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DEPARTMENT OF BIOLOGY 

The deleterious effects of dams on alosine populations are widely documented in many rivers 

along the Atlantic coast.  Alterations to the natural hydrologic regime can disrupt spawning, egg 

dispersal, and recruitment of larvae to nursery habitats. The goal of this study was to investigate 

the ecological processes that influence recruitment of river herring (blueback herring Alosa 

aestivalis and alewife A. pseudoharengus) to nursery habitats within lower Roanoke River and 

Albemarle Sound, North Carolina.  It was hypothesized that variability in abiotic conditions and 

fluctuations in food abundance could structure nursery habitat and severely restrict recruitment.  

Ichthyoplankton and zooplankton samples were collected concurrently March through June 

2008-09 at 19 stations, within three areas: River, Delta, and Sound.  Significant spatial and 

temporal differences were observed in the distribution of river herring.  Abundances 

(number/100m3 ± SD) were significantly higher in 2009 (30.8 ± 149.8) than in 2008 (4.1 ± 20.9).  

Across both years, abundances within the River (21.0 ± 127.6) were significantly higher than 

those in Delta (7.4 ± 35.4) and Sound (4.6 ± 24.8).  Yolk-sac larvae were prevalent throughout 

samples (32%); however, larvae collected were predominantly preflexion stage (66%).  Fish ages 

ranged from 4 to 19 days after hatch.  Growth rates were similar for blueback herring (0.29 ± 



0.16 mm/d) and alewife (0.30 ± 0.14 mm/d).  Growth estimates were indicative of habitat quality 

and suggested riverine habitats supported the highest growth rates.  Mortality estimates for 

blueback herring (0.76 ± 0.23 per day) were significantly higher than mortality estimates for 

alewife (0.64 ± 0.17 per day).  High mortality for both years was probably related to larval 

dispersal and advective loss.  Larvae do not appear to be food limited in this system as indicated 

by diet analyses and the spatiotemporal overlap between river herring and zooplankton.  

Decreasing zooplankton abundance was correlated with larval abundance and suggests foraging 

by larval alosines could negatively alter the structure of the zooplankton community.  Diets 

varied little with early ontogeny and the smallest taxa (copepod nauplii and rotifers) accounted 

for over 85% of the diet.  Because of a high-level of dietary overlap, intraspecific and 

interspecific competition is substantial for anadromous alosines.  The result of long-term data 

analysis (1984 – 2009) for larval and juvenile river herring confirms Roanoke-Albemarle stocks 

are in decline.  Larval fish abundance was negatively affected by spring river flow (r2 = 0.62).  

High flows (> 300 m3/s) resulted in larval advection from Roanoke River.  Spring river flow was 

positively correlated with juvenile abundance (r = 0.95) and best recruitment of juveniles occurs 

in years with moderate spring river flow (141 – 311 m3/s). 
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CHAPTER 1:  INTRODUCTION 

Estuaries are uniquely productive ecosystems that are characterized by high levels of primary 

production that form the basis of a food web and support a high biomass of fish.  Estuaries 

provide high-quality habitat that serves as feeding and nursery grounds for many economically 

important fisheries (Houde and Rutherford 1993; Able 2005).  It is estimated that 75% of 

recreational and commercial fish species in the United States are dependent on estuaries 

(Chambers 1992).  These species include residents (species that spend the entire life cycle in 

estuaries) and transients (species that spend only a portion of their lives there) whose spatial and 

temporal use of the estuarine environment varies with size and age. 

By simple definition estuaries are highly variable because they serve as a zone of transition 

between rivers and coastal oceans.  The resulting landscape fluctuates with seasons and periodic 

changes in the environment.  Fishes that are estuarine-dependent must be tolerant of frequent 

changes in temperature, salinity, oxygen concentrations, turbidity, and variability in physical 

conditions (Day et al. 1989).  While estuarine waters are highly productive, the diversity of 

fishes is relatively low as a consequence of the physiological stress of living in an environment 

with fluctuations in water quality (Costanza et al. 1993).  Because younger fish are generally 

more tolerant of fluctuations in environmental conditions, it has long been hypothesized that 

estuaries primarily function as nurseries (Holliday 1991; Able and Fahay 1998; Beck et al. 

2001).

Despite recent advances in fishery science (e.g., ecological approaches to management), an 

understanding of recruitment dynamics remains a critical, unresolved problem (Houde and Hoyt 

1987; Houde 2008).  Efforts to quantify and determine the causes for annual variation in 

recruitment have been difficult (Shepherd et al. 1990).  The early life history of fishes is a critical 



 
 

stage that can significantly affect year-class strength.  It is estimated that relatively small 

variations in mortality rates, growth rates, or stage duration in the early life of fishes can have 

fluctuations that vary by one or two orders of magnitude in recruitment (Houde 1994).  Because 

recruitment level is primarily determined during early life stages, evaluating the influence of 

physical and biological conditions on survival and growth of fish larvae has become a 

fundamental paradigm in fishery science (Sissenwine 1984; Rose 2000). 

Early Life History of Estuarine Fishes 

Life history traits that influence estuarine use include residence time, habitat use, and size of 

arrival in the estuary (Table 1.1).  With a few notable exceptions, the majority of estuarine-

dependent fish produce large numbers of eggs that hatch into small pelagic larvae.  Because of 

their buoyant nature, larvae are easily transported with river flow, water currents, and tidal action 

(Norcross and Shaw 1984; Hettler and Hare 1998).  The maternal contribution to eggs and larvae 

largely determines the availability of yolk reserves for endogenous nutrition and the size of 

larvae at first feeding (Blaxter and Hempel 1963; Hunter 1981).  Starvation is a threat to most 

fish larvae during the transition to exogenous nutrition.  It is generally accepted that a large size 

“bigger-is-better hypothesis” at onset of feeding is an advantage, because larger larvae are able 

to swim faster and search a greater volume of water for food (Litvak and Leggett 1992). 

Survival of eggs and larvae varies among species and conditions, but often is in the range of 

30-90% per day (Houde 1989).  There are several “critical periods” that have been described as 

bottlenecks in larval production (Hjort 1914; Hjort 1926; Cushing 1972).  These periods include: 

(1) spawning and fertilization of eggs; (2) hatching; (3) first feeding; (4) yolk and oil globule 

exhaustion; (5) swim bladder inflation; (6) change in diet; (7) transition to gill gas exchange, and 
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(8) transformation (Tucker 1998).  Houde (1987) presents an interesting conceptualization of the 

critical periods and bottlenecks contributing to high rates of mortality in the early life history of 

estuarine-dependent fishes (Figure 1.1).  The survivorship curve shows that density-dependent 

processes (predation, competition, disease) are increasingly important for late-stage larvae and 

juveniles. 

Food Limitations and Prey Availability in Estuaries 

For fish larvae, estuaries are dynamic habitats where the availability prey varies spatially and 

temporally with light and primary productivity.  Habitats with an abundance of appropriate-sized 

prey provide conditions for optimal growth and survival.  Most larvae drift passively with 

plankton in the prevailing modes of circulation (Hare and Cowen 1997).  Feeding is largely 

opportunistic and dependent on prey availability (Hjort 1914; Cushing 1990).  Copepods, small 

naupliar stages of crustaceans, and insect larvae, particularly chironomids, are the typical food of 

most estuarine fishes.  Phytoplankton are often observed in the guts of larvae, but it is thought 

that phytoplankton are an incidental food source and artifact of foraging (May 1970).   

Zooplankton abundance is variable and fluctuates with seasonal cycles that peak during 

spring and summer.  Low densities and patchy distributions are often observed in the estuarine 

environment.  The match-mismatch hypothesis was proposed by Cushing (1972; 1990) to focus 

on temporal overlaps between peaks in larval abundance and seasonal peaks in food supply 

(Figure 1.2).  The hypothesis was the first to propose a mechanism that would explain why 

successful first-feeding might vary annually.  This hypothesis suggests that fish production is 

optimized when spawning and larval production is synchronous with zooplankton production.  In 

contrast to the critical period hypothesis originally proposed by Hjort (1914) that states that 
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suitable prey must be available during the first-feeding stage of larvae, the match-mismatch

hypothesis suggests that a continuous supply of suitable prey are required throughout the larval 

period to optimize growth and survival for recruitment success.  Both Hjort’s and Cushing’s 

hypotheses speculate about the role environmental variability plays in primary production. 

Optimal foraging theory suggests that for any size fish there exists a restricted range of 

optimal prey sizes (Miller et al. 1988).  Prey size dominates prey selection patterns and the size 

of the mouth limits what size prey can be ingested.  Prey width is a critical dimension limiting 

consumption (Hunter 1981; Pepin and Penney 1997; Hufnagl and Peck 2011).  Studies 

supporting this finding propose that optimal prey width ranges from 30% to 50% of mouth gape 

(Shirota 1970; Cunha and Planas 1999).  Thus, as fish grow their preference for larger prey sizes 

increases in a steady proportion to their own growth (Munk 1992; Puvanendran et al. 2004). 

Predation on Fish Eggs and Larvae 

In the past thirty years, a wealth of research has been published on the hypothesized role of 

predation on eggs and larval stages of estuarine fishes (Bailey and Houde 1989; Leggett and 

Deblois 1994).  Many carnivorous species within the major groups of pelagic invertebrates, 

including Medusae, Siphomedusae, Ctenophora, Chaetognatha, Cephalopoda, Amphipoda, 

Euphausiacea, and Copepoda, as well as juvenile and adult fishes, have been reported to feed on 

fish eggs and larvae (Hunter 1981; Bailey and Houde 1989).  Most empirical evidence of 

predation has been gathered from descriptions of the food habits of predators (Bailey and Duffy-

Anderson 2010).  These studies indicate that eggs and young larvae (i.e., individuals before first 

feeding) are particularly susceptible to predation.  Because eggs and yolk-sac larvae rely on 

endogenous nutritional reserves, it is generally assumed that predation is the largest source of 
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mortality for these early life stages.  Few studies have quantified larval mortality as a result of 

predation (Leggett and Deblois 1994; Wirtz 2012). 

The bigger-is-better hypothesis, proposed by Anderson (1988), suggests that large, fast 

growing larvae and cohorts are less susceptible to predation because of their larger body size and 

increased swimming ability.  Similarly, the stage duration hypothesis proposed by Chambers and 

Deblois (1994) postulates that mortality is low for larvae with a short early life history (less than 

30 d) and fast specific growth rate.  Using mesocosm and microcosm experiments with capelin 

larvae Mallotus villosus, Litvak and Leggett (1992) tested both hypotheses with discriminant 

(fish) and nondiscriminant (jellyfish) predators.  There was no difference in the probability of 

capture of small versus large larvae of the same age.  However, contrary to the bigger-is-better 

hypothesis, when the predators were presented a disparate mixture of small and large larvae, the 

probability of death was higher for large larvae.  

Larval Growth and Environmental Variability 

The theory that year-to-year changes in environmental conditions may be one of the 

underlying causes of recruitment variability among estuarine-dependent species (Sissenwine 

1984; Rose 2000).  Larval distributions are largely structured by abiotic gradients that include 

salinity, temperature, dissolved oxygen, and turbidity (Martino and Able 2003; North and Houde 

2003b; Martino and Houde 2010). 

In many estuaries, salinity is the major environmental gradient that spans the estuarine 

landscape.  Most estuarine species are tolerant of a wide range of salinities; however, extreme 

fluctuations (e.g., floods, tropical storms) can have lethal effects for larvae sensitive to metabolic 

costs of osmotic and ionic regulation.  For most larvae, salinity is a directive factor signaling 
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migration between freshwater and the marine environment (Wooten 1999).  Movement along a 

salinity gradient will affect the metabolic costs of osmoregulation, but movement may lead to 

abundant food resources so that higher rates of feeding can compensate for metabolic costs 

(Greenwood 2007). 

Temperature can play a central role in influencing movements and distribution of larvae.  If 

food is not a limiting factor, then temperature is the most important factor controlling growth and 

metabolism (Gibson and Johnston 1995).  The high specific heat of water means that changes in 

temperature are relatively slow allowing time for fish to migrate and seek refuge from 

temperature extremes.  Despite the higher temperatures that can occur in shallow habitats and 

lagoons, mortality caused by temperature extremes has rarely been observed (Gibson 1994).  In 

contrast species overwintering in estuaries face certain constraints and possible sources of 

mortality either as a result of low temperatures or a loss of energy reserves (Hare and Cowen 

1997). 

Oxygen is probably the most important abiotic lethal factor for fish (Wooten 1999).  Many 

estuaries worldwide experience episodic events of hypoxia or anoxia.  For larvae, these 

conditions can lead to high rates of mortality because fish cannot escape hypoxic conditions.  

The Chesapeake Bay, Virginia, is a classical drowned-river-valley estuarine system that 

experiences episodic periods of hypoxia.  The early life history of the naked goby Gobiosoma

bosc is well studied in the Chesapeake, and goby larvae frequently succumb to hypoxic 

conditions significantly affecting recruitment (Breitburg 2002).  The effects of hypoxia are well 

studied with juvenile and adult fishes (Eby and Crowder 2004), but there exists a paucity of 

information on how hypoxic conditions affect larvae.  Additional research is also needed to 

address larval mortality or metabolic costs associated with sublethal oxygen concentrations. 
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Turbid waters are considered beneficial for larvae and offer significant contributions to 

recruitment.  Turbid waters aggregate prey so larvae can feed optimally and avoid predation.  

Turbidity reduces predation pressure by limiting prey detection (Chesney 1989), suspends 

particles and nutrients supporting primary production (Simenstad et al. 1994), concentrates 

zooplankton production (Boynton et al. 1997), and retains fish and invertebrate larvae (North and 

Houde 2001; North and Houde 2003a).  While a range of abiotic factors affect the growth and 

survival of fish larvae, it is probably the complex interaction of salinity, temperature, dissolved 

oxygen, and turbidity that contributes the most to fish growth and survival. 

Research Objectives 

The goal of my dissertation was to investigate the ecological processes that influence 

recruitment of anadromous alosines (American shad Alosa sapidissima, blueback herring A.

aestivalis, and alewife A. pseudoharengus) to nursery habitats in lower Roanoke River and 

Albemarle Sound.  Data were collected from short-term laboratory experiments and long-term 

field observations.  A major finding of this project is that populations of American shad are 

severely depressed in Roanoke River despite fisheries management and stock enhancement.  

During this study, the collection of American shad larvae was rare (N = 68; � 0.5% of Alosa

spp.).  Most analyses described herein focus on recruitment of blueback herring and alewife, 

which are also referenced as river herring. 

This dissertation is presented in six chapters.  In Chapter 2, the seasonal distribution, 

abundance, growth, and mortality of larval blueback herring and alewife were examined within 

three areas of lower Roanoke River and Albemarle Sound.  Analysis is based on sampling 

ichthyoplankton and water quality at 19-stations from March through June of 2008 and 2009.  
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All sampling was conducted at night.  Spatial differences in water quality were evaluated using 

analysis of variance (ANOVA).  Nonparametric statistics were used to compare distributions of 

blueback herring and alewife. Growth and mortality were studied by means of daily increments 

in sagittal otoliths.  Growth based on marginal increment analysis was evaluated at different 

temporal scales.  The distribution of back-calculated hatch dates was used to temporal variability 

in spawning.  Larval distributions and habitat use patterns were examined using a one-way 

multiple analysis of variance (MANOVA) and principal components analysis (PCA). 

In Chapter 3, the feeding ecology and condition of larval blueback herring and alewife were 

examined within three areas of lower Roanoke River and Albemarle Sound.  Ichthyoplankton, 

zooplankton, and water quality samples were collected at weekly intervals from March through 

May 2009.  Sampling was conducted during the day and at night to test for diel effects related to 

feeding, larval abundance, and zooplankton abundance.  Larvae were measured and weighed for 

use in determination of condition indices.  A number of metrics were used to assess recent 

feeding activity.  Data from gut contents and zooplankton sampling were used to evaluate prey 

selectivity and ontogenetic shifts in feeding.  Spatial differences in larval fish and zooplankton 

abundance were evaluated using ANOVA.  Primer-E was used to conduct analysis of similarity 

(ANOSIM) and similarity percentages (SIMPER) analysis.  These routines were used to assess 

patterns in zooplankton community structure and study dietary overlap between blueback herring 

and alewife.  Results from ANOSIM and SIMPER were corroborated and visualized using a 

non-metric, multidimensional scaling (NMDS) ordination plot. 

In Chapter 4, laboratory experiments were conducted to evaluate the effect of prey density on 

growth and survival of American shad.  Larvae were reared from 11 to 20 days after hatching in 

five treatments: (1) no food; (2) low (1 prey/L), which simulated prey densities in Roanoke 
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River; (3) medium (50 prey/L), which simulated prey densities typical of coastal watersheds; (4) 

high (500 prey/L), and (5) Artemia spp. (500 prey/L).  Survival, length-specific growth rates, and 

weight-specific growth rates were determined for larvae grown under different feeding regimes.   

Data from gut contents were used to evaluate prey selectivity and feeding peculiarities.  A model 

for mouth gape and feeding ability was developed for American shad. 

In Chapter 5, long-term datasets were used to quantify the relationship between larval 

recruitment in Roanoke River and juvenile recruitment in Albemarle Sound.  Larval and juvenile 

fish were collected and summarized with environmental covariates for three periods (1984 – 

1991; 2001 – 2003; 2008 – 2009).  Annual growth and mortality rates for river herring larvae and 

juveniles were estimated using a length-based ageing method and catch-curve analysis.  ANOVA 

was used to statistically detect differences between growth and mortality between years. 

Temporal patterns of larval and juvenile abundance were examined relative to variation in water 

temperature, precipitation, wind speed and direction, and river discharge.  Stepwise multiple 

regression analysis was used to describe the relationship among river herring abundance, river 

flow, and wind. 

Chapter 6 summarizes and highlights the main findings of this research.  This work has 

extended our knowledge of recruitment dynamics for anadromous alosines.  It is my intention 

that the results of this dissertation will have broad utility in fisheries management and can be 

used for restoration of American shad and river herring in the coastal rivers of North Carolina. 
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Figure 1.1.  A conceptualization of the recruitment process in fishes including factors that affect 

mortality and growth.  Log10 scales are used on both axes.  Reproduced from Houde (1987). 

  

17



 
 

  

 

Figure 1.2.  A conceptualization of the match-mismatch hypothesis as proposed by Cushing 

(1990).  The production of zooplankton reflects seasonal processes mediated by physical 

conditions.  Temporal variability in spawning or low stock abundance can result in fish 

production that does not coincide with an abundance of zooplankton.   
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CHAPTER 2.  SPATIOTEMPORAL VARIABILITY IN RECRUITMENT OF 

BLUEBACK HERRING AND ALEWIFE LARVAE IN ROANOKE RIVER AND 

ALBEMARLE SOUND, NORTH CAROLINA 

Abstract

The deleterious effects of dams on anadromous alosine populations are widely documented in 

many rivers along the Atlantic coast. Alterations to the natural hydrologic regime can disrupt 

spawning, egg dispersal, and recruitment of larvae to nursery habitats. The goal of this study was 

to investigate the ecological processes that influence recruitment of blueback herring Alosa

aestivalis and alewife A. pseudoharengus to nursery habitats within lower Roanoke River and 

Albemarle Sound, North Carolina.  Ichthyoplankton sampling was conducted in 2008 and 2009 

at 19 stations, within three areas: River, Delta, and Sound.  Larval blueback herring and alewife 

were collected from March through June and backcalculated hatchdates based on age of fish 

indicated spawning occured throughout the same period. Differences in larval abundance 

(number/100 m3 ± SD) were observed between sampling years.  In 2008, blueback herring (5.1 ± 

12.8) and alewife (5.1 ± 16.1) abundances were not significantly different.  In 2009, blueback 

herring abundances (39.2 ± 140.7) were significantly higher from alewife abundances (9.4 ± 

32.4).  Blueback herring recruitment was highest when water temperatures were 16.2 ± 2.5 °C. 

Alewife recruitment was highest when water temperatures were 17.2 ± 2.3 °C. The distribution 

of fish showed progressive downstream dispersal of larvae. Larval abundances varied 

significantly among the three sampling areas.  Blueback herring abundances were highest in the 

River (35.6 ± 147.4) and Delta (14.6 ± 46.5) as compared to the Sound (7.9 ± 28.2).  Similarly, 

alewife abundances were highest in the River (12.9 ± 37.7) and Delta (5.1 ± 11.8) as compared 



to the Sound (1.5 ± 5.6).  Yolk-sac larvae were prevalent throughout samples (32%) and were 

collected within all areas.  Larvae collected were predominantly preflexion stage (66%) ranging 

from 5.0 to 10.0 mm standard length.  Growth rates were similar for blueback herring and 

alewife, but revealed slightly different growth patterns for each area. Growth estimates were 

indicative of habitat quality and suggested riverine habitats supported the highest growth rates.  

High mortality for both years was probably related to larval dispersal and advective loss.  

Evidence from this study provides some support for review of reservoir operation and dam 

discharge guidelines. Adjustment of river flow may be an important consideration for restoring 

alosine habitat. 

Introduction 

Populations of anadromous alosines along the Atlantic Coast have generally declined in 

recent years as indicated by decreased commercial and recreational harvests and widespread 

fishing regulations and closures.  Blueback herring Alosa aestivalis and alewife A. 

pseudoharengus, collectively managed and marketed as river herring, once supported large 

fisheries in Albemarle Sound, North Carolina (Chestnut and Davis 1975; Taylor 1992).  These 

fishes were among the first commercially exploited species in the region and historical records 

indicate river herring were a major export of colonial settlements (Hightower et al. 1996).  

Fishing in coastal rivers and estuaries has always been seasonal and coincides with late-winter 

and spring spawning migrations through estuaries and coastal rivers.  For over a century, 

Albemarle Sound contributed the majority (� 98%) of commercial landings in North Carolina 

and fishing for river herring seemed as if it was an industry with boundless frontiers (NCDMF 

2007).  Despite a high level of exploitation, river herring stocks remained relatively stable until 
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the 1970s.  Populations supporting annual landings in excess of 5 million kg have since declined 

to less than 1% of their historical abundance (Figure 2.1). 

By the end of the 20th century, the cumulative impacts of damming and altering flow regimes 

in rivers, habitat loss, pollution, overfishing, invasive species, and climate change caused a 

marked decline of anadromous fishes along the Atlantic coast (Limburg and Waldman 2009).  

Blueback herring and alewife populations in Albemarle Sound collapsed in the 1970s and 1980s 

because of successive recruitment failures, largely attributable to high mortality during the early 

life stages and a chronic decline in egg production (Rulifson 1994; Carmichael 1999; Greene et 

al. 2009).  Mechanisms regulating recruitment and year-class strength are complex.  They often 

operate on different spatiotemporal scales and are mediated by seasonal selective processes. 

Alternating between strong and weak year-classes, river herring exhibit distinct patterns in 

abundance reflected in the fishery age structure (Messieh 1977; Jessop 1990; Carmichael 1999).  

Historically, periods of abundance are ascribable to the frequency and distribution of large year-

classes.  Adult stock abundance plays a role in controlling and regulating recruitment, but the 

relative size and contribution of parental stocks does not guarantee the emergence of a strong 

year-class (Walton 1987; Wood and Austin 2009).  For most anadromous clupeids, year-class 

strength is established during the larval and juvenile stages and is correlated with variability in 

growth and mortality within nursery habitats (Crecco et al. 1983; Crecco and Blake 1983).  

Because growth and mortality are linked processes, variability in either process during the early 

life history can have fluctuations that vary by one or two orders of magnitude in recruitment 

(Houde 1994; Houde 2008).   

Blueback herring and alewife are notorious for exhibiting wide fluctuations in larval 

abundance (Meador et al. 1984; Cooke and Leach 2003; O'Gorman et al. 2004).  Many factors, 
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including physics, ontogeny, food abundance, and predation affect the distribution and dispersal 

of larvae (North and Houde 2004).  While it is unclear how physical and biological factors 

interact, much of the variation in abundance results from changing hydrographic and climatic 

conditions (Rose 2000).  River flow, river discharge, and wind-driven circulation within the 

estuary are responsible for transport of eggs and larvae.  Convergence and mixing of currents is 

important for retention of larvae in nursery habitats.  Proximate factors such as water 

temperature, salinity, pH, dissolved oxygen, and turbidity influence growth and survival of 

larvae (Bigelow and Schroeder 1953; Edsall 1970; Loesch and Lund 1977; Kellogg 1982).  

Within nursery habitats, these factors form abiotic gradients that structure larval distributions, 

concentrate prey resources, and often aggregate predators (Martino and Able 2003; North and 

Houde 2003).   

Habitat loss or deterioration has been identified as a causal factor in 73% of fish species 

extinctions in North America (Miller et al. 1989; Ricciardi and Rasmussen 1999).  The 

importance of classifying and protecting nursery habitats for estuarine-dependent fishes is well 

established as indicated by voluminous scientific literature, intense debate, and environmental 

legislation (Able 2005; Kraus and Secor 2005; Kerr et al. 2010).  Identification of nursery 

habitats that contribute a disproportionate (relative to their size) number of individuals to the 

adult population is especially challenging for anadromous species that traverse freshwater and 

marine environments during their first year of life (Beck et al. 2001).  In general, the distribution 

of blueback herring and alewife eggs and larvae is not well defined and much of the nursery 

habitat has not been quantified.  Most research has addressed fish at the northernmost latitudes of 

their range (e.g., Connecticut, Massachusetts) or populations that are not anadromous (e.g., Great 

Lakes) (Kosa and Mather 2001; Savoy and Crecco 2004; Madenjian et al. 2005).   
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River herring early life stages are dependent on nursery habitats adjoining the spawning 

grounds in most coastal river systems (Dovel 1971; Walsh et al. 2005).  After spawning, eggs 

and larvae drift downstream through a variety of lentic (still water) and lotic (moving water) 

habitats.  Retention in specific nursery habitats is mediated by local hydrography, precipitation 

and weather, and river flow.  Eggs and larvae are extremely vulnerable to advection from nursery 

habitats by seasonal flood events and variable flows within the watershed.  While the timing and 

magnitude of flood events is critically important to stimulate rigorous and widespread spawning 

of river herring, high flows also serve as a dispersal mechanism transporting larvae downstream 

to habitats that are often far from the spawning grounds and not well studied.   

The goal of this project was to determine the spatiotemporal distribution of larval river 

herring in the lower Roanoke River and Albemarle Sound during peak periods of larval 

production (March – June), and to examine how physical properties of Roanoke River and 

western Albemarle Sound influence age, growth, survival, and retention of larvae.  Specifically, 

we aim to identify nursery habitats that support fast growth and low mortality.  These habitats 

should bolster recruitment and confer a survival advantage to individuals by decreasing the time 

spent in vulnerable larval stages.  This study compliments previous research identifying river 

herring spawning and nursery habitats in Roanoke River tributaries and flooded swamps located 

100 river kilometers (rkm) upstream from the river mouth. (Hayman and Holloman 1996; Peters 

et al. 1998; Walsh et al. 2005). 

Study Area 

The Roanoke River is an alluvial river system that originates in the Appalachian mountains 

of southwest Virginia and flows southeast for over 600 rkm through the piedmont and coastal 
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plain of North Carolina (Figure 2.2).  The river empties into Albemarle Sound at its western end 

and supplies more than half the total freshwater input to the region (Giese et al. 1985).  The 

average annual discharge is about 225 m3 per second (cms) (USGS 2011).  Since construction of 

a small dam in the town of Roanoke Rapids, North Carolina in 1895, Roanoke River has been 

extensively developed for hydroelectric power generation (Coe 1964).  A modern hydroelectric 

dam replaced the original Roanoke Rapids Dam in 1955.  With a storage capacity of 9.95 x 107 

m3 and a maximum discharge of 22,000 cms, development of best management practices for 

reservoir operation and dam discharge became a necessity to prevent significant alteration of the 

hydrologic cycle and protect the long-term health of the lower river ecosystem. 

Roanoke River supports spawning runs for many anadromous species including (ranked by 

abundance) hickory shad A. mediocris, striped bass Morone saxatilis, alewife, blueback herring, 

and American shad A. sapidissima.  None of the dams constructed along the river have 

provisions for anadromous fish passage.  Spawning migrations are limited to the mainstem of the 

river and the extensive floodplain consisting of hardwood forests, backwater swamps, oxbow 

lakes, and small creeks (Zincone and Rulifson 1991).  Flows in the lower river (below Roanoke 

Rapids Dam, 221 rkm) are controlled by coordinated release schedules of upstream dams.  Flows 

are regulated from April through mid-June to provide migratory and spawning cues for striped 

bass and increase their access to spawning and nursery areas.  During striped bass spawning 

season, water is discharged from Roanoke Rapids Dam to maintain river flow within the range of 

167 to 240 cms (Rulifson and Manooch 1990b; Rulifson and Manooch 1990a). 

The lower river is characterized by a single main stem (150 to 300 m wide) with a network of 

small distributaries (50 to 75 m wide) that lead to the delta.  The main distributaries include 

Thoroughfare, Cashie River, and Middle River.  The lower Roanoke River is essentially a 
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freshwater system because of the combination of relatively high outflow, small cross-sectional 

area, and low salinity in Albemarle Sound (Giese et al. 1985). 

Albemarle Sound is a large estuary (1,300 km2) that forms at the confluence of a group of 

rivers, including the Roanoke and Chowan. Water is well-mixed and characterized by low 

salinity (0-2 psu) and high turbidity.  Because of its 90-km length and east-west orientation, tides 

and water flow in Albemarle Sound are influenced to a great extent by prevailing winds and 

discharge from Roanoke River. 

The study area within the lower Roanoke River and western Albemarle Sound was stratified 

into three areas (e.g., River, Delta, Sound), which were delineated using a geographic 

information systems database and records of historical sampling programs.  Sampling was 

conducted at fixed stations and followed the riverine gradient from the 22-km reach within the 

main channel of Roanoke River to the open water of Batchelor Bay, located on the western 

boundary of Albemarle Sound (Table 2.1; Figure 2.2).  Stations were distributed throughout each 

strata.  Stations were selected on the basis of the following criteria:  (1) physiographic and biotic 

characteristics, (2) accessibility for sampling at night, and (3) ability to provide broad scale 

information on spatiotemporal abundance of alosine larvae. 

Methods

Field Sampling Procedures 

Water quality and ichthyoplankton samples were collected at weekly intervals from March 

through June of 2008 and 2009.  These months represent the bulk of alosine production in 

Roanoke River and permit the collection of fish at various stages between hatching, yolk-sac 

absorption, and juvenile transformation (Rulifson and Overton 2005). Sampling was conducted 

at night after sunset (1900-0400) because several studies indicate daytime sampling produces 
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negatively bias abundance estimates (O'Gorman 1984; Höök et al. 2007).  Strata and stations 

were sampled in random order sequence to minimize the variance related to temporal variation 

inherent to ichthyoplankton communities.  Sampling gear efficiencies were assumed to be equal 

in all areas. 

Ichthyoplankton were collected using paired surface pushnets supported from an aluminum 

frame mount on the bow of a 5.8-m boat.  Each net had a 0.5-m square opening and a mouth-to-

tail ratio of 1:5.  Nets were constructed of 505-μm nitex mesh with a Dacron® collar sewn at the 

mouth.  The net mesh size was selected because it allowed comparative analysis with long-term 

ichthyoplankton sampling programs and the size prevents excessive clogging of nets with 

detritus and floating debris  (Zincone and Rulifson 1991; Overton and Rulifson 2007).  Each net 

was equipped with a calibrated flowmeter mounted inside the mouth of the net to estimate the 

volume of water filtered.  The surface nets were pushed into the prevailing water current at a 

uniform speed of 1.5 m/s for 2.0 minutes.  Each sample, filtered from 20 to 40 m3 of water, was 

condensed and preserved at the site of collection.  The contents from one net (left side) were 

preserved with 95% ethanol for use with age and growth studies.  The contents of the second net 

(right side) were preserved with 5% buffered formalin for use with feeding studies and diet 

analysis (see Chapter 3).   

Several environmental and hydrographic parameters were recorded for each area and station.   

These parameters were selected based on their relationship with habitat, water quality, and food 

resources.  Air temperature (°C) and wind speed (m/s) were measured using a portable digital 

anemometer (Skymate Model SM-18, Campbell Scientific, Inc., Logan, UT).  Water quality was 

measured 1 m below the surface and 1 m above the bottom substrate using a multiparameter 

dissolved oxygen probe (Model 85, YSI, Inc., Yellow Springs, OH).  Surface water samples (100 
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ml) were collected for analysis of pH (Model 98128, Hanna Instruments, Woonsocket, RI) and 

turbidity (Model DRT15, HF Instruments, Ltd., Bolton, Ontario, Canada).  Water flow was 

measured at each station from an anchored position.  Current velocity (m/s) and direction were 

measured 1 m below the surface using a portable electromagnetic flow meter (FLO-MATE 2000, 

Marsh-McBirney, Inc., Frederick, MD).  Readings were averaged over ten seconds to determine 

velocity. 

To determine long-term trends in water temperature, data loggers were deployed within each 

region (IBCod Type 22L, Alpha Mach, Inc., Mont St-Hilaire, Quebec, Canada). Temperatures 

were recorded at 15-min intervals for the duration of the project.  Precipitation and air 

temperature data were obtained from a 2-m weather station located at Tidewater Research 

Station in Plymouth, North Carolina.  The State Climate Office of North Carolina operates the 

weather station and data are maintained by the National Climatic Data Center (SCONC 2009).  

Daily water discharge rates were obtained from Roanoke Rapids Dam water monitoring gage, 

located 4.5 km downstream of the dam and 221 km upstream from the study area (USGS 2011).  

Laboratory Processing of Samples 

Larval fish 

Ichthyoplankton samples were transferred to fresh ethanol within 24 h of collection.  Fish 

larvae were separated from debris, sorted, and counted using a dissecting microscope (Olympus 

SZX-ILLD100, Tokyo, Japan).  Alosines were identified using a variety of larval taxonomic 

keys and criteria based on external morphological features (Lippson and Moran 1974; Auer 

1982; Sismour 1994a; Walsh et al. 2005).  Species identifications were confirmed using 

hatchery-reared reference samples.  Intact alosines were identified to species, whereas degraded 
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fish were classified as either “Alosa species” (2% of total) or “river herring” (6% of total) based 

on length measurements and meristic characters.  To determine larval abundance, the catches 

between the two nets were averaged together.  Abundances of larval fish were then standardized 

to catch per unit effort (CPUE; number of fish sampled per 100 m3 of water filtered).  

Abundance estimates within each strata were calculated by averaging the CPUE at each station. 

All blueback herring and alewife were initially measured using a dissecting microscope 

equipped with an ocular micrometer (Olympus SZX-ILLD100, Tokyo, Japan).  Notochord 

lengths (preflexion larvae) and standard lengths (postflexion larvae) were measured to the 

nearest 0.25-mm, and these lengths will henceforth be referred to as standard length (SL).  From 

each sample preserved in ethanol, a subsample up to 10 alewife and 10 blueback herring were 

used for precise measurement of length, measurement of gut fullness, and collection of otoliths.  

Specimens were randomly selected to ensure that observations of age, size, body condition, and 

recent feeding history were well represented.   Larvae were digitally photographed on a glass 

microslide and using a dissecting microscope at 40-x magnification.  Ethanol droplets were 

frequently added to prevent desiccation of larvae on the microslide.  All larvae were 

photographed on their left sides in the sagittal plane.  The microscope was equipped with a high-

resolution video camera and still images were recorded as uncompressed files in tagged Image 

File Format (TIFF) at 6 megapixels.  Larvae were measured and analyzed using image analysis 

software (Image-Pro Discovery software version 4.5, Media Cybernetics, Inc., Silver Spring, 

MD).  All morphometric measurements were recorded to the nearest 0.001 mm and calibration 

errors were maintained at less than 1 μm (�0.1% of 1 mm).  Body lengths were recorded as total  
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length (TL) and standard length (Snyder 1983).  For each larva, gut length and gut fullness were 

recorded.  Gut fullness was measured as presence or absence of food in proportion to the length 

of the entire alimentary canal. 

 

Otolith preparation and analysis 

Accurate aging of individual fish can improve the estimation of population growth rates, age-

specific growth, and individual variation in growth and survival.  This study carries the explicit 

assumption that otolith increments are formed daily and they provide a historical record of 

growth.  After each fish was measured, sagittal otoliths were dissected from larvae using 

tweezers and fine dissecting needles.  Larval remains were discarded and the otoliths were 

washed in ethanol and cleaned of adherent tissues.  Otoliths were air dried and mounted on a 

glass microslide using low-viscosity epoxy resin (DePeX mounting medium, Electron 

Microscopy Sciences, Fort Washington, PA).  All otoliths were mounted prior to independent 

age determination and marginal increment analysis.   

Otoliths were analyzed at 1000-x magnification using a compound microscope (Olympus 

BH-2 microscope) and oil immersion.  As previously described, the microscope was equipped 

with a high-resolution video camera and computer with image analysis software.  Polarizing light 

and filters were used to improve the contrast of otolith microstructure in digital photographs and 

allowed increments to be measured precisely.  Image analysis was used to measure the radius 

and diameter of each otolith and its nucleus.  Increment widths were measured along the longest 

axis from the center of the nucleus to the outer edge (Stevenson and Campana 1992).  The 

distance between each pair of consecutive rings was used to estimate daily growth.  To estimate 

age, increments were counted from the nucleus, beginning at the first clearly defined mark 
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encircling the primordium, to the outer edge of the otolith.  Each growth increment showed a 

common bipartite structure consisting of an incremental zone that appeared light and translucent, 

and a discontinuous zone that appeared dark and opaque (Secor et al. 1995).  Otolith increments 

were counted blind (no sample information available) on two separate occasions by a single 

reader.  If the difference in increment counts was two increments or less, the average of the two 

counts was used to estimate age, otherwise, the sample was discarded.  A correction factor of 2 

days was added to all age estimates to account for the number of days between spawning and 

first increment formation (Essig and Cole 1986; Sismour 1994b).  To compare temporal hatching 

distributions among areas, hatch dates were calculated by subtracting the estimated age from the 

date of collection.  Ages were predicted for nonaged larvae through the use of species-specific 

age-length relationships calculated using least-squares regression. 

Back-calculations of length-at-age were based on marginal increment analysis and the 

assumption that there is proportionality between otolith and somatic growth rates (Jones 1992; 

Campana 2001).  The assumption of constant periodicity in otolith formation has been validated 

in both blueback herring and alewife (Essig and Cole 1986; Sismour 1994b).  The back-

calculation of length-at-age for each fish was determined using the biological intercept (BI) 

method (Campana 1990).  This method is a modified variation of the Fraser-Lee linear back-

calculation model that includes a BI in the model to reduce the influence of variable growth rates 

in the population (i.e., the growth effect).  In this study, the BI method was used because a large 

proportion of fish were very young or had recently hatched.  The BI method was calculated using 

the equation:  

�� � �� � ��� � �	
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where L is fish length at age i (Li), at the BI (L0) and at capture (Lc), and O is otolith radius at age 

i (Oi), at the BI (O0), and at capture (Oc).  We assumed that the increment closest to the nucleus 

was formed at the day of hatching and the average length of fish at hatch (L0) was 3.5 mm SL 

(Auer 1982; Sismour 1994a).  The otolith radius at first increment (O0) was calculated by 

averaging the nucleus radii for each species.  Growth based on back-calculated methods was 

evaluated at different temporal scales:  (1) within 2 d of capture, to evaluate habitat-specific 

growth, and (2) the time between hatching and capture, to evaluate overall growth. 

 

Data Analysis 

Environmental factors 

Environmental parameters including river discharge, depth, water flow, water 

temperature, dissolved oxygen, salinity, pH, and precipitation were analyzed to detect 

differences in sampling periods and locations.  To satisfy assumptions relating to parametric 

tests and univariate normality, Shapiro-Wilk’s W-test and residual plots were used to analyze 

the distribution of each data series (Shapiro and Wilk 1965; Royston 1992).  When necessary, 

environmental data were logarithmically transformed (log10) before statistical analysis to 

normalize observations and stabilize the variance.  Independent samples t-tests were used to 

detect differences between sampling years.  Spatial and monthly differences between 

environmental parameters were evaluated using a one-way analysis of variance (ANOVA).  

If the ANOVA was significant (P � 0.05), differences were further examined using the Ryan-

Einot-Gabriel-Welch (REGWQ) post-hoc test, which holds family wise alpha at 0.05.  Unless 

otherwise noted, all statistical analyses and visualization techniques were performed using 

SAS statistical software (SAS 9.2; SAS Institute, Cary, NC, USA).   
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Distribution of larval fishes 

An exploratory statistical analysis was conducted to determine whether area, station, or 

environmental parameters accounted for a significant amount of variability in the spatiotemporal 

distribution of river herring.  Abundances were analyzed with respect to environmental 

parameters that included river discharge, depth, water flow, water temperature, dissolved 

oxygen, salinity, and pH.  Directions of larval dispersal and dispersal rates were examined 

relative to river flow conditions.  To determine the loss of larvae from Roanoke River mainstem 

through distributaries (Thoroughfare and Middle River), daily CPUE estimates were converted to 

total number of larvae based on the volume of water at each station.  River volumes (m3) 

represented by each site were calculated from data in Rulifson et al. (1992).  T-tests were used to 

test the hypothesis that the loss of larvae from the mainstem was greater than the volume of 

water lost through Thoroughfare and Middle River.  Hypotheses were based on data from Lebo 

(1998), which showed that 16% of water in the mainstem is distributed through Thoroughfare 

and 30% of water in the mainstem is distributed through Middle River.  Regression analysis was 

used to evaluate larval advection through distributaries as related to river discharge.   

Nonparametric statistics were used evaluate distributions of alosines, because data did not 

always meet the underlying conditions of normality and homogeneity of variances.  CPUE 

means and standard deviations were significantly affected by a large number of true zero 

observations related to the seasonal distribution of alosines.  CPUE data were transformed by 

using lognormal data and adding 0.001 to account for zeros.  A Wilcoxon Rank-Sum Test was 

used to compare differences in alosine CPUE between sampling years.  Spatial and monthly 

differences in alosine CPUE were analyzed using the non-parametric ANOVA for repeated 

measures (Friedman test).  This repeated measures procedure is especially useful when sampling 
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fixed stations through time (Maceina et al. 1994).  The stations within each strata were 

considered a repeated measure.  In cases where the Friedman test was significant (P � 0.05), 

post-hoc comparisons were conducted using Dunn’s Test on rank means. 

A one-way multiple analysis of variance (MANOVA) tested whether the three sampling 

areas were significantly different when both river herring and environmental data were included 

in the analysis.  In addition to testing for significant differences among groups, MANOVA also 

provides a value, �, measuring how large the differences are among groups.  � ranges from 0 to 

1, with 0 indicating strong differences (Tabachnick and Fidell 2007).  To protect against 

multicollinearity, a Pearson correlation matrix was conducted using all environmental variables.  

If a pair of variables had an r � 0.9, one of the variables was deleted from MANOVA and 

principal component analysis. 

Distribution and habitat use patterns of larval blueback herring and alewife were examined 

with principal component analysis (PCA).  The PCA was conducted using standard routines in 

Primer-E v6 (Primer-E Ltd, Plymouth, UK).  Combined environmental and hydrographic variables 

in 593 samples were normalized and used to calculate variable loadings and generate principal 

component scores.  PCAs were run on correlation matrices of centered data.  To facilitate 

visualization and simplify comparisons between habitats, eigenvalues and eigenvectors were 

extracted from the correlation matrices for each species and each area sampled (River, Delta, and 

Sound).  Component axes retained for interpretation were those that explained > 60% of the 

cumulative variance and those with an eigenvalue greater than 1.0 (Jolliffe 2002).  

Environmental variables with eigenvectors (correlations) larger than 0.40 were considered 

biologically important (Hair et al. 2009).  For visual comparisons of habitat use in three-

dimensional principal component space, the mean eigenvalue for each component was plotted as 

a centroid and the variance about the centroids was estimated as the means of standard errors on 
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each of the principal component axes (Switzer et al. 2004).  Confidence intervals (95%) about 

the centroids were estimated by doubling the standard errors. 

 

Sagittal otolith comparison 

To determine differences in increment number and otolith morphology, left and right sagittae 

were compared using paired t-test.  The precision of independent age determinations were 

calculated through procedures for percent agreement (± 2 d), coefficient of variation (Campana 

2001), and average percent error (Beamish and Fournier 1981).   

 

Age and growth 

The relationship between length and age was evaluated using regression analysis.  Six 

age-length keys were developed, one for each species and area.  Evidence of different growth 

trajectories was interpreted as a significant interaction effect with habitat.  Analysis of 

covariance (ANCOVA) was used to compare slopes of age-length regressions for blueback 

herring and alewife caught in each area.   

Individual mean growth rate was (MGR, mm/d) was calculated for each larvae using the 

equation:  

��� � ������
�

      (2) 

where Lc is the standard length at capture, L0 is the standard length at hatch, and t is the age 

since hatching (d).  ANOVA was used to compare MGR for each species and area. 

Mortality 

Habitat specific mortality rates were estimated using catch curve analysis of data pooled 

throughout the study (Ricker 1975).  All blueback herring and alewife larvae � 5 mm SL were 
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considered equally vulnerable and fully recruited to the gear.  Instantaneous mortality rates were 

estimated by fitting an exponential model of decline in abundance with respect to age.  Mortality 

was calculated using the equation:  

�� � �	����       (3) 

where Nt is larval abundance age t, N0 is estimated abundance at time of hatching (y-intercept of 

regression), Z is the instantaneous mortality coefficient, and t is the age since hatching (d).  Data 

were fit to the log-linear form of the model after log-transformation of abundance data.  

Confidence intervals of 95% around the mortality estimates were calculated using standard 

regression techniques.  ANCOVA was used to compare mortality estimates for blueback herring 

and alewife caught in each area and at varying temporal scales.  Models detecting a significant 

treatment effect were further examined with Tukey’s HSD multiple-comparisons to test for 

differences (� = 0.05) among treatment means. 

Results

Habitat and environmental factors 

Seasonal air temperatures (-9.4 – 37.8 °C) and precipitation (33.9 ± 1.9 cm) exhibited 

climatic and weather patterns typical of southeastern United States.  Air temperature and 

precipitation were not significantly different between years (Table 2.2).  Several cold fronts that 

passed through the region in 2009 resulted in unusually cold, wet conditions, a characteristic of 

climates influenced by El Niño-Southern Oscillation.  These cold fronts often produced periods 

of heavy rainfall leading to daily accumulations in excess of 4 cm.  In 2008 and 2009 during the 

peak spawning periods for anadromous clupeids (late March through early May), air 

temperatures were 14.5 ± 5.0 ºC and precipitation accumulated to 13.5 ± 3.0 cm.   
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Mean daily discharge from Roanoke Rapids Dam varied from 64 to 416 cms during 2008 and 

from 77 to 623 cms in 2009 (Figure 2.3).  The temporal pattern of flows differed between years.  

Discharge rates for 2008 followed an approximately normal distribution pattern with flows 

exceeding 200 cms for 67% of the sampling period.  Low flows (70.9 ± 10.1 cms) were observed 

for most of March.  During striped bass spawning and recruitment, flows were maintained within 

management guidelines for 57% of the regulatory period.  Discharge rates for 2009 exhibited a 

bimodal distribution pattern with peak flows observed before and after striped bass spawning.  In 

2009, flows exceeded 200 cms for 90% of the sampling period and were maintained within 

striped bass management guidelines for 87% of the regulatory period.  High flows in excess of 

500 cms were observed on March 4 and June 9 through June 18.  The magnitude of these flows 

was evidenced by heavy spring rains and local flooding events.  Corresponding with highly 

variable flows, river gage height was significantly different between years (t121= 6.98, p < 0.001, 

g = 0.9).  River height was 4.8 ± 1.2 m for 2008 and 5.9 ± 1.1 m for 2009.  Water depth at fixed 

stations in Roanoke River and Albemarle Sound ranged from 0.9 to 8.5 m.  Stations located in 

the River were significantly deeper (4.7 ± 1.4 m; F2,149 = 60.56, P < 0.001) than stations in Delta 

(3.2 ± 1.0 m) and Sound (3.3 ± 0.4 m).  

Water quality parameters were within ranges expected for river herring migration, spawning, 

and larval development (Greene et al. 2009).  Significant yearly differences were observed for 

dissolved oxygen, pH, and turbidity (Table 2.2).  Water temperatures were lowest in March and 

increased steadily through June.  The difference between surface and bottom temperature was 

minimal (0.1 ± 0.7 °C).  There was no evidence of water mass stratification during any of the 

sampling months.  Water temperatures were 14.5 ± 0.4 °C during the peak capture periods for 

blueback herring in April and 21.3 ± 0.1 °C during the peak capture periods for alewives in May.  
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Water temperature and turbidity were not significantly different among areas (Table 2.3).  

Turbidity ranged from 5 to 220 ntu, and measured values were not correlated with river 

discharge, surface currents, wind speed, or other hydrographic phenomena.  Although surface pH 

levels were not significantly different between the River and Delta, surprisingly low pH levels 

ranging from 5.3 to 6.0 were recorded in these regions following rainy days and high-flow 

periods in March and April 2009.  High pH levels in the Sound corresponded to elevated 

salinities.   

Dissolved oxygen followed the expected seasonal pattern of being highest in March and 

decreasing through the summer (Figure 2.4).  Dissolved oxygen levels were generally above 

70% saturation throughout the sampling period.  Hypoxia (< 3.0 mg/L) occurred infrequently in 

late May and June accounting for 3% of bottom dissolved oxygen readings.  Anoxic conditions 

(< 0.5 mg/L) were observed on several occasions within Warren Neck Creek, a small tributary 

off the mainstem of the Roanoke River. These conditions were prevalent when flow within the 

creek was less than 0.01 m/s and water temperatures exceeded 25 ºC. 

Salinity within the Sound ranged from 0.1 to 2.5 psu and was significantly higher than other 

areas (F2,149 = 41.38, P < 0.001).  The River and Delta were predominantly freshwater with 

salinities < 0.1 psu.  Water within the River and Delta flowed downstream and surface currents 

were similar in both areas, ranging from 0.01 – 0.83 m/s, with a mean velocity of 0.14 ± 0.11 

m/s.  Net surface flow within these regions was not correlated with river discharge or rainfall.  

Inland stations along the River and Delta were generally protected from prevailing winds from 

the east (36%) or southwest (32%).  These winds affected the open waters of the Sound causing 

wave action, wind rows, and visible signs of circulation patterns (i.e., Langmuir circulation).  

Surface currents within the Sound were strongly correlated with wind speed (Figure 2.5; r2 = 
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0.80, F1,46 = 185.49, P < 0.001).  Surface currents were significantly higher (F2,149 = 6.46, P = 

0.002) in the Sound (0.3 ± 0.2 m/s), ranging from 0.0 – 1.2 m/s, and currents most frequently 

originated from the west (61%) or northeast (28%).  

 

Larval abundance 

A total of 50,435 fishes were collected from 1,186 pushnet samples.  Larvae and juveniles 

were caught throughout the areas sampled.  The total catch between paired samples was not 

significantly different (t1185 = 1.68, P = 0.09).  Overall, no significant differences were observed 

in the total catch of fish between sampling years.  The River and Delta were not significantly 

different and comprised 88.9 ± 0.3 % of the fish caught.  Significantly fewer fish were caught in 

the Sound (11.2 ± 0.3%) than the River or Delta (�2
 = 21.72, df = 2, P < 0.001).   

Larval alosines identified to species included blueback herring (53%), hickory shad A. 

mediocris (28%), alewife (15%), and American shad A. sapidissima (0.5%).  The frequency of 

occurrence for shads and river herring varied with area (Table 2.4).  Anadromous alosines (N = 

12,901) comprised 11% of the total catch in 2008 and 38% of the catch in 2009.  Alosines were 

collected during all weeks of sampling in 2008, but were not present the first week of sampling 

in 2009.  Other clupeiformes present in samples were Atlantic menhaden Brevoortia tyrannus, 

gizzard shad Dorosoma cepedium, and bay anchovy Anchoa mitchilli. 

Differences in alosine abundance (number/100 m3 ± SD) and composition were observed 

between sampling years.  With all species combined, larval alosine abundance in 2009  

(28.5 ± 67.8) was significantly higher than in 2008 (7.7 ± 11.0; z = 2.36, P = 0.02).  These 

differences were primarily driven by the abundance of blueback herring in 2009 (98.1 ± 209.8; z 

= 2.76, P = 0.006), because no significant differences were observed in the abundance of other 
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Alosa species between sampling years.  Alewives (35.1%) were the most abundant alosine in 

2008 followed closely by blueback herring (32.7%) and hickory shad (29.6%).  In contrast, 

blueback herring (59.1%) were the most abundant alosine in 2009 followed by hickory shad 

(29.2%) and alewife (11.6%).  American shad were the least common alosine for both years (< 

3%).  

The initial arrival of larval river herring to the nursery grounds was different between the two 

years.  Peaks in river herring recruitment were observed several weeks earlier in 2008 as 

compared to 2009 (Figure 2.4).  Blueback herring were collected during all weeks of sampling in 

2008 and 2009, with exception of the first week of March 2009.  Peak recruitment for blueback 

herring occurred during the third week of March and was sustained through the first week of 

May in 2008.  Peak recruitment of blueback herring was of shorter duration in 2009.  Blueback 

herring abundances were highest during the first week of April and remained high for two weeks.  

For both years, blueback herring recruitment was highest when water temperatures were 16.2 ± 

2.5 °C and ranged from 14.5 to 18.5 °C.  Alewife abundances were highly variable, and peak 

recruitment was of shorter duration.  In 2008, alewife peak recruitment coincided with high 

abundances of blueback herring in March and remained high for the first weeks in April.  

Recruitment of alewife occurred later in 2009 and abundances peaked during the latter half of 

April.  Similar to blueback herring, peaks in alewife recruitment were highly correlated with 

temperature.  For both years, alewife recruitment was highest when water temperatures were 

17.2 ± 2.3 °C and ranged from 14.5 to 20.5 °C.   

Blueback herring and alewife were collected within all areas (Table 2.5); although, 

distribution and abundance varied spatially.  While most river herring were collected within the 

River (70%; N = 6,334), abundances generally declined moving downstream along the river 
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gradient (Figure 2.6). This trend was consistent across both years and for each species.  The 

percentage of larvae lost from Roanoke River to the distributaries was different for Thoroughfare 

and Middle River.  The percentage of larvae lost from the mainstem channel to Thoroughfare 

(27.2 ± 28.6 %) was significantly greater than the percentage of water (16%) lost to 

Thoroughfare (t19 = 2.37; P = 0.03).  The percentage of larvae lost from the mainstem channel to 

Middle River (32.3 ± 27.6 %) was not significantly different than the percentage of water (30%) 

lost to Thoroughfare (t18 = 1.47; P = 0.72).  Larval dispersal through the distributaries was highly 

correlated to river flow (Figure 2.7; r2 = 0.95, F1,22 = 185.6, P < 0.001) and was not significantly 

different between Thoroughfare and Middle River (ANCOVA; F = 0.01, P = 0.94).   

Warren Neck Creek was the only tributary sampled that does not receive flows directly from 

Roanoke River.  The creek is connected to the mainstem channel.  Approximately 20% of all 

blueback herring (N = 1,496) and alewife (N = 195) were caught in Warren Neck Creek, and the 

total number of river herring caught in Warren Neck Creek in 2009 was nearly equal to the total 

catch of river herring in 2008 for all stations combined. 

Larval abundances varied significantly among the three sampling areas for both blueback 

herring (Friedman’s test; �2 = 10.24, df = 2, p = 0.006) and alewife (�2 = 19.65, df = 2, p < 

0.001).  Post-hoc comparisons revealed that blueback herring abundances were significantly 

higher in the River (35.6 ± 147.4) and Delta (14.6 ± 46.5) as compared to the Sound (7.9 ± 28.2).  

Although alewife were considerably less abundant, their distribution was similar with 

abundances highest in the River (12.9 ± 37.7) as compared to the Delta (5.1 ± 11.8) and Sound 

(1.5 ± 5.6). 
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Relationship between fish abundance and environmental factors 

Air temperature and conductivity were both highly correlated (r � 0.9) with other parameters 

and were excluded from MANOVA and PCA analyses.  A one-way MANOVA indicated that 

strong and significant differences were observed among areas sampled (Wilk’s � = 0.03, F = 

15.48, �2 = 0.97, P < 0.001).  Area explained 97% of the variance in the environmental and river 

herring abundance data.  These results indicated the three sampling areas can be clearly 

distinguished from each other when both environmental data and larval abundances are analyzed 

together. 

Principal components analysis was used to corroborate the results of the MANOVA and 

summarize the variation observed between habitats.  The PCA identified three factorial axes that 

explained 77% of the total variability (Table 2.6).  All environmental or hydrographic variables 

were biologically important on at least one principal component.  Principal Component I 

accounted for most of the variation (41%) and was characterized by a positive correlation with 

water temperature and negative correlation with dissolved oxygen.  This component was 

interpreted as a seasonal component.  Principal Component II explained 22% of the variability 

and was associated with a positive correlation with depth and negative correlations with pH and 

salinity.  This component was interpreted as a spatial component that clearly defined the three 

stratified areas.  Principal Component III explained 14% of the variability and was associated 

with a positive correlation with turbidity and negative correlation with surface current.  Three-

dimensional spatial analysis of the PCA revealed differences in relationships among abiotic 

factors and their level of influence on the distribution of river herring (Figure 2.8).  Plots of the  
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centroids were well separated in PCA space and indicated a high degree of separation between 

habitats.  The close proximity of centroids for blueback herring and alewife showed these species 

coexist and occupation of each area is similar. 

 

Larval ontogeny and size distribution 

River herring yolk-sac larvae were prevalent throughout samples (32%).  Most blueback 

herring yolk-sac larvae (48%) were collected during the first two weeks of April.  Blueback 

herring yolk-sac larvae averaged 5.3 ± 0.7 mm SL with a few fish measuring up to 7.0 mm SL.  

Most alewife yolk-sac larvae (42%) were collected in the latter part of April and early May.  

Alewife yolk-sac larvae averaged 4.8 ± 0.8 mm SL with a few fish measuring up to 6.5 mm SL.  

River herring larvae collected were predominantly preflexion stage (66%) ranging from 5.0 to 

10.0 mm SL.  Larvae in later stages of development were rare and collections of these larvae 

were not correlated with a specific temporal period.  Gut fullness was low (< 10%) for both 

species and fish collected from all areas.  Gut fullness was not correlated with fish length (r2 = 

0.02, F1,563 = 5.4, P < 0.02).  A small proportion (< 10%) of yolk-sac larvae had transitioned to 

exogenous feeding as indicated by gastrointestinal differentiation and the presence of food in 

stomachs (Table 2.7).   

River herring lengths ranged from 3.5 – 12.7 mm SL, with 97% of larvae � 8 mm.  Mean 

length was similar between blueback herring 5.9 ± 1.1 mm SL and alewives 5.4 ± 1.1 mm SL.  

Larval lengths were positively correlated with water temperature (Figure 2.9; Table 2.8).  The 

results of an ANCOVA based on standard length as the response variable and temperature as the 

covariate showed a significant difference between species (F = 20.36, N = 798, P < 0.001).  Size 

distributions varied with area and year.  In 2008, no significant differences were observed in the 
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size distribution of blueback herring (F2,300 = 0.65, P = 0.52) or alewife (F2,371 = 0.46, P = 0.63) 

within any area.  In 2009, significantly larger blueback herring were collected in the River and 

Delta compared to fish collected in the Sound (F2,494 = 4.80, P = 0.009).  Although the largest 

alewives were collected in the River and Delta in 2009, length was not significantly different 

among areas (F2,279 = 0.27, P = 0.76). 

 

Otolith analysis 

Sagittal otoliths were collected from 594 (9%) blueback herring and 392 (22%) alewife.  

Pairs of sagittal otoliths were collected from 446 blueback herring and 380 alewife.  Deposition 

of subdaily increments were observed in some fish.  These increments were distinguished from 

daily growth increments based on continuity of rings around the nucleus and the relative spacing 

of discontinuous zones.  Size distributions of larvae for age determination were similar between 

species and ranged from 3.5 – 12.0 mm SL.  Otolith radius at capture was 13.8 ± 3.4 �m for 

blueback herring and 12.4 ± 2.5 �m for alewife.  Otolith radius at first increment formation 

(hatching) was 2.9 ± 0.7 �m for blueback herring and 3.0 ± 0.9 �m for alewife.  Comparisons of 

otolith microstructure and increment counts were not significantly different between left and 

right sagittae (Table 2.9).  Consequently, sagittae from either side were randomly selected for 

age determination. 

Otoliths from 5% of blueback herring (N = 30) and 3% of alewife (N = 12) were discarded 

because increments were not discernable or did not meet the acceptance criteria.  Increment 

counts ranged from 2 to 17.  Increment counts showed a high degree of precision between the 

two enumerations (Table 2.10).  The percent agreement exceeded 90% for enumerations within 1 

day.  Average percent error was 2.9 ± 4.6 for blueback herring and 6.8 ± 5.4 for alewife, and the 
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coefficient of variation for increment counts for both species was extremely low (4.6 ±  7.9).  

Habitat-specific differences in precision and percent agreement of increment counts were a result 

of sample size with fewer fish collected in the Sound than the other areas. 

 

Age, growth, and mortality 

The distribution of ages for blueback herring and alewife were not significantly different 

between species or years.  Fish ages ranged from 4 to 19 days after hatch.  Age distributions 

varied among nursery areas; however, age distributions generally increased down the river 

gradient (i.e., distance from the spawning grounds).  As expected, significantly older blueback 

herring were caught in the Sound (4.2 ± 1.3 d) as compared to the River (3.9 ± 1.1 d) and Delta 

(3.7 ± 0.9 d; ANOVA, F2,1400 = 15.00, P < 0.001).  Older alewife were also caught in the Sound 

(5.9 ± 1.6 d) as compared to the Delta (4.5 ± 1.3 d) and River (3.7 ± 1.5 d; F2,814 = 71.32, P < 

0.001).     

Larval lengths were strongly correlated with otolith size for blueback herring (r2 = 0.97, 

F1,503 = 19,510.5, P < 0.001) and alewife (r2 = 0.94, F1,291 = 4485.1, P < 0.001).  This supports 

the validity of the regression and use of the BI method for backcalculating the lengths of river 

herring larvae.  Differences in body length-otolith radius relationships were not detected between 

species, year, or area.  Length-at-age relationships were best described (r2 > 0.85) using linear 

regression (Figure 2.10).  Length-at-age relationships were not significantly different between 

species (ANCOVA, F = 0.05, P = 0.83).  Length-at-age comparisons of endogenous and 

exogenous feeding stages were not significantly different for blueback herring (ANCOVA, F = 

0.86, P = 0.35) or alewife (F = 3.11, P = 0.08).  Using pooled data of larvae at various stages, 

length-at-age relationships were significantly different between areas for blueback herring 
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(ANCOVA, F = 5.57, P = 0.004) and alewife (F = 5.59, P = 0.004).  The results suggest 

blueback herring in the Delta were significantly larger at younger ages than cohorts in other 

areas.  In contrast, alewife in the Sound were significantly larger at younger ages than cohorts in 

other areas. 

Growth rates of larval river herring estimated by aggregate methods indicated that growth 

varied between species, years, and areas.  Individual MGR for blueback herring was 0.29 ± 0.16 

mm/d and ranged from 0.17 to 0.75 mm/d.  Alewife MGR was 0.30 ± 0.14 mm/d and ranged 

from 0.25 to 0.64 mm/d.  Overall, daily growth was significantly faster for alewife (t1900 = 2.34, 

P =0.02).  Analysis of MGR by year and species revealed alewife MGR (0.33 ± 0.15 mm/d) was 

significantly faster than blueback herring MGR in 2008 (0.22 ± 0.20 mm/d; t475 = 7.79, P < 

0.001), but not in 2009.  During the second year of the project, blueback herring MGR (0.31 ± 

0.15 mm/d) was significantly faster than alewife (0.28 ± 0.13 mm/d; t979 = 2.98, P =0.003).  

Analysis of individual MGR by area and species (Table 2.11) showed for both years daily 

growth was significantly faster for alewife in the River (ANOVA;  F2,814 = 23.32, P < 0.001).  

Blueback herring MGR was not significantly different between areas in 2008, but was 

significantly faster in the Delta in 2009 (F2,1400 = 3.94, P = 0.02). 

Instantaneous growth estimates based on back calculations and marginal increment analysis 

of otoliths from hatch (Gmax) and within 2 d of capture (Gc) varied with species and area (Table 

2.11).  Blueback herring Gmax was not significantly different from alewife (0.09 ± 0.03).  In 

contrast, alewife Gc (0.09 ± 0.04) was significantly higher than blueback herring (0.07 ± 0.03; 

t412 = 6.24, P < 0.001).  Instantaneous growth estimated from either Gmax or Gc for blueback 

herring was not significantly different between areas.  Alewife Gmax was significantly higher in 

the River (0.10 ± 0.03) compared to the Delta (0.08 ± 0.02) and Sound (0.08 ± 0.02; F2,290 = 
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10.09, P < 0.001).  Alewife Gc followed a similar distribution and was significantly higher in the 

River (0.11 ± 0.05) than in the Delta (0.08 ± 0.03) or Sound (0.06 ± 0.03; F2,290 = 29.78, P < 

0.001). 

Mortality estimates for blueback herring (0.76 ± 0.23 per day) were significantly higher than 

mortality estimates for alewife (0.64 ± 0.17 per day; t46 = 2.03, P = 0.048).  River herring 

mortality estimates were not different between years, but significant differences were observed 

between months sampled (Table 2.12).  Blueback herring mortality was highest in March (0.98 ± 

0.10 per day), while alewife mortality was highest in April (0.77 ± 0.13 per day).  Both species 

experienced the lowest mortality in June (0.50 ± 0.17 per day).  Comparisons of mortality 

between endogenous and exogenous feeding stages of larvae were not significant for either 

species.  Blueback herring mortality was highest in the River and Sound (0.88 ± 0.20 per day); 

however, mortality was not significantly different from the Delta (0.75 ± 0.22).  Significant 

differences in mortality with nursery habitat were observed for alewives.  Alewife mortality was 

significantly higher in the River (0.71 ± 0.15 per day) and Delta (0.68 ± 0.15 per day) compared 

to the Sound (0.51 ± 0.16 per day; F2,21 = 3.79, P= 0.04). 

 

Spawning season 

Analysis of back-calculated hatch dates indicated that blueback herring and alewife spawned 

throughout the period sampled from March through June.  Previously unreported for North 

Carolina, blueback herring and alewife yolk-sac larvae were collected from fish that spawned in 

late June.  While temporal differences in spawning were correlated to recruitment patterns, water 

temperature was a critical factor in determining peaks in spawning.  Blueback herring spawning 

was strongest when water temperatures were 14.4 ± 0.5 °C and most spawning (75%) was 
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completed when water temperatures were 17.5 ± 1.4 °C.  Temperatures corresponding to peaks 

in alewife spawning were warmer than those for blueback herring.  Alewife spawning was 

strongest when temperatures were 16.5 ± 1.3 °C and most spawning (75%) was complete when 

temperatures were 19.0 ± 2.7 °C.   

Discussion 

Evidence from this study provides some support for review of reservoir operation and dam 

discharge guidelines to optimize river flow regimes for production of anadromous alosines in 

Roanoke River.  Our results emphasize the importance of river flow on distribution of larval fish 

in a large river system.  The Roanoke is a large river, with roughly the same mean flow as the 

Colorado River through the Grand Canyon (Manring and Pearsall 2005).  Best management 

practices for dam discharge have long supported the recovery of Roanoke River-Albemarle 

Sound stock of striped bass (Reinert et al. 2005; Greene et al. 2009).  Dam discharge regulations 

that extend from April through mid-June dampen the natural variability in river flow and 

eliminate high-magnitude flood events.  Established discharge rates and river flow regimes are 

beneficial to striped bass migration and spawning, egg and larval transport, larval retention in 

primary nursery habitats, and larval distributions in relation to food resources (Rulifson and 

Manooch 1990a).  River flow has been implicated as a significant determinant of alosine 

recruitment success.  Negative effects of high river flow (e.g., > 300 cms) include reduced 

residence time of eggs and larvae in nursery habitats and variable water quality  (Meador et al. 

1984).  Positive effects of high river flow include spawning and migratory cues, access to 

inundated backwater habitats, and transport of larvae from spawning to nursery grounds (Martin 

and Paller 2008).   
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In this study, high flows (300 – 600 cms) and water temperatures ranging from 5 to 13 °C in 

March 2009 probably served as a distinct migratory and spawning cue for river herring and 

resulted in widespread and unusually high production of larvae.  Moderate to high flows (186 to 

387 cms) serving as migratory and spawning cues for striped bass in April swiftly transported 

alosine eggs and larvae downstream.  The collection of large numbers of yolk-sac (32%) and 

preflexion larvae (66%) in the River, Delta, and Sound suggests larvae are being transported 

downstream from spawning grounds and fish are possibly being advected from primary nursery 

habitats.  

 Despite spatial coverage (108 km2) and extensive sampling within the lower reaches of this 

coastal river system, spawning was not directly observed for any Alosa species. We also did not 

detect spawning through collection of fertilized eggs using either pushnets or vertical plankton 

hauls (Coggins 2005).  Previous studies suggest river herring are spawning far upstream from 

our study area (75 to 200 rkm).  In recent years, river herring fertilized eggs have been collected 

in habitats adjacent to Roanoke Rapids Dam tailrace (218 rkm) and downstream (209 rkm) near 

Weldon, North Carolina (Harris and Hightower 2010).  Other alosines such as hickory shad and 

American shad also spawn in this region (Harris and Hightower 2011).  Further downstream 

from the dam (100 rkm), river herring have been observed spawning in backwater tributary 

systems (Walsh et al. 2005).  Yolk-sac larvae collected from flooded swamps and small creeks 

allowed these authors to infer river herring were spawning in the immediate vicinity.  Drainage 

of backwater tributary systems dispersed eggs and larvae downstream through the main river 

channel. 

To understand the natural characteristics and the effects of hydrologic alteration on fish 

communities, studies relating river discharge with time of travel were conducted in the 1950s 
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(Fish 1959) and 1980s (Herrmann 1993).  Using fluorescent dye additions and gaged discharge 

from Roanoke Rapids dam under varying hydrologic regimes (74 to 277 cms), time of travel for 

eggs and larvae to reach our study location was estimated at 4 to 9 d and water mass movement 

ranged from 1.5 to 2.3 km/h (Herrmann 1993).  Estimated transport times correspond closely 

with river herring ages and stages of development observed in this study.  Although the 

geomorphology of Roanoke River has changed over time with increased sediment and siltation 

from anthropogenic sources (Hupp et al. 2009), discharge and flows tested 30 years ago were 

within current management guidelines.  Unless mechanisms exist for retention of larvae in 

upstream habitats, our findings coupled with Walsh et al. (2005) suggest a large proportion of 

larvae drift downstream in narrow, channelized river reaches until they are entrained in low-

velocity habitats at the mouth of the river or dispersed into Albemarle Sound. 

The abundance of young fish (3 d) collected provides evidence river herring are spawning in 

close proximity to the study area.  High numbers of yolk-sac larvae (59% of blueback herring; 

73% of alewife) collected from Warren Neck Creek (Station 4) further suggests river herring are 

spawning within the upper reaches of this tributary.  Warren Neck Creek extends 3 km southwest 

from Roanoke River and is characteristic of spawning habitat for river herring.  The shallow 

creek has low flows (0.08 ± 0.04 m/s) and is bounded by forested wetlands, wooded swamps, 

and dense vegetation.  Our observations contradict numerous studies that report blueback herring 

and alewives spawn near headwaters or 150 to 200 km upstream in rivers of the southeastern 

U.S. (Davis and Cheek 1966; Street 1970; Street et al. 1975; Meador et al. 1984; O'Connell and 

Angermeier 1997; Cooke and Leach 2003; Harris and Hightower 2010).  Our findings are similar 

to populations of landlocked or non-anadromous alewives, where adult fish migrate from 
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offshore open-water habitats to spawn in inshore areas that include rivers, tributaries, drowned 

river mouths, and bays (Goodyear et al. 1982).   

While it was not within the scope of this study to identify spawning habitats for river herring, 

there are a variety of habitats within the lower Roanoke River that would support spawning 

populations of blueback herring and alewife under certain environmental conditions (Loesch 

1987).  The floodplain within our study area supports the largest and least fragmented 

bottomland hardwood forest ecosystem on the Atlantic coast (Hupp 2000).  Spawning habitats 

characteristic of river herring and those located within the Roanoke floodplain include slow-

flowing tributaries, flooded bottomlands, deep creeks draining hardwood swamps, sloughs, 

oxbows, and mill ponds.  River herring spawning in these habitats would benefit from benthic 

substrates that provide cover for eggs, stream flow to supply oxygen and transport larvae, and an 

abundance of zooplankton and microinvertebrates for food.  Additional research is needed to 

confirm blueback herring and alewife spawn at different habitats within lower Roanoke River 

ecosystem (i.e., � 50 rkm).   

Temperature has a profound effect on spawning and was a critical factor in determining 

peaks in spawning and larval recruitment.  We found no evidence of divergent spawning activity 

between species.  Alewife did not spawn in February or weeks before blueback herring as 

previously reported (Tyus 1974; Jones 1978; O'Connell and Angermeier 1997).  Similar to other 

studies in Roanoke River, spawning for blueback herring and alewife was continuously sustained 

from March through May (Walsh et al. 2005; Harris and Hightower 2010).  Unique to this study 

and our region was the observation that larval blueback herring and alewife were produced from 

spawns in late June.  This broad distribution of spawning events may help dampen annual 

fluctuations in larval recruitment.  While proportionately low, larvae collected from fish 
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spawning in June accounted for 10% of river herring in 2008 and 3% of fish in 2009.  Late 

spawning fish in 2008 and 2009 experienced temperatures within the range of 24 to 30 °C.  

These warm temperatures approach the upper threshold for spawning blueback herring and 

alewife; however, environmental conditions may convey survivorship advantages to larvae.   

While  blueback herring spawn at temperatures ranging from 13 to 27 °C, water temperature  

for optimal spawning has a narrower range, 20 to 25 °C, and closely corresponds with 

temperatures for hatching and larval development (Klauda et al. 1991).  Temperatures for 

alewife spawning are generally cooler than temperatures for spawning blueback herring; 

however, there is much overlap.  For alewives, water temperature at the time of spawning does 

not always correspond to thermal regimes that support high growth rates for larvae.  Water 

temperatures for optimal spawning and larval development can differ by as much as 10 °C 

(Kellogg 1982).  Water temperature for alewife spawning varies with location and latitude, but 

ranges from 10 to 22 °C.  Peak spawning typically occurs from 14 to 16 °C, and fish cease 

spawning when temperatures exceed 28 °C (Edsall 1970).  Water temperatures for normal 

embryonic development and hatching range from 17 to 22 °C with maximum hatching success 

occurring at 21 °C (Edsall 1970; Kellogg 1982).  Highest survival and growth of larval alewife 

occurs at 26 °C (Kellogg 1982). 

Larvae produced during warm months may have experienced survivorship advantages related 

to differential growth and mortality.  Although substantially fewer fish were collected in June, 

river herring growth was significantly higher and mortality was significantly lower than the other 

months sampled (Table 2.12).  Under these conditions, fish would have grown faster and spent 

less time in early larval stages.  Mortality estimates in June reflect fast growing larvae were less 

vulnerable to starvation and predation than slower-growing cohorts in earlier months.  These 
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findings support ‘growth-mortality’ hypotheses, which contend fast growing larvae benefit from 

a large length-at-age, fast swimming, and advanced sensory and locomotor systems to escape 

predation (Anderson 1988; Dower et al. 2009).  Fast growing larvae are also resistant to 

starvation or food deprivation by possessing abilities to search greater volumes of water for food, 

feed on prey of variable sizes, and efficiently capture prey (Hunter 1981; Litvak and Leggett 

1992; Leggett and Deblois 1994). 

The abundance of blueback herring and alewife decreased along the river gradient.  We 

found no evidence suggesting larval blueback herring and alewife selectively use a specific 

nursery habitat.  Distributions reflected transient larval stages and strong advective forces of 

riverine transport.  Abundances were consistently higher and more evenly distributed in the 

River and Delta.  River herring abundances from the Sound were patchy in distribution and 

signified widespread dispersal into a large body of water from multiple sources.  The distribution 

of sampling locations in Albemarle Sound did not offer sufficient resolution to detect larval 

distributions associated with a river plume, frontal boundary, or other known hydrographic 

feature.  The physical and biological attributes of such features are often hypothesized as 

important nursery areas for larval fishes, because they concentrate fish larvae and zooplankton 

and provide turbidity-mediated refuge from predation (Reichert et al. 2010).  The rivers 

investigated in this study did not produce a distinctive frontal boundary identified by measurable 

gradients in salinity or turbidity. 

Advective transport of larvae from Roanoke River mainstem to distributaries was predictable 

and was not significantly different between Thoroughfare and Middle River (Figure 2.7).  During 

periods of low river flow, larval advection from the mainstem channel was high and was not 

correlated with proportional rates of water loss from the river.  In contrast, during periods of high 
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river flow the advective transport of larvae through distributaries was low.  These results suggest 

that during high flow periods larvae are carried downstream and fish are relatively confined 

within the mainstem channel.  Larvae preferentially drift through the smaller distributaries 

during low flow periods.  Advective losses to Thoroughfare were higher than expected.  This 

distributary is narrow and receives considerably less water than Middle River. The high 

percentages of larvae transported through Thoroughfare, Middle River, and other distributaries 

indicate these waterways are an important conduit to backwater nursery habitats.  Key attributes 

that distinguish backwater nursery habitats from main-channel habitats are reduced water flow 

and exchange, shallow depth, refuge from predation, and concentration of food resources (Niles 

and Hartman 2011).  Retention of river herring larvae in these nursery habitats could bolster 

growth and survival. 

Comparable growth rates and a high degree of overlap in spawning and larval recruitment 

support management of river herring as a single stock.  Daily growth rates for blueback herring 

and alewife were not significantly different.  Growth rates observed in this study were similar to 

previous reports for wild-caught blueback herring and alewife in the southeastern U.S. (Street 

1970; Burbidge 1974; Walsh et al. 2005; Overton et al. In press).  Interestingly, growth rates for 

alewife were noticeably slower (~50%) than populations distributed at northern latitudes or for 

fish produced in the laboratory (Heinrich 1981; Essig and Cole 1986; Höök et al. 2007).  

Suppressed growth among alewives could be attributed to warm temperatures at the southern 

limit of their native range.  Within the context of climate change, species such as alewives that 

are tightly coupled with specific spawning and nursery habitats will potentially experience the 

largest effects of long-term changes in temperature.  Recruitment of alewives in the region could 

be negatively affected by warming temperatures.   
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Interannual variability in abundance, growth, and mortality of anadromous fishes has been 

linked to synoptic-scale climatology and hydrological variability (Wood and Austin 2009). 

Weather conditions, especially temperature, precipitation, wind, and storms, exert major 

influences on fish migration, spawning, and larval recruitment.  During years characterized by a 

cold and wet spring, larval alosines benefit from climate patterns that produce favorable water 

temperatures, high river flows, and a large forage base (Kimmel and Roman 2004; Martino and 

Houde 2010).  In this study, interannual differences in growth and mortality were observed for 

blueback herring and alewife (Figure 2.12).  The cold, wet conditions that occurred in 2009 

resulted in the production of a strong year class that also overlapped with record abundances of 

zooplankton (see Chapter 3).  Growth rates of yolk-sac larvae transitioning to feeding as well as 

growth rates among older individuals would have increased with a large forage base.  High 

mortality for both years was probably related to larval dispersal, advective loss, and failed 

retention in nursery habitats.    

Year-class strength for many fishes is established during early life stages and size-specific 

growth is an important determinant of survivorship (Heath 1992).  Variability in growth leads to 

fluctuations in recruitment and year-class success.  Houde (1987) suggested that growth rates are 

so important that it might be possible to predict recruitment potential of larvae from their growth 

rates alone.  In this study, the aim of using different methods to estimate growth was to evaluate 

larval production in specific habitats.  Variability in larval growth was reflected differently 

through measures of somatic growth and instantaneous growth.  Simple linear regression of 

length on age provided a good estimate of growth, because larvae were relatively uniform in age 

and stage of development.  The advantage of using marginal increment analysis of otoliths is it 

provided an immediate reflection of growth during a specific temporal period and when larvae 
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were occupying a specific area.  This technique proved to be a useful tool for determining recent 

growth of fish under the influence of riverine transport.  Estimates of Gmax and Gc were similar 

for blueback herring and alewife, but revealed slightly different growth patterns for each area 

(Table 2.11).  Growth estimates were indicative of habitat quality and suggested riverine habitats 

supported the highest growth rates.  Variability in growth of blueback herring and alewives was 

mediated by seasonal selective processes and reflected intraspecific and interspecific competition 

for food and resources. 
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Table 2.2.  Comparison between average values (±SD) for environmental 
parameters in 2008 and 2009 in lower Roanoke River and Albemarle Sound, 
North Carolina. 

Environmental parameter 2008 2009 t p 

Air temperature (oC) 18.3 (5.3) 17.8 (6.1) 0.07 0.947 

Current velocity (m/s) 0.1 (0.1) 0.2 (0.1) -1.42 0.132 

Dissolved oxygen (mg/L) 6.8 (1.8) 8.0 (2.0) -4.28 <0.001 

pH 7.5 (0.2) 6.6 (0.4) 27.75 <0.001 

Precipitation (mm/d) 2.5 (2.9) 3.0 (2.0) -0.91 0.367 

Salinity (psu) 0.2 (0.4) 0.2 (0.3) 0.35 0.726 

Turbidity (ntu) 88.5 (39.4) 80.3 (38.1) 3.31 0.001 

Water temperature (oC) 19.3 (5.5) 18.0 (6.2) 0.89 0.372 

Wind speed (m/s) 5.1 (5.8) 1.6 (1.5) 7.30 <0.001 
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Table 2.3.  Mean values (±SD) for environmental parameters from each 
sampling area in lower Roanoke River and Albemarle Sound, North 
Carolina.  Means sharing a letter in their superscript are not significantly 
different at the 0.5 level according to a Ryan-Einot-Gabriel-Welch 
(REGWQ) procedure. 

Environmental parameter River Delta Sound 

Current velocity (m/s) 0.15 (0.1)A 0.13 (0.1)A 0.20 (0.1)B 

Depth (m) 4.78 (1.2)A 3.23 (0.6)B 3.32 (0.4)B 

Dissolved oxygen (mg/L) 7.07 (1.8)A 6.75 (1.7)A 7.89 (1.8)B 

pH 6.97 (0.4)A 7.02 (0.4)A 7.21 (0.4)B 

Salinity (psu) 0.1 (0.0)A 0.1 (0.0)A 0.50 (0.4)B 

Turbidity (ntu) 81.8 (20.9)A 86.5 (22.2)A 84.16 (26.0)A

Water temperature (oC) 18.7 (5.7)A 19 (5.8)A 18.79 (6.0)A 

Wind speed (m/s) 1.77 (1.7)A 2.62 (2.1)A 5.85 (4.1)B 
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Table 2.4.  Number and percent frequency of occurrence in samples of 
larval alosines identified from ichthyoplankton samples collected in 
lower Roanoke River and western Albemarle Sound, North Carolina 
during spring 2008 and 2009. 

  River  Delta  Sound 

Species N %  N %  N % 

Blueback herring 4,724 38.0 1,390 11.2 712 5.7 

Alewife 1,380 11.1 423 3.4 102 0.8 

Hickory shad 3,135 25.2 355 2.9 153 1.2 

American shad 57 0.5  9 0.1  2 0.0 
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Table 2.6.  Principal component scores for environmental and hydrographic 
parameters measured in lower Roanoke River and Albemarle Sound, North 
Carolina.  Magnitude and signs of individual component loadings indicated 
strength and direction of each variable's influence on a principal component.  
The variance explained by the eigenvalue associated with each principal 
component is expressed as absolute, proportional, and cumulative values. 

  Principal Component 

Environmental variable     PC1     PC2    PC3 

Current velocity (m/s) - 0.009 0.049 - 0.721

Depth (m) - 0.190 0.454 0.349 

Dissolved oxygen (mg/L) - 0.668 0.055 - 0.140 

pH 0.161 - 0.610 0.192 

Salinity (psu) - 0.247 - 0.610 - 0.178 

Turbidity (ntu) - 0.137 - 0.199 0.516

Water temperature (oC) 0.642 0.069 - 0.059 

Eigenvalue 2.89 1.51 1.01 

Variance explained (%) 41.3 21.6 14.4 

Cumulative variance explained (%)   41.3  62.9   77.3 
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Table 2.8.  Descriptive statistics and estimated parameters for river herring 
standard length (SL) and water temperature (°C). Samples primarily 
consisted of larvae within yolk-sac or preflexion stages collected in lower 
Roanoke River and Albemarle Sound, North Carolina. Slope (B1) and 
intercept (B0) estimates were generated using linear regression techniques. 

Species B0 B1 r2 P 
95% Confidence 

Interval 

Blueback herring 0.789 0.337 0.47 < 0.001 0.31 - 0.37 

Alewife 0.670 0.252 0.70 < 0.001 0.23 - 0.27 
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Table 2.10.  Results of two independent age determinations using sagittae from 
larval blueback herring and alewife collected from lower Roanoke River and 
Albemarle Sound, North Carolina.  CV is coefficient of variation, APE is average 
percent error. 

Species Area 
Sample 

size 

Percent 
agreement  

(± 0 d) 

Percent 
agreement  

(± 1 d) CV APE 

Blueback herring River 228 78.1 94.7 3.6 2.2 

Delta 174 71.3 95.4 4.4 2.8 

Sound 162 56.8 92.6 6.5 4.1 

Total 564 69.9 94.3 4.7 2.9 

Alewife River 204 63.7 98.0 6.1 7.3 

Delta 104 84.6 100.0 1.9 6.7 

Sound 72 94.4 100.0 0.7 5.8 

  Total 380 75.3 98.9 3.9 6.9 
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Table 2.12.  Instantaneous mortality (Z) and daily growth (mm/d) for blueback herring 
and alewife collected in lower Roanoke River, North Carolina.  Values represent means 
(SD) for 2008 and 2009.  Means sharing a letter in their superscript are not significantly 
different (P > 0.05). 

  Blueback herring   Alewife 

Month 

Instantaneous 
mortality 

(Z) 

Mean daily 
growth 
(mm/d)   

Instantaneous 
mortality 

(Z) 

Mean daily 
growth 
(mm/d) 

March   0.98 (0.10)A 0.15 (0.17)A 0.68 (0.12)A 0.31 (0.10)B 

April   0.82 (0.19)A,B 0.31 (0.15)B 0.77 (0.13)A 0.31 (0.10)B 

May   0.66 (0.19)B,C 0.29 (0.11)B 0.64 (0.13)A 0.27 (0.13)B 

June   0.55 (0.19)C 0.54 (0.15)C 0.43 (0.13)B 0.47 (0.12)A 
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Figure 2.1. Total reported landings (solid line) of river herring for Albemarle Sound from 1965 – 

2009.  With a declining catch and increased demand, river herring have steadily increased in 

value (dashed line) over the last 40 years.   Data reflect harvest restrictions imposed since 1995 

(A) and a moratorium on commercial harvests beginning in 2007 (B).   
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Figure 2.2.  Map of fixed stations within three stratified areas (River, Delta, Sound) sampled by 

pushnet to determine the abundance and distribution of blueback herring and alewife.  Stations 

followed the riverine gradient from the 22-km reach within the main channel of Roanoke River 

to the open water of Albemarle Sound, North Carolina. 
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Figure 2.3.  River flow (solid line) for 2008 (a) and 2009 (b) recorded by gage located 4.5 km 

downstream of Roanoke Rapids Dam and 221 km upstream from the study area.  Dashed lines 

indicate the lower and upper regulated flow rates for management of striped bass, Morone 

saxatilis. In addition, outflow from the dam is limited to 42 m3/s flow differential per hour.  

Rainfall data were obtained from a weather station located within the study area in Plymouth, 

North Carolina. 
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Figure 2.5.  Linear regression analysis of wind speed and surface water currents in Albemarle 

Sound during spring 2008 and 2009.  Because of the east-west orientation of the Sound that 

spans 1,300 km2, surface water movement and circulation were predominantly driven by winds 

from the east (36%) and southwest (32%).  Dashed lines represent 95% confidence interval. 
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Figure 2.6.  Abundance and distribution of blueback herring (a) and alewife (b) at fixed stations 

within the lower Roanoke River and western Albemarle Sound.  The highest abundance of 

blueback herring and alewife was consistently observed in Warren Neck Creek (Station 4), a 

small tributary off the mainstem of the Roanoke River.  Values represent means (±SD). 
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Figure 2.7.  Advection of river herring from Roanoke River mainstem to distributaries was 

predictable and was not significantly different between Thoroughfare and Middle River.  During 

periods of low river flow, larval advection from the mainstem channel was high and was not 

correlated with proportional rates of water loss from mainstem channel.  Values represent 

proportions of river herring in Thoroughfare (filled circles) and Middle River (empty circles) 

compared to Roanoke River. 
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Figure 2.8.  Distribution and habitat use patterns of larval blueback herring (black circles) and 

alewife (white circles) in three-dimensional principal component space.  Balloons indicate the 

location of centroids, with balloon radii representing two standard errors about the mean.  

Eigenvalues and eigenvectors explain 77% of the variance from the components.  Area codes 

are: R = Roanoke River, D = Delta, and S = Albemarle Sound. 
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Figure 2.9.  Standard length of blueback herring (circles) and alewife (triangles) was positively 

correlated with water temperature.  Significant differences were observed between species 

(ANCOVA; F = 20.36, N = 798, P < 0.001). 
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Figure 2.12.  Instantaneous daily growth and mortality for larval blueback herring and alewife 

collected from lower Roanoke River and Albemarle Sound, North Carolina in 2008 (black 

circles) and 2009 (white circles).  To evaluate habitat-specific growth, marginal increment 

analysis was used to back calculate growth within 2 d of capture. Values represent means (±SD). 
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CHAPTER 3.  DISTRIBUTION, FEEDING ECOLOGY, AND CONDITION OF 

LARVAL BLUEBACK HERRING AND ALEWIFE IN TRANSITIONAL AREAS OF A 

FLOW-REGULATED RIVER SYSTEM 

Abstract

Spatiotemporal overlap between larval fish and their prey is thought to have important effects on 

growth, survival, and recruitment success.  The aim of this study was to investigate the 

ecological processes that influence recruitment of river herring (blueback herring Alosa 

aestivalis and alewife A. pseudoharengus) to lower Roanoke River and Albemarle Sound, North 

Carolina.  Weekly sampling of nursery habitats allowed for analyses of diets and diet variability.  

Blueback herring were the most abundant species caught (78%) and their abundance 

(number/100 m3 ± SD) was significantly higher in April (47.7 ± 15.6, F2,91 = 3.87, P = 0.02).

Blueback herring abundance peaked during week 14 with 121.8 ± 54.1. The catch of alewife was 

low for all months, but peaked in May during week 19 with 24.4 ± 8.5.  River herring 

abundances were not significantly different among the areas sampled.  Most river herring larvae 

were small (3.2 – 10.8 mm) and many retained a yolk-sac (45%) or were at the first-feeding 

stages (20%).  Larvae do not appear to be food limited in this system as indicated by diet 

analyses and the spatiotemporal overlap between river herring and zooplankton.  Diets varied 

little with early ontogeny, and the smallest taxa (copepod nauplii and rotifers) accounted for over 

85% of the diet.  Blueback herring and alewife strongly selected for bosminids and copepod 

nauplii in areas where these prey were available.  Because of a high-level of dietary overlap, 

intraspecific and interspecific competition is substantial for anadromous alosines. 



 
 

Introduction 

Anadromous clupeids (shads and herring) have complex lifecycles where individuals migrate 

great distances offshore along the continental shelf and then return to their natal rivers to spawn.  

Along the east coast of the United States, the distribution for most alosines is similar and the 

anadromous life cycle of these species differs only in the specific timing of their migration to 

spawn in freshwater (Cooke and Leach 2003).  Timing of migration varies with latitude and is 

strongly correlated with water temperature (Mansueti 1962; Leggett and Whitney 1972; Loesch 

1987; Limburg et al. 2003; Murauskas and Rulifson 2011).  Sexually mature adults begin 

migrating in late winter and early spring leaving the open ocean for protected inshore coastal 

bays and sounds.  During brief residency in estuaries, these fish use productive waters to build 

energy reserves and then migrate through coastal rivers to their spawning grounds (Bigelow and 

Schroeder 1953).  In North Carolina, American shad Alosa sapidissima, hickory shad A. 

mediocris, and river herring (blueback herring A. aestivalis and alewife A. pseudoharengus) 

historically migrated to the headwaters of the Cape Fear, Neuse, Tar, Roanoke, and Chowan 

(Rulifson et al. 1982).  Adults would navigate through thousands of kilometers of inland 

waterways, ascend hundreds of meters in elevation, and traverse natural obstacles to reach 

spawning grounds at the headwaters of these rivers.  Although shad and river herring continue to 

use many of the same routes, inland migrations have become restricted because dams and 

barriers exist on nearly all rivers and coastal streams in North Carolina (Collier and Odom 1989; 

Beasley and Hightower 2000).  Without access to upstream reaches, fish spawn at select habitats 

within the dam tailrace, river channel, distributaries, and adjacent flooded hardwood forests. 

Characterization of riverine spawning and nursery habitats has become an important 

objective for the management and restoration of American shad and river herring (Greene et al. 
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2009).  Recent studies in Roanoke River, North Carolina have focused on identifying specific 

spawning sites (Sparks 1998; Harris and Hightower 2010) and nursery habitats for early life 

stages (Walsh et al. 2005).  This coastal river system has received increasing attention, because it 

once supported artisanal fisheries and large-scale industrial operations in Albemarle Sound 

(Chestnut and Davis 1975).  Unfortunately, over the past thirty years American shad and river 

herring abundances in Roanoke River and Albemarle Sound have declined to levels far below 

historical records (Rulifson 1994; Hightower et al. 1996; Cooke and Leach 2003), while in the 

same river system the recovery of striped bass Morone saxatilis has become a regional success 

story for management of diadromous fishes (Haeseker et al. 1996; Field 1997; Richards and 

Rago 1999).   

Understanding factors related to declining populations of American shad and river herring is 

complex.  Declines are largely influenced by human activities in the coastal zone resulting in 

habitat alteration and degraded ecological conditions (Waldman and Limburg 2003; Limburg 

and Waldman 2009).  Because most alosines exhibit relatively short generation times, high 

natural mortality, and low number of ages exposed to harvest, restoration and protection of 

dwindling populations requires measures that extend beyond a reduction in fishing mortality 

(Boreman and Friedland 2003).  Restoration requires a concerted effort to advance fish passage 

and access to spawning habitats, preserve water quality, provide adequate river flow, and bolster 

recruitment through identification and protection of nursery habitat. 

This study represents part of a large-scale project using laboratory and field-derived data to 

identify blueback herring and alewife nursery habitats used in lower Roanoke River and western 

Albemarle Sound, North Carolina.  Information on nursery habitats for production of river 

herring in this coastal river system is limited.  The habitats and environmental conditions 
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supporting production of striped bass larvae are well documented and believed to differ from 

river herring only in the temporal distribution of larvae (Rulifson and Manooch 1990a; Rulifson 

et al. 1992; Cooper 1996).  Most research with river herring in Roanoke River has focused on 

techniques to document the presence or absence of eggs or larvae.  During peak spawning, 

blueback herring and alewife larvae have been collected throughout much of the river below the 

hydroelectric dam located 221 km upstream from the river mouth (Street et al. 1975; Hayman 

and Holloman 1996; Harris and Hightower 2010).  Within a small section of the river 100 km 

below the dam, Walsh et al. (2005) observed that blueback herring and alewives use a variety of 

habitats including backwater tributary systems and flooded bottomland hardwood forests.  

Habitat use was significantly affected by fluctuations in river flow and periods with high flow 

increased connectivity between habitats.  Within the lower river (10 km upstream from river 

mouth), Rulifson and Overton (2005) observed a similar relationship with river flow.  River 

herring exhibited a preference for small distributaries despite high flows that would typically 

concentrate and transport larvae in the mainstem of the river.  

The goal of this study was to evaluate production of larval blueback herring and alewife 

within transitional areas of a flow-regulated river system.  To build upon previous studies and 

gain a better understanding of riverine habitats available, 108 km2 within the lower Roanoke 

River watershed were sampled.  The specific objectives were (1) to determine the spatiotemporal 

distribution of alewife and blueback herring during peak periods of larval production; (2) to 

examine how physical properties and prevailing environmental conditions, especially river flow, 

influence retention or advection of larvae and prey resources, and (3) to compare diet and food 

selectivity among larvae at various habitat types.  This study is the first to compare feeding 

ecology and dietary overlap with first-feeding blueback herring and alewives. 
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Methods

Study Area 

The Roanoke River drains an expansive watershed (25,000 km2) that originates in the 

mountains of Virginia and flows southeast through the piedmont and coastal plain of North 

Carolina to Albemarle Sound.  Flows in the watershed were unregulated until 1950; since then 

six dams have been constructed for flood control, hydroelectric power generation, water supply, 

and recreation.  None of the dams constructed included provisions for fish passage.  The most 

downstream facility on the river, Roanoke Rapids Dam, has restricted fish migrations since 

completion in 1955 (Zincone and Rulifson 1991).  Flow patterns in the lower river (below 

Roanoke Rapids Dam) are controlled by the release schedules of upstream dams (Giese et al. 

1985).  Flows within this region are also seasonally regulated from April through mid-June to 

maintain the river’s natural flow regime, which presumably provides migratory and spawning 

cues for striped bass and increases access to spawning or nursery areas.  During striped bass 

spawning season, water is discharged from Roanoke Rapids Dam to maintain river flow within 

the range of 167 to 240 m3/s and mimic preimpoundment (1912-1950) flow characteristics 

(Rulifson and Manooch 1990b; Rulifson and Manooch 1990a).   

Study sites were selected by use of a random stratified sampling technique.  The study area 

within the lower Roanoke River and western Albemarle Sound was stratified into three areas 

(e.g., River, Delta, Sound), which were delineated using a geographic information systems 

database and records of historical sampling programs.  The selection of these three areas was 

designed to provide broad scale information on temporal and spatial abundance of alosine larvae.  

The habitats within these areas support river herring during a critical phase in their early life 

history and represent transitional areas that connect the river with the estuary.  The distribution 
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of stations followed the riverine gradient from the 22-km reach within the main channel of 

Roanoke River to the open water of Batchelor Bay, located on the western boundary of 

Albemarle Sound (Figure 3.1). 

 

Field Sampling Procedures 

Water quality, ichthyoplankton, and zooplankton samples were collected at weekly intervals 

during spring 2009 between March 9 and May 27, when larval river herring were abundant.  Two 

stations from each strata were randomly selected for each week sampled.  Sampling was 

conducted during the day (10:00-16:00) and at night after sunset (19:00-04:00).  Strata and 

stations were sampled in random order sequence to minimize the variance related to temporal 

variation inherent to ichthyoplankton and zooplankton communities.  Sampling gear efficiencies 

were assumed to be equal in all areas. 

Ichthyoplankton were collected using paired surface pushnets supported from an aluminum 

frame mount on the bow of a 5.8-m boat.  Each net had a 0.5-m square opening and a mouth-to-

tail ratio of 1:5.  Nets were constructed of 505-μm nitex mesh with a Dacron® collar sewn at the 

mouth.  The net mesh size was selected because it allowed comparative analysis with long-term 

ichthyoplankton sampling programs and the size prevented excessive clogging of nets with 

detritus and floating debris  (Zincone and Rulifson 1991; Overton and Rulifson 2007).  Each net 

was equipped with a calibrated mechanical flowmeter (Model MF315, SeaGear Corp., 

Melbourne, Florida) mounted inside the mouth of the net allowing for a calculation of the  

volume of water filtered.  The surface nets were pushed at a uniform speed of 1.5 m/s for 120 s.  

The contents of each net were washed down, condensed in a 1-L plastic collection jar, and 

preserved with 5% buffered formalin. 
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Zooplankton samples were collected at each station using a vertical haul technique that 

sampled the entire water column.  This technique was selected because it allowed comparisons 

of the planktonic community without the temporal effects of vertical migratory behavior 

exhibited by some planktonic species.  Zooplankton were collected using a conical net 

constructed of 90-μm nitex mesh material, with a 0.5-m diameter mouth opening and a 1:3 

mouth-to-tail ratio. The contents of the net were washed down and condensed in a 1-L sample jar 

and preserved with 5% buffered formalin.  The depth from which the net was pulled was 

recorded for calculating abundance estimates. 

Several environmental and hydrographic parameters were recorded for each area and station.   

These parameters were selected based on their relationship with habitat, water quality, and food 

resources.  Air temperature (°C) and wind speed (m/s) were measured using a portable digital 

anemometer (Skymate Model SM-18, Campbell Scientific, Inc., Logan, UT).  Water quality was 

measured 1 m below the surface and 1 m above the bottom substrate using a multiparameter 

dissolved oxygen probe (Model 85, YSI, Inc., Yellow Springs, OH).  Water flow was measured 

at each station from an anchored position.  Current velocity (m/s) and direction were measured 1 

m below the surface using a portable electromagnetic flow meter (FLO-MATE 2000, Marsh-

McBirney, Inc., Frederick, MD).  Surface water samples (100 ml) were collected for analysis of 

pH (Model 98128, Hanna Instruments, Woonsocket, RI) and turbidity (Model DRT15, HF 

Instruments, Ltd., Bolton, Ontario, Canada).  

To determine long-term trends in water temperature, data loggers were deployed within each 

region (IBCod Type 22L, Alpha Mach, Inc., Mont St-Hilaire, Quebec, Canada).  Data loggers 

were attached to a fixed mooring station, and water temperatures were recorded 1 m below the 

surface and 1 m above the bottom.  Temperatures were recorded at 15-min intervals for the 
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duration of the project.  Precipitation and air temperature data were obtained from a 2-m weather 

station located at Tidewater Research Station in Plymouth, North Carolina.  The State Climate 

Office of North Carolina operates the weather station and data are maintained by the National 

Climatic Data Center.  Daily water discharge rates were obtained from Roanoke Rapids Dam 

water monitoring gage, located 4.5 km downstream of the dam and 221 km upstream from the 

study area (SCONC 2009).  The gage is maintained by US Geological Survey and Dominion 

Power Company and records hourly discharge rates and river height data (USGS 2009). 

 

Laboratory Processing of Samples 

Larval fishes 

Ichthyoplankton samples were transferred to 95% ethyl alcohol after 24 h.  Fish larvae were 

separated from debris, counted, and identified using a dissecting microscope (Olympus SZX-

ILLD100, Tokyo, Japan) and a variety of larval taxonomic keys (Lippson and Moran 1974; Auer 

1982; Sismour 1994a; Walsh et al. 2005).  Intact alosines were identified to species, whereas 

degraded fish were classified as either “Alosa species” (< 0.05% of total) or “river herring” (< 

0.05% of total) based on length measurements and meristic characters.  The abundances of larval 

fish were standardized as the number of fish sampled per 100 m3. Abundance estimates within 

each strata were calculated by averaging the catch at each station. 

The standard length (SL) and total length (TL) of all alewife and blueback herring were 

recorded to the nearest 0.25 mm using a dissecting microscope equipped with an ocular 

micrometer.  From each sample, a subsample of 5 alewife and blueback herring were used for 

measurement of selected anatomical features, diet analysis, gut fullness, and dry weight.  

Specimens were randomly selected to ensure that observations of size, body condition and recent 
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feeding history were well represented.   Larvae were digitally photographed using a dissecting 

microscope at 40-x magnification.  All larvae were photographed on their left sides in the sagittal 

plane.  The microscope was equipped with a high-resolution video camera and still images were 

recorded as uncompressed files in tagged Image File Format (TIFF) at 6 megapixels.  Larvae 

were measured and analyzed using image analysis software (Image-Pro Discovery software 

version 4.5, Media Cybernetics, Inc., Silver Spring, MD).  All measurements were recorded to 

the nearest 0.001 mm and calibration errors were maintained at less than 1 μm (�0.1% of 1 mm). 

Body lengths were recorded as SL and TL (Snyder 1983).  For each larva, size of the 

yolksac, gut length, and gut fullness were recorded.  Yolk volume was determined by using the 

equation for a prolate spheroid: 

Yolk volume = 4/3 � [yolk-sac length] [yolk-sac depth]2.   (1) 

Gut fullness was measured as presence or absence of food in proportion to the length of the 

entire alimentary canal (i.e., gut length).  Gut contents were examined by carefully dissecting 

prey items from the alimentary canal using fine dissecting needles.  Prey were counted and 

identified to the lowest taxonomic level and life stage possible.  Predominant and intact prey 

classified as bosminid, copepod, daphnid, dipteran, ostracod, and rotifera were measured in 

length and width using the same methods previously described for digital photography and 

image analysis.   

A feeding ratio, or mean number of prey per larval gut, was calculated for each diel period 

and area.  The ratio was used as an index of recent feeding activity.  Changes in prey size use 

patterns with ontogeny were examined using quantile regression procedures (Scharf et al. 2000; 

Costa 2009).  This procedure was selected because the ontogenetic shift to larger prey sizes was 

slow and river herring throughout their early life stages continued to consume small prey.  Niche 
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breadth (the relative variance in prey size) was calculated as the standard deviation of log-

transformed mean prey widths (Young et al. 2010).  Data from gut contents and zooplankton 

sampling were used to evaluate prey selectivity and feeding peculiarities. The Manly-Chesson 

preference index (Chesson 1978; Chesson 1983) was used to compute prey selectivity for 

blueback herring and alewife. The index is one of the most widely accepted mathematical 

indexes for prey selectivity (Manly 2002; Chipps and Garvey 2007) because it is possible to test 

the apparent selectivity against a random model (Manly 1974).  The index is also amenable to 

parametric statistical analyses because selectivity measures are approximately normally 

distributed.  

 Selectivity was defined as the difference between the proportion of prey type in the diet 

and the proportion of prey type in the forage base (i.e., plankton community).  The Manly-

Chesson index was computed as: 

     �� �
�
�
� �
��� � ! "

 i = 1, …, m   (2) 

where �i is Manly’s alpha for prey type i; ri and rj are proportion of prey type i or j in the diet;  

ni and nj are proportion of prey type i or j in the environment, and m is the number of prey 

types.   The index �i ranges from 0 to 1, and selectivity is indicated when �i values are greater 

than 1/m. 

The dry weight (DW) of larvae was used with length measurements to assess the 

morphometric condition of larvae.  Dissected larvae, including gut contents, were dried 

overnight in aluminum pans at 60 �C to a constant weight (24 h).  Samples were transferred 

and temporarily held in a desiccator after drying.  Fish were individually weighed to the 

nearest μg using a Cahn microbalance (Thermo Electron Corporation, Beverly, MA).  The 

relationship between length and weight was evaluated using regression analysis with 
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logarithmically transformed data (log10) for SL and DW.  Evidence of different growth 

trajectories was interpreted as a significant interaction effect with habitat.  Analysis of 

covariance (ANCOVA) was used to compare slopes of length-weight regressions for 

blueback herring and alewife from each area.   

Fulton’s condition index was used to quantify the overall condition of the larvae (Bolger 

and Connolly 1989).  The index is the condition factor, K:  

K = (W / L3) x 100,     (3) 

where W is dry weight (μg), L is standard length (mm), and 100 is a scaling constant.  Fulton’s 

condition index has proven most useful when coupled with other growth and condition indices 

for larval fishes (Lochmann et al. 1997; Suthers 1998). 

 

Zooplankton 

Within 24 h of sampling, zooplankton samples were condensed to known volumes and 

transferred to 95% ethyl alcohol.  Zooplankton were identified using a dissecting microscope and 

taxonomic keys for freshwater zooplankton (Balcer et al. 1984; Thorp and Covich 2001; Haney 

2010).  Prey were counted and identified to the lowest taxonomic level or life stage practical.  At 

least 50 individuals were identified from each subsample.  Abundances were determined by 

counting all organisms within 5-ml subsamples taken with a Hensen-Stempel pipette.  The 

average of two replicates was used to calculate abundance.  Zooplankton abundance estimates 

were standardized (number/m3) by dividing total number of zooplankton per sample by the 

volume of water filtered.  The size distribution of zooplankton was determined using digital 

image analysis.  From each sample, up to 10 individuals representing each prey taxa were 

randomly selected and measured.  Body length and width (appendages excluded) of zooplankton 
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were measured according to Culver et al. (1985).  For the cyclomorphic forms of cladocerans, 

length was measured from the anterior margin of the helmet to the base of the tail spine.  

Copepods were measured from the head to the base of caudal spines.  In determining forage base 

and prey selectivity, ichthyoplankton and other large organisms (> 1 mm in length or width) 

were removed from the zooplankton dataset. 

Statistical analysis 

The general linear model function in SAS (SAS 9.2; SAS Institute, Cary, NC, USA) was 

used for all analyses unless otherwise noted.  Exploratory statistical analysis was conducted to 

determine whether area, diurnal period, or environmental parameters accounted for a significant 

amount of variability in the spatiotemporal distribution of river herring and zooplankton.  To 

satisfy assumptions of parametric tests and univariate normality, Shapiro-Wilk’s W-test and 

residual plots were used to analyze the distribution of each data series (Shapiro and Wilk 1965; 

Royston 1992).  When necessary, data were logarithmically transformed (log10) before statistical 

analysis to normalize observations and stabilize the variance.  Fish and abundance data with zero  

values were transformed by using lognormal data and adding 0.01 to account for zeros.  An 

arcsine-square root transformation was applied to proportional data for gut fullness and prey 

frequency of occurrence.   

Environmental parameters including river discharge, depth, water flow, water temperature, 

dissolved oxygen, salinity, pH, and precipitation were analyzed using independent samples t-test 

for diurnal period and analysis of variance (ANOVA) for week of year, month, and location.  

ANOVA was also used to statistically compare data that included abundance estimates, predator 

and prey size, number of prey in gut, gut fullness, prey selectivity, and indices of larval 
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condition.  If the ANOVA was significant, the Ryan-Einot-Gabriel-Welch (REGWQ) test was 

used to determine if significant differences existed among treatment means.  This post-hoc test, 

based on the studentized range statistic, holds family wise alpha at 0.05.   

A one-way multiple analysis of variance (MANOVA) was used to evaluate diet composition 

and test for an overall location effect.  Wilks’ lambda was used to test the hypothesis that prey 

types within river herring diets have identical means among areas (McGarigal and Cushman 

2000).  Wilks’ lambda ranges from 0 to 1, with 0 indicating strong differences between groups 

(McGarigal and Cushman 2000) .  Within the MANOVA, individual ANOVAs compared prey 

type by area.  Because ANOVAs were completed a posteri, appropriate alpha levels for pairwise 

comparisons were obtained using a Bonferroni correction (Chipps and Garvey 2007).  Alpha 

levels were adjusted downward based on the number of treatments (� / n) and differences were 

considered significant at P � 0.005. 

In order to explore relationships within the zooplankton community and river herring diets, 

PRIMER v6 (Primer-E Ltd, Plymouth, UK) was used to conduct multivariate analysis and derive 

similarity matrices based on Bray-Curtis similarity coefficients (Clarke and Warwick 2001).  

This software package has been used to reveal patterns in zooplankton community structure 

(Wishner et al. 2008) and study diet overlap among fishes (Sampson et al. 2009).  Prior to 

analysis, data were checked for multicolinearity, outliers, normality, and homogeneity of 

variance.  Abundance data were fourth-root transformed (#$% ), with abundant species being 

down-weighted allowing mid-range and rare species to exert some influence on the calculation 

of similarity.  A one-way analysis of similarity (ANOSIM) was used to evaluate spatiotemporal 

variability with data for zooplankton composition and dietary overlap for blueback herring and 

alewife.   
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The ANOSIM procedure uses randomization techniques to determine the average of all 

ranked dissimilarities among and within groups (Global R; Sampson et al. 2009).   A P-value is 

derived using random permutations of the similarity matrix, and is calculated as the probability 

that a greater R could be achieved from random combinations of the data (Clarke and Warwick 

2001).  Post-hoc pairwise comparisons were computed when the Global R was significant, and 

were adjusted for experiment-wise Type I error using a Bonferroni correction (P � 0.005).  

Species contributing the most to the similarities within categories and differences between 

categories were identified with the Similarity Percentages (SIMPER) procedure.  SIMPER 

decomposes Bray-Curtis dissimilarity values and transforms them into percentage contributions 

from each taxon, listing them in decreasing order of contribution.  Results from ANOSIM and 

SIMPER were corroborated and visualized using a non-metric, multidimensional scaling 

(NMDS) ordination plot.  NMDS ordination used the Bray–Curtis coefficients with 50 restarts to 

determine the lowest stress, preferably � 0.2 (Clarke and Warwick 2001).  Within the two-

dimensional ordination plot, the distance between points correlates with the similarity among 

samples (i.e., points close together represent samples that are similar in composition). 

Results

Habitat and environmental data 

Sampling was completed at weekly intervals throughout the study period except during week 

16 when severe weather prevented sampling within the Sound.  Stations located in the River 

were significantly deeper (4.4 ± 0.3 m) than stations in Delta (3.1 ± 0.1 m) and Sound (3.2 ± 0.1 

m).  Environmental data and water quality parameters were within ranges expected for shad and 

river herring migration, spawning, and larval development (Greene et al. 2009).  There were no 
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significant differences among the environmental and water quality parameters recorded within 

the River and Delta.  Salinity, current velocity, and wind speed were significantly higher in the 

Sound.  Salinity within the Sound ranged from 0.1 – 1.0 psu and was significantly higher than 

other areas (F2,91 = 5.49, P = 0.006).  Water within the River and Delta flowed downstream and 

surface currents were similar in both areas, ranging from 0.02 – 0.45 m/s, with a mean velocity 

of 0.2 ± 0.1 m/s.  Surface flow measurements were not significantly different from week to week 

in the River or Delta.  Surface flow within these regions was also not correlated with river 

discharge or rainfall.  Inland stations along the River and Delta were generally protected from 

prevailing winds from the east (46%) or southwest (38%).  These winds affected the open waters 

of the Sound causing wave action, wind rows, and visible signs of circulation patterns (i.e., 

Langmuir circulation).  Surface currents were strongly correlated with wind speed (Figure 3.2; r2 

= 0.76, F1,22 = 68.8, P < 0.001).  Surface currents were significantly higher (F2,91 = 6.46, P = 

0.002) in the Sound (0.3 ± 0.2 m/s), ranging from 0.0 – 0.8 m/s, and currents most frequently 

originated from the west (46%).  Flow measurements within the Sound were significantly higher 

for week 14 (0.5 ± 0.1 m/s) and lower for week 15 (0.1 ± 0.01 m/s) as compared to other weeks 

(F6,17 = 3.64, P = 0.01).     

Seasonal trends were observed for dissolved oxygen, water temperature, pH, and turbidity.  

Dissolved oxygen declined steadily throughout March, April, and May (Figure 3.3).  Dissolved 

oxygen levels were rarely observed below 5.0 mg/L and hypoxic conditions (� 3.0 mg/L) were 

never detected.  Water temperatures increased throughout the sampling period from 10.5 °C in 

March to 25.3 °C in May.  The difference between surface and bottom temperature was minimal 

(0.3 ± 0.1 °C) and not significantly different for time of day, week, or area.  Water temperatures 

were 15.0 ± 0.5 °C during the peak capture periods for blueback herring in April and 21.6 ± 0.3 
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°C during the peak capture periods for alewives in May.  As water temperatures increased, 

measurements of pH generally decreased for stations within the River and Delta and increased 

for stations within the Sound.  Although not significantly different, the lowest pH levels were 

recorded for stations located in the Delta at the confluence of Cashie River and Roanoke River.  

Within this region, pH ranged from 5.2 to 6.8.  Turbidity decreased from 100 ± 31 ntu during the 

first week of sampling to 5 ± 1 ntu during the last week of sampling, although the correlation 

was weak (r2 = 0.25, F1,71 = 23.7, P < 0.001). 

Mean daily discharge from Roanoke Rapids Dam was 240 ± 88 m3/s and ranged from 80 – 

546 m3/s (Figure 3.4).  In response to episodes of heavy rains throughout the watershed, flows 

peaked in March and April with maximum instantaneous discharge rates ranging from 430 – 592  

m3/s.  Flows were > 200 m3/s for 80% of the sampling period and never exceeded 600 m3/s.  

During striped bass spawning and recruitment, flows were maintained within management 

guidelines for 93% of April and May. 

 

Larval abundance 

A total of 27,364 larvae were collected in 94 pushnet samples and primarily consisted of 

fishes belonging to six families: Moronidae (striped bass, white perch), Percidae (yellow perch), 

Cyprinidae (minnows), Centrarchidae (sunfish and bass), Clupeidae (shads and herring), and 

Engraulidae (anchovies).  Clupeid larvae were present throughout the sampling period; however, 

the numbers of larvae varied by area (Table 3.2).  Stations 2, 4, and 6 located within the River 

comprised 49% of the catch, while station 10 located in the Delta comprised 13% of the catch.   
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The remaining 15 stations across all areas comprised 5% of the catch.  Among the alosines 

identified to species, blueback herring (51%) were the most abundant species followed by 

hickory shad (34%), alewife (14%), and American shad (1%).   

Differences in blueback herring and alewife abundance (number/100 m3 ± SD) and size 

distribution were observed between diel period and area (Table 3.3).  The mean abundance of 

blueback herring caught at night (43.5± 109.5) was significantly higher than fish caught during 

the day (8.5 ± 19.4, t92 = 2.16, P = 0.03, g = 0.45).  In contrast, there was no significant effect of 

diel period on alewife abundances (6.8 ± 15.0, t92 = 0.39, P = 0.70).  Blueback herring had 

significantly higher abundances in April (47.7 ± 107.8) than the other months (4.5 ± 11.2, F2,91 = 

3.87, P = 0.02), and the catch peaked during week 14 with 121.8 ± 187.3.  Alewife abundance 

was not significantly different among months (6.8 ± 15.0, F2,91 = 0.84, P = 0.43).  The catch of 

alewife peaked in May during week 19 with 24.4 ± 24.2.  While the abundance of blueback 

herring was generally higher in the River (37.1 ± 122.2) as compared to the Delta (17.7 ± 30.4) 

and Sound (21.0 ± 40.1), these abundances were not significantly different (F2,91 = 0.57, P =  

0.57).  Similarly, the abundance of alewife was not significantly different among areas (F2,91 = 

2.10, P = 0.13); although, the catch was highest in the River (10.8 ± 21.5) as compared to the 

Delta (4.5 ± 6.9) and Sound (4.2 ± 10.1). 

 

Zooplankton abundance and taxonomic composition  

Zooplankton abundances (number/m3) were highly variable across broad spatial and temporal 

scales.  Abundance within the river was positively correlated with average weekly discharge 

from Roanoke Rapids dam (Figure 3.5, r2 = 0.66, F1,10 = 19.06, P = 0.001). When zooplankton 

abundances were combined for all areas, a significant temporal effect was detected for month 
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(F2,90 = 5.37, P = 0.006) and week of year (F8,84 = 2.63, P = 0.01); however, there was no 

significant effect of diel period (t91 = 0.21, P = 0.83).  Mean abundances (± SD) were 

significantly higher for March (11,360 ± 13,563) than April (6,324 ± 3,122) and May (4,635 ± 

5,385).  Zooplankton abundance peaked in March during weeks 11 (12,520 ± 14,406) and 12 

(13,601 ± 17,883).  The lowest abundances were observed in May during weeks 19 (3,325 ± 

2267) and 20 (2,055 ± 1231), in which, 68% of samples (N = 13) had abundances < 2,000 

zooplankton / m3.  There was no significant effect of area on zooplankton abundance (F2,90 = 

1.76, P = 0.18); although, the highest abundances were observed in the River (8,104 ± 10,105) 

followed by Sound (6,314 ± 4,028) and Delta (5,002 ± 2,848).   The widest range of abundance 

estimates were in the River (1,044 - 49,430). 

Zooplankton communities were dominated by five taxa:  calanoid copepods, cyclopoid 

copepods, copepod nauplii, rotifers, and cladocerans.  Calanoid and cyclopoid taxa include both 

copepodite and adult life stages.  Several families of cladocerans were identified in this study, 

including Daphniidae, Bosminiidae, Sididae, Chydoridae, and Leptodoridae.  These five taxa 

account for 98% of the composition for each area.  Dipteran insect larvae (e.g., flies, midges, 

mosquitoes) were collected in 3.2% of samples and represented < 1% of the composition for 

each area.  Some of the other less common taxa (� 1%) included ostracods, gammarid 

amphipods, and harpacticoid copepods.  Oligochaetes (0.03%) were unique to samples collected 

from the River and bivalve veligers (0.07%) were unique to samples collected from the Delta. 

Zooplankton community structure varied significantly by month (ANOSIM, Global R = 

0.266, P = 0.001).  Bray Curtis average similarity was 72.0 ± 4.7 for March, April, and May.  In 

March, zooplankton communities in the River were dominated by bosminids (39%) and 

daphniids (21%).  Cladocerans (18%) were less abundant in April as the community structure 
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transitioned to rotifers (55%).  In May, zooplankton communities in the River primarily 

consisted of rotifers (34%), cyclopoid copepods (33%), and copepod nauplii (16%).  In the Delta, 

rotifers (50%) and bosminids (30%) were dominant in March.  The zooplankton community 

diversified in April to include rotifers (42%), copepod nauplii (24%), cladocerans (15%), and 

cyclopoid copepods (14%).  In May, rotifers (55%) and copepod nauplii (22%) remained high in 

the Delta.  The zooplankton community in the Sound was similar in March and April with 

cladocerans (29%), rotifers (29%), copepod nauplii (26%), and cyclopoid copepods (11%).  

Cladocerans (2%) were less prevalent in May as rotifers (60%) and copepod nauplii (25%) 

dominated the zooplankton community in the Sound. 

Although statistically weak (ANOSIM Global R = 0.111, P = 0.001), zooplankton 

community structure varied significantly by area (Figure 3.6).  Bray Curtis average similarity 

was 70.8 ± 0.9%.  The abundance of rotifers (26.5 ± 0.1%) and copepod nauplii (22.9 ± 2.6%) 

contributed to the similarity of zooplankton among areas.  Pairwise comparisons revealed 

significance within the ANOSIM was primarily driven by the community structure of the River 

and Sound, which were significantly different (Global R = 0.224, P = 0.001).  Post-hoc tests 

showed the Delta may serve as a transitional or mixing zone as this area was not significantly 

different from the River (Global R = 0.047, P = 0.31) or Sound (Global R = 0.071, P = 0.26).  

SIMPER analysis comparing the River and Sound showed 50% of the dissimilarity was 

attributed to bosminids, daphniids, calanoid copepods, and harpactacoid copepods. 

 

Trends in river herring and zooplankton abundance 

There was spatial and temporal overlap between river herring and zooplankton (Figure 3.7).  

Zooplankton abundance was greatest in March when water temperatures approached 12.0 °C and 
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when river herring were least abundant.  In April, declines in zooplankton abundance (31 ± 1%) 

during weeks 13, 14, and 15 coincided with peaks in river herring abundance (i.e., blueback 

herring).  Similar trends were observed throughout the study and abundances of zooplankton and 

river herring generally showed an inverse relationship.  The data suggests a match:mismatch 

relationship may occur (Figure 3.7a); however, linear regression between zooplankton 

abundance and river herring abundance fell short of statistical significance (r2 = 0.16, y = -

0.187x + 9.253, F1,34 = 4.0, P = 0.058).  When a 2-week time lag was applied to river herring 

abundance data, linear regression analysis yielded a statistically significant result (r2 = 0.70, y = 

0.004x – 6.335, F1,34 = 23.4, P < 0.001).  Declines in zooplankton abundance were correlated 

with larval abundance, and these results suggest foraging by larval alosines could negatively alter 

the abundance and structure of the zooplankton community especially when river herring 

abundance exceeds 25 fish/100 m3.   

 
Larval condition 

Length measurements for blueback herring and alewife were not significantly different 

between species (TL, t670 = 1.12, P = 0.26; SL, t670 = 1.16, P = 0.24); however, dry weights were 

significantly higher for blueback herring (t670 = 3.83, P = 0.0001).  The standard length of 

blueback herring ranged from 3.2 to 10.8 mm and weights ranged from 5 to 107 μg.  

Significantly larger blueback herring were collected in the River and Delta compared to fish 

collected in the Sound (F2,276 = 4.80, P = 0.009).  Alewife SL ranged from 3.3 to 9.7 mm and 

weights ranged from 4 to 102 μg.  Although the largest fish were collected in the River and 

Delta, length measurements were not significantly different among areas (F2,276 = 0.27, P = 

0.76).  Regression analysis revealed that growth and weight were highest for blueback herring 

and alewife caught in the River, especially for individuals > 5.0 mm SL (Table 3.4; Figure 3.8).  
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The results of an ANCOVA based on dry weight as the response variable and length as the 

covariate, showed a significant interaction with area (Blueback herring, F2 = 19.55, P = 0.001; 

Alewife, F2 = 7.07, P < 0.0001).  

Among the blueback herring collected, 43% had a yolk-sac and measured 4.5 ± 0.6 mm SL, 

while 47% of alewives had a yolk-sac and measured 4.6 ± 0.7 mm SL (Table 3.5).  The volume 

of yolk was not significantly different between species (t481 = 1.32, P = 0.19) and recently 

hatched fish (� 4.0 mm SL) had a yolk-volume of 0.41 ± 0.06 mm3.   The volume of yolk 

exhibited by larval river herring was not significantly different among areas (F2,480 = 0.40, P = 

0.67) or time of day (t481 = 1.04, P = 0.30).  Approximately 20% of fish collected during the day 

and 5% of fish collected at night had remnants of a yolk-sac while transitioning to exogenous 

feeding (i.e., yolk-sac and food present in gut). 

Fulton’s condition index ranged from 7.7 to 87.6 for blueback herring and 6.3 to 49.3 for 

alewife (Table 3.6); and larval condition was not influenced by the time of day that sampling 

occurred (t481 = 0.80, P = 0.42).  A comparison of condition indices between species indicated 

that blueback herring had a significantly higher condition index (t481 = 2.94, P = 0.003).  

Blueback herring and alewives with the highest measures of condition were collected in the 

River (21.3 ± 8.9) followed by the Delta (19.5 ± 6.8) and Sound (18.5 ± 7.2).  Larval condition 

for blueback herring was not significantly different among areas (F2,276 = 1.05, P = 0.35); 

however, the condition of alewives collected from the River was significantly higher than the 

Delta or Sound (F2,201 = 13.93, P < 0.001). 
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Feeding and prey selectivity 

Prey were observed and identified in 76% of river herring collected and a maximum of 8 

prey were identified in larvae less than 11.0 mm SL (Figure 3.9).  Neither gut fullness (t481 = 

0.25, P = 0.80) or feeding ratios (t280 = 0.61, P = 0.54) were significantly different between 

species.  River herring gut fullness was 37 ± 32% and feeding ratios were 2.5 ± 1.5.  Gut fullness 

and feeding ratios were influenced by time of day fish were sampled (Tables 3.5 and 3.6).  

Blueback herring and alewife gut fullness were significantly higher for fish collected during the 

day (blueback herring, t277 = 12.68, P < 0.0001; alewife, t202 = 8.78, P < 0.0001).  Similarly, 

blueback herring and alewife feeding ratios were significantly higher for fish collected during the 

day (blueback herring, t41 = 3.44, P = 0.001; alewife, t43 = 2.25, P = 0.03).  Gut fullness was 

significantly higher for fish collected in the River as compared to the Delta and Sound (blueback 

herring, F2,276 = 11.30, P < 0.0001; alewife, F2,201 = 20.05, P < 0.0001); however, feeding ratios 

were not significantly different among larvae collected from select habitats (blueback herring, 

F2,42 = 0.94, P = 0.40; alewife, F2,42 = 0.54, P = 0.59).  Although no significant differences were 

detected for gut fullness compared to week of sampling (F8,273 = 1.79, P = 0.08), gut fullness 

peaked in week 19 for blueback with 49 ± 32% and week 17 for alewife with 65 ± 42%.  Feeding 

ratios peaked during the same periods with no significant difference in the presence of prey 

across a temporal scale (F8,273 = 1.89, P = 0.09 ). 

Of the 684 prey items extracted from larvae, the smallest taxa including copepod nauplii and 

rotifers accounted for over 85%.  Frequencies of occurrence for copepod nauplii (49 ± 8%), 

rotifers (41 ± 13%), and bosminids (13 ± 7%) suggest these were the most abundant prey types 

for both blueback herring (Table 3.7) and alewife (Table 3.8).  Other less common prey observed 

were cyclopoid copepods, calanoid copepods, daphnia, ostracods, and dipterans.  Bivalve 
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veligers were observed only in April.  Dipteran insect larvae were consistently among the largest 

prey (0.3 – 0.8 mm) collected from the guts of river herring.  Other large prey collected (> 0.6 

mm) included daphniids and bosminids.   

There was overlap between the types and size of prey extracted from larvae and those within 

the zooplankton community (Figure 3.10).  The results of a one-way MANOVA suggested area 

effects could explain the majority of variance in diet for blueback herring (�2 = 78%, Wilk’s � = 

0.22, P < 0.0001) and alewife (�2 = 87%, Wilk’s � = 0.13, P < 0.0001 ).  With an adjusted alpha 

level (� = 0.005), individual ANOVAs for larval diets indicated bosminids, copepod nauplii, 

cyclopoid copepods, and rotifers varied significantly with area (Table 3.9).  A one-way 

ANOSIM indicated weak (Global R = 0.162), but significant (P = 0.001) differences in the diets 

of blueback herring and alewife caught in the River.  Rotifers (75.6 ± 3.5%) contributed the most 

similarity to river herring diets in the River.  SIMPER analysis showed 80% of dissimilarity was 

attributed to the abundance of bosminids, rotifers, ostracods, and daphnids (Table 3.10).  The 

diets of blueback herring and alewife were not significantly different for fish caught in the Delta 

(Global R = 0.007, P = 27.3%) or Sound (Global R = 0.037, P = 13.2%).  The similarity of river 

herring diets in the Delta and Sound were 35.5 ± 0.4 % and 58.6 ± 0.4 %, respectively.  Copepod 

nauplii (49.3 ± 16.0%) and rotifers (35.3 ± 15.6%) contributed to river herring diet similarity in 

the Delta, whereas copepod nauplii (81.5 ± 9.9%) contributed the most similarity to river herring 

diets in the Sound. 

The composition of river herring diets changed little with early ontogeny (Figure 3.11).  First 

feeding larvae within the 3 to 5 mm SL class primarily consumed bosminids and rotifers in the 

River, while cohorts fed on copepod nauplii and rotifers in the Delta.  In the Sound, first feeding 

larvae consumed copepod nauplii and cyclopoid copepods.  Rotifers were consistently consumed 
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by all fish in the River and Delta.  Copepod nauplii and to a lesser extent ostracods, cyclopoid 

copepods, and bosminids were a staple of diets from fish collected in the Delta and Sound.  

Larger fish (7 – 12 mm SL) in the River consumed proportionally more copepod nauplii than 

smaller cohorts.   When available, dipterans were consumed by larger fish in the River and Delta. 

Prey selectivity was highly variable by area for blueback herring (Table 3.7) and alewife 

(Table 3.8) and reflected proportional distributions of prey and trends in consumption.  Across 

all areas, both blueback herring and alewife displayed positive selection for copepod nauplii and 

negative selection for calanoid and harpactacoid copepods.  Both fish species strongly selected 

for bosminids within the River.  Within the Delta, blueback herring selected for copepod nauplii 

and alewives selected for cyclopoid copepods.  Copepod nauplii were positively selected by 

blueback herring and alewives within the Sound. 

The range of prey sizes consumed expanded with increasing size of blueback herring and 

alewife.  Prey size was positively correlated with fish length (Figure 3.12) and niche breadth 

increased linearly (y = 0.224 x + 0.017) with prey size (r2 = 0.74, F1,8 = 19.58, P = 0.003).  

Quantile regression models based on prey length and width were statistically significant (Table 

3.11).  While models indicated upper-bound slopes ranged from 0.02 to 0.06, lower bound slopes 

were not variable and had a slope of 0.01.  Although rarely consumed, large prey types were 

responsible for driving the upper-bound slopes of prey size models.  The lower bound slopes of 

models were less variable because the smallest size fractions of prey were preferentially eaten by 

all size classes (i.e., copepod nauplii and rotifers). 
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Discussion 

Feeding has been the most studied facet of larval fish ecology (Miller and Kendall 2009).  

Many studies have demonstrated that planktivorous fish can alter freshwater zooplankton 

communities by size-selective grazing (Hansson et al. 2007; Nicolle et al. 2010).  The majority 

of work has focused on ‘top-down’ effects of fish on zooplankton in large lakes; most notably 

the introduction of alewives in the Laurentian Great Lakes ecosystems (Wells 1970; Scavia et al. 

1986; Hewett and Stewart 1989; Miller et al. 1990; Evans 1992).  Zooplankton communities of 

many rivers vary in composition, but are generally dominated by rotifers and small-bodied 

crustaceans, such as bosminids (Jack and Thorp 2002).  Zooplankton abundances in rivers are 

often lower than those seen in lakes and reflect seasonality, forage base, and hydraulic retention 

(Hynes 1970; Obertegger et al. 2007; Dickerson et al. 2010).  The results of the present study 

demonstrate river herring production in Roanoke River coincides with a significant reduction in 

zooplankton abundance.  The continuous overlap in alosine production in the river does not 

provide a temporal refuge for zooplankton.  Gut contents confirm size-selective grazing by 

blueback herring and alewife larvae.  Prey in guts were not proportional to the organisms of the 

same size in the water where the larvae were collected.  These results suggest a high-level of 

interspecific competition between coexisting alosines in Roanoke River.  Crecco and Blake 

(1983) observed a similar phenomena with larval American shad and blueback herring in 

Connecticut River.  They documented a high-level of dietary overlap contributing to intraspecific 

and interspecific competition.   

Food limitation and starvation have long been considered threats to recruitment of 

anadromous species in Roanoke River (Rulifson et al. 1988).  Zooplankton production within 

this region has historically been low and long-term investigations concluded zooplankton 
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abundances were between 1-2 orders of magnitude lower than other North Carolina river systems 

(Rulifson et al. 1992; Coggins 2005; Binion et al. In press).  We tested hypotheses of 

match:mismatch regulation by comparing zooplankton abundance with the distribution of larval 

river herring.  Blueback herring spawning and larval production were correlated with peaks in 

zooplankton abundance.  For late spawning alewife, a mismatch was induced by the arrival of 

blueback herring in nursery habitats early in March and April.  It is doubtful that intense grazing 

by blueback herring affected production of alewife or other fishes spawned late in the season 

because most fish were observed with food in their guts.  Therefore, we concluded larvae do not 

appear to be food limited.  Interpretation of dry weight and condition indices confers a 

recruitment advantage to blueback herring spawned early in the season.  Blueback herring larvae 

would have more food resources available and substantially more time to grow to larger sizes.  

Alewives with lower dry weights and condition indices probably reflect subtle differences in 

recent feeding history and growth.  Small fish with slow growth rates could have been selectively 

preyed upon and experienced high mortality.  Unfortunately, the relationship between growth 

and survival is not well established. 

Dietary overlap between blueback herring and alewives has not been previously reported.  

Regardless of size or stage of larval development, small copepod nauplii, rotifers, and bosminids 

contributed the most similarity in diets of blueback herring and alewife.  Prey selectivity 

reflected spatiotemporal patterns in zooplankton abundance.  Throughout this study, small 

zooplankton remained an important component in larval diets (Figure 3.12).  Similar to the 

observations of Crecco and Blake (1983) with blueback herring, it is difficult to explain why  
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minimum prey sizes remained nearly constant with larval ontogeny.  Selectivity for larger 

cyclopoid copepods and ostracods by alewives in late spring probably reflects a consequence of 

competition with a limited forage base. 

Differences in diel patterns of feeding and larval abundance should be considered in 

designing an ichthyoplankton sampling program targeting alosines.  As evidenced by feeding 

ratios and gut fullness, feeding was significantly higher during the day and probably relates to 

activity level and the ability to detect prey.  Results from sampling at night might lead 

researchers to infer high rates of starvation or low incidences of feeding.  In actuality, starving 

fish are seldom observed in ichthyoplankton collections.  It is believed starving larvae die or are 

vulnerable to predation.  Larval abundance estimates for each species were influenced differently 

by diel period.  Significantly more blueback herring were caught at night than during the 

daytime.  Conversely, there was no effect of diel period on collection of larval alewives.  Using 

the same gear and sampling techniques in Roanoke River, Overton and Rulifson (2007) did not 

detect differences in abundance of river herring based on time of day; however, species level 

interactions probably masked any differences that existed.  In contrast with the present study, 

Cole and MacMillan (1984) demonstrated that catches of larval alewives were higher (up to 

20:1, night:day) during night than daytime.  These researchers found larval alewives (� 30 mm 

TL) in Lake Erie evade capture through vertical migration.  They also noted yolk-sac larvae 

avoid capture by remaining at the lake bottom until transition to exogenous feeding.  The high 

proportion of yolk-sac larvae (45%) caught in this study suggests extensive mixing in the water 

column resulting from the high flow rates and relatively shallow depths of Roanoke River and 

Albemarle Sound.  The collection of several species of benthic invertebrates in push-net samples 

further supports this finding (e.g., Amphipods Gammarus tigrinus; Clams Rangia sp.). 
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Although this study covered a large portion of the lower Roanoke River and includes flows 

that drain tributaries throughout the watershed, few eggs were caught in ichthyoplankton and 

zooplankton samples, and none of the eggs were identified as Alosa spp.  The high proportion of 

yolk-sac larvae caught indicated that fish had been carried downstream from spawning grounds.  

Yolk-sac and first-feeding larvae were present throughout the habitats sampled in the River, 

Delta, and Sound.  In recent years, river herring have been observed spawning in habitats 

adjacent to the tailrace of Roanoke Rapids Dam, located 221 km from Albemarle Sound and 

approximately 200 km upstream of this study (Harris and Hightower 2010).  Viable river herring 

eggs and yolk-sac larvae have also been collected in backwater tributary systems distributed 100 

km downstream of the dam (Walsh et al. 2005).  The age distribution of blueback herring and 

alewife collected in this study was not determined; however, estimates for time of travel (4 - 9 d) 

and advective transport (1.5 - 2.3 km/h) from the dam tailrace correspond closely with hatching, 

stage of development, and the onset of first feeding (Edsall 1970; Fay et al. 1983; Herrmann 

1993; Sismour 1994b).  Drift of larvae in April and May should be similar because discharge 

from Roanoke Rapids Dam is regulated between 113 and 388 m3/s.  High flows in March would 

have produced strong advective forces affecting predators and prey within the river.  Unless 

mechanisms exist for retention of larvae in upstream habitats, these findings suggest a large 

proportion of larvae drift downstream in narrow, channelized river reaches until they are 

entrained in low-velocity habitats at the mouth of the river or dispersed into the sound.   

River flow and estuarine circulation patterns can have negative effects on larvae by 

transporting them to unfavorable environments, physically damaging them, and diluting their 

food resources.  In a previous study on Roanoke River, alosine larvae were less abundant in the 

main river channel compared to backwater habitats (Walsh et al. 2005).  Larval abundances in 
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the river increased during low flow periods when swamps drained and concentrated fish in the 

river.  In the present study, there was no significant difference in the abundance of blueback 

herring or alewife among the areas sampled.  The abundance of larvae in Albemarle Sound 

suggests open water habitats are important if physical processes exist to control advective losses.  

Much like daily mortality from starvation and predation, dispersal losses from failed retention in 

nursery habitats can severely impact the larval population (Houde 1989).   

Albemarle Sound does not exhibit an estuarine turbidity maxima or other known 

hydrographic feature that represents an important nursery area for larval fishes (Schubel 1968; 

North and Houde 2003).  The sound is a shallow estuary (3.5 m average depth) with a surface 

area of about  1,820 km2, volume of 6.5 km3, and a salinity that is < 5 psu (Roelofs and Bumpus 

1953; Giese et al. 1985).  The estuary is well mixed as vertical gradients in temperature and 

salinity have rarely been observed.  The astronomical tidal effect in the sound is minimal, and 

because of its east-west orientation, wind stress comprises the primary forcing mechanism for 

water movement and hydraulic residence time (Copeland et al. 1983).  During this three-month 

study, wind-forced circulation patterns in the sound caused fluctuations in salinity, dissolved 

oxygen, turbidity, surface flow, and water level.  Wind events may have had an indirect, but 

perhaps significant, effect on ichthyoplankton and zooplankton composition by influencing the 

direction and strength of gravitational circulation.  Evidence supporting this observation was 

provided by temporal changes in zooplankton community composition and river herring diets.  

These results illustrate the potential for varying circulation patterns to structure communities of 

larval fish and their prey. 

Duration of wind stress and variability of magnitude largely influenced surface currents.  

During periods of westerly winds, river flow and sound currents resulted in a net flow of water 
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seaward and produced a positive correlation between zooplankton abundance and river flow 

(Figure 3.5).  Throughout the study, zooplankton communities in the River were dominated by 

rotifers; however, under these conditions cyclopoid copepods, daphniids, and other taxa were 

flushed from backwaters in the watershed (Casper and Thorp 2007).  These species typically 

aggregate in protected backwater environments with submerged and emergent vegetation 

providing refuge (Saunders and Lewis 1989; Garner et al. 1996).  Cyclopoid copepods and 

daphniids that usually avoid open water habitat were transported downstream and became a 

valuable and preferred component in river herring diets.   

Easterly winds were responsible for causing surface currents within Albemarle Sound to 

collide and mix with river flow at the mouth of the Roanoke, Middle, and Cashie Rivers.  

Surface flow within the Delta was recorded moving upstream (0.05 – 0.13 m/s) on a few 

occasions (N = 3) when strong winds (> 3.0 m/s) originated from the east-southeast.  Sustained 

winds from the east reduced downstream surface flow in the river and concentrated fish and 

zooplankton in the lower reaches of Roanoke River.  Mixing and water exchange between the 

Delta and Sound were evident because distributions of calanoid copepods, harpactacoid 

copepods, and amphipods were similar and were not representative of zooplankton contributions  

from the River.  While copepods were abundant under these conditions, blueback herring and 

alewife exhibited negative selection for all forms of calanoid and harpactacoid copepods except 

naupliar stages. 

Over the long-term, large losses of larvae from advection and aberrant drift can lead to low 

recruitment and failed year-classes. While our data demonstrate that habitats within the lower 

Roanoke River do not currently support river herring spawning, these habitats are clearly 

important in larval transport and serve as transitional areas linking nursery habitats.  Although 
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much remains unknown about advective losses from Roanoke River and availability of nursery 

habitats in Albemarle Sound, the results from this research suggest that riverine habitats with 

abundant sources of food may be more conducive to larval production than previously assumed.  

Growth trajectories and condition indices for fish that transitioned to exogenous feeding in the 

River were consistently higher than fish in the Delta or Sound.  More detailed knowledge on the 

contiguous distribution of eggs and larvae from spawning sites to nursery areas would improve 

dispersion models and estimates of retention in nursery areas.  Species-specific estimates of  

instantaneous growth and mortality would help elucidate questions about habitat quality 

throughout the watershed.  Discharge and flow regimes should be revised if retention of larvae in 

riverine habitats is a management objective.  
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Table 3.1.  Mean values (±SD) for environmental parameters from each 
sampling area in lower Roanoke River and Albemarle Sound, North Carolina.  
Means sharing a letter in their superscript are not significantly different at the 
0.5 level according to a Ryan-Einot-Gabriel-Welch (REGWQ) procedure. 

  Area 

Environmental parameter River Delta Sound 

Current velocity (m/s) 0.1 (0.1)A 0.2 (0.1)A 0.3 (0.2)B 

Depth (m) 4.4 (1.6)A 3.3 (0.9)B 3.2 (0.4)B 

Dissolved oxygen (mg/L) 8.3 (1.6)A 7.9 (1.3)A 8.5 (1.7)A 

pH 6.6 (0.3)A 6.5 (0.3)A 6.6 (0.4)A 

Salinity (psu) 0.1 (0.0)A 0.1 (0.0)A 0.3 (0.2)B 

Turbidity (ntu) 28.5 (53.0)A 27.9 (48.6)A 27.9 (53.2)A 

Water temperature (°C) 17.2 (4.4)A 17.8 (4.2)A 18.5 (4.1)A 

Wind speed (m/s) 1.0 (1.5)A 1.8 (1.6)A 3.1 (2.3)B 
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Table 3.2.  Number and percent frequency of occurrence in samples of larval 
alosines identified from ichthyoplankton samples collected in lower Roanoke 
River and western Albemarle Sound, North Carolina during spring 2009. 

    River   Delta    Sound 

Species N  %  N  %  N  % 

Blueback 407 27.1 188 12.5 170 11.3 

Alewife 129 8.6 47 3.1 29 1.9 

Hickory shad 318 21.2 164 10.9 24 1.6 

American shad 5 0.3   1 0.1   2 0.1   
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Table 3.4.  Descriptive statistics and estimated parameters for river herring standard 
length (explanatory variable) and dry weight (dependent variable) at three different 
areas.  Slope (B1) and intercept (B0) estimates were generated using linear regression 
techniques. 

Species Area B0 B1 r2 P 
95% Confidence 

Interval 

Blueback herring River -68.9574 18.89 0.79 0.0001 0.73 - 0.83 

Delta -68.9384 19.08 0.89 0.0001 0.86 - 0.90 

Sound -34.0809 12.49 0.79 0.0001 0.72 - 0.82 

Alewife River -68.3323 18.50 0.79 0.0001 0.74 - 0.83 

Delta -70.0944 18.02 0.73 0.0001 0.66 - 0.78 

  Sound -49.5101 14.17 0.66 0.0001 0.55 - 0.72 
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Table 3.6.  Mean (± SD) condition of larval blueback herring and alewife collected from lower 
Roanoke River and western Albemarle Sound. 

Blueback herring  Alewife 

Area N 
Fulton's     

K 
Feeding 

ratio 

Feeding 
ratio 

(daytime) N 
Fulton's     

K 
Feeding 

ratio 

Feeding 
ratio 

(daytime) 

River 96 21.5 (1.0) 2.3 (0.2) 2.8 (0.5) 103 21.2 (7.6) 2.9 (0.5) 3.2 (0.7) 

Delta 111 19.9 (7.5) 2.8 (0.4) 3.8 (1.1) 62 15.9 (5.8) 2.3 (0.4) 2.0 (0.3) 

Sound 72 21.3 (6.7) 2.2 (0.4) 2.5 (0.5)  39 16.3 (6.1) 2.8 (0.4) 4.0 (0.8) 
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Table 3.11.  Regression equations relating median, maximum, and minimum prey size to 
larval fish length.  Slope (B1) and intercept (B0) estimates for prey size were generated 
using quantile regression techniques. Compared to least-squares regression, this procedure 
consistently estimates the upper and lower bounds of prey sizes for larval river herring. 

  Prey length (mm)  Prey width (mm) 

Quantile B0 B1 
Sum of 

residuals P  B0 B1 
Sum of 

residuals P 

0.5 -0.1587 0.06  50.81 0.0002 -0.0219 0.02 19.64 0.0002

0.95 -0.0446 0.07 114.24 0.0002 -0.0134 0.03 45.67 0.0002

0.05  0.0336 0.01  81.19 0.0002   0.0165 0.01 28.08 0.0002
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Figure 3.1.  Map of study sites for sampling water quality, ichthyoplankton, and zooplankton in 

lower Roanoke River and western Albemarle Sound, North Carolina.   
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Figure 3.2.  Linear regression analysis of wind speed and surface water currents in Albemarle 

Sound during spring 2009.  Because of the east-west orientation of the Sound that spans 1,300 

km2, surface water movement and circulation were predominantly driven by winds from the east 

(46%) and southwest (38%).  Dashed lines represent 95% confidence interval. 
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Figure 3.3.  Abundance and distribution of blueback herring (solid bars) and alewife (empty 

bars) from lower Roanoke River and western Albemarle Sound for 2009.  During the study 

period from March through May, water temperatures (solid line) generally increased while 

dissolved oxygen concentrations (dashed line) decreased.  Values represent means (±SD).  Note 

change in scale of abundance. 
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Figure 3.4.  River flow (solid line) recorded by gage located 4.5 km downstream of Roanoke 

Rapids Dam and 221 km upstream from the study area.  Dashed lines indicate the lower and 

upper regulated flow rates for conservation and management of striped bass, Morone saxatilis. In 

addition, outflow from the dam is limited to 42 m3/s flow differential per hour.  Rainfall data 

were obtained from a weather station located within the study area in Plymouth, North Carolina. 
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Figure 3.5.  Zooplankton abundance in the lower Roanoke River was positively correlated with 

average weekly discharge from Roanoke Rapids dam (F1,10 = 19.06, P = 0.001).  A 95% 

confidence interval for r2 extends from 0.25 to 0.78.   Zooplankton abundance estimates 

represent the average of four samples collected each week during March, April, and May 2009. 
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Figure 3.6.  A 2-D, non-metric multidimensional scaling (MDS) ordination plot used to define 

groups of zooplankton samples based on species occurrence and abundance.  Data in matrix (N = 

1,598) were fourth-root transformed, with rare species being down weighted. Symbols closer 

together have greater similarity in zooplankton community structure than symbols that are farther 

apart. 
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Figure 3.7.  Hypotheses of match:mismatch regulation were tested by comparing zooplankton 

abundance (solid line) and river herring abundance (dashed line).  Values represent weekly mean 

abundance of fish and zooplankton.  A mismatch was induced by river herring feeding on 

zooplankton (a).  When a 2-week time lag was applied to river herring abundance (b), the data 

actually suggests a match occurred with a temporal overlap of predators and prey.  
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Figure 3.8.  Regression of blueback herring and alewife length and weight by area.  For both 

species, growth was higher in the River (triangle, solid line) as compared to the Delta (square, 

dashed line) and Sound (circle, dotted line). 
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Figure 3.9.  Relationship between the number of prey items consumed per larva and larval 

predator length for (a) blueback herring and (b) alewife. 
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Figure 3.10.  Body lengths and widths for the prey identified from the guts of river herring (a) 

and zooplankton (b) collected concurrently from the lower Roanoke River and Albemarle Sound.  

Values represent means (±SD).  Data for wild zooplankton were trimmed to include individuals 

that measured less than 0.8 mm in length.  As a result, large dipterans were removed. 
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Figure 3.11.  Numerical proportions of zooplankton and prey ingested by river herring within 

lower Roanoke River (a), Roanoke River delta (b), and Albemarle Sound (c), North Carolina. 
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Figure 3.12.  Relationship between individual ingested prey size and river herring standard 

length.  Quantile regression (Scharf et al. 1998) was used to characterize the median (solid line) 

and the upper and lower bounds for prey size (5th and 95th percentile, dashed lines).  Regression 

models based on prey length (a) and width (b) were both statistically significant.  Regression 

equations are presented in Table 3.11. 
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CHAPTER 4.  ESTIMATING THE FOOD REQUIREMENTS AND PREY SIZE 

SPECTRA OF LARVAL AMERICAN SHAD 

Abstract

Widespread declines in American shad Alosa sapidissima along the Atlantic Coast have been 

attributed to overfishing, decrease in water quality, and loss of habitat.  Recent surveys along 

Roanoke River and Albemarle Sound, North Carolina suggest stocks are continuing to decline 

despite extensive management and stock enhancement efforts.  Laboratory experiments were 

conducted to evaluate the effect of prey density on growth and survival of American shad and to 

determine whether larvae can survive and grow in a riverine environment with a limited forage 

base.  Larvae were reared from 11 to 20 days after hatching in five treatments: (1) no food; (2) 

low (1 prey/L), which simulated prey densities in Roanoke River; (3) medium (50 prey/L), which 

simulated prey densities typical of coastal watersheds; (4) high (500 prey/L), and (5) Artemia

spp. (500 prey/L).  Larval survival was 35 ± 7% and was not significantly different among 

treatments.  Treatments with starved fish had lowest survival (22 ± 12%), while highest fish 

survival was observed in treatments with high densities of wild zooplankton (46 ± 18%) and 

Artemia (40 ± 16%).  Length-specific growth rates were 0.017 for starved treatments, 0.024 for 

low-prey, 0.029 for medium-prey, 0.034 for high-prey, and 0.039 for Artemia.  Larval growth as 

a function of length was not significantly different between Artemia and high-prey; however, 

these treatments were significantly higher than lower prey densities (ANOVA; P < 0.0001).

Weight-specific growth rates (Gw) were significantly higher for Artemia (Gw = 0.129; P < 

0.0001) and were lower for all other treatments (Gw = 0.081).  Analysis of gut contents indicated

_____________________________________________________________________________________________ 
Riley, K. L., S. M. Binion, and A. S. Overton.  In press.  Estimating the food requirements and prey size spectra of 

larval American shad.  Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science. 



American shad were selectively feeding on the smallest zooplankton (80 – 250 μm) and larvae 

exhibited a strong preference for copepod nauplii and rotifers.  These results suggest spatial and 

temporal overlap between larvae and zooplankton is important for larval growth and survival. 

 

Introduction 

The early life history of fishes is a critical stage that can significantly affect year-class 

strength and recruitment levels.  Relatively small variations in mortality rates, growth rates, or 

stage duration can cause fluctuations in recruitment that vary by one or two orders of magnitude 

(Houde 1994).  Because recruitment level is primarily determined during early life stages, 

evaluating the influence of physical and biological conditions on survival and growth of fish 

larvae has become a fundamental paradigm in fishery science (Bergenius et al. 2002; Rakocinski 

et al. 2006; Jenkins and King 2006).   

During the past century, a number of hypotheses have been developed to explain recruitment 

variability.  These hypotheses largely attribute larval mortality to a lack of food resources 

leading to starvation or resulting in differential growth rates affecting feeding success and 

predator avoidance (Houde 2008).  Hjort’s “critical stage” hypothesis (1914, 1926) suggested 

that starvation is a serious threat to larval fish and suitable prey must be available during the first 

feeding stage of larvae to prevent massive mortality and possible recruitment failure.  Cushing’s 

match-mismatch hypothesis (1972, 1990) expanded on Hjort’s original work and proposed that 

starvation is a threat for the entire larval period from the onset of exogenous feeding through 

metamorphosis.  Cushing also proposed that larval survival, growth, and variability in year-class 

strength could be explained by the spatiotemporal overlap between peaks in prey productivity 

(i.e., phytoplankton as a proxy for zooplankton) and larval fish abundance. Considerable 
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evidence to support these hypotheses has resulted from field observations with a variety of 

species from different ecosystems (Fortier et al. 1995; DeVries et al. 1998; Beaugrand et al. 

2003; Durant et al. 2007); however, some of the most compelling research supporting these 

hypotheses has resulted from controlled experiments using hatchery-reared fish in a laboratory 

setting (Bremigan and Stein 1994; Gotceitas et al. 1996; Chick and Van Den Avyle 1999). 

Food availability is a product of prey size spectrum, prey mobility, patchiness of prey 

distribution, and prey density (Kamler 1992; Horn and Ferry-Graham 2006).  Energy spent 

searching and capturing prey can have severe consequences if a larva is not successful at feeding.  

At first feeding, most larvae have limited abilities to detect, capture, and consume prey, and 

feeding success is often low (< 10%; Rosenthal and Hempel 1970).   Feeding success increases 

exponentially with growth, age, and experience (Hunter 1972; Gerking 1994). With an 

abundance of food, larval feeding rates increase asymptotically until maximum consumption or 

satiation is achieved (Eldridge et al. 1981).   

While the presence or absence of an adequate quantity of prey is important to avoid 

starvation, optimal foraging theory suggests that for any size fish there exists a restricted range of 

optimal prey sizes (Miller et al. 1988).  Prey size dominates prey selection patterns and the size 

of the mouth limits what size prey can be ingested.  Prey body width (BW) is the critical 

dimension limiting consumption (Hunter 1981; Krebs and Turingan 2003).  Studies supporting 

this finding propose that optimal prey width ranges from 30% to 50% of mouth gape (Shirota 

1970; Cunha and Planas 1999; Riley et al. 2009).  Thus, as larvae grow their preference for 

larger prey sizes increases in a steady proportion to their own growth (Puvanendran et al. 2004).  

Fish larvae are opportunistic and those capable of feeding on large prey items can attain satiation 

with lower densities of prey (Munk 1992). 
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The aim of the present study was to conduct laboratory trials to evaluate the effect of food 

availability on growth, survival, and feeding success of larval American shad Alosa sapidissima.   

This species has gained considerable attention because recent surveys suggest that stocks are 

continuing to decline despite management efforts, stock enhancement, and measures to restore 

habitat for adults (Greene et al. 2009).  The results of this study are used to infer whether shad 

larvae can obtain enough food at experimental prey densities to survive and grow in a riverine 

environment with a limited forage base of zooplankton. 

Methods

Sources of Larvae 

American shad larvae were obtained from the U.S. Fish and Wildlife Service’s Edenton 

National Fish Hatchery.  Fish used in experiments were cohorts of the same age and had 

undergone the same treatments as shad larvae stocked into Roanoke River, North Carolina.  

Wild-caught broodstock that were of Roanoke River origin were spawned on 04 May 2008.  

Larvae obtained for use in experiments were of the same age, but were mixed progeny.  Within 

the hatchery, larvae were reared using standard production methods with Artemia spp. as a 

primary live feed (Howey 1985).  Fish were marked by immersion in a bath of oxytetracycline 

hydrochloride (Hendricks et al. 1991).   Incubation and rearing temperatures at the Edenton 

Hatchery ranged from 17.0 to 22.0 �C, salinity was 2.0 psu, and pH levels were >7.5. 

 

General Experimental Conditions 

Fish were obtained at 9 days after hatching (DAH) and approximately 5 days after 

transitioning to live feeds.  Fish were transported to East Carolina University’s Aquatic Animal 
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Research Laboratory (ECU-AARL) in an insulated cooler with supplemental oxygen.  Upon 

arrival at the ECU-AARL, fish were allowed to equilibrate in temperature and salinity prior to 

transfer into two large (80 L) holding tanks.  Fish were held for 24 h and fed Artemia spp. nauplii 

before stocking experimental systems.  Experiments were conducted in a temperature-controlled 

laboratory under cyclic photoperiod conditions (14L : 10D).   

Larvae were reared in freshwater to simulate water quality characteristics of Roanoke 

River, NC.  To produce freshwater for experiments and holding tanks, sterilized water was 

conditioned within an aerated reservoir.  Salinity was adjusted to 1.0 psu with artificial sea 

salt (Instant Ocean®, Cincinnati, OH, USA).  Total hardness was adjusted to 140 mg/L with 

calcium carbonate, and total alkalinity was adjusted to 220 mg/L with sodium bicarbonate. 

Experiments were conducted using 21-L cylindrical plastic tanks (N = 35) that were 

transparent and colorless.  Tanks were wrapped in black plastic to simulate downwelling light, as 

a more natural condition, and to provide a sufficient contrast between prey and background for 

feeding.   The tanks were gently aerated and surface lighting was maintained under a photon 

fluence rate of 3.63 to 4.84 μmol photons s	1 m	2 provided by overhead fluorescent light fixtures.  

Each tank was stocked with a total of 84 larvae at 10 DAH.  The goal of stocking was to select a 

low enough density (4 larvae/L) to accurately project growth and survival, while not masking the 

effects of treatment variables (Chesney 1989).  Larvae that died within the first 24 h were 

replaced.  

Larvae were reared from 11 to 20 DAH in five treatments: (1) no food; (2) low-food (1 

prey/L), which simulated prey densities in Roanoke River; (3) medium-food (50 prey/L), which 

simulated prey densities typical of coastal watersheds; (4) high-food (500 prey/L), and (5) 

Artemia spp. (500 prey/L), which served as an experimental control.  The latter treatments also 
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simulated prey densities typically used in hatchery operations.  Treatments were randomly 

assigned to tanks, and each treatment was replicated seven times.  To obtain estimates of larval 

growth and survival, we harvested one tank from each treatment at 12 DAH and harvested three 

tanks from each treatment at 16 and 20 DAH.  Fish were harvested from tanks by siphoning 

water and concentrating fish on a 53-μm mesh Nitex sieve. 

With exception of treatments without food and those fed 24-h-old nauplii of Artemia spp., 

fish were fed size-sorted wild zooplankton (53-800 �m) collected from a series of oxbow 

lakes adjoining Tar River in Greenville, NC (35�37’33” N, 77�21’42”W).  Zooplankton were 

collected at irregular intervals ranging from 24 to 48 h to provide the quantities of prey 

needed for experiments.  We frequently collected zooplankton throughout the experiment to 

ensure zooplankton were alive at the time of feeding, actively swimming in the water 

column, and did not lose nutritional quality.  After collection, all samples were filtered 

through an 800-μm mesh Nitex sieve to prevent the introduction of ichthyoplankton, insects, 

and other predatory species.  Reference samples of plankton were preserved in a 5% solution 

of formalin for species identification and evaluation of size frequency distribution.  Body 

length and width of zooplankton were measured on up to 25 individuals per taxa. 

Fish were observed at least twice daily at 09:00 and 15:00, and mortalities were counted, 

removed, and preserved.  General observations of fish behavior were recorded.  Prey 

densities were monitored within each tank by sampling background densities using a 3-mL 

Hensen-Stempel pipette, plankton counting wheel, and dissecting microscope to enumerate 

prey.  Food was added as needed to individual tanks to maintain a consistent prey density for 

each treatment.  Tank aeration kept live feeds evenly distributed.   
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Tanks were siphoned as needed to remove wastes.  Water quality was maintained with 

50% daily water changes.  Water quality was monitored daily through measurement of 

temperature, dissolved oxygen, salinity, pH, and total ammonia nitrogen (TAN).  There was 

no significant difference in any of the water quality parameters among tanks or treatments.  

Water temperature was 24.0 ± 0.2 
C, salinity was 1.1 ± 0.1 psu, dissolved oxygen was 5.8 ± 

0.8 mg/L, pH was 8.0 ± 0.2, and ammonia was < 0.2 mg/L. 

 

Larval Survival and Growth 

Larvae harvested from tanks were euthanized via immersion in a clove oil solution and 

photographed using a dissecting microscope at 40-x magnification.  All larvae were 

photographed on their left sides in the sagittal plane.  The microscope was equipped with a 

high-resolution video camera, and still images were recorded as uncompressed files in 

Tagged Image File Format (TIFF) at 6 megapixels.   

Larvae and selected anatomical features were measured and analyzed using SigmaScan 

Pro® 5.0 image analysis software (SPSS Science, Chicago, IL, USA).  All morphometric 

measurements were recorded to the nearest 0.001 mm and calibration errors were maintained 

less than 1 �m (� 0.1% of 1 mm).  The total length (TL) and notochord length (NL) of larvae 

was measured along lines parallel to the longitudinal axis of the fish (Snyder 1983).  The 

length of the upper jaw was measured from the premaxillae and maxillae to the point of 

articulation with the dorsal process of the dentary.  The length of the lower jaw was measured 

from the dentary to the point of articulation with the angular and maxillae.  
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The mouth gape was determined using length measurements of the upper and lower jaws 

and the Law of Cosines equation for a triangle with two known sides and an angle between 

them: 

a2 = b2 + c2 – 2bc cos �,     (1) 

where a is mouth gape, b is upper jaw length, c is lower jaw length, and � is a measure of the 

angle that forms the degree of mouth opening.  Calculations were based on the assumption 

that during active feeding the mouth of larvae opens to an angle ranging from 90
 to 120
 to 

capture prey (Shirota 1970; Krebs and Turingan 2003).   Optimal prey sizes were estimated at 

30% and 50% of mouth gape for larvae (Yasuda 1960; Shirota 1970; Hunter 1981; Cunha 

and Planas 1999).  Linear regression analysis was used to model optimal prey size based on 

TL and NL measurements.  Estimates of prey size used with the regression model were based 

on measures that optimal prey dimensions are 50% of mouth gape.  

Linear regression was used to examine larval growth and mortality rates.  Mortalities were 

tallied from the daily removal of dead larvae from each experimental tank and compared to 

surviving larvae at the time of harvest.  The relationship between TL and age, NL and age, 

and mouth gape and age were plotted separately.  Data for the TL, NL, and mouth gape of 

larvae were fitted to a simple linear equation.  The comparison between these plots allowed 

assessment of somatic growth pattern through time.   Length specific growth rates were 

calculated using the equation: 

     � � &'()�*+�&'()�*,

�+���,
     (2) 

where G is growth rate, t1 is larval age at the start of the experiment, t2 is larval age at the end 

of the experiment, X1 is measured length at the start of the experiment, and X2 is measured 

length at the end of the experiment.   
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Weight-specific growth was measured as dry weight.  Samples of 10 larvae from each 

tank were individually weighed.  Fish were rinsed with distilled water, placed in aluminum 

pans, and dried at 60 �C to a constant weight (24 h).  Weight specific growth rates were 

calculated using equation 2 with dry weight measurements replacing length measurements. 

Relative Preference for Prey Species, Size, and Gut Fullness 

At the conclusion of the experiments, 10 larvae were randomly selected from each tank 

with food and used to evaluate gut contents and gut fullness.  Larvae were dissected on glass 

slides using forceps and fine-point needle.  A dissecting microscope at 40-x magnification 

was used to identify ingested prey removed from the foregut of larvae.  Because histological 

techniques were not practical and digested prey could not be easily identified in the midgut 

and hindgut, gut fullness was used as a proportional measure of the gut with food present.   

The Manly-Chesson index (Chesson 1978; Chesson 1983) was used to measure prey 

selectivity in experiments with wild zooplankton.   This index is one of the most widely 

accepted mathematical indexes for prey selectivity (Manly et al. 2002; Chipps and Garvey 

2007) because it is possible to test the apparent selectivity against a random model (Manly 

1974).  Selectivity was defined as the difference between the proportion of prey type in the 

diet and the proportion of prey type in the culture tank.  We used a derivation of the Manly-

Chesson index (Chesson 1983) for controlled laboratory experiments with constant prey 

abundance: 

     �� �
�
�
� �
��� � ! "

 i = 1, …, m   (3) 
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where �i is Manly’s alpha for prey type i; ri and rj are proportion of prey type i or j in the diet;  

ni and nj are proportion of prey type i or j in the environment, and m is the number of prey 

types.   The index �i ranges from 0 to 1, and selectivity is indicated when �i values are greater 

than 1/m. 

 
Statistical Analysis 

Analysis of variance (ANOVA) was used to statistically compare survival, growth, gut 

fullness, and indices of larval condition among rearing treatments.  Water quality parameters 

including temperature, dissolved oxygen, salinity, pH, and TAN were assessed using 

ANOVA.  The general linear model function in SAS (SAS 9.2; SAS Institute, Cary, NC, 

USA) was used for all analyses.  Data were evaluated for normality using the Levene 

nonparametric test and the plot of the residuals was analyzed to ensure that assumptions of 

ANOVA were satisfied.  When necessary, data were logarithmically transformed before 

statistical analysis to normalize observations and stabilize the variance.  Similarly, percentage 

or proportion data for larval survival and gut fullness were arcsine-square root transformed 

prior to statistical analysis.  Tukey’s HSD post-hoc multiple range tests were used to 

determine if significant differences existed among treatment means.  Differences were 

considered significant at P � 0.05.  Results are expressed as the means ± SE of the data 

except where indicated differently. 

Results

Larval Survival and Growth 

Survival within the first 24 h was high (92 ± 5%) and was similar within all tanks.  

Overall survival of American shad larvae reared through 20 DAH was 35 ± 7% and was not 
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significantly different among treatments.  The highest survival occurred with fish fed high 

densities of zooplankton (46 ± 18%) followed by Artemia (40 ± 16%) and medium densities 

of zooplankton (37 ± 22%).  The lowest survival was observed with low densities of 

zooplankton (31 ± 18%) and starved fish (22 ± 12%). 

With high densities of live food such as Artemia or zooplankton, American shad larvae 

grew 0.45 ± 0.03 mm/d.  Length-specific growth rates (GTL) based on total length 

measurements were 0.039 ± 0.003 for Artemia, 0.034 ± 0.003 for high-prey, 0.029 ± 0.005 

for medium-prey, 0.024 ± 0.002 for low-prey, and 0.017 ± 0.001 for treatments with no food.  

Length-specific growth rates (GNL) based on notochord length measurements were 0.036 ± 

0.002 for Artemia, 0.034 ± 0.001 for high-prey, 0.034 ± 0.001 for medium-prey, 0.025 ± 

0.001 for low-prey, and 0.022 ± 0.001 for treatments with no food.  Separate growth 

equations were developed for each treatment because of significant differences in growth 

(Table 4.1).  Larval growth as a function of length was not significantly different between 

Artemia and high-prey (Figure 4.1); however, these treatments were significantly higher than 

the lower prey densities at 16 and 20 DAH (ANOVA; df = 5, 163; P < 0.0001). 

Variability in length was less pronounced with notochord measurements (CV 6%) as 

compared to total length measurements (CV 12%).  Because freshly killed larvae were used 

for measurements, this variability was not a result of sample storage or shrinkage.  Variance 

was most likely an indicator of larval condition and stage of development.  The presence of 

intact fins and fin rays indicated that variability was not a result of abrasions from tank 

surfaces, encounters with other fish (e.g., fin nipping), or harvest methods. 

American shad larvae gained 26.6 ± 6.8 μg/d when high densities of Artemia or 

zooplankton were maintained in tanks.  Fish in the treatments with low prey densities and no 
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food lost 9.0 ± 5.4 μg/d.  Weight-specific growth rates (Gw) were 0.128 ± 0.011 for Artemia, 

0.082 ± 0.018 for high-prey, 0.025 ± 0.006 for medium-prey, -0.016 ± 0.004 for low-prey, 

and -0.020 ± 0.027 for treatments with no food.  Separate growth equations were developed 

for each treatment because significant differences in growth were observed (Table 4.2).  At 

16 DAH, larval growth as a function of dry weight was significantly different between 

Artemia and all treatments (ANOVA; df = 4, 95; P < 0.0001).  In contrast, at 20 DAH dry 

weights were not significantly different among treatments with Artemia, high-prey, and 

medium-prey (Figure 4.1); however, these treatments were significantly higher than the low-

prey and starvation treatments (ANOVA; df = 4, 41; P < 0.0001).   

There were no significant differences in larval mouth gape size among rearing trials at 12 

or 16 DAH (ANOVA; df = 4, 45; P = 0.28).  The mouth gape of larvae was 0.821 ± 0.076 

mm at 12 DAH and 0.963 ± 0.063 mm at 16 DAH (Table 4.3).  The mouth gape of larvae at 

20 DAH were not significantly different among treatments with Artemia, high-prey, and 

medium-prey; however, these treatments were significantly higher than the low-prey and 

starvation treatments (ANOVA; df = 4, 45; P = 0.0003).  Predicted values for optimal prey 

sizes increased linearly with age and length (Figure 4.2).  Prey size based of larval mouth 

gape estimates of 30% (min) and 50% (max) ranged from 0.229 to 0.585 mm at 12 DAH, 

0.248 to 0.587 mm at 16 DAH, and 0.271 to 0.606 mm at 20 DAH.  With exception of small 

copepod nauplii (< 0.100 mm) and large cladocerans (> 0.600 mm), these values correspond 

closely with the size of zooplankton and Artemia spp. nauplii used as a food in experiments. 
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Prey Composition and Size Spectra 

Zooplankton samples collected during this study were uniform in composition and 

primarily consisted of cladocerans, copepods, and rotifers (Figure 4.3).  Cladocerans and 

adult copepods were among the largest prey types, while copepod nauplii and rotifers were 

the smallest.  Insects, with exception of chironomid larvae, were absent from samples as a  

result of the sieving process.  Minimal overlap in size was observed among the different prey 

types (Table 4.4).  Variation of prey densities within each treatment was not pronounced, 

with coefficients of variation (CV) ranging from 49-68% among treatment replicates. 

 

Larval Behavior 

Larvae were observed actively searching for prey in all treatments at the initiation of 

experiments.  Search and feeding behavior was typical of larval American shad and other 

clupeids with larvae assuming the S-flex position in anticipation of capturing prey (Blaxter 

and Hunter 1982; Ross and Backman 1992; Ross et al. 1996).  Larvae that were not feeding 

or had recently fed oriented themselves in a horizontal position in the upper portion of the 

water column. Although not measured, search times were shorter and feeding success was 

more frequently observed in treatments with high levels of prey.  During the first four days of 

the experiment, larvae in treatments with no food, low prey densities, and medium prey 

densities spent a significant amount of time actively swimming.  During this period, larvae 

were photopositive, oriented their heads upward, and rarely settled on the bottom. Swimming 

was characterized as a quick dart and glide motion followed by long period of rest (~10 s).  

During the last four days of the experiment, larvae in treatments with no food or low prey  
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densities rarely swam and settled on or near the bottom of the tank with their heads oriented 

upward.  Larval behavior in tanks with Artemia and high densities of prey did not vary during 

the course of the experiments. 

 

Relative Preference for Prey Species and Size 

Larvae were observed feeding in all treatments with prey available.  Microscopic analysis 

and dissection of 20-DAH larvae revealed that small prey items (80 – 250 μm BW) such as 

copepod nauplii, rotifers, and cladocerans (i.e., bosminids) were most commonly eaten 

(Figure 4.4).  Chironomids and gastropods were the only prey taxa observed in plankton 

samples, but not observed in the guts of larvae.  American shad displayed strong selection for 

copepod nauplii and rotifers in all treatments with wild zooplankton (Table 4.5).  Larvae had 

5.1 ± 2.7 prey in their guts in high density treatments and 0.8 ± 0.7 prey in their guts in 

medium density treatments.  Gut fullness was not significantly different among treatments 

with Artemia (90 ± 12%), high prey (78 ± 19%), and medium prey (63 ± 19%), but these 

treatments were significantly higher than the treatment for low prey density (12 ± 12%; 

ANOVA; df = 5, 117; P < 0.0001). 

Discussion 

The abundance and distribution of food is critically important for growth of fish larvae and 

results from this study suggest aquatic ecosystems with sparse or patchy zooplankton 

distributions could result in food limitation, starvation, and reduced growth for early larval stages 

of American shad.  Laboratory experiments were conducted to simulate feeding conditions 

typical of coastal rivers in North Carolina, and more specifically conditions observed in Roanoke 
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River and its estuary, Albemarle Sound.  This coastal system has been extensively studied over 

the past 60 years to characterize the ecology of the region and document fluctuations in 

populations of anadromous fish species (Hassler et al. 1981; Rulifson et al. 1993).  

While it is well known rivers are not highly productive systems for zooplankton (Hynes 

1970; Chick and Van Den Avyle 1999), abundance and distribution of zooplankton in Roanoke 

River is the lowest of coastal rivers in the southeastern United States.  A long term study (1984-

1991) conducted by Rulifson et al. (1993) and a study by Coggins (2005) documented that 

zooplankton abundances in Roanoke River are historically low and often 1 to 2 orders of 

magnitude lower than adjacent watersheds (Table 4.6).  In these studies, zooplankton abundances 

never exceeded 1000 individuals/m3 during critical periods (March – June) for larval production.  

American shad, hickory shad A. mediocris, alewife A. pseudoharengus, and blueback herring A. 

aestivalis spawn in the Roanoke River and their larvae use this system as nursery habitat (Greene 

et al. 2009; Harris and Hightower 2010).   Low zooplankton abundance in this system is 

alarming because it increases the probability of a temporal disconnect between zooplankton and 

larval alosines.  Thus, we tested the hypothesis that temporal asynchrony of predators and prey 

results in starvation of fish larvae. 

In laboratory experiments, increases in growth using length and dry weight measurements 

were positively correlated with increasing densities of prey.  These findings are consistent with 

studies suggesting American shad larvae exhibit high rates of growth when Artemia spp., a proxy 

for naturally occurring plankton, are fed at densities � 500 nauplii/L (Johnson and Dropkin 1995; 

Leach and Houde 1999).  In contrast with this previous work, we used wild zooplankton as a 

food source for laboratory experiments.  Filtering and sieving plankton samples were useful for 

preventing the introduction of competitive or predatory ichthyoplankton and insects.  Wild 
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zooplankton offered larvae a variety of prey types and sizes similar to zooplankton distributions 

in Roanoke River and Albemarle Sound (Rulifson and Manooch 1993; Binion 2011).  Using 

discrete methods for feeding larvae, we found growth was highest when larvae were fed at 

densities ranging from 50 – 500 prey/L and when larvae were able to forage on the smallest 

species of zooplankton.   

The results of this study suggest an optimal prey size exists for larval American shad and 

that prey size is a function of mouth gape (Figure 4.2).  Fish larvae are generally gape-limited 

predators (Houde 2008).  Larvae with large mouth gapes are less susceptible to starvation, 

and with growth and increased mouth gape the size spectra of suitable prey expands (Schael 

et al. 1991; Munk 1997; Bremigan and Stein 1994).  The development of models for mouth 

gape and feeding ability was useful for evaluating the size of zooplankton larvae can capture 

and consume.  We observed 20-DAH larvae consumed the smallest zooplankton available, 

and selectivity measures indicated a strong preference for copepod nauplii and rotifers for all 

treatments with wild zooplankton.   This evidence supports the hypothesis that optimal prey 

sizes are < 50% of mouth gape, and American shad larvae are dependent upon vision for prey 

detection (Blaxter 1986) or other non-visual senses for prey selectivity (Batty and Hoyt 1995; 

Salgado and Hoyt 1996).   

Although fish in all treatments demonstrated a preference for small zooplankton (80 - 250 

μm), prey size was correlated with growth rate suggesting fish behavior or experience 

ensures a high rate of success for prey capture and feeding.  Our work differs from other 

published findings with American shad because fish showed strong preference for small 

copepod nauplii and rotifers rather than larger cladocerans (Johnson and Dropkin 1996) or 

insects (Crecco and Blake 1983).  Larval feeding and consumption were related to prey size 
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and not necessarily dependent on prey availability, because cladocerans were the most 

abundant taxa in zooplankton samples.  It remains unclear if large prey were not vulnerable 

to predation because of larval feeding peculiarities or because of escape and avoidance 

tactics.  Selectively feeding on small prey could alter the size structure of zooplankton 

assemblages and contribute to interspecific competition with coexisting larvae (Crecco and 

Blake 1983; Bremigan and Stein 1994; Makrakis et al. 2008).  Furthermore, as a result of 

selectively feeding on smaller prey items American shad must consume more prey to reach 

satiation, which could have bioenergetic consequences and affect growth.   

Our results show analysis of dry weight is a more appropriate measure of growth as 

compared to length.  While fish in treatments with low densities of prey and no food 

continued to grow in length (0.25 ± 0.06 mm/d), fish in the same treatments lost weight (9.0 

± 5.4 μg/d).  We observed marginal weight gain in fish reared with a medium density of prey 

(4.3 ± 1.9 μg/d).  The bioenergetic consequences of food deprivation and starvation were 

reflected in larval condition.  Fish in treatments with < 50 prey/L were undergoing a loss of 

body condition, the onset of starvation, and lagged their cohorts in development as evidenced 

by weight loss and appearance.  These results build upon Johnson and Dropkin’s (1995) 

conclusion that American shad larval growth is sensitive to prey availability and that food 

deprivation for as little as 2 d can severely affect growth and development.  Because prey 

densities remained constant within experimental treatments, weight loss coupled with gut 

fullness could be good predictor of feeding history.   

For all treatments with wild zooplankton, significant differences in growth using weight 

measurements were not detected during the first four days of the experiment.  This suggests 

larvae undergo a transitional period from feeding on Artemia nauplii to wild zooplankton.  This 
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finding has important implications for hatcheries and stock enhancement programs that release 

larvae into ponds, rivers, and reservoirs.  While additional research is needed, we believe a 

temporal overlap or weaning period is required in transitioning fish from an environment with 

relatively uniform live feeds used in hatchery operations to aquaculture ponds or natural systems 

with highly variable zooplankton distributions. 

Although not significantly different among treatments, larval survival generally increased 

with prey density.  Survival of fish among tanks and treatments (35.3 %) was similar to 

previous studies with the early life history of American shad (Limburg and Ross 1995; Ross 

et al. 1996; Leach and Houde 1999).  Unlike the work of Johnson and Dropkin (1995) with 

shad larvae at 18 DAH, food deprivation did not elicit a high rate of mortality during the 

course of this study.  The ability of larvae to withstand food deprivation and starvation varies 

widely among species and has not been studied for American shad (May 1974).  Striped bass 

Morone saxatilis larvae can survive in a totally starved condition for 30 d (Rogers and 

Westin 1981; Eldridge et al. 1981) and Atlantic herring larvae can survive for 50 d (Werner 

and Blaxter 1980).  In nature, fish survival after food deprivation is dependent on a number 

of factors including fish size, body condition, energy storage, metabolic rate, swimming 

ability, predation, and temperature (Miller et al. 1988; Fuiman 2002).   

Widespread declines in stocks of American shad along the Atlantic Coast have been 

attributed to overfishing, decrease in water quality, and loss of habitat.  Recent surveys 

suggest that stocks are continuing to decline despite management efforts to reduce fishing 

mortality (Boreman and Friedland 2003).  Although not a new concept for American shad, 

stock enhancement has been implemented as a tool to support recovery of diminished stocks 

in several watersheds along the east coast of the United States (Greene et al. 2009).  In North 
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Carolina, the rationale for stock enhancement has been based upon studies that indicate: (1) 

migration and spawning is restricted because of dam construction and habitat alteration, (2) 

eggs and larvae experience high rates of mortality in nursery habitats; and (3) juvenile 

recruitment is driven by strong environmental and density-independent effects (Rulifson 

1994; Hightower and Sparks 2003; Walsh et al. 2005).  Cultured fish are released to 

supplement natural recruitment and assist in recovery of populations to historical levels.   

Since 1998, c. 26.4 million American shad larvae have been stocked into Roanoke River, 

North Carolina (NCWRC 2009).  Larval fish (12 to 18 DAH; 8 to 16 mm TL) are used in 

shad restoration programs because of high mortality related to stress from handling, 

transporting, and stocking juveniles (� 80 mm TL; Johnson and Dropkin 1992; Ross et al. 

1993).  Hatchery-reared shad larvae are released at riverine sites when river flow rates are 

controlled for striped bass production (Rulifson and Manooch 1990) and when zooplankton 

densities are historically low (� 1000 prey m-3; Rulifson and Manooch 1993).  The results 

from this study are insufficient to suggest the direct causes of larval mortality or the overall 

effectiveness of a stock enhancement program in Roanoke River; however, our findings 

indicate that the distribution of appropriately sized zooplankton prey is a key factor 

governing the survival of recently released American shad larvae.  

Active monitoring should be required as part of any restoration program to evaluate 

efficacy of restoration methods and status of recovery.  It is critically important that releases 

of hatchery-reared fish be timed to coincide with peaks in zooplankton production.  

Zooplankton composition and size distribution varies with season, temperature, water quality, 

primary productivity, and predation.  The presence of adequate densities of suitable prey is 

essential for optimal growth and survival of American shad.  Furthermore, complex 
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interactions among food abundance, predation, competition, disease, and environmental 

variability can all affect the success of natural recruitment and an effective stock 

enhancement program.   
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Table 4.1.  Linear relationships for total length (GTL) and notochord length (GNL) for 

American shad larvae reared at 24 �C.  Experiments evaluated the effects of different feed 

types and concentration on larval growth. 

Treatment N 
Size range  

(mm) Equation 

Coefficient of 
determination 

(r2) 

Standard    
error of 
intercept 

Artemia 133 9.7 - 20.0 GTL = 0.5 Age + 10.9 0.57 0.20 

8.1 - 13.9 GNL = 0.4 Age + 9.4 0.72 0.13 

High prey 136 9.7 - 17.2 GTL = 0.4 Age + 10.9 0.62 0.15 

8.1 - 12.8 GNL = 0.4 Age + 9.2 0.78 0.10 

Medium prey 110 9.7 - 16.6 GTL = 0.3 Age + 10.7 0.38 0.18 

8.1 - 12.7 GNL = 0.4 Age + 9.2 0.63 0.15 

Low prey 121 9.7 - 16.6 GTL = 0.3 Age + 10.7 0.29 0.20 

8.1 - 12.7 GNL = 0.3 Age + 9.3 0.42 0.16 

No food 125 9.7 - 16.6 GTL = 0.2 Age + 10.9 0.17 0.22 

    8.1 - 12.0 GNL = 0.2 Age + 9.3 0.44 0.14 
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Table 4.2.  Linear relationship for dry weight (Gw) and age of American shad larvae reared at 

24 �C.  Experiments evaluated the effects of different feed types and concentration on larval 

growth.   

 

Treatment N 
Size range   

(μg) Equation 

Coefficient of 
determination 

(r2) 

Standard    
error of 
intercept 

Artemia 43 110 - 890 Gw = 34.6 Age + 168.2 0.32 40.6 

High prey 41 229 - 592 Gw = 18.8 Age + 103.9 0.26 25.6 

Medium prey 37 157 - 277 Gw = 3.8 Age + 145.8 0.51 26.0 

Low prey 34 129 - 143 Gw = -4.0 Age + 147.3 0.20 23.7 

No food 41 5 - 88 Gw = -15.7 Age + 165.7 0.37 16.3 
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Table 4.3.  Mouth gape size of American shad larvae reared at 24 �C.  Values represent 

measurements (means ± SE) for larvae sampled from treatments feed Artemia spp. and high 

densities of zooplankton (500 prey/L).  Mouth gape estimates were based upon calculations 

assuming the mouth opens 90� (min) to 120� (max) during feeding and prey capture. 

 

Days after 
hatching 

Lower jaw length 
(mm) 

Upper jaw length 
(mm) 

Min mouthgape   
(mm) 

Max mouthgape 
(mm) 

12 0.50 ± 0.06 0.69 ± 0.05 0.763 1.170 

16 0.51 ± 0.06 0.76 ± 0.06 0.826 1.174 

20 0.54 ± 0.05 0.86 ± 0.05 0.902 1.211 
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Table 4.4.  Size (mean ± SD) of zooplankton used in feeding experiments with American 

shad larvae.   

Prey type 
Body length   

(μm) 
Body width    

(μm) 

Daphniidae 1406 ± 198 655 ± 179 

Bosminidae 287 ± 49 142 ± 10 

Cyclopoida adult 1031 ± 96 530 ± 20 

Cyclopoida copepodite  593 ± 44 236 ± 48 

Copepod nauplii  160 ± 23 87 ± 18 

Rotifera 273 ± 43 145 ± 32 

Artemia spp.  506 ± 38 232 ± 33 
 

  

191



 

Table 4.5.  Mean preference index, �i, values (Chesson 1983) for American shad larvae 

reared from 11 to 20 days after hatching.  Larvae were fed size-sorted wild zooplankton at 

three different densities: (1) low density (1 prey/L), (2) medium density (50 prey/L), and (3) 

high density (500 prey/L).  Values of �i > 0.25 indicate preference by the larvae for a food 

type.  

Treatment 

Copepod 
nauplii        

(< 100 μm) 

Copepodites 
and copepods 
(� 100 μm) Cladocerans Rotifers 

High density 0.50 0.08 0.10 0.31 

Medium density 0.29 0.09 0.06 0.56 

Low density 0.56 0.00 0.00 0.39 
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Table 4.6. Comparison of mean zooplankton abundance (number/m3) for coastal rivers and 

estuaries in North Carolina, South Carolina, and Virginia.

Study System State 
Mesh size 

(μm) 
Abundance         

(number/m3) 
Mallin (1991) Neuse River NC 76 32,877 
Fulton (1984) Newport River NC 76 21,900 
Lonsdale and Coull (1977) North Inlet SC 156 9,257 
Birkhead et al. (1979) Cape Fear River NC 156 7,450 
Thayer et al. (1974) Newport River NC 156 6,200 
Carpenter and Lane (1998) Chesapeake Bay VA 202 5,798 
Winslow et al. (1985) Chowan River NC 70 3,423 
Rulifson et al. (1993) Roanoke River NC 250 327 

Albemarle Sound NC 250 532 
Coggins (2005) Roanoke River NC 90 892 
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Figure 4.1.  Total length (A), notochord length (B), and dry weight (C) of American shad larvae 

reared from 12 days after hatching (DAH) to 20 DAH.  Experiments evaluated the effects of food 

availability on larval growth.  Regression lines are plotted with mean ± SE values for treatments 

Artemia (filled circle), high zooplankton (open circle), medium zooplankton (filled triangle), low 

zooplankton (open triangle), and no food (diamond).   

194



Total length (mm)

8 10 12 14 16 18

Pr
ey

 si
ze

 (m
m

)

0.35

0.40

0.45

0.50

0.55

0.60

Notochord length (mm)

8 10 12 14 16

Pr
ey

 si
ze

 (m
m

)

0.35

0.40

0.45

0.50

0.55

0.60

A
y = 0.0238x + 0.1544
r2 = 0.88
n = 150

B
y = 0.0319x + 0.1137
r2 = 0.88
n = 150

 
 
 
Figure 4.2.  Regression (solid line) with 95% confidence limits (dashed line) of theoretical prey size 

on total length (A) and notochord length (B) measurements for American shad larvae.  Prey size was 

estimated at 50% of mouth gape for larvae.  Data represent combined measurements of three feeding 

treatments (Artemia, high prey, medium prey) that were not significantly different (ANOVA; df = 2, 

27; P = 0.18).   
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Figure 4.3.  Frequency distribution of size-sorted, wild zooplankton collected and used as 

food in larval rearing trials with American shad.  Samples were washed through an 800-μm 

mesh sieve to prevent the introduction of ichthyoplankton, insects, and other predatory 

species.  Data represent the mean distribution of invertebrate taxa among daily samples 

collected from the field. 
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Figure 4.4.  Diet composition of American shad reared 12 to 20 days after hatch in three 

treatments with varying densities of food.  Replicated treatments consisted of low-density 

zooplankton (1 prey/L), medium-density zooplankton (50 prey/L), and high-prey (500 prey/L).  
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CHAPTER 5.  INTERANNUAL VARIABILITY IN ESTUARINE RECRUITMENT, 

GROWTH, AND MORTALITY OF RIVER HERRING IN NORTH CAROLINA, USA 

Abstract

Interannual variation in patterns of abundance, growth, and mortality were examined to 

determine the causes of recruitment variability in river herring (blueback herring Alosa aestivalis

and alewife A. pseudoharengus).  Long-term datasets from 1984 to 2009 were used to quantify 

the relationship between larval recruitment in Roanoke River and juvenile recruitment in 

Albemarle Sound.  Synchrony was not observed in recruitment of larvae and juveniles.  River

herring yolk-sac larvae were prevalent throughout samples and clearly comprise an important 

component of the ichthyoplankton assemblage.  Larval abundances peaked during the latter part 

of April (564 ± 191 number / 100 m3) and declined steadily through June.  Juvenile recruitment 

was strong for June, July, and August.  Emigration of alewives was clearly evident in September 

and October. With exception of a strong year-class in 1985, we failed to observe any other 

strong year-classes. Instantaneous larval growth (G; 0.005 – 0.043) and mortality (Z; 0.006 – 

0.067) were low, but were comparable with other studies.  Juvenile growth (0.001 – 0.005) and

mortality (0.001 – 0.0214) were both lower than larval estimates and differed by an order of 

magnitude.  Larval fish production was negatively affected by spring river flow (r2 = 0.62).

High flows resulted in larval advection from Roanoke River.  Low flows and drought conditions 

coincided with high larval abundances.  Spring river flow was highly correlated with juvenile 

abundance (r2 = 0.90). Stepwise multiple regression was used for detailed assessment of the 

relationship among river herring abundance, river flow, and wind stress. The results suggest that 

density-independent and density-dependent processes work in concert to regulate recruitment. 



 
 

Introduction 

The early life history for most anadromous species is complex and intertwined with natural 

variability in biotic and abiotic factors.  Fish movement and distribution patterns are often 

governed by physics, ontogeny, food abundance, and predation (Leggett and Deblois 1994; 

North and Houde 2003a).  River flow and circulation features contribute to the dispersal of eggs 

and larvae.  Temperature and other environmental conditions exert major influences on growth 

and mortality.  Because growth and mortality are linked processes, they are important 

determinants of recruitment success (Houde 2008).  Relatively small variations in mortality rates, 

growth rates, or stage duration in the early life of fishes can have fluctuations that vary by one or 

two orders of magnitude in recruitment (Houde and Hoyt 1987).  As a result, understanding the 

processes that regulate recruitment has become central focus of fisheries science (Heath 1992). 

River herring are two small anadromous alosines (blueback herring Alosa aestivalis and 

alewife A. pseudoharengus) that are collectively managed as a single stock along the Atlantic 

coast.  Widely known for their economic value to commercial and recreational fisheries 

(Hightower et al. 1996; Schmidt et al. 2003), river herring also serve as an important forage base 

for predators throughout their range (Hartman and Margraf 2003; Walter et al. 2003).  Upon 

reaching sexual maturity (age 3-6), river herring undertake spawning migrations through 

estuaries and coastal rivers (Marcy 1969; Loesch 1987).  Spawning is assumed to occur in natal 

rivers and streams near headwaters or to the extent that dams and obstructions limit migrations 

(Meador et al. 1984; O'Connell and Angermeier 1997; Cooke and Leach 2003; Harris and 

Hightower 2010).  After spawning, eggs and larvae drift downstream through a variety of 

habitats (Walsh et al. 2005).  Retention in specific nursery habitats is mediated by local 

hydrography, precipitation and weather, and river flow. 
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Effective conservation and management of river herring depends on the ability to predict and 

forecast recruitment for a given year.  While it is presumed that adult stock abundance plays a 

role in regulating recruitment, the relative size and contribution of parental stocks does not 

guarantee the emergence of a strong year-class (Walton 1987; Wood and Austin 2009).  Few 

studies with anadromous alosines have been able to establish a relationship between abundances 

of adults and juveniles (Leggett 1976; Jessop 1990; Kosa and Mather 2001). This observation is 

not unique to anadromous species and extends to many marine fish populations where 

recruitment varies strongly and can be independent of adult stock abundance (Iles 1994; Myers 

and Barrowman 1996).  Most studies with alosines report a failure to detect the relationship 

between adult and juvenile abundance, because recruitment variability is driven by climate-scale 

forcing events (Crecco and Savoy 1984; Henderson and Brown 1985; Jessop 1994).  Owing to 

the difficulties in establishing a stock-recruit relationship, an approach to understanding 

population dynamics is to compare the relationship between successive stages of the recruitment 

process. 

Few datasets allow for long-term correlations between production of larvae and juveniles.  

Since their precipitous decline in the latter part of the 20th century, river herring in Roanoke 

River and Albemarle Sound, North Carolina have been included in monitoring programs for 

conservation of anadromous species (Rulifson 1994; Carmichael 1999).  The present study 

examines a 25-year dataset that includes juvenile river herring collected by the North Carolina 

Division of Marine Fisheries (NCDMF).  The study also includes ichthyoplankton samples 

collected and summarized by the authors for 13 years.  Anadromous fish production within this 

estuary and coastal river system has received considerable attention because conservation efforts 

have led to the recovery striped bass Morone saxatilis (Reinert et al. 2005; Greene et al. 2009).   
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Anadromous fish populations in Roanoke River have been affected by changes in 

streamflow, water quality, and habitat heterogeneity caused by construction of dams for 

hydropower generation and flood control (Rulifson and Manooch 1990a).  Roanoke River is 

straddled by six major dams, none include provisions for anadromous fish passage.  The most 

downstream facility on the river, Roanoke Rapids Dam, has restricted fish migrations since 

completion in 1955 (Zincone and Rulifson 1991).  The dam is located 100 river kilometers (rkm) 

upstream from the river mouth.  Flow patterns within this region are controlled by release 

schedules of upstream dams (Richter et al. 1997).  Flows are seasonally regulated from April 

through mid-June to support striped bass production (Table 5.1).  Spring river flow approximates 

historical pre-dam conditions (1912-1950), and dam discharge is managed to produce flow 

regimes that provide the necessary migratory and spawning cues for striped bass (Rulifson and 

Manooch 1990b; Rulifson and Manooch 1990a).  Flows are kept within the twenty-fifth (Q1) 

and seventy-fifth (Q3) percentiles for the pre-dam period.  The flow regime adopted in recent 

years includes provisions to manage daily flow magnitudes (150 – 240 m3/s) and rates of change 

in flow levels (� 42 m3/s•h).  Because of stringent measures to protect river flow supporting 

striped bass production, recruitment of striped bass has returned to historical levels and the adult 

stock has increased eightfold since 1990s (Carmichael 2003; Rudershausen et al. 2005). 

The primary goal of this study was to use long-term datasets to determine if a relationship 

exists between larval recruitment in Roanoke River and juvenile recruitment in Albemarle Sound 

and to determine how the relationship between these early life stages is influenced by 

environmental factors.  The specific objectives were: (1) to test for synchronous patterns of 

abundance, growth, and mortality among early life stages and (2) to describe effects of 

interannual variability in hydrography, precipitation and weather, and river flow on river herring 
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production.  In contrast to the classical definition in fisheries management that defines fisheries 

recruitment as the amount of fish added to the exploitable stock each year through growth or 

migration (Beverton and Holt 1957), the term recruitment in this study refers to the arrival of 

larval and juvenile stages of fishes to nursery habitats within a coastal ecosystem. 

Methods

Larval River Herring Abundance 

Ichthyoplankton data used for this study were collected as part of a long-term project to 

characterize fishery resources within Roanoke River, North Carolina.  Data were extracted from 

three separate studies (1984 – 1991; 2001 – 2003; 2008 – 2009) and summarized for samples 

collected at weekly intervals from 15 April through 15 June.  These months represent the bulk of 

anadromous fish production in Roanoke River and permit the collection of fish at various stages 

between hatching, yolk-sac absorption, and juvenile transformation (Rulifson and Overton 

2005).  Ichthyoplankton were collected at five fixed stations located in the lower Roanoke River 

watershed (Figure 5.1).  Sampling was conducted at night because several studies indicate 

daytime sampling produces negatively biased abundance estimates for alosines (O'Gorman 1984; 

Höök et al. 2007).  Sampling gears varied for each study and a statistical comparison was used to 

generate a corrective factor and standardize CPUE.  Ichthyoplankton samples collected during 

the time period extending from 1984 to 1991 were obtained by towing paired conical nets in an 

oblique manner for 6 min against the current (Rulifson et al. 1992).  Nets were constructed of 

505-μm nitex mesh material with a 0.20-m2 mouth opening and a tail-to-mouth ratio of 5:1.  The 

same net configuration was used for samples collected in 2001, 2002, and 2003 (Rulifson and 

Overton 2005).  Paired surface pushnets were introduced and used with oblique tows to collect 
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samples in 2002 and 2003 (Overton and Rulifson 2007).  The paired pushnets were constructed 

of 505-μm nitex mesh material with a 0.25-m2 mouth opening and tail-to-mouth ratio of 5:1.  

The nets were connected to an aluminum frame mounted on the bow of the boat and nets were 

lowered to sample 0.5-m below the surface.  Surface nets were pushed into the prevailing water 

current for 2.0 min.  Each net (oblique tow and pushnet) was equipped with a calibrated 

flowmeter mounted inside the mouth of the net to estimate the volume of water filtered.  After 

collection, samples were condensed and preserved using either 95% ethanol or 10% buffered 

formalin.  Water temperature and salinity were measured at each collection site. 

Ichthyoplankton samples were transferred to fresh ethanol in the laboratory.  Fish larvae were 

separated from debris, sorted, counted, and measured using a dissecting microscope equipped 

with an ocular micrometer.  The stage of development was noted to differentiate yolk-sac larvae, 

feeding-stage larvae, and juveniles.  Alosines were identified using a variety of larval taxonomic 

keys and criteria based on external morphological features (Lippson and Moran 1974; Auer 

1982; Sismour 1994a; Walsh et al. 2005).  Species identifications for the earliest study were 

limited to river herring because it was not within the scope of the study to separate blueback 

herring or alewife.  Data on these species in more recent studies were consolidated to allow for 

statistical comparisons.  To determine larval abundance, the catches between the two nets were 

averaged together.  Abundances of larval fish were then standardized to catch per unit effort 

(CPUE; number of fish sampled per 100 m3).  Correction factors for differences between gears 

were applied to CPUE estimates for oblique tows. 

Juvenile River Herring Abundance 

To investigate how the abundance of juvenile river herring has changed over the last 25 years 

(1984 – 2009), data were extracted from the Albemarle Sound Juvenile Anadromous Fish Survey 

203



 
 

conducted by NCDMF.  This survey represents one of the longest-running independent fishery 

surveys in the United States and abundance indices developed from survey data are used in various 

stock assessment models for anadromous species (Rulifson and Manooch 1990a).  The survey is 

extensive in its coverage of nursery habitats in Albemarle Sound and sampling is primarily 

conducted during the months of May through October.  Data selected for this study spanned 

1984 – 2009 and were chosen based on consistency of sampling methods, areas, and times.  Data 

from May or earlier months were excluded from analyses because fish were not considered fully 

recruited to the seine gear until June.  Data were summarized for 4 stations located within 

western Albemarle Sound and within close proximity of Roanoke River (Figure 5.1).  These 

stations were selected based on their persistence in catch of juvenile river herring and their 

ability to serve as a sensitive indicator of long-term trends in abundance.   

All fishes were captured using an 18.3-m bag seine constructed of 6.35-mm mesh body and 

3.2-mm mesh bag (Rawls et al. 2010).  For each sample, a single seine was pulled perpendicular 

to the shore starting from a depth of 1.0 – 1.5 m for a distance of 40 – 50 m.  All fishes captured 

were identified and counted.  The number of river herring captured per seine haul was used to 

estimate CPUE.  Subsamples (� 70 fish) were measured for fork length (FL).  Water temperature 

and salinity were measured during each sampling event. 

Growth and Mortality 

Annual growth and mortality rates for river herring larvae and juveniles were estimated using 

a length-based ageing method (Hackney and Webb 1978; DeAnglis et al. 1980).  This method 

has produced comparable results with traditional ageing techniques using otoliths or bony 

structures (Zigler and Jennings 1993; Barfoot et al. 1999).  Length-based ageing methods are 

also well suited for analysis of long-term datasets with persistent catch (Cada and Hergenrader 
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1980).  To reduce bias, data were selected for fish that were equally vulnerable to each gear type.  

Catch curve analysis revealed larvae were vulnerable to ichthyoplankton nets at 4 mm total 

length (TL) and juveniles were vulnerable to seines at 35 mm FL.  Growth and mortality were 

estimated for larvae between 5 and 15 mm TL and juveniles between 40 and 100 mm FL.  For 

each year, an abundance-weighted mean date of capture was calculated for larvae grouped in 1-

mm size-classes and juveniles grouped in 5-mm size-classes (Figure 5.2).  The mean date of 

capture represents the day of year at which a given size-class is most abundant and was estimated 

with the equation:  

- � ���.
 ���
! ,     (1) 

where D is abundance-weighted mean date, L is the total fish abundance for each collection date 

and size-class, and J is the date of capture.  Age (t) was calculated for each size-class by 

subtracting D for the smallest size-class from each of the subsequent size-classes.  Instantaneous 

growth (G) was estimated with the equation: 

� � /�0�,      (2) 

where L is length of the lower limit of each size-class, a is the length axis intercept, G is the 

coefficient of instantaneous growth, and t represents age in days (Hackney and Webb 1978; 

Peterson and Jennings 2007).  Instantaneous mortality (Z) was calculated based on catch-curve 

analysis using Ricker’s (1975) model of exponential decline: 

�� � �	����1       (3) 

where Nt is the predicted number of fish at age t, N0 is the abundance axis intercept at time zero, 

and Z is instantaneous mortality.  This model assumes that once the members of a cohort have 

settled in Albemarle Sound, there is no emigration or immigration during the period in which 

mortality is being calculated (i.e., June – October). 
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Meteorological and Hydrographic Data 

To determine long-term trends in weather and climate, data were obtained from a 2-m 

weather station located at Tidewater Research Station in Plymouth, North Carolina.  The State 

Climate Office of North Carolina operates the weather station and data are maintained by the 

National Climatic Data Center (SCONC 2009).  Precipitation was recorded daily and summed to 

estimate total accumulation for the spring (March-June).  Hourly records of wind speed and 

direction were used to calculate a mean daily average.  Wind speed (m/s) and direction were then 

summed over each month for winds from each of 8 directional sectors (N, NE, E, SE, S, SW, W, 

and NW).  To reduce the number of explanatory variables, data were summarized by four-month 

intervals (e.g., March-June, July-October).  These intervals correspond accordingly to larval and 

juvenile production periods. 

Daily river discharge rates were obtained from Roanoke Rapids Dam water monitoring gage, 

located 4.5 km downstream of the dam and 221 km upstream from the study area (USGS 2011).  

The gage is maintained by US Geological Survey and Dominion Power Company and records 

hourly discharge rates and river height data.  Daily river discharge (m3/s) was averaged for each 

month and compared with larval and juvenile abundances.  Daily river discharge was averaged 

over the same four-month intervals previously described and used for comparison with fish 

production.  Finally, river discharge was summarized as the number of days between March and 

June with average flows greater than 300 m3/s and less than 100 m3/s.  These values were used to 

assess larval and juvenile recruitment in relation to years with high or low river flow. 
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Data Analysis 

River herring abundance data used for comparison of ichthyoplankton pushnets and oblique 

tows did not meet normality assumptions; nonparametric tests were used for comparisons of 

gears.  Differences in sampling gear efficiencies were evaluated using the Mann-Whitney U test.  

A correction factor for CPUE estimates was developed using nonlinear regression analysis with 

untransformed CPUE data.   

Juvenile CPUE data were first examined quantitatively to determine broad temporal patterns 

in recruitment of blueback herring and alewife.  Data for blueback herring and alewife were then 

combined for subsequent analysis of river herring recruitment, growth, and mortality.  Larval and 

juvenile abundance indices were calculated using arithmetic means of CPUE data (loge [n + 1] 

transformed).  Data were evaluated for normality and homoscedasticity using the Shapiro-Wilk 

and Levene tests.  Temporal patterns of larval and juvenile abundance were examined relative to 

variation in water temperature, precipitation, wind speed and direction, and river discharge.  

Interannual patterns of fish abundance, instantaneous growth, and mortality were compared 

using simple linear regression with meteorological and hydrological variables.  Stepwise 

multiple regression analysis based on a generalized linear model was used for detailed 

assessment of the relationship among river herring abundance, river flow, and wind.  A t-test was 

used to examine the significance of the variable coefficients in the model (P � 0.05).  To protect 

against multicolinearity and ensure that correlations between variables were not biasing results, 

collinearity diagnostics were used with variance inflation factors. 

Analysis of variance (ANOVA) was used to statistically detect differences in growth and 

mortality between years.  Data were evaluated for normality and homoscedasticity using 

methods previously described.  If the ANOVA was significant, Tukey’s HSD post-hoc multiple 
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range tests were used to determine if significant differences existed among means.  Differences 

were considered significant at P � 0.05.  Results are expressed as the means ± SE.  All statistical 

analyses were conducted using SAS 9.2 (SAS Institute, Cary, North Carolina).     

 

Results

Ichthyoplankton Gear Comparison 

Gear type had a significant effect on mean abundance of larval river herring (Mann-Whitney 

U, P = 0.01).  Pushnet abundances were generally 5 - 10 times higher than abundances for 

oblique tows as previously reported (Overton and Rulifson 2007).  A polynomial regression best 

explained differences in catch efficiency (r2 = 0.95, F1,56 = 470.206, P < 0.001), and the resulting 

quadratic equation (y = 0.1099x2 - 3.5165x + 35.144) was used as a correction factor for CPUE 

estimates based on oblique tow samples.   

Variation in River Herring Abundance and Distribution 

Larvae and juveniles were collected through use of both ichthyoplankton sampling gears 

(Table 5.2).  As a result of heavy rains and flooding in 1987, no larvae were caught for the entire 

year despite an extensive sampling effort.  Length distributions were similar for each stage of 

development and year of collection.  River herring yolk-sac larvae were prevalent throughout 

samples and clearly comprise an important component of the ichthyoplankton assemblage in 

Roanoke River.  An unusually high proportion (70 ± 11%) of yolk-sac larvae and a low 

proportion (10.5 ± 1.6%) of feeding-stage larvae were caught in 2008 and 2009.  With the 

exception of the most recent study, feeding-stage larvae were prevalent in most samples and 

represented the largest distributions of river herring collected.  A low proportion (~5%) of yolk-

sac larvae were caught in 1985 and 2002.  The proportion of juveniles caught with oblique towed 
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nets was low (<5%) for the earliest study (1984-1991) and greatly increased (~15%) with oblique 

towed nets in 2001, 2002, and 2003.  The proportion of juveniles caught with pushnets and 

oblique tows was similar and consistently high since sampling in 2001. 

Larval abundances (267 ± 139 number / 100 m3) were not significantly different between 

stations located within the Roanoke River mainstem channel or distributaries.  River herring 

abundances generally peaked during the latter part of April (564 ± 191 number / 100 m3) and 

declined steadily through June (Figure 5.3).  For some years (1985, 2002, 2003, 2009), river 

herring abundances may have peaked before 15 April or coincided with the first week of 

sampling (Figure 5.4).  Larval abundances were the highest on record in 1985 (28,872 ± 11,431 

number / 100 m3).  Periods of low abundance occurred in 1987, 2001, and 2008 (Figure 5.5).   

Juvenile river herring abundances (2.3 ± 1.1 fish) were generally low and were not 

significantly different among the stations sampled in western Albemarle Sound.  Seasonal 

differences in recruitment of blueback herring and alewife juveniles were noticeable (Figure 5.6).  

Abundance of blueback herring and alewives was similar for June, July, and August.  Alewife 

abundance sharply declined in September and October, while blueback herring remained 

abundant throughout the fall.  Juvenile river herring abundances (2.3 ± 1.1 fish) were generally 

low and were not significantly different between the stations sampled in western Albemarle 

Sound.  Seasonal differences in recruitment of blueback herring and alewife juveniles were 

noticeable (Figure 5.6).  Recruitment of blueback herring and alewives was similar for June, 

July, and August.  Length distributions for juvenile river herring were 55.1 ± 10.1 mm FL and 

ranged from 18 mm to 134 mm FL.  Length distributions for blueback herring and alewife were 

similar (Figure 5.7).  While fewer alewife were collected in the seine survey, alewife were 

significantly larger than blueback herring (Mann-Whitney test, z = 27.33, P < 0.0001). 
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Growth and Mortality 

Instantaneous growth and mortality rates were highly variable for larvae (Table 5.3).  Growth 

rates ranged from 0.043 ± 0.002 (r2 = 0.40, P = 0.02) in 1985 to 0.005 ± 0.001 (r2 = 0.31, P = 

0.03) in 1986.  Growth was significantly higher for 1985 and 1988 compared to all other years 

(ANOVA, F10,33 = 160.21, P < 0.0001).  Mortality ranged from 0.067 ± 0.006 (r2 = 0.86, P < 

0.0001) in 1989 to 0.006 ± 0.001(r2 = 0.21, P = 0.048) in 1985.  Mortality was significantly 

higher for 1989 and 1986 than other years and was significantly lower for 2003 and 1985 than 

other years (ANOVA, F10,33 = 78.92, P < 0.0001).  Larval growth and mortality were not 

significantly different among stations in Roanoke River (ANOVA; P > 0.05); however, growth 

decreased and mortality increased along the river gradient. 

While abundances of river herring juveniles were relatively low for Albemarle Sound (JAI 

2.3 ± 1.1), instantaneous growth and mortality rates were calculated for all years included within 

this study (Table 5.4).  The catch-curve mode varied among years in relation to the population 

size structure.  Thus, it was important to analyze each year independently to estimate the 

abundance-weighted mean date on which fish achieved each size-class.  Growth rates ranged 

from 0.005 ± 0.002 (r2 = 0.36, P = 0.01) in 1986 to 0.001 ± 0.001 (r2 = 0.23, P = 0.05) in 1985.  

Growth was significantly higher for 1986 and 2009 compared to all other years (ANOVA, F12,39= 

44.47, P < 0.0001).  Mortality ranged from 0.021 ± 0.002 (r2 = 0.90, P < 0.0001) in 1989 to 

0.001 ± 0.001 (r2 = 0.22, P = 0.048) in 1985.  Mortality was significantly higher for 1989 than all 

other years (ANOVA, F12,39= 163.43, P < 0.0001).  Juvenile growth and mortality were not 

significantly different among the stations in Albemarle Sound (ANOVA; P > 0.05).  

Instantaneous growth rates were highest for stations located at the mouth of Roanoke River and  
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Chowan River.  Growth rates decreased moving seaward away from the confluence of these 

rivers.  The relationship between mortality and proximity of sampling location to river mouth 

was not as clear. 

Direct comparison of instantaneous mortality between larval and juvenile stages indicated 

mortality rates were similar within a given year-class (Figure 5.8).  Years with high larval 

mortality also experienced substantial juvenile mortality, although differences varied by an order 

of magnitude.  Regression analysis showed an exponential model could be used to explain 80% 

of the variation in the relationship between stage-specific mortality (r2 = 0.80, F2,9=59.0, P < 

0.001).  In contrast with instantaneous mortality estimates, an inverse relationship was observed 

between growth rates for larvae and juveniles.  Juvenile growth was lowest during years that 

supported high larval growth and an exponential growth model explained 83% of the variation in 

these growth rates (Figure 5.8, r2 = 0.83, F1,10=172.8, P < 0.001).  This statistical significance 

and direction of the relationship between larval and juvenile growth led to the investigation of 

density dependence for each early life stage.  Mortality estimates for larvae and juveniles were 

density independent.  Similarly, larval instantaneous growth rates were density independent.  

Juvenile growth rates were density dependent and a negative correlation described the 

relationship between juvenile growth and abundance (Figure 5.9, r2 = 0.47, F1,10=8.8, P = 0.01). 

Environmental Factors 

Among the environmental and hydrographic variables examined, temperature was the most 

stable parameter measured with only slight variation from year to year (Table 5.5).  Interannual 

distributions of larvae and juveniles were weakly correlated with air temperature (r2 < 0.20).  

Years with warm temperatures showed an increasing trend for larval abundance (r2 = 0.18, P = 
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0.16) and a decreasing trend for juvenile abundance (r2 = 0.10, P = 0.31).  Intraannual variability 

in water temperature was correlated with fish abundance and this relationship was similar for 

larval and juvenile river herring (Figure 5.10).  Fish abundance was low during seasonally warm 

periods.  Spring rainfall was especially high (> 8.0 cm) for 1984, 1989, 1990, and 2003 and was 

not directly correlated with a specific El Niño Southern Oscillation Pattern.  Drought conditions, 

as evidenced by rainfall accumulation and river flow, were prevalent throughout 1985, 1986, 

2002, and 2008.   

Winds during the spring were generally stronger (~10%) and more sustained than those for 

the fall.  Spring winds were predominantly from the southwest (32 ± 2%) and south (20 ± 2%).  

Fall winds were predominantly from the southwest (26 ± 2%) and northeast (21 ± 2%).  Winds 

from most directions had minimal effect on larval distribution in Roanoke River.  A notable 

exception was winds originating from the northwest significantly reduced the abundance of 

larvae in the river (r2 = 0.86, F1,11=31.37, P < 0.001).  Spring winds from the south, northeast, 

and north had a significant influence on juvenile river herring abundance (Figure 5.11).  The 

abundance of river herring in Albemarle Sound increased with sustained winds from the south (r2 

= 0.89, F1,11=96.3, P < 0.001).  Juvenile abundances declined with winds from the northeast (r2 = 

0.87, F1,11=78.0, P < 0.001) and north (r2 = 0.76, F1,11=28.1, P < 0.001).  Spring winds from 

other directions did not have a significantly effect on juvenile abundance.  Late-summer and fall 

winds were weakly correlated (r2 < 0.20) with juvenile river herring production in Albemarle 

Sound.  Although not statistically significant, the general trend observed was winds from most 

directions, except west and northeast, were related to increased juvenile abundance in Albemarle 

Sound. 
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River Flow and Hydrographic Conditions 

River flow was correlated with precipitation within the region (r2 = 0.45, F1,22 = 8.81,  

P = 0.01); however, flow conditions were probably more related to management objectives for 

hydropower generation and maintenance of a negotiated flow regime for striped bass production 

(Table 5.6).  Annual summaries of river flow were similar for spring and fall, and linear 

regression explained 61% of the variation in this relationship (r2 = 0.61, F1,11 = 16.9, P = 0.002).  

River flow was exceptionally high (10th percentile) for 2003, 1987, and 1984, and flow was 

exceptionally low (90% percentile) for 1988, 1986, 1985, and 2002.  During the past 25 years, 

river flow was maintained within the Q1 – Q3 bounds for 47 ± 6% of time (Table 5.7).  A good 

benchmark for determination of high flow years was the summation of days with average river 

discharge � 300 m3/s.  Similarly, a benchmark for low flow years was the summation of days 

with average river discharge < 100 m3/s. 

Larval fish production was negatively affected by spring river flow (Figure 5.12, r2 = 0.62, 

F1,11 = 6.9, P = 0.02).  Low flows and drought conditions in 2002 and 1985 coincided with high 

larval abundances and relatively low concentrations of yolk-sac larvae (5.7 ± 0.7%).  As a result 

of dispersal and advective processes in Roanoke River, low larval abundances were observed 

with high flow periods in 2003, 1987, and 1984.  River flow had variable influence on 

recruitment of juveniles in Albemarle Sound.  Spring river flow was highly correlated with 

juvenile abundance (r2 = 0.90, F1,11 = 109.3, P < 0.001), whereas a relationship with river flow in 

the fall could not be detected.  Instantaneous growth and mortality were not correlated with river 

flow for either the spring or fall. 
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Multiple regression analysis yielded a significant model [JA = 1.1 + (0.0016 x R) + (0.0058 x 

S) – (0.031 x N) – 0.0062 x NE)] for estimating juvenile abundance based on spring river flow 

and wind.  The model indicates that juvenile abundance (JA) was positively related to river flow 

(R) and winds from the south (S), but negatively related to winds from the north (N) and 

northeast (NE).  Analysis of the standardized partial regression coefficients (�) showed that river 

flow contributed the most toward predicting fish abundance.  The contribution of winds towards 

predicting fish abundance was similar for all directions.  The four predictor model was able to 

account for 92% of the variance in juvenile abundance (r2 = 0.92, F4,8 = 22.8, P < 0.001, 90% CI 

[0.42, 1.78]).  Multicolinearity among the predictor variables was not detected through 

correlation diagnostics and analysis of the variance inflation factors.   

 

Discussion 

The results of long-term data analysis for larval and juvenile river herring suggests Roanoke-

Albemarle stocks are in decline as previously observed with fishery-dependent data and 

estimates of spawning stock biomass (Carmichael 1999; Schmidt et al. 2003).  Historically, river 

herring exhibit distinct patterns in abundance reflected in the fishery age structure (Messieh 

1977; Jessop 1990).  Periods of abundance are attributed to the frequency and distribution of 

large, dominant year-classes.  With exception of a strong year-class in 1985, we failed to observe 

a strong year-class for any other years included in this study.  Persistent declines in abundance 

could be attributed to increased natural mortality occurring during the early life stages when 

year-class strength was established.  Estimates of instantaneous mortality were high for larvae 

and juveniles and were not correlated with abundance.  Similar to observations with American  
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shad A. sapidissima, river herring mortality rates decreased with age and size (Crecco et al. 1983; 

Houde 1997).  Larval mortality was consistently an order of magnitude higher than juvenile 

mortality.  

Larval mortality and growth rates estimated in this study were similar to published reports for 

blueback herring and alewife collected throughout their range (Essig and Cole 1986; Mansfield 

and Jude 1986; Sismour 1994b; Höök et al. 2007; Overton et al. In press).  Working in an 

upstream reach of Roanoke River, Walsh et al. (2005) reported collecting a preponderance of 

yolk-sac larvae.  Otolith-derived mortality and growth rates from these young fish (4-8 d) were 

comparable to those described herein.  A few laboratory studies with blueback herring and 

alewife purport lower mortality rates for cultured larvae (Heinrich 1981; Sismour 1994b).  Low 

mortality rates would be expected for fish living in an environment without predators.  Estimates 

of American shad larval mortality (0.112 – 0.202) have been reported higher than our 

observations with river herring, but probably indicate subtle differences with fish size or 

temporal variation in recruitment (Crecco et al. 1983; Savoy and Crecco 1987).   

Few publications present mortality and growth estimates for juvenile river herring.  Mortality 

and growth rates in this study compare reasonably to Savoy and Crecco’s (1988) observations 

with American shad in Connecticut River and estimates of mortality for Gulf menhaden 

Brevoortia patronus, a pelagic schooling clupeid (Loesch 1976; Deegan 1990).  Estimates for 

juvenile river herring mortality and growth were lower than estimates for blueback herring in 

Rappahannock River (Dixon 1996) and American shad in Pamunkey River (Hoffman and Olney 

2005).  These rivers are important tributaries of Chesapeake Bay and are influenced by tidal 

exchange and saltwater intrusion.  They are characterized by high total suspended solid 

concentrations, high light attenuation, and high densities of zooplankton and fish larvae.  
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Alosines in the Rappahannock and Pamunkey benefit from hydrologic conditions and 

environmental factors that are known to support anadromous fish production (North and Houde 

2001; North and Houde 2003b).   

Numerous authors have explored a wide range of processes contributing to density 

dependence in fishes (Cowan et al. 2000; Rose et al. 2001).  Heath and Gallego (2000) identified 

several density-dependent processes that could affect growth and mortality of early life stages: 

(1) competition for refuge; (2) schooling behavior for protection from predators; (3) competition 

for food; (4) attraction of predators to local abundances of the target species, and (5) parasitism 

and disease.  With river herring, slow growth and predation risk as a result of fish size or stage 

duration raises questions about why density dependence and compensatory effects were not 

observed with mortality (Litvak and Leggett 1992).  While Savoy and Crecco (1988) 

documented density-dependent mortality in American shad eggs and larvae, this observation is 

rare for most fish species.  We found larval mortality and growth were density independent.  

Density-dependent mortality was not detected for juvenile river herring, but may have been 

limited by population size or masked by high mortality rates.  In a comprehensive review of 

marine fish with low stock abundance, Myers et al. (1995) found little evidence density 

dependence exists with mortality estimates.  In this study, juvenile growth rates were density 

dependent and growth was slow during years with increasing abundance.  Density dependence 

among juveniles was probably a consequence of competition and predation within the estuarine 

environment. 

Obviously, the resurgence of striped bass populations has drawn attention of resource 

managers because predation is the agent of mortality for most young fishes (Houde 2008).  

Numerous studies have cited striped bass as a predator and a substantial cause for river herring 
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mortality (Nelson et al. 2003; Walter et al. 2003; Savoy and Crecco 2004).  While Schmidt et al. 

(2003) attributed the initial decline of river herring stocks to overfishing and variability in 

environmental conditions, the authors caution that recovery of striped bass stocks and increases 

in striped bass abundance could make restoration of river herring stocks difficult.  Within 

Albemarle Sound, the abundance of striped bass juveniles during recruitment periods and year-

round presence of adults probably serves as a significant source of mortality for river herring.  

Predator-prey interactions with striped bass have been studied in this system and alosines 

contribute a major component (~20%) of the diet for age-1 fish (Tuomikoski et al. 2008).  

Consumption generally declines as river herring emigrate from coastal waters in late summer and 

fall.  Striped bass consumption also declines with older individuals (age-2+) demonstrating 

preference for larger, more abundant clupeids (Rudershausen et al. 2005). 

Throughout the recruitment period, river herring larvae and juveniles appear to be largely 

influenced by variability in hydrography, precipitation and weather, and river flow.  Fluctuations 

in these environmental conditions can cause appreciable changes in fish abundance, growth, and 

mortality.  Temperature was a critically important determinant of growth and abundance.  

Intraannual variability in water temperature was correlated with fish abundance.  Operating on 

different spatiotemporal scales and mediated by seasonal selective processes, larval and juvenile 

abundances were low when during warm periods (Figure 5.10).  Temperature also appeared to be 

important cue for emigration of juveniles in the fall.  Alewife emigration occurred in September  

and October.  While temperature was correlated with this event, juvenile abundance and 

competitive pressures with blueback herring may stimulate early emigration of alewives 

(Richkus 1975).   
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Analysis of interannual variability in temperature may provide insight on the effects of low-

frequency climate change.  Although the correlations were generally weak (r2 < 0.20), years with 

warm temperatures showed an increasing trend for larval abundance and a decreasing trend for 

juvenile abundance.  These findings concur with Kellogg’s (1982) observations that warming 

trends would be beneficial to alewife populations because larval growth and survival is high at 

warm temperatures (20 – 26 °C).  Similar observations have been reported for larval blueback 

herring, but are mostly based on field studies and have not been quantified in the laboratory 

(Klauda et al. 1991).  The decline in juvenile abundance during warm years supports research 

that speculates climate change will cause a geographical shift in river herring spawning 

distributions and limit production within the southern extent of their range (Loesch 1987; 

Rulifson 1994).  Because the results described herein were not consistent with different life 

stages, it suggests analysis of river herring population dynamics requires compilation of data for 

larvae, juveniles, and adults.  Results indicate warm temperatures conducive for growth do not 

necessarily support good survivorship.  While year class strength might be established during the 

larval stage, processes during late larval and juvenile stages could serve as a stabilizing 

mechanism regulating and dampening recruitment. 

Models of meteorological forcing and water circulation across the Albemarle –Pamlico 

estuarine system have been widely used to study the mechanisms governing recruitment of 

estuarine-dependent fish (Pietrafesa and Janowitz 1985; Pietrafesa et al. 1986; Xie and Eggleston 

1999).  In these studies, recruitment models were based on larval transport from offshore 

spawning grounds through small inlets (� 1 km) along the North Carolina coastline (Tzeng et al. 

2003; Sullivan et al. 2006; Taylor et al. 2009).  Positive correlations exist between larval and 

juvenile abundances for three commercially important species (spot Leiostomus xanthurus, 
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southern flounder Paralichthys lethostigma, and Atlantic menhaden B. tyrannus) and with each 

species wind stress and river discharge were shown to significantly affect fish distributions 

(Pietrafesa et al. 1986; Taylor et al. 2009).  Our study differs from previous work in the 

Albemarle-Pamlico estuarine system because river herring have contrasting life history patterns 

and spawning occurs in coastal rivers, the net movement of eggs, larvae, and juveniles is seaward 

(west to east).  As previously noted by Taylor et al. (2010), the links between wind and river 

flow are not always clear, but these correlates of water current have a significant influence on 

river herring production.   

Wind forcing was particularly evident in synoptic weather bands during the spring.  The 

effects of wind stress were rarely correlated with larval production; however, on occasion the 

seasonal transition from winter weather patterns to spring weather patterns produced strong 

winds that originated from the northwest.  Under these conditions, wind stress caused larvae to 

be advected from habitats in Roanoke River.  The river’s orientation and course of travel through 

the North Carolina coastal plain probably contributed the most to this phenomenon.  Juveniles 

were more susceptible to the effects of wind forcing during the spring.  Juvenile abundances 

were highest when winds were from the south-southwest, the dominant wind field for spring.  

Given the size distribution of juveniles, we are unsure about the direct effect of wind on 

individuals.  We suspect that south-southwest winds produced circulation patterns and conditions 

that were favorable for production of river herring and their food resources.  In contrast, spring 

winds from the north-northeast structured nursery habitat with biotic and abiotic factors and 

produced an unfavorable environment for river herring.  Under these conditions it is possible that 

water quality was impacted, fish were advected from nursery habitats, or prey resources were 

diminished in some capacity.  While much research has been done to model circulation in the 
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Albemarle-Pamlico system (Pietrafesa and Janowitz 1985; Pietrafesa et al. 1986; Xie and 

Eggleston 1999; Taylor et al. 2010), this system is quite large and most research has not occurred 

within the area of this study, western Albemarle Sound.  

The Roanoke River empties into Albemarle Sound at its western end and supplies more than 

half the total freshwater input to the region (Giese et al. 1985).  It is a large river, with roughly 

the same mean flow as the Colorado River through the Grand Canyon (Manring and Pearsall 

2005).  The average annual discharge is about 225 m3/s (USGS 2011).  It is not surprising the 

river had such a significant effect on larval and juvenile river herring abundances.  Flows in the 

Roanoke have been extensively studied to assess their impact on striped bass recruitment 

(Rulifson and Manooch 1990a).  After monitoring striped bass in the postdam construction era, 

Hassler et al. (1981) and Manooch and Rulifson (1989) independently concluded best 

recruitment of juveniles in Albemarle Sound occurs in years with moderate river flow (141 – 311 

m3/s).  We share the same conclusion with these previous authors and recommend extension of a 

managed flow regime for anadromous alosines earlier in the season.  Following the same 

strategy proven effective for the past 30 years, we recommend flows approximate 

preimpoundment conditions in February and March.  Flows should also remain within the 

historical Q1 – Q3 thresholds.  We believe moderate river flow during this time period will 

directly influence:  (1) seasonal timing and location of spawning; (2) daily and hourly patterns in  

spawning activity; (3) egg and larval transport downstream; (4) location of nursery grounds near 

the river mouth and estuary; (5) production of phytoplankton, zooplankton, and other food 

resources, and (6) water quality and nutrient enrichment (Rulifson and Manooch 1990a).   

Numerous examples exist in which recruitment of anadromous fishes varies with river flow.  

Alosines, striped bass, and white perch M. americana have a positive association between river 
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flow and recruitment in Chesapeake Bay (Houde and Rutherford 1993; McGovern and Olney 

1996; North and Houde 2001; North and Houde 2003b).  River flow historically was a good 

predictor of striped bass and American shad abundance in San Francisco Estuary (Turner and 

Chadwick 1972; Stevens 1977; Kimmerer 2002); however, population declines have reduced the 

capacity to predict recruitment (Kimmerer et al. 2001).  Not all rivers demonstrate a positive 

association between fish abundance and river flow.  Jessop (1994) found that river herring 

mortality was high and abundances decreased with high flows during the summer.  In the well-

studied Connecticut River and Hudson River, American shad recruitment appears to be 

negatively correlated with freshwater flow (Crecco and Savoy 1984; Limburg 1996).  Similar 

conclusions were made by Kosa and Mather (2001), but these authors highlight the importance 

that high flow serves to stimulate emigration of juveniles from the estuary. 

Recent observations (2008 – 2009) in Roanoke River demonstrate that temporal variation in 

river flow can have a significant effect on river herring spawning (see Chapter 2).  Moderate 

flows (236 ± 143 m3/s) in March 2009 stimulated rigorous and widespread spawning of river 

herring early in the season (Figure 5.4).  Detailed analysis at the species level indicated these 

flows had similar effects for blueback herring and alewife.  In contrast, river flow in March 2008 

was unusually low (71 ± 10 m3/s; below Q1).  Spawning was sporadic throughout the spring 

extending into late June.  Under these conditions, river herring experience an extended larval 

period, competition with other larval alosines, and intense predation from striped bass and other 

piscivores.  Although river herring share similar life histories with striped bass, it is possible that 

flow management guidelines could be refined to support species-specific production goals within 

a given year.  Kimmerer (2002) reports that while river flow management within a system is  
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usually generalized, the underlying flow effects on each species are different and unique to each 

estuarine system.  This finding is especially important as fisheries management transitions to 

multi-species ecosystem approaches. 

In summary, several important themes emerge from our work with long-term datasets on 

Roanoke River and Albemarle Sound.  River flow shows considerable variation despite flow 

regulations and stakeholder cooperative agreements that are well established.  This work has 

extended our knowledge of recruitment dynamics for anadromous alosines.  Although not 

unexpected, synchrony was not observed between larval and juvenile river herring production.  It 

appears that density-independent processes (climate, water quality, river flow) and density-

dependent processes (predation, competition, disease) work in concert to regulate recruitment.  

Long-term data are essential to document and interpret variations in the timing and magnitude of 

recruitment.  Fisheries management that supports the recovery of anadromous stocks will require 

continual monitoring and data collection within the many habitats these species traverse.  

Ichthyoplankton sampling can provide immediate insight into the duration and extent of 

spawning activity.  Use of length-based ageing techniques coupled with catch curve analysis 

offered a means to estimate growth and mortality for historical datasets.  These techniques 

proved useful in assessment of interannual variability in growth and mortality.  Investigators 

should use caution using these techniques at more discrete scales (i.e., cohort  

analysis).  Successful recovery of the Roanoke-Albemarle striped bass stock offers great promise 

that revision of flow management guidelines would support recovery of river herring and other 

alosines in this coastal river system. 
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Table 5.1.  Negotiated (Q1 – Q3) water flow regime (m3/s) for Roanoke 
River below Roanoke Rapids Dam for 1 April - 15 June each year.  River 
flow during March does not follow a specific regime for anadromous fish 
production; however, average daily flows are maintained above 99 m3/s. 

Dates 
Expected average 

daily flow 
Lower limit      

(Q1) 
Upper limit      

(Q3) 

April 1 - 15 241 187 388 

April 16 - 30 221 164 311 

May 1 -15 184 133 269 

May 16 - 31 167 125 269 

June 1 - 15 150 113 269 
*Q1 and Q3 are historical 25 and 75% quartiles of daily river flow, 
respectively. 
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Table 5.7.  Percent of days that Roanoke River flow was within the negotiated Q1-Q3 
discharge criterion for years within each category of river herring juvenile abundance 
index (JAI).  Values represent means (SE). 

JAI category Years 
Percent of days 
within Q1-Q3* JAI 

< 0.50 1989, 2002, 2009 38.7 (11.4) 0.23 (0.06) 

0.50 - 1.00 1988, 1990, 1991, 2003, 2008 48.5 (9.3) 0.74 (0.06) 

1.01 - 1.50 1987, 2001 56.4 (8.5) 1.20 (0.07) 

1.51 - 2.00 1984, 1985, 1986 41.5 (7.9) 1.64 (0.10) 
*Q1 and Q3 = historical 25 and 75% quartiles of daily river flow, respectively. 
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Figure 5.1.  Map depicting fixed sampling locations used to investigate long-term recruitment 

trends for river herring (blueback herring Alosa aestivalis and alewife A. pseudoharengus) in 

lower Roanoke River and western Albemarle Sound, North Carolina. 
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Figure 5.2.  An example of the temporal changes in abundances of selected 5-mm size classes of 

juvenile river herring collected during 2009 through the Albemarle Sound Juvenile Anadromous 

Fish Survey.  Vertical bars indicate the abundance-weighted mean date on which fish achieved 

each length.  In calculating instantaneous growth and mortality using length-based aging 

techniques, mean dates of abundance were adjusted every year to account for changes in the 

population size structure. 
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Figure 5.3.  Abundance and distribution of larval river herring from lower Roanoke River, North 

Carolina.  Abundance indices were summarized from three different studies (1984-1991; 2001-

2003; 2008-2009).  Values represent means (SE).  
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Figure 5.4.  Analysis of data for some years (1985, 2002, 2003, 2009) suggests river herring 

abundances may have peaked before the temporal period used with the present study (15 April – 

15 June).  For example, retrospective analysis of recruitment of river herring in Roanoke River 

revealed fish were most abundant during the last week of March and first week of April in 2009.  

Caution should be used in comparing year-class size based on occurrence of peak larval 

abundance. 
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Figure 5.5.  The relationship between larval river herring production in the lower Roanoke River 

was compared to the abundance of juveniles in Albemarle Sound, North Carolina.  Larval 

abundance in 1985 was the highest on record and corresponded with production of a strong year 

class; however, the strength of this relationship was not easily observed for most years.  Despite 

an intensive sampling effort, no larvae were caught in 1987 as a result of flooding within the 

watershed.
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Figure 5.6.  Recruitment of juvenile blueback herring and alewife to Albemarle Sound was 

similar for June, July, and August.  Declines in alewife abundance in September and October 

were probably related to seaward emigration. 
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Figure 5.7.  Length frequency distribution of juvenile blueback herring and alewife collected by 

seine in Albemarle Sound, North Carolina (1984-2009).  
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Figure 5.8.  Instantaneous growth (G) and mortality (Z) was evaluated to determine if a 

relationship existed between river herring early life stages.  Data for growth and mortality fit 

equally well to an exponential model. 
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Figure 5.9.  Linear regression analysis was used to assess the relationship between juvenile river 

herring abundance and instantaneous growth rate (G).  During years or periods with high 

abundance, growth rates declined.  Dashed lines represent the 95% confidence interval. 
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Figure 5.10.  The relationship between water temperature and fish abundance was similar for 

both larval and juvenile river herring.  The relative abundance of larvae (filled circle, solid line) 

and juveniles (empty circle, dashed line) declined as water temperatures increased.  The 

relationship was similar for most years; however, for this example data represent fish collected in 

2009. 

  

Water temperature (°C)

12 14 16 18 20 22 24 26 28 30 32 34

A
bu

nd
an

ce
 in

de
x

0

1

2

3

4

253



 
 

 
 

 

 
 
 
Figure 5.11.  Juvenile abundance increased with river discharge (r2 = 0.90, P < 0.001) and winds 

from the south (r2 = 0.89, P < 0.001).  In contrast, juvenile abundance declined with winds from 

the northeast (r2 = 0.87, P < 0.001) and north (r2 = 0.76, P < 0.001).  Winds from other directions 

did not result in a significant amount of variation in juvenile abundance. 
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Figure 5.12.  Larval abundance declined with increasing river discharge (r2 = 0.62, P = 0.02) and 

light winds from the northwest (r2 = 0.86, P < 0.001).  Winds from other directions did not result 

in a significant amount of variation in larval abundance. 
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CHAPTER 6:  SUMMARY AND CONCLUSIONS 

From both economic and ecological standpoints, anadromous alosines are among the most 

important species in Albemarle Sound, North Carolina.  American shad Alosa sapidissima and 

river herring (blueback herring A. aestivalis and alewife A. pseudoharengus) once supported 

large commercial fisheries in the region and were a major export of colonial settlements 

(Hightower et al. 1996).  They continue to provide recreational and cultural benefits to those who 

value them for food and bait.  Alosines are important forage for many species of fish, birds, and 

other animals.  They serve as an important link between freshwater and marine food webs.  

During spawning migrations, alosines supply an influx of marine-derived nutrients to coastal 

rivers and estuaries (Garman and Macko 1998; MacAvoy et al. 2000).  Unfortunately, most 

populations of shads and river herring are in decline as evidenced by decreased commercial and 

recreational harvests and widespread fishing regulations and closures (Schmidt et al. 2003).  

Understanding factors related to declining populations are complex, extending beyond 

overfishing.  Declines are largely influenced by human activities in the coastal zone resulting in 

pollution, habitat alteration, and degraded ecological conditions (Waldman and Limburg 2003; 

Limburg and Waldman 2009).   

The completion of a river herring stock assessment in 2005 as part of Amendment 1 to North 

Carolina’s River Herring Fishery Management Plan (FMP) provided the impetus for this 

dissertation (NCDMF 2007).  The stock assessment revealed that river herring were overfished 

and stocks were severely depleted.  Records of landings and juvenile abundance indices showed 

river herring stocks were near collapse.  The amendment of the FMP enacted strong conservation 

measures with specific provisions that called for research programs to survey spawning and 



nursery areas.  The amendment also recommended protection or restoration of spawning and 

nursery habitats to ensure the long-term health and sustainability of alosine stocks.   

The goal of this project was to investigate the ecological processes that influence recruitment 

of anadromous alosines to nursery habitats in lower Roanoke River and Albemarle Sound.  The 

specific objectives were:  (1) to determine the spatiotemporal distribution of alewife and 

blueback herring during peak periods of larval production; (2) to examine how physical 

properties and prevailing environmental conditions, especially river flow, influence larval 

abundance, growth, and mortality; (3) to compare feeding ecology and dietary overlap among 

alosines at various habitat types, and (4) to use long-term datasets to assess fluctuations in 

recruitment dynamics.  Throughout this dissertation, I identified nursery habitats and 

environmental conditions that support fast growth and low mortality.  Protection of these habitats 

should bolster recruitment and confer a survival advantage to individuals by decreasing the time 

spent in vulnerable larval stages. 

Evidence from this study provides some support for a review of reservoir operation and dam 

discharge guidelines to optimize river flow regimes for production of anadromous alosines in 

Roanoke River (Chapter 2).  As observed in March 2009, high river flow (300 – 600 m3/s) 

served as distinct migratory and spawning cue for river herring.  Moderate to high flows (186 – 

387 m3/s) in April and May supported widespread spawning of blueback herring and alewife.  

Analysis of river flow during these months suggests a large proportion of larvae drift 

downstream in narrow, channelized river reaches until they are entrained in low-velocity habitats 

at the mouth of the river or dispersed into Albemarle Sound.   The collection of a large  
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proportion of yolk-sac larvae indicates primary nursery habitat is located near the mouth of 

Roanoke River.  This habitat is especially important for first-feeding larvae transitioning to 

zooplankton. 

Spatiotemporal overlap between larval fish and their prey is thought to have important effects 

on growth, survival, and recruitment success.  Prior to this work, feeding ecology and dietary 

overlap had not been studied for first-feeding blueback herring and alewife (Chapter 3).  The 

results demonstrate river herring production in Roanoke River coincides with a significant 

reduction in zooplankton abundance.  The composition of river herring diets changed little with 

larval ontogeny and small prey (� 200 �m) were always an important component of diets.  Prey 

selectivity was highly variable by habitat.  Larval river herring showed preference for bosminids 

and rotifers in Roanoke River and copepods, especially naupliar stages, in Albemarle Sound.  

The results suggest nursery habitats near the mouth of Roanoke River offer river herring an 

abundant, diverse forage base with zooplankton characteristic of habitats in the River and Sound.  

Data from long-term field observations (Chapter 3) and short-term laboratory experiments 

(Chapter 4) confirm that anadromous alosines do not appear to be food limited in Roanoke River 

or Albemarle Sound.  Because of a high-level of dietary overlap, intraspecific and interspecific 

competition is substantial for anadromous alosines. 

It is perplexing that late-stage larvae near transformation (14 – 20 mm total length) were not 

caught within any of the areas sampled.  Similar observations have been recorded with previous 

ichthyoplankton surveys on Roanoke River (Rulifson et al. 1992; Rulifson and Overton 2005; 

Walsh et al. 2005).  In this study, sampling was conducted from March through June and through 

day and night in an attempt to capture larvae representing all stages of development.  Collections 

of similar-sized schooling clupeids, Atlantic menhaden Brevortia tyrannus and bay anchovy 
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Anchoa mitchilli, would suggest that the absence of late-stage alosine larvae was not related to 

gear efficiency.  Identification of habitats used by late-stage larvae could be beneficial for 

restoration or protection of nursery habitats.  It would also help further elucidate transport 

processes for larvae and juveniles. 

The results of long-term data analysis for larval and juvenile river herring (Chapter 5) 

suggests Roanoke-Albemarle stocks are in decline as previously observed with fishery-

dependent data and estimates of spawning stock biomass (Carmichael 1999; Schmidt et al. 

2003).  Persistent declines in abundance could be attributed to increased natural mortality 

occurring during the early life stages when year-class strength was established.  It appears that 

density-independent processes (climate, water quality, river flow) and density-dependent 

processes (predation, competition, disease) work in concert to regulate recruitment.  My research 

on Roanoke River confirms that fluctuations in hydrography, precipitation and weather, and river 

flow can cause appreciable changes in fish abundance, growth, and mortality.  Temperature was 

a critically important determinant of growth and abundance.  River flow and to a lesser extent, 

wind was correlated with juvenile recruitment in Albemarle Sound.  Multiple regression analysis 

with environmental factors yielded a significant model for estimating juvenile abundance 

(Chapter 5).  The model indicates that juvenile abundance is positively related to river flow.  

Wind can have a variable effect on juvenile abundance depending on wind direction and 

intensity.   

Analyses of long-term data confirm that in years with moderate spring river flow (141 – 311 

m3/s) recruitment of juveniles in Albemarle Sound is high.  Although not unexpected, synchrony 

was not observed between larval and juvenile river herring production.  It is plausible that 

contributions of Roanoke River alosines in Albemarle Sound were masked by large contributions 
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of alosines from other river systems (e.g., Chowan River).  Regardless of river origin, production 

of anadromous alosines in Albemarle Sound is affected by high outflow from Roanoke River. 

Management and revision of flow regimes prescribed through this dissertation could have effects 

that are important for the ecology and biodiversity of the region.  A comprehensive monitoring 

program is needed to measure river health and restoration effectiveness if recommendations are 

implemented. 

 

Recommendations for Fisheries Management and Future Research 

� Model river flow and conduct time of travel studies to reflect changes in hydrology 

within the lower Roanoke River. 

� Develop methods to estimate spawning stock biomass for Roanoke River stocks of 

American shad, blueback herring, and alewife. 

� Sample juvenile alosines and use otolith chemistry to determine source and relative 

contributions of different rivers on juvenile recruitment. 

� Evaluate predatory impact of striped bass and other high-trophic level species (e.g., 

birds).  Predatory impacts might affect the success of stock enhancement for anadromous 

alosines because of their small size and significance as a forage base. 

� Determine Albemarle Sound’s carrying capacity for anadromous fish production.  
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APPENDIX A:  DESCRIPTIONS OF FIXED SAMPLING LOCATIONS USED TO STUDY 

RECRUITMENT OF LARVAL ALOSINES TO LOWER ROANOKE RIVER AND 

ALBEMARLE SOUND (2008-2009) 
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Figure A.1.  Map of study sites for sampling water quality, ichthyoplankton, and zooplankton in 

lower Roanoke River and western Albemarle Sound, North Carolina.   
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APPENDIX B:  SYNOPSIS OF CHARACTERS FOR DISTINGUISHING LARVAE AND 

JUVENILES OF CLUPEIDAE IN ALBEMARLE SOUND, NORTH CAROLINA. 
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APPENDIX C:  STATISTICAL COMPARISON OF SEDIMENTS AND BENTHIC 

HABITATS ALONG THE LOWER ROANOKE RIVER AND WESTERN ALBEMARLE 

SOUND (2008-2009) 

 

Understanding the flow dynamics and geomorphology of a coastal river system is important 

when characterizing habitats that support healthy populations of fish and their food resources.  

Sediment samples were collected from 19-stations and three distinct areas (River, Delta, Sound) 

within lower Roanoke River and western Albemarle Sound, North Carolina (Figure A.1).  To 

determine the substrate type at each station and within each area, sediment samples were 

collected once during the study using a Ponar benthic grab (sample area: 229 mm x 229 mm; 

volume: 8.2 L).  After collection, samples were stored in plastic bags and transported on ice to 

the laboratory.  Samples were frozen until analyzed in the laboratory to prevent any biologic 

growth that could alter the sediment structure.  Samples were thawed and split in half vertically.  

Visible features were noted such as consolidation of the sediment, sorting of the sediment, color 

and texture, and any layering or sediment structure present.   

Standard methods for sediment grain size analysis were used (Wentworth 1922; Folk and 

Ward 1957).  Large biologic material was removed from samples by gently washing sediment 

through a coarse sieve (0.7-mm mesh) with distilled water.  Biologic material that passed 

through the course sieve was not quantified or distinguished from sediments.  Sediments and 

biologics were dried in aluminum pans at 60 °C for 48 h.  Each hard, dried sample was broken 

up into its constituent parts using a mortar and pestle.  After weighing, sediments were dry-

sieved through a series of decreasing sized mesh sieves to characterize sediment composition.  

The series of sieves used was: - 33, -13, 03, 13, 23, 33, 43, which corresponds to the 
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Wentworth Scale and grain sizes of 8 mm, 2 mm, 1 mm, 0.5 mm, 0.25 mm, 0.125 mm, and 

0.0625 mm.  A catch pan was placed at the bottom of the sieves to collect any material finer than 

43 (< 0.0625 mm).  Samples were mechanically sieved for 15 minutes using a Ro-Tap machine 

at a medium intensity setting.  Sediments were collected from each sieve and weighed.  

Throughout the process, efforts were undertaken to reduce the amount of sediment lost.  The 

weight of the sediment from each sieve was divided by the total weight of the sample to calculate 

the percentage of sediment that represented each respective grain size.  The percentage of 

substrate categories (silt/mud, fine sand, medium sand, coarse sand, gravel, organic) was 

determined and sediment statistics were obtained through graphical and moment measures (Blott 

and Pye 2001).  The final cumulative percentages of each sample were averaged to determine the 

amount of sediment recovered per sample.   

The average sediment recovered for each sample processed was � 99%.  Sediment grain size 

analysis revealed that all stations were unconsolidated, similar in composition, and consisted of 

silt and sand with fine- and medium-sized grains (Figure C.1).  Mean grain size was not 

significantly different for River (286 ± 71 �m), Delta (307 ± 140 �m), or Sound (174 ± 63 �m).  

Sediment grain size was not correlated with river discharge or surface currents.  The 

accumulation of fine silts and clay in Albemarle Sound was an indicator of sedimentation 

resulting from decreased river flow and energy for sediment transport.  Large biologic material 

collected in River and Delta samples consisted of coarse wood debris, humus, and leaf litter.  

Large unioid mussels, Corbicula sp. and Rangia sp. (� 40 mm shell length), were collected from 

benthic samples in the Sound.  The mean grain size and dry-sieve percentages for each grain size 

for all samples are presented in Table C.1. 
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Figure C.1.  Physical characteristics of sediment collected from select areas within lower 

Roanoke River and western Albemarle Sound, North Carolina.  Sediments were unconsolidated, 

similar in composition, and primarily consisted of silt and sand with fine- and medium-sized 

grains. 
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Figure C.2.  Ternary diagram for textural classification of sediments in a large alluvial river 

system.  Sediments were collected from select areas within lower Roanoke River and western 

Albemarle Sound, North Carolina.  Numbers correspond to station locations referenced in Figure 

A.1 and Table C.1. 
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APPENDIX D:  ANIMAL USE PROTOCOL APPROVALS AND PERMITS 
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