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Summary
With the increasing prevalence of obesity, research has focused on the molecular mechanism(s)
linking obesity and skeletal muscle insulin resistance. Metabolic alterations within muscle, such as
changes in the cellular location of fatty acid transporter proteins, decreased mitochondrial enzyme
activity and defects in mitochondrial morphology, likely contribute to obesity and insulin resistance.
These defects are thought to play a role in the reduced skeletal muscle fatty acid oxidation (FAO)
and increased intramuscular lipid (IMCL) accumulation that is apparent with obesity and other insulin
resistant states, such as type 2 diabetes. Intramuscular triacylglycerol (IMTG) does not appear to be
a ubiquitous marker of insulin resistance, although specific IMCL intermediates such as long-chain
fatty acyl-CoAs (LCFA-CoAs), ceramide and diacylglycerol (DAG) may inhibit insulin signal
transduction. In this review, we will briefly summarize the defects in skeletal muscle lipid metabolism
associated with obesity, and discuss proposed mechanisms by which these defects may contribute to
insulin resistance.

INTRODUCTION
The prevalence of obesity throughout the world has reached epidemic proportions. The World
Health Organization classified at least 400 million people as obese (body mass index or BMI

 30 kg/m2) in 2005 and projected this number to reach 700 million by 2015. A number of
comorbidities have been attributed to obesity including cardiovascular disease and type 2
diabetes (1). Based on the link between obesity and type 2 diabetes, it is not surprising that the
rate of diabetes has also escalated. It is estimated that by the year 2010 over 220 million people
world-wide will be affected by type 2 diabetes, an increase of 46% in the past decade (2). With
the increased prevalence of obesity and insulin resistant disorders, research has attempted to
elucidate the potential mechanisms behind these diseases, with the hope of ultimately providing
effective interventions.

Research examining skeletal muscle is attractive based on this tissue’s integral role in
regulating whole-body homeostasis. Approximately 70–80% of ingested glucose is taken up
by skeletal muscle and is either stored as glycogen or oxidized for energy (3). Skeletal muscle
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also plays an important role in lipid metabolism. In the rested state, skeletal muscle fatty acid
oxidation (FAO) comprises approximately 90% of the energy requirements for this tissue (4,
5).

Insulin-resistant conditions such as obesity and type 2 diabetes typically have circulating free
fatty acid (FFA) concentrations double that of their lean, healthy counterparts (6). Early
speculation was that the increased availability of FFA resulted in substrate competition within
the muscle (ie., Randle Cycle) and as a consequence glucose metabolism was inhibited (7).
However, lipid infusion studies report a 2 to 4 hour lag between the increase in plasma FFA
and the onset of insulin resistance (8,9) suggesting that elevated FFA is not directly responsible
for insulin resistance. Instead, a current theory is that obesity induced insulin resistance is a
multifactorial process. Research suggests that with obesity, skeletal muscle is faced with
increasing amounts of lipid which it is unable to oxidize. As a consequence, lipids accumulate
within the muscle cell; this stored intramuscular lipid (IMCL) is hypothesized to play a role in
the development of insulin resistance. The intent of this paper is to provide a brief overview
of skeletal muscle lipid metabolism, followed by a brief description of the effects of obesity
on metabolic processes within the muscle, and finally a discussion on how these metabolic
decrements may contribute to insulin resistance.

SKELETAL MUSCLE LIPID METABOLISM
Fatty Acid Transport

Plasma FFA circulate bound to albumin (10) and enter the myocyte through either diffusion
or protein-mediated transport (11,12). Research has focused on the latter based on the mounting
evidence supporting the role of protein transporters in regulating fatty acid entry into
metabolically active tissue such as skeletal muscle (11,13–15). The membrane-associated
proteins in skeletal muscle have been identified as the 88-kDa heavily glycosylated fatty acid
translocase (FAT/CD36) (11), the 40-kDa fatty acid binding protein (FABPpm) (16), and a
family of ~70-kDa fatty acid transport protein (FATP1–6) (17–19).

FAT/CD36 is a class B scavenger receptor protein that is critical to long chain fatty acid (LCFA)
transport and intracellular metabolism (20). For instance, FAT/CD36 overexpression has been
shown to increase the rate of FAO during contraction (11), whereas FAT/CD36 knockout mice
have a significant reduction in LCFA uptake suggesting a functional role in lipid metabolism
(21). Skeletal muscle fatty acid transport is regulated by FAT/CD36 acutely via translocation
from an intracellular pool to the plasma membrane and chronically via changes in gene
expression. The signaling pathway responsible for insulin-stimulated transport involves the
activation of phosphatidylinositol (PI) 3 kinase (22), whereas emerging evidence seems to
indicate that the signaling pathway responsible for contraction-induced FAT/CD36
translocation is AMP kinase (23). FABPpm is located on the outer leaflet of the plasma
membrane and may be co-localized with FAT/CD36 (6). Electrotransfection of FABPpm
resulted in elevated plasmalemmal FABPpm protein overexpression and an increased rate of
palmitate transport into skeletal muscle signifying the role of this transporter in coordinating
LCFA entry into the cell (24). FATP1 has been shown to enhance insulin-sensitive fatty acid
transport in skeletal muscle (25). In addition, overexpression of FATP1 in rat muscle results
in elevated rates of LCFA transport (26). Collectively, these data support the critical function
of protein-mediated transport in the regulation of FA uptake into the cell.

Mitochondrial Oxidation
Once FFAs enter the myocyte, they are activated by the enzyme acyl-CoA synthethase to form
an fatty acyl-CoA (FA-CoA) complex, which then enters the mitochondria for oxidation or is
partitioned towards the synthesis of intramyocellular lipid (IMCL) (27). Skeletal muscle FAO
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involves the coordinated action of three main metabolic pathways [ -oxidation, Krebs Cycle
and Electron Transport Chain (ETC)] located within the mitochondria. For a more detailed
review, the reader is referred to reviews by Jeukendrup (27) and Kiens (28).

While short and medium chain FA-CoA are believed to diffuse into the mitochondria, LCFA-
CoA require modification before crossing the inner mitochondrial membrane for oxidation.
The LCFA-CoA is transported across the inner mitochondrial membrane as an acyl-carnitine
complex which is synthesized via carnitine palmitoyltransferase 1 (CPT-1). Overexpression
of CPT 1 in skeletal muscle has been reported to repartition fatty acids towards FAO at the
expense of storage (29), highlighting the importance of this enzyme in lipid metabolism
regulation. Once across the inner mitochondrial membrane, the acyl-carnitine is converted back
to the original FA-CoA and released into the matrix. Within the mitochondria, the fatty acid
is degraded into two carbon fragments (Acetyl-CoA) during -oxidation. -Hydroxy acyl CoA
dehydrogenase ( -HAD) is a key enzyme during -oxidation and has been reported to be highly
correlated with the rate of FAO in skeletal muscle (30). Acetyl-CoA produced during -
oxidation undergoes additional processes within the mitochondria matrix and inner
mitochondrial membrane (Krebs Cycle and ETC, respectively), which ultimately leads to ATP
production. The oxidation of fatty acids is thus a complex and highly regulated process which
warrants research to determine if defects at any, if not several of these metabolic steps, are
evident in the obese state.

ALTERATIONS IN SKELETAL MUSCLE METABOLISM WITH OBESITY
Obesity has been associated with a number of alterations in the transport and metabolic
pathways. It remains unclear what specific mechanism(s) are responsible for obesity induced
insulin resistance, however, a number of contributing factors have been suggested. The
following discussion highlights some possible mechanisms.

Increased Plasma Membrane Transporter Proteins
The cellular location of the transporter proteins, FABP and FAT/CD36, may play a critical role
in the increased fatty acid uptake, accumulation of IMCL, and impaired insulin action observed
with obesity and type 2 diabetes. Plasmalemmal FABPpm protein expression has been reported
to be elevated in skeletal muscle during conditions of increased plasma FFA availability, such
as fasting (31) and a high fat diet (32). In addition, this protein is elevated in the skeletal muscle
of individuals with type 2 diabetes (33), and obesity (34). Bonen and colleagues (35) showed
that LCFA transport into giant sarcolemmal vesicles, prepared from obese and type 2 diabetic
individuals, was approximately 4-fold higher than their lean counterparts. This increased fatty
acid uptake was associated with increased intramuscular triglyceride (IMTG) accumulation
and an increase in sarcolemmal but not total FAT/CD36 (35). Therefore, it appears that in
conditions of high FFA availability, such as obesity, muscle cells respond by maintaining a
higher concentration of transporter proteins on the cell membrane and as a consequence, fatty
acid uptake is increased and ultimately stored as IMCL, a potential contributor to insulin
resistance.

Potential Defects Within the Metabolic Pathway(s)
While fatty acid uptake appears to be upregulated with obesity, the ability to oxidize the
increased flux of lipid is not matched. Obesity has been associated with decrements at a number
of key regulatory steps in the abovementioned metabolic pathways, including reduced enzyme
activity. For example, CPT-1 (fatty acid transfer into mitochondria), -HAD ( -oxidation),
citrate synthase (Krebs Cycle), and cyctochrome oxidase (ETC), have all been reported to have
diminished activity in the skeletal muscle from obese individuals (34,36). Early research by
Simoneau and Kelley (37) reported that the skeletal muscle of type 2 diabetics, and to a lesser
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extent, obese individuals, had an increased ratio of glycolytic to oxidative enzyme capacity.
This ratio (hexokinase to citrate synthase activity) was negatively correlated with insulin
sensitivity, providing further evidence that decreased oxidative enzyme activity may contribute
to insulin resistance in type 2 diabetic and obese populations. A decreased level of CPT-1 in
the skeletal muscle of obese individuals has also received considerable attention. In vitro
research has demonstrated that overexpressing CPT-1 in L6 cells increased -oxidation and
protected the cells against fatty acid-induced insulin resistance (38). ETC activity has also been
found to be depressed in the skeletal muscle of type 2 diabetics and obese individuals compared
to healthy, lean individuals, even when adjusting for differences in mitochondrial content
(39).

Emerging evidence suggests that obesity is linked with an accumulation of intramuscular lipid,
which may induce a lipid burden on mitochondria and create a possible disconnect between
the metabolic pathways. For instance, metabolic profiling studies by Koves et al. (40)
demonstrated that obesity-induced increases in the rates of -oxidation overwhelmed the
capacity of the Kreb’s Cycle, allowing only partial degradation of fatty acids. As a
consequence, mitochondrial derived by-products, such as acylcarnitine derivatives,
accumulated and potentially contributed to lipid-induced impairments in insulin action.
Although the precise connection between an increased rate of -oxidation and insulin resistance
is not clear, it has been demonstrated that the increased accumulation of -oxidative by-
products is linked with impaired insulin action in obese individuals (40). Taken together, these
findings suggest that the diminished activity of mitochondrial enzymes or inefficient coupling
between the metabolic pathways in the skeletal muscle of obese individuals may contribute to
insulin resistance.

Reduced Mitochondrial Content and Altered Mitochondrial Morphology
Since the primary metabolic pathways involved in lipid metabolism are located within the
mitochondria, many speculate that a defect in this organelle could contribute to reduced lipid
oxidation and insulin resistance. In addition to the reduced enzyme activity within key
metabolic pathways discussed previously, the diminished enzyme activity could reflect a
functional defect or reduced mitochondrial content. The reduced activity of citrate synthase
and CPT-1 in obese muscle has been used to imply reduced mitochondrial content (36). More
recently, mitochondrial DNA (mtDNA) has been used as a marker of mitochondrial content,
and has been found to be lower in the skeletal muscle of obese individuals compared to their
lean counterparts (39).

In addition to the decreased mitochondrial content observed with obesity, there are also reports
of alterations in mitochondria morphology. Research using transmission electron microscopy
has reported that the mitochondria of obese and type 2 diabetics were 35% smaller than the
mitochondria of healthy lean individuals, and that the size of the mitochondria were
significantly correlated with insulin action (41). Additionally, this study noted that a number
of mitochondria in obese and type 2 diabetics were ‘fractured’, suggesting an increased rate of
mitochondrial apoptosis.

In summary, it is unlikely that there is a sole contributor responsible for the impairment of lipid
metabolism observed with obesity. The following sections will discuss the consequences of
these metabolic defects, such as reduced skeletal muscle FAO and IMCL accumulation. In
addition, evidence will be provided suggesting a link between these events and the onset of
insulin resistance.
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FACTORS CONTRIBUTING TO OBESITY AND INSULIN RESISTANCE
Reduced Skeletal Muscle FAO

Researchers have determined that the preferential oxidation of glucose over lipid in the rested
state can predispose an individual to weight gain. Whole-body respiratory quotient (RQ) is a
frequently used measure to estimate substrate oxidation. Marra et al. (42) and others (43) have
reported that a high whole-body RQ (indicating a diminished capacity to oxidize fat), is a
significant predictor of weight gain. As skeletal muscle plays a significant role in lipid
oxidation, it is not surprising that the decrement in whole body lipid oxidation exhibited with
obesity, is also observed in skeletal muscle. It has been suggested that skeletal muscle oxidative
capacity may be a key predictor of whole-body insulin action (33). In agreement, Kelley et al.
(44) reported that obese individuals had a greater leg RQ and lower fat oxidation levels in the
rested state compared to their lean counterparts. Fasting leg RQ values were negatively
correlated with insulin sensitivity, providing further evidence that a connection exists between
obesity, reduced skeletal muscle FAO, and insulin resistance. These findings, in addition to
the health consequences associated with obesity, justify further research to examine the
association between reduced skeletal muscle FAO and obesity.

Our laboratory has reported reduced skeletal muscle FAO in extremely obese individuals under
several experimental conditions (ie., muscle strips, muscle homogenate, and primary cell
culture). An initial study by Hulver et al. (45) compared FAO between lean (BMI ~ 24 kg/
m2), moderately obese (BMI ~ 30 kg/m2), and extremely obese individuals (BMI ~ 38 kg/
m2) and reported that FAO in extremely obese individuals was 58% and 83% lower than muscle
strips from lean and moderately obese subjects, respectively (45). In support, we have also
reported a similar depression in palmitate oxidation (~50%) using vastus lateralis muscle
homogenate from extremely obese individuals comared to lean individuals (36). Validation in
different muscle groups is critical due to the heterogenous properties of muscle tissue, including
differences in contractile activity, as well as, fiber type composition.

Skeletal muscle fiber type may play a role in the diminished lipid oxidation and insulin
resistance observed with obesity. Type I or red oxidative fibers are phenotypically more
oxidative and insulin sensitive than Type II white or glycolytic fibers (46,47). It has been
reported that morbidly obese subjects have a lower percentage of Type I fibers compared to
their lean counterparts (i.e. approximately 42% vs 55%) (47,48), which could contribute to the
lower skeletal muscle oxidation and insulin resistance observed with obesity. The percentage
of Type I fibers may also predict the amount of weight loss an individual can achieve in
response to interventions. Tanner and colleagues (48) reported that in a morbidly obese group
that underwent gastric bypass surgery, those with the greatest percentage of Type I fibers lost
the greatest amount of weight (48). However, it was interesting to note that dramatic weight
loss alone did not increase the number of Type I fibers in this group (49) or change skeletal
muscle FAO (50). These findings collectively provide evidence that Type I fibers may play a
role in regulating skeletal muscle FAO, but also indicate that weight loss is not strictly
dependent on changes in skeletal muscle FAO.

Our group has also utilized primary human skeletal cells to further investigate the impact of
obesity on skeletal muscle metabolism. This method involves isolating satellite cells from
muscle biopsies and subsequently treating the cells so that they proliferate into myoblasts and
ultimately differentiate into myotubes (51). We reported that the capacity for lipid oxidation
in myotubes was depressed in cells derived from extremely obese donors (52). The magnitude
of the decrement in FAO was similar to our in-vivo (53,54) and in-vitro (45) findings comparing
lean and extremely obese individuals, indicating that this model is relevant to the in-vivo
condition. Others (42) have reported that myotubes derived from patients with type 2 diabetes
have a reduced capacity to oxidize fat compared to the myotubes cultured from healthy controls.
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These data indicate that the reduced FAO phenotype observed with obesity and type 2 diabetes
is retained in cell culture, which suggests a possible genetic or epigenetic origin.

While reduced lipid oxidation may play a role in obesity and insulin resistance, studies on
weight loss indicate that improved insulin sensitivity is not always dependent on changes in
FAO. Berggren et al. (50) reported that dramatic weight loss (~55 kg) by means of gastric
bypass surgery significantly improved insulin sensitivity without changes in skeletal muscle
FAO. This finding suggests that factors other than FAO may play a role in obesity and insulin
resistance. The potential role of IMCL in the regulation of obesity induced insulin resistance
is discussed in the following section.

Accumulation of IMCL
The increased entry of FFA into the myocyte without a corresponding increase in lipid
oxidation likely contributes to the accumulation of IMCL. A negative relationship between
IMCL and insulin sensitivity has been reported in non-obese adults (55), high fat feeding
models (56) and the lean offspring of type 2 diabetics (57). Recently, studies investigating the
impact of low calorie diets in type 2 diabetics have reported decreased IMCL along with
improved insulin sensitivity (58,59). Collectively, these studies point to IMCL accumulation,
as a prominent marker in the development of insulin resistance.

Despite studies reporting a link between IMCL and insulin resistance (55,57,60), some findings
suggest that this is not a simple cause and effect relationship. For example, endurance athletes
are extremely insulin sensitive, yet have elevated IMCL levels (61). Also, Type I fibers are
more insulin sensitive then Type II fibers, yet contain higher IMCL stores. Research has
attempted to shed light on this apparently conflicting relationship by examining the
relationships between intramyocellular triglyceride (IMTG) and other lipid intermediate
metabolites. The triglyceride (TG) synthesis enzyme diacylglycerol (DAG) acyltransferase 1
(DGAT1) has been shown to increase in muscle cells in response to exercise (62). DGAT1
catalyzes the last step in the glycerol phosphate pathway of TG synthesis and produces TG
from DAG and FA-CoA (63,64). Thus, this enzyme has dual significance in that it promotes
TG storage but also decreases fatty acid substrates (65). Exercise-induced increases in DGAT1
in humans (62), as well as, the overexpression of DGAT1 in the skeletal muscle of mice (66),
has been reported to increase both IMTG and insulin sensitivity (62,66). Further,
overexpression of steroyl CoA desaturase 1 (SCD1), an enzyme that converts saturated fatty
acids to monounsaturated fatty acids, has been reported to protect L6 myotubes from fatty acid-
induced insulin resistance despite increased TG esterfication (67). These authors (67) suggest
that the accumulation of TG provides a protective effect within the cell by limiting the
accumulation of other lipid metabolites such as DAG and ceramide, which are known to have
an inhibitory effect on insulin signaling. Collectively, these indings support earlier work
conducted in vitro demonstrating that the promotion of fatty acids into IMTG reduced
lipotoxicity in the cell (68) and substantiate the notion that IMTG should not be regarded as a
ubiquitous marker of insulin resistance. Instead, metabolites such as long-chain fatty acyl-
CoAs (LCFA-CoAs), DAG and ceramide may play a more active role in insulin resistance.
The following sections will explain how each of these lipid metabolites may be responsible
for inducing insulin resistance.

Insulin Signaling and the Effects of Lipid Accumulation
The insulin signaling pathway is responsible for the translocation of the GLUT4 protein to the
plasma membrane and ultimately insulin-mediated glucose transport into the cell. Insulin binds
to and phosphorylates the insulin receptor on tyrosine residues which results in a cascade of
events including the phosphorylation of insulin receptor substrate-1/2 and subsequently the
activation of phosphatidylinositol 3-kinase (PI3-K) (69). Insulin activated PI3-K regulates the
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activation of atypical protein kinase C (aPKC), as well as Akt which is responsible for the
activation of Akt substrate160 kD (AS160) (70,71). The current model for insulin signaling
suggests that AS160 and aPKC coordinate the translocation of GLUT4 to the cell membrane,
resulting in the facilitated diffusion of glucose into the myocyte (70,72).

Whereas insulin mediated glucose uptake is initiated with the tyrosine phosphorylation of the
insulin receptor, research has demonstrated that serine and threonine phosphorylation of the
insulin receptor diminishes insulin action (73). As many as 12 isoforms of PKC have been
identified (74), and while the activation of certain isoforms may augment insulin signaling (ie.,
aPKC), others are speculated to evoke insulin resistance (ie., PKC ) (75). Therefore, the
accumulation of lipid intermediates (ie., LCFA-CoAs, DAG and ceramide) may be responsible
for impairing the insulin signaling pathway via PKC and other inhibitory mechanisms (76).

LCFA-CoAs—LCFA-CoAs are a metabolically active form of intracellular fatty acids and
have been cited as a better predictor of insulin resistance than IMTG (77). Impaired insulin-
mediated glucose disposal and elevated LCFA-CoAs has been reported in both moderately and
morbidly-obese individuals (45,78). Studies utilizing lipid infusion (79) and high fat diets
(77) have demonstrated increased skeletal muscle LCFA-CoAs in conjunction with insulin
resistance. Additionally, pharmacological intervention of type 2 diabetics with Acipmox (a
potent inhibitor of lipolysis) has been reported to significantly improve whole body glucose
disposal with a parallel decrease in total muscle LCFA-CoA (80). Collectively, these data
support a link between LCFA-CoA and insulin resistance.

It remains unclear through which mechanism(s) LCFA-CoAs may affect insulin action, but
some data suggests that LCFA-CoAs may interfere with insulin signaling through the activation
of PKC isozymes (81). Although a direct link between skeletal muscle LCFA-CoAs and PKC
has yet to be identified, it is worth noting that during instances of high lipid exposure (ie., lipid
infusion) both intramyocellular fatty acyl-CoA and PKC are elevated (81). It is also possible
that LCFA-CoAs act indirectly by acting as a precursor to other lipid intermediates such as
DAG and ceramide.

Ceramides—Ceramides can accumulate in skeletal muscle either by the hydrolysis of
sphingomyelin (a phosholipid located in the lipid bylayer of the cell) (82), or by de novo
synthesis from long-chain saturated fatty acids (83). Since ceramide synthesis is primarily
dependent on the availability of fatty acids, it is not surprising that muscle ceramide content
has been found to be significantly correlated with basal plasma FFA concentrations (84).
Elevated levels of ceramide have been observed in the skeletal muscle of insulin-resistant
animals (85), lipid infused humans (86), obese, insulin resistant humans (84) and the lean
offspring of Type 2 diabetics (87). Others have reported no difference in skeletal muscle
ceramide levels between obese and lean individuals with similar levels of insulin sensitivity
(88).

Recently, Holland et al. (89) reported that different fatty acids antagonize insulin stimulated
glucose uptake through distinct intracellular mechanisms. Whereas, ceramide levels are
typically unchanged when unsaturated fatty acids (ie., linoleate) are used to induce insulin
resistance, ceramide appears to be a primary regulator of saturated fatty acid (ie., palmitate)
induced insulin resistance. Since saturated fatty acids are required for ceramide synthesis, it is
not surprising that models utilizing unsaturated fatty acids have found no change in ceramide
accumulation (89). In addition, these authors (89) demonstrated that pharmacological
inhibition of ceramide synthesis was capable of improving glucose tolerance and preventing
diabetes in obese rodents (89), further supporting the inhibitory role this lipid metabolite may
have on insulin action.
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Although not completely understood, it has been speculated that ceramides may inhibit insulin
signaling via inhibition at the level of Akt (84,90). In addition to observing elevated ceramide
levels in obese individuals, Adams and colleagues (84) reported that insulin-induced Akt
phosphorylation was reduced. In vitro studies also support this inhibitory link as incubation of
L6 cells with a ceramide analogue resulted in a loss of Akt activity and the complete absence
of insulin-mediated glucose uptake (90). In addition, blocking ceramide synthesis has restored
insulin-mediated Akt activation in previously insulin-resistant myotubes (91).

Recent findings suggest that the effect of intramuscular ceramides on obesity induced insulin
resistance may not be as significant as once thought. Skovbro and co-workers (92) investigated
skeletal muscle ceramide levels in individuals with a range of insulin sensitivities. These
authors reported no differences in ceramide levels between type 2 diabetics, glucose intolerant
individuals, healthy control subjects, and endurance trained athletes (92). Although reduced
Akt activity is characteristic of obese individuals (84) it is also known that these individuals
have marked abnormalities in more proximal insulin signaling markers such as the IR and
IRS-1 tyrosine phosphorylation, as well as, IRS-1-associated PI 3-kinase activity (93). This
suggests that ceramide alone is not responsible for the reduced insulin sensitivity in the muscle
and highlights the potential role of other lipid intermediates such as LCFA-CoA or DAG.

DAG—DAG acts as a key intermediate in both triacylglycerol and phospholipid metabolism
and acts as an important second messenger in the regulation of intracellular signaling.
Formation of DAG can be generated by the breakdown of phospholipids via phospholipases
(ie., Phospholipase C), or through de novo synthesis via the esterfication of two LCFA-CoAs
to glycerol-3-phosphate (94). The latter process is likely the more important source responsible
for lipid induced insulin resistance (94). Increased skeletal muscle DAG content muscle has
been reported with fasting (95) and lipid infusion (9,81).

The majority of research supports the notion that DAG promotes insulin resistance through the
activation of PKC isoforms. In rats, Yu and co-workers (81) demonstrated that lipid infusion
resulted in a three-fold increase in intracellular DAG mass, which was associated with PKC
activation. It is believed that PKC  activation results in the serine phosphorylation of upstream
molecules in the insulin signaling cascade, which subsequently inhibits this pathway. In support
of this relationship, Yu et al. (81) observed a 30% reduction in IRS-1 tyrosine phosphorylation
and an approximate 50% reduction in IRS-1 associated PI3 kinase activity, in response to the
increased DAG mass and PKC  activation. In humans, Itani et al. (96) reported that PKC
content and activity were elevated in the skeletal muscle of obese, diabetic patients compared
to obese, non-diabetics. These authors later demonstrated fatty acid induced insulin resistance
in normal volunteers was related with increased DAG mass and membrane translocation of
PKC isoforms 2 and  (9).

It is speculated that increased shuttling of fatty acid into the mitochondria for oxidation would
decrease the accumulation of lipid and thus, protect the cell from insulin resistance. In support
of this notion, Sebastian et al. (97) demonstrated that the overexpression of CPT-1 in L6 cells
protected the cells against fatty acid-induced insulin resistance by inhibiting the build up of
lipid by-products such as DAG and ceramide, and also decreasing the activation of PKC .
Additionally, exercise intervention studies which typically produce increased skeletal muscle
FAO, have been reported to increase insulin sensitivity and decrease levels of DAG and
ceramide (98,99) despite either no change (98) or increases in IMTG (99). These findings
support the importance of skeletal muscle FAO in alleviating the muscle from the accumulation
of harmful lipid intermediates.

Consitt et al. Page 8

IUBMB Life. Author manuscript; available in PMC 2010 January 1.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



SUMMARY
There is accumulating evidence that obesity and type 2 diabetes are associated with a defect
in the ability of skeletal muscle to oxidize lipid. As a consequence, the intracellular environment
within the muscle cell may be conducive to the partitioning of lipids towards storage. While it
was originally speculated that IMTG was linked with inducing insulin resistance, current
research suggest other mechanisms such as the accumulation of intramuscular lipid
intermediates (LCFA-CoA, ceramide and DAG) promote the onset of insulin resistance by
inhibiting key proteins within the insulin signaling pathway (Figure 1). However, additional
research is needed to fully elucidate the relationship between obesity and the accumulation of
these lipid intermediates, and the impact these lipid species may have on insulin action.
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Figure 1.
Proposed model of obesity-induced skeletal muscle insulin resistance. Increased plasma free
fatty acids (FFA) can result in elevations in the rate of skeletal muscle long chain fatty acid
(LCFA) uptake, which may lead to the accumulation of intramuscular long-chain fatty acyl-
CoAs (LCFA-CoAs), diacylglycerol (DAG), triacylglycerol (TAG), and ceramide. Both
LCFA-CoAs and DAG can impair the insulin signaling cascade via the action of protein kinase
C (PKC). PKC increases serine phosphorylation resulting in a decrease in the association
between insulin receptor substrate 1 (IRS1) and phosphatidylinositol 3-kinase (PI3-K) and
subsequent reduction of insulin mediated glucose uptake. Intracellular accumulation of
ceramide can also attenuate insulin mediated glucose uptake, via decreased phosphorylation
of Akt.

Consitt et al. Page 15

IUBMB Life. Author manuscript; available in PMC 2010 January 1.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


