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Flooding events, including coastal, estuarine, and riverine floods, cause consitiersd
to individuals and businesses in the United States. In recent decades, over 80 persastieof di
losses nationwide have been attributed to flooding. Many flood hazard mitigationresgas
including programs designed to inform people about potential hazards, plans that promote
disaster preparedness, and regulations designed to limit vulnerabilightbaiding standards,
have elements of local public goods in that they provide benefits for an entire coynamghit
agents in the community are not excluded once the goods have been made available. As such,
local governments play a critical role in flood hazard mitigation. Poliakars need information
to allow them to better understand community hazard mitigation behavior and evaduate t
effectiveness of local flood mitigation projects so they can develop ifnpa@nagement

strategies. The analyses in this dissertation provide such information.



This dissertation focuses on the Community Rating System (CRS) of the N&tmoth
Insurance Program (NFIP), which credits local floodplain managemewitiastand provides
flood insurance premium discounts for households and businesses in a community. In order to
motivate flood insurance purchase and promote increased flood hazard mitigatidRSthe C
credits 18 community floodplain management activities in four broad categorigstb{io
information; (2) flood mapping and regulation; (3) flood damage reduction; and (4) flood
preparedness. FEMA classifies the portfolio of community flood managemetitgseon a ten
point scale, reflecting the overall level of mitigation. The CRS classditaetermines premium
discounts for insurance purchases under the NFIP. Discounts range from five toef. perc
Programs like CRS seek to incent cooperation amongst federal, state, andveocahgnts
rather than impose top-down mandates that require particular mitigation apgrdagioéfering
individual financial inducements for community-level flood hazard mitigation, SR8
incentive-based, bottom-up cooperative approach to risk management that could adueess s
the shortcomings of other cooperative approaches to environmental management @ahroug
improved understanding of CRS, state governments and FEMA can better encourage
participation in the CRS and similar programs in order to provide for better ppotéoim
natural hazards. It also allows for a better targeting of resourceptovienhazard vulnerability

This dissertation has three major chapters. Chapter 3, which is entitlediffadidgn in
the Community Rating System of NFIP: An Empirical Analysis of North @adlounties”,
tests a number of hypotheses offered by previous researchers regardirsytfeat motivate
local hazard management initiatives through an examination of patterns in CiRipatarh
across all 100 North Carolina counties from 1991 to 2002. Specifically, we examine the

influence of flood experience, hydrological risk, local capacity, and socioecofastors on



county hazard mitigation decisions. Results indicate that flood history andghysk factors
increase likelihood of local hazard mitigation adoption. We find evidence that the pitglzdbi
CRS participation is lower in counties with a greater proportion of senicerstiand greater
level of education, and that flood hazard mitigation activities at the countyaeveiore likely
when a greater number of nested of municipalities participate in CRS.

Chapter 4, which is entitled “Evaluation of the Community Rating Systenaibdmal
Flood Insurance Program — An Application of Propensity Score Matching”,apesvinovative
ways to assess the performance of the CRS. The true performance of CRS cambeetkif
one compares a meaningful outcome — like the average property damage during #vedts
— for each CRS participant with their untreated selves during the same ewegatgtat is
impossible to observe what would have happened to CRS participants in absence of their
participating in the CRS (lack of counterfactual). The primary objectivaayter 4 is to use
propensity score matching (PSM) methods to correct sample selection bias duevabidse
differences between the CRS participants and comparison groups. Although shbrstasitial
variation in the results, the findings show that all of the effects are in thedsaaTigon,
indicating CRS effectively reduces the average property damage tlaed hazard.

Chapter 5, which is entitled “Estimation of a Dynamic Model: Policy Legrm Hazard
Mitigation”, addresses the dynamic nature in flood hazard mitigation delkeging by
examining the patterns in Community Rating System (CRS) scores alirb86 counties in
North Carolina from 1995 to 2010, with controls of flood experience, hydrological riskdactor
local capacity, and socioeconomic factors. It is important for local gmesits to maintain
stability and transparency in planning and policy-making processes, so thist @ge

institutions can form reasonable expectations upon which to make development and investment



decisions. As a result, the establishment of a new framework of hazardiontjg@sents a
considerable challenge, involving a change of momentum which requires cooneriss

meetings, public hearings, and ordinance revisions, all of which are costly. Tagvefo

postulate that hazard mitigation policy evolution in response natural disastidse described in
terms of a dynamic mechanism. The dynamic panel model is characteyitezlpresence of a
lagged dependent variable among the regressors, incorporating both dynamics and individua
specific effects. The result show that once local governments regulatéabéplains in ways

that go beyond the minimum required by the NFIP, they tend to improve flood hazardiomtigat

incrementally despite changes in staff and shifts in local politicahesg
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Chapter 1: Introduction

While the dynamics of weather patterns play an important role in the receri griow
damaging floods in the U.S., intensive development in floodplains and extensive population
growth in low lying and coastal areas have increased human beings’ exjpo$owe hazard.
The communities that engage in hazard mitigation planning and management aatieitess
prone to flood hazard and recover faster from disaster than those communities which do not
Many mitigation measures, including programs designed to inform people abouigbotent
hazards, plans that promote disaster preparedness, and regulations designedulodirability
though building standards, have elements of local public goods in that they provideslienefit
an entire community and agents in the community are not excluded once the goods have been
made available. As such, local governments play a critical role in flooddhauziggation.

This dissertation focuses on one particular flood hazard mitigation prpotram
Community Rating System (CRS) of the National Flood Insurance ProgriatR)(Nvhich
credits local floodplain management activities and provides flood insurance preliszounts
for households and businesses in a participating community. In order to madtedtensurance
purchase and promote increased flood hazard mitigation, the CRS credits 18 community
floodplain management activities in four broad categories: (1) public infamd8) flood
mapping and regulation; (3) flood damage reduction; and (4) flood preparedness. FEMA
classifies the portfolio of community flood management practices on a ten pdtretiacting
the overall level of mitigation. The CRS classification determines premiscoutits for
insurance purchases under the NFIP. Discounts range from five to 45 percent. Pliggrams
CRS seek to incent cooperation amongst federal, state, and local governthenthaa impose

top-down mandates that require particular mitigation approaches. By offeriugluadi



financial inducements for community-level flood hazard mitigation, CRS is antine-based,
bottom-up cooperative approach to risk management that could address some of the
shortcomings of other cooperative approaches to environmental management. Through an
improved understanding of CRS, state governments and FEMA can better encourage
participation in the CRS and similar programs in order to provide for better ppotéoim
natural hazards. It also allows for a better targeting of resourceptovienhazard vulnerability.

Since CRS uses standardized quantitative measures for representing2acdl h
mitigation activities, it provides an excellent source of information for ecap@nalysis of
community hazard mitigation decisions. As such, the focus of this dissertation is atatjuant
analysis of participation, CRS point totals, and flood-related propertyggsmnamploying
variants of regression analysis. Regression models provide a useful fr&nfemanalyzing
large, multi-faceted datasets with many covariates. Often times, untiemkak assumptions,
this framework is capable of simultaneously testing many different hygstihegarding the
influence of exogenous factors on one or more dependent variables. Regression models provide
information on conditional correlations that include direction, magnitude, andis#atis
significance (while controlling for other factors) — in many instancesjtaragditional
assumptions, these correlations are indicative of causal relationships. Dhession is a
valuable analytical approach for conducting statistics with large and epmalasets that
conform to the requirements of the approach (with binary, categorical, or varaded s
measures).

We acknowledge some limitations of quantitative analysis. The approach islsaime
limited to analyzing factors that can be quantified (though some speoffi€atf regression

models allow for unobserved factors). Regression analysis is not well suitegbforing



contextual factors or discovering latent patterns or idiosyncrasies in undgslyicesses. For
these and other reasons, qualitative research procedures, such as interviswgpiqus, case
studies, and textual analysis, are also useful approaches for studypbkeaamena. These
approaches are generally complementary to quantitative analysis, eakkesid®mixed methods”
approaches can be instrumental in creating new knowledge. Nonetheless, tlé floisus
dissertation is on quantitative methods. But, we note that mixed methods remain andable
important approach for future research.

The plan of the dissertation is as follows. The work format will be organized into two
primary sections. The first section includes this introduction and provides an awvefitiee
entire dissertation. Traditional flood damage mitigation focused on structgiakenng
solutions, such as dams, levees, and channel improvements. Non-structural mecsdees |
zoning ordinances, building codes, flood warning systems, emergency planning, floadaesur
and so forth. Because this dissertation focuses primarily on non-structzaed haitigation, the
second chapter provides details on non-structural flood mitigation, as recognibed by
Community Rating System of the National Flood Insurance Program. Thesssere meant
to help provide an interdisciplinary audience with the necessary backgrounddmgréne
empirical studies.

The second section, which is divided into three chapters, comprises the disssrtation’
empirical focus. The first portion, which is entitled “Participation in tben@unity Rating
System of NFIP: An Empirical Analysis of North Carolina Counties”, testsnaber of
hypotheses offered by previous researchers regarding factors that motieateazard
management initiatives through an examination of patterns in CRS participatsss all 100

North Carolina counties from 1991 to 2002. Specifically, we examine the influence of flood



experience, hydrological risk, local capacity, and socioeconomic factomuatydazard
mitigation decisions. Results indicate that flood history and physical risk$ancrease
likelihood of local hazard mitigation adoption. We find evidence that the probability of CRS
participation is lower in counties with a greater proportion of senior citizens eatkgtevel of
education, and that flood hazard mitigation activities at the county level aedikaly when a
greater number of nested of municipalities participate in CRS.

The second portion, which is entitled “Evaluation of the CommunitynB&#iystem of
National Flood Insurance Program — An Application of PropensityeSktatching”, develops
innovative ways to assess the performance of the CRS. The troenmarte of CRS can be
determined if one compares a meaningful outcome — such as the avergtymamage during
a flood event — for a participating county with their untreated seN@sever, it is impossible to
observe what would have happened to CRS participants in absence pfatheipating in the
CRS - there is no counterfactual. The primary objective ottiapter is to use propensity score
matching (PSM) methods to correct sample selection bias duedrvabke differences between
the CRS participants and comparison groups. Although there is substamiglon in the
results, the findings show that all of the effects are in theesdirection, indicating that CRS
effectively reduces the average property damage due to floaddhahe methodology in this
chapter makes important advances in understanding how to measure aeptumiize the
performance of a mitigation program as it is applied to redutiegdverse effects of flooding.
The study also yields insights into performance evaluation efjatitn plans for other natural
disasters, such as hurricanes, fire, and earthquakes.

The third portion, which is titled which is entitled “Estimation of a Dynamic Ntode

Policy Learning in Hazard Mitigation”, addresses the dynamic nafdteoal hazard mitigation



policy learning by examining the patterns in CRS scores across all 100 Noolin& counties
from 1995 to 2010, with controls of flood experience, hydrological risk factors, locatitgp
and socioeconomic factors. It is important for local governments to mairdbihtgtand
transparency in planning and policy-making processes, so that agents andonstdarm form
reasonable expectations upon which to make development and investment decisions. As a resul
the establishment of a new framework of hazard mitigation can present @ecahka challenge,
involving a change of momentum which requires commissioner meetings, pubiigkeand
ordinance revisions, all of which are costly. Therefore, we postulate that hangatiom policy
evolution in response to natural disasters can be described in terms of a dyeahanism.

The dynamic panel model is characterized by the presence of a lagged depandble among
the regressors, incorporating both dynamics and individual-specific efféetsesult show that
once local governments regulate their floodplains beyond the minimum legelseceby the
NFIP, they tend to make incremental improvements in mitigation over tinppgelebanges in
staff and shifts in the local political regime. Each empirical stutlynclude a discussion on the
policy implications of any relevant findings. Following these chapters, ther@isen will

conclude with a discussion of research extensions and directions for future dearglopm



Chapter 2: Flood Hazard Mitigation and the Community Rating System of Natonal Flood
Insurance Program

Flooding events, including coastal, estuarine, riverine, and flash floods, cause
considerable losses to individuals and businesses in the United States. In resdes,dever 80
percent of all presidentially declared disaster losses have been atttibélteding. The average
damages from floods in the United States are $115 million per week (Burby 2001), antyprope
damages caused by flooding have been increasing at an alarming rafeoiddtaderal
Emergency Management Agency (FEMA) indicate that significant floods ¢ angee than $5
billion in average annual damage to property from 1993 to 2007 compared to about $0.6 billion
from 1978 to 1992.

Scholars generally recognize two types of hazard mitigation that campeddor flood
risk management. Traditionally, flood damage mitigation focused on structuraéengg
methods, such as dams, levees, and channel improvements. FEMA (1986) estimates over $7
billion in public monies were spent on large scale flood control works between the nadebOs
mid-80s. Zahran, et al. (2008) estimate that an increase in the number of daxasin T
decreased the odds of death or injury due to flood by 22.6 percent. Due to increasingopopulati
and development pressures, however, average annual flood property damage in the dgs. is ris
continually. The overwhelming expense and adverse environmental effectsctfrsirflood
mitigation works have lead to more emphasis being place on smaller scaleuctur-it
mitigation methods. Non-structural measures include land use planning, zoning asgjnanc
building codes, flood warning systems, emergency planning, flood insurance, and so forth. This

study focuses primary attention on non-structural mitigation.



In the federal-state-local floodplain management nexus, each levelarhgoent can
play a role in flood loss reduction. The federal government has preeminent regaldbanyty
and financial capacity to provide assistance in flood management and protegjiatspand
administer disaster relief to flood victims. Given increasing pressutedenall funds, the high
cost of structural flood protection works, and community requests for more reguaidrgl,
there has been a movement towards building stronger state capacity to intfleatkloss
programs (Burby 2006, ASFPM 2007). Experience suggests that effective locaemanag
occurs in the presence of strong state floodplain management programs(ZB&)yfinds
evidence that insured losses to residential property from natural disassegraficantly reduced
if the state mandates local comprehensive plans with hazard mitigation elémieich are
currently optional in some U.S. states). Other roles of state governméeuatieipooviding
direct technical assistance to local government, training local floodplain rsanggnaging or
assisting with hazard mitigation activities, and implementing permit gesedJnder the
authority delegated by federal and state governments, local governmentmaréypr
responsible for zoning and planning, while sharing in the management of hazartanitiga
activities within their jurisdictions. As such, local governments can playieatrole in flood
hazard mitigation (Prater and Lindell 2000). Many hazard mitigation meaasave elements of
local public goods, as they provide community-wide benefits and individuals in the community
are not excluded once they have been made available.

2.1 National Flood Insurance Program (NFIP)

As a part of floodplain management and flood loss reduction programs, the National

Flood Insurance Program (NFIP) was designed as a non-structural apiorfiaol risk

management, and the program was seen as a complement to structural fladdproteks



(Kunreuther and Roth 1998). In order to provide recovery resources for flood disaster
(Kunreuther and Roth 1998), reduce the public burden of disaster relief payments| @rdes
Landry 2004), and dissuade uneconomic uses from locating in flood hazard areg<2(E\rpH
the US Congress passed the National Flood Insurance Act of 1968. This act beetatianal
Flood Insurance Program (NFIP), which has two primary goals: idextitdficof flood hazard at
a fine spatial scale and mitigation of hazard through planning, zoning, improved building
standards, and provision of insurance for businesses and households (Burby 2001). NFIP is a
voluntary joint venture between federal and state governments, private inswan@nies, and
local communities. Participating communities are required to adopt and endodgldin
management ordinances and construction standards in flood hazard areas (Dixon, et al. 2006)
The federal government is primarily responsible for conducting detailed bygaral
assessments used to produce flood insurance rate maps (FIRMs) and setingstirance
premium schedules. The state governments hold regulatory authority over insananaets in
their state. Under the Write Your Own (WYQO) program, private insurersreiervice
policies, with the premiums (net of administrative fees that go to privateers¥sudeposited in a
federally operated flood insurance fund, which then pays all claims (Kunreuther B8964 on
FEMA's statistics, currently more than 20,000 communities across the Urdgited Shd its
territories participate in the NFIP (roughly 75 percent of all communitiéisei United States)
with an estimated 4.5 million policies in force by 2006 (Dixon, et al. 2006).

FEMA estimates that flood damage is reduced by nearly $1 billion a yaaeaslt of
the NFIP floodplain management regulations for new construction. Prior studies, howeve
highlight numerous shortcomings of the program. First, community participatiomdbes

necessarily imply that individual property owners will opt to purchase flood insurance



According to FEMA, only 2.5 million of the nearly 10 million households in flood-pronesarea
had purchased flood insurance by 1995 (Kunreuther 1996). Dixon, et al. (2006) estimate the
NFIP nationwide market penetration rate for signal family homes in Spéota Hazard Areas
(SFHAS) at 49 percent in 2003. Second, Flood Insurance Rate Maps (FIRMs), which FESVIA use
to delineate flood hazard areas within a community, are not updated frequentlyth&hisk
designation conveyed by FIRMs can produce severe underestimates in sonigliareds

Kerjan and Kousky 2010). Third, FEMA offers Pre-FIRM properties explisiibsidized
premiums, which are 30 to 40 percent of the full-risk premium. Price Waterhouse Coopers
(1999) concludes that the premiums of some Pre-FIRM properties are muchresbaha

would be required to cover payouts, partly due to repetitive losses for particakspar
Moreover, there exists significant skepticism over whether NFIP ratddelsdfor new
construction (referred to as “actuarial”) accurately reflect expldoss; prior to the 2005
hurricane season (a record loss year), NFIP exhibited a cumulative defigibdlion after 37
years of operation (Wharton 2008). Finally, research in coastal housing marketschaed
evidence that flood zone designation and insurance premiums convey risk information to
potential buyers in housing market; thus allowing premiums to reflect objeistkvassessment

is important in providing incentives for better individual investment and mitigatiosideci
(Krutilla 1966; MaDonald, et al. 1990; Bin, Kruse, and Landry 2008; Bin, et al.2008). Chivers
and Flores (2002), however, provide contradictory evidence suggesting a nadjpetyple in
Colorado did not acquire information about flood risk and cost of insurance until after property
purchase.

2.2 Community Rating System (CRS)



In order to increase flood hazard awareness, motivate flood insurance purotase, a
promote flood hazard mitigation, the CRS was instituted by the Federaldosura
Administration (FIA) as a voluntary program for NFIP-participatingianunities. The goals of
this program are to reduce flood loss through community-level mitigation proptagate
accurate insurance rating, and promote the public’'s awareness of flood hazard amténsur
When flood management activities of a CRS community comply with these goats, fl
insurance premiums for its citizenry are adjusted to reflect mitigatioriefo effectively
reduce flood risk (Kunreuther and Roth 1998).

The CRS credits 18 community floodplain management activities which are odjanize
under four broad categories: (1) Public information, (2) Flood mapping and regulatiblod@®)
damage reduction, and (4) Flood preparedness (see Table 2.1). FEMA cldssifiesfolio of
community flood management practices on a ten point scale, reflecting the lexelatif
mitigation. The CRS classification determines the premium discounts vamgk from 0
percent to a maximum of 45 percent (see Table 2.2). All communities that ateconipliance
with the NFIP and are in the regular phase of the program but have not taken aduitiasiales
to reduce flood risks receive a CRS rating of 10 — no flood insurance premium discount. CRS
class 1 requires the most credit points and gives the greatest premium discount Bad®%
year, local governments can submit documentation to a specialist from thenbesGervices
Office, Incorporated (ISO — an independent contractor that handles ceaifittr CRS)o
verify that they are continuing to perform hazard management activities fohn tiay receive
CRS credit, and they can apply to receive credit for new hazard managemnmintasithat

improve their classification.
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CRS provides premium discounts for residents in a qualified community in an effort to
encourage hazard mitigation and individual participation in NFIP. Since ratedjsted to
reflect risk, CRS can help to alleviate moral hazard. By offering CRS toedipdating of
flood risk data, information on flood hazard can be updated, expanded, and refined, and may
become more accurate over time, leading to better delineation of flood hazeravdhén a
community. Flood Damage Reduction activities (series 500 - see Table 2.1) ingutktiaq,
relocation, or retrofitting of existing high-risk structures, which could gmerepetitive losses.
Finally, CRS credit is provided if a community’s real estate agents (and atlietved in land
development and investment decisions) advise prospective floodplain occupants about flood
hazard and the flood insurance purchase requirement for mortgaged properti€sHHAhén
an analysis of 832 large scale flooding events in Texas between 1997 and 2001, Zahran, et al
(2008) find suggestive evidence that community hazard mitigation programs pildmyd@&k S
resulted in significantly lower loss of human lives. Since CRS uses standaydametitative
measures for representing local hazard mitigation activities, itqes\dn excellent source of

information for empirical analysis of community hazard mitigation decssion

11



Table 2.1: Community Rating System (CRS) Activities and Credit Scose

D

Series Descriptions Creditable Activities Points
Elevation Certificates 162
Map Information 140
Public CR_S_ will credit th_ose local Outreach Projects 380
: activities that advise people about
Information .
(300) the flood hazard,_flood insurance Hazard Disclosure 81
and flood protection measures.
Flood Protection
Information 102
Flood Protection
: 71
Assistance
. Additional Flood Data 1346
CRS provides credit to Open Space 900
communities that enact and Preservation
Mapping and| enforce regulations that exceed the Higher Reaulator
Regulations | NFIP’s minimum standards so that 9 g y 2740
L . Standards
(400) more flood protection is provided
for new development. Flood Data 239
Maintenance
Stormwater
Management 670
This series of activities addresses Floodplain 359
flood damage to existing Management Planning
Flood bUIldllngS. It gomplements the . Acquisition and 3200
Damage | Previous series that dealt with Relocation
. preventing damage to new
Reduction development lood i 2800
(500) p . Flood Protection
Drainage System
Maintenance 330
Activities in this series include Flood Warning 295
actions that should be taken to Program
Flood minimize the effects of a flood on
Preparedness; peop|e’ property, and bu||d|ng Levee Safety 900
(600) contents.
Dam Safety 175

Source: NFIP CRS Coordinator's Manual (2007).
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Table 2.2: CRS Credit Points Earned, Classification Awarded, and Premim Reductions

Score Credits Discount in SFHA* Discount in non-
SFHA**

1 4,500+ 45% 10%

2 4,000-4,499 40% 10%

3 3,500 — 3,999 35% 10%

4 3,000 - 3,499 30% 10%

5 2,500 — 2,999 25% 10%

6 2,000 — 2,499 20% 10%

7 1,500 — 1,999 15% 5%

8 1,000 — 1,499 10% 5%

9 500 — 999 5% 5%

10 0-499

*Special Flood Hazard Area
**Preferred Risk Policies are available only in B, C, and X Zones for propéraeare

shown to have a minimal risk of flood damage. The Preferred Risk Policy does not
receive premium rate credits under the CRS because it already has prienvieim than
other policies. The CRS credit for AR and A99 zones are based on non-SFHAs (B,
and X). Credits are: scores 1-6, 10% and scores 7-9, 5%. Premium reductions are
to change.

Cl
subject

Source: NFIP CRS Coordinator’'s Manual 2007.
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Chapter 3: Participation in the Community Rating System of NFIP: An Emprical Analysis
of North Carolina Counties

In this chapter, we synthesize previous research and formulate and test a number of
hypotheses regarding participation in CRS. We examine the influence of floodeexperi
hydrological risk factors, local capacity, and socioeconomic factors omuaity hazard
mitigation decisions as indicated by CRS patrticipation, through examinationergatt CRS
involvement across all 100 North Carolina counties from 1991 to 2002. We use panel data
models in order to control for unobserved cross-sectional level heterogenkityaumultiple
regression framework. Our goal is an improved comprehension of why some locahgents
adopt hazard mitigation measures while others do not. The results contributetéw a bet
understanding of collective decision making for environmental managemenfi¢siganatural
hazard risk) and help to assess vulnerability by providing information on mitigatnoes.
Through an improved understanding of the factors that influence the initiation and
implementation of mitigation policies, FEMA and state governments can betteurage
participation in the CRS and similar voluntary, incentive-based programs intong@vide for
improved environmental management.

The following section presents detail on previous literature on natural hazagdtioiti
and formulates research hypotheses. Section 3 describes the data used fer Spatien 4
presents the random effects Probit model which we employ to study CRS paoticiSattion 5
interprets the regression results.

3.1 Literature Review: Hazard Mitigation

The Federal government’s role in flood risk management originated with the Flood

Control Act of 1928, which authorized the U.S. Army Corps of Engineers to design and

construct projects for the control of floodwaters. Passage of the Nationallréowance Act in



1968, marked a movement towards land-use planning, construction standards, and federally
backed flood insurance (Pasterick 1998). Political pressures, however, hase cngetus for
increasing amounts of disaster relief payments for flood victims, despiiactitbat many
communities have allowed risky development in floodplains (ASFPM 2007; Mickghikand
Volkman-Wise 2011). The expectation of disaster assistance can cresteandive for self-
protection, insurance, and mitigation, because the federal government arghjifaids the
reconstruction after each natural disaster (Beatley 1989; Coate 1995; 8uaby1999; Haddow
and Bullock 2003). In order to address local capacity and encourage local comniatiemt (
than facilitating further development in floodplains), the National Academuylafd®
Administration (NAPA) has recommended establishing a “cooperativgawernmental
system” to build state and local capacity in placexgpostdisaster assistance (Godschalk, et al.
1998). The emerging cooperative system has focused natural hazartionigdf@rts at the state
and local level, with the federal government providing support in the forms of resamnd
guidance. Within this framework, local hazard mitigation efforts can be esthéyadirect
regulation, incentive programs, and supervision of flood loss reduction prografBNAS
2007).

In accord with the recommendations of NAPA and the delegation of responsdility f
planning activities, there appears to be a general consensus in the plaerahgé that hazard
mitigation policy should be carried out at the local level. As such, local govemplagta
critical role in flood hazard mitigation (Mileti 1999; Prater and Lindell 200@odHblain
management, however, is sometimes viewed by local government personnel as stsetone
responsibility (Burby, et al. 1985), and the reluctance of local elected [sfficiadvocate

mitigation measures is identified as a primary impediment to hazargtahgBurby 1998;

15



Burby and May 1998). Just as individuals are wont to, local government officials often
underestimate the risks involved in developing flood plain areas unless they havg recent
experienced a flood eventhe occurrence of floods can influence political will and public
support of hazard mitigation (Clary 1985; Burby and Dalton 1994). Disaster events can open
“windows of opportunity” by exposing vulnerability and focusing the political agendaazard
mitigation issues (Kingdon 1984; Berkes 2007). Protracted planning, permitting, and
implementation procedures, however, may introduce significant time lagscnetines
occurrence of hazard events and successful completion of mitigation projeéts @0Q20).
Burby and French (1985) conclude that while a window of opportunity may exist in the
aftermath of disaster, prospects for improved hazard mitigation dim rapiglyliical attention
and local efforts turn to recovery and a return to normalcy. Moreover, in his egkatésipolicy
study, Birkland (1998) concludes few will take advantage of a disaster evenste ple policy
change without some sort of policy community or advocacy coalition providing support and
coordination.

Since natural hazards are large scale events, mitigation and planning seqstamtial
resources. Thus, local government potential for hazard mitigation is lalegiyndent upon
local capacity — in particular, trained staff and budget (Kunreuther and Roth Y99&)
knowledge of local circumstances increase as one moves from state or newieinddwn to
local jurisdictions, local capacity is comparatively much more limited andssaiidely across
locales (Perry and Lindell 2003). The amount of governmental resources thabeatedlto
hazard mitigation is dependent on the available fiscal resources in a jurisdiitater and
Lindell 2000). Moreover, the extent of on-hand resources and the array of human capital ma

differ significantly from one community to another, due to idiosyncratic diffe®mnc

16



experience, local culture, and histories. Previous researchers have ekpatioye
implementation and pointed out that strong mitigation capacity is most likely to be found i
larger communities and communities with higher property values (Burby anchF1681;
Godschalk 2003). Therefore, local government revenue, which is mainly derived frenomaxe
property, is likely to directly influence community mitigation capacity. baeefits of hazard
mitigation, however, are only realized after disasters occur and aculité quantify, while the
costs are incurred immediately and are easy to calculate. Therefmepaiblems, such as
crime control and improving the quality of education, may garner more attention and funding
compared with hazard mitigation proje(@ater and Lindell 2000).

An analysis of the effectiveness in floodplain management programs in 1,203 NFIP
jurisdictions shows that varying constraints such as flood risk factors, lanal flsed hazard
areas, and demographic characteristics, require different mixes cdpreagmponents in order
to mitigate hazards (Burby and French 1985). Posey (2009) examines the in@fikroed
socioeconomic status on the adaptive capacity of municipal governments, using CRS
participation and classes as proxies for local capacity to adapt to envirohnazatas. His
study employs cross-sectional regression analysis to explore ¢ktseadf population, historical
flood losses, and socioeconomic factors (including income, education, race, housingetalles
on mitigation levels and premium discounts in CRS for over 10,000 communities across the US
In addition, Posey examines the influence of local government structure (prekeitge o
manager), municipal budget, and cities’ net valuation on CRS participation andmprem
discounts for New Jersey communities (also using cross-sectional regresdiels)mHe finds a
positive effect of historical flood losses on flood hazard mitigation and a negéeee

attributed to population. Using variables derived from principle component analysisds$e fi
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evidence that hazard mitigation is more likely to occur in affluent communitibgreater

levels of education and lower proportions of minority households. The results make intuitive
sense, as citizens can apply direct and indirect pressure to motivate haiggtibomon the part

of local government officials through elections, town hall meetings, edganidbcal papers,

and public opinion polls, which provide an opportunity for feedback on the performance of local
officials (Prater and Lindell 2000). While the causal mechanism betweendualigocio-

economic status and local government’s adaptive capacity remains to be dipperized, the
results highlight correlation patterns among flood hazard mitigation ®#ad community
characteristics.

Brody, et al. (2009) examine adaptive management and policy learning for flood
mitigation as reflected in CRS scores in Florida counties from 1999 to 2005. Syecifiey
track annual point totals for the four CRS mitigation series (described in Z.ablor 52 of the
67 Florida counties that exhibit some level of voluntary participation in the CR§ Lifke
population-adjusted measures of CRS points and regression covariates to acdmtht for
participating counties and nested municipalities, and examine the influenagrotoigyc
conditions, flood disaster history, socioeconomic, and human capital controls on CRS points
Their results suggest that flood history induces flood policy adaptation anddherfoy of
events is more influential than the level of damage; jurisdictions with greajgortion of land
in the 100-year floodplain have lower CRS points, which the authors attribute to higheofeve
mitigation expense. CRS points tend to be greater in wealthier and more higldiedduc
jurisdictions. Local governments in Florida have tended to focus on less expeitigjagan
measures, such as information provision and flood information updating, to earn CRS points,

rather than costly structural measures, such as parcel acquisition artiety. The body of
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research on flood hazard mitigation provides important insight into and evidenceaif dspe
influence local jurisdictions’ willingness and ability to address flood riskagament. Critical
guestions remain, however, as to the significance, strength, and relativeaimepasf driving
factors in implementation of hazard mitigation policies at the local few#iat distinguishes
those communities that are active in flood hazard mitigation from those thadtare

In summary, the literature on flood hazard mitigation suggests that local ristsfatsk
information, historical flooding experience, political agency, public particpan planning,
and financial capacity can be important in determining local flood hazaghtiot efforts. By
exposing vulnerability and focusing the political agenda, hazard events can‘opedav of
opportunity” for initiation of flood hazard mitigation. But, this window may be sheedli as
other matters — such as crime and education — press for attention of citizemsaand |
bureaucrats. The literature suggests that characteristics of the mopdath as income,
housing values, education, and ethnicity can influence hazard mitigation, pbéstimaugh
direct and indirect citizen involvement in local politics (but perhaps other waysls
3.2 Objectives

We examine patrticipation in CRS for all 100 North Carolina counties from 1991 — 2002.
This time period covers the inception of CRS to the year in which the last NC Cauvitgc:
Since CRS credit is only awarded upon verification by an external pa@y, @Stive
participation in CRS includes adoption and implementation of (at least some) haagatian
efforts. As such, we hope to learn about the importance and relative magnitudersftfeat
influence communities’ willingness to adopt and implement incentive-basedl maiteyation

measures.
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We test a number of hypotheses offered by previous researchers to uncoveothé¢Hatt

motivate local hazard management initiatives through an examination of paitparscipation

in CRS across a panel dataset of NC Counties. We posit the following hypotheses:

H1: Historical Flood ExperienceCounties with greater historical flood experience (such as

flood events and property damage) are more likely to participate in CRS.

H2: Window of OpportunityCounties with recent flood experience (such as flood events and

property damage) are more likely to participate in CRS.

H3: Flood Risk FactorsCounties with higher overall level of hydrological risk (average
annual precipitation, proportion of water bodies to surface area, and coastal location) a

more likely to participate in CRS.

H4: Local Capacity Counties with greater financial resources (such as property tax r¢venue

are more likely to participate in CRS.

H5: Crowding Out Counties with more severe day-by-day social problems in the recent past

(such as high crime and poor school quality) are less likely to participaieSn C

H6: Socioeconomic CharacteristicSounties’ likelihood of participation of CRS is
influenced by socioeconomic characteristics (such as population, age datrileducation

level, and number of housing units).

We elaborate on these hypotheses and the data used to test them in the next section.

3.3 Data

The list of CRS communities and their 2008 CRS scores are available on the FEMA

website fittp://www.fema.gov/pdf/nfip/manual200805/19crs )pli¥ith publicly available data,
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we are unable to observe many of the variables of interest at scaleshelmunty level, so we
confine our analysis to NC counties and save a multi-jurisdictional analydigdre research.
We focus on the time period 1991 to 2002; CRS was initiated in 1990 and our chosen time
period encompasses initial enrollment activities of all participatinghiNoarolina counties. A
drawback associated with focusing on this period of time is that some data (suctahfiabdi
maps) are unavailable. Figure 3.1 displays a map depicting all NC countibavbaarticipated
in CRS.

NC Counties that did not participate in NFIP during 1991-2002 are coded as non-
participants in CRSGRS_dumms 0). As of 1991, however, most NC Counties were enrolled
in NFIP, so that they could apply for and receive credit for flood hazard mitigatioities
recognized by CRS. If these counties undertake no additional flood hazardiomtagivities
or fail to apply for CRS credit, they receive a CRS score of 10 — no flood insurarmendtisc
these counties are coded as non-particip@®RS( dumms0). Any counties that received less
than 500 CRS points in any given year are also counted as non-particfR8tsdmns0).

We cannot observe local flood hazard mitigation activities that result ithies$00 points, as
they are not included in the CRS-points data series. NonetheleER#€oordinator's Manual
contains an easy-to-use checklist that allows local officials to diegeifrtheir community
currently undertakes enough activities to attain Class 9 (>499 CRS points).rédanymended
activities can be implemented for a relatively low up-front cost (e.g. puliticmation activities
Series 300-responding to inquires to identify a property's FIRM zone camnl egri@ 138 CRS
points) (FEMA 2007, page 120-3). Any mix of flood hazard mitigation activities fatie 2.1
that results in 500 points is sufficient to attain a score of 9, and additional estoat lower the

score. Thus, counties with a score of 9 or less are coded as CRS partiGipshtdmnsl).
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Since we do not observe flood hazard mitigation activities that result in l@sS5G@aoints, our
estimates can be viewed as conservative (requiring a threshold levelity before mitigation
is recognized in the statistical model). Moreover, since we use the CRSwioakrto identify
mitigation activities, our model accounts for adoption and implementation (aseiatgn
required for CRS credit), and we do not analyze mitigation activities tigéit mccur outside of
the CRS framework. On average, 17% of NC Counties participated in CRS during 1991 — 2002,
with a high of 20% (in 1996) and a low of 8% in the initial year (1991). Figure 3.2 shows the
proportion of participating counties over time. At the end of the time-series, A8 b0 NC
counties were participating in CRS.

Table 3.1 presents a summary of the variables to be used in our analysis. Thaayplana
variables are organized under four broad categories. First, six flood experiaabkegdhat
were collected from National Climate Data Center (NCDC) are propossztount for the
history and severity of community flood hazard. These variables include data on fload event
and property damage in each county. We use ten years flood experience (1980-1989) prior t
CRS, fixed for a given county in our longitudinal dataset, toH&sWe postulate that greater
historical experience with floods (in terms of events and property damage) withteahore
stringent hazard mitigation, increasing the likelihood of CRS participationeWazard
exposure can influence political will and build public support of hazard mitigatiorg@<én
1984; Clary 1985; Burby and Dalton 1994; Berkes 2007), laborious and protracted planning,
permitting, and implementation processes may introduce significant timbdbgsen hazard
events and successful completion of mitigation projects (NOAA 2010). Nonethbkess
occurrence of floods can focus the political agenda on the importance of flood hargatianit

especially if flood damages are severe. To account for this, we use previousraaaly®a
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years flood events and flood-related property damage tbl2esOur community flood
experience variables thus include events in the distant and recent past in ordeuno fac@a
legacy of flooding events that could have motivated mitigation activities over longer
periods, while also allowing for short term influence of flooding that may operdomrs of
opportunity” and thus have more immediate impacts on mitigation activities.

Second, we use three variables that reflect a county’s hydrological condrosexall
level of potential flood risk to test3. Our first flood risk variable measures the average annual
precipitation (1991-2002) at weather stations within the county and is provided $tatae
Climate Office of North Carolina. The rainiest counties face a higio&apility of riverine and
flash floods, which could be a catalyst for local flood hazard mitigation. Givarpibstion in
the watershed, coastal counties convey floodwaters to the ocean and carosstedrflooding
and storm surge problems due to hurricanes and Nor’easters. Thus, we expect the 20 North
Carolina Coastal Area Management Act (CAMA) counties to be more ligelgdpt flood
hazard mitigation activities due to the higher level of flood risk (all elsglezual). (CAMA is
legislation passed by the North Carolina General Assembly in 1974. Tisiatieq is
applicable to all 20 coastal counties and the municipalities located within thesesoliné
purpose of CAMA is to protect the unique natural resources of North Carolina coasts)
Digital data on area of surface water bodies (such as streams, akess,reservoirs, and
estuaries) were collected from North Carolina Center for Geograghienation and Analysis.
The percentage land cover of water bodies in a county is calculated with AcfG\8re; we
expect a higher likelihood of mitigation for counties with a greater proportiouriaice water.
Unfortunately, we are unable to use proportion of land in the SFHA as a covariatesdec

digital flood hazard maps in the North Carolina Floodplain Mapping Program aratd&anhly
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back to 2008. We expect more densely populated areas to be more likely to engagelin hazar
mitigation due to greater benefit of flood protection accruing to more logidergs. These data
were collected from U.S. Census Bureau. We find a significant correlatedrepopulation

and housing density (Corr[population density, housing density]= 0.9943), so we include only
housing density in our analysis.

Third, we include three variables reflecting local capacity for hazardatign and
competing priorities to te$14 andH5. Data on per capita county property taxes, which is
collected from NC Association of County Commissioners Budget & Tax Survegseas local
government financial resources available for hazard mitigation projeetexyéct counties with
greater tax revenue to be more likely to engage in flood hazard mitigation. Gamperities,
on the other hand, may crowd out hazard mitigation. The benefits of hazard mitigatworyar
realized after a disaster occurs and are difficult to quantify (asithgaacally no
counterfactual), but the costs are incurred immediately and are easiliatad. Therefore, other
problems, such as control of crime and improving the quality of education, usuakly gare
attention than hazard mitigation projects. The pressing needs of such “here angsu@s'may
attract more time, money, and other resources and can crowd out hazard mitigaipresi
(Prater and Lindell 2000). We account for these other potential county policyigesianiour
regression models. We use the ratio of enrolled students to instructionat stadhty public
school to measure local school quality (Card and Krueger 1992); these data veeteat@bm
NC Department of Public Instruction. We use the crime rate to proxy for the togpencerns
over criminal activity in the county; the number of reported crimes (includurgen, forcible
rape, robbery, aggravated assault, burglary, larceny, and motor vehicl@dndfusehold was

derived from NC Department of Justice. To account for the timing of competingipsowe
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analyze the lag of school quality and crime rate in our regression modelsp@é esxncern
over education quality and crime control could shift attention and funding away frond haza
mitigation projects, and we thus expect negative coefficients on these esriabl

Lastly, we examine the influence of community characteristics on locatchaz
mitigation. We use the percentage of citizens with a bachelor or gradgate ,deedian
household income, and the percentage of senior citizens tededle expect that the likelihood
of flood hazard mitigation is increasing with the level of education, all elag bqual. Data on
percentage of population with college degree or higher is derived from census datassing
years interpolated. Annual data on median household income for each NC County is not
complete from U.S. Census. Thus, we use estimates from the Department of Hous&ingaand
Development (HUD), which are prepared as part of the process of updatibtpeligome
limits for the community development program. Median household income provides a proxy fo
the level of individual wealth. We conjecture that wealthier communities rialpiea greater
demand for hazard mitigation, but since wealthier households are better abledanditodual
mitigation measures and insurance they may put less pressure on locahgaus for hazard
mitigation.

In his study of local adaptive capacity, Posey (2009) doesn’t include age struobmge am
his socio-economic variables. While a community’s willingness to supportatnitigactivities
may depend on the local severity of risk and the community’s commitment togeéh the
problem (Burby 1998), the vulnerability of elders as a group could be an importanidactor
overall vulnerability assessment which may increase the likelihood of |acaichanitigation.
North Carolina, however, has become a popular retirement destination due to the atiate

terrain, moderate climate, reasonable housing prices, and special taxiemerigotmilitary and
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other federal employees’ retirement pay. This has led to increasing rauofilbeigrating
retirees, many of which may have limited experience with flood hazards. Thexpmatations
of the impact of proportion of senior citizens on hazard mitigation activitiesrdrigaous. We
collected data on the senior population from U.S. Census.

Data that we are unable to collect include the proportion of minorities in the cthety
extent of local political participation, and the structure of local governmenp(esence of city
manager). Our statistical model (described in the methods section belowjohediolsess this
lack of information, to some extent; using panel data on participation, we are aduhértd for
time-invariant, unobserved heterogeneity, which may account for some ofdbtss fe.g.
government structure). While information on average property values is agailebéxpect
this will be highly correlated with property tax revenue.

Since the structure of NFIP rests on a multi-jurisdictional configurationhwdiiows for
participating counties, towns, and cities, the extent and timing of enrollmentfd@Rounty
and municipalities within the county may vary. To account for this structure, wsinedae
proportion of participating CRS municipalities that are nested within theycdsinte the
damage from flooding may occur at a large geographic scale, hazashasstsand
management requires communication and coordination among the county and its mtiescipali
The county and municipalities can share technologies (GIS Mapping), resoazasl (h
mitigation personnel), and information. We expect more flood hazard mitigatieitiestio be
undertaken where a larger proportion of nested municipalities participate dulenoldey
spillovers and agglomeration effects (which can lower the cost of hazardtioit)ga

We harbor some concerns over possible spatial dependence in our model. Spatial

dependence occurs when response variables in one space are correlatedesgotises in
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another (Anselin 1988). Spatial dependence may arise in this study because coartigs s
common geographic features and unobservable flood risk factors may tend to clsptara. If
the relevant spatial dependence is ignored in estimation, the estimatededsftould be
inefficient or inconsistent, which may mislead inference and conclusions (\Wau@leditsch
2008). Testing for spatial dependence in the probit model, however, is more difficult thiza for
continuous case due to the fact that neither residual nor dependent variable in thariaieiet
model can be observed. Recent theoretical literature discusses a garmraifadoran’s | for
probit models (Kelejian and Prucha 2001) but to date this test statistic hastkeapgitcation.
Moreover, software packages such as ArcGIS and Geoda have not developed asbspadidé
dependence in binary response models. In this study, we use the proportion of borderiag count
that participate in CRS as a crude control for spatial dependence. Lastlyaviy floodplain
management workshops and conferences offered each year, more information on #otbd haz
mitigation, including CRS activities, becomes available for local floodplamagers over time.
We explore this effect by examining the impact of the length of time thabthnychas been
enrolled in NFIP. Summary statistics for the dataset are presentedeii312bl
3.4 Methods

Our dependent variable, CRS participation, takes on only two values: zero and one,
which indicates whether or not the county participates in the Community Rgstens
according to the aforementioned definition. The linear probability model isalgn@garded as
inappropriate, since the dependent variable takes only limited values and thererwill be
heteroskedastic (Long 1997; Wooldridge 2002). As one of the Qualitative Response, khedels

logit and probit models are widely used when the dependent variable takes dsicrese
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(Mckelvey and Zavoina 1975; Matyas 1992; Greene 2002; Wooldridge 2002). We begin with a
latent variable model:

yi = xiB + &
wherey; is a latent (unobservable) variable which represents commitmjyopensity to adopt
CRS activities (i.e., implement projects to lower flood rigk)s a vector of explanatory
variables which are organized under the four broad categories discussedialsavegector of
unknown parameters to be estimated, gnd an unobserved random error term.
The latent variabley; , ranges from-o to +o0. Instead of observing;’, we observeg;
indicating the sign of;":

= { ify; >0
Lo, otherwise

Therefore, the probability of participation in CRS is:
P(yi =11 X) = P(y{ > 01X) = P(& > x;B| X) = G(xiB)
When the error term has a standard normal distributjonN (0,1), the response

probabilityG(x; B) gives rise to the probit model:

Xi,B
G(xB) = D(x(B) = f () dv

where ®(+) is standard normal cumulative distribution function. When the error bas a
standard logistic distribution, it gives rise to the logit model:
G(xiB) = A(x;B) = exp(x;B) /[1 + exp(xiB)]
Since the logistic distribution is similar to the normal distribution (excéptheavier
tails), the two models produce similar effects estimates and give valgrgnedictions in most
applications (Greene 2002). In both cases, the parameter Vi&camd(associated standard

errors are obtained by Maximum Likelihood Estimation (MLE).
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A handy way to get the magnitude of the partial effects is to estivetage partial effects

(APEs):

Y9 »
20D g

where the APEs scale factgr(x;$) = ¢(x;3) for the probit model ang(x;8) = exp(x;8) /
[1 + exp(x;$)]? for the logit model. If; is discrete, the marginal effect is computed as the
difference in the estimated probabilities with= 1 andx; = 0 and other variables at their
means.

Aside from the limited values of the dependent variable, our dataset has annual
observations for each county from 1991 to 2002, which forms a combined time-series, cross
sectional dataset, also known as longitudinal or panel data. An advantage of @aoeedéte
cross-sectional format is that it allows the analyst to account forseaional unobserved
heterogeneity. For instance, in a typical cross-sectional regressilysia, the researcher can
account for observable heterogeneity using covariates; in our applichtsowould include
county characteristics, such as property tax revenue, housing units, and populatio®. In som
cases, the covariate effects are of direct interest to test hypo#iesgscausation or correlation,
while in others they are introduced as control variables. If, however, therdareobbserved
factors influencing the counties’ propensity to conduct flood hazard mitigatimtias, the
regression parameter estimates can be inconsistent (creating bicsmetearestimates that does
not decrease or disappear as the sample size increases). For our applicatigayéoment
structure and perceptions of flood hazard, as well as idiosyncratic featuresideg or culture,
which are unobserved or unobservable, may affect CRS participation, and thus agritvolli

unobserved heterogeneity could be very important.
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To control for unobserved heterogeneity, we consider the unobserved effects panel data

model for latent dependent variable:

Vit = Xit B+ ¢ + &,

wherec; represents an unobserved , time-invariant cross-sectional effect far Raibdom
effects and fixed effects are two approaches to estimate this model vinti@xsgeneity of the
explanatory variable€(&;;|x;, ¢;) = 0). The random effects approach to estimagngvolves
specifying a distribution for components of the error tenande;;, under the assumption that
andx;; are independent. The random effects probit model has been considered in sevechl resear
papers (e.g., Bjorklund 1985; Clark 2003; Das and Arthur 1999; Gerlach and Stephan 1996;
Korpi 1997; Schwarze 2003; Winkelmann and Winkelmann 1998). An alternative specification,
the fixed effects approach attempts to estimate the indivagual condition them out of the
likelihood function. For the probit model, the fixed effects specification typicaliyot be
estimated due to the incidental parameters problem, which inhibits identificafimadgffect
parameters. For the logit model, the fixed effects specification is on&piwhen there is
variability in the dependent variable at the level of the cross-section ppiiesato only a small
proportion of observations in our dataset.

We focus on a panel of 100 NC counties over a period of 12 years. In the unobserved
effects latent variable model:

Vi = X B+ €, i=1,2,...,100, t=1,2,...,12 wheree;, = ¢; + &;;

whereg;~N(0,1) and ¢;|x;~N (0, c2), Var(g;)=1+c2. The importance of the unobserved effect

¢
1+02’

is measured gs = which is the correlation betweep across any two time periods

(Wooldrige 2002; Greene 2002). Standard statistical packages report estmogj@dand its

standard error along with other random effects probit parameters, which fdlows
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straightforward testing of the presence of unobserved, time-invariantsgcsnal effects. The
unobserved factor;, accounts for cross-sectional, time invariant factors that influence the
counties’ propensity to conduct flood hazard mitigation activities. Our spe@ficdties not,
however, account for time shocks that may affect local hazard mitigationothsciBxamples
might include changes in government personnel, or the occurrence of a magareievent
that doesn’t directly impact the area of interest. Thus a strong argumenttsuppanclusion of
time effects in the unobserved effects probit model (Wooldrige 2002, page 484). We use time
dummies to control for unobserved temporal effects. The likelihood function for randoms effec
probit model can be found in Wooldridge 2002 (Chapter 15), along with formulas for the
calculation of APEs. An alternative to random effects probit is random elbgatswhich can
provide consistent estimatesfbvithout the assumption about the relationship between
c; andx;;. There are, however, no simple estimators available for this model (Woodridge 2002,
page 490), necessitating use of random effects probit.

The issue of endogeneity arises whenever an explanatory variable is edrvathtthe
error term, either because of the omitted variables, measurement esiorubbaneity
(Wooldridge 2002). In our study, we are concerned about endogeniety bias due to sityultanei
some explanatory variables are jointly determined with the dependent vatiableslpful to
outline a heuristic framework in order to provide the background for the speciigat

CRS_Commy = a; + pyprop_damage;; + B', X + €

whereX;; is a vector including all other covariates in Table 3.2. Simultaneity in property
damage (for single-year and two-year lags) can arise because pdgraege stemming from
floods is influenced by lagged CRS participation decisions. Consider the equation:

prop_damage;; =y + §CRS_Comm;_1 + u;;
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If §; # 0, the exogeneity assumptioris(€;¢|x;.) = 0) will be violated. If §; < 0 (as would be
expected), the regression estimatefeiwill be attenuated (downward biased) and inconsistent,
and regression estimates for covariates that are correlated withgastydamage may also be
biased.

One might also harbor concern over the flood events variable, but it depends how flood
events is defined. If defined as water levels reaching flood stage, this eatalld not be
endogenous. If, however, designation of a flood event is triggered by occurrence of property
damage or other factors that can be influenced by mitigation, then the variabl®eoul
endogenous. Our flood events variable is derived from National Weather Service (&iSs.
The NWS receives storm information including flood events from: county, state aamdlfed
emergency management officials; local law enforcement offig&igyarn spotters; NWS
damage surveys; newspaper clipping services; the insurance industry; and thepgdrie. As
such, there is no clear and consistent definition of flood events. While correctapfanatory
variables that are not strictly exogenous is difficult in nonlinear models, Woold&269e)
suggests an easy test of strict exogeneity. Wooldridge’s test involves addigréalizations
of the potential endogenous regressor to the estimating equation. Under theoihebig of
strict exogeneity these regressors should be statistically insamtifiUndertaking this test with
flood events, we find that coefficients on future realizations are all insignif which provides
some justification for the strict exogeneity assumption. We thus estiwaieersions of the
regression model, one with flood events as the experience variable and the ttipeopetty
damage. To the extent that parameter estimates for other covaretsilar across the two

models, we express confidence in the results that use property damage asiancexpeasure.
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Nonetheless, we expect that the parameters on property damage will be dbbasad (by an
unknown magnitude).
3.5 Results

We use the random effects probit model in two specifications — Model 1 (flood events
specification) and Model 2 (flood damage specification). Both models are testiosng
STATA statistic analysis software. The estimation results for eattteahodels with Average
Partial Effects (APEs) are shown in Table 3.3. Concerned with endogehksiggged property
damage, we focus primary attention on the results in Model 1. The signs for most of the
covariate parameters, which indicate the direction of impact on probabilitytiipetion in
CRS, are consistent across both models. The exception is elapsed years sngeélidipi
(NFIP_Yeal, which is estimated to have a negative effect in the Model 1 but a positive effect in
the Model 2 (both of which are statistically insignificant). Since the probit madel maximum
likelihood estimates derived from an iterative process (instead of mingrtizé sum of squared
errors), the standard R-square measure does not apply. McFadden (1974) suggestsuitee m
1 - L,-/L, (pseudo R-squared), whdig. is the value of the log-likelihood function for the
estimated model, anlg,is the value of log-likelihood function for the model with only an
intercept term. The pseudo R-squared ranges from 0 to 1 with higher valuesrigdieéter fit.
Both pseudo R-squares indicate good fit for the maximum likelihood models, with pseudo R-
sq=42.3% for the Model 1 and pseudo R-sq=41.8% for the for the Model 2. The number of
statistically significant covariates decreases from ten to nine whemowe from Model 1 to
Model 2. To account for unobserved heterogeneity, the random effects probit mesdploged
under the assumption of strict exogeneity of the explanatory variables. Tisicatit

significant rho parametés ~ 0.958) indicates the existence of an unobserved time invariant
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effect at the cross-sectional level. Therefore, the random effects mpdeldsed to a pooled
probit specification.

We consider first the impact of flood experience on CRS patrticipation. In 3ahlthe
pre-CRS flood event variable is statistically significant and positive in Mdriggesting that
an additional flood from 1980-1989 (before the establishment of @R&®asedikelihood of
participating in CRS by 6.56%. Short term flood events, however, appear to have noahatisti
significant impact on CRS participation. This result is robust to differenefeghs for flood
events (i.e. three or four years — results available upon request). Resultsdd@in2\are
statistically insignificant for pre-CRS and one- and two-year lagged pyagemage. For the
lag results, the lack of significance could be expected given attenuation offiriestexs
coefficients. Thus, we find some support for historical flood experience motivatingpation
in CRS, but no support for initiation of CRS activities in the short term during windows of
opportunity that follow storm events. The lack of support for the windows of opportunity
hypothesis in our case may be an artifact of our focus on counties as the levtsi$ éas
hazard mitigation could be occurring at the level of nested municipalitidghay reflect a lack
of clarity regarding responsibility for floodplain management (GodschatidyBand Burby
2003). Long term experience with flood events, however, appears to strongly gedoced
hazard mitigation activities at the county level.

We account for potential variability in flood risk across counties with a number of
covariates —average annual precipitation (from 1991-2002), a dummy variable for CAMA
counties (meant to capture additional risk associated with downstream ripaodingl and
storm surge), and water body coverage (measured as percentage of toyahiea)nOur

expectations are that higher risk factors will be associated with gréaiérdod of
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participation. Results indicate that counties with greater averagellramiea greater proportion
of water body are more likely to participate in CRS. Focusing on Model 1, a one-iredsmc
in annual precipitation increases participation likelihood by 0.16% and a one pacorease in
the proportion of water body in a county increases the likelihood of CRS partoijatil.82%.
The estimates from Model 2 are roughly equivalent. From an economic and publfc polic
perspective, these results are encouraging, as they suggest that floddritigation is more
likely to occur in areas that face greater flood risk.

Surprisingly, the marginal effect for CAMA counties is statisticaliygicant and
negativein Tables 5, suggesting that CAMA counties are less likely to particip&R$ (all
else being equal). The average partial effects are -12.80% in Model 1 and -10.19%li@.Mode
Coastal counties are exposed to storm surge, coastal flooding associated watnu psitnfall
and coastal storms, and erosion hazards. In North Carolina, under the Coastal Aagariviant
Act (CAMA) of 1974, all 20 counties classified as ‘coastal’ have been requiredgarpriocal
land use plans that include provisions for storm hazard mitigation, post-disast@ryeand
evacuation (Beatley, et al. 2002).

Under CRS Activity430 Higher Regulatory Standardsate-mandated regulatory
standards (SMS), which are included in NC CAMA regulations, are credited up to 45 CRS
points. In North Carolina, only coastal counties receive SMS credit associdtedAMA
regulations. To explore whether coastal counties are receiving CRSferddgher mandated
regulatory standards, we analyze CRS point data from 2002 — 2008. (Detailed CRS paints dat
are not currently available for the time period 1991 — 2001.) A two sample t-testrinatdhe
mean of CRS points fakctivity area 430s significantly greater for participating CAMA

counties (= -1.863 p-value <0.03 df =123). We interpret CAMA CRS counties’ higher

35



Activity 430points as indicating a rather limited impact of the mandated CAMA program on
county-level flood hazard mitigation (or at least a failure on the part of couitiaksfto
translate hazard mitigation into flood insurance premium discounts by applying $oci€git).
Our data suggest that, aside from the mandated activities, CAMA counties aseaative in
hazard mitigation (as reflected in CRS patrticipation) when we control for fattters (such as
flood experience, risk factors, and financial capacity). It is possible, howbaecoastal flood
hazard mitigation is occurring at the level of waterfront towns and aiti€&AMA counties,
rather than at the county jurisdiction. The multi-jurisdictional scale of MRIPCRS makes this
possible. As of 2010, 37 municipalities (38.9%) within the CAMA counties were pairtigpat
in CRS on their own behalf — most of these 37 towns and cities are waterfront

coastal communities (including CAMA municipalities located on the oceanfraoungries, and
rivers). The fact that many coastal counties in North Carolina havedimammercial and
residential development, except along river, estuary, and oceanfront sharelittbseasonably
explain such mitigation patterns. Mitigation activities across the vamoas jurisdictions
remain an important area for future research.

The estimated average partial effect of per capita property tax leuyitexa positive and
statistically significant sign, which abides our expectations that fimlacepacity would increase
the likelihood of the policy adoption & implementation. Results of the preferred Model 1
indicate that one hundred dollar increase in average property tax per capitsesithea
likelihood of CRS participation by 6.23%. Similar results are obtained in Model 2 (6.17%).
These findings imply that flood hazard mitigation is more likely to occur intlneal districts

with greater tax revenue and that poorer districts with less financatitamay be more
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vulnerable to flood hazard. In addition, wealthier districts might also be egpedi@ave more
valuable building stock and thus more incentive to protect it.

For competing local public policy priorities, we use student-teacher cagiccount for
local public school quality and crimes per household to account for public safety. Viéé expe
school quality and crime could be strong competitors with hazard mitigatiorctgrége limited
local financial resources. The estimated coefficients for lag(studaci¢r ratio) exhibit an
unexpected negative sign, but they are not statistically significant. Wessdd (lagged) local
education expenditures per student as an alternative proxy for school qualibyaddimilarly
insignificant results. The estimated coefficients for crimes per houseltulutex positive sign,
but are also not significant. A better proxy for public safety would be the localtfodgeblic
safety or police protection (for which data are unavailable). The staligtsignificant and
positive coefficient oiHu_densityindicates that more densely developed counties are more
likely to participate in CRS. According to the result of Model 1, increasing hpasessjuare
mile by one unit increases the probability of participation by 0.14%. This could indipate
benefit effect (as more homes exposed to risk increases the benefigationi, but could also
reflect greater local government financial capacity (tax base).

Holding flood experience, hydrological risk factors, and level of financialress
constant, the influence of median household income on likelihood of participation in CRS is
positive in both models, but neither coefficient is statistically sigmficBhe percentage of
senior citizens in a community has significant and negative impact on likelihoodioipadidn
in CRS. In Model 1, the probability of participation decreases 1.66% for a 1% inarease i
proportion of senior citizens; we find similar results for Model 2. We expect tisatesult may

be driven by migration patterns of retirees (Deller 1995). Having a tempknadgec varied
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natural resources, low cost of living, and favorable tax treatment for fdeoheral employees,
North Carolina has witnessed a tremendous influx of migrating retirees. Deento beauty,
hazard-prone areas tend to be primary destinations for retiree migratignot€néal increase in
tax base is particularly attractive to local governments, and many of thentnigtirees may be
uninformed about potential flood hazards. This is a plausible explanation for the nefjative e
of senior population, and suggests that targeted information campaign and educatimesnitia
could be effective at improving flood hazard mitigation in some areas. Unlikauthiessof
Posey (2009) and Brody, et al. (2009), our random effect probit model firegaéiveand
statistically significant impact for proportion of college (and higheregeducated citizens
attributed to CRS patrticipation. Our prior expectations were that counties wigheducated
residents might have higher demand for mitigation projects that can lower floadjeaThe
negative result could be an artifact of our research design, as participatiealthier counties
may be occurring at the municipality level (for which data are cuyrenthvailable). We also
note that our education measure is derived from linear interpolation using U.S. dexziad C
data (1990, 2000). Thus, this unexpected result could be due to systematic measur@ment err
Nonetheless, this result deserves further exploration in future research.

For each model, the estimated coefficientG®RS_Munis positive and statistically
significant at 5% level. Increasing the proportion of participating mpalities within a county
by one percent, the county participation probability increases by 1.37% in the Mad&8% (n
Model 2). We construe this as evidence of strong agglomeration and spilloves ieflecil
hazard mitigation. Since hazard identification, management, and mitigation sespe@alized
equipment and expertise, more involvement by nested towns and cities could ittewease

likelihood of county participation. Causation could also go in the other direction. We used the
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proportion of CRS neighbor counties to partially account for spatial dependencetiitadess
impact is not statistically significant in either model. Lastly, we that the number of years
since joining regular NFIP has contradicting signs in the two models, but fraghimpact on
likelihood of participating in CRS.
3.6 Conclusions and Policy Implications

While the dynamics of weather patterns play an important role in the receri griow
damaging floods in the U.S., intensive development in floodplains and extensive population
growth in low lying and coastal areas have increased human beings’ exposowd twakzard.
The communities that engage in hazard mitigation planning and management aateiless
prone to flood hazard and recover faster from disaster than those communities which do not
(NOAA 2010). The CRS rewards communities for undertaking mitigation actibigigsnd the
minimum requirements of NFIP with reduced flood insurance premiums. Most of theleewa
activities, such as stricter regulation of building codes, relocation oftrepébss structures,
and education and outreach, can reduce injuries, deaths, and damages and increase the
communities’ awareness of and resilience to flood hazards. Since CRS ndasdstad
guantitative measures for representing local hazard mitigation astivitgrovides an excellent
source of information for empirical analysis of community hazard mibigatecisions.

Evidence of the effectiveness of CRS has been provided in a study by Brody, et al.
(2007), which indicates that flood damage can be decreased by approximately it dsing
CRS rating by lunit. Participation in CRS, however, is as low as five perceigibleeNFIP
communities nationwide. Given substantial variability in local physical, galijtand social
conditions, the existing voluntary framework for local hazard mitigation may ddwentages in

allowing locals to identify “low-hanging fruit” while tailoring their bard mitigation plans to
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local factors and concerns. In the flood hazard management network, dissistanes and
flood insurance are handled at the federal level due to the existence ef fineaicial capacity
and the larger policy base needed for risk pooling; state governments are to provide polic
guidance, technical assistance, and integration of floodplain management isisines state;
local government, however, is the locus of comprehensive land use planning, including
floodplain management, within their jurisdictions. What drives community geation in CRS
within the current voluntary framework is an important policy question.

Our empirical models explore the impact of previous flood events and flood related
property damage over both the long (pre-CRS) and short term (previous one and twd\ears)
find evidence that flood events can influence hazard mitigation over longer timeéspéut we
do not find evidence in support of shorter term impacts of flood events. A null result forame-ye
lag could be expected, as local resources and personnel may be focusedeny,rbat the null
for short term impacts is robust to different window lengths (e.qg., three- angdagr The
effects found for historical flooding may indicate that certain communitediad have
experienced hazards were more likely to enroll in CRS at the program inception, &d thos
communities continue to obtain credits for hazard mitigation activities, wther communities
are more resistant to voluntary hazard mitigation and remain unconvinced of the potentia
benefits even in the wake of flood events.

Prater and Lindell (2000) argue that the immediate aftermath of hazatd esaaropen a
“window of opportunity” as public sentiments shift to support of hazard mitigation, Isut thi
window soon closes as attention shifts to other pertinent issues, such as job creation, school
guality, transportation, and crime. Our results do not support the hypothesis that wiidows

opportunity immediately following disasters are important determinantsaxf hazard
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mitigation (at least as measured by CRS). There are a number of possialegaps for this.
The effects of recent disaster events may be attenuated by continual deskester assistance
and subsidies for rebuilding in high-risk areas. Federal and state agéotiesseek to provide
a stronger framework for grants-in-aid, low interest loans, and technicsthass to help build
resilient communities before disasters instead of focusing attention on gastedirebuilding
efforts. Moreover, the description of flood hazard mitigation activities iICR8 Coordinator’s
Manualfocuses primarily on the process used to assign mitigation points, with éggatpaid
to the potential local benefits of mitigation activities, in terms of propemyadje avoided and
lives saved. While these factors could be very difficult to quantify from a @estandpoint,
examples or brief case studies could be useful to illustrate the benefits ofigloathnagement.
FEMA and state agencies could take a more active role in demonstratingsfuidecazard
mitigation programs after local flood events, especially focusing on diffesebetween CRS
and non-CRS participants. Cases of successful hazard mitigation could be pdltidize wake
of catastrophic events, with the goal of transferring effective mitigatrategies to other
hazard-prone NFIP communities. The real limitation in such a demonstratgtabishing an
accurate counterfactual — what would flood impacts have been in the absenceraf basird
mitigation projects. Searching for appropriate comparison groups or designirigtsins that
measure the effectiveness of mitigation could be useful strategiese ififl@mation conduits
could help local governments understand and visualize the potential benefits of the feradd haz
mitigation projects, which could strengthen their own flood protection programdy, lthe lack
of empirical support for the window of opportunity hypothesis may be an artifact césmarch
design, as we only focus on the county level. Future research should incorporateithe mult

jurisdictional structure of CRS.
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Our results suggest that physical risk factors play a significanirrdibe likelihood of
CRS participation, as does the density of development. We find higher water boelytpge of
total land area and greater average rainfall within a county each caguiiincreases the
likelihood of CRS participation. This is encouraging, as it suggests that voludtgotycan of
hazard mitigation activities is more likely to occur in areas that faeagrrisk, as well as in
areas that are more densely developed. Given this evidence in support of sys$iaraat
assessment on the part of local government, community assistance progtangptiasize
scientific applications in estimation of potential flood losses could increasedbption of flood
hazard mitigation in vulnerable areas. In 1997, FEMA developed a science-baseadestol
for estimating flood damages — HAZUS — which can facilitate local commah#nalysis and
mitigation of flood damage. Limited sources of input data, however, degrade theddbilit
communities to use HAZUS for hazard assessment (ASFPM 2007). Recommendalimles inc
enhancing data inventory and strengthening loss simulation models (CharagkPeat French
2008; Davidson, Schneider and Muthukumar 2008). FEMA and state governments could
encourage the use of HAZUS and similar hazard assessment technology througlvaggress
advertising and additional technical assistance.

Our results suggest that, holding other factors constant, the likelihood oftioitigga
lower in coastal counties, which face greater flood risk due to downstreamaniflaoding and
storm surge. The Coastal Zone Management Act (CZMA) was enacted in 1972 to gacoura
coastal states to develop comprehensive programs to manage competing usstalof coa
resources. Incorporated with CZMA, the NC Coastal Area ManagementCAMA)
regulations apply to coastal counties and mandate setback rules and buildingruatel st

protect coastal communities from erosion, wind, and storm surge. CRS provides tiradé to
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coastal counties for state-mandated regulatory standards under CAMA, aaduttgrindicate

the among CRS patrticipants, point totals in for this activity area are ligghevastal counties
relative to other counties. Nonetheless, the credit awarded (45 points totay)ssadirand
potentially inconsequential in relation to the total points necessary to deGR8sscore (500
points) to receive additional discount on flood insurance premiums. Examining the aaw dat
however, we find that 34 of the 60 (56.7%) waterfront municipalities participateld a6 of
2010, and a smaller proportion of the overall municipalities in the CAMA counties — 35.8% —
participate in CRS. Thus, it appears that flood hazard mitigation may be ocairariiger scale
(where development is more focused) along the NC coast.

Like CZMA, federal leadership to build the strong state capacity could be cierffi
way to achieve more commitment in local level mitigation. Experience stgjipat effective
local management occurs in the presence of strong state floodplain managemantsrogr
Burby (2005) finds evidence that insured losses to residential property froral mggaster are
significantly reduced if the state mandates local comprehensive plans natidl maitigation
elements (which are currently optional in some U.S. states). State pragralehgjo further to
achieve more initiation of local mitigation projects through state mandasesnef CRS
activities, such as public outreach about coastal hazards. Also, similarRotNé& ktate could
provide direct technical assistance to local governments in initiation of GR8ies, training of
local floodplain mangers, and managing or assisting with hazard mitigation.

We find that education level and age structure are important factors in laeadl ha
mitigation adoption and implementation. Counter to expectations, we estimateiaeefjactt
of education attainment on the likelihood of CRS participation. This is a surpresinly that

requires further exploration. We find evidence that the proportion of senionsititin a
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county has a negative influence on the likelihood of CRS participation. While gbeentye
may suffer more injuries and loss of life in disasters than younger populatibrgredter and
more diverse life experiences and social support, elders exhibit gredtencedio the effects of
disaster (Tierney, Lindell and Perry 2001), which may explain this réisuatdition, by offering
significant tax advantages for military and other federal retirees,dstof living, and attractive
recreation opportunities, North Carolina has become a primary destinateofostatigrating
retirees. Data from the U.S. Census (He and Schachlter 2003) indicates thaC &tofina
witnessed a 22% senior net migration rate from 1995 to 2000, which rik&J55. during this
period. While we do not observe senior migration rates in our data, age struchae of t
community could reflect these retiree migration patterns. Migratingisecan induce
significant potential for economic development in scenic, rural communitiespeaicklected
officials may focus more on this development opportunity (which can crigatécant
economic benefits and a larger tax base) and less on potential changes abuitintr natural
hazards that can be associated with rapid economic development. MigratesriEdm outside
the state may be less aware and knowledgeable of flood hazards and thus coulgperddass
on local government to engage in flood hazard mitigation. As the U.S. population continues to
age, it becomes increasingly important to consider elders in pre-disaggationtplanning. Our
result has implications for targeting of information and outreach programh adudd be
conveyed through public meetings, media, or other venues where senior members of the
communities could be well represented.

Holding risk and population factors constant, the average county property tdakeay
positive and statistically significant impact on CRS patrticipation. Thisates that financial

capacity is an important determinant of flood hazard mitigation (supportingitheds of Prater
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and Lindell (2002)), and suggests that vulnerability may be higher in poorerwotias with
lower property tax revenue. The findings would support the establishment of lovsthbare
programs or state grant-in-aid programs targeting counties without adegg@ieces, high risk
factors, and high potential for floodplain development. Subsidized interest rates aglit outri
grants could be economically justified in terms of foregone disaster aid anddosveess
interruption (resulting in lower tax revenue losses).

In a recent report, NOAA Community Service Center (CSC) (2010) summarizes a
number of factors that contribute to specific risk and resilience-relatedibelderived from a
series of structured interviews with local planners. This report concluaelséarriers to hazard
planning include competing priorities, among other factors. We do not find supportingoeviden
of competing priorities on diminished CRS participation, as the effect of lagiged rates and
student-teacher ratios are not statistically significant in our reigresmodels. There is much
greater variability in crime rates at the municipal (i.e. sub-county), ledeth may explain the
lack of significance of this covariate in our models. Future research shsoldte@mpt to refine
our approach (with better data) and explore the extent to which other local poblem
(transportation and economic development) crowd out investments in hazard omtigati

CRS community divisions rest on a multi-jurisdictional scale which includesstow
cities, and counties. Therefore, the county and nested municipalities may exfeitgedt flood-
loss reduction efforts with separate floodplain management ordinance andioaegulattheir
study, Brody, et al. (2009) use population-adjusted measures of CRS activittesc@ig, and
community-level covariates to account for nested municipalities and the ctaatityn their
county-scale analysis. They find that local governments adjust their pabamprove risk

management efforts after flooding events. Our analysis is a contribution imitieel |
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guantitative literature exploring the influence of flood experience, hydaabgsk, financial
capacity, and socio-economic factors on local hazard mitigation decisionsc\éeon the CRS
participation decision and only on the county level, primarily because data on tas/ar@not
readily available at lower jurisdiction levels. We find evidence of agglomerand spillover
effects among the various jurisdiction levels, as the probability of countgipation is
augmented by the presence of nested participating cities and towns; the magfrtiisleffect
is quite large at 1.37% for just a one percent increase in the proportion of pamtcipdted
municipalities. A more detailed and thorough analysis of the relationship betazsad h
mitigation at the level of counties and cities & towns remains an imporgafarfuture

research.
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Table 3.1: Data Description

Variable Description
Dependent Variable
CRS_dummy CRS participation dummy (1,0) (1991-2002)

Flood Experiences Variables

PreCRS_floods

Total number of floods in county ptioCRS (1980 to 1989)

PreCRS_damage

Total amount of flood-related property damage iartg prior to CRS (1980 to
1989) (in millions of dollars -year 2000 inflatianljusted dollars)

Lag_1 floods

Total number of flood events in pregigear in county (1990-2001)

Lag_1 damage

Total amount of flood-related property damage ievyus year in county
(1990-2001) (in millions of dollars -year 2000 atfbn adjusted dollars)

Lag_2 floods

Total number of flood events in prexsidwo years in county (1989-2000)

Lag 2 damage

Total amount of flood-related property damage ievus two years in county
(in millions of dollars - year 2000 inflation adjad dollars) (1989-2000)

Environmental and Risk Control Variables

Precipitation

Average annual precipitation — collected from weastations in each county
(inches) (1991-2002)

CAMA

Dummy variable, equal one for CAMA county, efzero otherwise.

Water_precentage

Percentage of county area covered by surface w@ieeams and rivers, lakes|
reservoirs, and shorelines) (%)

Resources Variables

Avg_Tax

Property tax levy per capita in each county (irutand dollars - year 2000
inflation adjusted dollars) (1991-2002)

Student_Teacher

Students and teachers ratio incmdiiools in previous year (1990-2001)

Crime_density

Number of reported crimes per houskingorevious year (1990-2001)

Hu_density Number of housing units per square (1i891-2002)
Social Variables
Income Median household Income (in thousand dollars-y@&02Anflation adjusted
dollars) (1991-2002)
Senior Percentage of senior citizens (65 years and ovgrfaotal population (%)
(1991-2002)
College Percentage of residents with college degréégher (%) (1991-2002)
CRS muni Percentage of CRS municipalities out of total numddenunicipalities nested

in each county (%) (1991-2002)

CRS_neighbor

Percentage of neighbored CRS counties out of tatadber of neighbored
counties (%) (1991-2002)

NFIP_year

Number of years since the county joirsgpilar program of NFIP (1991-2002
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Table 3.2: Data Summary Statistics

Variable Mean Std. Dev. Min Max
CRS_dummy 0.170 0.376 0 1
PreCRS_floods 1.940 1.038 1 6

PreCRS_damage 0.086 0.504 0.001 5.001
Lag 1 floods 0.353 0.629 0 5
Lag_1 damage 0.113 1.115 0 31.100
Lag_2 floods 0.387 0.674 0 4
Lag_2 damage 0.115 1.128 0 31.100
Precipitation 47.551 6.041 37.266 71.607
Water_percentage 5.225 12.325 0 69.280
CAMA 0.200 0.400 0 1

Avg_Tax 0.352 0.120 0.126 0.892
Student_Teacher 14.431 1.182 8.756 20.278
Crime_density 0.102 0.057 0 0.376

Hu_density 77.196 103.171 4.806 751.182

Income 40.468 8.297 22.499 68.248
Senior 14.514 3.492 5.562 26.262
College 14.944 7.522 6.770 51.989

CRS_muni 8.821 20.717 0 100
CRS_neighbor 14.644 16.212 0 75

NFIP_year 9.738 6.116 0 29
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Table 3.3 Radom Effects Probit Estimation Results

Models Model 1 Model 2
. Estimated Coeff. Estimated Coeff.
Variables (Standard Error) APEs (Standard Error) APEs
0.858*
PreCRS_floods (0.502) 0.0656
0.187
Lag_1 floods (0.264) 0.0154 Not Included
-0.382
Lag_2 floods (0.317) -0.0314
1.185
PreCRS_damage (1.018) 0.0964
0.093
Lag 1 damage Not Included (0.129) 0.0076
-0.135
Lag 2 damage (0.206) -0.0111
S 0.233** (0.251)**
Precipitation (0.090) 0.0016 (0.090) 0.0012
0.241** 0.239**
Water_percentage (0.069) 0.0182 (0.101) 0.0179
-7924** -6.040**
CAMA (2.074) -0.1280 (2.168) -0.1019
9.287** 9.753**
Avg_Tax (3.989) 0.6027 (3.948) 0.6172
-0.321 -0.261
Student_Teacher (0.227) -0.0167 (0.218) -0.0158
. . 7.386 4.613
Crime_density (7.706) 0.5976 (7.847) 0.3750
. 0.018** 0.018**
Hu_density (0.009) 0.0014 (0.008) 0.0013
0.032 0.037
Income (0.084) 0.0026 (0.077) 0.0029
. -0.371* -0.352**
Senior (0.157) -0.0166 (0.166) -0.0167
-0.187* -0.141**
College (0.096) -0.0128 (0.071) -0.0103
. 0.189** 0.192**
CRS_muni (0.028) 0.0137 (0.030) 0.0138
. -0.027 -0.020
CRS_neighbor (0.024) -0.0022 (0.025) -0.0017
-0.007 0.003
NFIP_year (0.090) -0.0006 (0.098) 0.0003
Time Dummies Included Included
Constant -13.457** -15.690**
(7.519) - (6.335) -
Log-likelihood -98.623 -99.500
pseudo R-squared 0.423 0.418
p 0.958 0.958
Obs 1189 1189

Note: * means that the estimation is significant@¥; ** means that the estimation is significanb%.
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Figure 3.1: North Carolina Counties’ Participation in the Community Rating System of NFIP.
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Figure 3.2: Proportion of CRS Participating NC Counties over the Time Series (199- 2002)
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Chapter 4: Evaluation of the Community Rating System of National Flood Insurace
Program — An Application of Propensity Score Matching

4.1 Introduction

As a part of floodplain management and flood loss reduction programs, the National
Flood Insurance Program (NFIP) has been successful in helping flood vietifpaa on their
feet. Federal Emergency Management Agency (FEMA) estimates that over 94030 c
totaling approximately $14 billion, have been paid from 1978 to 2004 and flood damage is
reduced by nearly $1 billion a year as a result of the NFIP floodplain maaagesgulations for
new construction (FEMA 2007). Prior studies have identified potential improvemehss to t
program, such as more timely updates to Flood Insurance Rate Maps (FIRMdgviagai of
repetitive losses for some parcels, and increasing premiums for predfi&Bther
policyholders so that they more accurately reflect risk. In ordedteceeflood loss through
community-level mitigation projects, facilitate accurate insuranaeg,adnd promote the
public’'s awareness of flood hazard and insurance, the Community Rating $¢f&nwas
instituted by Federal Insurance Administration (FIA) as a voluntaryrano for NFIP-
participating communities in 1990. CRS credits 18 community floodplain managectieities
in four broad categories: (1) public information; (2) flood mapping and regulationp¢g) fl
damage reduction; and (4) flood preparedness. FEMA classifies the portfolio otiodgnm
flood management practices on a ten point scale, reflecting the overall levigbafion. The
CRS classification determines premium discounts for insurance purchasesherdEiR.
Discounts range from five to 45 percent. By offering CRS credit for updatihgoaf fisk data,
information on flood hazard may become more accurate over time, leading talbktteation

the flood hazard areas within a community. The CRS rewards communities for umdgertaki



mitigation activities beyond the minimum requirements of NFIP with reduoed fhsurance
premiums. Most of the rewarded activities, such as stricter regulationidihgucodes,
relocation of repetitive loss properties, and education and outreach can redues, idgaths,
and damages and increase the communities’ resilience to flood hazards.

In 2007, the CRS Task Force and FEMA revised the 1987 goals, which had been the
foundation of the CRS since its inception. The new, 2007, goals are to (1) reduce flood damage
to insurable property; (2) strengthen and support the insurance aspects of th&NFIP;
encourage a comprehensive approach to floodplain management. Although the CRS has been
recognized as a successful and mature program within the NFIP, FEM# tewamiprove the
public contribution made by the CRS. To do so, it is critical to assess the perform#ree of
CRS and to develop innovative ways to enhance its operations and outcomes. In order to enhance
the operation of CRS and encouraging the participation of the eligible comegsuadciety must
understand the effectiveness of CRS flood mitigation activities before dezatie whether to
allocate management resources. However, there is few, quantitativelychaseaeling
evaluation of the CRS in term of its impact on reducing flood damage, which the sthidy in t
section will cover. This chapter uses propensity score methods to estimat@aloeof the
CRS on the property damage protection.

The objective of evaluating voluntary programs is to compare the two outcomesiérom t
same unit when it is treated and not treated (Imbens and Wooldridge 2009). The true
performance of CRS can be determined if one compares the same group of outdenne®f
average property damage reduction in the flood events having been managed with gsedintr
selves. However, it is impossible to observe what would have happened to CRS p#stinipa

absence of the participating into the CRS, which is called the counterfactuthd &ohTodd
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2005). Meanwhile, the data or budgetary constraints necessitate using obsdrdatata
evaluate the effect of programs. However, underlying factors may dféestdividual decision
make regard to enter the program. In other words, there is self-selection intd SRSssible
to observe the communities with higher levels of mitigation activities to haweraire loss
from a flood event. Therefore, studies conducted using endogenously stratifiedssaanle
benefit from decrease data collection costs but inference from these samigteaccount for
non-random sample selection bias.

The candidate communities participate CRS on the basis of eligibility@iite. must
be a NFIP community with minimum 500 CRS points). Because the treatmeminassigs
nonignorable (i.e. the decision to participate may not be random and may cavrtiates
outcomes), the self-selection of participants imposes a challenge on theienaltla counties
who choose to enroll in the CRS are different from those who choose not to enroll. These
differences may invalidate causal comparisons of property damage oedugtocal mitigation
projects, possibly even after adjusting for observed covariates. Therefopgrsams of
outcome (i.e. property damage reduction) between CRS counties and non-CRS counties may
have less to do with the program effects and more to do with other differencesnbiigveeo
groups. The primary objective of this chapter is to use the propensity scorengéRSM)
methods to correct sample selection bias due to observable differences bbereBiSt
participants and comparison groups. The methodology in this chapter makes ingubréantes
in understanding how to measure and conceptualize the performance of aonipgagiram as
it applied to reducing the adverse effects of flooding. The study also yasidhts into the
influences on the performance evaluation of the mitigation plan for other natastiedtisuch as

hurricanes, fire, and earthquakes.
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The following section presents on using challenge in the assessment cétime e
effect of CRS in a nonexperimental design. It will become a starting pointiéavrthe
preliminary concepts and introduce more advanced approaches. In section 3, we thescribe
strategies for employing PSM to evaluate treatment effect in noneygreal study. Section 4
describes the propensity score analysis with nonparametric regressiban$ presents the
calculation of the average treatment effect which we employ to studyp€&R8mance. Section
6 described the application of difference-in-difference estimator foll dateestructure. Finally,
section 7 concludes the chapter.

4.2 Experimental Studies and Observational Studies

In the evaluation of treatment effect, we have two outcdriigs for every unitn. One
is the value associate with treated uyjj(;1), and other is the value associate with nontreated
unit, ¥,,(0). We useT;, as a dichotomous variable indicating treatment (i.e. participation in CRS
in our case)T,, = 1, or nontreatmenft;,, = 0. The traditional experimental work assigns the
units to treatment randomly. The treatment and control groups are drawn fraamihe s
population (i.e.T,, L 2Y,,(1),Y,(0)) (Dehejia and Wahbal1999). Therefore, measure the
treatment effecty,, (1) — Y,,(0), for same unit at same time. In the randomized experiments, we
can measure the mean impact for participatiod (1) — ¥,,(0)] . E(-) denotes expectation
in the population.

In the observational study, the treatment and comparison groups are often drawn from
different populations. Since we can only obséfy@) or Y, (0) but never both, it is challenge to
measure the treatment effegt(1) — ¥,,(0), for same unit at same time. The treatment effect

that we are interested in is Average Treatment Effect for Treated (&Ri€h can be

Y In our application, the outcome is the averag@e@ny damage in flood events.
2\where “L” denotes independence
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represented bYTT = E(Y,,1|T,, = 1) — E(Y,0|T,, = 1). SinceY,,, (no treated outcome for
treated unit) are not observable for treated unite, Rubin (1974) formulated an approach to

analysis the causal effects in observational studies:

ATT = E{E(YnIXnITn = 1) - E(Ynlxann = O)ITn = 1} (l)

whereX,, is a group of observable covariate which is related to the distribution o¥pbatid’,.
In order to construct the unbiased estimation for the ATT, Rosenbaum and Rubin (1983) impose
two assumptions: (Iignorable assumptian¥, (1),Y,,(0)) L T,|X,, (i.e. there is no difference
between the groups assigned to treatment and control with conditioning on observable
covariates,X,,). (2) overlap assumptiard < P(T,, = 1|X,,) < 1 (i.e. for a setting of the
covariatesY,,, there is a chance of having units in both the non-treatment and treatment groups.)
Ignorable assumption and overlap assumption together are statlad ignorability(Wooldrige
2002 page 910).

With high dimensionak,,, it is difficult to estimate equation ¢l)nstead of conditioning
onX,, Rosenbaum and Rubin (1983) recommend estimating each unit’'s propensity to receive a
binary treatment as a function of observable factors. Then, matching unhesmilar
propensity score can reduce the problem of dimensionality. In the followingrseste take
advantage of the balancing properties of propensity score methods to measewgdrtient
effect of the CRS.

4.3 Propensity Score Matching Algorithm

Based on work of Rosenbaum and Rubin (1983), an alternative approach to estimate the

treatment effect between comparison groups is Propensity Score MgteBiky. The following

3 with increasing number of variables,), it is difficult to find exact matches for eachthe treated units.
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description of PSM draws heavily from a wide variety of previous works which focusary bi
treatment or programs. Motivated by evaluation of labor market prograckntde, Ichimura

and Todd (1998), Dehejia and Wahba (2002), and Smith & Todd (2005) use PSM to estimate the
impact of training programs on employees’ income. Meanwhile, a richtliter exists in
formulation the approach to the analysis of causal effects in observationas sGaliani,

Gertler and Schargrodsky (2005) study the effect of water supply on childlitgofitrujillo,
Portillo and Vernon (2005) analyze the impact of health insurance on medical4teipaiaon.
Lavy (2002) estimates the effect of teachers’ performance inceotivespil achievement. The
general story behind their approaches is straightforward. In experirdestgh, the two
treatment groups can be compared, because the two treatments are drawe Samet
population. In the observational experience, however, it cannot assume that the populations
between two treatments are derived from the same population. The PSM find a reboingate
that is similar to a participating unit, allowing the estimation of therreat’s impact as the
different between a participant and the matched comparison case. Theilepulivide an
estimation of the mean impact for the participations.

The PSM is to compare cases that are similar in termg, @fhere participating units are
matched with untreated units based on an estimate of the probability (i.e. the pycgmemsi)
that the unit receives the treatment. The propensity score can be conyesj@etented as a
scalar value, which can then be used to balance observed differences betatesntrand
control group (balancing refers to the fact that the distribution of the obseraatdes{X,,,
should not differ across the treatment and control group after conditional on the gyopensi
score). By using the PSM, we assume the adjusted pre-treatment ddteadioe us to draw the

causal inferences as if the data set were random (Imbens and Wooldridge 2009).
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4.3.1 Estimating the Propensity Score

Rosenbaum and Rubin (1983) define the propensity score is a balancing s&qre for
b(x,), which assure the conditional distribution¥oWill be the same for teated £ 1) and
control ¢ = 0) units by given value di(x,). The propensity score estimation for an individual
n(n = 1,2,..,N) occurs by estimating the probability of a treatmept= 1), given the
covariatesy,,. The standard probability model can be used for estimating the propensity score.

Most applications take advantage of the logit model:

eg(Xn)

P(Xn) = Pr(tn = 1|Xn) = m;

whereg(X,,) is made up of linear, higher-orders, and interacted covariates so to obtain an
ignorable treatment assignment (Dehejia and Wahba, 2002). The form of propensity scor
estimators can also utilizes the probit model:
P(Xy) = Pr(t, = 11X,) = ®[g(X,)]

where thed () denotes the standard cumulative normal distribution. Logit and Probit models
casually provide similar estimation of propensity score.
4.3.2 Variable Selection in Parametric Propensity Score Estimation

In practice, the functional form of the propensity score model is unknown (Dehejia and
Wahba 2002). Therefore, the primary specification issues driving the estimagimypehsity
score are to decide on the model to estimate the propensity scores and well-didinador
variable selection. As showed previous section, the linear logistic regressael can be used
as the propensity score models. The interaction terms and higher order transf auati

utilized to count for non-linear relationships.

58



The variable selection becomes an essential component in PSM. The choice of variables
for propensity score model plays a role in the bias values of the estimatidah éBchiTodd
2005). For each application, it is important to consider what factors make the cmmpanits
distinct from treated units. Essentially, variables should be included based oretlrehress’
knowledge of the subjects. In their work, Heckman et al. (1998) provide the evidence that a rich
set of relevant variables that are related to the program-pairbcighgcision results lowest
estimate bias in PSM. Higher bias estimation is obtained for including aiseti@fant
variables. Also, a variable selection should account for nonlinear relationshipsnodkié In
their study, Rubin and Thomas (1996) recommend that the relevant variables should be included
from a theoretical bases and previous research that it is related to the outddime choice of
treatment even if it is not statistically significant. In most practoe selects the variables
according to the data-driven ways. Most applications use stepwise varidlda atgorithms
based on a predetermined level of balance. The balance can be tested byidetdrfference
in mean across treated and comparison units are not significantly differarzero.

For parametric logistic regression model, | adopt the Dhejia and Wahba'’s (2002)
algorithm for variable selection that is similar with Rosenbaum and Rubin’s %@8kY. The
algorithm first start with a logit specification with main effecttfas to estimate the propensity
score. Then it stratifies the treated and comparison groups such that théedspiropensity
scores within a stratuhare not significant different. Next, the algorithm conduct statistisal te
for the differences in means across treated and comparison units withinraagh.stThe
balance is achieved if there is no statistically significant differelithe covariates are not

balanced, then one needs either divide the stratum into finer strata or addsonteesaxd (or)

* The algorithm of balancing test is so-called D\&t,tsee Dehejia and Wahba (2002) for more detail.
® The stratum is one of equal propensity score réinge0-0.2, 0.2-0.4,...,0.8-1).
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higher order polynomial terms into the model. The reevaluation will continue huntilalance is
achieved. The shortcoming of this algorithm is the balance may become difiituthes

number of observable variables increasing. Besides the work by Dehejia and Wahba (2002)
there are different balancing tests in the literature. In his work, Roser(Ba08&) utilizes a
variable trimming process. It recommends that the variables with theediéfes below a
threshold significance level-(.5 > t > 1.5) should be removed from the model. Smith and
Todd (2005) test for the joint equality of covariate means across groups using theHretes

we should note the treated and comparison groups will have little overlap if thgopadic

model is perfectly predicted. The propensity score is not necessarily aen¢fficore if it does
not create an adequate overlap within each stratum.

4.3.3 Matching Algorithm

After estimation of propensity score, there are a variety of ways taogensity score to
match compassion units with treated units. First of all, matching without eepéend, meaning
the each comparison group unit could be included as a matched case only once.d@gcribe
Dehejia and Wahba (2002), there are low-to-high, high-to-low, and random maitalkegthe
low-to-high for example, the treated units are ranked from lowest to higlogetnsity score.

The lowest-ranked unit is matched first, and the matched comparison unit will not berused f
further matching. The matching without replacement, however, increases brathetesis few
comparison units with similar propensity score to the treated units.

Secondly, matching with replacement considers all comparison cases thafiarently
close to a given treated case. The comparison units can be used more than annanibtr of
comparison units is large, it may have number of good matches for each treateg doihd3
S0, it can reduce variance in the treatment effect estimates. Finsg¢atest-neighbomatching
will choosem individuals (n > 1) from comparison group as a match for treated individual with
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the closet propensity score. The untreated individual can be used more than once in the neares
neighbor matching. With increasimg, it can reduce the variance due to utilizing multiple
matches. However, it will increase bias since the matched propensity scare\ang away

from the £ closet match.

Second, thealiper matching will use all of the units in the comparison group within a
specified propensity score range (i.e. radius). In their work, Cochran and Rubin gthew3hat
using calipers of width equal to 0.2 of the standard deviation of the propensity score @a® rem
98% of the bias of the estimation. Generally, the 0.25 standard deviations of theeglstimat
propensity score can work well (Rosenbaum and Rubin 1985). Comparing with the nearest-
neighbor matching, the advantage of the caliper matching is that it can useyasom@arison
units as available within a radius (Dehejia and Wahba 2002).

Third, thekernelmatching compares the outcome of treated units to the kernel-weighted
average over the units in the comparison group. The kernel estimation is a non-parametr
estimation for the probability density function. Unlike the nearest-neighbtahing which
gives zero weights for unmatched comparison units, the kernel matching vgt assie weight
to the comparison units with similar propensity score and less weight to theridas snits.

Since it use more information, the kernel matching results the lower variadcawback of
kernel matching is that it needs to choose the kernel function and the bafigsrittibthing)
parameter. There are some different kernel functions. Since the differealskenpose nothing
on the shape of the probability density function, choice of the kernel function is natalpart

important (DiNardo and Tobias 2001). A trade-off exists in the choice of bandwidthadimge

5 The bandwidth defines the neighborhood aroungtbbability density function. The points falling ihe bandwidth receive
constant weight, while they receive zero weight mfedling outside the bandwidth (Dinardo and Tol#881). High bandwidth
values create a smoother estimated density funatibith leads to a better fit.
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the bandwidth will increase the bias but reduce the variance of the estimatitebiirg more
distant observation in constructing the counterfactual observation (Smith and Todd 2005).

Unfortunately, there appears to be uncertainty for how one should select matching
algorithm. Generally, as the number of comparison unit rises, one decreasasathees of
estimation with cost of increased bias (Dehejia and Wahba 2002). The differehingat
algorithms should yield similar results if there is substantial overlap icotm@arison group and
treatment group in terms of propensity score. To determine there is enougippwey| the most
straightforward method is to visual analysis of the density distribution of the pitypsowe in
both treated and control groups. The overlaps should contains most subjects in both treated and
control group’s propensity score distribution. Heckman et al (1997) argue that the fiyopens
score densities made at a points where the comparison group density i€kxraall are
likely to be inaccurate. They recommend adding the common support constraint tatelithe
subjects lying outside common region and within “trimming” lexelhe same algorithm can
also be found in Smith and Todd (2005).

Different matching methods are used in this section to ensure that siovifdies are
being compared. Such a comparison of the observable factors, X, relies on the previous
literature in order to evaluate the appropriateness of comparison groups.egaaie as same
as the variables that used in the third chapter (Participation in the Commuinity Rgstem of
NFIP: An Empirical Analysis of North Carolina Counties) (see table 3.1). Thesrfer the
sample characteristics of entire sample are described in the tabldd he@ns for sample
characteristics before matching and after matching for differeatyeric matching strategies
are shown in the table 4.2. The first column lists the characteristics foRtBealinty

(treatment) group while the second column displays the characteristibe foon-CRS county
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(control) group. The t-test results (chi-square test for the dummy variabl AL éearly show
statistically significant different distribution of the observable chargstics between the
treatment and control group. Of 16 variables, CRS counties are significarghgdiffrom the
non-CRS counties (expect the previous one year number of floadiggl floods 204 treated
units will be matched with 996 control units. It implies that some control units wiiviea g
considerable weight.

The table 4.3 presents the results from four logistic regression modelsrtateshe
propensity score. We first run the base logistic model which only includes 16 gariébe
balancing test will then split the observations into different groups (i.e.)dtead on equally
space intervals of the estimated propensity score. It then performs théot-the differences in
each covariate mean within each stratum at 5% significant level (Dehdj\&ahba 2002).
Table 4.2 shows that the means between treatment and control groups aEaBtesisgificant
different before matching (expect thariable Lag_1 floods Using Rosenbaum’s variable
inclusion threshold, where t-statistic must be greater than 1.50 (less than -1.66juaesthe
dataset: modified from the base logistic model, the Logistic 1 is drbgitdropping the variable
of Lag_1 floodsIn order to create to sufficient overlaps between treated and control groups, in
Logistic 2, we add some higher ordered polynomial and interaction terms of theaxtes/trat
show significance after matching. We paig 1 floodsack into the Logistic 3. The guideline
for formulating the Logistic 3 regression models is to ensure the covi@riateount for a legacy
of flooding events that could have motivated mitigation activities over differaptgeriods. We
attempted over 100 different specifications of propensity score. With large nafrdmssariate,
it is difficult to pass the Dehejia and Wahba balancing test. Logistic 2 aedi3eabest function

forms so far to achieve the balance within each stratum.
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There are three matching algorithms for Logistic 1-3. Within each sehefrges using
the same logistic regression, the first scheme nisaest-neighbomatching (1-on-1). The
second scheme uses ttadiper matching by setting propensity score range of width equal to 0.2
of the standard deviation of the estimated propensity score. The third scheme usesmweinpar
normalkernelmatching. Generally, the table (last page) shows the different matcborgtahs
has resulted in balanced covariate between the treatment and control grabjpsLugistic 1-

3, it is clear that much less imbalance occurs when we use kernel and calpethat nearest-
neighbor. All schemes using nearest-neighbor 1-on-1 matching could not remdve mos
significant difference between two groups. The use of many-on-more (frord)2lid not help
either. Although many variables are marginally better matched in Logidlhitle significant
improvement can be discerned when we use caliper methods in Logistic 1. Nine out of 15
variables are still significantly different between the treated andata@rbups in Logistic 1
(Caliper). In contrast, Logistic 2 and 3 show the caliper algorithm’srieabke ability of
randomization to help attain balance in covariates, though three covariatessicL2bgnd two
covariates in Logistic 3 are remain imbalance. We set up the caliper with Qtbstdndard
error in practice. The results showed the reduction in the number of balancingtesvaria

Among nine matching schemes, Logistic 2 Kernel and Logistic 3 Kernehfyréwo
matching methods that have generally resulted in balanced covariateutimtis between
treated and control groups. The significant differences picked up by theitadstCollegeand
CAMAIn Logistic 2 KernelCollegeandAverage_taxare significant difference in Logistic 3
Kernel. Our practice test shows much more imbalances occur when we droprdaath )
variables. We set up bandwidth in 0.06 as the STATA package default value. One wants to

choose the bandwidth as small as the data allows. However, there is alveaes @fftbetween
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the bias of the estimator and its variance. With less than 0.06 bandwidth, the resultrfreim ke
matching generally increases the degree of imbalance in differenceshate@ated and control
groups.

4.4 Non-Parametric Propensity Score Estimation: An Application of Boosting

In our application, the propensity scores are unknown and so as the correct functional
form for the propensity score model which account for all covariates relatecht€B&
participation and property damage prevention. As originally proposed by Rosenbaum and Rubin
(1984), Dhejia and Wahba (2002) use parametric models with selected interactioghamd hi
ordered polynomial terms for estimating the propensity score. However, witrseieoted
variables adding into the model, it becomes more and more difficult to achieveaheebal
within each stratum. McCaffrey, Ridgeway and Morral (2004) suggest that thengaosthod
may create better balance in covariates by using flexible non-pgai@medeling. In addition to
the parametric models for estimating propensity scores, we utilize &leaobde, nonparametric
application via the generalized boosted model (GBM). Boosting allows modelspedifkes|
with large numbers of covariates in a nonlinear fashion. Our preliminary rbeuls $hat the
GBM does not appear to be any benefit to create the balance. This issue wilhée fur
investigated in following section.

The description of boosting, GBM, and its connection to the PSM in this section relies
heavily on the work by McCaffrey, Ridgeway, and Morral (2004). The boosting method can
combine the number of simple functions which, individually, is poor approximation to the
function of interest. In contrast, the combination of the simple functions can appi®s@ma
smooth function that uses a large number of covariates to fit the nonlinear surfacedsctd pr

treatment assignment (Freund and Schapire 1999). As the boosting procedure, GBM uses
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regression trees as the sample functions to smooth the function of interestyrébsioa tree is
a nonparametric method which uses the recursive algorithm to estimateian@ineiationship
by partitioning a data space and representing each partition by the samplefitied space
(Breiman et al 1984). Take our application for example, a basic partition of datasetcur by
splitting individual counties by the number of flood events which is less than or equal to one in
the last year and those counties have flood events more than one time (Tlae spétic
between any pair of observed values of any of covariates). Next, the partltibe thien
subdivided into four distinct groups (i.e. flood events<=0 and CAMA county, flood events>=0
and CAMA county, flood events<=0, non-CAMA county, flood events>=0 and non-CAMA
county).Within each division, the estimated function equals the sample mean of the dotcome
observations within the partition. With continued split, it adds additional interactioedetive
variables and complexity of the tree. The algorithm chooses splits by mimgnpirediction
error. The GBM linearly combines all single trees to estimate a smauthdn of large number
of covariates.

To describe the boosting algorithm in GBM, we take a logistic transformation of
propensity scorep(x) which ensures the estimation will always be in [0, 1]:

1
1+exp (—g(x))

p(x) = (2)

Whereg(x) represent some unknown function fornxoflTo estimatey(x), we utilize the
expected Bernoulli log-likelihood function:

E(LL(p)) = E(t(logp(x) + (1 — ) log(1 — p(x)) |x) 3
We use equation (3) substituggx) in equation (3). The equation (3) then becomes the
likelihood function ofg (x):

E(LL(9)) = E(t(g(x) —log(1 — exp(g(x))) ) 4)
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Instead of assuming (x) to be a linear combination, boosting algorithm allgws) to be a
flexible function form. The algorithm then maximizes the equation (4) to find the dangik).

Rather than modeling propensity score directly, GBM algorithm startstbggsthe log-
odds of treatment assignment to a constant vgl(, = log (%), wheret is the proportion of

treated of observation. The algorithm then makes the improvement to fit the model with
iterations by adding a small adjustménty). The goal is to find th&(x) that can increase the
expected log-likelihood:

E(LL(§(x) + Ah(x)) > E(LL(§(x))
whereg(x) « g(x) + Ah(x), A represents some step sizk(x) represents an improvement in
the log odds from previous iteration. In order to find the righf), Friedman (2001) suggest to
derivative of (4) respect t@(x):

dE(LL 1
h(x)=%=E(t Ix>=E(t—P(x)Ix)

~1+exp (—g()
Therefore, the adjustmertt(x), is a type of residual of the expected log-likelihood,

which is the different between the treatment indicdatpand the probability of assignment to the
treatmentp(x). The regression tree estimates the residual,{(x)), using a flexible iterative
least squares procedure. The tree first splits the observations interdifiegions. The residuals
are homogeneous within each region. The tree then estimates the optimal adjokgi(e),

h(x), conditional onx in the same region. The algorithm then uses a line search to find the
coefficientA with the greatest increase in the log likelihobds called the shrinkage value. The
shrinkage means reducing the impact of each additional tree to avoid overfittioglEie

2005).
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The GBM requires no functional form for estimating the propensity scoreevtowthe
most boosting algorithm requires the specification of at least three pgararnefore the
estimation (Friedman 2001). First is the number of iterations (i.e. numbertsffeplihe trees)
to minimizing prediction error. Second is the number of the variable interaction®dll Third
is the shrinkage coefficient. The smaller shrinkage value can reduce the imgach of
additional split of trees to avoid overfitting the data. The GBM catalogsad patpensity
scores for each iteration. After running all the iteration, an optimal ggbpénsity scores are
chosen. We fit the GBM using the generalized boosted modeling package develbgeed at
RAND Corporation (McCaffrey, Ridgeway and Morral 2004). For example, by agithe
variables from the table 1, the figure 1 describes the boosting procedure useser@860stto

find the best maximum likelihood estimation of equation (4).

Figure 4.1: This graph depict the relationship between the average effect size and the number of iteians for the basic

estimation of propensity scores. The optimal poinis found after 18960.
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The table 4.4 shows the results from four different nonparametric propensgy scor

matching using general boosting model (GBM). The first two models (boost 1 and boost 2)
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include all variables within the dataset and only vary in the size of shrinkageiemeffSimilar
with boost 1 and boost 2, the second two models (boost 3 and boost 4) use same set of shrinkages
(0.01and 0.005), but dropped the variahby 1 floodswhich has t-test less that is less than
1.50 (t-test oLag_1 floods =0.4). We use these different algorithm settings to test the
sensitivity of our estimation.

Compared to the balance in mean difference of covariates before GBM stohena,
the table3 shows the matching leads to better balance. However, comparée netutts from
parametric models, relatively more unbalances are found. Boost 1 has 8 out of 16 sovariate
unbalanced. Using a smaller shrinkage value (0.005), 6 covariates were stdhgedan
Boost2. For the matching results in models witHaag_1 floodssimilar results are found when
checking the Boost 3 and Boost 4. 7 covariates remind unbalanced after matchings\iesre
some studies have shown that boosting outperforms logistic regression when it@omes
prediction (Bauer and Kohavi 1999, Friedman 2001). All four models using GBM could not
remove all significant difference between treated and non-treated graupsp@ication
confirms that good predictive ability may not result balancing matching (Rubin 2004).
suggests that there does not appear to be any benefit in using GBM for tresdfewnt
estimation in our application. Our estimation for CRS impact on property damageaedvitt
base on logistic model estimated propensity score.
4.5 Estimates the Effect of CRS on Property Damage Reduction

In cross sectional estimation, after propensity scores have been astitnatenpact of
the CRS creditable activities is calculated by an estimation of thegavigemtment effects for

the treated group:
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ATT = 12
=N

1

)

hi = D WY,
i

whereN; is the number of treated unit§; is the outcome (i.e. property damage in flood events)
for treated unit, Yy; is the outcome for control unjit and weighW (i, j) depends on the
distance between the estimated propensity score betweedrandijt Different matching
methods will use different weighting functions (Smith and Todd 2005).
In casual effect estimation, it is also reasonable to calculate thage/&€reatment Effect

(ATE):

p=13
-1y
1

where N is the number of all units. First, we need to know the treatment effect saups g

hi = D W)Y,
i

where the treatment actually applied (ATT). Second, we can also estirtat might have
happened if the treatment is applied on both groups (ATE). In this paper, we focus ontA&T as
guantity of interest when it is conceptually or algebraically simpler.

The estimation of standard errors of propensity score matching is obtained using
bootstrap methods. It is difficult to calculate the standard errors for #iemeet effect in PSM
by using conventional methods. Because the estimation should also include thee\cGuaita
the propensity score estimation, common support imputation, and the treated individuals
matching. Lechner (2002) suggests using bootstrapping as an alternative to asymptot
approximations for obtaining standard errors, confidence intervals, and P-valuess for t
statistics. Based on bootstrapping method, re-estimation a new sample of¢hszawill be
drawn with replacement and all the steps including from first steps (i.e. propsowmie,

common support, etc.). The repeating bootstrapping will lead to the distribution oéding m
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and standard error for the estimated average treatment effectsad aagdhe population mean
and standard error.

The table 4.5 presents the estimates of ATT from different paramrettahing models.
As the statistics show, the impacts by treatment (CRS participatiodiff@rent in term of
propensity damage changing cross all matching schemes. While resulisiid dgpn1 and
caliper) has different sign which may caused by large number of imbalanceatesaall
matching schemes in Logistic 2 and 3 show the property reduction in the sartiergitkat is,
the CRS counties has less property damage than non-CRS counties. Taking the regisiticn Lo
3 Kernel for example, average property damage for CRS counties is $14,83thianvtirat for
the non-CRS counties.
4.6 Difference-in-Differences Matching Estimates in Panel Data Structure

We should note that our study formulates the propensity score by using CRipataotic
across all 100 North Carolina counties from 1991 to 2005. The previous chapter has
demonstrated the unobserved factor, accounts for cross-sectional, time invetaasttfeat
influence the counties propensity to conduct flood hazard mitigation activitists exthe
analysis. For example, local government structure and perceptions of fleod,rezwell as
idiosyncratic features like history or culture, which are unobserved or unobsemweay affect
CRS patrticipation. The cross-sectional matching assumes that the mearoofeoate
independent from the treatment assignment after conditioned on the observalde Ascsoich,
it does not account for unobservable factor that may affect local hazardtioitigecisions. The
selection bias may be also caused by some unobservable characteristicsahshnly resulting
from the differences in observable factors in treated and control groups (Rubin 19@%aHec

Lalonde and Smith 1999). Therefore, the cross-section approach is problematic in our
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application, because some systematic differences between the treatedtasicgyooups may
exist even after conditioning on observables.

Heckman et al (1997) employed panel data and Difference-in-Diffe(&xio¢ method
to calculate the treatment effect. The DID matching strategy allmvwibd unobserved
heterogeneity in outcomes between the treated and control groups (Smith and Todd 2005). We
start with a simplest example to describe the DID estimation. The properagdatue to
flooding are observed for two groups of counties for two time periods. First group of sountie
participates into CRS in the second period of time but not in the first period. The second group of
counties doesn'’t participate into CRS in both periods of time. DID method subtraatethge
property damage changing between two time periods in the second group (non-CRSgnoup) f
the average property damage changing between two time periods in thelis{QRS group).
As the result, DID method removes the time-invariant unobservable effectapatatncaptured
by propensity score method. In their application, Smith and Todd (2005) demonstratéthat DI
estimator perform better than the cross-sectional matching method irdp#astructure.

In this section, we take advantage of our panel data structure. The DID propeasity
matching estimator assume:

E(Yor = Yo |P,T =1) = E(Yor — Yo' [P, T = 0)

And the DID estimator can be written as:

1
DID = N_lz {(Yut ~Youer) = 2 W@ ) (Ve = Yoﬁl)}
i i

where,W (+) is estimated by the cross-sectional matching estimators which hawveliseussed
before.t andt’ are the time indicator for after and before the participation of the RS-

Yoi) is the difference in outcome for treated unite after and before particip&his difference
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is then further differenced with respect to the after and before differetive wiatched control
groups,(Yljt — YOjt’)' DID matching is similar with fixed-effects and can eliminate the

unobservable individual specific effect.

In the table 4.6, the Kernel Matching of Logistic 2 and Logistic 3 aredbietlyo models
generally meet the assumption about ignorable treatment assignment {egceptable of
Collegg. The results of using Logistic 2 (Kernel) and Logistic 3 (Kerneth WiD estimation
are shown in Table (below). We first set bandwidth equal to 0.06 without trimming, wihineh is
default value in STATA software package. In this case we find $27,106 propertyalamag
reduction in CRS counties. Similarly, we find estimated $28,991.95 reduction in Logitic 3
Kernel. However, both estimations are not statistically significaetugé different bandwidth
and trimming value to test sensitivity of our estimation. Our results aedmidoth models are
quite sensible. The estimated average property damage reductions for GieSssaéstically
significant in case of the trimming=0.02 with different bandwidths (0.06 and 0.1). Heckmh
(1997) recommend adding the common support constraint to eliminate the subjeatsiigidg
common region. The figure 4.2 shows the estimation lacks of enough overlapping intéhe stra
which is greater than 0.8 in estimated propensity score, may explain the irmdngistlts. We
increase the common support constraint by rising trimming level to 0.1. Given th&t@ans
results from both Logistic 2 and 3, we estimate stable and statistiicgiffcant property
damage reduction effects for CRS. Moving from cross-sectional matchin@gtsh to DID of
panel data estimation, the effect of CRS on propensity damage reducteasexfrom the
range of approximated 14,837-17,537 to the range of 22,543-23,403. Since we prefer DID

estimation which allows unobserved heterogeneity, our estimation provide sal@ecevihat
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the cross-sectional estimation underestimates the property damageredfiett from CRS
mitigation projects.
4.7 Conclusions

The objective of the Community Rating System (CRS) is to encourage localuroines,
to take additional efforts to mitigate flood risk (over the minimum NFIP reapgings) and to
initiate new flood protection activities. Little empirical evidencesegihowever, to shed light on
the impact of the CRS on flood related property damage reduction. In essencjresam
treatment effect in an observational study is challenging. This chaptgrropesisity score
matching (PSM), an innovative analytic method, with empirical data from 100 Narthirga
counties to assess whether the CRS actually results in lower property daSgant? to
balance the differences in observable county characteristics betweean@R8n-CRS
participants (when treatment assignment is non-ignorable) and (under certationshellows
one to draw causal inferences as if group assignment were randomized.

Evidence of the effectiveness of CRS has been provided in a study by Brody, et al.
(2007), which indicates that flood damage can be decreased by approximately its%6dsing
CRS rating by 1unit. However, due to the endogenous nature of CRS mitigatiomesctivit
traditional regression models may prove inadequate and misleading. Instegughlywithne PSM
method to correct sample selection bias due to observable differences betwee8 the CR
participants and comparison groups across all 100 counties in North Carolina from 1995 to 2010.
After controlling for potential endogeneity, we estimate the effect of CR8aperty damage
reduction to be in the range of $14,837 to $23,403 per county, flooding event. This result
coupled with Brody, et al (2007) suggests that CRS creditable mitigation prapgxar to limit

flood related property damage. Still, the magnitude of the reduced damage appeat;s modes
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more research is needed to explore the robustness of these findings, and perhaps more
importantly, the effectiveness of different CRS mitigation activities.

Our study shows the potential for applying PSM in the evaluation of causateffect
hazard mitigation projects on property damage reduction. The selection of @s/frahe
first-stage probability model has impact on PSM estimation. The resditaie that elimination
of one variablel(ag 1 flood resulted in a better model fit. Although there is substantial
variation in the results, the findings show that all of the effects are in thedsaaTigon,
indicating that CRS effectively reduces (albeit somewhat modestlgvdrage property damage
during a flood event. However, we expect the matching of CRS and non-CRS counties for
comparison may be problematic due to a lack of balance in constructing the camiuéidnd
because of the possible influence of unobservable factors. For the DID exeecisel
evidence that time-invariant unobservable effects do influence selectiai mby cause
downward bias the estimation of treatment effects. From our preferred DIEffebeof CRS on
propensity damage reduction is in the range of $22,543 to $23,403 per county, per flood event.
While somewhat modest, these estimates of damage reduction would increaselgets of
magnitude when scaled up to the state level. CRS may also have impacts ofltited-r
fatalities (which we do not analyze due to very sparse data).

TheCRS Coordinator’'s Manualontains an easy-to-use checklist that allows local
officials to determine if their community currently undertakes enoughiteesivo attain Class 9
(>499 CRS points), and many recommended activities can be implemented fovalydiatr
up-front cost (e.g. public information activities Series 300-responding to inqoilgsntify a
property's FIRM zone can earned up to 138 CRS points) (FEMA 2007, page 120-3). Any mix of

flood hazard mitigation activities from credible CRS activities that tegub00 points is
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sufficient to attain a score of 9, and additional activities can lower the s¢enefdre, with low
cost of CRS participation, combining with the insurance premiums discount, the bé#is
from the reduction of property damage could be attractive to the local waitymT he
effectiveness of the various CRS activities, however, remains an impogantdr future
research. For example, it may be the case that cheaper and easatiomiéigtivities are less
effective at actually mitigating flood damage. Moreover, since our modelsardyrat for CRS
adoption (extensive margin) and we do not analyze the level of mitigation fgdflacdotal CRS
points — the intensive margin), our estimates can be viewed as conservative.

Despite the inconsistent estimation with small trimming level (less tdandiher results
are consistent across different models and show the CRS can effectivelythedpaeperty
damage at the county level. As such, our results provide some insight into the demelmpme
future evaluation strategies aimed at addressing the effectivene#sgation planning, but we
acknowledge that our propensity score estimation results are lackergis of balance and
overlap — important metrics for evaluating the efficacy of the PSM agpréaeping these
limitations in mind, we recommend that future studies explore different mefibrocisvariate
selection in the first-stage probability model. Increasing our sampleosize tulti-state level
may result in more balanced estimation of PSM and increase the accueapgcted
relationships between treatment and outcomes. Our method provides reseatbhresotantial

strategy to evaluate the performance of similar public policies.
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Table 4.1: Data Summary Statistics

Variable Mean Std. Dev. Min Max
CRS_dummy 0.170 0.376 0 1
PreCRS_floods 1.940 1.038 1 6

floods 0.297 0.573 0 4
Lag 1 floods 0.353 0.629 0 5
Precipitation 47.551 6.041 37.266 71.607
Water_percentage 5.225 12.325 0 69.280
CAMA 0.200 0.400 0 1
Avg_Tax 0.352 0.120 0.126 0.892
Student_Teacher 14.431 1.182 8.756 20.278
Crime_density 0.102 0.057 0 0.376
Hu_density 77.196 103.171 4.806 751.182
Income 40.468 8.297 22.499 68.248
Senior 14.514 3.492 5.562 26.262

College 14.944 7.522 6.770 51.989

CRS_muni 8.821 20.717 0 100
CRS_neighbor 14.644 16.212 0 75

NFIP_year 9.738 6.116 0 29
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Table 4.2: Sample Means before and after ParametriEstimation of Propensity Score Matching.

Before Match Logistic 1 Logistic 1 Logistic 1
Mean Mean lon1l Kernel Caliper (0.0
Variable Treated Control Control Control Control
2.6552 1.7893** 2.6618* 2.3371 2.4333
PreCRS_floods
(12.91) (1.72) (0.32) (0.57)
flood 0.42529 0.3745* 0.40196 0.23861** 0.22778**
oods
(2.05) (3.65) (2.09) (3.19)
0.39847 0.37934 - - -
Lag_1_floods
(0.4)
o 50.215 46.99%+* 50.347** 51.064* 52.127**
Precipitation
(8.9) (-3.62) (-1.73) (-2.95)
16.009 2.9537** 16.15%** 4 2257 3.2731%*
Water_percentage
(16.98) (7.81) (3.22) (5.11)
CAMA 0.31801 0.16303*** 0.31863*** 0.15552*** 0.11667*+*
(5.86) (5.52) (2.74) (4.27)
0.4745 0.3471%* 0.45752*+* 0.37474%* 0.38477**
Avg_Tax
(15.58) (5.02) (3.01) (3.93)
13.985 14.374%* 14.199*+* 13.86 13.601**
Student_Teacher
(-3.76) (-3.24) (1.57) (3.77)
] ) 0.13032 0.09271** 0.13462*+* 0.14958** 0.16166***
Crime_density
(10.05) (-5.52) (-2.55) (-4.51)
. 206.06 53.625*+* 199.07 164.48 189.29
House_density
(24.27) (-0.14) (0.97) (1.06)
44.64 40.481** 43.351 42.486 43.092
Income
(7.44) (0.71) (1.04) (0.78)
) 12.779 14.962** 12.852 13.203 12.893
Senior
(-9.34) (-2.4) (-0.66) (-0.58)
21.878 14.024** 12.583 20.123 20.845
College
(16.21) (0.23) (0.24) (0.54)
33.112 3.9783** 11.287** 15.717 12.792%*
CRS_Muni
(23.88) (7.3) (1.85) (4.62)
) 24.76 13.366*** 9.5728 14.239*+* 10.849*+*
CRS_neighbor
(10.4) (8.21) (3.56) (5.64)
15.475 10.211%+* 13.961** 13.687 14.533
NFIP_year
(11.96) (2.01) (0.43) (1.62)
N (Untreated) 996 - 269 269 269
N(Treated) - 204 67 66 63

Note: T-statistics of the difference in means betwthe treatment and control groups are in parseth@Chi-sq for
dummy variable). * statistically significant at th® percent level, ** statistically significantthie 5 percent level; ***
statistically significant at the 1 per cent level.
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Table 4.2 (continued): Sample Means before and aft®arametric Estimation of Propensity Score Matchirg.

Logistic 2 Logistic 2 Logistic 2 Logistic 3 Logist 3 Logistic 3
lonl %a(l)'gi; Kernel lonl %a(l)lgg; Kernel
Variable Control Control Control Control Control ool
3.299 2.3889 2.2506 2.7895 2.4286 2.1858
PreCRS_floods
(-1.51) (0.74) (0.88) (-0.92) (1.53) (0.92)
floods 0.28431 0.33909 0.1277 0.1358** 0.175 0.13026
(2.07) (1.3) (0.97) (1.98) (0.38) (0.72)
flood - - - 0.26173 0.575 0.23662
Lag_1_floods (0.58) (-0.89) (0.64)
Precipitation 47.061* 45.07 45.617 45.75 45.653 48.39
(1.74) (1.14) (0.7) (2.01) (2.15) (-0.04)
Water_percentag 5.4828 2.915* 6.9466 1.4828 0.13125 0.4383
- (1.67) (2.2) (0.64) (0.67) (1.49) (1.34)
CAMA 0.16049 0.11111 0.25804*** 0.16049 0.1625 0.162b
(1.56) (1.52) (2.63) (1.56) (1.53) (1.53)
Avg_Tax 0.5070 0.43557 0.41604 0.41002 0.373141 0.38935**
- (-1.07) (1.29) (0.52) (0.94) (-0.95) (1.97)
15.453 14.41 14.072 14.608 16.036 15.612
Student_Teacher
- (-1.41) (-1.04) (-0.88) (-0.095) (-1.74) (-1.01)
Crime_density 0.0618** 0.11454 0.11041 0.13344 0.13471 0.11567
- (12.04) (0.71) (0.4) (-0.24) (-0.86) (0.2)
House_density 84.984** 214.16 127.62 249.06 177.18 172.63
- (7.18) (0.07) (0.66) (-1.16) (1.78) (1.82)
Income 41.731 44,752 50.124 44.752 47.208 48.095
(0.61) (-1.48) (-0.82) (1.48) (-1.08) (-1.35)
Senior 12.049 10.179* 13.353 14.684* 8.3783* 11.458
(0.07) (2.12) (0.21) (-1.78) (1.98) (0.77)
College 16.961*** 29.917* 23.193* 10.389*** 28.586*** 29.52+*
(3.86) (-1.6) (-1.77) (5.59) (-1.84) (-2.18)
. 28.571 16.162 29.207 11.1271% 15.1948 8.1133
CRS_Muni
- (0.34) (1.21) (0.2) (3.06) (0.17) (1.63)
CRS. neighbor 26.832 35.926 23.402 18.772 22.381 16.509
- (-1.48) (-1.26) (-0.24) (1.14) (0.05) (0.81)
20 17.556 16.764 17.368* 14.571 15.164
NFIP_year
(-0.99) (-0.69) (-0.14) (-1.98) (0.8) (-0.98)
N (Untreated) 352 352 352 414 414 414
N(Treated) 80 89 88 163 136 217

Note: T-statistics of the difference in means betwthe treatment and control groups are in parseth@Chi-sq for
dummy variable). * statistically significant at th® percent level, ** statistically significantthie 5 percent level; ***
statistically significant at the 1 per cent level.
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Table 4.3: Parametric Propensity Score Estimation Y logistic functions.

Variables Base Logistic Logistic 1 Logistic 2 Logitc 3
0.2865*** 0.0017 0.015 0.3241 %
PreCRS_floods (0.0172) (0.0290) (1.3467) (0.1098)
floods 0.2381 0.2171%+* 0.1475 0.1917
(0.2242) (0.0817) (0.2778) (0.2773)
-0.1452 _ . -0.3045
Lag_1_floods (0.2147) (0.2601)
Precipitaion 0.1967*** 0.1986*** 0.2422%* 0.2265***
P (0.0277) (0.0546) (0.0635) (0.0383)
Water percentage 0.1821*** 0.3516*** 0.4805*** 0.4290***
P 9 (0.0227) (0.1368) (0.1103) (0.1330)
CAMA -4.6479%= -2.2586 -2.7109** -2.4229
(0.9834) (2.2990) (1.2643) (1.7584)
Avg Tax 4.1725 6.1228** 8.9536** 7.6284*
9 (3.0493) (1.1384) (4.4768) (4.4257)
Student Teacher -0.4976* -0.65* -0.7692** -0.7830***
- (0.2024) (0.2646) (0.2867) (0.2826)
Crime densit 6.2496** 6.5307* 8.1586** 7.9426*
— y (2.2233) (2.8214) (3.3727) (3.1071)
House densit 0.0179*** 0.0223 0.0248*** 0.0233***
— y (0.0023) (0.0032) (0.0033) (0.0034)
Income 0.0029 0.0264 0.0115 0.0186
(0.0306) (0.0408) (0.0428) (0.0381)
Senior -0.3552*** -0.3546*** -0.3391 *** -0.3628***
(0.0951) (0.1243) (0.1098) (0.1161)
College -0.0176 -0.0227 -0.0125 -0.0149
9 (0.0279) (0.0369) (0.0376) (0.0408)
CRS Muni 0.0741%** 0.1014*** 0.1001*** 0.0996***
~ (0.0133) (0.0220) (0.0203) (0.0214)
CRS neighbor 0.0375*** 0.0163 0.2247*** 0.0927**
_Ne1g (0.0090) (0.0110) (0.0624) (0.0393)
NEIP vear 0.0536* 0.1425%* 0.1693*** 0.1635***
= (0.0287) (0.0333) (0.0404) (0.0363)
s -0.0068
*| —_ - —
PreCRS_flood*Precipitation (0.0270)
0.0065 0.0052
A\ - j—
Water_percentage”2 (0.0032) (0.0114)
0.00002
A\ - — —_
Water_percentage”3 (0.00013)
-0.6033* -0.5815**
*1 p— —_
CAMA*Water_percentage (0.1699) (0.2758)
0.2716 0.4621
N\ j— —
Avg_Tax"2 (0.2240) (0.5301)
B _ 0.0325 B
Student_Teacher"2 (0.0834)
. . -0.00367
X —_ - —
Student_Teacher*Crime_density (0.0043)
. -0.0083*** -0.0017**
-/\ f— —
CRS_neighbor"2 (0.0022) (0.0008)
. 0.00008***
-\ —_ - —
CRS_neighbor"3 (0.00002)
Constant -0.6416 2.2154 2.1790 3.1765
(2.6396) (3.6170) (3.2950) (3.3507)
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Table 4.3 (continue): Parametric Propensity Score &imation by logistic functions.

Base Logistic | Logistic 1 Logistic 2 Logistic3 |
Log likelihood -257.409 -257.443 -235.024 -241.070
Pseudo R2 0.6271 0.6271 0.6596 0.6508
LR chi-square(16, 15,23,22) 865.93 865.87 910.7 .98
P-value of LR 0.000 0.000 0.000 0.000
N 1485 1485 1485 1485

Note: standard errors in parentheses. * meandfbastimation is significant at 10%; ** means ttheg estimation is
significant at 5%; *** means that the estimatiorsignificant at 1%. Pseudo R-square is used to shewexplanation
power of the model. The pseudo R-squared ranges@rto 1 with higher values indicating better ffitkkelihood
Ratio (LR) tests the joint significance of all ci@Ents. LRs are distributed chi-squared with degrof freedom
equal to the number of variables added to the model
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Table 4.4: Sample Means before and after General Beting Model Score Matching

Before Match Boost 1 Boost 2 Boost 3 Boost 4
Variable Mean Mean shrinkage=0.01  shrinkage=0.005 shrinka@45 shrinkage=0.00%
Treated Control Control Control Control Control
PreCRS_floods 2.6552 1.7893** 2.04* 2.08 2.041%* 2.042**
(12.91) (1.949) (1.27) (3.69) (2.607)
floods 0.42529 0.3745* 0.373 0.311 0.305* 0.307
(2.05) (0.731) (0.52) (1.89) (1.11)
Lag_1 floods 0.39847 0.37934 0.353 0.332 - -
(0.4) (0.674) (1.046)
Precipitation 50.215 46.99*** 47.806** 48.452%* 48.5%* 48.552**
(8.9) (2.525) (3.188) (3.054) (2.933)
Water_percentage| 16.009 2.9537** 4,393*** 6.901** 7.12* 7.199
(16.98) (6.474) (2.528) (2.235) (1.38)
CAMA 0.31801 0.16303*** 0.242 0.262 0.26 0.26
(5.86) (1.572) (0.876) (0.859) (0.841)
Avg_Tax 0.4745 0.3471%* 0.369 0.401 0.301** 0.352
(15.58) (1.271) (1.855) (2.16) (1.034)
Student_Teacher 13.985 14.374%* 14.399 14.239 14.203 14.19
(-3.76) (-1.84) (-1.061) (-0.862) (-0.79)
Crime_density 0.13032 0.09271*** 0.113*** 0.117** 0.127 0.101*
(10.05) (2.73) (2.528) (1.869) (1.912)
House_density 206.06 53.625%+* 93.689*** 88.03*** 88.044* 87.39%
(24.27) (5.738) (6.442) (2.098) (2.123)
Income 44.64 40.481%** 43.551 42.204* 42.17* 42.125*
(7.44) (1.159) (1.781) (1.66) (1.708)
Senior 12.779 14.962** 13.747* 14.15%* 14.18 14.223
(-9.34) (-2.411) (-2.436) (-1.291) (-0.953)
College 21.878 14.024** 17.671* 17.983 18.009*** 17.975%*
(16.21) (2.415) (1.82) (2.642) (2.659)
CRS_Muni 33.112 3.9783** 8.977 10.314 10.002 9.91
(23.88) (0.223) (0.193) (0.294) (0.376)
CRS_neighbor 24.76 13.366*** 18.989 18.643 18.724** 18.767**
(10.4) (0.32) (0.95) (2.376) (2.405)
NFIP_year 15.475 10.211%* 12.52* 11.652 11.552 11.519
(11.96) (1.949) (1.37) (1.62) (1.233)

Note: T-statistics of the difference in means betwthe treatment and control groups are in parsath@Chi-sq for dummy
variable). * statistically significant at the 10rpent level, ** statistically significant at thepercent level; *** statistically

significant at the 1 per cent level.
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Table 4.5: CRS Effect on Propensity Damage Reductig Cross Sectional Propensity Score Matching

Treated Control Difference S.E. t P-value
Unmatched Sample
321,464 291,723 29,741 63279.12 0.47 0.643
Model Matching Treated Controls Difference S.E. t Pvalue
Logistic 1 lon1l 244,525 209,591 34,934 79780.23 0.44 0.664
Logistic 1 | Caliper (0.063)| 243,853 240,057 3,796 39282.7[7 0.1 0.92(
Logistic 1 Kernel 281,818 282,584 -766 14244 511 -0.05 0.961
Logistic 2 lonl 293,625 308,700 -15,074 9385.86 -1.61 0.123
Logistic 2 | Caliper (0.071)| 233,147 245,684 -12,537 9702.96 -1.29 0.212
Logistic 2 Kernel 244,525 259,648 -15,123 7070.89 -2.14 0.045
Logistic 3 lonl 294,525 312,062 -17,537 6407.02 -2.74 0.013
Logistic 3 Caliper(0.061) | 220,525 232,362 -11,837 9538.35 -1.24 0.229
Logistic 3 Kernel 244,525 259,362 -14,837 8288.70 -1.79 0.089

Note: Property Damage is in 2000 dollar.
Difference = Property Damage in CRS — Matched Rtgfigamage in hon CRS counties.
Standard Errors are calculated by bootstrappindpoaget
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Table 4.6: CRS Effect on Propensity Damage Reduoti, Difference-in-Difference Matching

Logistic 2 (Kernel) Logistic 3 (Kernel)
Property Damage _ Property Damage
pery - g S.E. t P pery - 9 S.E. P-value
Reduction value Reduction
Bandwidth=0.06
No Trimming 27,106 18934.78 | -1.43 0.1679 -28,919 23514.18 3-1.20.232
Bandwidth=0.01
T”(r(‘)“(‘)"zr;g 22,146 13927.64| -1.59 0.1275 23,515 17950.68 1-1.30.206
Tr”(‘gml')”g -23,442 13471.29| -1.74 0.0972 22,543 10689.27 1-2.10.048
Bandwidth=0.1
T”(r(‘;%"zr)‘g 23,965 15974.36 | -1.5 0.1492 22,145 18002.31 -1.2®.233
T”?aml')”g 22,767 114995 | -1.98 0.0613 23,403 9174.874 -2.56.0191

Note: Property Damage Reduction is in 2000 dollar.
Standard Errors are calculated by bootstrappindpoaet
STATA program default: Bandwidth=0.06, no trimming.
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Figure4.2: This graph depicts the overlapping betwen the CRS and non CRS counties with similar
propensity score.

Logistic 2: Propensity Score Estimation Logistic 3: Propensity Score Estimation

T T T T T T
4 6 4 ) 6
Propensity Score Propensity Score

‘_ Untreated [ Treated ‘ ‘_ Untreated [ Treated ‘

Note: The treated group represents CRS counties; ghuntreated group represents non-CRS counties
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Chapter 5: Estimation of a Dynamic Panel Data Model: Policy Learning in Haard
Mitigation

5.1 Introduction

Mandates for environmental management often originate at the highestdével
government. Commitment at the local level, however, can vary widely, and this ‘cosmhit
conundrum’ can persist within top-down coercive arrangements as well asato@pesk
management agreements within the federal-state-local nexus. (Burbyagritb®B). Under the
authority delegated by federal and state governments, local governmenimaréypr
responsible for zoning, planning, and managing hazard mitigation activities viignin t
jurisdictions. The average tenure of local government officials and manggpecsl(y 7-8
years) is generally adequate to allow for the interactive study alf poticies and to monitor
feedback from management practices. Therefore, local governmentseare athjust their
mitigation policies and planning regulations to react to periodic natural hazard suehtas
floods, hurricanes, and earthquakes, and from changing environmental and socio-economic
conditions. Brody, et al. (2009) describe this policy evolution in response naturétdisessa
result ofpolicy learning a type of adaptive management approach. In adaptive management, the
policies are designed as hypotheses, and policies are implementedrasepédo test those
hypotheses (Holling 1995). Cumulative learning can occur with opportunity foatdgerror
studies (Lee 1993).

Following Brody, et al.(2009), we consider policy learning with applicatiototalf
hazard mitigation projects. It is important for local government to maintdiitstand
transparency in planning and policy-making processes, so that agents andonstdait form
reasonable expectations upon which to make development and investment decisions. As a resul

the establishment of a new framework of hazard mitigation presents a cabkiddallenge,



involving a change of momentum which requires commissioner meetings, pubiigseand
ordinance revisions, all of which are costly. Nonetheless, Weir and Skocpol (1985)hatghe t
goals and objectives that policy makers pursue are influenced by the figiedneaction to
previous policies”. Hall (1993) contends that policies respond more to the consequenseés of pa
policy than to current social and economic conditions. Therefore, we postulate Hrat haz
mitigation policy learning can be described in terms of a dynamic mechavhich is
characterized by the presence of a lagged dependent variable among s8soregre

Our dynamic model was first introduced by Balestra and Nerlove (1966)nmagsthe
demand of natural gas at the household level. They argue that gas consumpti@tyisatéded
to the stock of gas appliances in existence and that to a large extent it is goyesueld stocks.
Therefore, the behavior of the consumer can be best described in terms of & dyeelnanism.
In time-series analysis, a lagged dependent variable is included in the maoeluntdor
behavioral persistence — “the past can affect the future, but not vice versat(MigeR002).
In the previous chapter, we applied panel data models to control for unobserved individual
heterogeneity. Thdynamic panel modelllows for modeling both dynamics and individual-
specific effects. It thus enables us to parse out whether local affec@learning from the
planning experience to pursue better mitigation outcomes or whether unobservedcke
across counties are more persistent in their influence on mitigatiortiastivi

Guijarati (2002, chapter 17) concluded three main reasons for lagged phenomena and
dynamic models in a production framework: (1) psychological reasons: with dbhabit,
people do not change their behavior immediately following a external shock (e.g. income
increase or price decrease); (2) technological reasons: technology maw be atlopt or

difficult to implement; (3) institutional reasons: institutions may linstir@omic choices and
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speed of adjustment. Within the context of comprehensive planning, policy learning not only
stems from the outcome of current mitigation project buffering the advepsei from the flood
events. It may be also derived from alteration of the policy goals and mutuadsiebat the

core value of the policy (Brody 2003). As a result, we consider policy learnsunastent over
short periods of time and dynamic in nature. The dynamic panel model spbotielagged
dependent variables and unobserved effects which enable us to test for a type afdthvami
frequently occurs in community hazard mitigation (i.e. find out if past commuragrtha
mitigation policy directly affects current policy) and to see whether iddalispecific effects
drive this policy change over time.

This chapter addresses the dynamic nature in flood hazard mitigationlpalicyng by
examining the patterns in score of Community Rating System (CRS) undeattbeall Flood
Insurance Program (NFIP) across all 100 counties in North Carolina from 1995 to 2010 wit
controls of flood experience, hydrological risk factors, local capacity, amgesonomic factors.
CRS is designed to encourage local governments to do more to reduce flood loss#shphote
residents, and improve flood insurance coverage. By earning points for acthatiex¢eed
NFIP standards, CRS communities obtain reductions in flood insurance premiums for their
residents. While the CRS has been recognized as a successful and mature pitbgrahew
NFIP, the Federal Emergency Management Agency (FEMA) is seeking topl@veovative
ways to enhance its operations and outcomes (CRS strategic plan 2008-2013). Thégoal of t
study is to provide an empirical verification of whether the dynamic mecharwista | the
(self) policy learning process within the CRS communities. The empirarece will provide
advice about policy design and further information for those who seek a better undegsténdin

the relationships between policy formation and outcomes. The following sectimmesahe
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existing literature on policy learning. We utilize CRS program as an ieaigerget for
investigating learning within the context of the hazard mitigation planning.
5.2 Literature of Adaptive Management and Policy Learning

The concept of policy learning has been well documented in the previous literature
(Helco 1978, Sacks 1980, May 1992, Holling 1996, Brody 2003). A conventional theory of
conflict-oriented assumes policy formulation and implementation are drivesniicts’ in a
given governmental structure and changing socioeconomic environment (Sa®3afieBennett
and Howlett 1992). The notions of learning suggest a new approach to public policy-making
with consideration of substantive policy information processing and feedbakudisahat
government agents can modify their actions by learning from and intagptiedir previous
policy initiatives. The notion of learning from public policy has been conceptddhy a long
list of literatures, including “political-learning” (Heclo 1974), “governthkearning” (Etheredge
1983), “policy-oriented learning” (Sabatier 1987), “lesson drawing” (Rose 19%@tjafs
learning” (Hall 1993), and “instrumental learning” (May 1992). While previous achalorking
in different fields utilize different terms to conceptualize “leariiad) notions imply the policy
makers or political community take lessons from the observation of policy expeaisthce
problems, which lead to change in public policy-making (Bennett and Howlett 1992).

Policy development can be best understood as a process of collective pehticald. It
leads to alterations in behavior reflected in changed social policies and neyipadivations.
Therefore policy must be regarded as both an independent and dependent variable (Heclo1974)

In his study, Sacks (1980) analyzes the pattern of public choice in social pohtg Btate-

" The policy change “will ultimately entail a setjoflgments that is more political in tone, anddliéecome will depend, not only
on the arguments of competing factions, but orr fp@sitional advantages within a broader institugicdramework, on the
ancillary resources they can command in the rekes@nilicts, and on exogenous factors affectingpgbeer of one set of actors
to impose its paradigm over others.”(Hall 1993)
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centric perspectiVe His work support Heclo’s conclusion that the interaction of pressure groups
and government has far less influence on the outcomes of public policy. The formulation of
policy objectives and the choice of strategies for influencing societavioelcauld be better
explained by a “statist” approach. Following Heclo (1974), Hall (1993) studiesmthee of

social learning aligning with the theory of state:

“Their central contention (for the theory of state) is that the state, broadly understood as the
executive, legislative, and judicial apparatus of the nation, has an important impact of its own on
the nature of public policy and considerable independence from organized social interests and

the electoral coalitions that might otherwise be said to drive policy.”

His work, however, shows that social learning can neither be described dntieely
learning process taking place inside the state itself, nor by socialpgesMay (1992) defines
policy learning as the policy instruments or designs which are preferitbe ipolicy domain
with formal evaluation and limited comparison. While, rather than systematiy poltution,
trail-and-error procedures create the basis for responding to public protitlerssif-correction
is far from automatic due to the complexity of the political reality ancuatiah of policy
performance. Therefore, the political process should be seen as suscepaitedependence
(Pierson 2000).

While previous literatures on policy learning are in agreement on the principletingba
previous policy efforts on current goals and objectives that policy makers pilvsydave

different descriptions of the learning process. As Heclo (1974) has noted, tlyegotdics, or

8 The state-centric suggests the policy is madeuipofficials, which emphasizes the autonomyhaf state from societal
pressure (Hall 1993).
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‘policy middlemen’, who are able to influence policy making learn about the sgbstad
process of past government efforts. This conceptualization is, however, too geheraked in
empirical studies (Bennett and Howllett 1992). By adapting elements of indiviaiial a
organizational learning to policy studies, Etheredge and Short (1983) descriéear tied
process in government as reflecting the intelligence and sophistication oistdmive officials,
at both the senior and junior levels of public service, and how administrative capitesedoé
to knowledge accumulation and value change — both of which can enhance the effeabiveness
government actions. While some political and sociological variables, such ast @ative
political conflicts, input from the news media, and methodological innovations from sityver
research, may also influence the process, policy makers appear to predigraitiast goals
and techniques of policy in response to past experience and new information (Hall 1993).
Sabatier (1987) expands the agent of learning from “policy middlemen” (Hewalicgtate
officials (Etheredge) to a policy network. He argues that “policy-cetkigarning” is a major
determinant of policy change. Policy change due to learning is best seen atedzachby
fluctuations in dominant beliefs, which are influenced by experience within a goliey area
over time. With limited capacities and time, policymakers in cities, reggmeernments, and
nations could draw lessons from how their counterparts elsewhere respond, ang éffecha
how they deal with their own problems.

In summary, the literature on “policy learning” suggests that policy makersahave
opportunity to learn and improve policy so that future decisions can proceed from bettef bas
understanding. The CRS score is a proxy of the quality of local flood hazard imnitigatl
planning. Since all CRS creditable activities are voluntarily, thegeghanCRS scores reflect

how the local policy decision making groups learn from previous adopted floodplain icagulat
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which can be a way to measure the policy learning in flood hazard mitigation plahineng
following section presents details on dynamic panel data model measurmgleatning by
using CRS score as both an outcome variable and a casual variable for local figatiiomi
planning
5.3 Methods

The estimation approach underlying the dynamic model described in this sgetion i
consideration of CRS mitigation policy in a policy learning framework (i.eCR8 mitigation
is not only influenced by flood experience, hydrological risk, local capacity, areesonomic
characteristics, but also closed related to the previous CRS mitigatios efidrbutcomes). The
purpose of this section is to discuss the specific approaches that are apfuicaslienating a
dynamic model with panel data. We start with a basic dynamic panehddt with
unobserved heterogeneity:

Vit = VYit-1 + XieB +Vie, Wie = ¢+ A + wye, ) 1)

where the subscriptdenotes théth county ( = 1, ...,100) andt denotes the th year ¢ =
1,...16). y;; denotes the population weighted CRS points for each county from 1995 to 2010
(see Appendix for details);; is a K x 1 vector of time-varying exogenous regressors, including
the constant ternf} is a K x 1 vector of parameters to be estimated a time-constant
unobserved effect for countiyc;~N (0, 52); A,is a time-period effect, that is assumed to be a
fixed parameter (estimated as coefficients of time dummies foryeachn the sample), ang;
is random disturbance terms,, ~N (0, 5.2). Variables inx;, are assumed to be strictly exogenous
conditional on the unobserved effect, but may be correlateccwiitihen the scale factpr+ 0

the current statg;, depends on last period’s statg_,, after controlling forc; andx;,. If y = 0,
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it meansy; ._;does not help to predigt, after unobserved heterogeneity has been controlled
along withx;;.
5.3.1 Ordinary Least Square (OLS)

The Ordinary Least Square (OLS) estimatpendf are consistent if equation (1)
satisfies the assumption that the residual is not correlated with any otfesssorg. But this
assumption is violated in the model with lagged dependent varjape)j. Consider a two-
period time lag:

Yit-1 = VVit—2 T XieB + Vg1, i =1,.. Nt =1,..,T, (2)
Since the unobserved effect appears in both;, andv;,_,, y; .—1 is correlated withy;, causing
serial correlation in the error termstr(v;, vis) # 0, for t # s), which seriously biases the
OLS estimator.
5.3.2 Fixed Effect (FE) and Random Effect (RE) Estimators

Standard panel data estimators either wgas a fixed parameter (rendering it orthogonal
to explanatory variables) or as a random parameter drawn from a specifixiticgtr(with
unknown parameters). Generalized Least Squares (GLS) is used in FE antimR&oest to
correct for the serial correlated errors as well as for panel heteretkggaEven standard panel
data estimators, however, are not appropriate for estimating model (Ihevitbrrelation
between the lagged dependent variaplg_() and the component disturbaneg), even if it is
assumed that;; is not itself autocorrelated.

For the fixed effect estimator, théthin transformatioRwipes out the unobserved effect,
(Wooldridge 2002, page 267). Therefore, without lagged dependent variable, fixed effect

estimator is the best linear unbiased estimates (BLUE) as laggiasormally distributed with

*Yie — 51 = (cie — %) + wie — Uy, whereyy, = X1_1 y;o /T, Xip = Yoy x4 /T, Uy = Dty Use/T
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mean 0 and variance matdﬁitINT. In the dynamic model, however;,, containsu; ._; which is
correlated with lagged dependent varia(t},}gf,t_1 — 37i,t—1) wherey; ;1 = X1 Vi1 /(T — 1)
will be correlated with;; — u;;) even though;; are not serially correlated. Therefore, fixed
effect estimation generates biased coefficients. Nickell (1981) deriveegagssion for the bias
when there are no exogenous regressors, showing that the bias approacheB apprceches
infinity. Thus, the fixed effect estimator only performs well wier . But in our analysis, N
is large (100 counties) and T is fixed (16 years), so the within estimatosésil@ad

inconsistent. For random effect estimator, quasi-time demanded transfor(o@gloln— eyi)

will correlate With(ul-,t_1 — Hﬂi)lo, so the random effect GLS estimator is also biased in the
dynamic panel model (Wooldridge 2002 chapter 10).
5.3.3 Anderson-Hsiao Estimators
Hsiao (1986) develops a maximum likelihood estimator for first-order augsisegn,
AR(1), panel data. The distribution of dependent variables, however, depends upon the initial
conditionsy; ;. A wide variety of likelihood functions with different assumptions about the
nature of the initial conditions can be inconsistent when the initial conditions prooess is
specified. In addition, many previous studies (Balestra and Nerlove 1966, Maddala 1971, and
Nerlove 1971) have demonstrated poor performance of maximum likelihood estimatigh (M
for panel data that has a large number of cross-sectional units, but only a fexeioals.
Anderson and Hsiao (1981, 1982) introduce an instrumental variables estimator for
dynamic panel data models which requires much weaker assumptions about the initia
conditions. It removes the unobserved effect by first differencing and them(ysi_, — y; ;—3)

ory; .—, as an instrumental variable (IV) for;¢—1 — y;+—2):

1
10921_[ oi ]2

02+Ta?
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Yie = Yig—1 = Y WVit-1 — Yie—2) ¥ BCie — Xie-1) + (Wie — Uie—1) (3)
The variablegy; ,—, — y;.—3) andy; ., are correlated witlyy; .-, — ;) but neither of them
are correlated witlu;; — u; 1), as long asu;, are not self serially correlatéd Thus, the
Anderson-Hsiao estimator can provide for consistent estimatipraodf (Hsiao 1986). The
standard application of the instrumental variables technique can be found in Wooldridge (2002)
(page 83-86). Arellano (1989) provides evidence that the use of differences insl;r,(ynmt—
Yit-3), has a singularity point and very large variances over a range of paraneter va
particularly, whery — 1. The estimator that uses levels instruments,,, has no singularities
and much smaller variances, which is preferred in our application. For sijplieitransform

the model (3) to:

Yie — Yie-1 = O(Wir = Wir—1) + (Wir — Ujr—1) (4)
whereé = (y ﬁ) andw; = (¥it—1 xit)"

The instrumental variables estimators of Anderson-Hsiao is given by

N T N T
) ( ZzitAWi’t)_lzzzitAYit
=1

i=1t=3 i=1t=3

where

Zit = Vit—2 Ax;,) denotes the instrument set as periatbd(= x;; — Xit-1)-
Awie = Wi — Wi

Ayit = Yit — Yit-1

The asymptotic variance matrix &fis:

11 See later discussion of the Arellano-Bond tesfifst-ordered serial correlation.
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Avar(§) = H-'FH™?

where
H = (T — 2)E(z;:Awy,),
F =0,[2(T - Z)E(Zitzit') - (T - 3)E(Zitzi,t—1') - (T - 3)E(Zi,t—1zi,t,)]-
5.3.4 Arellano-Bond Estimators

Building upon the innovative work by Anderson-Hsiao, Arellano and Bond (1991) use a
Monte Carlo experiment to gauge the performance of the Anderson-Hsiaoméatestagainst
Generalized Method of Moments (GMM). They find GMM improves the efficiency of
estimation because it uses all available lagged dependent variables and laggeoex
regressors as instruments — information that the Anderson-Hsiao \a&stineglects (Baltagi
2005, page 136-137). The GMM is a generic method for estimating parameters in the mode
where the parameter of interest is finite-dimensional, whereas thadpk ©f the distribution of
the data may not be known, and therefore maximum likelihood estimation is not applit&ble. T
first-differenced GMM estimator for the AR(1) model has been discussed in presgmasch
(Holtz-Eakin, Newey and Rosen 1988, Arellano and Bond 1991).

Let transformed residuals satisfy the population moment condi{@Au;,] = 0 (t=
2...T), whereZ,, is a set of instrumental variableAy;, is differences of random disturbances.

For notational efficiency, we stack the time pernida following transformation:

Vi1 Ax;3 Yiz2 Ax;3 Ayis
Zi = : : X; = : : Y; = :
Yit-2 Axpr Yir-1 Axir Ayir

12 The panel data structure provides a large numbiestsumental variables in the form of both laggediogenous and
exogenous variables.
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Z X1 Y

X = Y =

Zn XN Yy

Therefore, the sample analogue of the population moment condifiBpAu;.] = 0)

that can enter the construction of a GMM estimator is:
~Z'(Y — X8)=0 (5)
The optimal GMM estimator is then given by:
Seum = (X ZANZ X)X ZANZ'Y

Arellano and Bond (1991) suggest using
N
1 ! -1
Ay = (NZ ZiHZ)
1=

to produce the initial consistent estimator (one-step GMM estimator), where:

[2 -1 0 0 - 0]
-1 2 -1 0 - 0]
H=l0 -1 2 -1 - ol
[o 0 0 0 - 2J

(H is a (T — 2) square matrix with 2 on the main diagonal, -1 on the first off-disgomzeros
elsewhere.)
A consistent estimator of the asymptotic covariance is given by:

Est.Asy.Var[§] = (X zvyz'X)™!
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whereVy = X, Z{ (Aw) (Aw;) Z)) ™t

Under heteroskedasticity of the disturbances, the two-step GMM estiniatane first-

differencing can be obtained by change #hgto:

N
(12 70000, Z,)
N i=1
where theAdl; are the estimates of the first-differenced residuals.

The one-step and two-step GMM estimators are asymptotically equivedeheffirst-
difference estimator (Arellano and Bond 1991). Results from simulation studiessstiggtwo-
step GMM estimator produces efficiency gains with heteroskedastic distbbut this
estimator has the disadvantage of relatively slow convergence to its asgrdsiotibution. The
asymptotic standard errors associated with the two-step GMM estimaitttershmple case can
be seriously biased downwards. Several previous applied studies focus on theroesdtef
step estimator, since it appears to be more reliable for making inferersreall samples
(Arellano and Bond 1991, Baltagi 1995, Blundell and Bond 1998, Wawro 2002). With this in
mind, we prefer to report the results for the one-step GMM estifiator
5.3.5 Testing the Specification

The consistency of estimation in the previous discussion depends on the assumption that

the random disturbanas; is serially uncorrelated. In equation (1)yujf is first-ordered serial

correlation(u; = pu; ;-1 + &, €;¢~1.1.d), then theAu;, in equation (3) is second-ordered

13 1n this chapter, our studies have found that opp-sistimator outperforms the two-step estimataierms of
producing a much smaller standard errors of thenagts.
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serial correlatelf. As a resulty; ., are no longer valid instrumental variable (gf,_, —
Yi¢—2) in equation (4). Therefore the consistency of the GMM estimator relies tothéne is no
second ordered serial correlatiorujp. Arellano and Bond (1991) propose a test for the
hypothesis that there is no second-order serial correlation in the random distufienisest
statistic can be found in equation (8) and (9) of Arellano and Bond (1991, page 282). The
shortcoming of this test is that it is defined only it 4.

Whent > 3, the model is overidentifiéd Arellano and Bond (1991) use Sargan’s test of

over-identifying restrictions in the moment conditi@fZ; Au;.] = 0. The function is given by:

s—uZ(ZZ ,0,2;) Z1h~ X(pK1)

whereti is the vectors of estimated first differenced residual faratdT. p is the number of
columns in vector of instrumental variabl&s K — 1 is the number of explanatory variables.
has an asymptotic chi-square distribution under the null hypothesis that the momerdre®ndi
are valid.

5.4 Data
The list of CRS communities and their 2008 CRS scores are available on the FEMA

website fttp://www.fema.gov/pdf/nfip/manual200805/19crs)pdhe structure of NFIP rests on

a multi-jurisdictional configuration which allows for participating countiegns, and cities.
Therefore, the extent and timing of enrollment in CRS for county and municipalitiein the
county may vary. Since the local CRS score reflects the population direcgitivg from

mitigation efforts, we population-weight their CRS scores and calculaggirgated score for

14 — — j—

My = Usp — Ujpoq = Pljpoq + Er — Py — ¢ = P(Uge—1 — Uje—2)
15 In an overidentified equation, the number ofrimstental variables is greater than the number dbgenous explanatory
variables.
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the county and nested municipalities as a single unit. This calculation viaseet for all 100
NC counties (and nested municipalities) for 1995 to 2010 (see Appendix 1 for details).

The table 5.1 presents a summary of the variables to be used in our analysis. The
explanatory variables are organized under three broad categories. First, plevdeyénts
were collected from National Climate Data Center (NCDC) and are @dposccount for the
severity of community flood hazard experience. We postulate that greateichisexperience
with floods will motivate more stringent hazard mitigation, increasing the €€ef. The first
different GMM model requires the use of time-variant data. As such, we use aariant risk
index to account for risk characteristics of each county. We createkliadex variable by
multiplying annual precipitation with the percentage of land in the local &gdood Hazard
Area (SFHA). The average annual precipitation (1995-2010) at weathenstaithin the
county is provided by the State Climate Office of North Carolina. The ditptad hazard maps
in the North Carolina Floodplain Mapping program are available only back to 2008. Given the
rainiest and more floodplain counties face a higher probability of riverine astdffbods, which
could be a catalyst for local flood hazard mitigation, we expect county with iigkéndex to
be more likely to engage in hazard mitigation due to greater benefit of BeI€8&ible projects
accruing to more local residents. But since counties with large floodplainsereturie
resources to conduct rigorous flood mitigation planning, higher risk index could r&éguce t
political incentive for intervention.

Next, we include five variables reflecting local capacity for hazargyation and
competing priorities. Data on per capita county property taxes, which is edlfeain NC
Association of County Commissioners Budget & Tax Survey, represents locahigaver

financial resources available for hazard mitigation projects. We expectewith greater tax
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revenue to be more likely to engage in flood hazard mitigation. In local governheent, t
available funding for emergency management and hazard preparednespatant to the
community’s floodplain management staff and to its participation in the CRSxpeetehe
counties with greater percentage of emergency management expenditugeraral
government expenditure are more likely to improve their CRS score. Competintgsrion
the other hand, may crowd out hazard mitigation. The benefits of hazard mitigatanyare
realized after a disaster occurs and are difficult to quantify, but thearestscurred
immediately and are easily calculated. Therefore, other problems, sjpthcasation, control of
crime, and improving the quality of education, usually garner more attention treua ha
mitigation projects. The pressing needs of such “here and now” issuestraalyrabre time,
money, and other resources and can crowd out hazard mitigation initiatives §Rdatendell
2000).We account for these other potential county policy priorities in the regressiomsnde
collected the unemployment rate from North Carolina Department of Comniérceata use
the ratio of enrolled students to instructional staff in county public school to méasaire
school quality (Card and Krueger 1992). These data were collected from NC Depafttme
Public Instruction. The crime rate is a proxy for the competing concernsrwgnal activity in
the county; the number of reported crimes (including murder, forcible rape, ypobggravated
assault, burglary, larceny, and motor vehicle theft) per household was derived@rom N
Department of Justice.

Lastly, we include factors that account for the effect of community deaigtcs on
local hazard mitigation. We include the population density, median household income, a
migration dummy variable, and the percentage of senior citizens. Populatioly deaaitulated

as the total population in a county divided by the county area in miles. Population data is
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collected from U.S. Census. The data on land area of each county is derived fronngveragi

1990 and 2000 U.S. census data. We expect more densely populated areas to be more likely to

engage in hazard mitigation due to greater benefit of flood protection accruing tmoadre |

residents. Annual data on median household income is not complete from U.S. Censuy at count

level. Thus, we use estimates from the Department of Housing and Urban Devel@o@t
which are prepared as part of the process of updating eligible income linthe fmymmunity
development program. Median household income provides a proxy for the level of individual
wealth. We conjecture that wealthier communities may exhibit a geateand for hazard
mitigation, but wealthier households may put less pressure on local governondvatzsard
mitigation since they are better able to afford individual mitigationsones and insurance.

In previous studies of CRS, neither Brody et al (2009) nor Posey (2009) include age
structure or migration trends among their socio-economic variables. s\hilblic’s
willingness to support and contribute to the mitigation activities may depend lmt#hseverity
of risk and the community’s commitment to dealing with the problem (Burby 1998), the
vulnerability of elders as a group could be an important factor in overall vulngraisgiessment
which may increase the likelihood of local hazard mitigation. North Carolina, howeaser
become a popular retirement destination due to the state’s varied terrain, molimate,
reasonable housing prices, and special tax exemptions for military and orait Bamployees’
retirement pay. This has led to increasing numbers of immigratingagtimany of which may
have limited experience with flood hazards. Thus, our expectations of the impact ofipropiort
senior citizens and migration on hazard mitigation activities are ambiguensu£data on age
of migrants is not available. We collected data on the senior population from U.S. . @atsus

estimates of net migration are derived from NC Office of the Governor.
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5.5 Result

Brody, et al. (2009) examine policy learning for flood mitigation as refleact€RS
scores in Florida counties from 1999 to 2005. Specifically, they track annual pointdothis f
four CRS mitigation series for 52 of the 67 Florida counties that exhibit som@fexauntary
participation in the CRS. They use population-adjusted measures of CRS poinigrassioa
covariates to account for both participating counties and nested municipaliiesxamine the
influence of hydrologic conditions, flood disaster history, socioeconomic, and humat capita
controls on CRS points. Their study use feasible GLS (FGLS) regressiorsmaitieh panel-
specific AR(1) correlation for correcting the groupwise heteroskedgsnd serial
autocorrelation (see Appendix 2 for the description of FGLS). First, withouiderimg) state
dependence, we repeat Brody et. al’s work using the variables descritaaarbTl. The

specification of the empirical model is given as follows:

Log(CRS;;) = By + B1Flood;; + B,Log(Risk_Index;;) + BsLog(Tax;;) + B.Log(Staff;;)

+ BsLog(Crime;;) + fsLog(unemployment;;)+f,Log(Student_Teacher;;)
+ Bslog (PopulationDensityit) + ByLog(Senior;;) + B1oLog(Income;;)

+ B11Log(Migration;;) + ¢; + A¢ + u;; (6)

We take natural logarithm of CRS scores and continuous dependent variables so that
coefficient estimates indicate the percentage change of the CRSrsoesponse to a one
percentage change in the explanatory variables. It is difficult to neeti®igoodness-of-fit of
the model when the sample data are generated by the general lineaioagrexlel. The FGLS
estimator is simply the OLS estimator applied to a transformed remrahsit purges the

heteroscedasticity and/or autocorrelation. We report the squared thonretzefficients between

103



actual and predicted levels of the dependent variable. This squared correlasomens
equivalent to the standaRt in an OLS regression, and is recommended as a goodness-of-fit
measure for instrumental variable regressions by Windmeijer (1995l ese same
measurement for GMM). The transforméiranges from 0 to 1 with higher values indicating
better fit. We also report two Wald statistics. The first is a test obthegignificance of the

time dummy variables, while second is a test of the joint significandeefpdanatory

variables. Both tests are asymptotically distributed as chi-square.ghtigcant result from

Wald test of time dummy variables indicated that the time shocks play a sighibtain local
2
hazard mitigation. The unobserved effect can be measupee- a}éj% (62 is the variance for

the time invariant unobservable effect) (Wooldrige 2002, Greene 2002). Standardaitatisti
packages reports estimated (59, which allows for straightforward testing of the presence of
unobserved, time-invariant cross-sectional effects. The statistsigHificant rho
parametefp = 0.83) indicates the existence of an unobserved time invariant effect at the cross-
sectional level. As shown in the Table 5.2, the signs for the covariate pasamiieh indicate
the direction of impact on probability of participation in CRS, are consistent wotyEet al.’s
work.

We then introduce the lagged dependent variable which is added into the equation (6).

The equation (7) is a dynamic panel data model:
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Log(CRS;) = Bo + B1Log(CRS; 1) + P, Flood;, + BsLog(Risk_Index;,) + f4Log(Tax;)

+ BsLog(Staf f;t) + BeLog(Crime;,)

+ B,Log(unemployment;,)+BsLog(Student_Teacher;;)
+ ByLog (PopulationDensityit) + BioLog(Senior;) + 11 Log(Income;;)

+ Bi,Log(Migration;,) + ¢; + A¢ + uj; (7

We use first differences of the dependent variable in order to eliminate thiel uradlitime-
invariant effectc;. The Arellano Bond estimation then uses the GMM with lagged values of the
endogenous variableLdg(CRS; ;—3)) as instruments. The results of the one-step Arellano-Bond
Difference GMM estimation are presented in Table 3. The result of AréBand test for zero
autocrorrelation in first-differenced errors shows that there is rimdesrder serial correlation
in u;, as desiredp(— valueag(yy = 0.026; p — valueagr(zy) = 0.630). Concerning the
instruments, the Table 5.2 also reports the Sargan statistic, which tests tluepirging
restrictions. The validity of; ._, as instruments in the equation is not rejected by the Sargan test
of overidentifying restrictions in the moment condition at 1% significant.leve

Comparing FGLS and GMM in table 3, the signs for the covariate parameters ar
consistent across both models. While not directly comparable to the transforsgedr®, both
R-squares indicate fairly good fit for the models R-sq=28% for FGLS and psesme3% for
GMM. The number of statistically significant covariates increases $®ren to ten when we
move from FGLS to the more appropriate GMM. Concerned with the dynamic meunhanis
policy learning, our explanation of the results focuses primary attention on ultteof6SMM

one-step, while making some comparisons with FGLS as a more basic model.
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The estimated coefficient on the lagged dependant variable is statistigaificant at
1% in GMM. We find a highly significant impact of previous CRS score on the curreht loca
CRS point improvemenf(, crsi,c-1) = 0.6120). For example, a one percent increase in the
previous CRS points is associate with an increased change in current CRS points by
approximately 0.612 percentage. This result supports the theory that the mosamtport
influence in policy learning is past policy itself and established policy ieg@drody 2003).
Holding flood experience, hydrological risk factors, and level of financialress constant,
once the local governments regulate their floodplains beyond the minimum requtted by
NFIP, it tends to carry on incrementally year by year, despite pdtelnéiages in staff changes
and shifts in local political regimes. This suggests a commitment answrgstlocal
governments to high levels of floodplain management activities that cantlleaentire
community. Furthermore, we note that marginal increases in CRS poimnédadnesly more
difficult to achieve when initial points have already been obtained, sinenetgly requires
increased resource allocation and continued political support and.

We consider both models to discuss the impact of the flood experience on CRS score
improvement. We find previous one year flood events have statistically signdicadmositive
effect on CRS creditable activities for FGLS and GMM,; results inelit&it an additional flood
event in the previous year increases the change in CRS score by 0.96% and 1.0é&%GuS
and GMM, respectively. We did try using different time lags for flood expegi¢e.g., two- and
three-years), but found no statistically significant effects for nehs¢éant flooding events.
Landry and Li (2012) demonstrate that long term experience with flood eventssjgpea
encourage local hazard mitigation project adoption (as reflected in CRSpadidn). The

effects they found for historical flooding may indicate that certain comrearihliat had
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experienced hazards were more likely to enroll in CRS at the program inceptiornzetomiéh
established mitigation regulations, the immediate aftermath of hazamtsecan open up a
“window of opportunity” for local authorities to focus attention on hazard mitigation and
continue to obtain additional credits for hazard mitigation activities. FEMAstate agencies
should take a more active role in demonstrating successful hazard mitigatgyams after local
flood events. This information sharing project could help local governments understand the
potential benefits of the flood hazard mitigation projects, which could strengtheowmeflood
protection programs.

We account for potential variability in flood risk across counties with a risk iniech is
created by multiplying annual precipitation with the percentage of loeai&@g-lood Hazard
Area (SFHA). Our expectations are that higher risk factors will beceded with greater
improvement of local mitigation. However, results indicate that counties vatiegraverage
rainfall and a greater proportion of SFHA exhibit significantly lovieod hazard mitigation
activities within the CRS system. Focusing on GMM results, a one percguiagécreasing in
the risk index decreases the change in the score by 0.0088%. One interpretatsorestilt
rests on recognizing that the larger the proportion of floodplain land in the cdwentgss land
available for the potential development. From an economic and public policy perspecti
mitigation activities in these counties may require more resourees thie level of
vulnerability, and since more land is in the floodplain, interventions in economic development
within this area may be politically less desirable. The estimaies RGLS are roughly
equivalent — in both cases the estimated effects are relatively smah. tBe&veomposition of the

risk index, it is impossible to isolate the effects of precipitation from theeptage of land in the
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SFHA. The impact of different vulnerability measures on mitigation aiesviemains an
important area for future research.

The estimated effect of per capita property tax levy exhibits ap®sitd statistically
significant sign in both FGLS and GMM, which abides our expectations that finaapetity
would increase mitigation policy adoption and implementation. Results of the GMM mode
indicate that one percentage increase in average property tax per capdaaathe change in
CRS score by 0.1872%, while the FGLS puts the marginal effect at 0.1226% filtleges
imply that flood hazard mitigation is more likely to occur in wealthier idistwith greater tax
revenue and that poorer districts with less financial capacity may be aoioegable to flood
hazard. In addition, wealthier districts might also be expected to have moreledudéding
stock and thus more incentive to protect these assets. The results also indicate tha
percentage increase in funding available for emergency management@lizoneases the
change in CRS score by 0.0309% in GMM, or 0.023% in the FGLS. Continued financial support
of emergency management and public safety likely reflects a politicahitorant to hazard
mitigation planning and thus strengthens flood mitigation policy.

For competing local public policy priorities, we use local unemployment rateowat
for general local economy condition, student-teacher ratio to account fopidadal school
guality, and crimes per household to account for public safety. Our previous grpectadre
that the unemployment issues, school quality, and crime could be strong competiitdrszard
mitigation projects for limited local financial resources. The eséthaoefficients for all three
variables exhibit expected negative signs, but their significance leeaisiged. The estimated
coefficients for crime density are significant; a one percentageasern crime density

decreases the change in CRS score 0.0203% in GMM (0.0306% for FGLS). According to the
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results of GMM, increasing the unemployment rate by one percentage dsdteashange in
CRS score by 0.065%. Compared with other crowding-out factors, local economic conditions
appear to play an important role for influencing the allocation of financialiress (relative to
flood hazard mitigation). The influence of student teacher ratio on CRS scorativ@dégt not
statistically significant in both models. There is much greater variabilieacher and student
ratio at the school district, which may explain the lack of significandei®@tovariate in our
models. Future research should attempt to refine our approach (with better dateplaralthe
extent to which other local problems (transportation and economic development) crowd out
investments in hazard mitigation.

Holding flood experience, risk factors, and level of resources constant, Itreno® of
population-density on likelihood of participation in CRS is positive but not statlgtic
significant in the GMM model. Our prior expectations were that counties with rasidents
might have higher demand for mitigation projects that can lower flood damagerdia to the
FGLS results, increasing population-per-square-mile by one percesdisesrthe change in CRS
points by 0.6245%. This could indicate a pure benefit effect (as more household expaded to ri
increases the benefit of mitigation), but could also reflect greater locatrgnent financial
capacity (tax base). The insignificant result in GMM may be due to ciiorelaetween crime
and population densityCorr (crime, population density) =0.91h2As benefits of hazard
mitigation are likely greater in densely populated area, a better proggpatation would be the
number of local housing units (for which annual data are unavailable).

Community-wide levels for income may shape the type and speed of learnindgpérom t
flood risk mitigation efforts (Brody, et al 2009). Our results show that county@&ftable

activities are sensitive to median household income levels. For each moddintlsees
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coefficient forLog(Income)s positive and statistically significant at 5% level, and it has a very
strong impact on the CRS score. Increasing the median household income by onageercent
increases the change in CRS score by 0.3689% in the GMM (0.3836% in FGLS). This result
suggests that household level financial capital in the community may indltleespeed of
learning and lead to improvements in mitigation efforts.

Landry and Li (2012) show evidence that the proportion of senior citizens in a
community has significant and negative impact on probability of participation $ Ty
argue the impact may be induced by a tremendous influx of immigrating setife&ever, the
results in table 3 show that the estimated coefficient®gfSeniorjandMigration are positive
and significant in GMM, but both are insignificant in FGLS. The change in CR8 swoeases
0.1683% for a 1% increase in proportion of senior citizens; we find similar resulbefor t
migration dummy — that the change in CRS score is 0.028% higher in counties with a positive
net migration relative to counties with a negative net migration rate. Thussulis do not
support the counter-intuitive findings of Landry and Li (2012) regarding the influersenimir
citizens nor the potential explanation of immigrating retirees.
5.6 Conclusions

The suffering from flooding events can be reduced by appropriate floodplaiatreg
and hazard mitigation planning. This chapter discussed how to use dynamic panel datamodel
a powerful tool to better understand how local communities adopt and improve their flood
mitigation policies. Flooding, like other natural disaster such as hurricanadhquake,
reoccurs over time. Therefore, hazard mitigation plans and policies need to kel gratht
adjusted by policy makers over time in order to adapt to the uncertain environment. The

authorities have the opportunity to recognize the effectiveness of previousspaldiemprove
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their strategies as well. Brody, et al. (2009) conceptualize this policgtagnt in the flood risk
management as policy learninga- €hange in policy or the strength of a policy in response to
flood events or some other factorBhis chapter focuses on one specific FEMA mitigation
program-Community Rating System which offering reductions in flood insurateseina
exchange for local flood hazard mitigation efforts that exceed minimum stisnofdtoodplain
management set by the National Flood Insurance Program.

We describe the course of CRS creditable activities chosen by the |deaitzed as a
policy learning process. This policy learning reflects political domiadinat leads to the
adoption of new mitigation projects and regulations into local mitigation policyrddsig also a
consideration of substantive policy processing and feedback of flood risk mardagem
experience. While there is no shortage of theories about policy learning, albfeEsare in
agreement on the principle impacts of previous policy efforts on current gaiaddgectives that
policy makers pursue; the existence of dynamic nature can be accountedipirioad analysis
with suitable econometrics modeling techniques. In this chapter, we preseay afshe
determinants of the policy learning related to flood hazard mitigation. Thesenia preformed
using data pertaining to 100 NC counties for the period 1995-2010 in a dynamic panel
framework. The dynamic panel data model includes lag of dependent varialvegédgd CRS
score) to accommodate the theory of state in an intuitive manner. We applied the ipkdisica
and instrumental variables to deal with endogeneity issues.

This chapter provides some important insights for policy learning related todke f
mitigation. The previously established mitigation policy (CRS score) hasigrpact on
subsequent policy change. The local authorities could draw lessons from their previmus pol

design and summarize the strengths of local mitigation projects while raingrshortcomings.
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The creation of “policy legacies” is an underlying catalyst for policyniegr(Brody 2003).
Therefore, FEMA and state agencies could take a more active role idipgoaistronger
framework for grant-in-aid and technical assistance to help local comesunitiate mitigation
planning. Once the strengthen policy is adopted, local mitigation activitigpengetuate due to
self learning which can help ensure the long term development of resilientucoines

While our results demonstrate that the change in the current policy is stirfhginced
by previous rounds of policy development, the analysis suggests that patioyndgis in fact a
more complex phenomenon in that it also responds to some environmental and social stimulus,
such as vulnerability measures, tax revenues, population, and etc. Although, ourtidbspr
evidence that local mitigation policy learning exhibits a change-inducinganesen, it is
difficult to include as many environmental and social factors as we woulditike the first-
difference structure of the GMM model requires the time-variant datapagdudinal data on
covariates such as annual precipitation, education level, and housing density aadilyot re
available at county levels. When such data become available, future researchlsbattérapt
to refine our approach and explore the extent to which other local condition affettientssin

hazard mitigation.

112



Table 5.1: Data Description for 100 Counties in Nah Carolina, 1995-2010

Variable Description Mean Std Dev
CRS Population weighted CRS score for all communitgach county 192,511  395.601
(1995-2010%
Risk Variables
) ) , 0.357 0.802
Flood Total number of flood events in previous yi@arounty (1995-2010)
initati inli i 7.114 8.173
Risk-Index Annual precipitation multiplied by percentage oD806FHA in
county
Resources Variables
Tax Property tax levy per capita in each county (irutand dollars-year 0.476 0.195
2000 inflation adjusted dollars) (1995-2002)
Staff Percentage of government expenditures for emergmacyagement 15519 4.735
and other public safety out of total expenditurg (%
. 5.961 2.618
Unemployment  Unemployment rate in county (%) (1293:0)
i0 i i i - 13.805 1.745
Student-Teacher Students and teachers ratio in public schoolseénipus year (1995
2010)
. . . L 0.036 0.019
Crime Reported crime and population ratio in coyi§95-2010)
Social Variables
ion- 176.614  220.350
Populaplon Number of population per square mile (1995-2010)
Density
Income Median household income (in thousand dollars-y@€@02nflation 41.759 8.089
adjusted dollars)(1991-2002)
i iti igrati 0.825 0.380
Migration Dummy variable, equal one for positive migratioqual zero
otherwise
Senior Percentage of senior citizens (65 years and ovgfaotal 0.141 0.036

population (%) (1995-2010)

Note: The total number of the observation is 1600

16 See Appendix 1 for detail.
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Table 5.2: Estimation Result for FGLS and GMM One-$ep

FGLS GMM One-Step
Variables Coef. P-value Coef. P-value
(S.E) (S.E)
Log( CRSt1) 0.6120 0.000
(0.0273)
Flood 0.0096 0.014 0.0110 0.000
(0.0036) (0.0014)
Log(Risk-Index) -0.0118 0.015 -0.00884 0.043
(0.0052) (0.0043)
Log(Tax) 0.1206 0.001 0.1872 0.000
(0.0379) (0.0208)
Log(Staff) 0.0230 0.182 0.0309 0.000
(0.0172) (0.0062)
Log(Crime) -0.0306 0.08 -0.0203] 0.000
(0.0175) (0.0052)
Log(Unemployment) -0.0402 0.095 -0.0657 0.00
(0.0240) (0.0076)
Log(Student-Teacher) -0.0177 0.688 -0.0297 0.140
(0.0442) (0.0201)
Log(Population-Density) 0.6245 0.017 0.53538 0.486
(0.2611) (0.0769)
Log(Income) 0.3836 0.051 0.3689 0.000
(0.2008) (0.0669)
Migration 0.0079 0.299 0.0208 0.000
(0.0076) (0.0056)
Log(Senior) 0.3216 0.216 0.1683 0.012
(0.2601) (0.0670)
Constant 0.4104 0.775 2.7789 0.00d
(1.4383) (0.4023)
Time Dummies Included Includeq
Wald time dummies 40.45 0.0004 490.68 0.000
(df=15)
Wald joint significance 77.76 0.000 395.37 0.00(
(df=11, 12)
R"2 0.28 0.39
First-order serial correlation -2.23 0.026
Second-order serial correlation 0.48 0.630
Sargan Test 456.48 0.000
Number of Observation 1482 1376
Note: Standard errors in parentheses
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Chapter 6: Conclusions

While dynamics of weather play an important role in recent growth of damagodsfin
the US, intensive development in the floodplain and extensive population growth in Igw lyin
coastal areas have increased human beings’ exposure to flood hazards. TharArwIging
Survey estimates that 4.6% of new houses (595,000) built between 1999 and 2007 were located
in the floodplain. Data from US Census Bureau indicate that more than half of the U&ipapul
lives in the coastal zone, even though coastal counties constitute only about one fourth of the
countries landmass. Despite the ostensible elevation of risk, studies on indmitigation
behavior indicate that few property owners voluntarily adopt measures to redupettetial
losses from future catastrophes (Kunreuther 1996; Kunreuther and Roth 1998; &nerist
Gutscher, 2008; Mileti 1999).

As such, local governments can play a critical role in flood hazard mitigatiate(Rnd
Lindell 2000). Scholars generally recognize two types of hazard mitigatioratihéecadopted
for flood risk. Traditional flood damage mitigation focused on structural engigesslations,
such as dams, levees, and channel improvements. FEMA (£886)ates over $7 billion in
public monies have been spent on large scale flood control works between the mid-5@k and m
80s. Zahran et al. (2008) conclude that an increase in the number of Texas damssditdueea
odds of death or injury due to flood by 22.6 percent. Average annual flood property damage i
rising continually, however, and estimated to exceed $3 billion in coming years. The
overwhelming expense and adverse environmental effects of structural flogation works
have lead to more emphasis being place on smaller scale non-structuraianitiggthods.
Non-structural measures include zoning ordinances, building codes, flood warnergssyst

emergency planning, flood insurance, and so forth. Many of these measuretehasmets of



local public goods, in that they provide benefits for an entire community and agents in the
community are not excluded once they have been made available. Our study focuaey
attention on non-structural mitigation, as recognized by the Community Rastensgf the
National Flood Insurance Program.

In order to motivate flood insurance purchase and promote flood hazard awareness and
mitigation, the Community Rating System (CRS) of National Flood Insudregram (NFIP),
credits floodplain management activities and awards flood insurance premium discount
Limiting its potential effectiveness, CRS has been marked by a lack\a# petticipation since
its inception. As of January 2008, 1080 communities, represents only 5% of all the NFIP
communities, had enrolled in CRS. Of the 469 NFIP communities in North Carolina, only 75
(slightly over 15%) have a CRS score that is less than 10 (implying that theyniteated
activities to improve awareness and reduce risk and applied for credit). SiBcaseé®
standardized quantitative measures for representing local hazardiont@gtivities, it provides
an excellent source of information for empirical analysis of communityrthazigigation
decisions. The objective of this dissertation is to provide empirical eviddatedreo
community decisions involving incentive-based flood risk mitigation projects. Ouarchang
hypothesis is that community characteristics can influence thegoeafnment decision-making
process and the amount of hazard mitigation that takes place locally. lomdtiéi overall
level of risk in the community and other day-by-day issue such as crime and schibpl qua
should influence hazard mitigation. Higher perceived risk should motivate mogeatroiti, all
else being equal. We use these intuitive propositions, built upon previous literatingstioe
our empirical analysis. Through an improved understanding of CRS, state goverangents

FEMA can better encourage participation in the CRS and similar programs inimpievide
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for better protection from natural hazards. It also allows for a bett@titaggf resources to
improve hazard vulnerability.

Given substantial variability in local physical, political, and social conwtithe existing
voluntary framework for local hazard mitigation may have advantagdlewiray locals to
identify “low-hanging fruit” while tailoring their hazard mitigation pgto local factors and
concerns. What drives community participation in CRS within the current vojurdanework
is an important policy question. In chapter 3, we test a number of hypotheses offpredibus
researchers regarding factors that motivate local hazard manageniamiesithrough an
examination of patterns in CRS participation across all 100 North Carolina cdumte$991 to
2002. Specifically, we examine the influence of flood experience, hydrologikalacal
capacity, and socioeconomic factors on county hazard mitigation decisionssRedindite that
flood history and physical risk factors increase likelihood of local hazardatatirgadoption.
Federal and state agencies should seek to provide a stronger framework fonegmahtsw
interest loans, and technical assistance to help build resilient communites disbsters
instead of focusing attention on post-disaster rebuilding efforts. Moreover, cotmmssistance
programs that emphasize scientific applications in estimation of poteatédllfisses could
increase the adoption of flood hazard mitigation in vulnerable areas. We find evidarite th
probability of CRS participation is lower in counties with a greater proportiserabr citizens.
While we do not observe senior migration rates in our data, age structure of the conoowidit
reflect retiree migration patterns. Migrating seniors can induce isignifpotential for economic
development in scenic, rural communities, and local elected official§onay more on this
development opportunity (which can create significant economic benefits argeathx base)

and less on potential changes in vulnerability to natural hazards that can be edsatliatapid
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economic development. Migrating retirees from outside the state magsbeware and
knowledgeable of flood hazards and thus could put less pressure on local government to engage
in flood hazard mitigation. As the U.S. population continues to age, it becomes increasingly
important to consider elders in pre-disaster mitigation planning. Our resuhplasations for

targeting of information and outreach programs which could be conveyed through public
meetings, media, or other venues where senior members of the communities could be well
represented.

The description of flood hazard mitigation activities in @RS Coordinator’s Manual
focuses primarily on the process used to assign mitigation points, with |es®atpaid to the
potential local benefits of mitigation activities, in terms of property dana&gided and lives
saved. These factors could be very difficult to quantify from a general stahdfiee real
limitation in such a demonstration is establishing an accurate counterfactual woulé flood
impacts have been in the absence of existing hazard mitigation projectsotier éhave use the
propensity score matching (PSM) methods to correct sample selection bias duevabidse
differences between the CRS participants and comparison groups. The methadthoyy
chapter makes important advances in understanding how to measure and concéptualize
performance of a mitigation program as it applied to reducing the adversts eff flooding.

Our study shows the potential for applying PSM in the evaluation of the caesas eff CRS
mitigation projects on damage reduction. The selection of covariates is cahfarbe
important. For the DID exercise, we find evidence that time-invariant unobseeféects
contribute to selection bias which may lead to a downward bias in the estimatieatwient
effects. Although there is substantial variation in the results, the finduogsthat all of the

effects are in the same direction, indicating that CRS effectivelyces average property
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damage due to the flood hazard. As such, our results give considerable insight into the
development of future evaluation strategies aimed at addressing theveffless in mitigation s
activities. Examples or brief case studies could be useful to illustratertatdef flood risk
management in the future. FEMA and state agencies could take a morecetine r
demonstrating successful hazard mitigation programs after local floodeggspécially
focusing on differences between CRS and non-CRS patrticipants. Cases a$falibegard
mitigation could be publicized in the wake of catastrophic events, with the goatsfetrang
effective mitigation strategies to other hazard-prone NFIP commanilieese information
conduits could help local governments understand and visualize the potential benefits of the
flood hazard mitigation projects, which could strengthen their own flood protection psgram
The previous chapters demonstrated that community characteristics nanaefthe
local government decision-making process and the amount of hazard mitigatiakeisgtlace
locally. Local governments are able to adjust their mitigation policiéknning regulations
to react to periodic natural hazard events such as floods, hurricanes, and earthquékes, and
changing environmental and socio-economic conditions. In chapter 5, we descabardeof
CRS creditable activities chosen by the local authorities as a polioynggrocess. This policy
learning reflects political dominance that influences initial adoption of niégation projects
and regulations in the local mitigation policy design, but also substantive poli®@spiog and
feedback of flood risk management experience. The goal of this study is to panwedepirical
verification of whether the dynamic mechanism exists in the (selfypl@arning process within
the CRS communities. The empirical evidence provides advice about policy desifymtaer
information for those who seek a better understanding of the relationships betwegn poli

formation and outcomes.
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The analysis is performed using data pertaining to 100 NC counties for the peried 1995
2010 in a dynamic panel framework. The dynamic panel data model includes |qg0f €t
variable (aggregated CRS score) to accommodate the “theory of state” in aveimbaibner.
We apply the GMM approach and instrumental variables to deal with endogesedy. igVhile
our results demonstrate that the current policy is significantly influencedrbe environmental
and social stimuli, such as vulnerability, tax revenues, population levels, eanalysis
suggests that policy learning is in fact a more complex phenomenon that psudse®
previous policy development. Holding flood experience, hydrological risk factuidewael of
financial resources constant, once the local governments regulate theirdlosdy@yond the
minimum required by the NFIP, it tends to carry on incrementally over time, elesihges in
staff and shifts in changes and the local political regimes. This suggestsmitment amongst
some local governments to high levels of floodplain management activitieathbénefit the
entire community. Furthermore, we note that marginal increases in CRS poirgiatvely
more difficult to achieve when initial points have already been obtained, sgeeeirally
requires increased resource allocation and continued political support. Thegsimdiuld
support the establishment of low-interest loan programs or state gradtpregrams targeting
counties without adequate resources, high risk factors, and high potential for floodplain
development. Subsidized interest rates and outright grants could be econgumstiéilég in
terms of foregone disaster aid and lower business interruption (resulting indswevénue
losses).

Study of local government behavior in adapting to natural hazards warrants serious
investigation. In particular, we examine an innovative incentive policy und€amenunity

Rating System (CRS) of the National Flood Insurance Program. CRS is anidjpetentially
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an important federal experiment since it incentivizes community behaviotigataj rather than
mandates or withhold funds (which is the more common approach of state and federal
regulation). We argue that given growing risks, uncertainties and cotmgsendquired to
effectively adapt to environmental change, communities will increassaglye a critical role in
building societal resiliency to future vulnerabilities posed by natural tisz@he dissertation is
a contribution to the limited quantitative literature exploring the influencleod fexperience,
hydrological risk, financial capacity, and socio-economic factors on localchagation
decisions at the county level. We focus on CRS participation decisions and point totdysosat
the county level, primarily because data on covariates are not readigtdeat lower
jurisdiction levels.

There are promising extensions to this research. CRS community divisioos ees
multi-jurisdictional scale which includes towns, cities, and counties. Therdifereptinty and
nested municipalities may exhibit divergent flood-loss reduction efforts ejihrate floodplain
management ordinance and regulations. A multilevel model provides a framewnatyzea
how the covariates measured at different level affect the outcome vabiecipalities in the
same county tend to be more alike in their social and environmental chariastérest the ones
from other counties. For example, under the multi-jurisdictional mitigation pigroantext,
hazard identification, management, and specialized equipment and expertiseeaadygamilar
between nested municipalities. To ignore this relationship risks overlooking theamgeof
county effects and may render invalid results from traditional stalistmalysis. A multilevel
analysis could account for the variance in the outcome that is measured at gtddoegldoy
considering information from all hierarchical levels. We recommend & #tatlincorporates

the hierarchical structure, which may provide more satisfactory ansare question of how
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to forge a better understanding of community decision making at the municipdiyasa
related to natural hazards. It is also of considerable interest in theaetatking of counties,
using the performance of its nested municipalities in terms of mitigattehdéter adjusting for
the cluster characteristics. Since we need to combine county level data withpaligilevel
data in the multilevel modeling, data source may continue to provide significant sussira
analytical capabilities. A more detailed and thorough analysis of thnslaip between hazard
mitigation at the level of counties and cities & towns remain an importantardure

research.
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Appendix 1: Population Weighted Measurement of County CRS Points.

CRS community divisions rest on a multi-jurisdictional scale which includes taities, and
counties. Therefore, the county and nested municipalities may exhibit diveogehtdEs
reduction efforts with separate floodplain management ordinance and regulatitwes:. study,
Brody, et al. (2009) use population-adjusted measures of CRS activities, CBRSascor
community-level covariates to account for nested municipalities and the ¢taatityn their
county-scale analysis. Based on Brody’s work, the figure and table below show thef logi
measurement for population weighted CRS points. In the figure, Pitt County angbirated
municipalities of Ayden, Bethel, Falkland, Farmville, Fountain, Greenviltéta®, Grimesland,
Simpson, and Winterville have learned different CRS points. First, we divided the tpopafa
each community by the total county population to derive the population ratio. Second, we obtain
the population weighted CRS points for each community by multiplying the CRS pogdstof
community with its population ratio. Finally, we add up all weighted CRS points to deeve t
population weighted point for Pitt County. By this measurement, our dependent veoialole

summarize the CRS mitigation activities in all nested municipalitiestendaunty itself.



Figure: Measurement of Population Weighted CRS Poits for County (An Example for Pitt County, NC 2005)
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Table: Measurement of Population Weighted CRS Poistfor County (An Example for Pitt County, NC 2005)

Community Count_y 2005_ CRS 2005_ Populqtion Weight_ed
Population Points Population Ratio CRS Points
Ayden 133759 0 4782 0.0358 0
Bethel 133759 0 1766 0.0132 0
Falkland 133759 0 114 0.0009 0
Farmville 133759 1110 4611 0.0345 38.264
Fountain 133759 0 550 0.0041 0
Greenville 133759 1412 68852 0.5147 726.822
Grifton 133759 2926 2378 0.0178 52.019
Grimesland 133759 0 441 0.0033 0
Simpson 133759 0 471 0.0035 0
Winterville 133759 0 7682 0.0574 0
County “;r'ggorporated 133759 1035 42112 0.3148 325.854
Pitt County Population Weighted CRS Points 1142.960
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Appendix 2: Generalized Least Square (GLS) and Feasible @Geralized Least Square
(FGLS).

Heteroskedasticity means the standard deviations of a variable are nantomisich causes
OLS no longer asymptotically efficient in the estimation. The response tetbeting of
heteroskedasticity is to use the GLS method. GLS assume:

Var(u;|x;) = E(u;®|x;) = 0*h(x;)

whereh(x) is some function form of the explanatory variables. Because:

u )’ _E@W?)  a’h
() )- 5525

Therefore, we transform the original equation:

Vi = Po + B1Xix + Baxip + -+ + BuXin + U

to:

Vi/\hi = Bo/\[hi + BaCxin /b + Bo(xiz/h) + - + Br(xin/v/ ) + wi/y[hi (1)
Or
Yi/Nhi = Yo +V1Zin t V2Ziz + o+ VaZin + &
wherez;, = x;,,/\/h; andE (g;%) = 0.y, is called GLS estimator.

Because we don’t know the function formmd;) in most case, FGLS estimator usgsnstead
of h; in the equation (1). The step of FGLS is described in Woodridge (2002):

1) Run the regression 9% onxy, x,, ..., x, to obtain the residuat;.

2) Run the regression &g (1i?) onxy, x,, ..., X, to obtain the fitted valugj;.

3) Estimatedh;: h, = exp (§;).

4) Run the regression of equation (1).
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