 210Pb activities (i.e. the supported level). This was 

necessary in 10 of the cores collected listed in Table 2.  

The peak of 137Cs (1963) was used to corroborate the 210Pb derived sediment 

accumulation rates (Figure 12). The depth to the highest activity peak (associated with 

the maximum testing of nuclear weapons in 1963) was found and then a simple (depth / 

time) equation was used to calculate the sediment accumulation rate (Meriwether et al., 

1988; Lynch et al., 1989). When a 137Cs peak was not well defined, a range of estimates 

were used to determine a maximum and minimum accumulation rate.  
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Figure 12: Example down core 137Cs profile indicating the 1963 peak from 
atmospheric testing of nuclear weapons. 
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After accumulation rates were calculated from 210Pb and 137Cs data, cores were 

placed into three groups based on the quality (how well the assumptions held up) of the 

data (i.e., good, intermediate, and poor) and how well the radionuclides could be used to 

estimate the sediment accumulation rates. Cores that were classified as “good” had a 

well-defined 137Cs peak, the 210Pb data showed a clear exponential decrease in activity 

with depth with a high r2 value (i.e., higher than 0.7), and both the accumulation rates 

determined from the two independent methods were within error. “Intermediate” quality 

cores had one of the radionuclide methods give a convincing accumulation rate; however, 

the other radionuclide data could not be used, had a large degree of uncertainty or the rate 

disagreed. Cores considered to have “poor” data for sedimentation rates did not have 

radionuclide data sets that were usable for rate analysis (i.e., data were non-steady-state, 

Walsh et al., 2004).  

 

4.4 Investigation of Flood Deposition 

Flooding occurred within the study area on December, 12, 2009, and to gain some 

insight into deposition from this flood several sites were revisited and additional cores 

were collected. Previous work has shown flood deposition can be measured using 7Be 

(t1/2 = 53.3 days), a radionuclide produced by cosmic spallation reactions with nitrogen 

and oxygen in Earth’s atmosphere (Dutkiewicz and Husain, 1985; Olsen et al., 1986; 

Canuel et al., 1989). In this study, activity levels of 7Be in sediments were measured via 

direct gamma spectroscopy. Samples were dried, homogenized, and packed into a 

standardized counting vessel. Samples were counted on one of four low-background, 

high-efficiency, high-purity Germanium detectors (BEGe-, Coaxial-, LEGe-, and Well-
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type) coupled with a multichannel analyzer (Giffin and Corbett, 2003). 7Be activities 

were calculated based on the net counts at the 477 keV photopeak (Corbett et al., 

2004).Whole-core inventories for 7Be were calculated for pre-flood and post-flood cores 

and compared to evaluate the presence of deposition after flooding.  

 

4.5 Estimating Sediment Storage 

 To enable estimation of sediment storage, sediment accumulation rates measured 

at each site were extrapolated over adjacent floodplain areas, and ultimately the entire 

study area (i.e., Tarboro to Washington).  Shapefile polygons of the active floodplain 

were clipped by a buffer with distance from the main channel (i.e., 50 and 100 meters) to 

define areas represented by accumulation rates measured from cores. Distance was 

chosen rather than elevation because a more prominent relation between distance from 

channel and accumulation rate was seen. For example the accumulation rate for Core 101 

was extracted over the area within the 0-50 m buffer, Core 102 was extrapolated over the 

50-100 m buffer, and Core 103 was extrapolated over the remaining distance to the edge 

of the active floodplain (> 100 m).  Areas calculated from these polygons were then 

multiplied by the accumulation rates measured within the floodplain through radionuclide 

analysis to calculate a volume of sediment storage.  

 Site 4 was calculated in a slightly different manner due to the extra cores collected 

within the transect. In a similar manner as the other sites, three buffers were used; 

however, the floodplain represented by each of the buffers was then broken into two 

different regions based on the amount of time flooded. The first buffer remained the same 

as the previous methods since only one core (i.e., 401) was collected within 50-m of the 
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river channel. The next two buffer zones were further subdivided down based on the 

percent time flooded regimes that each core represented. 

Rates of sediment storage at the individual sites were ultimately extrapolated over 

the entire length of the river within the study area (i.e., from Tarboro to Washington) by 

determining the river length at each site and calculating the amount of storage per unit 

length of river (i.e., m3of sediment/km of shoreline/year).  This value was then multiplied 

by the reach length (in km) that each site was estimated to represent.  This process was 

completed for the full length of the river within the study area (98.5 km). This total 

volume was converted to a mass by taking a literature value of dry bulk density for 

floodplain sediment of east coast rivers (i.e., 1 g/cm3, Schenk and Hupp, 2009).  
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5. Results 

5.1 Floodplain 

 The seven sites examined in this study show, a variety of differences in total 

relief, percent-time flooded, and floodplain area. For example, a general trend of 

increasing percent-time flooded with increasing distance downstream is evident (Table 

2). Also, a trend of decreasing total relief is seen with increasing distance downstream. 

Site 1 has a narrow floodplain with scroll bars and tributary channels creating 

notable relief (Figure 13). This site because of its relief and hydrology, has a relatively 

small amount of regularly flooded area (Figure 14). Note, a small drainage channel in the 

floodplain in close proximity to the transect on which cores were collected. Drainage 

pathways like these have been shown in previous studies to affect accumulation rates, but 

development in this area is minimal.  

Site 2 is 21 km downstream from Site 1 (Figure 15). Site 2 has a wider active 

floodplain than Site 1 with fewer tributaries and less apparent relief. Due to the lack of a 

gauge station near this site, stage data from USGS’s Tarboro and the 264 Bypass gauges 

were used to estimate  a percent-time-flooded curve (with a 40:60 weighted average 

respectively). More area is flooded more often at Site 2 compared to Site 1 (Figure 16); 

however, similar geomorphologic landforms to Site 1 can be seen. 
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Table 2: Sum
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Site 1 C
ore 101

1
11.4

13.0
1.08 +/- 0.2

1.05 +/- 0.08
I

Site 1 C
ore 102

50
16.3

43.5
0.4 +/- 0.1

4.4 +/- 0.55
*

0.28
G

Site 1 C
ore 103

100
11.4

18.2
0.16 +/- 0.03

2.89 +/- 0.96
*

0.19
G

Site 2 C
ore 201

1
53.4

15.6
P

Site 2 C
ore 202

50
7.4

34.8
0.12 +/- 0.02

2.6 +/-0.42
0.11

G
Site 2 C

ore 203
100

9.6
44.8

0.18 +/- 0.03
2.64 +/- 0.45

0.15
G

Site 3 C
ore 301

1
37.0

23.7
0.59 +/- 0.07

2.17 +/- 0.19
I

Site 3 C
ore 302

50
13.7

28.5
0.15 +/- 0.02

2 +/- 0.2
0.15

G
Site 3 C

ore 303
100

7.9
31.2

0.13 +/- 0.02
2.52 +/- 0.37

0.13
G

Site 4 C
ore 401

1
19.1

34.8
1.41 +/- 0.2

0.23
I

Site 4 C
ore 402

50
19.1

42.9
0.29 +/- 0.06

4.29 +/- 0.85
*

0.32
G

Site 4 C
ore 403

55
23.7

43.0
0.45 +/- 0.05

3.5 +/- 0.46
0.40

G

Site 4 C
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55
19.1

34.9
0.14 +/- 0.02

5.6 +/- 0.55
*

0.23
I

Site 4 C
ore 404

95
19.1

29.9
0.14 +/- 0.01

2.9 +/- 0.33
0.23-0.32

I
Site 4 C

ore 405
100

30.0
31.5

0.39 +/- 0.05
1.8 +/- 0.20

0.23-0.32
G

Site 5 C
ore 501

1
43.7

18.1
0.21 +/- 0.03

3.20 +/- 1.17
*

0.19
G

Site 5 C
ore 502

50
43.7

29.1
0.09 +/- 0.01

3.51 +/- 0.82
*

0.19
I

Site 5 C
ore 503

100
43.7

5.4
1.24 +/- 0.30

0.02
I

Site 6 C
ore 601

1
43.7

33.7
0.84 +/- 0.16

2 +/- 0.46
0.53

I

Site 6 C
ore 601 PF

1
43.7

31.8
0.42 +/- 0.04

4.39 +/- 0.44
*

0.36-0.45
G

Site 6 C
ore 602

50
43.7

35.5
0.24 +/- 0.05

3.87 +/- 0.80
*

0.19
G

Site 6 C
ore 603

100
43.7

34.8
0.2 +/- 0.03

3.80 +/- 0.87
*

0.19
G

Site 6 C
ore 603 PF

100
43.7

17.4
0.21 +/- 0.03

3.56 +/- 0.66
*

0.45
I

Site 7 C
ore 701

1
46.3

9.5
0.91 +/- 0.07

0.99 +/- 0.24
0.83

G
Site 7 C

ore 702
50

3.1
1.5

0.64 +/- 0.01
0.06

I
Site 7 C

ore 703
100

3.1
1.9

0.8 +/- 0.03
0.02

I
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m
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 Figure 13: Map showing Site 1 whose active floodplain has a relief of 4.3 
meters with a minimum elevation of 5.18 meters and a maximum elevation of 
9.5 meters.  
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 Figure 14: Map showing the active floodplain and the percent-time flooded for 
Site 1. The combined total area of the active floodplain is 1 km2, and the area 
covers a 1.5-km-long reach of the Tar River. 
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Core 02 

Core 03 

Core 01 

Figure 15: Map showing the active floodplain of Site 2 which has a relief of 4 
meters with a minimum elevation of 4 meters and a maximum elevation of 8 
meters. 
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Figure 16: Map showing the active floodplain and the percent-time flooded for 
Site 2. The active floodplain encompasses an area of 1.5 km2, and the area 
covers a river reach 2.5 km long. 
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 Site 3 is 20-km downstream from Site 2 (Figure 3). Site 3 has a wider floodplain 

compared to Site 1 and 2 with a total relief between the relief of these sites (Figure 17). 

The floodplain is anthropogenically influenced by adjacent ponds and farm land, and a 

bridge segregates the flow of water across the floodplain. The average percent-time 

flooded is greater than the previous sites, consistent with the trend of increasing flooding 

time downstream (Figure 18). 

 Site 4 is 6 km downstream from Site 3, and is less symmetrical than previous 

sites, all of the active floodplain lies on the northern side of the river (Figure 19). The 

floodplain of Site 4 is surrounded by forested land; however, a bridge crosses the 

floodplain, and it forms a high elevation area to the northwest of the core transect. Site 4 

has less floodplain area compared to previous sites, The river at this site is very straight 

and flows almost totally east-west (Figure 20). 

 Site 5 lies 20-km downstream of Site 4. It has a much wider floodplain southwest 

of the river with a small amount of floodplain on the opposite bank (Figure 21). This site 

has less relief than those upstream. In LiDAR data, mounds can be seen parallel to the 

main channel of the river; these are interpreted to be dredge spoils and may affect 

flooding processes in the floodplain. Here again, the average percent-time flooded 

increases relative to those sites farther upstream (Figure 22).  

Site 6 is 4 km from Site 5 and approximately 12-km upstream from the Highway 

17 bridge in Washington, NC (Figure 3). Site 6 has a narrower floodplain than Site 5 and 

is located just past a meander in the river where there is very little relief (Figure 23).  

There are many tributaries within the active floodplain, and human influences can be seen 

in a variety of forms. A bridge crosses the river at this location dividing the floodplain 
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hydrologically. Farm land is located directly north of the floodplain, and developed land 

is to the south. Dredge spoil piles can be seen in this floodplain, similar to Site 5. The 

average percent-time flooded is high at this site (40 %), and this is anticipated due to its 

proximity to the estuary (Figure 24).  

Site 7 has the widest and most expansive floodplain of all the sites; it is located 

just upstream of the estuary head (Figure 25). The relief within the active floodplain of 

Site 7 is very small (Figure 25). Many tributaries enter the river at this site. The percent-

time flooded (50 %) for Site 7 is the highest of the study sites (Figure 26).
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Core 03 

Core 01 

Core 02 

Figure 17: Map showing the active floodplain for Site 3. The active floodplain has 
a total relief of 4.6 meters with a minimum elevation of 0.6 meters and a maximum 
elevation of 5.2 meters. 

Core 303 

Core 301 

Core 302 
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 Figure 18: Map showing the active floodplain and the percent time flooded for 
Site 3. The active floodplain has a total area of 2 km2, and the area covers a 2.1 
km long reach of the Tar River. 

Core 303 

Core 301 

Core 302 
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Figure 19: Map showing the active floodplain for Site 4. The north side of the 
river holds the active floodplain which has a relief of 3.2 meters with a 
minimum elevation of 0.3 meters and a maximum elevation of 3.5 meters.  
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Core 401 

Core 405 
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Figure 20: Map showing the active floodplain and the percent-time flooded for 
Site 4. The active floodplain has a total area of 1.04 km2 and, the area covers a 
1.5-km-long reach of the Tar River. 
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Figure 21: Map showing the active floodplain for Site 5. The active floodplain 
has a total relief of 1.5 meters with a minimum elevation of 0 meters and a 
maximum elevation of 1.5 meters above mean sea level.  

Core 502 
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Figure 22: Map showing the active floodplain and the percent time flooded for 
Site 5. The active floodplain has a total area of 2.13 km2 with a river reach 2.4 
km in length. 
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Core 503 

Core 501 
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Figure 23: Map showing the active floodplain for Site 6. The active floodplain 
and has a relief of 1.3 meters with a minimum elevation of sea level and a 
maximum elevation of 1.3 meters.  
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Core 601 

Core 602 
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Figure 24: Map showing the active floodplain and the percent time flooded for 
Site 6. The active floodplain has a total area of 1 km2, and the area covers a 
1.9-km-long reach of the Tar River. 

Core 603 

Core 601 

Core 602 
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Figure 25: Map showing the active floodplain for Site 7. The active floodplain 
and has a relief of 1.3 meters with a minimum elevation of sea level and a 
maximum elevation of 1.3 meters.  

Core 703 

Core 701 Core 702 
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Figure 26: Map showing the active floodplain and the percent time flooded for 
Site 7. The active floodplain has a total area of 2.33 km2 and the area covers a 
1.8 km long reach of the Tar River. 

Core 703 

Core 701 Core 702 
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5.2 Radiochemical and Sedimentological Data 

Radionuclide data were analyzed to obtain sediment accumulation rates. 210Pb-

based linear accumulation rates measured within the study area ranged from 0.09 to 1.08 

cm/yr. Accumulation rates derived from 137Cs range from 0.02 to 0.83 cm/yr. Cores were 

rated on the quality of the radionuclide data used to estimate the rates (i.e., good, 

intermediate, and poor; Table 2). The grain-size character of the cores showed 

considerable variability, percent mud ranged between 1.5 and 50 %, with the majority of 

the cores having 20-45% mud. 

Sediment accumulation rates for Site 1 decrease from 1.08 to 0.16 cm/yr with 

distance from the main channel. The whole-core average mud percentages from cores at 

Site 1 range from 13 % in Core 101 to 43.5 % in Core 102 (Figure 27). Site 2 had 

variable rates of sediment accumulation with distance, and Core 201 was not able to be 

used for accumulation rate measurements due to the non-steady-state nature of the core. 

Average mud percentages in cores at Site 2 increase landward from 15.6% to 44.8% 

(Figure 28). Accumulation rates for Site 3 decrease from 0.59 cm/yr, close to the main 

channel to 0.13 cm/yr in Core 303. Mud percentages for Site 3 increase from 23.7 to 31.2 

% with increasing distance from channel (Figure 29). Site 4 accumulation rates are 

variable with distance; rates range from 0.14 to 0.45 cm/yr (Figures 30 and 31). Grain 

size within Site 4 also is variable along the transect, ranging from 29.9 to 43% (Figure 

32). Site 5 has decreasing accumulation rates with distance from the river channel (0.21 

cm/yr to 0.09 cm/yr), but the last core (Core 503) on the transect is interpreted as having 

a thin (~2 cm) veneer of excess-210Pb-rich sediment on top of older (no excess 210Pb) 

sediment, and this interpretation is supported by the 137Cs peak being located near the 
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surface of the core. Percent mud is variable on this transect (29.1-5.4 %; Figure 33). 

Accumulation rates in Site 6 decrease landward (0.84 to 0.20 cm/yr), while percent mud 

on the transect is approximately the same in the three cores (Figure 34).  

To help evaluate if grain size (i.e. percent clay) is controlling radionuclide activity 

in the study, down-core activity from a core immediately adjacent to Core 602 was 

analyzed by pipette analysis to determine grain size in the fine-grained fraction (Figure 

35). Activity data do not show an obvious impact of grain size on the activity profile 

(Figure 35). As a result no correction for grain size was used when interpreting the 

activity profiles in this study. 

Cores 702 and 703 of Site 7 were both interpreted as having a thin veneer of more 

recent (with excess 210Pb) sediment on top of older (no excess 210Pb) sediment, and this 

interpretation is supported by the 137Cs peak being located at the surface of the core 

(Figure 36). Grain size within the transect shows all three cores are predominantly sandy 

material with Core 702 and 703 having < 2 % mud on average.
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Figure 27: Graphs of 210Pb and 137Cs activities, and mud percent for Site 1. Sediment 
accumulation rates calculated by 210Pb are shown for all three cores. Core 101 did not 
have a discernable 137Cs peak so a 137Cs rate was not calculated. Note, accumulation 
rates generally decrease with increasing distance from river channel. 

210Pb Excess Activity (dpm/g) 

Percent Mud (%) 

Rate not 
calculated 
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137Cs Activity (dpm/g) 

210Pb Excess Activity (dpm/g) 

Percent Mud (%) 

Figure 28: Graphs of 210Pb and 137Cs activities, and mud percent for Site 2. Sediment 
accumulation rates calculated by 210Pb are shown for cores 202 and 203, no rate is 
calculated for Core 201 for 210Pb or 137Cs. Note, mud percent increases with increasing 
distance from channel. 

Rate not 
calculated 

Rate not 
calculated 
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137Cs Activity (dpm/g) 

210Pb Excess Activity (dpm/g) 

Percent Mud (%) 

Figure 29: Graphs of 210Pb and 137Cs activities, and mud percent for Site 3. Sediment 
accumulation rates calculated by 210Pb are shown for all three cores. Core 301 did not 
have a discernable 137Cs peak so a 137Cs rate was not estimated. Note, accumulation 
rates generally decrease with increasing distance from river channel. 

Rate not 
calculated 
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Figure 30: G
raphs of 210Pb activity versus depth for Site 3. 210Pb accum

ulation rates are available for all five cores except C
ore 401. 

R
ates are variable w

ith distance from
 channel. 
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Figure 31: G
raphs of 137C

s activity versus depth show
n for Site 4. A

n accum
ulation rate for all five cores w

as able to be 
calculated. C

ores 404 and 405 have a range calculation due a distinct peak not being present.  
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Figure 32: G
raphs of m

ud percent versus depth is show
n for Site 4. N

ote differences betw
een cores w

ith respect to distance 
from

 channel. 
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210Pb Excess Activity (dpm/g) 

137Cs Activity (dpm/g) 

Percent Mud (%) 

Figure 33: Graphs of 210Pb and 137Cs activities, and mud percent for Site 5. 
Accumulation rates for Core 503 were not estimated using 210Pb. Note variability of 
percent mud with distance from channel.  
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210Pb Excess Activity (dpm/g) 

137Cs Activity (dpm/g) 

Percent Mud (%) 

Figure 34: Graphs of 210Pb and 137Cs activities, and mud percent for Site 6. Sediment 
accumulation rates calculated by 210Pb are shown for all three cores. Note, accumulation 
rates are highest near channel and lowest in Core 603. 
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Figure 35: Grain size percents and total 210Pb activity. Note, Variations in grain size are not 
correlated with changes in total 210 Pb activities. 

Total 210Pb Activity (dpm/g) 

Grain Size Site 6 Core 604 
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210Pb Excess Activity (dpm/g) 

137Cs Activity (dpm/g) 

Percent Mud (%) 

Figure 36: Graphs of 210Pb and 137Cs activities, and mud percents for Site 7. Sediment 
accumulation rates are only seen in Core 701. Note, low percent mud is seen in all 
cores. 
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5.3 Post-Flood Cores Compared to Pre-Flood Cores 

On December 12, 2009 the Tar River topped its banks, and the Site 4 floodplain 

near Greenville remained inundated until January, 08, 2010 (Figure 7). To evaluate flood-

related deposition, cores were collected in the same vicinity (within 15 m) of three 

previously cored locations (Core 403, Core 601, and Core 603). Inventories of 7Be were 

measured on pre- and post-flood cores and are reported in dpm/cm2 to evaluate recent 

deposition (Giffin and Corbett, 2003). Atmospheric deposition of 7Be was measured by 

Canuel et al. (1989) at Morehead City, NC to be 3.1 dpm/cm2 in inventories. Inventories 

were compared between pre-flood inventories and post-flood inventories to see if new 

7Be could be seen indicating new accumulation (Table 3). Core 403 shows a notable 

increase in inventory after the flood representing deposition. Cores 601 and 603 both 

show little to no deposition after flooding (Table 3). 

The cores collected after flooding also were analyzed for accumulation rates and 

mud percentages (Figures 37, 38, 39). These cores were used to compare with previous 

core data to evaluate temporally and possibly spatial variability (i.e., within 15 m). The 

post-flooding core collected near Core 403, shows a lower accumulation rate than the 

pre-flood core. Grain-size down core appears to be quite different; however, the whole-

core average mud percent is similar. Core 601pf (Post-flooding) has an accumulation rate 

lower than that of the pre-flooding core. Down-core grain-size profiles also show 

differences indicating a different sedimentation at the post-flood site. Accumulation rates 

for Cores at 603pf has a higher accumulation rate than that of the pre-flood core. Mud 

percents also show differences in trend and averages. 
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Table 3: 7Be penetration depths, surface activities, and inventories. Cores 403, 601, and 
603 show inventories for pre and post flooding. Note, penetration depths vary between 
cores. 

Site
Pre-flood Post-flood Pre-flood Post-flood Pre-flood Post-flood

403 2 4 1.92 1.14 3.84 5.34
601 0 2 0 0.68 0 1.36
603 4 2 6.58 1.46 15.5 2.92

7Be Penetration 
Depth cm 7Be Surface Activity Inventory
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Figure 37: Comparison between Cores 403 and 403 pf. Accumulation rates vary between the 
two cores to where Core 03 has an accumulation rate over 2 times the accumulation rate of 403 
pf. Grain size down core profiles also show differences in down core profile, however, the 
overall whole core average is similar. 
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Figure 38: Shows the comparison between Cores 601 and 601 pf. Accumulation rates vary 
between the two cores to where Core 601 has an accumulation rate 2 times the accumulation 
rate of 601 pf. Grain size down core profiles also show differences in down core profile; 
however, the overall whole core average is similar. 
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Figure 39: Shows the comparison between Cores 603 and 603 pf. Accumulation rates are 
similar between cores; however, 137Cs accumulation rate seen in Core 603 pf has a much higher 
rate of accumulation which is not seen in the 210Pb. Grain size down core profiles also show 
differences in down core profile and overall core average grain size. 
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6. Discussion 

 

6.1 Characterizing the active floodplain 

Floodplains are dynamic sedimentary systems with large variability in 

morphology and sedimentation both between locations and within study areas (Wolman 

and Leopold, 1957; He and Walling, 1996; Walling and He, 1997; Allison, 1998; 

Goodbred and Kuehl, 1998; Hupp, 2000; Walling, 2004; Knox, 2006; Mizugaki et al., 

2006). Walling et al. (1998) noted how floodplain transects within the River Ouse varied 

in both elevation and morphological features (i.e., levees, ditches, and depressions). This 

complexity is evident when looking at the lower Tar River study area. For example, some 

sites have different geomorphic features and have an active floodplain that is 

symmetrically arranged across the river (i.e., Sites 3 and 7), while others are shifted 

predominately to one side of the river or the other (i.e., Sites 1, 2, 4, 5, and 6).  

Researchers and agencies differentiate the river floodplains in different ways to 

investigate the effects of flooding on biological, chemical, sedimentological, and 

hydrological parameters. Regulatory agencies such as the Federal Emergency 

Management Agency (FEMA) define the zone of flood hazard as the 100-year floodplain. 

More specifically, this method defines the active floodplain that has a 1% chance of 

being flooded each year. Junk et al. (1989) describe the active floodplain as the area that 

is periodically inundated by the lateral overflow of rivers and lakes. Smith et al. (2008) 

use a GIS-based approach similar to the method described in this paper. However, their 

method uses a model of costs (what it would take for water to cover that area) that are 

derived from slopes and elevations. The cutoff of 1% inundation time used here was 
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chosen to define areas where flooding occurs frequently and long enough to allow 

somewhat regular deposition to occur (i.e., steady-state) so radionuclide approaches 

could be successful. This would be less likely to occur in further areas of the 100-year 

floodplain that rarely see inundation on annual timescales. When compared with the 

active floodplain using our method the 100-year is much more expansive (Figure 40). 

This is seen for all seven study sites but is shown here for Site 4. The difference between 

the two methods yield very different estimates for area, however, the majority of steady-

state accumulation is expected to occur in the active floodplain area denoted by the 

method described. 

Some problems with this method include that the previous 10 years of data could 

reflect a wetter or dryer period that would either extend or reduce the maximum extent of 

inundation and accumulation. Thus, the active floodplain described by this method likely 

underestimates the total area of floodplain sequestering sediment over decadal timescales. 

When investigating individual 10-year time blocks of data for all sites, full data sets were 

not always available. This meant that not all sites had the same amount of daily readings. 

Variations in total data points between sites could cause some biasing in percent-time 

flooding estimates, however, the overall large datasets (~2500 to 3600 stage height 

measurements) used for each individual site should minimize bias of the data. 

Strong variations in topography are known to affect accumulation rates within 

floodplain systems (Allison et al., 1998; Walling and He, 1998; Walling et al., 1998). In 

this study, sites portrayed a general spatial pattern in topography downstream; overall, 

mean floodplain elevation and the range in floodplain elevation decreased down river 

(Figure 41). Collectively, these parameters demonstrate a net decrease in overall relief 
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down river. However, Sites 5, 6, and 7 appear to have a fairly similar floodplain elevation 

distribution and, in general, these sites have a much greater portion of the floodplain 

flooded more often (Figure 42). This observation is consistent with that of Simmons 

(1993) who plotted the decrease in elevation across the Coastal Plain of the Neuse River. 

For example, the floodplain of Site 1 has a percent-time flooded of 3% on average, 

whereas Site 6 has an average percent time flooded of 40%. This variability between sites 

in elevation, relief, and percent-time flooded is a result of the channel morphology 

created by river migration, erosion, and flood deposition over geologic time as well as the 

hydrology. Landforms such as natural levees and erosional gullies create variations in 

elevation that ultimately impact the inundation time (i.e., percent-time flooded) along the 

river system (Allison et al., 1998). Hydrologically, sites that lie immediately upstream at 

the estuary head and at river confluences are likely to be affected by a backwater effect, 

thereby causing enhanced flooding frequency (Phillips and Slattery, 2007).



66 
 

 

 
Figure 40: Map showing the FEMA 100-year floodplain and the floodplain 
defined by this study. Note the large difference in area between the FEMA 
floodplain and the floodplain described by the method above. 
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  Figure 41: Histograms of floodplain elevations for all sites. Data show an increase in 
floodplain elevation with distance upstream. Also note the range of floodplain elevations 
increases upstream. 
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Active floodplain area between the sites varies from the smallest area of 0.79 km2 

(Site 1) to the largest floodplain area of 2.33-km2 (Site 7) (Table 4). Although the manner 

of calculating this parameter was somewhat arbitrary and could be improved to minimize 

bias (e.g., from river orientation), this trend is nevertheless likely real. The area of active 

floodplain is critical when evaluating sediment storage. The larger the active floodplain, 

the more area available for inundation and therefore long-term storage of sediment. 

Figure 42: Relationship of the time flooded found in the active floodplain with decreasing 
distance upstream starting from the estuary mouth at 0km. 
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Other differences between sites include the number and size of drainage ditches 

within the floodplain. These ditches have been shown in previous studies to affect the 

accumulation rate within the floodplain (Allison et al., 1998; Walling and He, 1998; 

Walling et al. 1998), Walling et al., (1998) compared variations in elevation with 

accumulation rates and found that in the presence of drainage ditches, accumulation rates 

were notably higher. From these data, they concluded that drainage ditches and former 

streams allow for an alternative pathway for flood waters to inundate the floodplain, 

leading to enhanced trapping and storage of sediment. 

 

6.2 Sediment accumulation rates 

 The mean accumulation rate for all cores within the active floodplain was 0.35 

cm/yr. This rate is consistent with previous work by Hupp et al. (1999) in the floodplain 

of the Roanoke river which is shown to have an average reported accumulation rate of 

0.23 cm/yr despite the fact that different methods were used. Hupp et al. (1999) 

employed dendrochronology to calculate accumulation rates within floodplains of the 

Roanoke. Also, Noe and Hupp (2009) show that Coastal Plain rivers in the Chesapeake 

bay area of Virginia have an average accumulation rate of 0.18 cm/yr. Rates in both 

Site Area (km2)
1 0.79
2 1.48
3 2.00
4 1.04
5 2.13
6 1.00
7 2.33

Table 4: Total area of active floodplain (> 1% time flooded) at each site. 
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studies were obtained from dendrogeomorphological analyses; this method uses the 

thickness of sediment above tree roots in the floodplains. The age of the root, found by 

counting rings within the root, would then be used to calculate a depth/time relationship 

similar to the 137Cs method. Having similar rates from different methods gives a greater 

confidence in the rates reported.  

 Accumulation rates within each study site show trends which are typical for 

active floodplains. The first commonly observed trend is one of decreasing accumulation 

rate with distance from the river channel (Allen, 1964; Kesel et al., 1974; James, 1985; 

Pizzuto, 1987; Allison et al., 1998; Walling and He, 1998; Walling et al., 1998; Hupp, 

2000; Mizugaki et al., 2006). The second often noted variation is the influence of 

topography and, more specifically, pathways of preferential flooding on the accumulation 

rates (Allison et al., 1998; Walling and He, 1998; Walling et al., 1998). Looking simply 

at the transect data, it appears both factors (i.e., distance from source and elevation) 

appear to be influential. Sites 1, 3, 5, and 6 have an apparent trend of decreasing 

accumulation rate with distance from the main channel; however, effects of topography 

or intra-site variability (see below) could also be influencing rates in these cores (Figure 

43).  

Sites 2 and 4, however, do not show this pattern, but these sites have drainage 

channels and may be affected by preferential flooding pathways. For example, Core 203 

has a higher accumulation rate than Core 202 (Figure 43), this difference could be a result 

of percent-time flooded (Table 2) because the frequency and duration of flooding has 

been shown to influence sediment accumulation rates (Allison et al., 1998; Walling and 

He, 1998; Walling et al., 1998). Core 203 was inundated more of the time than Core 202. 
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However, these rates may be within the error of the analysis or a product of intra-site 

variability.  

When all cores are used to investigate a relationship between accumulation rates 

and distance from channel, an overall trend of decreasing rate with distance is apparent 

(Figure 45). This trend has been documented in many previous studies and is consistent 

with diffusive transport shown in Pizzuto (1987). Walling and He (1998) showed this 

relationship in five separate rivers, i.e., the Stour, Culm, Severn, Rother, and Avon. In the 

Tar River, accumulation rates also become less variable with increasing distance from 

channel (Figure 45). This commonly observed trend can be explained by the general 

reduction in frequency and duration of inundation with increasing distance from the main 

channel (Walling and He, 1998).  

Using the complete dataset, 137Cs-based accumulation rates plotted versus 

percent-time flooded suggest a general trend of increasing accumulation with increasing 

percent-time flooded (Figure 44). Outliers in the data include cores 502 and 503, which 

have high percent time flooding (~43%) with very low accumulation rate of 0.19 and 

0.02, respectively. 210Pb accumulation rates plotted against percent time flooding shows a 

similar relationship (Figure 44). A noticeable outlier is Core 101 which has a low 

calculated percent time flooding but a high accumulation rate. A 137Cs accumulation rate 

could not be obtained from this core, suggesting more complex sedimentation may exist 

here. Other cores such as 503 have low accumulation rates with high flooding 

percentages. Data from Site 4 suggest the presence of topographic influences on 

accumulation. Cores 403 and 405 have much higher accumulation rates than would be 

expected in comparison to adjacent cores. Core 403 was taken in close proximity to a 
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natural drainage ditch which is flooded 23% of the time (Figure 20). Core 405 also was 

taken in an area of higher inundation time compared to Core 404. 

Ultimately, both distance and inundation time appear to play a role in floodplain 

sedimentation, but neither can explain all the data variability due to the complex 

interaction of the river and floodplain. This is certainly evident in the non-steady-state 

accumulation observed at several sites (i.e., Core 201 and 401). For example, Site 7 does 

not appear to agree with either controlling factor (i.e., distance from channel or 

inundation time). Radionuclide data from Cores 702 and 703 indicate non-steady-state 

accumulation or no active decadal-scale accumulation suggesting more complex 

sedimentation at these sites. Because rivers and their morphology are dynamic and are 

affected by non-stationary and stochastic events (i.e., storms), rates of sedimentation over 

decadal and even shorter timescales will likely never follow a simple empirical model, 

especially over longer temporal and spatial scales. 
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Figure 43: Graphs showing accumulation rates with increasing distance from channel. A trend 
of decreasing accumulation rate with increasing distance from channel is seen at Sites 1, 3, 5, 
and 6. Data from Sites 2 and 4 suggest the affect of topography on accumulation rate. 
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Figure 44: Accumulation rates versus percent-time flooded for both 
137Cs and 210Pb data. 137Cs-derived data (A) and 210Pb-derived data 
(B), both datasets suggest a general trend, but with notable exceptions. 
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Although rates of sediment accumulation are suggestive of expected patterns, 

mud-percent data from this work is less predictable. Due to a loss in flow velocity into 

the floodplain the typical grain-size trend is one of increasing mud with distance from the 

main channel (Allen, 1964; Kesel et al., 1974; Pizzuto, 1987; Walling and He, 1998; 

Walling et al., 1998). Sites 2, 3, and 6 are generally in agreement with this pattern (Figure 

46); however, data at other sites are inconsistent. For example, Sites 1 and 4 have the 

highest percentage of mud in the center of the transect. Both of these cores are proximal 

to a drainage ditch which may affect the deposition of fine-grained sediment. Lambert 

and Walling (1978) in a study of the River Culm showed how small or “micro” variations 

in elevation such as low depressions appear to cause higher accumulation rates as 

Figure 45: Relation of accumulation rate with distance from channel for entire study area. 
General trend of decreasing accumulation rate with increasing distance is seen. Sites are color 
coded to show trends within sites compared to overall trend. 

Y = -0.0047x + 0.598 
R2= 0.43 
P = 0.23 
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receding flood waters are trapped in these lows allowing suspended sediments to settle 

out. Asselman and Middelkoop (1995 and 1998) show a grain-size shift in low-lying 

areas which are inundated longer by ponding. Thus, grain-size trends, like sedimentation 

rates, may be influenced by topography and inundation times. 
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Figure 46: Whole-core averages of percent mud with increasing distance from channel. 
Expected trends of increasing percent mud with increasing distance from channel are seen at 
three sites with variations seen in each of the other sites. 

Site 1 Site 2 

Site 3 Site 4 

Site 5 Site 6 

Site 7 

101           102                  103 201           202                  203 

301           302                  303 401        402       403        404         405 

501           502                  503 601           602                  603 

701           702                  703 

Increasing distance from river Increasing distance from river 

Increasing distance from river Increasing distance from river 

Increasing distance from river Increasing distance from river 

Increasing distance from river 
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 When comparing pre- and post-flood cores, significant differences in 

sedimentation rates and grain size were seen at Cores 403 and 601 (Figures 37 and 38). 

These observed variations seen in cores that likely were <15-m away imply significant 

spatial variability over small distances. It is apparent that several variables (e.g., distance 

and flooding time) can affect the accumulation rates measured in any given location but it 

is also likely there is some natural variability due to very local changes. More work 

should be conducted to evaluate the spatial scales of sedimentation variability. 

 

6.3 Floodplain Sediment Storage 

 Accumulation rates were extrapolated over the entire study area to calculate the 

volume and mass of sediment sequestered by the floodplain annually. From these data the 

fraction of the total suspended-sediment load of the river stored in the floodplain was 

determined. This estimate provides important insight into the overall sediment budget for 

the Tar River. Also, because pollutants and nutrients can be associated with these 

sediments, fine-grained sediment sequestered on the floodplain may have environmental 

ramifications (Wolfenden and Lewin, 1977; Lambert and Walling, 1987). A sediment 

budget can give a better understanding of any potential future changes in loadings, 

pollutant transport, and other management efforts. 

The mean annual suspended-sediment load of the Tar River has been estimated to 

be 1.89 x 105t/yr at Tarboro (Giese et al., 1979). In this project the total amount of 

sediment sequestered in the study area floodplain is calculated to be 1.26 x 105 t/yr, and 

this represents approximately 66% of the incoming load at Tarboro (Table 5). This value 

was calculated by extrapolating the accumulation rates measured directly from cores as 
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described in the methods; however, using estimated rates from the trend shown in Figure 

45 (i.e., between distance and accumulation rate) a similar percentage of storage (67%) 

was calculated. Obtaining similar values when using different approaches helps affirm 

the storage estimates reported here. However, the major assumption for these estimates 

are that the observations at these sites represent sedimentation in the floodplain for the 

specified river reaches over which they are extrapolated, and this may be too optimistic. 

However, the broad distribution of sites and number of cores taken is substantial and 

helps to increase the confidence in the measurements. 

The storage data may be better visualized and understood in the context of a box 

model (Figure 47) or a river long profile (Figure 48). Estimates for additional sediment 

supply within the lower river were assessed, and using the estimated delivery ratio (30%, 

Phillips, 1991) for sediment making it to the river was calculated. Using this new 

estimate of floodplain sediment inputs and sequestrations, the first-order sediment budget 

was constructed (Figure 47). From this, a load of 9.6 x 104 t/yr is estimated to reach the 

Pamlico River Estuary. Note, however, this value does not take into account channel 

sequestration which has been shown to account for 4-10% of the suspended-sediment 

load for the Rivers Ouse, Wharfe, and Tweed (Walling et al., 1998). Based on this work, 

the sediment load reaching the estuary may be further reduced. This budget also does not 

take into account erosion due to channel migration which has been shown by Lauer and 

Parker (2008) to produce a local influx of sediment. The majority of sediment eroded in 

this way is typically deposited on nearby point bars; however, a portion (~10%) is 

deposited elsewhere (i.e., in the floodplain). The long profile figure (Figure 48) likely 

illustrates a near linear decrease in the load with distance downstream. 
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When comparing this work to other work done in Coastal Plain rivers, and more 

importantly North Carolina Coastal Plain rivers, similarities can be seen. For example, 

Phillips (1991) argued that alluvial storage in the lower portion of rivers may capture 

much of the sediment load before reaching the estuary, although in reality this was 

largely based on the load observations of Simmons (1993). Phillips (1993) investigated 

the affects of pre- and post-colonization on erosion and sedimentation in the Neuse River. 

Their data suggests that though sediment delivery to the river has increased, there likely 

has not been any dramatic increase in sedimentation within the estuary. Earlier work in 

the Neuse by Simmons (1993), investigating sediment loads at gauging stations 

downstream, documents increasing storage of sediment in the river downstream of the 

fall line. Simmons concluded a large portion of the sediment load is stored in the lower 

river of the Neuse. Here, looking at the Tar River, a similar storage trend is seen, 

however, rather than by inferring it but by measuring sedimentation and estimating 

storage from gauge or other data (e.g., Simmons and Phillips). Decreases in sediment 

load seen in the lower river were also noted by Benedetti (2006) in the Cape Fear River, 

NC, this is supportive of significant sediment storage within the lower Coastal Plain river 

systems. Finally, the similar magnitude of accumulation rates reported by Hupp (1999) 

suggests similar sediment storage within the Roanoke as well. 

This is important because sediment sequestration within the lower river floodplain 

would further decrease the SDR for the Tar River, previously estimated by Phillips 

(1991) to be 8% for the Piedmont portion of the system. By looking at the percent of the 

total incoming sediment that the floodplain sequesters (66%), the importance of 

floodplain processes are realized. If this storage of material is ignored, the sediment load 
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delivered to the APES would be significantly overestimated. Furthermore, nutrients and 

other pollutants are also possibly being sequestered in floodplains in association with 

these sediments (Walling and Owens, 2003). As an example, Walling et al., (2003) 

reported floodplain storage between 25 to 62% of heavy metals (Cu and Zn) in the 

floodplains of the Swale and Aire rivers. These unaccounted sediment, nutrients, and 

pollutants cannot only adversely impact the riparian wetlands but also estuaries and 

coastal areas previously describe. 
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Table 5: Table of Storage C
alculations using core accum

ulation rates for the Tar R
iver. A

ccum
ulation rates for each site w

ere 
extrapolated over their represented river reach. N

ote, reaches are not equally distanced betw
een sites, also note percents of 

incom
ing sedim

ent are calculated based on reported incom
ing sedim

ent of 189,000 t/yr. 

Site #
Accum

ulation For Site 
(t/yr)

Along River Extent of 
Representative Reach 

(km
)

t/km
/yr

Length of Reach for 
Extrapolation (km

)
Extrapolated Accum

ulaiton 
(t/yr)

Percent of Incom
ing Sedim

ent

1
2711

2.3
1184

16
19451.8

10
2

2100
2.6

811
20

16407.6
9

3
3531

2.1
1682

21
35883.3

19
4

1548
1.5

1032
16

16025.1
8

5
650

2.4
271

7
1793.5

1
6

3216
1.9

1692
7

12574.4
7

7
3891

1.8
2162

11
23520.1

12
Total

98
125655.8

66

Storage W
ithin System
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Reach 1: 
1.9 x 104 t/yr 

Reach 2: 
1.6 x 104 t/yr 

Reach 3: 
3.6 x 104 t/yr 

Reach 4: 
1.6 x 104 t/yr 

Reach 5: 
0.18 x 104 t/yr 

Reach 6: 
1.3 x 104 t/yr Reach 7: 

2.3 x 104 t/yr 

Incoming sediment 
from Tarboro 

gauging station (1.89 
x 105 t/yr) 

Sediment supply from 
erosion within the lower 
river basin 3.2 x 104 t/yr. 

Sediment delivered to estuary 
(Max 9.6 x 104 t/yr) 

Figure 47: Sediment diagram of study area. See text for description. Note, only ~50% 
of the load at Tarboro is estimated to reach the Pamlico River Estuary. Values reported 
for each of the seven sites are extrapolated over the represented reach to obtain storage 
rates. 
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Figure 48: Long profile and estimated sediment load for the lower Tar River. (A), the long 
profile shows the volume of sediment calculated to be sequestered within each 
representative reach. All rates are reported in (x104 t/yr). (B), estimated sediment load 
entering each represented river reach and estuary. Sediment loads are reported in 
thousands of tonnes per year. Note, a linear drop is observed down river. 
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7. Conclusions and Summary 

 In summary, floodplains are dynamic systems with great variability in 

topography, percent time flooded, active floodplain area, accumulation rates, and 

sediment types between sites and even within sites. This thesis was able to identify the 

active floodplain and characterize its landforms for seven study sites. Accumulation rates 

measured through radionuclide analysis established significant accumulation (up to 1.08 

cm/yr) is occurring in the lower Tar River floodplains and are influenced by distance 

from channel and inundation, among other things. Extrapolation of these rates across the 

system suggests a large percent (~66%) of the incoming sediment flux is stored in the 

floodplain areas. This is comparable to previous estimates for North Carolina rivers and 

is significant for understanding sediment and solute transport. 

 Future work within this system should focus on the scale of variability and the 

nature (metals and carbon) of stored materials. From this the total amount of pollutants 

sequestered by the floodplain each year can be quantified to gain a better understanding 

of the impact of anthropogenic activities. Management can lead to a reduction in the 

stressors on the biota within the system (Servizi and Martens, 1992; EPA, 1992; 1994; 

Daskalakis and O’Conner, 1995; Hupp, 2000; Watts et al., 2003; Walling, 2005).
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APPENDIX A 

Sedimentation, Stage Data, and Grain Size 

 

 A data CD is included with this thesis that incorporates all of the data used to 

complete this research. This CD contains all of the activities seen down core as well as all 

stage height and grain size data. The data are separated into three main folders 

Sedimentation, Stage Data, and Grain Size. 

 

Contents of Data CD: 

1_Sedimentation 
 -Pb-210 
  -Alpha_All_Sites_Compared 
 -Cs-137 
  -Gamma_All_Sites_Compared 
 -Sedimentation Rates 
  -Areas and Accumulation 
  -Sedimentation Rates Averaged 
  -Sediment_Accumulation_Rates 
 -Be-7 
  -Inventory Table 
 
2_Stage Data 
 -Greenville Flood Hydrograph 
 -Stage Height Frequency All Stations 
 
3_Grain Size 
 -Grain Size 
 -Pipette_Eglnd04 
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