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CHAPTER 1: Introduction

In the 1900s, David Hilbert proposed a list of 23 problems that would greatly in-

fluence mathematics in the twentieth century. His tenth problem, known as Hilbert’s

Tenth Problem (HTP), dealt with the solvability of Diophantine equations. In par-

ticular, he wanted to know whether it was possible to create an algorithm that could

tell whether a polynomial equation in many variables had solutions in the integers.

After many years, it was discovered that no such algorithm existed. Yuri Matiya-

sevich proved that Diophantine subsets of Z were the same as computably enumerable

sets. His proof was based on the earlier work of Martin Davis, Hilary Putnam, and

Julia Robinson. (See [4] for the details of the solution of the original problem.) The

fact that Diophantine and recursively enumerable sets were the same implied that

Hilbert’s Tenth Problem was unsolvable. The solution to Hilbert’s Problem gave rise

to new questions; in particular, whether HTP was solvable over rings of integers of

number fields. In this thesis, we consider some of the developments which led to a

partial answer to this question.

This thesis is divided into the following sections: the first chapter presents the

necessary background from Recursion Theory and explains the exact nature of the

result by Yuri Matiyasevich, Martin Davis, Hilary Putnam, and Julia Robinson; the

second chapter introduces the necessary material from Algebra and more specifically,

Galois Theory; the third section introduces the notion of Diophantine generation and

explains the main results concerning rings of integers of number fields.



CHAPTER 2: Computability

This chapter contains some basic information on computable functions, sets, rings,

and fields. In this chapter and throughout, we will use the terms “computable,”

“decidable,” and “recursive” interchangeably.

In addition, throughout this thesis we will use Z≥0 to mean non-negative integers

and Z>0 to mean positive integers.

2.1 Computable Sets and Functions

First we want to define computable sets. In order to do this, we must define the

characteristic function of a set.

Definition 2.1 (Characteristic Function). For A ⊂ Zm≥0, the characteristic function

is defined in the following way:

χA : Zm≥0 → {0, 1}

χA(x1, ..., xm) =


1 if (x1, ..., xm) ∈ A

0 if (x1, ..., xm) /∈ A.

We now define computable functions, computable sets, and computably enumer-

able sets.

Definition 2.2.

• If f : Zm≥0 −→ Zk≥0 for some positive integers m and k, then f is called com-
putable if there exists a computer program or an algorithm to compute f .

• If A ⊆ Zm≥0 and χA is computable, then we say the set is computable.
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• If there is an algorithm or a computer program that can list the elements of a
set, we say the set is computably enumerable.

The following classical theorem laid the ground work for solving HTP. (See [7] for

more details.)

Theorem 2.3. There are computably enumerable sets that are not computable.

In particular, the following famous set is computably enumerable but not com-

putable.

Example 2.4. Let ϕn be the nth program in the listing of all possible programs and

define the Halting Set as follows:

K = {n|ϕn(n) terminates on input n}.

Before we can state the main theorem that led to the solution of Hilbert’s Tenth

Problem, we need to introduce the notion of Diophantine sets.

Definition 2.5. Let R be an integral domain. Let m and n be positive integers. Let

A ⊂ Rn. We say A has a Diophantine definition over R if there exists a polynomial

f(y1, ..., yn, x1, ..., xm) ∈ R[y1, .., yn, x1, ..., xm]

such that for all (t1, ..., tn) ∈ Rn, we have

(t1, ..., tn) ∈ A⇔ ∃x1, ..., xm ∈ R, f(t1, ..., tn, x1, ..., xm) = 0.

This set A is called Diophantine over R.

Now we state an example of a Diophantine set over Z.



4

Example 2.6. The set of even integers

{y ∈ Z|∃x ∈ Z : y = 2x}

is a Diophantine set over Z.

Yuri Matiyasevich, Martin Davis, Hilary Putnam, and Julia Robinson proved the

following theorem that we will refer to as the MDPR Theorem.

Theorem 2.7. Diophantine sets of tuples of nonnegative integers are the same as

computably enumerable sets.

There are two immediate corollaries of the MDPR Theorem.

Corollary 2.8. There are Diophantine sets which are undecidable.

Corollary 2.9. HTP is unsolvable.

Proof. Indeed, suppose A ⊂ Z is a non-recursive Diophantine set with a Diophantine

definition P (T,X1, . . . , Xk). Assume also that we have an algorithm to determine the

existence of integer solutions for polynomials. Now, let a ∈ Z and observe that a ∈ A

if and only if P (a,X1, . . . , XK) = 0 has solutions in Zk. So if we can answer Hilbert’s

question algorithmically, we can determine the membership in A algorithmically.

2.2 Some Examples of Computable and Non-computable Sets

An example of a decidable set is the set of all primes. The set of all primes is

decidable because we can test algorithmically for primality. Now we consider whether

a subset of all the primes is decidable or not.

Claim 2.10. Let P = {2, 3, 5, ...} = {P1, P2, P3, ...} be the set of all primes. Let

A = {Pi1 , ..., Pik , ..} be a subset of primes. Let I = {i1, ..., ik, ...} be the indexes of the

primes in A. In this case, A is decidable if and only if I is decidable.
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Proof. Suppose I is decidable. Let n ∈ Z≥0 and consider the following procedure for

determining whether n ∈ A.

Procedure:

1. Determine if n is a prime. If not, then n /∈ A. If yes, proceed to step 2.

2. Find i such that n = Pi. List P until n occurs.

3. Check whether i ∈ I. If yes, n ∈ A. If no, n /∈ A.

Conversely, assume A is decidable. We will show I is decidable. Let i ∈ Z>0 be given.

Consider the procedure below to determine whether i ∈ I.

Procedure:

1. Find Pi. That is, list P1, P2, ..., Pi until we reach Pi.

2. Check whether Pi ∈ A. If yes, i ∈ I. If not, i /∈ I.

2.3 Computable and Non-computable Rings and Fields

Definition 2.11. A ring R is recursive (computable) if there exists an injective map

j : R→ Z≥0 such that

1. j(R) is computable

2. {(j(a), j(b), j(c))|c = a+ b} is computable.

3. {(j(a), j(b), j(c))|c = ab} is computable.

We observe that Z and Q are recursive, since the set of all integers can be rep-

resented as a pair of non-negative integers (a, b), where a = 0 if the integer is non-

negative and a = 1 otherwise, and b is the absolute value of the integer. Similarly, Q
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can be represented by a triple of non-negative integers. Further, it is easy to describe

addition, multiplication, and division using these codes.

We continue with two examples which show that it is not hard to construct rings

and fields that are not computable.

Example 2.12. Let I be an undecidable set and let A = {Pi|i ∈ I} be an undecidable

set of primes. Then we have that F = Q(
√
Pi, i ∈ I) is an undecidable field.

Example 2.13. Let I be an undecidable set of primes and let S = {Pi|i ∈ I}. Then

we have that OQ,S = {m
n
|m ∈ Z, n ∈ Z6=0, n is divisible by primes in S only} is an

undecidable ring.

In general we have the following result whose proof can be found in [8][Appendix

A].

Theorem 2.14. If R is a recursive integral domain and there is an algorithm to

determine if an element of R has an inverse, then

1. the fraction field of R is recursive,

2. any finite extension of the fraction field is recursive, and

3. the integral closure of R in a finite extension is recursive.



CHAPTER 3: Galois Theory

Our goal in this chapter is to survey the results from Galois Theory that will be

used to show the undecidability of Hilbert’s Tenth Problem over number fields. As a

general reference for this material we recommend [1] and [2]. All the fields we consider

below will be of characteristic zero. We start with the notion of field homomorphism.

Definition 3.1 (Field Homomorphism). Let K and L be fields and let σ : K −→ L

be such that σ(0K) = 0L and σ(1K) = 1L, and for any two elements x, y ∈ K we have

that σ(x + y) = σ(x) + σ(y) and σ(xy) = σ(x)σ(y). In this case, σ is called a field

homomorphism. If σ is a bijection, then σ is called an isomorphism. If K = L and σ

is a bijection, then σ is called an automorphism.

Remark 3.2. It is not hard to show that a field homomorphism sends multiplicative

and additive inverses to multiplicative and additive inverses.

We will now discuss several important properties of fields and homomorphisms.

Proposition 3.3. If σ : Q→ Q is a homomorphism, then σ is the identity map.

Proof. Since σ is a homomorphism for both addition and multiplication, we have that

σ(0) = 0 and σ(1) = 1. By induction, for n ∈ Z>0 we have

σ(n) = σ(1 + 1 + ...+ 1︸ ︷︷ ︸
n times

) = σ(1) + σ(1) + ...+ σ(1)︸ ︷︷ ︸
n times

= 1 + 1 + ...+ 1︸ ︷︷ ︸
n times

= n.

Since σ(−x) = −σ(x) for all x ∈ Q, we have that σ(−n) = −σ(n) = −n for all

n ∈ Z>0. Similarly, for any x ∈ Q∗, σ
(

1

x

)
=

1

σ(x)
, and therefore for any m ∈ Z6=0

we have σ

(
1

m

)
=

1

σ(m)
=

1

m
. Finally, let x = P

Q
be any non-zero element of Q with

Q 6= 0, and observe that σ(x) = σ

(
P

Q

)
=
σ(P )

σ(Q)
=
P

Q
.
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Corollary 3.4. The only automorphism of Q is the identity map.

Definition 3.5. A field G is algebraically closed if every polynomial over G has a

root in G.

Definition 3.6. If F is a field, then the algebraic closure of F is the smallest alge-

braically closed field containing F .

Definition 3.7. Let E be an algebraic extension of a field F . In this case, α ∈ E

and β ∈ E are called conjugate over F if irr(α, F ) = irr(β, F ), where irr(α, F ) is

the monic irreducible polynomial for α over F and irr(β, F ) is the monic irreducible

polynomial for β over F . In particular, α and β are zeros of the same irreducible

monic polynomial over F .

Proposition 3.8. Let G/F be a finite extension generated by α ∈ G. Let 1, α, ..., αn−1

be the basis of G/F generated by powers of α. In this case, αj =
∑n−1

i=1 Ai,jα
i,

where Ai,j depend only on i and j and the irreducible polynomial of α. More specif-

ically, Ai,j is a fixed polynomial in the coefficients of irr(α, F ). In other words,

Ai,j = Pi,j(B0, . . . , Bn−1), where B0, . . . , Bn−1 are the coefficients of the irreducible

polynomial of α over F and each Pi,j(x0, . . . , xn−1) ∈ F [xo, ..., xn−1] is fixed.

Proof. We proceed by induction.

Base Case:

For j = 0, ..., n− 1, we have Pi,i = 1 for i = j and Pi,j = 0 for i 6= j.

Induction Step:

Assume for j ≤ k, we have αj =
∑n−1

i=0 Ai,jα
i. We want to show αk+1 =

∑n−1
i=0 Ai,k+1α

i.

We have αn +Bn−1α
n−1 + ...+B0 = 0. Multiplying by αm, we obtain

αn+m +Bn−1α
n−1+m + ...+B0α

m = 0.
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Now assuming k + 1 ≥ n and k + 1− n = m, we obtain

αk+1 +Bn−1α
k + ...+B0α

m = 0.

Thus,

αk+1 = −
n−1∑
r=1

Bn−rα
k−r+1.

By the induction hypothesis, we have

αk+1 = −
n−1∑
r=1

Bn−r

n−1∑
i=0

Ai,k−r+1α
i.

Thus,

αk+1 =
n−1∑
i=0

n−1∑
r=1

Ai,k−r+1Bn−rα
i

=
n−1∑
i=0

αi

(
n−1∑
r=1

Ai,k−r+1Bn−r

)
,

where
∑n−1

r=1 Ai,k−r+1Bn−r is a polynomial in B0, . . . , Bn−1 depending only on i, k, and

n.

Theorem 3.9. Let F be a field and let α and β be conjugate over F with

deg(α, F ) = deg(β, F ) = n,

where deg(α, F ) is the degree of α over F and deg(β, F ) is the degree of β over F .

In this case,

Ψα,β : F (α)→ F (β)
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defined by

Ψα,β(a0 + a1α + ...+ an−1α
n−1) = a0 + a1β + ...+ an−1β

n−1

is an isomorphism of fields.

Proof. By definition, we have

Ψα,β(a0 + a1α + ...+ an−1α
n−1) = a0 + a1β + ...+ an−1β

n−1 ∈ F (β).

Thus, we have a well-defined map whose domain is all of F (α).

We now show that Ψα,β is a homomorphism of fields. For addition, we have

Ψα,β

(
n−1∑
i=0

aiα
i +

n−1∑
i=0

biα
i

)
= Ψα,β

(
n−1∑
i=0

(ai + bi)α
i

)
(by the distributive law)

=
n−1∑
i=0

(ai + bi)β
i (by definition)

=
n−1∑
i=0

aiβ
i +

n−1∑
i=0

biβ
i (by distributivity)

= Ψα,β

(
n−1∑
i=0

aiα
i

)
+ Ψα,β

(
n−1∑
i=0

biα
i

)
(by definition)

For multiplication, we have the following equalities which hold in part by Proposi-

tion 3.8 (we are using the same notation as in this proposition)

Ψα,β

((
n−1∑
i=0

aiα
i

)(
n−1∑
j=0

bjα
j

))
= Ψα,β

(
n−1∑
i,j=0

aibjα
i+j

)

= Ψα,β

((
n−1∑
i,j=0

aibj

)(
n−1∑
k=0

Ai+j,kα
k

))

= Ψα,β

(
n−1∑
k=0

(
2n−2∑
m=0

n−1∑
i+j=m;i,j=0

Am,kaibj

)
αk

)



11

=
n−1∑
k=0

(
2n−2∑
m=0

n−1∑
i+j=m;i,j=0

Am,kaibj

)
βk

=

(
n−1∑
i,j=0

aibj

)(
n−1∑
k=0

Ai+j,kβ
k

)

=
n−1∑
i,j=0

aibjβ
i+j(since β and α are conjugates)

=

(
n−1∑
i=0

aiβ
i

)(
n−1∑
j=0

bjβ
j

)

= Ψα,β

(
n−1∑
i=0

aiα
i

)
Ψα,β

(
n−1∑
j=0

bjα
j

)

Now, we must show that Ψα,β is a bijection. First note that Ψα,β is onto since every

element of F (β) is of the form
∑n−1

i=0 aiβ
i = Ψα,β(

∑n−1
i=0 aiα

i). Now, let us show that

Ψα,β is one-to-one. Suppose Ψα,β(
∑n−1

i=0 aiα
i) = Ψα,β(

∑n−1
i=0 biα

i). In this case, we have

(
∑n−1

i=0 aiβ
i) = (

∑n−1
i=0 biβ

i). Thus, ai = bi for i = 0, 1, ..., n− 1, since {1, . . . , βn−1} is

a basis of F (β) over F . Hence,
∑n−1

i=0 aiα
i =

∑n−1
i=0 biα

i.

The following lemma is a generalization of the previous theorem.

Lemma 3.10. Let F and F ′ be fields and let α be algebraic over F and β be algebraic

over F ′. Further, let p(x) =irr(α, F ) and q(x) =irr(β, F ′). Let σ : F −→ F ′ be an

isomorphism of fields such that

σ(p(x)) = q(x).

Now extend

σ : F (α)→ F ′(β)
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by setting

σ

n−1=deg(p(x))−1∑
i=0

aiα
i

 =

n−1=deg(p(x))−1∑
i=0

σ(ai)β
i

for any n-tuple a0, . . . , an−1 ∈ F . In this case, the extended σ is an isomorphism of

fields.

Proof. First notice that we have p(x) is irreducible if and only if q(x) is irreducible.

That is, deg(p(x)) = deg(q(x)). Thus, we have that the extended σ is a bijection

because {1, α, .., αn−1} and {1, β, ..., βn−1} are bases of F (α) over F and F ′(β) over

F ′ respectively and because σ is a bijection.

Now it remains to show that the extended σ is a homomorphism. Here we use the

fact that we are working with fields of characteristic zero. For any i ∈ Z≥0, we have

that

αi =
n−1∑
j=0

Ai,jα
j =

n−1∑
j=0

Qi,j(a0, ..., an−1)αj,

where Ai,j = Qi,j(a0, ..., an−1), a0 + a1x+ . . .+xn = irr(α, F ), and Qi,j(x0, ..., xn−1) ∈

Q[x0, ..., xn−1] is a fixed polynomial over Q depending on i, j and n only by Proposition

3.8. First we see that

σ(Ai,j) = σ(Qi,j(a0, ..., an−1)) = Qi,j(σ(a0), ..., σ(an−1)),

since the coefficients of Qi,j are in Q and are not be moved by σ by Proposition 3.3.

Let x =
∑n−1

i=0 ciα
i and y =

∑n−1
i=0 biα

i where ci ∈ F and bi ∈ F . For addition, we

have

σ(x+ y) = σ

(
n−1∑
i=0

ciα
i +

n−1∑
i=0

biα
i

)

= σ

(
n−1∑
i=0

(ci + bi)α
i

)
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=
n−1∑
i=0

(ci + bi)β
i

=
n−1∑
i=0

ciβ
i +

n−1∑
i=0

biβ
i

=
n−1∑
i=0

σ(ci)β
i +

n−1∑
i=0

σ(bi)β
i.

For multiplication, we have

σ(xy) = σ

((
n−1∑
i=0

ciα
i

)(
n−1∑
j=0

bjα
j

))

= σ

(
n−1∑
i,j=0

cibjα
i+j

)

= σ

(
n−2∑
k=0

(∑
i+j=k

cibj

)
αk

)

= σ

(
n−2∑
k=0

(
k∑
r=0

crbk−r

)(
n−1∑
i=0

Qi,k(a0, ..., an−1)αi

))

= σ

(
n−1∑
i=0

(
n−2∑
k=0

k∑
r=0

crbk−rQi,k(a0, ..., an−1)

)
αi

)

=
n−1∑
i=0

(
n−2∑
k=0

k∑
r=0

σ(cr)σ(bk−r)Qi,k (σ(a0), ..., σ(an−1))

)
βi

=

(
n−1∑
i=0

σ(ci)β
i

)(
n−1∑
j=0

σ(bj)β
i

)

= σ(x)σ(y).

Thus, σ is a homomorphism.

We continue with more properties of field homomorphisms.

Proposition 3.11. Let F be a field and let α be algebraic over F . Let F̄ be the

algebraic closure of F . Let Ψ : F (α) → F̄ with Ψ|F = id. In this case, Ψ(α) is a



14

conjugate of α over F in the algebraic closure.

Proof. Let f(T ) = ao + a1T + ... + T n be the irr(α, F ). We have that f(α) = 0.

Furthermore, for ai ∈ F , we have a0 + a1α + ...+ αn. Thus, we have

a0 + a1Ψ(α) + ...+ (Ψ(α))n = 0.

Definition 3.12. If σ is an isomorphism of F onto some field, then an element a of

E is fixed by σ if σ(a) = a. Furthermore, a collection S of isomorphisms of E leaves

a subfield F of E fixed if each a ∈ F is fixed by every σ ∈ S. In addition, we say that

σ leaves F fixed if S = {σ} leaves F fixed.

Theorem 3.13. Let {σi, i ∈ I} be a collection of isomorphisms of a field E. Then

E{σi} = {a ∈ E|σi(a) = a for all i ∈ I} is a subfield of E.

Proof. First note that {0, 1} ∈ E by the definition of isomorphism. Let a ∈ E{σi}

and b ∈ E{σi}. Then we have that σi(a + b) = σi(a) + σi(b) = a + b and σi(a − b) =

σi(a)− σi(b) = a− b. In addition, we have σi(ab) = σi(a)σi(b) = ab, and for b 6= 0 we

have σi

(a
b

)
=
σi(a)

σi(b)
=
a

b
.

Theorem 3.14. The set of all automorphisms of a field E is a group under compo-

sition.

Proof. Let σ : E → E and τ : E → E be automorphisms. That is, σ and τ are

bijections and isomorphisms. We must show that σ ◦ τ is a bijection and that σ ◦ τ is

a homomorphism. First we know that a composition of two bijections is a bijection

itself. Thus, it remains to show σ ◦ τ is a homomorphism. Let x ∈ E and y ∈ E.



15

Then we have

(σ ◦ τ)(x+ y) = σ(τ(x+ y))

= σ(τ(x) + τ(y)) since τ is a homomorphism

= σ(τ(x)) + σ(τ(y)) since σ is a homomorphism

= (σ ◦ τ)(x) + (σ ◦ τ)(y)

and

(σ ◦ τ)(xy) = σ(τ(xy))

= σ(τ(x)τ(y)) since τ is a homomorphism

= σ(τ(x))σ(τ(y)) since σ is a homomorphism

= ((σ ◦ τ)(x))((σ ◦ τ)(y)).

Also, we have that the identity map is an automorphism of E and the inverse of an

automorphism is also an automorphism of E. Thus, we have that E is a group under

function composition.

Theorem 3.15. Let E be a field and let F be a subfield of E. Then the set G(E/F )

of all automorphisms of E leaving F fixed is a group and F ⊆ EG(E/F ).

Proof. Let σ and τ be automorphisms of E fixing F . We need to show that σ ◦ τ

also fixes F . If x ∈ F , then we have (σ ◦ τ)(x) = σ(τ(x)) = σ(x) = x. Also, note

that the identity automorphism is in G(E/F ) and furthermore that σ−1 ∈ G(E/F ).

Therefore, we now have that G(E/F ) is a subgroup of the group of all automorphisms

of E.

Definition 3.16. In Theorem 3.15, the groupG(E/F ) is the group of automorphisms
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of E fixing F is also called the group of E over F .

To prove the Isomorphism Extension Theorem, we will need to use Zorn’s Lemma

(an alternative to Axiom of Choice). The following definition explains the necessary

terms.

Definition 3.17. A subset T of a partially ordered set S is a chain if every two

elements a ∈ T and b ∈ T are comparable.

Lemma 3.18 (Zorn’s Lemma). If a partially ordered set S is such that every chain

in S has an upper bound in S, then S has at least one maximal element.

We now prove the Isomorphism Extension Theorem.

Theorem 3.19 (Isomorphism Extension Theorem). Let E/F be an algebraic exten-

sion of fields. Let σ : F → F ′ be an isomorphism. Furthermore, let F̄ ′ be the algebraic

closure of F ′. In this case, σ can be extended to an isomorphism τ : E → E ′ ⊂ F̄ ′

such that τ(a) = σ(a) for all a ∈ F .

Proof. Consider the set of all pairs (L, λ) where L is a subfield of E containing F ,

F ⊆ L ⊆ E and λ : L → L′ ⊂ F̄ ′ is an isomorphism such that λ|F = σ. Observe

that S is not empty since (F, σ) ∈ S. So we can also define a partial ordering on S

by setting (L1, λ1) ≤ (L2, λ2) to mean F ⊆ L1 ⊆ L2 and λ2|L1 = λ1.

Let I be any index set. Let T = {(Hi, λi)|i ∈ I} be a chain in S. Let H = ∪i∈IHi

and note that H ⊆ E is a field. Indeed, let a ∈ H and b ∈ H. Since H = ∪i∈IHi,

then there exists i1 ∈ I and i2 ∈ I such that a ∈ Hi1 and b ∈ Hi2 . Since T is a chain,

it is totally ordered, and we must have Hi1 ⊆ Hi2 or Hi2 ⊆ Hi1 . Without loss of

generality, assume Hi1 ⊆ Hi2 and observe that now a, b ∈ Hi2 and a+b, a−b, a
b

for b 6=

0,
b

a
for a 6= 0 are all in Hi2 ⊆ H.

Next define λ : H → H ′ ⊂ F̄ ′ by setting λ(c) = λi(c), where ci ∈ Hi. We need to
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show that λ(c) does not depend on the choice of i. If c ∈ Hj for j 6= i, then either

(Hj, λj) ≤ (Hi, λi) or (Hi, λi) ≤ (Hj, λj). In the first case, we have λi|Hj = λj and

therefore λi(c) = λj(c) = λ(c). In the second case, we have λj|Hi = λi and therefore

λj(c) = λi(c) = λ(c). Thus, λ is well-defined.

Now we show that λ is an injective homomorphism. First let us show that λ is

injective. Let a, b ∈ H and assume λ(a) = λ(b). As above, there exists Hi such that

a, b ∈ Hi and λ(a) = λ(b) = λi(a) = λi(b), but a = b since λi is injective.

Next, we show that λ is a homomorphism. Let a, b ∈ H and let Hi be such that

a, b ∈ Hi which implies that a + b ∈ Hi and ab ∈ Hi. In this case, since λi is a

homomorphism we have

λ(a+ b) = λi(a+ b)

= λi(a) + λi(b)

= λ(a) + λ(b),

and we also have

λ(ab) = λi(ab)

= (λi(a))(λi(b))

= (λ(a))(λ(b)).

Thus, we have shown that (H,λ) ∈ S and (H,λ) is an upper bound for T , Zorn’s

Lemma applies, and S contains a maximal element (τ,K). Let τ : K → K ′ ⊂ F̄ ′.

If K = E, we are done. If K 6= E, then since (K, τ) ∈ S and K $ E, there exists

α ∈ E \K. Since α is algebraic over F , α is algebraic over K. Let p(x) = irr(α,K)

and furthermore let q(x) = τ(p(x)). Let β ∈ F̄ ′ be a root of q(x). By Lemma 3.10,
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there exists an isomorphism τ ′ : K(α)→ τ(K(β)), which contradicts the assumption

that (K, τ) was a maximal element of S. Thus, K = E.

Definition 3.20. Let F be a field with algebraic closure F̄ . Let {fi(x)|i ∈ I} ⊂ F [x].

A field E ⊆ F̄ is a splitting field of {fi(x)|i ∈ I} over F , if it is the smallest field

containing F with all the zeros of fi(x) for each i. A field K ⊆ F̄ is a splitting field

if it is a splitting field of some collection of polynomials over F and F ⊆ K.

Proposition 3.21. Let I be an index set. Let F be a field with algebraic closure

F̄ . Let A = {αi|i ∈ I} ⊂ F̄ be the set of all roots of a collection of one-variable

polynomials over F . Further, let B = {βj|j ∈ J} where βj =
∏

i∈I α
ai,j
i and there are

only finitely many ai,j that are not zero. Let G = {γk|k ∈ K} where γk =
∑
xj,kβj

is a finite linear combination with xj,k ∈ F . Lastly, let D = {δl|l ∈ L} where δl is a

ratio of two elements from G with the denominator element not equal to zero. In this

case, we have that D = {δl|l ∈ L} is a field and is the smallest field containing F and

A, and thus a splitting field of the collection of polynomials corresponding to A.

Proof. First we see that 0, 1 ∈ D since 0, 1 ∈ F . Note also that sums and products

of linear combinations in G are linear combinations in G. Thus, the sum and the

product of two elements in D is in D. Therefore, D ⊂ F̄ must be a field.

Theorem 3.22. A field E with F ⊆ E ⊆ F̄ is a splitting field over F if and only if

for every σ : F̄ → F̄ such that σ|F = id, we have that σ(E) = E.

Proof. Assume E is a splitting field and σ is an automorphism of F̄ fixing F . Let

y ∈ E. In this case, in the notation of Proposition 3.21, we have

y =
γ1

γ2

=
Q1(α1, ..., αk)

Q2(α1, ..., αk)
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where Q1, Q2 ∈ F [x1, ..., xk]. Now as σ leaves F fixed, we have

σ(y) =
Q1(σ(α1), ..., σ(αk))

Q2(σ(α1), ..., σ(αk))
∈ E

since roots go to roots in F̄ .

Conversely, suppose σ(E) = E for any automorphism σ of F̄ . We will show E is a

splitting field. If E = F , this covers the polynomial case where deg(p(x)) = 1 and

nothing else. So now assume E 6= F . We will show E contains all the roots of any

irreducible over F polynomial with roots in E. If F $ E, let α ∈ E \ F and g(x) =

irr(α, F ). Let σ : F (α)→ F (β) where β is conjugate of α over F . We have previously

shown

1. σ is an isomorphism (by Theorem 3.9), and

2. we can extend σ to F̄ (by Lemma 3.10).

Thus, β ∈ E.

Next, we prove two lemmas and a theorem in order to state and prove the Main

Theorem of Galois Theory.

Lemma 3.23. Let F be a field and let F̄ be the algebraic closure. In characteristic

zero, if g(x) is irreducible over F , then in F̄ all roots of g(x) are distinct.

Proof. Assusme g(x) has a root a of multiplicity n > 1. In F̄ , factor g(x) =

(x− a)nh(x) and note that gcd(h(x), (x− a)) = 1. Thus, we have that

g′(x) = n(x− a)n−1h(x) + h′(x)(x− a)n 6= 0

since n(x− a)n−1h(x) 6= 0, and therefore g′ is divisible by at most n − 1-st power

of (x − a). At the same time, gcd(g(x), g′(x)) = (x− a)n−1f(x) 6= g(x) for some
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f(x) ∈ F [x] prime to (x − a). Hence, h(x) would have a non-trivial factor over F ,

but this cannot be true. Thus, all roots are distinct.

Definition 3.24. A finite extension E/F is a separable extension if every irreducible

polynomial over F does not have multiple roots in E.

Theorem 3.25 (Primitive Element Theorem). If E/F is a finite separable extension

of infinite fields, then E = F (α) for some α ∈ E. In this case, α is called a primitive

element and E/F is called a simple extension.

Proof. Assume E = F (β, γ). Let β1 = β, ..., βn be all the conjugates of β over F and

γ = γ1, ..., γm be the conjugates of γ over F . All conjugates are distinct since the

extension is separable. Since F is infinite, we can find a ∈ F such that a 6= (βi − β)

(γ − γj)
for i = 1, ..., n and j = 2, ...m. Thus, a(γ − γj) 6= (βi − β).

Now let α = β + aγ and f(x) = irr(β, F ). Let h(x) = f(α − ax) ∈ (F (α))[x]. Then

we have h(γ) = f(α − aγ) = f(β) = 0, but h(γj) = f(α − aγj) 6= f(βi) for any i

and for j 6= 1. Therefore, h(γj) 6= 0 for j > 1. Indeed, we have α = β + aγ 6= βi ⇔

α− aγj = β + aγ − aγj 6= βi for any i. The last non-equality holds because

β + aγ = aγj + βi ⇒ β − βi = a(γj − γ)

but this contradicts the fact that a 6= (βi − β)

(γ − γj)
. Therefore, h(x) 6= 0 for any γ2, ..., γm.

Now let g(x) = irr(γ, F ). In this case, h(x) and g(x) have a common root. Hence,

h(x) has a linear factor (x− γ) ∈ (F (α))[x]. Thus, γ ∈ F (α).

Now since γ ∈ F (α), then for a ∈ F we have aγ ∈ F (α). Additionally, we have that

α = β − aγ ∈ F (α). Thus, (β − aγ) + (aγ) ∈ F (α) and hence β ∈ F (α).

We have shown F (β, γ) ⊆ F (α). Since α = β − aγ, we have F (α) ⊂ F (β, γ).

Therefore, F (β, γ) = F (α). That is, if we have a finite separable extension with two



21

generators, then we can reduce the number of generators to one. By induction, any

number of finite generators can be reduced to one.

Lemma 3.26. Let F be a field and F̄ be the algebraic closure of F . Further, let M

be a field such that F ⊆ M ⊆ F̄ and the extension M/F is finite and separable. In

this case, we have the number of injective homomorphisms σ such that σ : M → F̄

and σ|F = id is the degree of the extension [M : F ].

Proof. Since the extension M/F is finite and separable, by the Primitive Element

Theorem we have that it is simple. That is, the extension M/F is generated by a

single element α. Any injective homomorphism σ such that σ : M → F̄ and σ|F = id

must send α to a conjugate over F by Proposition 3.11, and every conjugate of α

over F also generates an injective homomorphism σ with the required properties by

Theorem 3.9. Thus, the number of such injective homomorphisms is exactly the

number of conjugates of α over F , which is the degree of the extension.

Remark 3.27. In this thesis, we have assumed that the characteristic of all the fields

under consideration is zero. In this case, all the extensions are separable.

We now define the Galois group and proceed to state the Main Theorem of Galois

Theory.

Definition 3.28. Let K be a separable splitting field over F and let K be a finite

extension of F . In this case, we say that K is a finite normal extension of F .

Definition 3.29. Let K be a finite normal extension over F . In this case, we say

G(K/F ), as defined above, is the Galois group of K over F . Further, the extension

K/F is called a Galois extension.

Theorem 3.30 (Main Theorem of Galois Theory). Let K be a finite normal extension

of a field F with a Galois group G(K/F ). For a field E where F ⊆ E ⊆ K, let
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λ(E) ⊆ G(K/F ) be the subgroup containing all the elements of G(K/F ) fixing E. In

this case,

λ : {intermediate fields between K and F} → {subgroups of G(K/F )}

is one-to-one. Further, λ has the following properties:

1. λ(E) = G(K/E).

2. E = KG(K/E) = Kλ(E), where KG(K/E) is the set of elements fixed by the Galois

group of K over E and Kλ(E) is the set of elements fixed by λ(E).

3. If H ⊆ G(K/E), then λ(KH) = H, where KH is the set of elements fixed by H.

4. [K : E] = |λ(E)| and [E : F ] = [G(K/F ) : λ(E)] = the number of left cosets of

λ(E) in G(K/F ).

5. E is a normal extension of F if and only if λ(E) is a normal subgroup of

G(K/F ). Also if λ(E) is a normal subgroup of G(K/F ), then

G(E/F ) =
G(K/F )

G(K/E)
.

6. Subfields of K containing F are in bijection with subgroups of G(K/F ).

Proof. We will prove each property separately.

1. First clearly we have λ(E) ⊆ G(K/E) since λ(E) is the subgroup of G(K/F )

keeping E fixed. Now we must show G(K/E) ⊆ λ(E). If σ ∈ G(K/E), then

σ is an automorphism of K keeping E fixed and therefore F fixed. Thus,

σ ∈ G(K/F ). Hence, G(K/E) ⊆ λ(E). Therefore, λ(E) = G(K/E).
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2. Notice that we have E ⊆ KG(K/E) since KG(K/E) is a fixed field of G(K/E).

Now we must show KG(K/E) ⊆ E. Let α ∈ K \ E. Let f(x) = irr(α,E).

There exists σ : E(α) → E(β), where β is a conjugate over α over E. By

the Isomorphism Extension Theorem, we can extend σ to F̄ . Note that σ

keeps E fixed. Since K/F is normal, σ is an automorphism of K. That is,

σ ∈ λ(E) = G(K/E) ⊂ G(K/F ), and in particular, KG(K/E) ⊆ E. Thus,

KG(K/E) = E. This shows λ is one to one.

3. We will show that λ is onto. Clearly, H ⊆ λ(KH). We need to show equality.

Suppose H $ λ(KH). By the Primitive Element Theorem, K = KH(α). Let

n = [K : KH ] = |G(K/KH)|.

If H $ λ(KH) = G(K/KH), then we have |H| < n. Let σ1, .., σ|H| be all the

elements of H, and consider f(x) =
∏|H|

i=1(x−σi(α)) where deg(f(x)) = |H| < n.

We claim that the coefficients of f(x) are in H. Indeed, since coefficients of f are

symmetric functions of {σ1(α), ..., σ|H|(α)} = A, where σ1(α), ..., σ|H|(α) ∈ K

and σ(A) = A for any σ ∈ H, we have [K : KH ] = [KH(α) : K] ≤ |H| < n

since σ(σi(α)) = σ ◦ σi(α) = σj(α) because H is a group. Thus, we arrive at a

contradiction.

4. We have already shown that for any intermediate field E it is the case that

[K : E] = |λ(E)|. Thus, it remains to show [E : F ] = [G(K/F ) : λ(E)]. First

notice that we have [K : E] = G(K/E) ⊂ G(K/F ) and [K : F ] = |G(K/F )|

and [K : E][E : F ] = [K : F ]. Thus,

[E : F ] =
[K : F ]

[K : E]
=
|G(K/F )|
|G(K/E)|

=
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index of G(K/E) in G(K/F ) = number of left cosets.

5. Assume G(K/E) B G(K/F ). To show that E is normal over F , it is enough to

show that for any σ : E → F̄ such that σF = id it is the case that σ(E) = E.

Any such σ can be extended to σ : K → F̄ and since K is normal over F , we

have σ(K) = K so that it is enough to consider σ ∈ G(K/F ). We want to show

for all α ∈ E and all σ ∈ G(K/F ), we have σ(α) ∈ E.

By property 2, E is the fixed field of G(K/E). Thus, by definition of fixed field,

σ(α) ∈ E ⇔ ∀τ ∈ G(K/E), τ(σ(α)) = σ(α)

⇔ ∀τ ∈ G(K/E), σ−1 ◦ τ(σ(α)) = α

⇔ ∀τ̃ ∈ G(K/E), τ̃(α) = α,

where the last implication is true because G(K/E) is a normal subgroup in G(K/F )

and conjugation is an automorphism of the group.

Suppose now that E/F is a normal extension, let σ ∈ G(K/F ), τ ∈ G(K/E), α ∈ E

and note that as above, we have σ(α) ∈ E and τ(σ(α)) = σ(α) or σ−1(τ(σ(α))) = α.

Thus, σ−1 ◦ τ ◦ σ ∈ G(K/E) or G(K/E) is normal in G(K/F ).

We finish with the definitions of abelian and cyclic extensions and a corollary

concerning abelian and cyclic Galois groups we will need later.

Definition 3.31. A finite normal extension K of a field F is abelian over F if G(K/F )

is an abelian group.

Definition 3.32. A finite normal extension K of a field F is cyclic over F if G(K/F )

is a cyclic group.

Corollary 3.33 (Abelian and Cyclic Extensions).
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1. Any subgroup of an abelian group is normal and the quotient group is defined

and is also abelian.

2. If F/K is an abelian extension, then if we have an intermediate field E with

K ⊆ E ⊆ F , then E/K is Galois and abelian. In general, E/K is normal

if and only if G(F/E) is normal in G(F/K), the Galois group of F over K.

However, if G(F/K) is abelian, this is automatically true.

3. If G is a cyclic group, H ⊂ G a subgroup, then H is cyclic and G/H is cyclic.

4. If F/K is a cyclic extension, then if we have an intermediate field E with

K ⊆ E ⊆ F , then E/K is Galois and abelian.



CHAPTER 4: Diophantine Generation and Hilbert’s Tenth Problem

In this chapter we discuss the main results on extensions of Hilbert’s Tenth Prob-

lem to the rings of integers of number fields.

4.1 Diophantine Definitions and Field-Diophantine Definitions

In this section, we define the basic notions we need for the main results. First we

prove a proposition which will allow us to substitute a single polynomial equation for

a finite system of equations.

Proposition 4.1. Let K be a field which is not algebraically closed and let

h(x) = xn + an−1x
n−1 + ...+ a0

be a polynomial without roots in K. Let f(x) ∈ K[x] and g(x) ∈ K[x]. In this case,

for all x ∈ K, we have

a0g
n(x) + a1g

n−1(x)f(x) + ...+ anf
n(x) = 0

m

f(x) = 0 and g(x) = 0.

Proof. Assume f(x) = g(x) = 0. Using substitution, we obtain that

a0g
n(x) + a1g

n−1(x)f(x) + ...+ anf
n(x) = 0.
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Conversely, suppose

a0g
n(x) + a1g

n−1(x)f(x) + ...+ anf
n(x) = 0,

and also suppose g(x) 6= 0. In this case, dividing

a0g
n(x) + a1g

n−1(x)f(x) + ...+ anf
n(x) = 0

by gn(x), we obtain

a0 + a1

(
f(x)

g(x)

)
+ a2

(
f(x)

g(x)

)2

+ ...+ an

(
f(x)

g(x)

)n
= 0.

This implies that f(x)
g(x)

is a root of h in K.

Now let

h̄(y) = aoy
n + a1y

n−1 + ...+ an.

We claim that h̄(y) has no roots in K. Suppose h̄(y) = 0 for some y ∈ K. Since

an 6= 0, we conclude that y 6= 0, and we can set x =
1

y
6= 0 ∈ K. Now we have that

h̄

(
1

x

)
= ao

(
1

x

)n
+ a1

(
1

x

)n−1

+ ...+ an = 0.

Multiplying both sides by xn, we obtain a0 + a1x+ ...+ anx
n = 0, which is a contra-

diction of our assumption on h.

Now assume

a0g
n(x) + a1g

n−1(x)f(x) + ...+ anf
n(x) = 0,
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but f(x) 6= 0. Dividing the left side by fn(x), we obtain

a0

(
gn(x)

fn(x)

)
+ a1

(
gn−1(x)

fn−1(x)

)
+ ...+ an = 0.

This implies that h̄

(
g(x)

f(x)

)
= 0, which is a contradiction to the fact that h̄(y) has

no roots in K.

Thus, if a0g
n(x) + a1g

n−1(x)f(x) + ...+ anf
n(x) = 0, then f(x) = g(x) = 0.

From this proposition we immediately conclude the following corollary.

Corollary 4.2. If R is a recursive integral domain with a fraction field which is not

integrally closed, then there exists an algorithm for determining if a single arbitrary

polynomial equation has solutions in R if and only if there exists an algorithm to

determine whether an arbitrary finite system of polynomial equations has solutions in

R.

We now review the notions of Diophantine sets and Diophantine definitions first

discussed in the introduction.

Definition 4.3. Let R be an integral domain. Let m and n be positive integers. Let

A ⊂ Rn. We say A has a Diophantine definition over R if there exists a polynomial

f(y1, ..., yn, x1, ..., xm) ∈ R[y1, .., yn, x1, ..., xm]

such that for all (t1, ..., tn) ∈ Rn, we have

(t1, ..., tn) ∈ A⇔ ∃x1, ..., xm ∈ R, f(t1, ..., tn, x1, ..., xm) = 0.

This set A is called Diophantine over R.
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Now we will modify the notion of Diophantine definition to establish the notion

of field-Diophantine definition.

Definition 4.4. Let R be an integral domain with a quotient field F . Let k and m

be positive integers. Let A ⊂ F k. Assume that there exists a polynomial

f(a1, ..., ak, b, x1, ..., xm)

with coefficents in R such that

∀a1, ..., ak, b, x1, ..., xm ∈ R,

f(a1, ..., ak, b, x1, ..., xm) = 0⇒ b 6= 0

and

A = {(t1, ..., tk) ∈ F k | ∃a1, ..., ak, b, x1, ..., xm ∈ R,

bt1 = a1, ..., btk = ak, f(a1, ..., ak, b, x1, ..., xm) = 0}.

In this case, we say that A is field-Diophantine over R and will call f a field-

Diophantine definition of A over R.

Remark 4.5. It is not hard to see that if R is an integral domain with a quotient

field F , then a subset A of Rk has a Diophantine definition over R if and only if A

has a field-Diophantine definition over R. Indeed, a Diophantine definition is a field-

Diophantine definition with b as above set to 1. Conversely, if f(y1, ..., yk, z, x1, ..., xm)

is a field-Diophantine of a set A ⊂ Rk, then

g(y1, . . . , yk, z, x1, . . . , xm) = f(zy1, ..., zyk, z, x1, ..., xm)
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is a Diophantine definition of A over Rk.

4.2 Coordinate Polynomials

We will now introduce coordinate polynomials in order to extend the notion of

Diophantine definition and the notion of field-Diophantine definition to the notion of

Diophantine generation.

Lemma 4.6. Let F/G be a finite field extension. Let Ω = {ω1, ..., ωn} be a basis of

F over G. Then for l = 1, 2..., n there exist

Pl(x1, ..., xn, y1, ..., yn) ∈ G[x1, ..., xn, y1, ..., yn]

depending on Ω only such that for all a1, .., an, b1, ...bn we have that

n∑
i=1

aiωi

n∑
j=1

bjωj =
n∑
l=1

Pl(a1, .., an, b1, ...bn)ωl.

Proof. Let {Ai,j,l ∈ G | i, j, l = 1, ..., n} be a set of elements of G such that ωiωj =∑n
l=1Ai,j,lωl. First note this set exists because F is a field. By associativity, distribu-

tivity, commutativity, and reordering, we have

n∑
i=1

aiωi

n∑
j=1

bjωj =
n∑
i=1

n∑
j=1

aiωibjωj

=
n∑
i=1

n∑
j=1

aibjωiωj

=
n∑

i,j=1

aibjωiωj

=
n∑

i,j=1

aibj

n∑
l=1

Ai,j,lωl
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=
n∑

i,j=1

n∑
l=1

aibjAi,j,lωl

=
n∑
l=1

n∑
i,j=1

aibjAi,j,lωl

=
n∑
l=1

(
n∑

i,j=1

aibjAi,j,l

)
ωl

=
n∑
l=1

Pl(a1, .., an, b1, ...bn)ωl

where Pl(a1, ..., an, b1, ..., bn) =
∑n

i,j=1 aibjAi,j,l.

In a similar manner, we can also prove the following lemma.

Lemma 4.7. Let F/G be a finite field extension and let Ω = {ω1, ..., ωn} be a basis

of F over G. Let a1, ..., an ∈ G. In this case, there exist

P1, ..., Pn, Q ∈ G[x1, ..., xn]

depending only on F,G, and Ω such that

n∑
i=1

aiωi 6= 0⇔
n∑
i=1

Pi(a1, ..., an)

Q(a1, ..., an)
ωi =

(
n∑
i=1

aiωi

)−1

where Q(a1, ..., an) 6= 0. That is,

(
n∑
i=1

Pi(a1, ..., an)

Q(a1, ..., an)
ωi

)(
n∑
i=1

aiωi

)
= 1

where Q(a1, ..., an) 6= 0.

Proof. Let 1 =
∑n

i=1Biωi, Bi ∈ G. Let
∑n

i=1 biωi, bi ∈ G be the inverse of the given
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element and consider the following sequence of equalities:

n∑
i=1

aiωi

n∑
i=1

biωi = 1,

n∑
l=1

Pl(a1, .., an, b1, ...bn)ωl =
n∑
l=1

(
n∑

i,j=1

aibjAi,j,l

)
ωl =

n∑
l=1

Blωl,

n∑
i,j=1

aibjAi,j,l = Bl, l = 1, . . . , n, and

n∑
j=1

(
n∑
i=1

aiAi,j,l

)
bj = Bl, l = 1, . . . , n.

Thus, we have a linear system in b1, . . . , bn with a unique solution. The matrix

C = (cl,j) corresponding to this system has an entry
∑n

i=1 aiAi,j,l in the position

corresponding to l-th row and j-th column, and each entry is a polynomial in the

coordinates of the original element and the elements of the set {Ai,j,l}, and this

polynomial depends on indexes j, l, and n only. Now the conclusion follows from

Cramer’s Rule and the fact that the determinant of a matrix is a fixed polynomial in

its entries which depends on the matrix size only.

Next we observe a formal property of sums.

Remark 4.8. If A, ai,j are elements of a field, then

A(a1,1 + ...+ a1,k) · · · (ab,1 + ...+ ab,k) =
∑

Aa1,s1a2,s2 ...ab,sb

where 1 ≤ si ≤ k.

Lemma 4.9. Let M/F be a finite field extension of degree k. Let Ω = {ω1, ..., ωk}
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be a basis of M over F . If P (T1, ..., Tm) ∈ F [T1, ..., Tm] then there exist polynomials

PΩ
1 (t1,1..., tm,k), ..., P

Ω
k (t1,1..., tm,k) such that

1. PΩ
1 , ..., P

Ω
k depend only on Ω and

2. P
(∑k

j=1 t1,jωj, ...,
∑k

j=1 tm,jωj

)
=
∑k

j=1 Pj
Ω(t1,1, ..., tm,k)ωj.

Proof. First by Lemma 4.6, we have

ωiωj =
k∑
r=1

Ai,j,rωr

where Ai,j,r ∈ F depend only on Ω. Thus by induction, for c1, . . . , ck ∈ Z≥0, we

obtain
k∏
i=1

ωcii =
k∑
r=1

Ac1,...,ck,rωr. (4.1)

Let deg(P ) = d and let

P (T1, ..., Tm) =
∑

j1+...+jm≤d, ji≥0

Bj1,...,jmT1
j1T2

j2 · · ·Tmjm

=
∑

j1+...+jm≤d,ji≥0

Bj1,...,jm

(
k∑
r=1

t1,rωr

)j1

· · ·

(
k∑
r=1

tm,rωr

)jm

.

To expand
(∑k

r=1 t1,rωr

)j1
· · ·
(∑k

r=1 tm,rωr

)jm
, we note that we have a product of
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the form
∏e

u=1

∑k
r=1 aur where e ≤ d and



au,r = t1,rwr for u = 1, ..., j1

au,r = t2,rwr for u = j1 + 1, ..., j1 + j2

...

au,r = tm,rwr for u = j1 + j2 + ...+ jm−1 + 1, ..., j1 + j2 + ...+ jm = e.

Now for e = j1 + ...+ jm, we have

Bj1,...,jm

(∑k
r=1 t1,rωr

)j1
· · ·
(∑k

r=1 tm,rωr

)jm
= Bj1,...,jm

∏e
u=1

∑k
r=1 au,r

= Bj1,...,jm

∑
s1,...,se

a1,s1 . . . ae,se , 1 ≤ si ≤ k (by Remark 4.8)

= Bj1,...,jm

∑
r1,1,...,rm,jm

(t1,r1,1 . . . t1,r1,j1 . . . tm,rm,1 . . . tm,rm,jm )(ωr1,1 . . . ωr1,j1 . . . ωrm,1 . . . ωrm,jm )

= Bj1,...,jm

∑
i=1,...,m,j=1,...,k,ai,j=1,...,ji

Ca1,1,...,am,k,j1,...,jm
∏

i=1,...,m,j=1,...,k t
ai,j
i,j

∏k
e=1 ω

be
e

= Bj1,...,jm

∏
i=1,...,d,j=1,...,k t

ai,j,j1,...,jm
i,j

∑k
r=1 Ab1,...,bk,rωr (from (4.1)),

where 1 ≤ ri,j ≤ k, 1 ≤ e ≤ k, 0 ≤ ai,j ≤ ji, be =
∑m

i=1 ai,e.

4.3 Diophantine Generation

We are now ready to address the central notion of this chapter – the Diophantine

generation. First we need a preliminary lemma.

Lemma 4.10. Let R be an integral domain with quotient field F . For some positive

integer k, let A ⊂ F k. Let m be a positive integer such that m ≤ k. Assume that A

has a field-Diophantine definition over R. Let

B = {(x1, ..., xr) ∈ F r|xi = Pi(y1, ..., ym),

(y1, ..., ym, Hm+1(y1, ..., ym), ..., Hk(y1, ..., ym)) ∈ A},
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where P1, ..., Pr, Hm+1, ..., Hk ∈ F [y1, ..., ym]. Then B also has a field-Diophantine

definition over R.

Proof. Let f(u1, ..., uk, u, z1, ..., zs) be a field-Diophantine definition of A over R. Now

if we let yi =
ui
u

for i = 1, ...,m we have

B = {(x1, ..., xr) ∈ F r|∃u1, ..., uk, u, z1, ..., zs ∈ R,

xi = Pi

(u1

u
, ...,

um
u

)
, i = 1, ..., r,

Hm+1

(u1

u
, ...,

um
u

)
, ..., Hk

(u1

u
, ...,

um
u

)
, f(u1, ..., uk, u, z1, ..., zs) = 0}.

Next if we let yj = Hj

(u1

u
, ...,

um
u

)
for j = m + 1, ..., k and use yj =

uj
u

for j =

m+ 1, ..., k, we can substitute and see that

yj =
uj
u

= Hj

(u1

u
, ...,

um
u

)
⇒ uj = uHj

(u1

u
, ...,

um
u

)

for j = m+ 1, ..., k. Now we obtain

B = {(x1, ..., xr) ∈ F r|∃u1, ..., uk, u, z1, ..., zs ∈ R,

xi = Pi

(u1

u
, ...,

um
u

)
, i = 1, ..., r,

uj = uHj

(u1

u
, ...,

um
u

)
, j = m+ 1, ..., k, f(u1, ..., uk, u, z1, ..., zs) = 0}.

Let dH be the highest degree of Hm+1, ..., Hk. Let DH be a common denominator of

all the coefficients of Hm+1, ..., Hk. Let

H̄j(u1, ..., um, u) = DHu
dHHj

(u1

u
, ...,

um
u

)

for j = m+ 1, ..., k. Here we used the fact that R is an integral domain with quotient
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field F to eliminate our denominators. Also, note that udH eliminates the u’s in the

denominators. Similarly, we let d be the highest degree of P1, ..., Pr, and let D be a

common denominator of all the coefficients of P1, ..., Pr in R. Let

P̄i(u1, ..., um, u) = udDPi

(u1

u
, ...,

um
u

)
∈ R[u1, ..., um, u]

for i = 1, ..., r. Thus, we now obtain

B = {(x1, ..., xr) ∈ F r|∃u1, ..., uk, u, z1, ..., zs ∈ R,

uH̄j(u1, ..., um, u) = DHu
dHuj, j = m+ 1, ..., k,

udDxi = P̄i(u1, ..., um, u), i = 1, ..., r, f(u1, ..., uk, u, z1, ..., zs) = 0},

and further obtain

B = {(x1, ..., xr) ∈ F r|∃u1, ..., uk, u, z1, ..., zs ∈ R,

uxi = ui, u = Dud, ui = P̄i(u1, ..., um, u), i = 1, ..., r,

H̄j(u1, ..., um, u) = DHu
dH−1uj, j = m+ 1, ..., k, f(u1, ..., uk, u, z1, ..., zs) = 0}.

Thus, B has a field-Diophantine definition over R.

Next, we define the notion of Diophantine generation, generalizing further the

notion of Diophantine definition.

Definition 4.11 (Diophantine Generation). Let R1 and R2 be two rings with quotient

fields F1 and F2 respectively. Assume that neither F1 nor F2 is algebraically closed.

Let F be a finite extension of F1 such that F2 ⊂ F . Also, assume that for some basis

Ω = {ω1, ..., ωk} of F over F1, there exists a polynomial f(a1, ..., ak, b, x1, ..., xm) with



37

coefficients in R1 such that

f(a1, ..., ak, b, x1, ..., xm) = 0⇒ b 6= 0

and

R2 = {
k∑
i=1

tiωi | ∃a1, ..., ak, b, x1, ..., xm ∈ R1,

bt1 = a1, ..., btk = ak, f(a1, ..., ak, b, x1, ..., xm) = 0}.

In this case, we say that R2 is Dioph-generated over R1 and denote this as

R2 ≤Dioph R1.

Further, we sayf(a1, ..., ak, b, x1, ..., xm) is a defining polynomial of R2 over R1. Ad-

ditionally, we say Ω = {ω1, ..., ωk} is a Diophantine basis of R2 over R1 and F is the

defining field for the basis Ω.

We now state an example of Diophantine generation.

Example 4.12. Let F/G be a finite extension of degree k with basis Ω of F over G.

Then we have that F ≤Dioph G since for each z ∈ F we can write z =
∑k

i=1 aiωi.

We now consider properties of Diophantine generation and prove that it is transi-

tive. First we state a lemma which follows directly from the definition of Diophantine

generation.

Lemma 4.13. Let R1 and R2 be integral domains with quotient fields F1 and F2

respectively. Let F be a finite extension of F1 such that F2 ⊂ F . In this case, we can

conclude that R2 ≤Dioph R1 if there exists a basis Ω = {ω1, .., ωk} of F over F1 and a
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set AΩ ⊂ F1
k with a field-Diophantine definition over R1 such that

R2 =

{
k∑
i=1

ziωi|(z1, ..., zk) ∈ AΩ

}
. (4.2)

Conversely, if F is a defining field and Ω is a corresponding Diophantine basis of

R2 over R1, then R2 has a representation of the form 4.2, where AΩ ⊂ F1
k is field-

Diophantine over R1.

Notation 4.14. AΩ will be called a defining set for the basis Ω.

Notation 4.15. Let G/F be a finite field extension. Let Ω = {ω1, ..., ωk} be a basis

of G over F . For some positive integer n, let B ⊂ Gn. Then define BΩ ⊂ F kn to be

the set such that

(a1,1, ..., ak.n) ∈ BΩ ⇔

(
k∑
i=1

ai,1ωi, ...,
k∑
i=1

ai,nωi

)
∈ B.

Using this notation for rings R1 and R2 such that R2 ≤Dioph R1 with a Diophantine

basis Ω as above, we can conclude by Lemma 4.13 that RΩ
2 ⊂ F n

1 is field Diophantine

over R1, where F1 is the fraction field of R1.

We now show that the notion of Diophantine generations is a proper extension of

both the notion of field-Diophantine definition and the notion of Diophantine defini-

tion.

Proposition 4.16. Let R1 and R2 be integral domains with quotient fields F1 and F2

respectively such that R2 ≤Dioph R1. Let F be a defining field and let Ω = {ω1, ..., ωk}

be a Diophantine basis of R2 over R1. Let B ⊂ F n
2 have a field-Diophantine definition

over R2. Then BΩ ⊂ F kn
1 has a field-Diophantine definition over R1.
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Proof. Let f(z1, ..., zn, y, x1, ..., xr) be a field-Diophantine definition of B over R2. In

this case, we have that

B = {(t1, ..., tn) ∈ F n
2 | ∃z1, ..., zn, y, x1, ..., xr ∈ R2,

yt1 = z1, ..., ytn = zn, f(z1, ..., zn, y, x1, ..., xr) = 0}

and f(z1, ..., zn, y, x1, ..., xr) = 0 implies y 6= 0. As y, zi ∈ R2 and R2≤DiophR1, we

have that

y =
k∑
i=1

ui
v
ωi and zi =

k∑
j=1

ui,j
vi
ωj

where ui, ui,j, v ∈ R1, and for some ā ∈ Rl
1 and b̄i ∈ Rl

1, i = 1, . . . , n we have that

g(u1, ..., uk, v, a1, ..., al) = 0 and g(ui,1, ..., ui,k, vi, bi,1, ..., bi,l) = 0

with g(x1, . . . , xk, y, z1, . . . , zl) being the defining polynomial of R2 over R1.

Now let r ∈ {1, ..., n}. By substitution, we have that

(
k∑
i=1

ui
v
ωi

)
tr =

k∑
j=1

ur,j
vr
ωj.

By Lemma 4.7, we have that

tr =

(
k∑
j=1

ur,j
vr
ωj

) k∑
i=1

Pi

(u1

v
, ...,

uk
v

)
Q
(u1

v
, ...,

uk
v

)ωi
 ,

where Q
(u1

v
, ...,

uk
v

)
6= 0, Pi

(u1

v
, ...,

uk
v

)
, and Q

(u1

v
, ...,

uk
v

)
depend only on Ω.
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Further, by Lemma 4.6, we have

tr =
k∑
i=1

Bi

(
ur,1
vr
, ...,

ur,k
vr
,
P1

(
u1
v
, ..., uk

v

)
Q
(
u1
v
, ..., uk

v

) , ..., Pk (u1v , ..., ukv )
Q
(
u1
v
, ..., uk

v

) )ωi,
where Bi is a fixed polynomial depending only on Ω. Now we will proceed to clear

out our denominators. Let

D1,r =
[
vrQ

(u1

v
, ...,

un
v

)]d1
where d1 is the maximum of the degrees of B1, ..., Bk. Then let

B̄i,r = D1,rBi = B̄i

(
ur,1, ..., ur,k, vr, P1

(u1

v
, ...,

uk
v

)
, ..., Pk

(u1

v
, ...,

uk
v

)
, Q
(u1

v
, ...,

uk
v

))
.

Let

D2 = vd2

where d2 is the maximum of the degrees of B̄1, ..., B̄k. Then let

¯̄Bi,r = D2B̄i,r = ¯̄Bi,r (ur,1, .., ur,k, vr, u1, .., uk, v) .

Let Dr(u1, . . . , un, v, vr) = D1,rD2 and note that it is a fixed polynomial depending on

the basis and the maximum values of the indexes only and for values of the variable

satisfying the equations above, it is non-zero. Now we have

Drtr =
k∑
i=1

¯̄Bi,r(ur,1, ..., ur,k, vr, u1, ..., uk, v)ωi.
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We now rewrite f(z1, ..., zn, y, x1, ..., xl) = 0. We can rewrite this equation as follows:

f

(
k∑
j=1

u1,j

v1

ωj, ...,

k∑
j=1

un,j
vn

ωj,

k∑
j=1

uj
v
ωj,

k∑
j=1

x1,j

X1

ωj, ..,

k∑
j=1

xl,j
Xl

ωj

)
= 0,

where each ui,j, vi, uj, v, xi,j, Xi ∈ R1. Now as g is the defining polynomial of R2 over

R1, for some ā1, . . . , ān ∈ Rm
1 , we have that


g(u1,1, ..., u1,k, v1, a1,1, ..., a1,m) = 0

...

g(un,1, ..., un,k, vn, an,1, ..., an,m) = 0

ensures that
∑k

j=1

ur,j
vr
ωj ∈ R2 for r ∈ {1, ..., n}, and also implies vr 6= 0.

Additionally, if for some b1,1, . . . , bl,m, X1, . . . , Xl ∈ R1 we have


g(x1,1, ..., x1,k, X1, b1,1, ..., b1,m) = 0

...

g(xl,1, ..., xl,k, Xl, bl,1, ..., bl,m) = 0

then
∑k

j=1

xs,j
Xs

ωj ∈ R2 for s ∈ {1, ..., l}, and also Xs 6= 0. Lastly, if for some

a1, . . . , am ∈ R1 we have

g(u1, ..., uk, v, a1, ..., am) = 0,

then
∑k

j=1
uj
v
ωj ∈ R2 and v 6= 0.
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Finally we work with coordinate polynomials to rewrite

f(z1, ..., zn, y, x1, ..., xl) = 0

for z1, ..., zn, y, x1, ..., xl ∈ R2 ⊂ F in terms of Ω = {ω1, ..., ωn}, which is a basis of F

over F1 and also a Diophantine basis of R2 over R1. We have

f(z1, ..., zn, y, x1, ..., xl) = 0

m

f

(
k∑
j=1

u1,j

v1

ωj, ...,
k∑
j=1

un,j
vn

ωj,
k∑
j=1

uj
v
ωj,

k∑
j=1

x1,j

X1

ωj, ..,
k∑
j=1

xl,j
Xl

ωj

)
= 0

m

k∑
j=1

fj
Ω

(
u1,1

v1

, ...,
u1,k

v1

, ...,
un,1
vn

, ...,
un,k
vn

,
u1

v
, ...,

uk
v
,
x1,1

X1

, ..,
x1,k

X1

, ...,
xl,1
Xl

, ...,
xl,k
Xl

)
ωj = 0,

where we have k polynomials from F that have ratios in R1 and depend only on Ω.

Let E = max(deg(fj
Ω)) and in addition let C = (v1 · · · vnvX1 · · ·Xl)

E. Now let

f̄Ω
j = CfΩ

j

(
u1,1

v1

, ...,
u1,k

v1

, ...,
un,1
vn

, ...,
un,k
vn

,
u1

v
, ...,

uk
v
,
x1,1

X1

, ..,
x1,k

X1

, ...,
xl,1
Xl

, ...,
xl,k
Xl

)
= f̄Ω

j (u1,1, ..., u1,k, ..., un,1, ..., un,k, u1, ..., uk, x1,1, .., x1,k, ..., xl,1, ..., xl,k) .

In this case, we have

B = {(t1, ..., tn) ∈ F n
2 | ∃ār ∈ Rm

1 , u1,1, . . . , un,k,

u1, . . . , uk, v1, . . . , vn, v, x1,1, . . . , xl,k, X1, . . . , Xl ∈ R1
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Drtr =
k∑
i=1

¯̄Bi,r(ur,1, ..., ur,k, vr, u1, ..., uk, v)ωi, r = 1, ..., n,

g(ur,1, ..., ur,k, vr, ār) = 0, r = 1, ..., k,

f̄Ω
j (u1,1, ..., un,k, v1, ..., vn, u1, ..., uk, v, x1,1, ..., xl,k, X1, ..., Xl) = 0, j = 1, ..., k}.

Then we have

BΩ = {(w1,1, ..., wk,n) ∈ F kn
1 | ∃ār ∈ Rm

1 , u1,1, . . . , un,k,

u1, . . . , uk, v1, . . . , vn, v, x1,1, . . . , xl,k, X1, . . . , Xl ∈ R1

Drwi,r = ¯̄Bi(ur,1, ..., ur,k, vr, u1, ..., uk, v), r = 1, ..., k, i = 1, . . . , n

g(ur,1, ..., ur,k, vr, ār) = 0, r = 1, ..., k,

f̄Ω
j (u1,1, ..., un,k, v1, ..., vn, u1, ..., uk, v, x1,1, ..., xl,k, X1, ..., Xl) = 0, j = 1, ..., k}.

Thus, BΩ ⊂ F kn
1 has a field-Diophantine definition over R1.

We now state without proof a property of Diophantine generation. The proof can

be found in Lemma 2.1.11 of [8].

Proposition 4.17. Let R1, R2 be integral domains with fraction fields F1, F2 respec-

tively and R2 ≤Dioph R1. Let F be any field containing both F1 and F2 and of finite

degree over F1 (by definition of Diophantine generation, at least one such field exists),

and let Ω be any basis of F over F1. In this case, F is a defining field and Ω is a

defining basis.

In view of Proposition 4.17, we can make the following observation.

Remark 4.18. IfR2 ⊂ F1, andR2 is field-Diophantine overR1, then clearlyR2 ≤Dioph

R1 with basis consisting of {1}. Also of R2 ≤Dioph R1, then we can choose a power
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basis as a Diophantine basis for the defining field over F1. Since R2 is a subset of F1,

this is equivalent to using a basis consisting of {1} and the defining polynomial for

Diophantine generation becomes a field-Diophantine definition.

We now connect Diophantine generation to Hilbert’s Tenth Problem.

Proposition 4.19. If R1 and R2 are recursive rings with R1 ≤Dioph R2 and HTP is

not solvable over R1, then it is not solvable over R2.

Proof. If R1 ≤Dioph R2, then given a polynomial equation over R1, we can algorith-

mically construct a system of polynomial equations over R2 such that the system has

solutions in R2 if and only if the original polynomial equation had solutions in R1.

In view of the Corollary 4.2, we conclude that if there is no algorithm to tell whether

a polynomial equation over R1 has solutions in R1, then there is no such algorithm

over R2.

Now we will prove transitivity of Dioph-generation.

Theorem 4.20. Let R1, R2, and R3 be integral domains with quotient fields F1, F2,

and F3 respectively. Assume that F1, F2, and F3 are all subfields of a field F, which

is not algebraically closed. Further assume that all the extensions F/Fi for i = 1, 2, 3

are finite. Lastly assume that R2 ≤Dioph R1 and R3 ≤Dioph R2. In this case, we have

R3 ≤Dioph R1.

Proof. Let F be the defining field for both (R1, R2) and (R2, R3). We can make such

a choice by Proposition 4.17. Let Ω = {ω1, ..., ωk} be a Diophantine basis for R2 over

R1 such that F is the corresponding defining field. Further, let Λ = {λ1, ..., λn} be a

Diophantine basis for R3 over R2 such that F is the corresponding defining field as
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well. By Lemma 4.13, we can write

R3 =

{
n∑
i=1

ziλi|(z1, ..., zn) ∈ AΛ ⊆ F n
2

}
,

where AΛ has a field-Diophantine definition over R2. Further, by Proposition 4.16,

AΩ
Λ has a field-Diophantine definition over R1. Thus, we obtain

R3 =

{
n∑
i=1

ziλi|(z1, ..., zn) ∈ AΛ ⊆ F n
2

}

=

{
n∑
i=1

k∑
j=1

yi,jωjλi|(y1,1, ..., yn,k) ∈ AΩ
Λ ⊆ F nk

1

}

=

{
n∑
i=1

k∑
j=1

yi,jλiωj|(y1,1, ..., yn,k) ∈ AΩ
Λ ⊆ F nk

1

}

=

{
k∑
s=1

k∑
j=1

n∑
i=1

(yi,jAi,j,s)ωs|(y1,1, ..., yn,k) ∈ AΩ
Λ

}
,

where

zi =
k∑
j=1

yi,jωj,
k∑
s=1

Ai,j,sωs = λiωj, Ai,j,s ∈ F1.

Let

BΩ =

{
(t1, ..., tk) ∈ F k

1 |ts =
k∑
j=1

n∑
i=1

(yi,jAi,j,s) , (y1,1, ..., yn,k) ∈ AΩ
Λ

}
.

By Lemma 4.10, we know that BΩ has a field-Diophantine definition over R1 and

since we have

R3 =

{
k∑
s=1

tsωs|(t1, ..., tk) ∈ BΩ

}
,

by Lemma 4.13, R3 ≤Dioph R1.

We will now state and prove the finite intersection property.

Theorem 4.21. Let Ri ⊂ R for i = 1, ...,m be rings such that the quotient field of
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R is not algebraically closed and for all i = 1, ...,m we have that Ri ≤Dioph R. Then

∩mi=1Ri ≤Dioph R.

Proof. We have that Ri has a Diophantine definition fi(t, x1, ..., xni) over R since Ri ⊂

R and Ri ≤Dioph R. Thus, for all x ∈ R we have that there exist x1,1, ..., xm,nm ∈ R

with fi(x, xi,1, ..., xi,ni) = 0 for i = 1, ...,m if and only if x ∈ ∩mi=1Ri.

4.4 Rings of Integers of Number Fields

First, we need to define the rings of integers of number fields and discuss some of

their properties.

Definition 4.22 (Number Fields and Rings of Integers). If K is a finite extension of

Q, then K is called a number field. If x ∈ K satisfies a monic irreducible polynomial

over Z, then x is called an algebraic integer.

The following propositions are standard results from Number Theory. See [3] for

more details.

Proposition 4.23 (Properties of Integers of Number Fields).

• The set of all integers of a number field K is a ring. In the future we will denote
this ring by OK.

• For any number field K there exists a basis Ω of K over Q such that OK =
{x ∈ K|x =

∑
aiωi, ai ∈ Z}. (Such a basis is called an integral basis of K over

Q.)

In this section, we will use the following theorem due to Mazur, Poonen, and

Rubin which could be stated as follows:

Theorem 4.24. If F/K is a cyclic extension of prime degree p and if the Shafarevich-

Tate conjecture is true for K, then OK ≤Dioph OF where OK and OF are the rings of

integers over the number fields K and F respectively.
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Our main goal to show Z ≤Dioph OE for any number field E, assuming a certain

number-theoretic conjecture is true, can now be achieved. We will do this through a

series of reductions. We will first show that if

(1) for any cyclic extension F/K of a number field of prime degree p, we

have that OK ≤Dioph OF ,

then it follows that Z ≤Dioph OE, for any number field E. Then

(2) we will apply Mazur, Rubin, and Poonen’s results to conclude if the

Shafarevich-Tate conjecture holds then the previous statement holds.

Before we proceed, we need to discuss more properties of the rings of integers of

number fields. As an immediate corollary to Proposition 4.23 we have the following

fact.

Corollary 4.25. For any number field K, we have OK ≤Dioph Z.

One can also show the following proposition is true. (The proof can be found in

Chapter 2 of [8].)

Proposition 4.26. If M/K is a finite extension of number fields, then OM ≤Dioph

OK.

Proposition 4.27. Let L/M be a cyclic extension and assume statement (1) holds.

In this case, we have OM ≤Dioph OL.

Proof. We will do this by induction on [L : M ] = n. For the case, n = 1 is trivial

because everything is ≤Dioph than itself. Assume for any cyclic extension of degree

k < n the proposition holds. We will show it holds for n. Let τ be a generator of
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G(L/M). Since n > 1, there exists a prime p dividing n. Let σ = τ
n
p and note

ord(σ) = p. Let H = L<σ>. Then we have the following M ⊂ H ⊂ L, [H : M ] = n
p
<

n, and [L : H] = p. Further by Corollary 3.33, all the extensions are cyclic. Thus,

OH ≤Dioph OL by (1). By the induction hypothesis, we have OM ≤Dioph OH . Lastly,

by transitivity of Dioph-generations, we have OM ≤Dioph OL.

Proposition 4.28. Let L/M be Galois and assume (1) holds, then OM ≤Dioph OL.

Proof. Let {σ1, ..., σn} = G(L/M). For each i ∈ {1, ..., n} consider L<σ> and note

that

1. L/L<σi> is cyclic and

2.
⋂n
i=1 L<σi> = M .

By Proposition 4.27, we have OL<σi>
≤Dioph OL. By the intersection property of

Dioph-generations, we have OM =
⋂n
i=1 OL<σi>

≤Dioph OL.

Proposition 4.29. If (1) holds and L/M is any finite extension of number fields of

degree n, then OL ≤Dioph OM .

Proof. Let MG be any field Galois over OL and containing M . (In particular, if

M = L(α), MG can be M(α = α1, ..., αn) where α1, . . . , αn are are all conjugates

of α over L.) By Proposition 4.26, we have OMG ≤Dioph OM . By the previous

proposition, we have OL ≤Dioph OMG . Lastly, by transitivity of Dioph-generations,

we have OL ≤Dioph OM .

We now state the main theorem of this section.

Theorem 4.30. If the Shafarevich-Tate conjecture on elliptic curves is true, then

Z ≤Dioph OK for any number field K, and thus Hilbert’s Tenth Problem is not decid-

able over the ring of integers of any number field K.
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Proof. From a result of Poonen (see [6]) and a result of Mazur and Rubin (see [5]),

it follows that assuming the Shafarevich-Tate conjecture for elliptic curves, for any

prime degree cyclic extension of number fields M/K we have OK ≤Dioph OM . Thus

by Proposition 4.29, we have that Z ≤Dioph OK for any number field K.
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