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Electrospray ionization time of flight mass spectrometry (ESI-ToF-MS) is a powerful 

characterization technique for large nonvolatile compounds, but has found limited applicability 

in the synthetic polymer field. Two factors currently limit the utility of ESI-ToF-MS for 

synthetic polymer characterization: 1) Electrospray ionization often results in multiply charged 

species for each component in the sample.  Synthetic polymers contain a distribution of many 

compounds with close, uniformly spaced masses. The presence of multiple m/z peaks for each 

mass typically results in data that is complicated and becomes increasingly complicated as the 

average molar mass of the sample increases. 2) Electrospray ionization is best suited for polar, 

easily ionized species dissolved in polar solvents. The vast majority of synthetic polymers are 

relatively non-polar, do not ionize easily and are not soluble in the polar solvents most often used 

for ESI. By adding easily ionizable, surface active quaternary ammonium salts that associate 

with polymer molecules during ionization, we have made significant strides in overcoming both 

of these limitations.  By using cetyltrimethylammonium bromide (CTAB) as an additive,  we 

have been able to produce ESI-MS spectra with only singly charged charge states for the entire 



 

 

m/z range observable by our instrument (m/z = 0 – 20,000).  Data will be presented for 

poly(methyl methacrylate) and polystyrene samples.  Weight averaged molecular weight (Mw), 

number averaged molecular weight (Mn) and polydispersity (PD) calculations were all in good 

agreement with comparative analysis using Gel Permeation Chromatography (GPC) and Gel 

Permeation Chromatography – Multi-Angle Light Scattering (GPC-MALS).  Further, for some 

samples, multiple distributions were identified corresponding to different end groups 

highlighting the utility of this approach.   
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Chapter 1 Introduction 

1.1 Overview 

Synthetic polymers are commonly synthesized with addition or condensation reactions that 

result in oligomer chains of different lengths, giving rise to a molecular weight distribution. The 

molecular weight distribution inherent in all synthetic polymers combined with the charge state 

distribution, produced by electrospray ionization, results in very complex mass spectrum.  

Synthetic polymers are among one of the most useful molecules in the world, and 

successful development of a method to produce single charge state mass spectra of synthetic 

polymers by Electrospray Ionization Mass Spectrometry would greatly enhance future 

charicterization of synthetic polymer based products. 

1.2 Synthetic Polymers 

1.2.1 Introduction to Synthetic polymers 

Since the development of synthetic polymers in the 19
th

 century scientists have found 

countless uses for synthetic polymers. Over the last two centuries polymer chemists have seen 

synthetic polymers become one of the most widely used molecules in the world.  

The majority of synthetic polymers are typically produced from either addition or 

condensation reactions (chain growth or step growth). When synthetic polymers are synthesized 

by chain growth polymerization the end groups are determined by the initiation and termination 

steps. Figure 1a is an example of chain growth polymerization for the synthesis of PMMA. The 

end groups of synthetic polymers synthesized by step growth polymerization are determined by 
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the stoichiometric ratio of the reactants. Step growth polymerization is shown in Figure 1b for 

PET. 

 

Figure 1: a) Chain growth polymerization reaction for the synthesis of PMMA. b) Step growth 

polymerization reaction for the synthesis of PET. 

Once the reaction has started all the polymer chains grow at different rates. Reaction rates 

of each polymer chain vary based on the size/mobility of the polymer in solution and also on the 

availability of the unreacted monomer near each chain. Upon termination of the reaction the 

synthesized synthetic polymer sample will contain a distribution of polymer chain lengths. The 

chain length distribution makes synthetic polymers polydisperse. Samples that are polydisperse 

contain many molecules that are identical in all ways except for molecular weight.  Figure 2 is a 

graphical depiction of how the molecular weight distribution of a synthetic polymer might 
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appear. The molecular weight difference between each adjacent peak is equal to the molecular 

weight of the monomer. 

 

The polydispersity of synthetic polymers makes molecular weight characterization no 

trivial task. Because there is a distribution of chain length, molecular weights are reported as 

averages. Calculation of number average molecular weight (Mn), weight averaged molecular 

weight (Mw) and polydispersity index (PDI) are the most common way to report molecular 

weight values for synthetic polymers.  

The Mn can be calculated by Equation 1, and is biased toward the lower molecular 

weight polymer chains. Since the Mn is biased toward the lower molecular weight range of the 

distribution it is used to describe the chemical properties of synthetic polymers. The Mw on the 

Figure 2: Graphical depiction of the polydispersity present in synthetic polymers. 

Polymer Mass Distribution 
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other hand is biased to larger sized polymer chains and can be calculated by Equation 2. Mw is 

used to describe the physical properties of synthetic polymers because the higher molecular 

weight polymer chains are primarily responsible for the physical properties of the synthetic 

polymer, such as tensile strength and elasticity. The polydispersity index is calculated by 

Equation 3 and is used to describe the width of the molecular weight distribution of synthetic 

polymers. [1] 

 

𝐌 =
∑   𝐌  

∑    
    Equation 1: Number Averaged Molecular Weight 

 

𝐌 =
∑   𝐌 

 
 

∑   𝐌  
   Equation 2: Weight Averaged Molecular Weight 

 

𝐏𝐃𝐈 =
𝐌 

𝐌 
    Equation 3: Polydispersity Index 

 

1.2.2 Techniques for Characterizing Synthetic Polymers 

Completely characterizing synthetic polymers is a difficult task. Characterization of the 

chemical and physical properties of synthetic polymers is important because it provides insight 

into how the synthetic polymer can be used.  

Prior to the development of electrospray ionization and matrix assisted laser 

desorption/ionization, mass spectrometry instruments were impractical for large synthetic 

polymer systems. [2] Scientists characterized synthetic polymers primarily with nuclear 
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magnetic resonance (NMR) and gel permeation chromatography multiangle light scattering 

(GPC/MALS).  

With NMR, end group and chemical composition can be characterized. However, once 

the polymer chains reach a certain length the ability for end group determination by NMR 

becomes difficult because the signal intensity of the end groups is too low. One unique strength 

of NMR is the ability to determine the stereochemistry of synthetic polymers. [3] 

Gel permeation chromatography (GPC) or size exclusion chromatography (SEC) is a 

chromatographic separation technique that separates molecules based on size. As shown in  

Figure 3  larger molecules have shorter 

path lengths and therefore come through 

the column faster than smaller 

molecules. Once the sample is separated 

and eluted from the column, detection 

occurs at the multiangle light scattering 

detector. GPC systems are incredibly 

powerful instruments for determining the 

number average molecular weight, 

weight average molecular weight and 

polydispersity index. However, while the characterization of molecular weight and molecular 

weight distribution is valuable GPC instruments are not capable of identifying end groups or 

determining chemical composition. 

Figure 3: Separation of large and small molecules in 

the GPC column. 
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With the development of MALDI and ESI, mass spectrometry became a powerful 

characterization technique that could reveal a great deal of important information about 

macromolecules. The true power of MALDI and ESI lies in the ability to create gas phase ions 

from non-volatile analytes. 

MALDI-MS of synthetic polymers has been shown to yield valuable characterization 

data. [4, 5] Using MALDI as the ionization source for mass spectrometry of synthetic polymers 

has the advantage of singly charging all of the analytes in the sample. There are a couple 

downfalls to using MALDI to characterize synthetic polymers. (Discussed further in 1.3.4.1) 

ESI-MS, while not used as commonly as NMR or GPC [6] has had success when 

studying low molecular weight synthetic polymers. The electrospray source is capable of 

ionizing any size synthetic polymer with little to no fragmentation but complicated mass spectra 

make characterization of large synthetic polymers difficult. The two issues that make analyzing 

synthetic polymers by ESI-MS difficult are multiple charging and solvent limitations. 

Successful characterization of synthetic polymers by coupling instruments together has 

been reported in the literature. [7, 8] Coupling of instruments is not an uncommon technique for 

acquiring better data but it is time consuming and sometimes expensive. 

1.3 Mass Spectrometry 

1.3.1 Introduction 

Mass Spectrometry is commonly over simplified and just assumed to output molecular 

weight values for samples. In reality the data outputted from mass spectrometers is in units of 

mass over charge or m/z (m = mass and z = charge). Scheme 1 shows the general flow of all 
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mass spectrometers. First molecules are charged in the ionization source, then the ions move 

through the mass analyzer where they are separated based on their mass to charge ratio (m/z) and 

lastly the ions are detected and info is output to a mass spectrum. 

 

Scheme 1: Three main components of all mass spectrometers. 

1.3.2 Ionization Source 

In the ionization source analyte molecules are charged. There are many different types of 

ionization sources but they can all be broken down into two categories, hard and soft. Hard and 

soft ionization sources are distinguished by the amount of fragmentation that occurs during 

ionization. Hard sources create many fragment ions while soft sources cause little to no 

fragmentation. Electron ionization (EI) is the most widely used hard ionization source; many soft 

ionization sources exist: ESI, MALDI, Chemical Ionization (CI) and a few others. The choice of 

ionization source is largely dependent on the type of molecules that will be studied. 

1.3.3 Mass Analyzer 

Choice of mass analyzer for a mass spectrometer is also a decision that should be made 

based partially on the mass range of analytes that need to be analyzed. There are many mass 

analyzers commercially available and all have a specific mass to charge range. For example 

quadrupoles and quadrupole ion traps (QIT) have m/z ranges between 0 and 5,000. However, 

this does not mean that molecules with a molecular weight greater than 5,000 g/mol cannot be 

analyzed in a quadrupole or QIT. (An 8,000 g/mol molecule with a charge of +2 will have a mass 
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to charge ratio equal to 4,001 m/z) The best mass analyzer for high molecular weight molecules 

where multiple charging must be limited (i.e. synthetic polymers) is time of flight (ToF). The 

time of flight mass analyzer has a theoretically unlimited m/z range. 

1.3.4  MALDI of Synthetic Polymers 

Currently the best mass spectrometry instrument for studying synthetic polymers is 

MALDI-MS. MALDI produces only singly charged ions and as a result generates mass spectra 

that are much less complex than ESI. MALDI has successfully been used to characterize 

synthetic polymers and has also been used to determine the mechanisms of some polymer 

synthesis reactions. [4-6, 9-11]  

Even though MALDI is currently considered to be a better ionization source than ESI for 

mass spectrometry of synthetic polymers, MALDI still has a issues that make analysis of 

synthetic polymers tricky. The major difficulty in using MALDI as the ionization source for 

synthetic polymers is sample preparation. Preparing a homogenous cocrystallized sample from 

matrix molecules and synthetic polymers is difficult in part because of solvent compatibility 

issues between the polymer and matrix molecules. There has been some success in choosing 

matrix molecules that are compatible with synthetic polymers and some methods designed to 

allow for creation of almost homogenous solids. [6] However, it is our belief that ESI-MS will be 

better suited for synthetic polymer analysis than MALDI-MS if multiple charging can be 

controlled. 

1.3.5 Electrospray Ionization 

1.3.5.1 Introduction  
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Understanding how electrospray ionization, shown in Figure 4, works is very important 

when trying to develop a method for producing clean, easy to interpret mass spectra for synthetic 

polymers. Analyte is initially injected into the capillary in a dilute solution (1-10μM), a large 

potential (1-5kV) is applied to the capillary causing buildup of charge at the capillary tip. 

Charged droplets are sprayed from the tip of the capillary once charge repulsion exceeds the 

surface tension of the solvent at the Taylor Cone. Charged droplets are then pushed/pulled 

toward the entrance of the mass analyzer, undergoing solvent evaporation and droplet fission 

until gas phase ions are produced. There are two different mechanisms that explain how charged 

droplets become gas phase ions, Charge Residue Mechanism (CRM) and Ion Evaporation Model 

(IEM). It is possible to form cationic and anionic gas phase ions. The mode is typically chosen 

based on whether the analyte of a study is more likely to become positively or negatively 

charged. [12] 

Figure 4: Illustration of electrospray ionization mechanism. 
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Table 1: Source Parameters 

1.3.5.2 Source and Parameters 

Knowing how the electrospray ionization source is affected by changing the source 

parameters is very important. Multiple charging, fragmentation, clustering, and aggregation are 

all factors that can be minimized/maximized by adjusting source parameters. Table 1 shows all 

of the important source parameters and there range of values.  

 

Knowing how adjusting the source parameters will affect the ionization of analyte 

molecules is crucial for development of a method for electrospray ionization of synthetic 

polymers. Figure 5 is provided to show where each of the parameters is applied in the source. 

The first source parameter is the Capillary Voltage, for positive mode electrospray 

capillary voltages typically range from 2500V to 3000V. It is vital that this parameter be 

optimized or an unstable Taylor cone may be produced resulting in poor ionization efficiency.  



11 

 

 

Figure 5: Electrospray ionization source diagram showing the location where all source 

parameters are applied. 

The sample cone voltage gives energy to the analyte to accelerate it into the mass 

analyzer. The sample cone voltage is commonly adjusted based on the molecular weight of the 

analyte. For low molecular weight samples the sample cone voltage is typically between 30-50V, 

but as molecular weight increases the sample cone voltage must also be increased. Large 

molecules need more of an energy boost to get sufficient kinetic energy than do small molecules. 

[13] If the sample cone voltage is too high, fragmentation will occur extensively.  

The extraction cone voltage is the next source parameter and has an operating range from 

0-5V. High voltages can lead to fragmentation of low molecular weight ions in the source.  

Source temperature is solvent dependent, for most solvents source temperature is 

optimized between 80-100˚C. The source temperature needs to be increased when higher flow 

rates are used or for solvent systems containing higher percentages of water. 



12 

 

The desolvation gas is flowed past the sprayer as analyte is sprayed. Increasing the 

desolvation gas temperature according to the literature should result in higher charge states due 

to faster evaporation of the solvents. [14] Optimization of the desolvation gas temperature 

however contradicted reported research, increasing the desolvation gas temperature decreased 

amount of double charging. [15] 

Cone gas flow rate is used to prevent ion adducts from forming and also to minimize 

solvent clustering. Turning the cone gas flow rate off increases the timescale of low surface 

charge density droplets, resulting in lower overall charge states.  

The last source parameter to consider is the sample flow rate. Literature reported results 

showed that increased sample flow rate resulted in the creation of droplets with decreased 

surface charge density, resulting in an overall decrease in multiple charging. [16]  

1.3.5.3 Gas Phase Ions 

Once droplets are sprayed from the Taylor Cone there are two mechanisms that explain 

how gas phase ions of analyte molecules are produced, charge residue mechanism (CRM) [17] 

and ion evaporation model (IEM). [18] Much debate about which mechanism is correct has 

occurred since the invention of ESI and scientists have decided that the mechanism is dependent 

on the molecular weight of the analyte. 
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Figure 6: Charged Residue Mechanism 

Charge residue mechanism, shown in Figure 6, is one of the two mechanisms that are 

believed to occur after charged droplets are sprayed from the capillary. As solvent evaporation 

occurs and the droplets size decreases the charge repulsion within the charged droplets increases. 

Once the charge repulsion inside the droplet exceeds the surface tension, or the Rayleigh Limit, 

of the droplet, droplet fission occurs. [19] Fission of the parent droplet results in the creation of 

several smaller daughter droplets, this process continues until analytes exist alone in droplets and 

as the rest of the solvent evaporates gas phase ions are produced. Charge residue mechanism is 

the mechanism for creating gas phase ions from high molecular weight analytes. 

Figure 7: Ion Evaporation Model 
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Low molecular weight compounds go through the ion evaporation model, Figure 7, to 

become gas phase ions. IEM begins identically to CRM; droplets shrink and divide as solvent 

evaporation occurs. The difference between CRM and IEM however is that once the droplet 

reaches a critical size the charge repulsion inside the droplet is sufficient to eject and analyte ion 

from the droplet directly into the gas phase. 

Both the CRM and IEM are important because they allow for gas phase ions of large 

nonvolatile compounds to be produced. For the study of synthetic polymers, CRM is of the most 

interest because synthetic polymers are very large molecules. 

1.3.5.4 Solvent Considerations 

The major issue with characterization of synthetic polymers by ESI-MS is the charge state 

distribution. The other hurdle that must be overcome in ESI-MS is the solvent limitation. In 

general more polar solvents perform better in electrospray; likewise it is easier to produce ions 

from more polar analytes. There are several relatively polar synthetic polymers but the majority 

of commercially and industrial synthetic polymers are nonpolar. So, it is important to use a 

solvent that will form a stable Taylor Cone and also be a good solvent for the analyte (synthetic 

polymers).  

ESI typically works well with solvents that have a dielectric constant greater than 20. (This 

includes solvents like water, acetonitrile, and methanol.) A general trend in ESI solvents is the 

more polar the solvent the higher the charge state of the ions that will be produced. [20] With 

most solvents increased polarity coincides with increased surface tension which has also been 

observed to cause higher charge states. [21] Going back to the mechanisms of producing gas 

phase ions (CRM and IEM) it is clear that increasing the surface tension will cause charged 
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droplets to take longer to reach the Rayleigh Limit or the critical diameter which causes droplet 

fission and ion ejection. 

Therefore higher surface tension 

leads to greater concentration of 

charge and increased charging of 

analytes. 

Amphiphilic molecules are 

easy to charge with ESI. The 

hydrophilic/polar portion of the 

molecules will facilitate charging 

and be very soluble in the polar ESI 

solvent. The hydrophobic section will however have high surface affinity and be in contact with 

the atmosphere. (Atmosphere is relatively nonpolar when compared to the polar ESI solvent.)  

Being on the surface of the droplet leads to higher ionization efficiency, Figure 8 illustrates why 

amphiphilic molecules have higher ESI response. [22, 23] 

1.3.5.5 ESI-MS of Synthetic Polymers 

ESI-MS has been used to characterize molecular weight, molecular weight distribution 

and end groups of small synthetic polymers. [24, 25] ESI-MS can also produce reliable 

mechanistic and kinetic data for small polymers systems. [26] ESI-MS of synthetic polymers has 

had the most success with small synthetic polymers because the ESI source causes multiple 

charging. Multiple charging of synthetic polymers is the cause of complex mass spectra as 

shown in Figure 9. 

Figure 8: Surface active molecules (S) have higher 

ionization efficiency than molecules that are found in the 

center of the droplets (X). 
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Figure 9: Mass spectrum to show how multiple charging can make spectrum interpretation 

difficult. 

 

The two issues that make characterizing higher molecular weight synthetic polymers 

problematic are: 1) The charge state distribution of the polydisperse synthetic polymer and 

2) Solvent limitations imposed by needing a polar ESI solvent and a nonpolar synthetic polymer 

solvent. 

Several groups have reported ESI-MS studies of synthetic polymers with reduced charge 

states over the past few years. However, due to the complexity of these approaches the methods 

cannot be easily implemented. Using a QIT it was possible to react cationic poly(ethylene 

glycol) with perfluorocarbons and iodide anions to reduce the charge state. Though the charge 

state was reduced the complexity of the spectrum remained because variable amounts of fluorine, 

iodide, and cations were responsible for producing the +1 PEG ion. [27] Another group used a 

bipolar neutralizing gas (gas containing both cations and anions) to reduce the charge of ions on 

their way to the mass analyzer. One of the advantages of this method was the ability to use a ToF 
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mass analyzer however; the system can’t be easily incorporated in other ESI-MS 

instruments. [28] 

 A few more recent approaches utilizing additives have also had success. One group reacted 

15-Crown-5 with sodium charged PEG in a QIT to strip sodium ions from the synthetic polymer. 

[29] Yet another approach was to use gas phase superbases to prevent excessive proton (H
+
) 

charging on PEG. [30] Post column addition of amines to PEG and PEGylated samples also 

resulted in charge state reduction due to ammoniation of the synthetic polymer as opposed to 

protonation. [31] Lastly the use of cetyltrimethylammonium bromide (CTAB) to reduce the 

charge state of PEG was recently reported. [32] This last study by Nasioudis et al. is similar to 

our research because we also used CTAB as our cationizing additive to prevent multiple 

charging of synthetic polymers. Our research is different from Nasioudis et al. however, because 

we focused on different synthetic polymers and on the production of a single charge state. 

While success has been seen in the field of ESI-MS of synthetic polymers, it is important to 

stress that though many of these previously mentioned methods worked, the charge states of the 

synthetic polymers were not all reduced to a single charge state. The lack of the ability to 

generate uniformly charged synthetic polymer samples provides a source of bias when 

characterizing the molecular weight and molecular weight distribution of synthetic polymers. 

(Longer polymer chains are more likely to be multiply charged than smaller ones.) Furthermore, 

the analysis of a polar synthetic polymer like poly(ethylene glycol) by ESI-MS is of mild 

significance to polymer chemists who are more interested in much less polar synthetic polymers. 
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1.4 Surfactants           

Surface Active Agents, are molecules that contain both hydrophilic and hydrophobic 

segments. [33] Typically surfactant molecules have a polar/ionic head and a 

nonpolar/hydrocarbon tail. Surfactants can be broken down into four classes: anionic, cationic, 

neutral or zwitterionic (contains both cations and anions). Surfactants are used in many 

commercial goods such as: laundry detergent, shampoo, hand and dish soap, and motor oils. 

Surfactants, apart from being commercially useful, also have many applications in analytical 

chemistry. Surfactants have been used to improve separation or to completely alter the way a 

system behaves at surface or interfacial sites. [34-36] We have previously obtained results 

verifing that the use of surfactants as additives to ESI samples of synthetic polymer standards 

can significantly reduce the multiple charging of synthetic polymers. [15] It is our belief that 

surfactants can be further used to generate reproducibly simple mass spectra for any synthetic 

polymer, regardless of size. 
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Chapter 2: Results and Discussion 

2.0.1 Introduction to Research 

As described in the previous chapter characterization of synthetic polymers by ESI-MS 

has not yet reached its full potential. Multiple charging and solvent limitations make analysis of 

synthetic polymers difficult. Many groups have developed various methods to reduce the 

charging of synthetic polymers but few have been simple enough to be easily implemented in 

other ESI-MS instruments.  

Development of a simple method that allows for single charge state ionization of 

synthetic polymers would make ESI-MS a powerful instrument for the characterization of 

synthetic polymers. The addition of CTAB, shown in Figure 10, as the cationizing agent can 

prevent multiple charging of synthetic polymers. CTAB will interact with the synthetic polymer 

during ionization and along with charging the polymer it will also prevent the polymer from 

being directly charged. Additionally the use of a cosolvent system to force faster interaction of 

the polymer with CTAB will also reduce multiple charging. 

 

 

Figure 10: Cetyltrimethylammonium Bromide (CTAB) 

2.1 Poly(methyl methacrylate) 4K 

PMMA synthetic polymers were the first synthetic polymers studied by our research group. 

ESI-MS of PMMA 4000 without CTAB as the cationizing species yielded spectra with 
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significant multiple charging as seen in Figure 11. Without CTAB present as the charging 

species the PMMA polymer is charged significantly with sodium ions. The charge state of the 

peaks in the mass spectrum can be determined two different ways. First the spacing from one 

peak to an adjacent peak is equal to the mass of the monomer divided by the charge of the ion. 

For singly charged peaks the spacing is equal to the molecular weight of the monomer. The 

other way to determine charging is to look at the spacing between isotope peaks. If charge 

equals one (z=1) then the spacing between each carbon isotope is 1 m/z. However, if the charge 

is 2 (z=2) then the spacing between the isotope peaks will be 0.5 m/z. Using these two methods 

it is possible to determine how many different charge states are present in the mass spectrum.

 

Figure 11: ESI-ToF-MS of PMMA 4000 without CTAB. 

While characterization of the end group for PMMA 4000 would be possible using this 

spectrum, calculation of the Mw, Mn and PDI is difficult and possibly biased. Because multiply 
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charged peaks overlap integration of the peaks could result in skewed values. (It is common for 

one peak to represent different size polymer chains with different charges.) 

Addition of CTAB to the PMMA 4000 sample resulted in a mass spectrum with exclusively 

single charging. As can be seen in Figure 12 there is absolutely no multiple charging present 

and the spectrum is dominated by only one distribution. 

 

Figure 12: ESI-ToF-MS of PMMA 4000 with CTAB, Ma and Mb correspond to structures A and 

B seen below in Table 3. 

Most importantly is that with this mass spectrum it is possible to accurately characterize 

the molecular weight and molecular weight distribution with Equations 1, 2 and 3. Table 2 

shows the comparison of ESI-MS, GPC, and manufacturer calculated Mw, Mn, and PDI. 

Table 2: PMMA 4000 molecular weight characterization, calculated from ESI-MS and 

GPC data. 
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 The percent difference between our in lab GPC and ESI-MS weight averaged molecular 

weight is 1.08%. This is a close result verifying the precision of characterizing synthetic 

polymers with our ESI-MS method. The ESI-MS and manufacturer percent difference is 13.25%, 

this is not nearly as close but still within reason. Calculation of Mw, Mn and PDI by GPC 

commonly has anywhere from 5-10% variance in value. This is because GPC instruments are 

calibrated by narrow synthetic polymer standards. It is assumed that any polymer analyzed with 

that GPC instrument behaves identically to the synthetic polymer used to calibrate the 

instrument. Based on our results ESI-MS of synthetic polymers appears to yield similar and 

possibly better molecular weight characterization than GPC.  

Table 3: Assigned structures for peaks of PMMA 4000 spectrum shown in Figure 12.
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It is also possible to determine the end group of the synthetic polymer from the mass 

spectrum obtained for PMMA 4000 with CTAB. Table 3 shows the two different end groups 

believed to be present in the PMMA 4000 sample; the molecular weight of these structures 

matches up exactly with peaks seen in the mass spectrum. Structure A represents what 

poly(methyl methacrylate) synthetic polymers are synthesized to be, the primary distribution of 

peaks are this structure. However, there is a lower distribution of peaks identified as poly(methyl 

methacrylate) synthetic polymers that have been terminated by backbiting (Structure B).  

 The reaction used to synthesize this PMMA 4000 standard was confirmed to be group 

transfer polymerization (GTP) by the manufacturer. GTP reactions have initiation, propagation, 

and termination steps. The initiation step starts by activating the catalyst and attaching the 

trimethylsilyl group to a monomer, the group transfer then occurs to another monomer forming 

the new carbon-carbon bond this reaction happens many times resulting in long polymer chains. 

The reaction normally continues until all of the monomers are reacted of the terminating species 

is added. [37-39] In some cases the growing polymer chain reacts back on one of the already 

attached monomers resulting in an early termination by backbiting.  

Similar results for PMMA 4000 were previously obtained by our group, characterizations 

of molecular weight distribution for PMMA 4000 are in close agreement. Peak assignment and 

end group determination however, were much different for the lower lying distributions. [15] 

This is likely due to the calibration issues resolved just prior to this PMMA 4000 analysis. Also 

it should be noted that ion intensity was improved from prior experiments. Increased ion 

intensity is attributed to more surfactant charging, producing a clean easy to interpret mass 

spectrum for PMMA 4000. 
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2.2 Poly(methyl methacrylate) 8K 

 PMMA 8000, similar to PMMA 4000, was previously studied by our group and yielded 

good results. [15] Herein we report similar finding and corrections to previous results. 

 

Figure 13: ESI-ToF-MS of PMMA 8000 without CTAB 

 Initial attempts to produce clean singly charged mass spectrum for PMMA 8000 without 

the cationizing surfactant molecules resulted in the complex mass spectrum displayed in 

Figure 13. Similar to PMMA 4000 the mass spectrum for PMMA 8000 without CTAB is 

congested and difficult to analyze. Three charge states (+1, +2, and +3) can clearly be seen and 

are overlapping making it is hard to tell where the mass distribution of PMMA 8000 begins. 

 As with PMMA 4000, the addition of cetyltrimethylammonium bromide to the ESI-MS 

PMMA 8000 sample resulted in a clean single charge state distribution of the synthetic polymer, 

seen in Figure 14.  Unlike Figure 13, in the exclusively singly charged mass spectrum of 

PMMA 8000 a second distribution from 1,500 m/z to 4000 m/z is visible. This bimodal 



25 

 

distribution for PMMA 8000 was unexpected and due to the spacing of the peaks, multiple 

charging is not the cause of the low m/z range distribution. 

 

Figure 14: ESI-ToF-MS of PMMA 8000 with CTAB, Ma and Mb correspond to structures A and 

B seen below in Table 5. 

 Molecular weight characterization was performed using Equations 1, 2 and 3. Mw, Mn 

and PDI calculated for ESI-MS and GPC data are reported in Table 4, along with manufacturer 

provided values for PMMA 8000. 

Table 4: PMMA 8000 molecular weight characterization, calculated from ESI-MS and 

GPC data. 
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 Percent difference again showed reasonable correlation between our in lab GPC results 

and ESI-MS molecular weight data. Percent difference for the weight averaged molecular weight 

was 5.01%. Percent difference between ESI-MS and manufacturer provided values was larger 

but still within reason 14.89%. The increase in the percent difference can possibly be attributed 

to the bimodal distribution. Our calculations included both distributions present in the spectrum, 

it possible that the manufacturer did not include the lower distribution if they were able to 

separate the two distributions in their GPC. If this is the case our calculations would be expected 

to be lower than the manufacturer provided values. 

 After characterizing the molecular weight of PMMA 8000, structural assignments for the 

peaks present in Figure 14 is necessary. Structural assignments for PMMA 8000 are shown in 

Table 5. As with PMMA 4000, the most intense distribution belongs to the primary structure of 

PMMA (structure A) with hydrogen end groups charged by CTAB. The lower lying distribution 

between 5,000 m/z and 9,500 m/z is the same structure (A) charged by sodium. The smaller 

distribution seen between 1,500 m/z and 4,000 m/z is (structure B) backbitten PMMA charged 

by CTAB. PMMA 8000 was synthesized with the same reaction as PMMA 4000 which also 

produced some backbitten polymer chains. The difference between PMMA 4000 and PMMA 

8000 is that instead of have backbiting occurring occasionally throughout the entire synthesis of 

PMMA 8000, it appears that a spike in backbiting occurred early in the GTP synthesis of PMMA 

8000.  
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Table 5: Assigned structures for peaks of PMMA 8000 spectrum shown in Figure 14. 

 

In an attempt to verify the presence of back biting, a mass spectrometry/mass 

spectrometry (MS/MS) experiment was performed. The goal of the MS/MS experiment was to 

observe the fragmentation pattern of PMMA polymers with and without backbiting. The 

presence of backbiting could be confirmed two ways: 1) A fragment with mass equal to the 

molecular weight of the backbitten end group. 2) A clear fragmentation pattern with 31 Da 

(molecular weight of 
–
OCH3) difference between the backbitten and non-backbitten polymer 

chains. MS/MS spectra for PMMA 8000 are shown in Figure 15. 
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Figure 15: a) MS/MS spectrum for backbitten PMMA. b) MS/MS spectrum for PMMA without 

backbiting. 

MS/MS experiments yielded no valuable results because our QToF Micromass 

instrument is only capable of producing first generation fragments. Since further fragmentation 

of the fragments is not possible we were unable to see a fragment with mass equal to the 

backbitten end group or a clear pattern 31Da different when comparing the non-backbitten 

PMMA spectrum to the backbitten PMMA spectrum. Even though the MS/MS experiment failed 

to verify the presence of backbiting, the molecular weight of backbitten PMMA fits the peaks of 

the bimodal distribution. Cross contamination of PMMA 4000 and 8000 samples was ruled out 

by purchasing another PMMA 8000 sample (from the same batch). Mass spectra for both 

PMMA 8000 standards were identical. For these reasons we are confident that backbiting is 

responsible for the bimodal distribution observed in the mass spectrum. 
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Similar to PMMA 4000, past ESI-MS experiments with PMMA 8000 have been 

conducted and molecular weight distribution characterization along with end group analysis has 

previously been reported. [15] However, due to errors that occurred during peak assignment it is 

important to report our findings once again. The low molecular weight distribution of the 

bimodal distribution seen in PMMA 8000 has been identified as backbiting. Molecular weight 

characterization from previous experiments and those reported in Table 4 show that our ESI-MS 

of synthetic polymers method is reproducible. Even more telling of the potential that ESI-MS 

offers to synthetic polymer characterization, is that the bimodal distribution of the PMMA 8000 

sample would have gone unnoticed (not observed in GPC) if not for the single charge state ESI-

MS spectrum seen in Figure 14. 

2.3 Poly(methyl methacrylate) 12K 

PMMA 12000 was our choice for a higher molecular weight synthetic polymer. PMMA 

12000 has a molecular weight distribution ranging from 9,000 m/z to 20,000 m/z. Though 

PMMA 12000 is not considered to be a high molecular weight synthetic polymer, its molecular 

weight distribution reaches almost to the maximum of our ESI-MS instrument. This is not an 

instrument maximum as much as it is a software maximum. 

 Figure 16 shows the mass spectrum for PMMA 12000 without any added cationizing 

species; this spectrum was obtained with optimized conditions for generating low charge states.  
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Figure 16: ESI-ToF-MS of PMMA 12000 without CTAB 

In Figure 16, there is a lot of multiple charging and very little single charging. Again as 

with both PMMA 4000 and 8000 this complex spectrum makes characterization of PMMA 

12000 difficult. With the addition of CTAB as our cationizing species we obtained a much 

different mass spectrum, Figure 17. 

In Figure 17 we have only the single and double charge states present. Even though this 

mass spectrum is much cleaner and easier to pull data from than Figure 16, it still was not 

sufficient for full characterization of PMMA 12000. We did find that increasing the CTAB 

concentration further resulted in slight suppression of double charging. For both PMMA 4000 

and 8000 the addition of CTAB eliminated the multiple charging seen in mass spectrum without 

CTAB. For PMMA 12000, however, addition of CTAB alone was not enough to completely 

eliminate multiple charging. 
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Figure 17: ESI-ToF-MS of PMMA 12000 with CTAB. 

2.3.1 Two Solvent System 

Since the addition of CTAB to the PMMA 12000 sample was only partially successful in 

reducing the charged state, we decided to determine what results could be obtained by adjusting 

the solvents present in the PMMA 12000 sample. 

For all of the PMMA polymer series we used acetone as our solvent. Acetone was chosen 

as our solvent because it has a dielectric constant just high enough to be considered a reasonable 

ESI solvent. Acetone is also a very good solvent for PMMA. As described in the previous 

chapter ESI systems have solvent limitations. If the solvents dielectric constant is too low then a 

stable Taylor Cone cannot be formed and ionization of analyte molecules will not occur. This 

solvent limitation is not a problem for many analytes but for synthetic polymers it is an issue. 
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Most synthetic polymers used commercially are relatively nonpolar and therefore difficult to 

solvate with polar “ESI Solvents.” 

Our cosolvent system is designed to take advantage of the fact that PMMA and other 

nonpolar synthetic polymers are not soluble in common ESI solvents. Using a mixture of 

acetonitrile (a good ESI solvent with a higher boiling point than acetone) and acetone, the 

synthetic polymer can be forced toward the surface of the ESI droplets. The synthetic polymer is 

then more likely to be charged by CTAB and less likely to be directly charged (See 

Section 1.3.5.4). 

To understand how the cosolvent system will force the synthetic polymer to the surface of 

the droplet, it is important to remember how CRM produced gas phase ions. In CRM solvent 

evaporation caused charge repulsion inside droplets to exceed the Rayleigh Limit of the droplet 

causing droplet fission. This process continued until gas phase ions were produced. For the 

cosolvent system instead of having one solvent we now have two.This does not change the 

mechanism that produces gas phase ions but it does significantly alter how the analytes will 

arrange themselves within the droplets. The two solvents that were used in this experiment were 

acetonitrile and acetone. It is important to note that these two solvents are miscible, PMMA is 

not soluble in acetonitrile and acetone has a higher vapor pressure than acetonitrile. 

 After the cosolvent droplets are sprayed from the Taylor Cone solvent evaporation 

begins. Since acetone has a higher vapor pressure than acetonitrile, it can be assumed that the 

surface of the droplet will lose acetone faster than acetonitrile. This creates a situation where the 

surface of the droplet will be composed of mostly acetonitrile. Since PMMA is not soluble in 

acetonitrile the synthetic polymer will precipitate onto the surface of the droplet as the acetone 
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carries PMMA to the surface and then evaporates. Once the charge repulsion of the droplet 

reaches the Rayleigh Limit droplet fission occurs and the process of solvent evaporation and 

PMMA precipitation continues. Having the synthetic polymer on the surface of the droplet 

resulted in has higher ionization efficiency and reduction of the charge state, seen in Figure 18. 

 

Figure 18: ESI-ToF-MS of PMMA 12000 with CTAB in 70% acetone and 30% acetonitrile. Ma 

and Mb correspond to structures A and B seen below in Table 7. 

Using CTAB and the cosolvent system a single charge state mass spectrum for PMMA 

12000 was produced. In the mass spectrum we see only singly charged ions making it is possible 

to accurately characterize both molecular weight and end group. The Mw, Mn, and PDI were 

calculated using Equations 1, 2, and 3 and are presented in Table 6.  
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Table 6: PMMA 12000 molecular weight characterization calculated from ESI-MS and GPC 

data, compared to manufacturer provided values. 

 

 The percent difference between the weight averaged molecular weight (Mw) calculated 

from in lab GPC and ESI-MS data was 3.9%. Again as with PMMA 4000 and 8000, the 

characterization of molecular weight distribution by both GPC and ESI-MS correlate well. The 

percent difference between ESI-MS Mw and manufacturer provided Mw was 9.5%. The percent 

difference for PMMA 12000 is lower than the percent difference for either PMMA 4000 or 

8000; this is significant because it shows that our method is not getting less accurate with 

increase in molecular weight.  

 End group characterization of PMMA 12000 was also possible. Unlike PMMA 4000 and 

8000, no backbitten polymer chains were observed. There are two distributions present in the 

mass spectrum shown in Figure 18 the largest being PMMA charged by CTAB, structure A 

Table 7. The lower lying distribution is also structure A charged by sodium. 
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Table 7: Assigned Structures for Peaks of PMMA 12000 

 

 PMMA 12000 did not appear to have any backbiting present. This can be attributed to the 

synthesis of the standard because the PMMA 12000 standard was bought from a different 

supplier than both PMMA 4000 and PMMA 8000. It is likely that it was synthesized under 

different conditions and possibly a different reaction. 

2.4 PMMA 4000, 8000 and 12000 Combined Spectra 

The last PMMA sample was made containing all three PMMA standards and CTAB. We 

did not perform a run without any cationizing agent because after seeing the complexity 

generated by each PMMA standard alone. It is clear that the low m/z range of the mass 

spectrum would be severely congested if the sample were run without CTAB. Figure 19 shows 
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the spectrum obtained when all three PMMA standards were mixed together with CTAB and 

run through the ESI-MS.  

 

Figure 19: ESI-ToF-MS of PMMA 4000, 8000, and 12000 combined in the presence of CTAB. 

 Even though the distributions overlap all three of the PMMA standards can be identified. 

It is possible to produce a mass spectrum where all three of these standards can be distinguished 

from one another if CTAB is included in the sample. This spectrum also shows that we get 

strong ionization efficiency over the entire range of our ESI-MS instrument. Figure 20 shows an 

overlay of this mass spectrum with our GPC results for a sample containing all three PMMA 

standards.  
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Figure 20: GPC ESI-ToF-MS overlay of PMMA 4000, 8000, and 12000 standards combined. 

  

 This GPC and ESI-MS overlay shows that ESI-MS has the potential to be a better 

instrument for characterization of synthetic polymers than GPC. As can be seen in the PMMA 

4000 region of this overlay the separation is slightly worse for the low molecular weight 

standard. It is common for GPC instruments to have less separation efficiency for molecules at 

lower molecular weight. The mass spectrum of these three standards however shows very clear 

separation of all three standards present in the sample. Figure 20 shows that ESI-MS has better 

resolution and less mass bias than GPC. 

2.5 Polystyrene 10290 

Results for the three different PMMA standards are promising and show that the use of 

surfactants as cationizing agents can greatly reduce the complexity of mass spectra obtained for 
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synthetic polymers. Due to the success of CTAB and the cosolvent system at eliminating 

multiple charging, we next chose to analyze polystyrene 

10290. Polystyrene shown in Figure 21 is a much less 

polar synthetic polymer than PMMA and as stated before 

most industrial and commercially used synthetic polymers 

are relatively nonpolar. By using CTAB and an 85% 

acetone 15% acetonitrile solvent mixture we were able to 

obtain the mass spectrum shown in Figure 22. 

 

Figure 22: ESI-ToF-MS of Polystyrene 10290 with CTAB in 85% acetone 15% acetonitrile. Ma 

corresponds with structure A seen in Table 9. 

 Immediately, it is clear that we were able to singly charge the polystyrene molecules 

without having any multiple charging. While at least one other research group has successfully 

used ESI-MS to produce mass spectra for polystyrene [40], this is the first reported ESI mass 

Figure 21: Polystyrene 



39 

 

spectrum of a polystyrene sample in excess of 5,000 Da. Also to our knowledge this is the first 

ESI-MS of polystyrene without the presence of an alkali salt (i. e. NaI) to increase ionization 

efficiency. The use of such salts commonly contributes to spectrum complexity due to the 

presence of salt cluster ions, particularly in the low m/z region. 

Table 8:  Molecular weight distribution calculated from ESI-MS and Manufacturer 

provided data for Polystyrene 10290 

 

 From Figure 22 molecular weight characterization was done and is presented in Table 8. 

The percent difference for Mw between ESI-MS calculated and manufacturer provided data is 

0.17%. This result shows that the method used to generate this mass spectrum for polystyrene 

10290 has almost identical molecular weight distribution characterization to those obtained by 

the manufacturer of the standard. This is a very significant result because polystyrene samples 

are nonpolar and difficult to ionize efficiently with ESI. The use of CTAB and the cosolvent 

system allowed for sufficient ionization to characterize the polystyrene sample.  

 The mass spectrum shown in Figure 22 also allows for end group determination. There 

are only two distributions present in the mass spectrum and both of them are the same 

polystyrene structure (A) with different charging species Table 9. 
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Table 9: Assigned Chemical Structure for Polystyrene 10290 Peaks. 

 

 Successful molecular weight and end group characterization of polystyrene 10290 is an 

important result. To our knowledge this is the first ESI-MS characterization of  polystyrene with 

molecular weight greater than 10,000 Da. 

2.6 Synthesis of Surfactant 

While optimizing the parameters of the ESI-MS and choosing the correct solvent can go a 

long way to producing single charge state mass spectra of synthetic polymers, we believe that 

using surfactant molecules that will have stronger interactions with the synthetic polymer will 

further increase ionization efficiency. In order for the molecular structure of the surfactant to 

become another optimizable parameter it is important for the synthesis to be quick and relatively 

high yielding. For these reasons we chose to synthesize a quaternary ammonium salt. 
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The quaternary ammonium salt chosen is shown in Figure 23; this quaternary ammonium 

salt was chosen because the benzene ring should interact with the benzene rings of polystyrene 

making it more likely to charge polystyrene than CTAB, due to its higher affinity for 

polystyrene. 

 

Figure 23: Synthesized Quaternary Ammonium Salt 

 Synthesis of this quaternary ammonium salt was straight forward. [41, 42] The reactants 

shown in Figure 24 were added in equilmolar amounts to a round bottom flask containing THF. 

The reaction vessel was then heated to reflux for 24 hours. Product was precipitated into hexanes 

and recrystallized twice with ethyl ether. 

 

Figure 24: Reactants used to synthesize the Quaternary Ammonium Salt in Figure 23. 
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 ESI-MS was used to confirm that the quaternary ammonium salt was successfully 

synthesized. (NMR for the synthesized quaternary ammonium salt is shown in appendix B.) 

Figure 25 and Figure 26 show two different sets of peaks present in the mass spectrum that 

verify the existence of our target quaternary ammonium salt. The peak shown at 360.369 m/z is 

the expected peak for our quaternary ammonium salt after the bromide counter ion was lost 

during ionization. (C25H46N = 360.363 m/z) In Figure 26 a set of four peaks starting at 

799.049 m/z is the set of peaks we expect when our quaternary ammonium salt is clustered with 

another quaternary ammonium salt. This is because the isotopic abundance of bromine is 50.7% 

79
Br and 49.3% 

81
Br, combined with carbon isotopes four peaks should be present. The first peak 

at 799.049 m/z is C50H92N2Br (799.644 g/mol). 

 

Figure 25: ESI-ToF-MS of synthesized quaternary ammonium salt. 



43 

 

 

Figure 26: ESI-ToF-MS of synthesized quaternary ammonium salt, zoom in on double 

surfactant cluster. 

After successful synthesis of the surfactant was verified the next step was to use the 

quaternary ammonium salt as the cationizing agent for the polystyrene 10290 sample. Figure 27 

shows the mass spectrum obtained using the synthesized surfactant. The parameters used for 

Figure 27 were exactly the same as the parameters used for Figure 22. The polystyrene 10290 

samples were made identically except for the surfactant that was used. 
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Figure 27: ESI-ToF-MS of Polystyrene 10290 with synthesized quaternary ammonium salt. 

 The polystyrene mass spectra obtained with our synthesized quaternary ammonium salt 

and CTAB are very similar. The shape of the distribution and the ion intensity of the two spectra 

are almost identical. Characterization of the molecular weight distribution also yielded similar 

results to those obtained using CTAB, Table 10 shows values calculated from Figure 27. 

Percent difference between the polystyrene 10290 and manufacturer provided values was again 

very low. These results show that our method for the characterization of synthetic polymers with 

ESI -MS works very well. Even though the ionization efficiency was not improved it has been 

shown that other quaternary ammonium salts work well with our method. This is promising for 

future studies of different synthetic polymers such as fluoropolymers that may be charged using 

a perfluorcarbon based quaternary ammonium salt. 
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Table 10: Molecular weight distribution calculated from ESI-MS of polystyrene 10290 with 

synthesized quaternary ammonium salt. 
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Chapter 3: Conclusions and Future Experiments 

In conclusion we report an update to previously characterized structural assignments for 

PMMA 4000 and 8000, due in large part to calibration of our instrument. This is the first 

reported 1 to 20,000 m/z range calibration using synthetic polymers, and was achieved by mixing 

three PMMA standards together with CTAB. We also report for the first time successful 

generation of single charge state ESI-MS for PMMA synthetic polymers with a molecular weight 

distribution greater than 10,000 g/mol. Molecular weight characterization of PMMA 4000 and 

PMMA 8000 were in close agreement with previously calculated values by earlier ESI-MS 

experiments. Good correlation between ESI-MS calculated values and GPC obtained results 

were also seen.  

Single charge state mass spectra were also produced for polystyrene samples with molecular 

weight distribution greater than 10,000 g/mol. To our knowledge this is the first successful ESI-

MS of polystyrene synthetic polymers larger than 5,000 g/mol. Molecular weight and end group 

characterization of the polystyrene samples were in excellent agreement with manufacturer 

provided values. 

The production of exclusively singly charged ions is attributed to the use of surfactant 

molecules. CTAB is a much larger charging species than common ESI-MS instrument charging 

atoms (Na
+
, H

+
, or K

+
). The fact that the surfactant is highly surface active and interacts with the 

synthetic polymer during ionization allows for exclusively single charging of the synthetic 

polymer. Large synthetic polymers or synthetic polymers with poor ESI solvent solubility were 

analyzed with a cosolvent system. The cosolvent system was successful in eliminating any 

multiple charging that was occurring in the single solvent systems. The cosolvent system also 

increased ionization efficiency for nonpolar synthetic polymers like polystyrene. 
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Future studies will be done on different synthetic polymers using different surfactant 

molecules. Successful characterization of a fluoropolymer using a perfluorocarbon quaternary 

ammonium salt would be of great scientific importance. Lastly the use of a multicationic (+2, +3, 

+4, etc.) surfactant molecule and production of single charge state ions would allow for much 

larger synthetic polymers to be studied and characterized in the lower m/z range. 

 

 

 

 

 

 

 

 

 

 



48 

 

Chapter 4: Experimental 

4.1 Materials 

The LC/UV grade acetone was manufactured by ChromAR (Lot # H14B00) was not altered 

before use. The HPLC grade acetonitrile was made by Burdick and Jackson (Lot # C0614) and 

was not altered before use. The HPLC grade tetrahydrofuran was made by T.J. Baker (Lot # 

G35804) and also used without being altered. The ethyl ether (Lot # 47026) was manufactured 

by EMD Chemicals and used without alteration. The hexanes (Lot # 066378) was manufactured 

by Fisher Scientific and used without alteration. Anhydrous toluene (Batch # 15486EH) was 

purchased from Sigma Aldrich and used without being altered. 

PMMA standards PMMA 4000 and PMMA 8000 were purchased from Sigma Aldrich and 

used without being altered (PMMA 4000 Lot # WA22833 and PMMA 8000 Lot # 

0001428483). Both PMMA 4000 and 8000 were manufactured by Fluka. PMMA 12000 (Lot # 

510978) was purchased from manufactured by Polymer Sciences Incorporated and was used 

without alteration. Polystyrene samples were all pulled from the Varian Incorporated 

polystyrene standards kit (Lot # 101). The polystyrene standards kit was manufactured by 

Polymer Labs and used without being altered. The 1-Bromohexadecane (Lot # 05026TR) was 

manufactured by Aldrich Chemical Company and used without alteration. N,N-

Benzyldimethylamine was manufactured by Polysciences Incorporated and used without being 

altered. The cetyltrimethylammonium bromide (Lot # 019K0024) was manufactured by Sigma 

and used as purchased. 
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4.2 GPC  

4.2.1 Columns 

The columns used in our GPC system were placed in the following order: PLgel Mixed-C, 

PLgel Mixed-E, Waters HR 2, and Waters HR 0.5. Data was extracted from Millennium and 

imported to Cirrus. Cirrus was calibrated with polystyrene standards and all GPC data was calculated 

in Cirrus. 

4.2.2 Sample Preparation 

0.0051 g of PMMA 4000 was added to a GPC vial followed by approximately 1.5 mL of 

THF and 2.0 μL of toluene (flow rate marker). 0.0047 g of PMMA 8000 was added to a GPC 

vial followed by approximately 1.5 mL of THF and 2.0 μL of toluene. 0.0051 g of PMMA 

12000 was added to a GPC vial followed by approximately 1.5 mL of THF and 2.0 μL of 

toluene. Analysis of GPC data was performed on Cirrius, molecular weight results were 

calculated using polystyrene calibration curve. 

4.3 ESI 

4.3.1 Calibration 

Previous work by our research group was plagued by calibration issues. The QToF 

Micromass instrument had a calibration up to 2,000 m/z. While this is sufficient for many users, 

the calibration was insufficient for characterization of synthetic polymer standards with masses 

anywhere from 1,600 Da to 19,000 Da. In order to get reliable molecular weight data for 

synthetic polymers the instrument needed to be calibrated out to 20,000 m/z.  

Calibration over large mass ranges by clusters of alkali metal salts was reported in the 

literature. [43, 44] Calibration attempts with salt clusters (NaI, Na(Rb)I and CsI) failed to 
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provide adequate ion intensity beyond 10,000 m/z. Due to the failure of salt clusters, calibration 

with synthetic polymers was attempted. Small synthetic polymers like poly(ethylene glycol) are 

commonly used to calibrate the low mass range of ESI-MS instruments. A sample containing 

three poly(methyl methacrylate) standards with molecular weight ranging from 1,200 g/mol to 

20,000 g/mol was used as calibrant. As seen in Figure 28, with the use of 

cetyltrimethylammonium bromide (CTAB) as the cationizing agent it was possible to calibrate 

the QToF Micromass from 0-20,000 m/z. (Reference file used for provided in Appendix A.)  

 

Figure 28: Mass spectrum of the sample containing poly(methyl methacrylate) 4000, 8000, and 

12000 with cetyltrimethylammonium bromide (CTAB) as the charging species. 
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4.3.2 Bulk Sample Preparation 

PMMA 4000 bulk solution was prepared by adding 0.0208 g of PMMA 4000 to a 20 mL 

scintillation vial followed by 10.00 mL of acetone. PMMA 4000 bulk sample concentration was 

0.00052 M. 

PMMA 8000 bulk solution was prepared by adding 0.0407 g of PMMA 8000 to a 20 mL 

scintillation vial followed by 10.00 mL of acetone. PMMA 8000 bulk sample concentration was 

0.00051 M. 

PMMA 12000 bulk solution was prepared by adding 0.0208 g of PMMA 12000 to a 20 mL 

scintillation vial followed by 20.00 mL of acetone. PMMA 12000 bulk sample concentration 

was 0.00025 M. 

Polystyrene 10290 bulk solution was prepared by adding 0.0199 g of polystyrene 1290 

sample to a 20 mL scintillation vial and then adding 10.00 mL of acetone. The concentration of 

the polystyrene 10290 bulk sample was 0.00019 M. 

CTAB bulk solution 1 was prepared by adding 0.0036 g of CTAB to a 20 mL scintillation 

vial followed by 10.00 mL of acetone. CTAB bulk solution concentration was 0.00099 M. 

CTAB bulk solution 2 was prepared by adding 0.0029 g of CTAB to a 20 mL scintillation 

vial followed by 20.00 mL of acetone. CTAB bulk solution concentration was 0.00040 M. 

Synthesized quaternary ammonium salt bulk solution was prepared by adding 0.0054 g of 

our synthesized surfactant to a 20 mL scintillation vial followed by the addition of 10.00 mL of 

acetone. The concentration of the sample was 0.00122 M. 
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4.2.1 Sample Preparation 

The PMMA 4000 spectrum shown in Figure 12, was prepared by adding 60 μL of the 

PMMA 4000 bulk sample and 250 μL of the CTAB bulk solution 2 to a 20 mL scintillation vial 

diluted with 10.00mL of acetone. The PMMA 4000 concentration of the sample was 3.12 μM 

and the CTAB concentration was 9.95 μM. The parameters were identical for both the mass 

spectrum of PMMA 4000 with (Figure 12) and without (Figure 11) CTAB. The parameters for 

the instrument are shown below: 

Parameter Name Setting 

Capillary Voltage 2900V 

Sample Cone Voltage 100V 

Extraction Cone Voltage 2.0V 

Source Temperature 90˚C 

Desolvation Temperature 180˚C 

Cone Gas Flow Rate 0 L/hr 

Desolvation Gas Flow Rate 500 L/hr 

Sample Flow Rate 10 μL/min 

Number of Spectrum Combined 268 

 

The PMMA 8000 spectrum shown in Figure 14, was prepared by adding 100 μL of the 

PMMA 8000 bulk sample and 250 μL of the CTAB bulk solution 2 to a 20 mL scintillation vial 

diluted with 10.00 mL of acetone. The PMMA 8000 concentration of the sample was 5.09 μM 

and the CTAB concentration was 9.95 μM. The parameters were identical for both the mass 

spectrum of PMMA 8000 with (Figure 14) and without (Figure 13) CTAB. The parameters for 

the instrument are shown below: 
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Parameter Name Setting 

Capillary Voltage 2900V 

Sample Cone Voltage 140V 

Extraction Cone Voltage 2.0V 

Source Temperature 90˚C 

Desolvation Temperature 180˚C 

Cone Gas Flow Rate 0 L/hr 

Desolvation Gas Flow Rate 250 L/hr 

Sample Flow Rate 10 μL/min 

Number of Spectrum Combined – Figure 13 

Number of Spectrum Combined – Figure 14 

321 

535 

 

The PMMA 12000 spectrum shown in Figure 18, was prepared by adding 80 μL of the 

PMMA 12000 bulk sample and 750 μL of the CTAB bulk solution 2 to a 20 mL scintillation 

vial diluted with 10.00 mL of acetone and acetonitrile in a 70% acetone 30% acetonitrile 

mixture. The PMMA 12000 concentration of the sample was 2.16 μM and the CTAB 

concentration was 29.84 μM. The parameters were identical for all three the mass spectra of 

PMMA 12000 with (Figure 17) and without (Figure 16) CTAB and also with the cosolvent 

system (Figure 18). The parameters for the instrument are shown below: 

Parameter Name Setting 

Capillary Voltage 2900V 

Sample Cone Voltage 200V 

Extraction Cone Voltage 2.0V 

Source Temperature 90˚C 

Desolvation Temperature 180˚C 

Cone Gas Flow Rate 0 L/hr 

Desolvation Gas Flow Rate 200 L/hr 

Sample Flow Rate 10 μL/min 

Number of Spectrum Combined – Figure 16 

Number of Spectrum Combined – Figure 17 

Number of Spectrum Combined – Figure 18 

498 

208 

798 
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The combined mass spectrum (Figure 19) was prepared by adding 40 μL of the PMMA 

4000 bulk solution, 100 μL of the PMMA 8000 bulk solution, 600 μL of the PMMA 12000 bulk 

solution, and 1000 μL of the CTAB bulk solution 2. The sample was then diluted with 10.00 mL 

of a 70% acetone 30% acetonitrile solvent mixture. The concentrations of PMMA 4000, 8000, 

12000 and CTAB in this sample were 1.73 μM, 4.24 μM, 12.6 μM, and 33.16 μM respectively. 

The parameters for the instrument are shown below: 

Parameter Name Setting 

Capillary Voltage 2900V 

Sample Cone Voltage 175V 

Extraction Cone Voltage 2.0V 

Source Temperature 90˚C 

Desolvation Temperature 180˚C 

Cone Gas Flow Rate 0 L/hr 

Desolvation Gas Flow Rate 200 L/hr 

Sample Flow Rate 10 μL/min 

Number of Spectrum Combined – Figure 19 804 

 

The polystyrene 10290 sample used to produce the mass spectrum shown in Figure 22 was 

prepared by adding 38.6 μL of the polystyrene 10290 bulk solution and 125 μL of the CTAB 

bulk solution 2 to a 20 mL scintillation vial. Next 10.00 mL of an 85% acetone and 15% 

acetonitrile solvent mixture were added to the vial. The concentration of polystyrene 10290 in 

the sample was 2 μM and the concentration of CTAB was 5 μM. The parameters used for this 

sample are shown below: 
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Parameter Name Setting 

Capillary Voltage 2900V 

Sample Cone Voltage 170V 

Extraction Cone Voltage 2.0V 

Source Temperature 90˚C 

Desolvation Temperature 180˚C 

Cone Gas Flow Rate 0 L/hr 

Desolvation Gas Flow Rate 500 L/hr 

Sample Flow Rate 15 μL/min 

Number of Spectrum Combined – Figure 22 535 

 

 The polystyrene 10290 sample used to produce the mass spectrum shown in Figure 27 

was prepared by adding 38.6 μL of the polystyrene 10290 bulk solution and 40.8 μL of the 

synthesized quaternary ammonium salt bulk solution to a 20 mL scintillation vial. Next 

10.00 mL of an 85% acetone and 15% acetonitrile solvent mixture were added to the vial. The 

concentration of polystyrene 10290 in the sample was 2.0 μM and the concentration of 

synthesized quaternary ammonium salt was 5.0 μM. The parameters used for this sample are 

shown below: 

Parameter Name Setting 

Capillary Voltage 2900V 

Sample Cone Voltage 170V 

Extraction Cone Voltage 2.0V 

Source Temperature 90˚C 

Desolvation Temperature 180˚C 

Cone Gas Flow Rate 0 L/hr 

Desolvation Gas Flow Rate 500 L/hr 

Sample Flow Rate 15 μL/min 

Number of Spectrum Combined – Figure 27 534 

 

4.4  Synthesis of Quaternary Ammonium Salt 

Synthesis of the quaternary ammonium salt used for the ESI-ToF-MS of polystyrene 10290 

was performed by the following steps. First 2.52 mL of 1-Bromohexadecane was added to a 
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50 mL round bottom flask. Next 2.83 mL of Benzyldimethylamine was added to the reaction 

vessel. Lastly 15.0 mL of THF was added to the flask. The flask was then hooked up to a 

condenser and allowed to react at reflux for 24 hours. After 24 hours the reaction was stopped 

and the reaction flask was precipitated into 200 mL of hexanes. After filtration the solid crude 

sample was then recrystallized twice in 200 mL of ethyl ether. 

Successful synthesis was confirmed as described above and shown in Figures 25 and 26. 

The ESI-ToF-MS of the quaternary ammonium salt was performed on a dilute sample of 

product in acetone. The parameters used to obtain the mass spectrum are shown below: 

Parameter Name Setting 

Capillary Voltage 2900V 

Sample Cone Voltage 40V 

Extraction Cone Voltage 2.0V 

Source Temperature 90˚C 

Desolvation Temperature 180˚C 

Cone Gas Flow Rate 0 L/hr 

Desolvation Gas Flow Rate 500 L/hr 

Sample Flow Rate 5 μL/min 

Number of Spectrum Combined – Figure 25 

Number of Spectrum Combined – Figure 26 

102 

102 
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APPENDIX A. Reference File used for Calibration of ESI-MS 

m/z values were calculated for PMMA peaks with hydrogen end groups and CTAB as  

charging species 

n= m/z 

[CTA]
+
 284.332 

[CTAB79+CTA]
 +

 647.582 

[CTAB81+CTA]
 +

 649.581 

10 1286.872 

11 1386.924 

12 1486.977 

13 1587.029 

14 1688.085 

15 1788.138 

16 1888.190 

17 1988.242 

18 2088.295 

19 2188.347 

20 2288.400 

21 2388.452 

22 2488.505 

23 2588.557 

24 2688.610 

25 2788.662 
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26 2888.714 

27 2988.767 

28 3088.819 

29 3189.875 

30 3289.927 

31 3389.980 

32 3490.032 

33 3590.085 

34 3690.137 

35 3790.189 

36 3890.242 

37 3990.294 

38 4090.347 

39 4190.399 

40 4290.452 

41 4390.504 

42 4490.557 

43 4590.609 

44 4690.662 

45 4791.717 

46 4891.769 

47 4991.822 

48 5091.874 

49 5191.927 

50 5291.979 
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51 5392.032 

52 5492.084 

53 5592.137 

54 5692.189 

55 5792.242 

56 5892.294 

57 5992.346 

58 6092.399 

59 6192.451 

60 6293.507 

61 6393.559 

62 6493.612 

63 6593.664 

64 6693.717 

65 6793.769 

66 6893.821 

67 6993.874 

68 7093.926 

69 7193.978 

70 7294.031 

71 7394.083 

72 7494.136 

73 7594.188 

74 7694.241 

75 7794.293 
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76 7895.349 

77 7995.401 

78 8095.454 

79 8195.506 

80 8295.559 

81 8395.611 

82 8495.663 

83 8595.716 

84 8695.768 

85 8795.821 

86 8895.873 

87 8995.925 

88 9095.978 

89 9196.031 

90 9296.083 

91 9397.139 

92 9497.191 

93 9597.244 

94 9697.296 

95 9797.348 

96 9897.401 

97 9997.454 

98 10097.505 

99 10197.558 

100 10297.611 
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101 10397.662 

102 10497.715 

103 10597.768 

104 10697.821 

105 10797.872 

106 10898.928 

107 10998.981 

108 11099.034 

109 11199.085 

110 11299.138 

111 11399.191 

112 11499.243 

113 11599.295 

114 11699.348 

115 11799.400 

116 11899.453 

117 11999.505 

118 12099.557 

119 12199.610 

120 12299.662 

121 12399.714 

122 12500.771 

123 12600.823 

124 12700.875 

125 12800.928 
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126 12900.980 

127 13001.033 

128 13101.085 

129 13201.137 

130 13301.190 

131 13401.243 

132 13501.294 

133 13601.347 

134 13701.400 

135 13801.453 

136 13901.504 

137 14002.560 

138 14102.613 

139 14202.665 

140 14302.717 

141 14402.770 

142 14502.823 

143 14602.874 

144 14702.927 

145 14802.980 

146 14903.032 

147 15003.084 

148 15103.137 

149 15203.190 

150 15303.242 



66 

 

151 15403.294 

152 15503.347 

153 15604.403 

154 15704.454 

155 15804.507 

156 15904.560 

157 16004.612 

158 16104.664 

159 16204.717 

160 16304.769 

161 16404.823 

162 16504.873 

163 16604.926 

164 16704.979 

165 16805.032 

166 16905.084 

167 17005.137 
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APPENDIX B, NMR of the Synthesized Quaternary Ammonium Salt 

 

 

 

 


