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Cribra orbitalia is visually characterized by porous lesions on the orbital roof and is often 

attributed to iron deficiency anemia, although other etiologies are possible.  The main objective of this 

study is to reassess the diagnosis of iron-deficiency related cribra orbitalia in a North Carolina coastal 

Algonkian population (n= 50, AD 295-1460) using non-destructive methods.  Microscopic techniques such 

as thin-ground sectioning have successfully differentiated between diploic expansion attributed to anemia 

as opposed pathological expressions related to other etiologies.  However, such destructive techniques 

often are not possible with some U.S. samples because of NAGPRA provisions.  Thus, we utilize non-

invasive computed tomography (CT) scanning an alternative to identifying diploic expansion versus other 

causes of porosity in the orbital roof. 

 Out of a total sample size of 183 crania, 45 crania with varied forms of upper orbital lesions and 5 

crania without such lesions were selected for CT scanning analysis.  The axial anterior-posterior CT 

images would allow for distinction between diploic expansion and resorption of the corresponding cortical 

bone and cortical bone porosity.  This preliminary study suggests that although in most cases CT 

scanning observations are the same as simple visual analysis, in some instances CT scanning allows for 

a more accurate diagnosis of diploic expansion versus porosity.  While cribra orbitalia is usually attributed 

to anemia, orbital lesions can also indicate dietary deficiencies within the population.  By more accurately 

understanding the etiology of cribra orbitalia in archaeological populations, we can better understand their 

dietary habits, health, quality of life, and overall adaptations to their unique environment.  Reconsidering 

the etiology of cribra orbitalia has important implications for the current interpretations of malnutrition and 



infectious disease in earlier human populations.  This new non-destructive methodology has implications 

for paleopathological methodology, archaeology, and Native American history.  
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CHAPTER 1: INTRODUCTION 

 

Cribra orbitalia was first recognized by Welcker in 1885 and since then researchers have 

disagreed on its etiology.  Rather than a specific disease, cribra orbitalia is a morphological feature of 

various diseases, and is visually characterized by porous lesions on the superior-lateral margin of the 

orbital roof.  There are many possible causes for these cranial lesions, with iron deficiency anemia, other 

acquired anemias, and congenital or hereditary anemias most frequently cited as causing orbital roof 

pathology.  Numerous other factors can cause porosity in the orbital roof, including deficiencies in 

vitamins C, D, and B12, trauma, localized pressure within the eye orbit, and even postmortem erosion. 

This study aimed to determine if the majority of orbital lesions found in coastal Algonkian populations 

were due to anemia, or if the lesions should be attributed to a different etiology.  By reassessing the 

causes of cribra orbitalia in a Late Woodland Algonkian sample, researchers can better understand not 

only their overall health patterns, but also what diseases they were susceptible to and how this population 

adapted to their unique marine environment.  

Traditionally, histological analysis using thin sections of the orbital roof has proven most effective 

for viewing the internal structures of the cranium.  However, destructive techniques using Native 

American skeletal remains, such as preparing thin sections, has been restricted since the passing of the 

Native American Graves Protection and Repatriation Act (NAGPRA) in 1990.  The purpose of this study 

was to explore noninvasive techniques for viewing the internal orbital roof structure using computed 

tomography.  This study attempted to determine whether or not computed tomography is a viable 

alternative to the more destructive traditional methods in determining the etiology of orbital roof 

pathologies.  The current study was unable to conclusively prove that analysis using computed 

tomography was more accurate or detailed than visual observation, although in 18% of the samples CT 

scanning did show different results.  

This study was completed using five different North Carolina coastal Algonkian ossuaries 

(31CK9, 31CK22, 31CK24, 31CO5, and 31DR38) radiocarbon dated from AD 360 to 1460.  Most of the 

ossuaries date to the period of the densest occupation, during the Colington phase of the Late Woodland 

period.   This study only included those crania with visible orbital regions, leaving a total sample size of 
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183 crania (N=232).  Half of the 183 crania in this total sample (42% of adults and 80.5% of subadults) 

exhibited some form of cribra orbitalia.  Fifty crania representing the range of severity scores were chosen 

for further analysis using computed tomography.   

Although this Algonkian population has previously been studied (Hutchinson 2002), only 

preliminary macroscopic analysis was used.  By reassessing this population using the more advanced 

methodology of computed tomography, a more accurate representation of this population was achieved.  

This more accurate understanding of the various etiologies of cribra orbitalia among this population leads 

to a better understanding of their diet, how they interacted with their marine environment, their quality of 

life, what diseases and nutritional deficiencies they were susceptible to, and their overall health status.  

Due to the various restrictions on scientific research of Native American groups, not as much is known 

about the overall health and diseases these populations lived with as is known with other populations.  

This study has implications for not only the current interpretations of malnutrition and infectious disease 

loads in prehistoric human populations, but also for the fields of archaeology, Native American history, 

and paleopathological methodology. 
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CHAPTER 2: BACKGROUND 

 

Researchers have long recognized cribra orbitalia as a pathological condition but still disagree on 

its etiology.  Invasive techniques to identify pathological changes, such as thin-sectioning cross-sections 

of the orbital roof, have helped to differentiate anemia-related porosity versus other causes.  However, 

the legal implications of the Native American Graves Protection and Repatriation Act hinder destructive 

analysis such as thin-sectioning on Native American populations.  A non-invasive technique, such as 

computed tomography, could overcome this research hurdle.  Using computed tomography, or CT 

scanning, to analyze cross-sections of the orbital roof allows the internal structures of the orbit to be seen 

and analyzed without physically taking a sample from the crania. 

In order to understand the implications of cribra orbitalia in reconstructing ancient health and 

disease and difficulties in proper diagnosis of its cause, the etiology and expression of the pathological 

conditions of cribra orbitalia and porotic hyperostosis, including demographic patterns and histology, will 

be outlined.  This will be followed by a discussion of how the paleopathological study of cribra orbitalia 

and porotic hyperostosis developed, including the limitations of such studies.  In addition, the 

archaeological and historical implications of cribra orbitalia frequencies in Late Woodland North Carolina 

Algonkian populations will be addressed.  Finally, NAGPRA will be explained within the context of 

limitations of bioarchaeological techniques that can be used to study ancient Native American 

populations.    

What are Cribra Orbitalia and Porotic Hyperostosis? 

 Cribra orbitalia, first identified by Welcker (1885, 1888), is visually characterized by porous 

lesions on the superior-lateral margin of the orbital roof.  Cribra orbitalia is not a specific disease; rather, it 

is a morphological feature of various different diseases.  Cribra orbitalia has been found in many other 

primate species, such as chimpanzees, orangutans, baboons, and macaques (Wells 1973). 

Cribra orbitalia is sometimes accompanied by porotic hyperostosis, which causes diploic 

expansion of the parietal and occipital bones resulting in a porous appearance of the outer table.  In 

radiographs of anemic patients, porotic hyperostosis is characterized by a “hair on end” appearance due 

to the thinning of the outer table of the skull and the perpendicular orientation of the trabeculae (Roberts 
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and Manchester 2007:229).  The term porotic hyperostosis often is used as an all-encompassing term for 

both cribra orbitalia and porotic hyperostosis, and will be used in this paper to refer to both cribra orbitalia 

and porotic hyperostosis.  Here, cribra orbitalia will be used to refer to only the upper orbital lesions, 

reserving porotic hyperostosis for the remaining cranial lesions. 

History of Porotic Hyperostosis Research 

Initially, the link between porotic hyperostosis, cribra orbitalia, and anemia was established 

through comparing modern patients suffering from severe hemolytic anemias (e.g. thalassemia major and 

sickle cell anemia) and identifying the associated skeletal changes (see Walker et al 2009:112).  Using 

clinical patients, researchers eventually noticed the relationship of anemia to cribra orbitalia (e.g. Eng 

1958; Shahidi and Diamond 1960).  Cooley and Lee (1925) initially described skeletal changes 

associated with chronic anemia, specifically the widening of the diploic space they associated with 

thalassemia major.  Moore (1929) described similar skeletal changes he associated with sickle cell 

anemia.  Shelden described the same skeletal changes as occurring with iron deficiency anemia in 1936 

(Britton et al. 1960:621, El-Najjar et al. 1975:919).  In the 1950s, iron deficiency anemia had gained 

acceptance in the scientific community as the most likely cause of the marrow hypertrophy that results in 

porotic hyperostosis and cribra orbitalia (Walker et al 2009:109).  

One of the first physical anthropologists to systematically link cranial porotic lesions to anemia 

using an evolutionary perspective was J. Lawrence Angel.  While studying ancient skeletal remains in the 

Anatolian region, Angel (1966) noted the presence of porotic hyperostosis and pondered its etiology.  He 

observed that both thalassemia and sickle cell anemia were endemic in areas where malaria is a strong 

selective pressure, such as in the Mediterranean region, and that these areas had the highest rates of 

porotic hyperostosis.  Angel suggested that these inherited anemias were the cause of the cranial lesions 

seen in his sample.  Angel’s work stimulated others to consider a congenital cause for porotic 

hyperostosis, as exemplified by Kennedy (1984) and his work on ancient South Asian collections.   

Angel (1966) also suggested that acquired anemias in the New World must be responsible for 

porotic hyperostosis due to the absence of malaria.  El-Najjar and colleagues (1976) confirmed Angel’s 

results by studying two different Native American groups in the southwestern United States, one maize 

and one non-maize dependent society.  They noted that the maize-dependent group experienced a 
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higher frequency of porotic hyperostosis and concluded that this stems from phytates in maize which 

inhibit the absorption of iron in the blood, leading to iron deficiency.  According to modern radiographic 

studies, Native American populations currently living in the southwestern United States have some of the 

highest frequencies of these cranial lesions, however, they do not have high rates of inherited hemolytic 

anemia.  Due to this, researchers have focused on iron deficiency anemia as the most likely explanation 

(El-Najjar et al. 1975, Walker 1985). 

What can Cause Cribra Orbitalia and Porotic Hyperostosis? 

Porotic hyperostosis can manifest in either porosity extending through the outer table or diploic 

expansion.  The manifestation of the lesion is dependent upon the etiology.  For example, anemia is 

thought to be the only cause of diploic expansion, while porosity can be caused by many other things, for 

example, vitamin deficiencies.  While the cause of each crania may be attributed to either anemia or 

vitamin deficiencies, the two etiologies are not mutually exclusive.  As vitamin deficiencies are due to an 

insufficient diet, multiple vitamin deficiencies can be present in the same individual.  Certain anemias can 

also be caused by an insufficient diet, leading to concurrent anemia and vitamin deficiencies in the same 

individual.  

Etiologies that Cause Diploic Expansion 

 Cranial lesions can exhibit diploic expansion or porosity.  Whether the lesion is porous or exhibits 

diploic expansion can shed light onto what caused the cranial lesion.  Diploic expansion can only be 

caused by anemia, while porous lesions have many possible causes. 

Anemia 

The most common disease causing porotic hyperostosis is anemia, usually iron deficiency 

anemia.  In 1929, both Moore and Williams independently suggested that anemia was the causative 

factor for porotic hyperostosis.  Initially, the focus was on congenital anemias, but Hengen (1971) 

asserted that iron deficiency anemia was the exclusive cause of cribra orbitalia (Stuart-Macadam 

1991:36).  Some researchers believe that cribra orbitalia is the earliest skeletal expression of anemia 

followed by porotic hyperostosis, suggesting that the relatively thin bone along the orbital roof could be 

more susceptible to resorption by the expanding marrow cavity (Walker 1985:141). 
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Anemia is the reduction of hemoglobin concentrations or packed red blood cell counts below 

normal parameters for a certain age and sex (Sullivan 2005:253).  When hemoglobin levels drop, the 

body becomes oxygen-starved and triggers an increase in the rate of red blood cell production.  This 

increase occurs in the hemopoietic marrow, which causes the expansion of the diploic space; the 

expansion of the diplöe causes the outer table to be resorbed and it becomes thin, which creates the 

porosity, while overall the cranial vault becomes thicker (White and Folkens 2005:320, Walker et al 

2009:109). While the skeletal changes in anemia-related cribra orbitalia are unique, studies have shown 

that at most only 50-75% of clinical patients with anemia show any morphological bone changes 

regardless of the severity of their anemia (Stuart-Macadam 1991:37).  This suggests that researchers do 

not know all of the reasons for skeletal changes. 

Anemia can further be broken down into two broad categories: acquired and congenital.  

Acquired anemia results from nutritional deficiencies and includes iron deficiency anemia and 

megaloblastic anemia.  Congenital anemias are genetically-based and include sickle cell anemia and 

various thalassemias.  For this study, the focus will be on acquired anemia, as no evidence for congenital 

anemia exists in Native American populations.  Causes of acquired anemia include excessive blood loss, 

impaired erythropoiesis (red blood cell production), and increased hemolysis (red blood cell destruction) 

(Walker et al 2009:110). These symptoms can be caused by inadequate dietary intake, inadequate 

absorption of vitamins due to chronic diarrheal diseases or intestinal parasites, or a genetic or acquired 

inability to process vitamin B12 in the intestinal tract (Sullivan 2005:255). These physiological conditions 

often are a response to dietary insufficiencies (such as lack of iron or prolonged breastfeeding), trauma, 

and disease.  Anemia can lead to lowered physical performance, high rates of maternal and fetal 

morbidity and mortality, and small, underweight babies (Walker 1985:139).  In children, anemia can cause 

physical growth retardation, delayed walking, lowered physical capability, and slower cognitive 

development (Wright and Chew 1998:925). 

Iron deficiency anemia 

The lack of sufficient iron in the diet is one of the common causes of iron-deficiency anemia, the 

most frequently reported cause of porotic hyperostosis (Walker et al. 2009:111).  The body must maintain 

a balance between too little and too much iron.  Too little iron results in the above symptoms, while too 
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much iron also leads to a compromised immune system, increased risk of cancers, and organ failure 

(Stuart-Macadam 1998:56).  Iron deficiency can result from prolonged consumption of iron- poor foods, a 

higher demand for iron during growth and reproduction, excessive blood loss due to a parasitic infection, 

inadequate absorption of iron through the intestines due to chronic diarrheal diseases, low iron storage 

protein, low transferring protein, or an elevation in erythrocyte protoporphyrin levels (Sullivan 2005:254, 

Stuart-Macadam 1998: 46). In an effort to compensate for low levels of iron, the body increases the total 

amount of red bone marrow.  The low iron levels result in red blood cells that are deficient in iron, causing 

these cells to be microcytic (smaller) and hypochromic (paler due to lowered amounts of hemoglobin) and 

thus inefficient transporters of oxygen to the various tissues in the body (Stuart-Macadam 1998:46). In 

addition to its role in hemoglobin production, iron also functions in cell-mediated immunity, leaving those 

deficient in iron susceptible to infection (Sullivan 2005:253).  

In 1999 there were an estimated 2.15 billion people worldwide who were iron deficient, and 1.2 

billion of those people had iron-deficiency anemia (Wright and Chew 1998:925).  There are three stages 

of iron deficiency (Wander et al. 2009), of which only the last stage results in the observable skeletal 

response of cribra orbitalia or porotic hyperostosis.  The first stage is iron depletion, which occurs when 

iron stores are mobilized in response to inadequate iron in the body.  The second stage is iron deficient 

erythropoiesis, where iron delivery to tissues is restricted and the symptoms of iron stress are apparent.  

The third and last stage is iron deficiency anemia, characterized by inadequate hemoglobin synthesis due 

to reduced iron delivery to the bone marrow (Wander et al. 2009:173).  Symptoms of iron deficiency are 

variable, the severity of which does not necessarily reflect the severity of anemia.  Symptoms include 

fatigue, weakness, light-headedness, headaches, difficulty breathing, and heart palpitations.  Additional 

gastrointestinal symptoms include loss of appetite, flatulence, diarrhea, constipation, nausea, and 

vomiting.  When severe anemia becomes chronic, spoon-shaped nails, cracks at the corner of the mouth, 

sore tongue, flattening of lingual papillae, atrophic gastritis, and bone changes can occur (Stuart-

Macadam 1998:46). 

Iron metabolism is almost a closed system, as iron is usually obtained from the destruction of old 

red blood cells and recycled into new red blood cells by the reticuloendothelial system.  It is only during 

times of increased iron requirements that the intestines will increase the percentage of iron absorbed from 
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the diet (Stuart-Macadam 1991:37).  As noted above, iron deficiency can result from inadequate intake of 

iron in addition to problems with iron absorption.  Iron rich foods include red meat, liver, kidney, mussels, 

shellfish, prunes, spinach, beans, and eggs (Sullivan 2005:254).  Therefore, people with diets containing 

low amounts of these foods are more susceptible to iron deficiency.  In addition, iron absorption is 

affected by diet, physiology, and genetics.  For example, intestinal mucosa regulates absorption of iron, 

although the mechanism is unknown (Stuart-Macadam 1998:54).  Many foods also can enhance or inhibit 

the absorption of iron.  The simultaneous ingestion of iron-rich foods with vitamin A, vitamin C, ascorbic 

acid, citric acid, lactic acid, meat, fish, poultry, or fermented foods will enhance the body’s absorption of 

iron.  The iron found within meat does not require processing in the stomach before it is absorbed, and 

the amino acids that result from the digestion of meat further enhance iron absorption.  On the other 

hand, the body’s ability to absorb iron can decrease due to tannins found in tea and some wines, calcium, 

and phytates found in cereal crops such as maize (Sullivan 2005:254, Stuart-Macadam 1998:55, Larsen 

1997:29). Anderson and colleagues (1993) observed that rates of anemia decreased with age, leading 

the researchers to conclude that diet is possibly more critical to anemia levels than parasite load alone. 

Many researchers attribute the high rate of iron deficiency anemia in the prehistoric Native American 

populations to problems with iron absorption and lack of high-iron foods due to their maize-intensive diet 

(Hutchinson 2002).  One study showed that less than 5% of the total iron in the diet is absorbed if the diet 

consists of mainly maize (Walker 1985:147).   

Anemia and chronic disease 

Researchers have suggested that moderate iron deficiency may be an adaptation to infectious 

environments, as studies have shown an increase in iron led to an increase in malaria and diarrheal 

diseases. The body has a natural iron-withholding defense to starve microbial and neoplastic invaders 

that need iron to proliferate within the host (Sullivan 2005:254).  In order to remove available protein from 

the invaders, iron is bound to transfer or storage proteins (Sullivan 2005:255).  A chronic iron-withholding 

response is often called anemia of chronic disease, which reduces hemoglobin concentrations, serum 

iron, and overall iron absorption (Sullivan 2005:254).   The chronic response decreases incidence and 

intensity of infections (Sullivan 2005:255).  For example, Wander and colleagues’ study of 314 children 

found that mild or moderate iron deficiency protects against acute infections.  This suggests that dietary 
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iron deficiency may be a nutritional adaptation to infection in environments where high transmission of 

infections or morbidity is prevalent (Wander et al. 2009). 

Chronic infections can also lead to cranial lesions.  Parasites feed off of the host’s blood, cause 

internal bleeding and loss of nutrients through chronic diarrhea.  Numerous varieties of parasites have 

been found in coprolite studies conducted in the southwestern United States (Walker 1985:151).  The 

mouthparts of late Archaic hookworms were found in coastal South Carolina (Rathburn et al. 1980).  One 

study found that hookworm infestations increase both in number and intensity of infections with age. 

Hemolytic and megaloblastic anemia 

Researchers recently have been questioning the conventional wisdom that cribra orbitalia is 

synonymous with iron deficiency anemia, especially since other diseases can cause porotic lesions. 

According to Walker et al. (2009:112), iron deficiency anemia by itself cannot sustain the high levels of 

erythropoiesis necessary to cause the lesions because iron deficiency reduces hemoglobin synthesis and 

red blood cell maturation.  Walker and colleagues (2009:109, 112) instead suggest that hemolytic and 

megaloblastic anemias are the most likely causes of the lesions.  

Hemolytic anemia is caused by premature hemolysis that overwhelms the ability of the 

hemopoietic marrow to compensate for these losses, resulting in expansion of the marrow space. 

Megaloblastic anemia results from insufficient amounts of vitamin B12 and B9 due to inadequate dietary 

intake, intestinal parasites, chronic diarrheal diseases, or a genetic inability to process the vitamins.  It is 

abundant in hunter-gatherer societies where breastfeeding is prolonged and fresh meat is not consumed 

in abundance (Walker et al. 2009:114).  Primary dietary sources of B12 are found in animal products, such 

as liver, meat, oysters, saltwater fish, milk, eggs, and cheese, while sources of B9 include fruits, liver, and 

leafy green vegetables (Sullivan 2005:255).  The deficiency causes some marrow cells to divide 

abnormally and create enlarged hemopoietic cells with large nuclei.  Both hemolytic and megaloblastic 

anemias can produce marrow expansion in order to compensate for the increased loss of red blood cells 

and the enlarged red blood cells, respectively 

Etiologies that Cause Porosity 

In contrast to anemia discussed above, other etiologies produce porosity without the diploic 

expansion characteristic of an anemic response.  These porous lesions can be confused with diploic 
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expansion. On a CT scan, the lack of diploic involvement or expansion and retention of compact bone in 

the orbital roof would be indicative of an etiology other than anemia. 

Nutritional deficiencies 

In addition to the deficiency of vitamin B12 as noted above, other nutritional deficiencies, such as 

vitamins C and D, can lead to porosity in the skull (Ortner et al. 2001:344, Roberts and Manchester 

2007:230, Walker et al. 2009). Vitamin C deficiency, or scurvy, can cause skeletal lesions due to the 

chronic bleeding at sites where blood vessels are near the skin’s surface (Ortner et al. 2001:344). Chronic 

vitamin D deficiency, or rickets/osteomalacia, can cause the cranial vault to expand slightly, appearing 

similar to porotic hyperostosis (Schultz 2001:134), while in the orbits only the outer table is affected by 

porosity (Larsen 1997:33). As various nutritional deficiencies can occur simultaneously, it is possible that 

more than one disease caused the lesions. It must be kept in mind that vitamin C, vitamin D, and iron 

deficiency anemia are not mutually exclusive, as all three conditions are related to malnutrition.   

In 2001, Ortner and colleagues studied scurvy among subadults in North America, and found that 

depending upon the group, the prevalence of evident vitamin C deficiency ranged from 0-38% and was 

most prevalent in Native American groups.  They found the most common expression of the deficiency 

was porous lesions on the greater wing of the sphenoid and adjacent sites, although other common 

manifestations included orbital roof, posterior maxilla, interior zygomatic, infraorbital foramen, palate, 

alveolar process of maxilla, and the coronoid process of the mandible (Ortner et al. 2001). 

Other causes  

In addition to the above mentioned nutritional causes of cranial lesions, many non-nutritional 

deficient etiologies exist.   Trauma to the skull can cause subperiosteal hematomas, leading to lesions 

that look very similar to porotic hyperostosis and cribra orbitalia (Walker et al. 2009:115). Localized 

pressure on the bone, due to pressure from an enlarged organ such as the lacrimal gland, can lead to 

bone atrophy which can result in lesions similar to porotic hyperostosis (Wapler et al 2004, Pechenkina 

and Delgado 2006).   Pressure from artificial cranial deformation has also been proposed to cause porotic 

hyperostosis, but one study by Pechenkina and colleagues (2007) found that populations with high rates 

of lesions had no cranial deformation and populations that practiced cranial deformation had low 

frequencies of porotic hyperostosis.  In addition, similar porous lesions can be caused by generalized 
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inflammation in the skull, tumors, osteitis, hypervascularization due to periostitis, and osteoporosis 

(Roberts and Manchester 2007:230, Sullivan 2005).  Postmortem erosion can even cause porotic lesions 

on the skull; the eye orbit is prone to postmortem changes due to the lamina being thinner there than in 

other areas on the skull (Wapler et al. 2004:338). 

One of the most effective means for identifying the cause of each case of cribra orbitalia, as 

described below, is by histological analysis.  CT scanning is an alternative but yet untested non-

destructive method for analyzing the structures in the orbital roof.  If the scan shows diploic expansion 

with concurrent outer table resorption, anemia is the most likely etiology.  If the outer table is the only 

structure affected, then porosity due to nutritional deficiencies or trauma can be suggested as possible 

causes.  Postmortem erosion can be suspected if only the outer table is affected, and the edges of the 

pores are very sharp and do not show any osseous response.  While cribra orbitalia has previously been 

attributed specifically to iron deficiency anemia, researchers are now beginning to explore other 

possibilities in order to more fully understand the various etiologies of cribra orbitalia.   

Age and Sex Differences in Lesion Frequencies 

 Cribra orbitalia rates vary between adults and subadults, and between males and females.  

Subadults tend to exhibit higher rates of cranial lesions, due to the formation of bone during growth and 

development.  Females tend to exhibit slightly higher rates of porotic hyperostosis due to the extra iron 

required during reproduction, although in most populations the differences are not statistically significant. 

Age Differences 

Cribra orbitalia is thought to be active exclusively in children, and any lesions seen on adult skulls 

are in the process of healing (Stuart-Macadam 1985).  Many studies have shown that active lesions 

appear in the greatest frequency before age 7 (e.g. Sullivan 2005, Ortner et al. 2001, Slaus 2000).  There 

are many possible explanations for why subadults tend to exhibit greater frequencies of cranial lesions, 

mostly concerning the formation of bone during childhood growth and development (see Walker et al. 

2009:111).  Subadults already have erythropoietic marrow in their cranium, so when additional red blood 

cells are needed, diploic expansion, rather than porosity, occurs.  In addition to the differences in red 

hematopoietic marrow distribution between adults and subadults, certain conditions, such as nutritional 

deficiencies and trauma, are more likely to occur as a child. 
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The distribution of red blood cell production (erythropoiesis) sites across the skeleton changes 

during growth and development.  At birth, all medullary cavities are filled with hematopoietic marrow.  

Beginning around 4 years of age, the red hematopoietic marrow gradually is replaced by non-

hematopoietic yellow marrow (Stuart-Macadam 1985:392).  During childhood, the main erythropoiesis 

sites are in the diploic space of the cranial vault and in the medullary cavities of the long bones.  In adults, 

erythropoiesis occurs in the spongy bone of the axial skeleton, and the majority of the marrow is yellow 

fatty marrow.  The abundance of inactive marrow leaves room for hematopoietic marrow to expand, 

reducing the potential for bone alterations (Sullivan 2005:266).  Since subadults have their main 

erythropoiesis sites in their cranium, it would follow that the expansion of these sites would leave lesions 

along the orbital roof and cranial bones.  Several longitudinal clinical studies have shown that late onset 

anemia does not produce bone changes (see Stuart-Macadam 1985). 

In addition, other conditions which may lead to anemia-like lesions occur more frequently during 

childhood. For instance, skeletal trauma often can lead to subperiosteal hematomas that transform into 

highly vascularized, subperiosteal new bone (Schultz 2001:131). Children are more likely to form this new 

bone because the periosteum is not as firmly attached at the orbital roof as it is in adulthood (Walker et al 

2009:115). This new bone can appear identical to cribra orbitalia on macroexamination, but the use of a 

microscope can tell the difference between porosity due to highly vascularized woven bone and porosity 

in cortical bone. 

Children also are more susceptible to certain diseases and nutritional deficiencies than adults.  

The higher rates of nutritional deficiencies, due to an insufficient or different diet than adults, can help 

explain higher rates of cranial lesions often seen in subadults.  Breast-fed infants rarely exhibit iron 

deficiency anemia (Stuart-Macadam 1998:57) before 6 months of age, as iron stores in the liver take 4-5 

months to diminish (Fairgrieve and Molto 2000:329).  Weaning foods have a significant impact on the 

rates of cribra orbitalia, as a weaning diet rich in carbohydrates and phytates provides low amounts of 

iron.  Weanling diarrhea can occur due to the change from sterile breast milk to solid foods often 

contaminated with microorganisms and can last for several months, leading to dehydration and 

malnutrition among infants (Walker 1985:150).  When the etiology of cribra orbitalia and porotic 

hyperostosis is better understood, researchers can use the frequencies of each cause, such as rickets or 
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scurvy for example, to determine if subadults in general have higher rates of those diseases and compare 

them with the frequency of cranial lesions.  

A study conducted by Wright and Chew (1998) compared modern rural children from Plan de 

Sanchez, Guatemala, with a forensic sample derived from a military massacre in 1982 on the same 

population.  They found that the forensic archaeological sample had 5 times higher rates of porotic 

hyperostosis.  The differences between the two samples could be due to a greater proportion of anemic 

children surviving childhood in the past than they do today.  The decreased frequency of porotic 

hyperostosis seen today may be due to heavier infectious disease burden and earlier weaning leading to 

higher childhood mortality rates. 

The expected higher frequency of cribra orbitalia among subadults did not appear among the 

Outer Coast Algonkian populations (Hutchinson 2002:97) in the previous study.  This pattern might be 

expected if anemia was caused by intestinal parasites and not by iron-deficiency (Hutchinson et al. 

2007:60) due to dietary differences between adults and children.   This study confirmed Hutchinson’s 

(2002) original finding of higher prevalence of cranial lesions in adults, and these lesions probably did not 

result from iron-deficiency anemia.  It is more likely, similar to Hutchinson’s conclusion, that it was 

nutritional deficiencies other than iron deficiency that explain the prevalence of cribra orbitalia. Proper 

identification of the cause of these lesions may change our interpretations of the North Carolina 

Algonkians, their health, diet, and adaptations to their coastal environment. 

Sex Differences 

 Women are thought to be disproportionately affected by cribra orbitalia because of their 

susceptibility to iron deficiency anemia brought on by the high iron and folic acid demands of 

reproduction.  Iron demands are higher in children and pregnant or lactating women (Stuart-Macadam 

1998:55).  Other explanations for frequency differences between the sexes include differences in 

hormones and cultural access to food (Ortner 1998:81).  However, many studies have not found a 

statistically significant difference between the sexes (Salvadei et al. 2001, Slaus 2000, Stuart-Macadam 

1998).  Some researchers have suggested that females have adapted a greater immune response than 

men to cope with the selective pressures and hazards associated with pregnancy and childbirth (Ortner 

1998:81, Storey 1998:134). 
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Methods for Diagnosing Orbital Lesions 

As noted above, differentiating pathological process, and thus being able to identify the causes of 

the lesions, require methods beyond simply macroscopic observation. Under a microscope, changes in 

the histological structures can be seen, and the surface details are enhanced.  Macroscopically, one can 

determine whether lesions are present and conclude that an individual has cribra orbitalia, but a definitive 

diagnosis and the cause of the lesions cannot be determined until microscopic methods are used. 

Bone Histology 

 The development of microscopic techniques for analyzing histological structures has a long 

history.  Light microscopy has been used to examine tissue in medical examinations since the end of the 

Nineteenth century (e.g. Schaffer 1889).  It was not until the 1920s, however that attempts were made to 

analyze sections of bone under a microscope.  In order to view a bone under a light microscope, it had to 

be decalcified, embedded in paraffin, and cut with a microtome (see Schultz 2001, Garland 1993, Martin 

1991, and Stout 1976). This process worked well for fresh bone; however, archaeological bone cannot be 

decalcified, so the process did not come into archaeological use until the 1950s, when thin ground 

sections began to be used (see Baud and Morgenthaler 1956, Ascenzi 1969, Ortner 1976, Hackett 1976, 

Stout 1976). 

The histological structure of the cranial vault must first be understood before undertaking the 

examination of cribra orbitalia and porotic hyperostosis.  Bone in the skull vault has three parts: the inner 

and outer laminae and the diploic space.  The internal and external laminae are made of hard, compact 

bone.  The diploic space is sandwiched between the laminae and is comprised of spongy, cancellous 

bone, often referred to as trabeculae.  

In addition to understanding the histological structures of the cranial vault, an understanding of 

how each disease process can change those structures is necessary.  Anemia will be treated as one 

etiology, regardless of the various types of anemia, as all anemias affect the skeleton in a similar fashion 

(Sullivan 2005, Stuart-Macadam 1998).  Anemia causes marrow hyperplasia, which puts pressure on the 

surrounding bone, eventually leading to pressure atrophy of the outer table and exposing the diplöe, 

causing the porous appearance in the lamellar bone (Schultz 2001:132).  Schultz (2001) outlines three 

stages of anemic changes to the cranial vault.  Stage 1 is characterized by a normal internal structure, 
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with slight thickening of the outer table.  During Stage 2, the porosity becomes more pronounced, the 

vault becomes thicker in affected areas, and the external lamina start to disintegrate.  Stage 3 results in a 

pronounced thickening of the cranial vault when trabeculae take on a parallel orientation and the external 

lamina is resorbed (Schultz 2001:132-133).  Usually these changes are only due to severe, chronic 

anemia, although it has been shown that mild cases of anemia can exhibit severe bone alterations.  In 

modern clinical studies, it has been shown that only 50-75% of anemia cases exhibit bone alterations 

(Stuart-Macadam 1985:397).  Therefore the total number of archaeological samples showing porotic 

hyperostosis usually under-represents the actual number of affected individuals and the absence of 

lesions does not equate to an absence of anemia, unless the archaeological sample can be proven to be 

representative of the population as a whole (i.e. Wright and Chew 1998). 

Chronic diseases other than anemia can result in lesions of similar appearance, but each have 

slightly different histological profiles (see Figure 1).  Bone changes due to vitamin C deficiency are the 

result of chronic inflammation and hemorrhage, rather than marrow hyperplasia.   Excessive woven bone 

is present, the diploic space has a normal appearance, and the porosity penetrates the existing outer 

table (Ortner et al. 2001:345).  Vitamin D deficiency results in pathological changes mostly on the external 

surface, with the porous appearance due to very small squamous appositions over the outer table 

(Schultz 1990:187).  Schultz (2001:134) describes osteomyelitis as external bone apposition with no 

internal changes to the bone.  Inflammation only resembles porotic hyperostosis in the beginning stages, 

with later stages of inflammation easily distinguished from the porosity due to anemia (Schultz 1990:187).  

Changes that occur postmortem are easily distinguished from anemia-related changes, as there are no 

indications of bone reaction (Wapler et al. 2004:334).  

Previous research has discovered that histological analysis of skeletal pathologies 

(paleohistology) can lead to a better understanding of the skeletal response and the etiology of the 

pathology.  The multivariate analysis of cranial lesions, for instance, can help researchers make better 

inferences about the populations they are studying because the hypotheses about those populations are 

constantly being tested and fine-tuned.  Several authors have conducted histological studies on skeletons 

with porotic hyperostosis previously attributed to anemia and found that the actual prevalence of anemia 

was much lower than expected.  For instance, Schultz (1990) found many misdiagnosed cases in a 
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sample from early Bronze Age Anatolia.  Using only macroscopic examination, the researchers 

determined that out of 144 infants 7% of the lesions were due to anemia, none were due to rickets, 8.5% 

due to osteomyelitis, and 6.8% was due to meningeal irritation.  After microscopic examination, these 

frequencies changed dramatically.  It was found that only 4.7% of the lesions could be attributed to 

anemia, 3.9% due to rickets, only 4.7% were due to osteomyelitis, and 9.5% were due to meningeal 

irritation.  Schultz conducted a similar study again in 2001 and found that most of the macroscopically 

diagnosed anemia was actually pseudopathology or postmortem damage (Schultz et al. 

2001:222).Wapler and colleagues (2004) examined the histological structures of bones from Missiminia in 

North Sudan (N=333) that displayed the macroscopic features of cribra orbitalia using thin-ground 

sectioning.  Of the 93 (28%) specimens that had cranial lesions, only 43.5% previously identified as 

having iron-deficiency anemia actually had anemic hypertrophy.  The other 29.4% were merely 

inflammation, and 20% had postmortem erosion.  These studies illustrate that by analyzing cases of 

previously diagnosed cribra orbitalia using histological methods, researchers may be able to more 

accurately determine what caused each case of cribra orbitalia. 

The histological analysis of thin-ground sections therefore remains an extremely effective means 

for properly diagnosing cranial porosity.  However, the passing of NAGPRA in 1990 had a significant 

impact on the use of destructive methods such as thin sectioning to study Native American skeletons.  

The law determined that any Native American remains excavated must be affiliated with the closest living 

Native American group; the tribe can file an “intent to repatriate” claim in order to have the skeleton 

returned back to them.  Those skeletons curated by federal agencies had to inventory their collections 

and obtain permission from the affiliated group in order to perform any scientific research on the 

population.  NAGPRA sought to eliminate the view of skeletons as solely objects for scientific research, 

and to bring scientists and Native American groups together.   

Due to NAGPRA, researchers must first contact the Indian Affairs Council and gain permission 

before proceeding with any study.  In most instances, NAGPRA has not hindered the ability for scientific 

research on Native American populations.  However, in the present case, permission was not granted by  
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Figure 1.  Porosity caused by different etiologies (see Schultz 2001for original photographs). (A) Porosity 
of the inner cranial vault due to hemorrhaging (B) Pseudopathology caused by postmortem erosion (C) 
Porotic hyperostosis due to vitamin D deficiency (D) Porosity due to osteomyelitis (E) Porosity due to 
subperiosteal hematoma caused by vitamin C deficiency 
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the Indian Affairs Council for thin section analysis to be done on the Algonkian samples curated at East 

Carolina University.  Therefore, in order to comply with these restrictions, this study used computed 

tomography to see the internal bone structure.   The use of computed tomography has only recently been 

applied to bioarchaeology and forensic anthropology.  Computed tomography has been used to visualize 

cribra orbitalia, develop new identification techniques, and to reassess the accuracy of age and sex 

estimation methods (e.g. Kahana et al. 1998, Pasquier et al. 1999, Taleb-Ahmed et al. 2003, Exner et al. 

2004, Telmon et al. 2005, Moskovitch et al. 2010). 

Interpreting Disease 

In order to study cribra orbitalia and understand its causes, researchers must understand the 

various biases that exist when studying paleopathology.  During excavation, bones can be damaged, 

missing, lost, or never excavated.  Preservation, recovery, and sampling biases will all be discussed in 

detail below.  In addition, researchers must keep in mind the osteological paradox, and be watchful for 

pseudopathologies. 

There are several external limitations to the study of paleopathology.  The first of these is how 

well the population was preserved prior to excavation and curation.  The archaeological context, including 

soil and weather patterns surrounding the body, highly impacts the rate of skeletal deterioration.  No 

single factor determines the quality of preservation; rather it is the combination of the various factors that 

impacts how well a skeleton is preserved.  There are both intrinsic and extrinsic factors that influence the 

level of preservation.   

Intrinsic factors that determine how well a skeleton preserves include the nature of the bone itself, 

the complexity, chemistry, shape, density, size, and age of the bone, and the presence of antemortem 

injury.  Henderson (1987) found that the rates of decay are inversely proportional to the size of the bone.  

In another study, Waldron (1987) found that the bones that survived most frequently were the dense, 

heavy bones- petrous portion and mastoid of the temporal, acetabulum and sciatic notch in the pelvis, 

and the long bones. 

It is a general rule that archaeological samples are fragile, brittle, and often poorly preserved.  

This is due to the variety of taphonomic conditions to which they are exposed.  Extrinsic variables such as 

the pH level of the soil, the permeability of the soil, moisture level, temperature, humidity, 
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microorganisms, and human activity all influencing how quickly skeletal material can be destroyed (White 

and Folkens 2005:52, Henderson 1987:45).  Soil pressure can warp the bones, while acidic soil can 

dissolve the inorganic matrix, leaving the organic material susceptible to water leaching.  Water and soil 

type affect how quickly diagenesis, the removal of proteins and minerals and absorption of ions into the 

bones, occurs.  Bacteria and fungi can destroy the bone, leaving it unstable and not easily preserved.  

Bones tend to preserve best when they are located in a temperate, well-drained area with low water 

tables and a neutral or slightly alkaline soil pH.  Humans also have a profound effect on the preservation 

of a skeleton, as they determine who is buried as well as when, how, and where they are buried 

(Henderson 1987:44-49). 

The likelihood of finding pathological alterations in a population is directly related to the number of 

bones that survived.  Therefore, it is very important for archaeologists to understand how the various 

postmortem processes affect each bone.  There is a bias in which skeletal elements will be recovered 

from the field (i.e., recovery bias).  Many factors influence the recovery bias, including: the size of mesh 

screen used, excavator’s knowledge, mortuary practices of the people being studied, taphonomy, and 

other archaeological recovery methods (Graesch 2009, Adams and Konigsberg 2004). 

Sampling bias can also impact assessment of disease in an archaeological sample. The 

population sample may not be representative of the group living at the time because the archaeological 

sample is always comprised of deceased individuals.  Sampling bias may also occur during excavation. 

Researchers often do not excavate an entire cemetery, or an entire town; usually only a small portion of 

the cemetery is excavated, leaving the researchers with a sample of a sample population.  The samples 

that have been excavated are often fragmentary, poorly preserved, and have postmortem damage.  The 

portion of the cemetery that was excavated may not be representative of the cemetery as a whole. 

There are additional limitations from the original population being studied.  For example, selective 

mortality issues must be taken into account, along with the biocultural factors that can influence an 

individual’s risk of disease and health, cultural factors associated with burial, and the prehistoric 

populations tended to not be sedentary (Roberts and Manchester 2007:12, Boddington 1987:181). While 

these limitations may not always be overcome, it is important to recognize that there are certain 

limitations that must be taken into account when analyzing paleopathologies.  
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Researchers must keep in mind that it could be the case that the individuals with bone 

pathologies may actually be the stronger and healthier individuals who survived the condition long 

enough for it to affect the bone (i.e., the “osteological paradox”).  Conversely, those without bone lesions 

may be the weaker individuals who died quickly before skeletal lesions could form (Wood et al. 1992).  

When pathological alterations are found, researchers must determine whether the alteration is an actual 

pathology or pseudopathology.  For example, fungi can destroy compact bone, leaving lesions that are 

similar to osteoporosis or a metastasizing tumor.  Thickened woven bone can be mistaken for a periosteal 

reaction if not microscopically examined; during diagenesis, crystals can aggregate along the bone’s 

surface leaving a pseudopathological lesion (Schultz 2001:117).  When studying paleopathology, there 

are certain biases that exist that researchers must be aware of, even if the biases are often not able to be 

overcome.  The recognition of these biases allows researchers to make more accurate interpretations of 

their data.   

Prehistoric Algonkian Groups 

The region in North Carolina that is referred to as the tidewater coast extends from the major 

sounds, including Currituck and Albemarle, to the barrier islands (Figure 2) (Hutchinson 2002:17).  Most 

archaeologists agree that there are two main traits that define the Algonkian culture present in this region- 

the construction of longhouses and the use of collective ossuaries (Ward and Davis 1999:216).  However, 

the Algonkian identity is based entirely on linguistics.  During the Contact period (ca 1600), there were 

three linguistic groups along the coast: Iroquoian, Siouan, and Algonkian.  The Algonkian language group 

reached north into New England and occupied the tidewater area, including most of the offshore islands. 

Iroquoian and Siouan populations occupied the coastal plains (Feest 1978).  Several tribes combined to 

form the Algonkian language group, including: Chowanoke, Weapemeac, Poteskeet, Moratoc, Roanoke, 

Secotan, Pomuik, Neusiok, and the Croatan (Goddard 1978).  The exact boundaries of the different 

Algonkian groups is difficult to establish because the Europeans often counted allied groups as single 

tribes, rather than the independent groups they were (Feest 1978). 

Most of our knowledge about Algonkian culture is derived from written sources of settlers at 

contact.  John White drew several maps of the Carolina coast and the Algonkian environment.  Thomas 

Harriot wrote reports describing various aspects of the native cultures he encountered (Ward and Davis 
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1999:213).  The Algonkians were a ranked society, led by a “werowance”, or ruler, who was chosen from 

a matrilineal ruling lineage.  Each ruler had their own symbol which was painted or tattooed on the backs 

of the men to show their affiliation (Feest 1978).  Within each of the societies listed above, there was a 

capital town, smaller towns, and dispersed farmsteads.  An average town at the time of contact had a 

population of 150 individuals living in 12-18 longhouses (Ward and Davis 1999:211).  The largest tribe 

encountered by the English was the Chowanoke, which had 18 villages and a population of 2,500 (Feest 

1978).  John White’s drawings show two different village arrangements that were common.  The Secotan 

village was an open settlement, with nobilities’ houses placed along a wide central path that connected 

public and ceremonial areas, and the commoners’ houses scattered around the rest of the settlement.  

The other plan shown by White is the settlement of Pomeioc, which shows 18 longhouses forming a 

concentric circle around a central open plaza surrounded by a stockade (Ward and Davis 1999:213).  A 

passage written by Barlow during his expeditions also sheds some light on a smaller fortified town: “at the 

north end therof was a village of nine houses, built of cedar, and fortified round about with sharpe trees to 

keep out their enemies, and the entrance into it made like a turne pike very artificially” (Feest 1978). 

Archaeology of Algonkian Populations 

Excavations of these sites have produced skeletal remains that can provide information on the 

health and adaptations of these groups to their environment (see Hutchinson 2002).  Skeletal remains 

from five North Carolina coastal Algonkian sites dating to the Colington phase of the Late Woodland 

period (Hutchinson 2002:17, 19) were included in this research: Hollowell (31CO5), Baum 1 and 7 

(31CK9), Hatteras Village (31DR38), West 2 (31CK22), and Knott’s Island (31CK24).  These remains are 

held in the bioarchaeology laboratory at East Carolina University. The dates for the sites range from AD 

360 to 1460.   

The Middle to Late Woodland periods (AD 200-1650) are viewed by archaeologists as the time 

when a gradual shift toward agriculture with more complex societies and permanent settlements was 

taking place.  The beginning of the Woodland period is defined by the appearance of pottery (Ward and 

Davis 1999:3).  David Phelps developed a detailed chronology for the Woodland period using the various 

ceramic types which allows researchers to date sites more accurately.  The Colington phase of the Late 

Woodland period (AD 800-1650) is marked by the introduction of shell-tempered pottery (Phelps 
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1983:36).  Due to the sandy nature of the soil, clear stratigraphic separation of temporally distinct cultural 

levels is difficult as pottery sherds can easily migrate between strata (Ward and Davis 1999:226), and 

archaeologists must be careful to notice the fine details that delineate each different strata. 

During the Late Woodland period, most of the burials were collective ossuaries, where the 

majority of the skeletons are disarticulated.  A typical Colington Algonkian ossuary contains between 20 

and 60 people, usually commingled, with no cultural biases for age or sex (Hutchinson 2002:23).  After 

death, the deceased were placed in burial houses, where they decomposed.  Periodically, the bodies 

were removed from the burial houses and buried in the ossuaries (Ward and Davis 1999).  The ossuaries 

contained few grave goods, as the dead were honored during the initial storage phase of the burial 

process, rather than in the burial phase (Hickerson 1960).  The total size and shape of the burial pits 

varied.  Ossuaries were usually located on the edges of settlements (Hickerson 1960).  Not all skeletons 

were excavated from ossuaries, or secondary burials.  At the West site, some of the skeletons were found 

individually in primary burials. 

The coastal region contains numerous ecological niches ranging from freshwater, brackish water, 

to saltwater marine areas, along with wooded swamps and maritime forests (Hutchinson 2002:1).  The 

coastal Algonkians took advantage of both the marine and non-marine food sources available to them.  

The evidence for subsistence patterns of the outer coastal Algonkian groups comes from carbonized 

plants, animal bones found in archaeological deposits, stable isotope analysis, and John Lawson’s 

journals (Hutchinson 2002:23-26, 201).  The Algonkians relied heavily on foraging plants such as 

amaranth, chenopodium, sumpweed, knotweed, little barley, maygrass, hickory nuts, acorns, grape, 

maypop, sumac, and sugarberry.  They also exploited marine resources, such as sturgeon, catfish, 

bowfin, American eel, carp, longnose gar, sunfish, redhorse, sheepshead, sea trout, atlantic croaker, 

black drum, red drum, spot, yellow perch, oysters, clams, scallops, whelk, and crabs. Reptiles such as 

turtles, alligators, cooters, and sliders were also consumed.  The Algonkians furthermore hunted birds 

and mammals, including wild turkey, green-winged teal, blue-winged teal, mallard, herons, redhead, 

canvasback, snow goose, lesser scaup, bobwhite quail, passenger pigeon, beaver, opossum, white-tailed 

deer, raccoon, gray squirrel, fox squirrel, eastern cottontail rabbit, marsh rice rat, marsh rabbit, and black 

bear (Hutchinson 2002:27).  Unlike the inner coastal areas, which adopted agriculture around 1000, the 
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outer coastal areas did not begin intensification of maize agriculture until after 1400 (Hutchinson 

2002:160). In addition to maize, the Algonkians planted melons, pumpkins, squash, beans, and 

sunflowers (Feest 1978:273).  Hollowell, the only inner coastal site being used in this study, mostly 

supplemented maize production with hunting riverine and terrestrial fauna, while the outer coastal sites 

exploited little maize and relied mainly on marine fauna (Hutchinson 2002:138).  Dental microwear 

analysis and isotope signatures suggest that the diet of both inner and outer coastal populations was 

heterogeneous with local variation (Hutchinson et al. 2007:55). 

Previous Analysis 

In addition to analyzing their subsistence patterns, Hutchinson (2002) completed an extensive 

health and disease analysis on these sites.  Hutchinson separates his analysis into inner and outer 

coastal sites, as this influenced their diet, and thus their overall health.  Of the total sample of outer 

coastal adults, Hutchinson found that 10% had periostitis or osteomyelitis, 16% of males and 12% of 

females had systemic infections, and 10% had degenerative joint disease (Hutchinson 2002:103, 118-

119).  The dental analysis for diet and disease patterns showed that 14% had carious lesions, 16% had 

one or more chipped teeth, and 10% had enamel hypoplasias, which are indicators of metabolic stress 

due to malnutrition or disease (Hutchinson 2002:88-89, 92).  Hutchinson found that the outer coastal 

populations had cribra orbitalia and porotic hyperostosis rates that averaged 44%, while the inner sites 

averaged 20% (Hutchinson 2002:97).  Usually maize diets, such as those in the inner coastal sites, are 

associated with high levels of anemia due to the phytates present in maize that block the absorption of 

iron (Stuart-Macadam 1987).  This would lead to the assumption that the inner coastal sites would have 

higher rates of anemia, and thus higher rates of cribra orbitalia and porotic hyperostosis, than the outer 

coastal populations, who rely mainly on foraging.  Hutchinson and colleagues (2007:62) have interpreted 

the anomalous pattern seen in the coastal sites as due to parasitic intestinal bleeding from outer coastal 

populations’ mainly marine diets.   Similar studies of Peruvian populations found higher rates of porotic 

hyperostosis in coastal populations than in terrestrial populations.  The higher coastal rates of cranial 

lesions were explained by higher rates of intestinal parasites, as evidenced in coprolite analysis (Verano 

1992).  
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In addition, the inner coastal adults and subadults exhibited the same prevalence of porotic 

hyperostosis.  However, subadults in the outer coastal populations exhibit a lower frequency of cribra 

orbitalia and porotic hyperostosis (9%) than do adults (36%) in their community.  The unusual pattern led 

Hutchinson to conclude that possibly subadults were given starchy cereal as weaning foods, rather than 

seafood that the adults were consuming (Hutchinson et al 2007:55).  None of the Middle Woodland 

individuals exhibited porotic hyperostosis, which may be due to the lack of maize during this period.   The 

lack of European contact also may explain this pattern, as several studies have shown that rates of 

porotic hyperostosis increased after contact (Larsen et al. 1992, Klaus and Tam 2009). Understanding the 

etiology of the cranial lesions can shed light onto the reasons behind the unexpected patterns of cribra 

orbitalia. 

Summary 

This study reassessed cribra orbitalia in coastal North Carolina Algonkian populations using non-

destructive methods to view the internal structure of orbital bone.  Although the Algonkian populations 

have previously been studied and cribra orbitalia documented, it was only performed using macroscopic 

techniques.  By reassessing this population using more a more advanced methodology, a more accurate 

representation of the population was achieved.  The use of CT scanning in this study not only added to 

the field of Native American history, it also helped to increase the applicability of this method to the field of 

paleopathological research. 

The results from this study answered a number of important methodological and archaeological 

questions.  First is: how different are the frequencies of cribra orbitalia using only macroscopic analysis 

versus analysis using CT scans?  Second, is nutritional deficiency the main cause of cribra orbitalia in this 

sample, as proposed by Hutchinson (2002), and what frequency of orbital lesions had other causes?  

Additionally, what are the new demographic profiles in terms of age and sex of the individuals with a 

confirmed diagnosis?  Are the unexpected demographic patterns noted by Hutchinson (2002) still seen? 

I expect that the use of non-destructive microscopic methods, such as CT scanning will work as 

well as more traditional histological examination methods, such as thin-ground sectioning.  Due to the use 

of computed tomography rather than visual observation used in the previous study, I believe that the 
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frequencies of lesions that show diploic expansion versus porosity, or lesions attributed to anemia versus 

nutritional deficiencies will vary from the previously reported frequencies. 

By more accurately understanding the various etiologies of cribra orbitalia among this population, 

we can better understand their diet, their interaction with their marine environment, their quality of life, 

their susceptibility to diseases and nutritional deficiencies, and their overall health status.  Currently, not 

much is known about the health and diseases experienced by these populations, but this research can 

add to the overall idea of how the Algonkian people lived their lives along the North Carolina coast. The 

results of this study have implications for the current interpretations of malnutrition and infectious disease 

in prehistoric human populations, in addition to the fields of paleopathological methodology, archaeology, 

and Native American history. 
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CHAPTER 3: MATERIALS 

This study examined five North Carolina coastal Algonkian ossuaries.  The five sites that were 

used include: Baum (31CK9), Hatteras Village (31DR38), West 2 (31CK22), Knott’s Island (31CK24), and 

Hollowell (31CO5) (Figure 2).  All of the ossuaries from these sites date to the Colington phase of the 

Late Woodland period (AD 800-1600) and were excavated between 1972 and 1987.  The preservation of 

the skeletal remains is poor, with most of the sample being highly fragmented and fragile.  The ossuary 

sample should be representative of the population as a whole, as all ages and sexes are represented at 

all of the sites used.  It is possible that subadults are underrepresented in this sample, as only 36 crania 

were identified as subadults, although these 36 crania are 20% of the total sample. 

 

Figure 2. Map of North Carolina coastal Algonkian sites used in this study (Hutchinson 2002). 

Sites Used in the Current Study 

The Baum site includes five separate ossuaries in addition to several single and multiple burials.  

The majority of the burials were excavated by David Phelps between 1972 and 1987, with the exception 
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of Burial 8 which was excavated in 1987 by Mark Mathis.  Multiple radiocarbon dates from bone were 

obtained from the various burials and range from AD 360 +/- 65 for Burial 2, to 1400 +/-60 for Burial 1  

(Hutchinson 2002:32-33).  The entire Baum site is comprised of Norfolk loamy fine sand and is about five 

acres in size, although it is estimated that 3-6 meters immediately around the ossuaries have been lost to 

erosion.  It was during the Colington phase of the Late Woodland period that Baum reached its maximum 

population size as a permanent village, although occupation extends prior to 300 BC.  Artifacts that have 

been found throughout the site include: Colington ceramic shell-tempered ware, Roanoke projectile 

points, lithic tools, pipes, beads, milling stones, and bone implements. 

 Burial 1 was the first ossuary to be positively identified as Algonkian in coastal North Carolina 

when test pits were dug in 1972.  This burial included 58 individuals, including eight fully articulated 

skeletons.  Associated artifacts include a panther mask, bone awls, and bone pins.  In 1974, the rest of 

the ossuary, which was three meters from the edge of a bank along Currituck Sound, was excavated.  In 

1980, it was discovered that the edges of the excavation had become eroded, exposing another separate 

ossuary (Burial 5) that was then excavated.  Burial 2 was a Middle Woodland cremation excavated in 

1973 and was not included in this analysis.  Burial 3 was located underneath Burial 2 and is an individual 

flexed burial dating to the Middle Woodland period (Hutchinson 2002:34).  Burial 4 was not included in 

this study, but is a fragmentary subadult burial also excavated in 1974.  Burial 5 had approximately 30 

individuals, including three articulated skeletons, although more individuals were likely lost due to the 

erosion of an estimated one-third of the ossuary.  In addition to the skeletons, a small necklace, 15 

marginella shells, and one disc-shaped copper bead were found near a group of subadult skeletons.  

Food remains, including 47 fish bones, 37 mammal bones, six bird bones, six turtle bones, and 50 

unidentifiable fragments, were also found within Burial 5 (Hutchinson 2002:32-33).  Burial 6 was salvaged 

in 1983 after the ossuary eroded onto the beach.  It is radiocarbon dated to AD 1310 +/- 40.  Burial 7 is 

another Late Woodland ossuary that was exposed due to erosion.  Four of the crania from this burial 

show evidence of red-staining.  Burial 8 was dated to the Middle Woodland period based on the Mount 

Pleasant ceramics found within the burial fill (Hutchinson 2002:36). 

The site of Hatteras Village was discovered when skeletons began washing out of the beach.  

Fifteen individuals, along with pottery fragments, were surface collected from the beach below the high 
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tide line and the water in early 1974.  It was estimated at that time that over half of the burial pit was still 

present (Site Notes, 1974) under the water.  Beginning in April 1974, the remaining ossuary was 

excavated.  Burial 1 was approximately two by three meters and the skeletal remains were located 

approximately 40 cm below the surface (Site Notes, 1974), and collected an estimated 18 individuals.  

The total MNI for this site is 38.  A single radiocarbon date of AD 1350 +/-70, calibrated to AD 1395, was 

obtained from human bone (Hutchinson 2002:36). 

The initial notification of the West 2 ossuary came in late 1991 from the landowners who 

discovered the skeletal remains of approximately 2-3 individuals eroding out of a 12-foot high bank after a 

storm.  When Mark Mathis went out to inspect the ossuary, it was determined that further excavation 

would likely exacerbate the severe erosion problem along the bank.  To avoid this problem, the property 

owners were instructed to collect the skeletal remains as they eroded out of the bank rather than 

excavating the ossuary.  However, after it was discovered that several other people had been taking the 

bones from the beach, excavation was deemed necessary.  The first excavation took place in May 1994, 

with the conclusion of the salvage excavation occurring in October (Mathis 1994).  During the initial 

excavation, approximately 50 cm of the west two-thirds of the ossuary collapsed onto the bank, after 

which several individuals were collected along the bank (Mathis 1994).  It was noted by the excavators 

that 13 partially articulated bundles were placed in the south area of the burial pit, while the remains 

located in the center of the ossuary were highly commingled.  They proposed that the bundles were 

placed in the ossuary first, followed by the disarticulated remains.  Another possibility is that the center of 

the ossuary was “stirred”, that is, that the bones were placed in the ossuary and then mingled together 

(Mathis 1994). 

This ossuary is actually the second burial pit for the West site.  Burial 1 is located approximately 

100 m west of Burial 2.  Burial 1 was excavated in October 1984 by the Office of State Archaeology after 

remains were discovered eroding out of the bank.  The remains of at least five individuals deposited as 

discrete bundles were recovered, although the actual number of remains is unknown due to the bulk of 

the ossuary having already eroded into the sound.   

Red cordage stains were present on several crania from this ossuary.  In addition to the skeletal 

remains, bone pins were found within the ossuary.  These pins are similar to those found within other 
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coastal ossuaries, such as the Baum site (Hutchinson 20002:37).  Colington ceramics were recovered 

from above the burial pit (memorandum 1984), which dates the ossuary to the Colington phase of the 

Late Woodland period.   

The Knott’s Island ossuary was exposed during road construction near the town of Knott’s Island 

in 1989.  At least 29 individuals were excavated by Mark Mathis in 1989.  While no radiocarbon dates 

were obtained from this site, shell-tempered pottery sherds indicate a Late Woodland Algonkian cultural 

affiliation and date (Hutchinson 2002:37). 

Hollowell is the only inner coastal site used in this study.  It is located on a 30-foot high bluff along 

the Chowan River.  The site was first reported in July 1974 when the landowner noticed skeletal remains 

eroding out of the surface (Phelps 1982: 25).   Excavation was conducted by David Phelps of East 

Carolina University between June 23 and July 17, 1975.  The burial pit was roughly rectangular, and 

measured 3.6 m east-to-west and 2.5 m north-to-south.  The original depth of the ossuary could not be 

determined because of continual topsoil grading and removal, however, the remains began 48 cm below 

subsoil level (Phelps 1982: 28).  Approximately 40 individuals were excavated in nine different groups.  

Phelps suggested that the separate groups within the ossuary represent different family units, thus 

estimating that the village contained at least nine longhouses during the Colington phase.  Phelps also 

suggested that the other coastal ossuaries probably represent a similar pattern, but the overall size of the 

burial pits were too small and masked the familial pattern. In addition to the skeletons, the ossuary 

contained only a small necklace of four conch columella beads associated with an infant (Phelps 1982: 

38). 

Using the prevalence of certain artifacts, occupation began in the Middle Archaic period, when 

the site probably functioned as a seasonal base camp, and it continued through the Middle Woodland 

period.  The higher frequency of Colington phase ceramics suggests that the most intensive use of the 

site occurred during this period.  Phelps suggested that the site functioned as a small permanent village 

during this time as evidenced by a midden deposit, Cashie ceramics which he interpreted as extensive 

trade with the nearby Tuscarora, and the ossuary (Phelps 1982:27).  A single radiocarbon date obtained 

from bone dates the heaviest occupation of the site to AD 1460 +/- 60 years (Hutchinson 2002:39).    
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Demography of the Sample 

A total of 232 crania from all five sites were initially observed in this study. Forty-nine of these 232 

crania (20%) have non-observable orbital regions and thus could not be included in this analysis.  The 

assessment of the remaining 183 crania discovered that 46 had active cribra orbitalia (20%), 42 had 

healed lesions (19%), and 3 had both healing and active lesions at the time of death (1%).  Ninety-two of 

the crania did not show any signs of porosity on the orbital roof (40%).   

The demographic patterns of the total sample of 183 crania are shown in Table 1.  Twenty 

percent of the total sample were subadults, 14% were young adults aged 20-34 years of age, 47.5% were 

middle aged adults 35-50 years of age, only one cranium (0.005%) was over 50 years of age.  Among the 

adults, 8.5% were not complete enough for a precise age estimation beyond “adult”.  Sixty-two of the 

crania (34%) were female, 19% were male, 34% were subadults and thus sex estimation was not 

completed, and 28% were adults of indeterminate sex.  The range of variation within the demographic 

profile should not affect the outcome of the results as all age ranges are adequately represented, except 

for the 50+ category.  The sex distribution of the sample is also representative of the population as a 

whole, and should not affect the interpretations of the data. 

Of the 183 remaining crania from all five sites, 50 were randomly chosen for further analysis 

using CT scanning.   The 50 crania sampled were a mix of healing, active, and no lesions and crania from 

all five sites were included.  This subsample has similar demographic patterns to the overall sample (see 

Table 2).  The results of the CT scanning will be discussed further in later chapters.   

Table 1. Age and sex of the total sample 

Age Male Female Indeterminate Total 

<15 years -- -- 36 36 (19.5%) 

20-34 2  15 8 25 (14%) 

35-50 23  35  29 87 (47.5%) 

50+ 0 1  0 1(0.005%) 

Adult 10  10  14 34 (19%) 

Total 35 (19%) 62 (34%) 86 (47%) 183 (100%) 
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Table 2. Age and sex of the CT-scanned crania 

Age Male Female Indeterminate Total 

<15 years -- -- 13 13 (26%) 

20-34 0 5 3 8 (16%) 

35-50 6 12 8 26 (52%) 

50+ 0 0 0 0 

Adult 0 1 2 3 (6%) 

Total 6 (12%) 18 (36%)  26 (52%)  50 (100%) 
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CHAPTER 4: METHODS 

A number of macroscopic techniques were utilized in this study to assess orbital roof pathologies 

in the Late Woodland Algonkian coastal North Carolinian assemblage.  Preliminary macroscopic analysis 

was conducted in order to determine age, sex, and the presence and severity of cribra orbitalia and 

porotic hyperostosis.  After the initial macroscopic analysis, 50 samples were chosen to be explored 

further using computed tomography (CT) scans.  The CT scan slices of the pathological areas were 

digitally enhanced and analyzed visually and patterns of radiopacity were quantified in order to identify 

clustering or patterning based on changes in the internal structure of the orbital roof.   

Demography Collection 

Age estimation for each of adults among the 232 crania was based on suture closure scores as 

described in Buikstra and Ubelaker (1994).  Cranial sutures generally fuse with increasing age, although 

there is considerable individual variability (Buikstra and Ubelaker 1994:32) which leads to large possible 

age ranges.  This high degree of variability reduces the value of suture fusion rates for estimating age, 

but the method has still proven useful in cases where other methods are not available (Masset 1989). 

While there are many more accurate methods for aging adult skeletons, cranial suture closure was used 

because no associated post-cranial remains were available.  Subadult skeletons were aged using tooth 

eruption patterns when present, and through epiphyseal union if associated postcranial remains existed 

(Buikstra and Ubelaker 1994).   Teeth typically follow a similar eruption pattern, which makes this method 

highly accurate for aging subadult skeletons.  The sequence of tooth eruption used in this study follows 

Ubelaker (1989) as shown in Buikstra and Ubelaker (1994).   

Some error in the estimation of age is inherent with archaeological populations, as the rates of 

degenerative change are unassociated with chronological age and vary with individuals. In addition, age-

estimation techniques are strongly influenced by the age distribution of the sample used, regardless of 

actual degeneration rates (Meindl and Russell 1998).  Boddington (1987:190) also asserts that age 

estimation techniques are often based on known modern samples, and researchers must assume that 

ancient populations both developed and degenerated at the same rates as modern populations.  Sex 

estimation of adults was accomplished by assessing the degree of robusticity found in the superior 
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margin of the eye orbit, glabella, mental eminence, nuchal crest, and mastoid process when present.  The 

degree of robusticity was determined by the standards laid out in Buikstra and Ubelaker (1994). 

Initial Visual Analysis 

The orbital lesions first were categorized based on visual observation into four categories: non-

observable, not present, healing, and active.  Each active or healing lesion was then scored for degree of 

porosity and diploic expansion.  In addition, lesions in the cranial vault often referred to as porotic 

hyperostosis were scored.  The scoring system from Buikstra and Ubelaker (1994), adapted from Stuart-

Macadam (1985), was used for the initial macroscopic analysis, although other scoring methods have 

been developed (e.g. Hengen 1971, Schultz 1988, Mittler and van Gerven 1994). This system uses a 4-

point scale to determine the severity of the lesions (Figure 3).  A score of 1 indicates indistinct porosity, or 

a barely discernable lesion.  A score of 2 indicates a true porosity of the orbital roof.  A score of 3 occurs 

when the foramina have begun to coalesce, but the bone has not begun to thicken.  A score of 4 also 

occurs when the foramina have coalesced, but this occurs in association with the thickening of the cranial 

vault (Buikstra and Ubelaker 1994).   In addition, there are three codes for the lesions that describe the 

degree of healing: 1) sharp edges and woven bone of active lesions, 2) remodeled, sclerotic changes, 

and 3) mixed reactions (Buikstra and Ubelaker 1994:121).   

Computed Tomography 

After the macroscopic examination was complete, 50 frontal bones were chosen to be examined 

further using computed tomography.  Five of the sampled orbits did not have any lesions present, and the 

remaining 45 orbits represented the initial visual observation severity scores ranging from 1 to 4.  The 

computed tomography scans were completed free of charge by the Department of Cardiovascular 

Sciences at the Brody School of Medicine, East Carolina University using a Siemens SOMATOM 

definition scanner.  The scans were executed using the “inner ear” protocol, which was then modified by 

the scanning technician and the consulting radiologist.  The spiral scan settings were set to 1 pitch, 180 

milliamps per second, which is the number of electrons put out by the scanner, and 80 kv, which is the 

amount of force the electrons have.  The medial-lateral (M-L) slices were 0.6mm thick as this is the 

thinnest setting available while still maintaining clarity of the images with this scanner. 
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Figure 3. Initial macroscopic cribra orbitalia scores. (A) 31CO5 1Q left orbit showing indistinct porosity- 
score 1(B) 31CK9 1RR right orbit showing true porosity, score 2 (C) 31CK9 1E left orbit showing 
coalescing foramina without concurrent diploic expansion, score 3 (D) 31CO5 1A left orbit showing diploic 
expansion, score 4 

 

Each skull was placed into the scanner in Frankfurt horizontal plane to produce M-L slices of the 

skull, and depending upon the size of the fragment, cushions were used to help stabilize the sample.  A 

topogram, or a lateral x-ray of the sample was first taken in order to align the scanner and set up the axial 

slices.  After the scanner was properly oriented, the computed tomography scan was taken.  A recon 

kernel- u75uverysharpasa- was developed for use in these scans in order to reconstruct the data into 

meaningful images. 

A B 

C D 
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Figure 4. Siemens SOMATOM definition scanner                 Figure 5. Sample 31CK9 1PP sample placed  

    on scanner bed. 
 

Following the completion of all 50 CT scans, a single M-L slice was selected from each orbit for 

analysis and saved as a .jpg file.  The images were selected using Syngo Viewer software while 

referencing the cranium itself in order to ascertain the best axial slice image of the pathology (if present).  

Due to the relatively small area of the orbital region compared to the rest of the skull, each image was 

magnified 5 times for a total of 6.25 magnification in order to have the best image of the orbital area itself.  

While referencing the crania, each sample was given another visual observation code between 0 and 4 

for statistical comparison.  These codes differ from the initial visual observation codes in order to assess 

whether the diploic expansion was healing or active and to account for postmortem erosion.  The initial 

observation scores were meant to determine degree of porosity, whereas these scores for statistical 

analysis merely determine whether porosity or diploic expansion is present, regardless of degree.  A code 

of 0 was given for those orbits without lesions, porosity in the cortical bone was scored a 1 (similar to the 

above scores 1, 2, and 3), healing diploic expansion was scored a 2, a score of 3 is active diploic 

expansion (both diploic expansion codes are similar to the above score of 4), and postmortem erosion 

was scored a 4 (see Figure 6). 

Medical image enhancement was then completed on the CT scan slices using Adobe Photoshop 

CS4 in order to complete further visual image assessment of the lesions.  The .jpg images were 

converted to grayscale rather than the color images.  The magic wand tool was used to enhance the 

outer table porosity; the tolerance level was set to 15 and the pixel selection criterion was set to non- 
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Figure 6. New visual observation scores. (A) 31CK9 1E left orbit showing porosity- score 1 (B) 31CK9 5D 
left orbit showing healing diploic expansion-score 2 (C) 31CO5 1A left orbit showing active diploic 
expansion-score 3 (D) 31CK9 1W left orbit exhibiting postmortem changes- score 4  
 
contiguous.  This means is that any pixel within 15 grayscale values of the selected pixel would be 

highlighted whether or not it was contiguous with the selected pixel.  Then, the refine edge tool was used 

to enhance the contrast of the images to 32, and the brightness was set to 65.  The settings were the 

same for each scan, and two different pixels values were selected for enhancement from each orbit. 

Using the enhanced images, each sample was reassessed.  A new coding system was used for 

these images.  If the cortical bone was intact, the sample was given a score of 1.  If the cortical bone had 

porosity, the sample was scored a 2.  A score of 3 was used if the cortical bone was resorbing and diploic 

expansion was present (Figure 7). 

C 

A 

D 

B 
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Figure 7. CT visual enhancement score examples. (A) 31CK9 1M left orbit showing intact outer table with 
no porosity- score 1 (B) 31CK9 1E right orbit showing porosity in cortical bone- score 2 (C) 31CO5 1A left 
orbit exhibiting diploic expansion- score 3  
 

Statistical Analysis 

To collect quantitative data on the density of the orbits, which reflects the intactness of the cortical 

bone of the outer bone layer of the upper orbit in addition to the nature of the diplöe in the internal 

structure, the Andromeda filter in Adobe Photoshop was used.  A total of six cross sections of different 

sectors of each orbital roof were selected (see Figure 8 for an example) and then averaged to capture the 

overall internal structure of the cortical bone and diplöe of each orbit. This was done by drawing three 

boxes across the orbital roof in each image, which produced two cross-sections per box (the two vertical 

sides of the box).  The Andromeda filter captured the density data of each cross section to produce a 

density histogram (Figure 9).  The grayscale values from each cross section were imported into Microsoft 

Excel 2007 spreadsheet for statistical analyses. 

First, the data were cleaned in Excel by deleting grayscale values reflecting the radiolucent space 

within the selected area (that is, just “air” instead of a solid object) and up to the actual orbital roof.  A cut-

off grayscale value of 30 was determined to reflect the beginning of the actual orbital roof cortical bone.   

A 

B 

C 
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Figure 8. Screen image of Andromeda boxes on left        Figure 9. Screen image of outline profile of  
orbit of 31CK9 1AAA.                 highlighted box in Figure 8. 

 

Therefore, all values in the cross section were deleted until the values reached the “30” threshold.  

Finally, the first 18 grayscale values running from the outer orbital roof into the diploic space were 

retained for analysis for each observation. 

The averaged grayscale values from the six cross-sections of each orbit were then subjected to 

statistical analyses using SAS version 9.2 to see if the values significantly clustered together. Adults and 

subadults (<15 years of age) were tested separately to control for differences in cranial thickness.  First, a 

MANOVA test was performed to see if certain points along the orbital cross-sections varied meaningfully 

based on the unenhanced visual observation and the CT enhanced image codes.  This information would 

determine where on the cross-section the greatest variation existed between the visual code categories to 

see if the dataset could be reduced in a meaningful way.  Then, cluster analysis using Ward’s method in 

PROC CLUSTER was run on the grayscale values to identify patterning of values across the cross-

section (which presumably would indicate differences in radiopacity, and hence pathological processes, 

across groups).  Cluster analysis was run on the entire sample of grayscale values and a trimmed sample 

of the first 6 values identified by the MANOVA test as varying most significantly between the visual 

observation codes.  Based on the relationships identified by the cluster analysis, each orbit was then 

assigned a cluster identification.  The distribution of the observations amongst the clusters was produced 

by the PROC SGPLOT procedure, which plots the first and second canonical coefficients of each cluster 

in order to visually observe the cluster groupings.  Finally, a Fisher’s exact test was conducted using the 
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PROC FREQ in SAS to assess the relationship between the cluster groupings and the visual observation 

codes from plain observation and observation of digitally-enhanced images.  This allows the 

determination of whether the grayscale value patterns are similar to the patterns seen in the visual and 

digital observations.  The Fisher’s exact test is similar to a Chi-Square test, although it is a more robust 

test more suitable to smaller sample sizes. 

Comparisons to Previous Analysis 

After the results of the current study were compiled, they were compared to Hutchinson’s (2002) 

previous analysis.  The data from this study were arranged in a similar fashion to Hutchinson’s 

compilation (i.e., combining cribra orbitalia and porotic hyperostosis into one category) in order to 

facilitate comparisons.  The rates of cranial lesions were compared for the overall sample and broken 

down by adults and subadults. 
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CHAPTER 5: RESULTS 

 

The multiple techniques used in this study allowed for a reassessment of orbital lesions in a Late 

Woodland Algonkian sample.  While a previous analysis of these lesions has been completed 

(Hutchinson 2002), this study produced slightly different results, which will be discussed further below. 

Initial Visual Observations 

Half of the total sample of crania from the five sites (N=183) did not exhibit any lesions in either 

orbit.   When broken down by adult and subadults, it was found that out of 147 adult crania, 62 (42%) had 

lesions, while 29 out of 36 subadult crania (80.5%) exhibited cribra orbitalia (Table 3).  Of the 91 crania 

exhibiting orbital lesions, 32% were subadults and 68% were adults.   Fourteen percent of the individuals 

with cribra orbitalia exhibited a score of 1, 23% had a score of 2, 11% had a score of 3, and 4% had a 

score of 4 (Table 5).   

Table 3. Cribra orbitalia by adults vs. subadult samples 

 

 

 

 Data on porotic hyperostosis were collected to determine how often the two pathologies coexisted 

in the same crania.  Only 148 samples had enough cranial bones to collect information on both cribra 

orbitalia and porotic hyperostosis (Table 4).  Twenty percent of the sample had both cribra orbitalia and 

porotic hyperostosis, while 30% of the sample did not.  Twenty-eight percent of the sample had only 

cribra orbitalia without porotic hyperostosis, and 22% of the crania had porotic hyperostosis without 

concurrent cribra orbitalia. 

Table 4. Coexistence of cribra orbitalia and porotic hyperostosis 

 Cribra 
Orbitalia only 

Porotic Hyperostosis 
only  

Both 
Present 

Neither 
Present 

 N % N % N % N % 

Adults 21 14% 32 22% 26 18% 39 26% 

Subadults 20 14% 0 0% 4 2% 6 4% 

Total crania with lesions 41 28% 32 22% 30 20% 45 30% 

Total Observable 148 148 148 148 

 

 

Age 
with lesions No lesions Total 

N % N % N % 

Adults 62 42% 85 58% 147 100% 

Subadults 29 80.5% 7 19.5% 36 100% 
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Table 5. Cribra orbitalia and porotic hyperostosis scores in the total sample 

 Cribra 
Orbitalia 

Porotic 
Hyperostosis 

Score N % N % 

Not observable N/A N/A 35 19% 

No lesions present (0) 92 50% 86 47% 

Indistinct porosity (1) 25 14% 35 19% 

True porosity (2) 42 23% 22 12% 

Coalescing foramina (3) 20 11% 4 2% 

Diploic Expansion (4) 4 2% 1 1% 

Total 183 100% 183 100% 

 

Forty-seven percent of the crania did not show any signs of porotic hyperostosis.  Of the 62 

crania that did exhibit porotic hyperostosis, 35 showed a severity score of 1, 12% had a score of 2, 2% 

scored a 3, and only 1 cranium had a severity score of 4 (Table 5).  In addition to the severity of the 

porotic hyperostosis, the degree of healing and the location of the porosity were scored (Tables 6 and 7).  

The majority of the lesions were either healed or in the process of healing (81%), while only 11% were 

active lesions, and 8% of crania had both healing and active lesions.  The degree of healing can lend 

information about whether the deficiency that caused the lesions was still active at the time of death and 

how long it has been since the individual overcame the etiology.  The majority of the porosity was located 

only along the sutures (78%), followed by lesions on the parietal and occipital bones (19%), while only 3% 

had lesions on the frontal, parietal, or occipital bones not along the suture.  The areas where the porosity 

is located can sometimes help researchers determine the possible causes of the lesions.  For example, if 

there is only one area of porosity in the middle of the occipital bone, it is possible that the pathology is 

due to a hematoma or some other trauma to that one area of the skull. 

Visual and Digital Analysis of Subsample 

 For the subsample of 50 CT scanned crania, additional observations were taken visually and 

using digitally-enhanced CT images (Table 8).  Each orbit was treated as a separate sample, as some  
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Table 6. Degree of healing in porotic hyperostosis lesions 

Degree of 
Healing 

Number Percentage 

1- Active 7 11% 

2- Healing 50 81% 

3-Mixed 5 8% 

Total 62 100% 

 

Table 7. Location of porotic hyperostosis lesions 

 

 

 

 

crania had only one orbit preserved while other crania had both orbits preserved.  Of the 50 scanned 

crania, there were 73 total orbits, 36 left and 37 right. 

 Four percent of the 73 orbits were visually scored as having no porosity, but only 2% of the orbits 

showed a lack of pathology on the digital images.  Fifty-five percent of the orbits showed visual porosity, 

which is similar to the 58% of orbits showing porosity on the digital images.  For the visual assessment 

diploic expansion was scored as either active or healing, however healing was not possible to note on the 

digital images.  Forty percent of the orbits using the digital images showed diploic expansion, which is the 

same percentage that was scored as both healing and active diploic expansion in the visual assessment.  

Only one orbit showed post-mortem erosion visually, but it was not coded as such in the digital 

observation.   The similarity between the two assessments shows that in most cases visual analysis was 

as good as computed tomography analysis. 

Table 8. Pathology codes for CT-scanned crania by orbit 

Score 

Visual 
Observation 

Digitally-enhanced CT 
image observation 

N % N % 

No pathology 3 4% 2 2% 

Porosity only 40 55% 42 58% 

Diploic expansion 19 26% 29 40% 

Diploic expansion (active) 10 14% N/A N/A 

Postmortem erosion 1 1% N/A N/A 

Total 73 100% 73 100% 

 

Location of Porosity N % 

Along suture lines 48 78% 

Frontal, parietal, or occipital 
bones not along sutures 

2 3% 

Parietal or occipital bosses 12 19% 

Total 62 100% 
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Analysis of Orbital Cross-Sections 

 The cross-sections for each eye orbit were analyzed using MANOVA, cluster analysis, and 

Fisher’s exact tests. The results of each statistical analysis will be discussed in detail below. 

MANOVA Results 

The cross-section grayscale value dataset was subjected to MANOVA to find where along the 

orbital cross section (i.e., the distance from the orbital roof outer table) the greatest variation in grayscale 

values occurred between the visual observation scores and digitally-enhanced CT image scores.  This 

assessment found that significant variation across the visual observation groups in adults existed in the 

5
th
 and 6

th
 grayscale values from the orbital roof outer table.  No significant variation in grayscale values 

along the cross-section was found comparing the digitally-enhanced CT scores in adults.  The results 

among the subadult sample paralleled the adult sample, with notable variation in the 3
rd

 - 5
th
 grayscale 

values from the orbital roof edge between the visual scores and no significant variation in grayscale value 

patterns between the digitally-enhanced image scores.  

 

Figure 10. Location of the 5
th
 grayscale value (estimated) on digital image of sample 31CK9 1AAA 

Cluster Analysis 

 To organize the grayscale values into significant groups, cluster analysis was run using Ward’s 

method in PROC CLUSTER.  Both the adult and subadult samples were run twice, once with all of the 

grayscale values (variables) and again with a trimmed dataset of only the first six variables based on the 

results of the MANOVA test.  Cluster analysis will group observations together based on similarities 

and/or differences between a series of numerical values associated with each observation.  Based on the 

similarities of their grayscale value patterns, each orbit was assigned to a cluster.  However, the cluster 

analysis for both datasets did not meaningfully explain the variation found within this sample. 

 For the adult sample, the number of suggested clusters for the complete dataset was five, and six 

clusters were suggested for the trimmed dataset.  This means that the grayscale values are best 
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described by separating them into five different groups when all of the variables are taken into account.  

When only the first six variables are grouped, six different clusters best explain the variation.  For the 

subadult sample, three clusters were suggested for the complete dataset, and only two clusters best 

described the variation within the trimmed dataset.   

 The PROC SGPLOT procedure produced plots of the canonical coefficients by cluster to visually 

show how the grayscale values group together (Figures 11 and 12).  It is clear that none of the different 

datasets – adult or subadult, trimmed or complete – fit into well-defined clusters.  This may indicate that 

the grayscale values cannot discriminate between different pathological processes, which can be tested 

partially by comparing the clusters to macroscopic and digitally-enhanced CT image scores. 

Comparing Grayscale Clusters to Macroscopic Observation Scores 

Fisher’s exact tests were used to compare the cluster identifications based on the grayscale 

values with the codes derived from visual means.  The Fisher’s exact test found no significant relationship 

between the grayscale clusters and either the visual observation or the digital image codes for adults or 

subadults at the p<0.05 level.  However, there is a significant relationship between the two means of 

visual observation, the macroscopic-based codes and the digital image codes, in the adult samples      

(p= 0.0283) (Tables 8 and 9).  Skulls visually coded as porosity also tended to be scored as having 

porosity using the digital CT images (44% of the sample).  Twenty-percent of the sample was scored 

visually and digitally as having diploic expansion.  However, 18% of the sample was visually coded as 

diploic expansion, but digitally coded as porosity.  For subadults, there were no statistically significant 

patterns seen at the p<0.05 level. 

Table 9. Comparison of CT enhanced and visual observation scores 

 
Visual Scores 

Digitally-Enhanced CT Image Scores 

1 2 3 Total 

0 1 (1.69%) 1 (1.69%) 1 (1.69%) 3 (5.08%) 

1 1 (1.69%) 26 (44.07%) 8 (13.56%) 35 (59.32%) 

2 0 8 (13.56%) 9 (15.25%) 17 (28.81%) 

3 0 1 (1.69%) 3 (5.08%) 4 (6.78%) 

Total 2 (3.39%) 36 (61.02%) 21 (35.59%) 59 (100%) 
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Figure 11. Plots of the canonical coefficients for each cluster in the adult samples (a) complete data set 
(b) trimmed dataset 
 

 

Figure 12. Plots of the canonical coefficients for each cluster in the subadult samples (a) complete data 
set (b) trimmed dataset 

Summary 
 

 Half of the total sample exhibited cribra orbitalia- 42% of adults and 80.5% of subadults- while 

42% of the total sample showed porotic hyperostosis.  Twenty-eight percent of the sample had only cribra 

orbitalia, 22% had only porotic hyperostosis, and 20% exhibited both cribra orbitalia and porotic 

hyperostosis.  There is a statistically significant relationship between the visual and digital observation 

codes, with the majority of the discrepancy between the two observations being visually coded as diploic 

expansion but digitally coded as porosity. 

The results of the grayscale value patterning were less clear, however.  The MANOVA test 

showed that the 5
th
 and 6

th
 grayscale values from the orbital roof for adults and variables 3-5 for subadults 
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were significant with the visual observation codes, while no variables were significantly correlated with the 

digital observations for adults or subadults.  Cluster analysis ran to organize the grayscale values 

together found that five clusters best described the whole adult dataset, while six clusters described the 

trimmed adult dataset.  Three clusters best described the variation found within the subadult grayscale 

values, and two clusters best organizes the trimmed subadult dataset.  None of these clusters can be 

clearly identified via a plot of the canonical coefficients, and the cluster analysis did not meaningfully 

explain the variation found within this sample.  Fisher’s exact test showed no significant relationship 

between the grayscale value clusters and either the visual or the digital observations for the adults and 

subadults.  What these results mean in the context of this study will be discussed in the next chapter. 
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CHAPTER 6: DISCUSSION 

 

 This preliminary study aimed to determine the applicability of computed tomography as a method 

of diagnosing cranial lesions in prehistoric Native American populations.  While there is a significant 

relationship between the visual and the digital observation scores, this study was unable to prove that CT 

scanning images showing the internal structure outweighed simple macroscopic visual observation.  In 

some instances, it was shown that the digital images showed merely porosity rather than the visually 

assessed diploic expansion.  In the majority of cases, however, the two observations were the same.  

Further studies using computed tomography must be conducted in order to determine the accuracy and 

applicability of computed tomography to the diagnosis of cranial lesions, as discussed below. 

Interpretations of the Statistical Analyses 

 The statistical analysis returned some unexpected results.  The statistically significant relationship 

between the visual and digital assessments of the lesions shows there was minimal inter-methodological 

difference, although the positive correlation, or similarity, between the codes was unexpected.  The 

expectation was that the use of computed tomography would show more detail in the orbits than simple 

visual observation, and thus would provide a different diagnosis.   

In some cases, computed tomography did show more detail than simple visual observation. In 

44% of the subsample, both the visual and the digital observations scored as porosity and 20% of the 

subsample had observations using both methods scored as diploic expansion.  The high rate of 

agreement between the scores shows that the CT images are capturing what researchers are seeing 

visually.  However, in 18% of the sample, the lesions were visually coded as diploic expansion, but the 

digital observation showed only porosity.  It is not clear which observational method is picking up the 

correct pathological expression.  This difference between the two observation methods shows that in 

some instances CT images show a different manifestation of the lesions than simple visual observation.  

Thus, computed tomography should be explored further as a viable alternative to simple visual 

assessment. 

 The determination that the most variation in the grayscale values occurred in variables 5 and 6 for 

the visual observations was expected, as they are located in the diplöe space in close proximity to the 
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outer table.  Since diploic expansion affects the internal surface of the outer table first, it would be 

expected that those variables in this area would show the most variation across the sample, and thus 

differentiate between porosity and diploic expansion. 

 Cluster analysis groups together observations differently for the entire set of grayscale values 

versus the trimmed set of grayscale values (using only the first six values).  However, the clusters did not 

explain the variation found within the grayscale values in a meaningful way.  The fact that the visual and 

digitally-enhanced observation scores tended not to cluster together was unexpected.  While some 

clusters did tend to have more of a certain observation than other clusters, almost all of the clusters had 

all observation scores represented.  For example, in the trimmed adult sample, cluster 6 had visual 

scores 0-3 represented, while the 3
rd

 cluster was a much smaller cluster comprised of only codes 1 and 2.  

It is possible that the grayscale values are measuring something in the pathology other than what is 

visually detected and thus would account for the differing values within each cluster. It is possible that the 

subadult sample had fewer clusters than the adult samples due to less overall variation in the grayscale 

values.  A significant percentage (67%) of the subadults had porosity due to cribra orbitalia and 14% 

exhibited diploic expansion based on visual observation. 

 The lack of statistical significance between the grayscale values and the digital observations 

scores was unexpected.  Since the digital observations were based on the CT images, which were 

quantified using the grayscale values, it was expected that the relationship between the observations and 

the grayscale values would be significant.  It is probable that the grayscale values are identifying 

something in the pathology that is not determined by the researcher. 

Possible Etiologies of the Orbital Lesions 

The goal of this study was to determine whether CT scanning could be used to diagnose orbital 

lesions.  Using the results from both the visual and digital observations, conclusions about the most likely 

cause of cribra orbitalia in this population can be drawn.  In addition to using the current study’s findings, 

comparisons with Hutchinson’s (2002) initial analysis will be made.  The main cause of cribra orbitalia in 

adults is vitamin deficiencies, and in subadults the main cause is anemia.  The vitamin deficiencies could 

be a result of intestinal parasites introduced by the adults’ mainly marine diet, as proposed by 

Hutchinson.  
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Of the total population sampled in this study, 67% had either cribra orbitalia, porotic hyperostosis, 

or both.  This sample of skulls with lesions includes 94 adult crania (N=147, 64%) and 29 subadult crania 

(N=36, 81%).   The combination of porotic hyperostosis and cribra orbitalia allows for comparisons to be 

made with Hutchinson’s (2002) previous analysis.  Hutchison found that for the inner and outer coastal 

sites, an average of 49% of the adult crania (N=340) exhibited cribra orbitalia or porotic hyperostosis and 

only 9% (N=98) of subadult crania showed cranial lesions (Hutchinson 2002:98, 206).   

Several possibilities may account for the differences in the rates seen in the two studies.  

Different samples were used in each study. In the current study, only those crania with intact orbits were 

used, regardless of the remaining cranial bones.  However, in Hutchinson’s analysis all crania present 

were used, and therefore those skulls with porotic hyperostosis but a non-intact orbital region were 

included.  Another possibility is inter-observer error between the scoring of minimal porosity.  The current 

study was probably more sensitive to including those orbits with more minute amounts of porosity, 

whereas the previous analysis may have used a higher threshold when scoring porosity.  Additionally, 

subadults may be underrepresented in the current study compared to the previous analysis, which could 

have introduced sampling bias.  

A major difference between the two analyses is the sites used.  Hutchinson separates his 

analysis based on inner and outer coastal sites, while the current analysis does not seek to do so as 

Hollowell is the only inner coastal site used. Hutchinson (2002) included 3 other inner coastal sites 

(Jordans Landing 31BR7, Sans Souci 31BR5, and Dickerson 31BR91) in his analysis.  Exclusion of these 

sites from this study could have introduced some sampling bias, as the inner coastal sites had slightly 

lower overall rates of cribra orbitalia.  The inclusion of Hollowell and the exclusion of the other inner 

coastal sites into the overall dataset for this research may explain the higher rates seen in this study than 

in the previous analysis.    

Hutchinson and colleagues (2007:62) attributed the main cause of porotic hyperostosis and cribra 

orbitalia to parasitic intestinal bleeding from the population’s mainly marine diet.   They based this 

interpretation on two unique patterns seen upon their assessment of the population.  The maize- 

dependent populations (inner coastal sites) had lower rates of orbital lesions than the marine-dependent 

outer coastal sites.  Although the current study did not compare inner and outer coastal sites, this pattern 
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noted by Hutchinson is contrary to the usually high rates of anemia seen in maize-dependent societies.  

Another unique pattern within this population noted by Hutchinson is the lower frequency of lesions seen 

in subadults than adults.  As noted above, cribra orbitalia and porotic hyperostosis are usually interpreted 

as childhood manifestations of iron-deficiency and subadults often have much higher rates of cranial 

lesions than do adults (e.g. Stuart-Macadam 1985).  This unusual pattern led Hutchinson and colleagues 

(2007) to conclude that possibly the outer coastal subadults were given weaning foods different from the 

primary seafood-based diet of adults, therefore decreasing their exposure to intestinal parasites.  The 

combination of the higher rates of lesions in the non-maize-dependent societies and the unusually lower 

subadult rates of lesions suggests that the lesions are not due to iron deficiency anemia.   

As diploic expansion is only caused by anemia, comparisons between the rates of diploic 

expansion versus porosity can also shed some light onto possible etiologies.  Of the total sample initially 

visually assessed, only 13% showed diploic expansion and 37% had porosity.  In the subsample of 

scanned crania, it was found that 40% (N=29) showed diploic expansion (scores 2 and 3) and 55% 

(N=40) showed porosity (score 1) using visual observation.  The results were similar using the digitally-

enhanced CT images, 58% of the orbits had porosity (score 1), while 40% showed diploic expansion 

(score 2).  If we correlate diploic expansion with anemia, it is obvious that more individuals had lesions 

caused by etiologies other than anemia as proposed by Hutchinson.  When broken down by adults and 

subadults, the percentages change.  The visual assessment of adults showed that 59% had porosity 

(score 1) while 36% had diploic expansion (scores 2 and 3).  Thirty-three percent of subadults had 

porosity, and 60% had diploic expansion.  The digital observations for adults showed 61% had porosity 

and 36% exhibited diploic expansion.  The subadults showed 43% had porosity and 57% had diploic 

expansion.  

Based on the above rates of orbital lesions that exhibited diploic expansion versus porosity, it can 

be seen that the majority of lesions present in adults were caused by something other than anemia.  The 

majority of the subadult lesions show diploic expansion rather than porosity, which can be equated with 

anemia rather than vitamin deficiency.  Even though the Algonkians were eating seafood which is high in 

iron content (Sullivan 2005), they are still exhibiting high rates of cribra orbitalia.  One explanation for this 

phenomenon could be the introduction of parasites through their marine diet.  These intestinal parasites 
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could cause nutritional deficiencies and bleeding, which can lead to anemia.  While the lesions take on 

two different appearances of porosity and diploic expansion, it is possible that both are caused by 

parasites introduced by the mainly marine diet of the coastal Algonkians.  Depending on which parasite, 

or parasites, present in an individual, they suffered from either anemia due to intestinal bleeding or 

malnutrition due to the parasite taking nutrients from the body.  The lower rates of porotic hyperostosis in 

subadults than adults noted by Hutchinson was not the pattern seen with the subsample of CT scanned 

crania, rather the subadults had higher frequencies of diploic expansion than the adults. 

Does CT Scanning Work? 

This preliminary study on the use of computed tomography to examine the internal structures of 

the crania was inconclusive.  While in some instances the scans showed only porosity where diploic 

expansion had visually been assumed, it was not proven that CT scanning is a viable alternative to the 

more destructive microscopic analysis.  Without having a sample that has been studied using methods of 

proven accuracy (i.e. thin section analysis), it was difficult to determine whether CT scanning is as 

accurate accuracy rate, and is specific enough to warrant the time and money involved in scanning.  The 

inconclusive results of the non-destructive method shows the need for histological analysis, as it is unsure 

whether the non-destructive methods are as accurate as the destructive thin sectioning analysis.  Further 

testing should be completed to determine the accuracy of computed tomography as it applies to 

paleopathological research.   

The digitally-enhanced CT scan images and regular visual observation seemed to provide similar 

pathology presentations, with the greatest power in correlating porosity versus diploic expansion.  

Significant correspondence between the visual observation scores and the digitally-enhanced CT image 

scores suggests that perhaps the time and money involved in CT scanning may not be more accurate 

than simple macroscopic assessment.  

 In addition, the grayscale values along cross-sections of the orbital roof had little to do with the 

scores the orbit received using either visual or digital assessments.  The lack of correspondence between 

the grayscale value clusters and the scores from both the visual and digital observations indicate that the 

grayscale variation from the edge of the orbital roof into the diplöe is picking up a different presentation of 

the pathology.  It is possible that the grayscale values are measuring something different than the 
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expected density of the bone, and therefore would explain why the values did not group neatly together 

into separate clusters.  In fact, the variations in the internal structure of the bone could more accurately 

represent the pathological changes, which can only be confirmed through comparison with thin-sections 

of the same areas.  Unfortunately, this is not possible using this sample. 

 The separate analyses of adult and subadult samples corrected for any differences in cranial 

thickness present.  However, the subadult samples showed no significant relationships between the 

visual or digital observations and the cluster analysis.  It is likely that subadult crania had less overall 

variation and thus the grayscale values could not be significantly related to the visual or digital 

observations.  A more robust subadult sample could ascertain whether the lack of variation was due to a 

small sample size, or if it has to do with the thickness of the cranial vault. 

Future Research 

 Further testing must be done using computed tomography to determine its applicability to 

paleopathological research.  CT scanning showed some samples with diploic expansion not seen 

macroscopically, and it was not inferior to visual assessment.  This study was meant as a preliminary test 

for this use of computed tomography, and should serve as a basis for future studies. 

 The best way to determine the accuracy of CT scanning as a diagnostic tool is to complete an 

additional study on a sample population where microscopic analysis has already been completed or is 

possible.  As histologic analysis has previously been shown to be a highly accurate method for assessing 

cribra orbitalia (see Schultz 2001), the direct comparison to the proposed new methodology of CT 

scanning would allow for a more thorough assessment of the CT scanning’s accuracy.  The cluster 

analysis based on grayscale values and the visual observations could be compared with the pathology 

identified by the microscopic method to determine which non-invasive technique best reflected the actual 

histological structure of the orbit.  The future study of such a population would allow for the direct 

comparison of visual assessment, histologic, and computed tomography analyses.  

 The future study should also attempt to quantify the CT images in a different form.  As the 

grayscale values that were used for this study were not significantly correlated with either the visual or the 

digital assessment values, perhaps a different quantification method would provide a more accurate 

picture of what the image is showing.  A different software program made for measuring radiopacity 
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specifically would also be helpful.  While the use of Adobe Photoshop was adequate for this preliminary 

study, future studies should use specialized software for any analyses. 

Summary 

This study has attempted to determine the reliability of CT scanning as a method for studying the 

internal bony structures of the crania.  However, further testing is needed before a definitive determination 

can be made on the accuracy of this method.  Comparison with a sample in which histologic analysis can 

be conducted would be ideal to determine the accuracy of computed tomography as a diagnostic tool.  As 

the more traditional methods of diagnosing cribra orbitalia are not always available for use on Native 

American populations, testing new non-destructive methodologies can increase our knowledge of how 

Native American groups lived their lives and adapted to their environment. The reanalysis of samples 

using computed tomography can increase our understanding of Native American populations and what 

malnutrition and infectious diseases they were susceptible to by determining not only how many people 

had cranial lesions, but what caused those lesions.    
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CHAPTER 7: CONCLUSION 

 

 This study aimed to reassess the rates of cribra orbitalia in a coastal Algonkian population using 

computed tomography.  Cribra orbitalia is most often attributed to anemia, but has many other possible 

causes such as vitamin deficiencies, trauma, and inflammation in the orbital region.  Invasive methods, 

such as thin-sectioning, have previously been proven quite accurate in diagnosing cribra orbitalia.  

However, lack of permission by Indian Affairs Councils has limited the use of histological analysis of 

Native American collections.  The methods tested in this study attempted to reveal the internal structures 

of the crania without the use of destructive analysis by using computed tomography.  CT scanning has 

only recently begun to be used in a forensic and bioarchaeological context (see Exner et al. 2004, Telmon 

et al. 2005, Moskovitch et al. 2010 for examples).  The use of computed tomography in this study allowed 

both the reanalysis of cribra orbitalia rates and further determination of the applicability of this 

methodology as a diagnostic tool in paleopathology. 

 Using five coastal North Carolina Algonkian sites (N=183) dating to the Late Woodland period, it 

was found that about half of the crania exhibited cribra orbitalia.  After the initial visual assessment of the 

total sample, 50 crania were chosen for further analysis using computed tomography.  Of this subsample, 

it was found that 55% had porosity, 40% exhibited diploic expansion, and 5% had either no pathology or 

pathology due to postmortem erosion.  Using the CT images, the rates are similar: 40% still exhibited 

diploic expansion, while 58% had porosity, and only 2% showed no pathology.  While most of the visual 

and digital observation scores tended to equate with each other, 18% of the sample was visually scored 

as having diploic expansion, which was not evident on the CT image that showed only porosity through 

the outer table.  This discrepancy shows that in some instances CT images allow researchers a more 

accurate picture of the internal structure of the orbit than can be inferred from visual observation. 

Using the Andromeda filter in Adobe Photoshop, the linear cross-sections of the orbital roof were 

selected on the CT scan images to collect grayscale values from the orbital roof edge into the internal 

structures.  These grayscales values, representing radiopacity, were hypothesized to represent 

differences in the cortical bone structure and diploic space due to different pathological processes   

Variation in these grayscale values were compared to between the codes derived from the two 
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observation techniques to see if any significant variation existed at certain points along the cross section 

(and thus at different points of the cortical bone and the internal diploic structure)  The 5
th
 and 6

th 

grayscale values from the orbital roof had significant variation across the visual observation codes.  

Subadults exhibited a similar pattern, with the 3
rd

-5
th 

values having the most variation with the visual 

observation.  However, no significant variation existed between the digital observations and the grayscale 

values.   The Fisher’s exact test found no significant relationship between the grayscale pattern clusters, 

which presumably represent different pathological processes, and either set of observation scores at the 

p<0.05 level.  However, among the adult samples a significant relationship exists between the visual and 

digitally enhanced observations.  

 The goal of this study was to determine whether CT scanning was a viable alternative method to 

destructive analysis in diagnosing orbital lesions.  While the results do suggest in some instances CT 

scans revealed diploic expansion not evident visually, further testing must be done in order to definitively 

determine whether the accuracy of computed tomography is greater than visual analysis alone.  By using 

a sample that had previously been analyzed, comparisons between the previous analysis and the current 

visual and CT analysis could be made. 

 The previous study (Hutchinson et al. 2007:62) proposed that parasitic intestinal bleeding from 

the population’s mainly marine diet was responsible for the cranial lesions.  These intestinal parasites 

could explain both the anemia related lesions (diploic expansion), due to the loss of blood caused by the 

parasites, and also the vitamin deficiency related lesions (porosity).  If we directly correlate diploic 

expansion with anemia, as previous researchers have asserted, then only 13% of the entire sample 

suffered from anemia (although the fact that not all individuals with anemia exhibit cranial lesions must be 

kept in mind, as the actual rate of anemia in this population may be much higher).  Thirty-seven percent 

of the total sample had porosity in the orbits, which would suggest a cause other than anemia, such as 

vitamin deficiencies.  Even when the rates of cribra orbitalia in the subsample are taken into account, 

more individuals show porosity (56%) than show diploic expansion (40%), further suggesting that the 

cranial lesions in this population cannot simply be explained by anemia alone.  The more detailed current 

study found different demographic patterns than those noted by Hutchinson.  Previously the subadults 

had lower overall rates of porotic hyperostosis, however, with the more comprehensive analysis it was 
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determined that the subadults had much higher rates of diploic expansion than the adults.  This alters the 

interpretation of subadult diet in these Algonkian populations. 

 Continued testing of computed tomography will allow researchers to determine the applicability of 

CT scanning as a methodology in paleopathological diagnosis.  By testing a population where histological 

examination is also possible, direct comparisons can be made between visual, CT scanning, and 

histological analyses.  A more robust subadult sample size is necessary and will allow for further 

statistical comparisons to determine whether the images can pick up enough detail in the thin outer table 

present in subadults to be a successful diagnostic tool.  Software designed specifically for quantifying 

radiopacity is necessary in future research, as this may more accurately measure the density of the orbital 

bone than the Andromeda filter did.  It is possible that the inconclusive results seen with the digital 

images are due to the grayscale values measuring a different aspect of the pathology than intended. 

 By reassessing the rates of cribra orbitalia using new, and possibly more accurate, 

methodologies a better picture of how the prehistoric people lived their lives in North Carolina can be 

discovered.  The better understanding of what causes their cranial lesions shows not only their overall 

health and disease patterns, but also their overall quality of life and how the Algonkian people adapted to 

their marine environment.  Due to NAGRPA restrictions, the more traditional histological methods are not 

used to study Native Americans, and therefore not as much is known about them as other populations 

around the world.  By applying a new non-destructive method for analyzing their health patterns, a more 

holistic picture of who the Algonkians were and how they lived their lives along the North Carolina coast 

can be seen. 
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APPENDIX A: DATA COLLECTION FORM 

Site: _______________  Burial: ______ 
Skull: _________   Box: ______  Initials: _______  Date: 
___________ 

         Age: ______________ 
       Sex: ______________ 
       Cribra: ____________ 
       Porotic: ___________ 
       

         

         Age (Adult): ____________________ 
 

Sex: ________________ 
   Vault Midlambdoid   

 
Nuchal Crest   

   

 
Lambda   

 
Mastoid Process   

   

 
Obelion   

 
Sup.orb. Margin   

   

 
Ant Sagittal   

 
Glabella   

   

 
Bregma   

 
Mental Eminence   

   Lat-Ant Midcoronal   
      

 
Pterion   

      

 
Sphenofrontal   

 
Cribra Orbitalia: present? ________ 

  

 
Inf Sphenotemporal   

 
Degree   

   

 
Sup Sphenotemporal   

 
Activity   

   

     
  

   Vault Score: ________ 
  

Porotic Hyperostosis: Present? __________ 
 

 
Age Range: __________________ ______ frontal ______ parietal ______ temp _____ occipital 

Lat-Ant Score: ________ 
  

Degree   
   

 
Age Range: __________________ Location   

   

    
Activity   

   Age (Sub-Adult): _______________ 
      Suture Closure 

       

 

Spheno-occipital 
synchondrosis     

    

 
Occipital-lat to squama     

    

 
Occipital-basilar to lat     

    Tooth eruption: ____________________ 
      Post-cranial fusion: _________________ 
 

Misc. Notes         

    
  

    

    
Fragmentary? _____________ 
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APPENDIX B: INITIAL MACROSCOPIC DATA 

          
Cribra 

Porotic Hyperostosis 

            
  affected 

Site Bur # Box Sample Scan CO PH sex SYMO age deg Activity deg loc activity fro tem par occ 

31CK9 1 10 A   no yes F M 30-40 0 none 1 2 heal x   x x 

  
6 AAA x yes no sub S N/O 3 active 0 0 none         

  
6 B    yes no sub S N/O 2 active 0 0 none         

  
8 BB   no yes M M 35-50 0 none 1 2 mixed x   x x 

  
4 BBB x yes no sub S 2--3 3 active 0 0 none         

  
alone C   yes no sub S 9--15 1 healing 0 0 none         

  
2 DDD   no yes F M 30-40 0 none 1 2 heal x   x x 

  
7 E  x yes yes F Y 20-35 3 healed 2 4 heal x   x x 

  
3 EE   no no ind M 35-50 0 none 0 0 none         

  
10 FF   no no ind M 34-40 0 none 0 0 none         

  
10 G   yes yes M M 35-45 1 healed 1 5 healed x   x x 

  
9 GG x yes no ind Y 30-35 3 healed 0 0 none         

  
  GG2 (subadult)   yes N/O sub S N/O 2 active     N/O         

  
2 H   yes no F Y 30 2 active 0 0 none         

  
4 I   yes no ind y 20-30 1 healed 0 0 none         

  
3 J   no yes M M 35-45 0 none 1 2 active x   x x 

  
7 K x yes yes sub s 9--13 2 healed 2 2 mixed       x 

  
alone KK   no yes M M 35-45 0 none 1 2 heal x   x x 

  
4 LL x yes yes ind Y 20-40 3 healed 1 5 heal x   x x 

  
5 LL   yes yes sub S N/O 1 active 3 2 heal   x     

  
3 M x yes yes M M 45 3 heal 2 2 heal x   x x 

  
4 N x no no F M 30-40 0 none 0 0 none         

  
2 O    no yes ind M 30-50 0 none 1 2 heal x   x x 

  
1 OO   yes yes ind M 30-40 2 healed 1 4 heal x   x x 

  
2 P   no no F M 40-60 0 none 0 0 none         

  
10 PP x yes yes F M 30-40 3 healed 2 2 heal x   x x 
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5 QQ   no no sub S N/O 0 none 0 0 none         

  
1 R   yes yes ind M 30-40 2 healed 1 4,5 active x   x x 

  
7 RR x yes yes M M 35-55 2 healed 1 5 mixed x   x x 

  
7 S    no no sub S 4--8 0 none 0 0 none         

  
3 T   no yes M M 35-55 0 none 2 2 heal x x x x 

  
5 TT X yes yes sub S N/O 4 active 4 3 active     x x 

  
4 U   no yes M M 35-55 0 none 2 5 active x x x x 

  
1 UU x yes yes M M 30-40 2 healed 2 4 heal x   x x 

  
4 V    no yes F M 35-45 0 none 1 2 heal x   x   

  
9 VV   no yes M M 35-55 0 none 2 2 active x   x x 

  
7 W x yes no sub S 9--13 2 active 0 0 none         

  
10 X x yes no F S 9--13 1 healed 0 0 none         

  
5 Y   yes yes F M 30-40 1 healed 2 4 mix x   x x 

  
alone Z   yes yes ind M 30-40 2 healing 1 2 heal x   x   

  3 11 only individual   no yes F Y 30-35 0 none 2 2 heal x   x x 

 
5 14 B x yes yes ind M 30-45 2 healed 1 2 heal x   x   

  
14 C   no no ind M 35-40 0 none 0 0 none         

  
14 D x yes no F M 30-40 2 healed 0 0 none         

  
14 E x yes yes ind M 35-50 3 healed 1 2 heal x   x x 

  
13 F x yes no F Y 20-40 2 healed 0 0 none         

  
12 G   no yes ind Y 25-35 0 none 2 2 heal x   x x 

  
14 H   no no F Y 30-35 0 none 0 0 none         

  
14 J   yes no sub S N/O 2 active 0 0 none         

  
12 K x yes no sub S N/O 2 active 0 0 none         

  
12 N x yes yes ind M 30-40 2 heal 3 2 heal x   x x 

  
14 S x yes no ind M 35-40 2 healed 0 0 none         

  
14 U/V OLDER   no n/o ind A N/O 0 none     N/O         

  
14 U/V younger   yes no sub S N/O 2 active 0 0 none         

  
13 X   no no F M 30-40 0 none 0 0 none         

 
  14  Unknown   no no F M 35-40 0 none 0 0 none         

  6 15 bag (just orbits)   yes no sub S N/O 1 active 0 0 none         
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15 bag (w/arrows)   yes yes ind Y 25-35 1 heal 2 3 heal x     x 

  
15 orbits only x yes no ind M 30-40 3 heal 0 0 none         

  7 18 A   no yes M M 35-45 0 none 1 2 heal x   x x 

  
19 AA  x yes no sub S 8--12 3 active 0 0 none         

  
18 B   no yes M M 30-45 0 none 3 5 heal x   x x 

  
19 BB    yes no sub S N/O 2 active 0 0 none         

  
18 C   no yes ind M 30-45 0 none 1 2 heal x   x   

  
19 CC   no no F M 30-40 0 none 0 0 none         

  
18 D   no no F Y 30-35 0 none 0 0 none         

  
17 E   no no F M 30-40 0 none 0 0 none         

  
17 G   no no M M 35-45 0 none 0 0 none         

  
17 I   no yes F M 35-45 0 none 1 2 heal x   x x 

  
20 J   no no M M 40-50 0 none 0 0 none         

  
20 K   no no F M 35-45 0 none 0 0 none         

  
20 L x yes yes M M 30-45 3 mix 1 2 heal x   x x 

  
16 M   no yes ind Y 25-35 0 none 3 2 heal x   x x 

  
16 N   no no F M 35-45 0 none 0 0 none         

  
16 O   no no F M 30-40 0 none 0 0 none         

  
16 P   no yes ind M 30-40 0 none 1 2 heal x   x   

  
17 Q    no yes M Y 25-35 0 none 2 5 heal x   x x 

  
17 S   no no M M 30-40 0 none 0 0 none         

  
4 U   no yes M M 35-50 0 none 1 2 heal x   x x 

  
4 V   no no F M 30-40 0 none 0 0 none         

  
19 W x no no F M 30-40 0 none 0 0 none         

  
17 Y   no yes ind M 30-40 0 none 1 2 heal x   x   

  
19 Z    no no F M 35-40 0 none 0 0 none         

  8 21 A x yes no F M 30-40 3 active 0 0 none         

  17 shelf R   no yes F Y 20-40 0 none 1 2 heal x   x x 

31CK22 2 28 5   no yes F Y 15-25 0 none 1 2 Heal X       

  
28 5a x yes no sub S 9--13 2 active 0 0 none         

  
28 6   no no F M 35-45 0 none 0 0 none         
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26 7 x no no F M 40-50 0 none 0 0 none         

  
30 8   no no F A N/O 0 none 0 0 none         

  
28 10   no no F M 30-40 0 none 0 0 none         

  
30 12   no no sub S 8--12 0 none 0 0 none         

  
22 13   no no F M 30-40 0 none 0 0 none         

  
26 15 x yes no F M 30-40 2 active 0 0 none         

  
26 20   yes no F M 30-40 1 active 0 0 none         

  
24 21 x yes yes F M 30-40 2 heal 2 5 heal     x x 

  
29 22   yes no sub S N/O 2 active 0 0 none         

  
26 24 x no no ind M 35-45 0 none 0 0 none         

  
30 25   no no sub S N/O 0 none 0 0 none         

  
30 27 x yes yes sub S N /O 2 active 1 2 active x   x x 

  
30 28   no no sub S 1--2 0 none 0 0 none         

  
26 29 x no no F M 30-40 0 none 0 0 none         

  
  30   yes N/O sub S N/O 2 active     N/O         

  
  31   no N/O sub S N/O 0 none     N/O         

  
26 34 x yes no sub S 4--8 4 active 0 0 none         

  
31 34   yes no sub S N/O 1 active 0 0 none         

  
26 35   yes N/O sub S N/O 3 active     N/O         

  
25 36   no no F M 30-40 0 none 0 0 none         

  
31 38 x yes no F Y 15-20 1 active 0 0 none         

  
31 40   no no F O 40-60 0 none 0 0 none         

  
30 41   no no sub S 0-2 0 none 0 0 none         

  
24 no number x yes yes M M 30-40 3 active 1 2 heal         

  
31 no number   no no ind M 35-45 0 none 0 0 none         

 
bank 29 Ind 1   no no IND A N/O 0 none     N/O         

 
bank 30 F-28   no yes ind M 30-40 0 none 1 2 heal     x   

 
bank 27 F-565 x yes no sub S N/O 4 active 0 0 none         

 
beach 30 F-19   no no ind M 30-40 0 none 0 0 none         

 
beach 30 F-19 (lighter) x yes no ind M 30-40 1 heal 0 0 none         

  
  beach, F-15   yes N/O SUB S N/O 2 active     N/O         
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beach 30 F-3   no no M M 35-45 0 none 0 0 none         

 
beach 32 hb-21 x yes yes ind M 30-40 2 heal 0 0 none       x 

 
beach 23 F346- 24- sunbleached x yes no IND A N/O 2 active 0 0 none         

 
beach 23 F346- 24- darker x yes no F A N /O 2 heal 0 0 none         

 
beach 30 no # (darker)   no yes ind A N/O 0 none 2 2 mix x       

 
beach 30 no # (lighter)   no no F M 30-40 0 none 0 0 none         

31 CK 
24 1 33 7 x yes no ind Y 25-35 3 active 0 0 none         

  
33 24 x yes yes M M 30-40 2 mixed 1 1 heal x   x   

  
  25   yes NO IND A N/O 0 none 0 0 none         

31 DR 
38 1 36 1   no yes M M 30-45 0 none 1 5 heal x   x x 

  
 

34 B x yes no F Y 25-35 3 active 0 0 none         

  
34 C   no yes M Y 20-30 0 none 2 5 heal x   x x 

  
36 D   no yes ind Y 25-35 0 none 2 2 heal x   x x 

  
35 F   yes yes F M 30-40 1 heal 1 2 heal x   x x 

  
35 G x yes yes F Y   2 active 2 5 heal x   x x 

  
36 K   yes no M M 35-45 1 heal 0 0 heal         

  
34 L   yes yes M M 35-45 2 active 2 2 heal x   x x 

  
36 Bag 5-lightest   yes no F A N/O 2 active     N/O         

  
36 Bag 5- lighter (right orbit)   yes N/O M A N/O 2 heal     N/O         

  
36 

Bag 5- right orbit, med 
color   no N/O F A N/O 0 none     N/O         

  
36 Bag 5-darkest, small   no N/O F A N/O 3 Heal     N/O         

  
36 Bag 5-right orbit w/sinus   no N/O M A N/O 0 none     N/O         

  
36 

Bag 5-small, nasal, 
lighter   no N/O F A N/O 0 none     N/O         

  
36 

Bag 5-med color, 
glabella   no N/O ind A N/O 0 none     N/O         

  
34 bag 6- broken halves   yes no F M 35-45 3 active 0 0 none         

  
34 bag 6-bigger both orbits   yes no ind M 30-40 2 active 0 0 none         

  
34 bag-darkest   yes yes ind M 30-40 2 mix 2 5 heal x       

  
37 Bag of Right orbits   no N/O M A N/O 0 none     N/O         

  
37 Bag of Right orbits   yes N/O M A N/O 2 active     N/O         

  
37 Bag of Right orbits   no N/O M A N/O 0 none     N/O         
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37 Bag of Right orbits   yes N/O M A N/O 1 heal     N/O         

  
37 Bag of Right orbits   no N/O F A N/O 0 none     N/O         

  
37 Bag of Right orbits   yes N/O F A N/O 1 heal     N/O         

  
37 Bag of Right orbits   yes N/O F A N/O 1 heal     N/O         

  
37 Bag of Right orbits   yes N/O M A N/O 2 heal     N/O         

  
37 Bag of Left orbits   no N/O ind A N/O 0 none     N/O         

  
37 Bag of Left orbits   no N/O ind A N/O 0 none     N/O         

  
37 Bag of Left orbits   yes N/O M A N/O 2 heal     N/O         

  
37 Bag of Left orbits   yes N/O M A N/O 1 heal     N/O         

  
37 Bag of Left orbits   yes N/O ind A N/O 1 active     N/O         

  
37 Bag of Left orbits   yes N/O ind A N/O 3 active     N/O         

  
37 Bag of Left orbits   no N/O M A N/O 0 none     N/O         

  
37 Bag of Left orbits   yes N/O F A N/O 3 active     N/O         

  
37 Bag of Left orbits   no N/O ind A N/O 0 none     N/O         

31CO5 1 40 2   no yes ind M 35-45 0 none 2 2 heal x   x   

  
41 3   yes no F Y 25-35 2 heal 0 0 none         

  
 

43 A (group B) x yes no sub S 8--12 4 active 0 0 none         

  
43 A (group G)   yes no sub S 5--9 2 active 0 0 none         

  
47 B, ind 2 (group B)   no no ind M 30-40 0 none 0 0 none         

  
47 E, ind 1 (group B)   no no F Y 18-25 0 none 0 0 none         

  
45  G (group A) x no no F M 40-50 0 none 0 0 none         

  
41 J   yes yes F Y 20-3- 1 active 1 2 active x   x   

  
48 K (group D) x yes yes F M 30-40 1 active 2 2 heal         

  
44 O (Group E)   no no F Y 25-35 0 none 0 0 none         

  
46 Q, ind 1 (Group E) x yes no F M 35-50 1 heal 0 0 none         

  
  R   no yes ind M 30-40 0 none 1 2 heal x   x x 

  
40 U (Group F)   no yes ind M 30-45 0 none 1 2 heal     x   

  
46 X (Group F)   no no ind M 35-45 0 none 0 0 none         

  
  Y (Group G)   yes no sub S 9--15 1 active 0 0 none         

  
41 Z    no yes ind M 30-40 0 none 1 2 heal x   x   

  
46 AA (Group G)   yes yes F Y 15-25 2 active 1 2 heal         
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  CC   yes N/O IND A N/O 1 heal     N/O         

  
  no number   yes N/O IND A N/O 1 heal     N/O         

  
  burial 4, group G   yes N/O IND S N/O 2 active     N/O         

  
  group G   no N/O IND A N/O 0 none     N/O         
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