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Flooding events, including coastal, estuarine, and riverine floods, cause considerable losses 

to individuals and businesses in the United States. In recent decades, over 80 percent of disaster 

losses nationwide have been attributed to flooding. Many flood hazard mitigation measures, 

including programs designed to inform people about potential hazards, plans that promote 

disaster preparedness, and regulations designed to limit vulnerability though building standards, 

have elements of local public goods in that they provide benefits for an entire community and 

agents in the community are not excluded once the goods have been made available. As such, 

local governments play a critical role in flood hazard mitigation. Policy makers need information 

to allow them to better understand community hazard mitigation behavior and evaluate the 

effectiveness of local flood mitigation projects so they can develop impactful management 

strategies.  The analyses in this dissertation provide such information. 



 
 

This dissertation focuses on the Community Rating System (CRS) of the National Flood 

Insurance Program (NFIP), which credits local floodplain management activities and provides 

flood insurance premium discounts for households and businesses in a community. In order to 

motivate flood insurance purchase and promote increased flood hazard mitigation, the CRS 

credits 18 community floodplain management activities in four broad categories: (1) public 

information; (2) flood mapping and regulation; (3) flood damage reduction; and (4) flood 

preparedness. FEMA classifies the portfolio of community flood management practices on a ten 

point scale, reflecting the overall level of mitigation. The CRS classification determines premium 

discounts for insurance purchases under the NFIP. Discounts range from five to 45 percent. 

Programs like CRS seek to incent cooperation amongst federal, state, and local governments 

rather than impose top-down mandates that require particular mitigation approaches. By offering 

individual financial inducements for community-level flood hazard mitigation, CRS is an 

incentive-based, bottom-up cooperative approach to risk management that could address some of 

the shortcomings of other cooperative approaches to environmental management. Through an 

improved understanding of CRS, state governments and FEMA can better encourage 

participation in the CRS and similar programs in order to provide for better protection from 

natural hazards. It also allows for a better targeting of resources to improve hazard vulnerability 

This dissertation has three major chapters. Chapter 3, which is entitled “Participation in 

the Community Rating System of NFIP: An Empirical Analysis of North Carolina Counties”, 

tests a number of hypotheses offered by previous researchers regarding factors that motivate 

local hazard management initiatives through an examination of patterns in CRS participation 

across all 100 North Carolina counties from 1991 to 2002. Specifically, we examine the 

influence of flood experience, hydrological risk, local capacity, and socioeconomic factors on 



 
 

county hazard mitigation decisions. Results indicate that flood history and physical risk factors 

increase likelihood of local hazard mitigation adoption. We find evidence that the probability of 

CRS participation is lower in counties with a greater proportion of senior citizens and greater 

level of education, and that flood hazard mitigation activities at the county level are more likely 

when a greater number of nested of municipalities participate in CRS. 

Chapter 4, which is entitled “Evaluation of the Community Rating System of National 

Flood Insurance Program – An Application of Propensity Score Matching”, develops innovative 

ways to assess the performance of the CRS. The true performance of CRS can be determined if 

one compares a meaningful outcome – like the average property damage during flooding events 

– for each CRS participant with their untreated selves during the same event. However, it is 

impossible to observe what would have happened to CRS participants in absence of their 

participating in the CRS (lack of counterfactual). The primary objective of chapter 4 is to use 

propensity score matching (PSM) methods to correct sample selection bias due to observable 

differences between the CRS participants and comparison groups. Although there is substantial 

variation in the results, the findings show that all of the effects are in the same direction, 

indicating CRS effectively reduces the average property damage due to flood hazard. 

Chapter 5, which is entitled “Estimation of a Dynamic Model: Policy Learning in Hazard 

Mitigation”, addresses the dynamic nature in flood hazard mitigation policy learning by 

examining the patterns in Community Rating System (CRS) scores across all 100 counties in 

North Carolina from 1995 to 2010, with controls of flood experience, hydrological risk factors, 

local capacity, and socioeconomic factors. It is important for local governments to maintain 

stability and transparency in planning and policy-making processes, so that agents and 

institutions can form reasonable expectations upon which to make development and investment 



 
 

decisions.  As a result, the establishment of a new framework of hazard mitigation presents a 

considerable challenge, involving a change of momentum which requires commissioner 

meetings, public hearings, and ordinance revisions, all of which are costly. Therefore, we 

postulate that hazard mitigation policy evolution in response natural disasters can be described in 

terms of a dynamic mechanism. The dynamic panel model is characterized by the presence of a 

lagged dependent variable among the regressors, incorporating both dynamics and individual-

specific effects. The result show that once local governments regulate their floodplains in ways 

that go beyond the minimum required by the NFIP, they tend to improve flood hazard mitigation 

incrementally despite changes in staff and shifts in local political regimes.  
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Chapter 1: Introduction 
 
 

While the dynamics of weather patterns play an important role in the recent growth of 

damaging floods in the U.S., intensive development in floodplains and extensive population 

growth in low lying and coastal areas have increased human beings’ exposure to flood hazard. 

The communities that engage in hazard mitigation planning and management activities are less 

prone to flood hazard and recover faster from disaster than those communities which do not. 

Many mitigation measures, including programs designed to inform people about potential 

hazards, plans that promote disaster preparedness, and regulations designed to limit vulnerability 

though building standards, have elements of local public goods in that they provide benefits for 

an entire community and agents in the community are not excluded once the goods have been 

made available. As such, local governments play a critical role in flood hazard mitigation.   

This dissertation focuses on one particular flood hazard mitigation program, the 

Community Rating System (CRS) of the National Flood Insurance Program (NFIP), which 

credits local floodplain management activities and provides flood insurance premium discounts 

for households and businesses in a participating community. In order to motivate flood insurance 

purchase and promote increased flood hazard mitigation, the CRS credits 18 community 

floodplain management activities in four broad categories: (1) public information; (2) flood 

mapping and regulation; (3) flood damage reduction; and (4) flood preparedness. FEMA 

classifies the portfolio of community flood management practices on a ten point scale, reflecting 

the overall level of mitigation. The CRS classification determines premium discounts for 

insurance purchases under the NFIP. Discounts range from five to 45 percent. Programs like 

CRS seek to incent cooperation amongst federal, state, and local governments rather than impose 

top-down mandates that require particular mitigation approaches. By offering individual 
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financial inducements for community-level flood hazard mitigation, CRS is an incentive-based, 

bottom-up cooperative approach to risk management that could address some of the 

shortcomings of other cooperative approaches to environmental management. Through an 

improved understanding of CRS, state governments and FEMA can better encourage 

participation in the CRS and similar programs in order to provide for better protection from 

natural hazards. It also allows for a better targeting of resources to improve hazard vulnerability. 

Since CRS uses standardized quantitative measures for representing local hazard 

mitigation activities, it provides an excellent source of information for empirical analysis of 

community hazard mitigation decisions. As such, the focus of this dissertation is on quantitative 

analysis of participation, CRS point totals, and flood-related property damages, employing 

variants of regression analysis. Regression models provide a useful framework for analyzing 

large, multi-faceted datasets with many covariates. Often times, under fairly weak assumptions, 

this framework is capable of simultaneously testing many different hypotheses regarding the 

influence of exogenous factors on one or more dependent variables.  Regression models provide 

information on conditional correlations that include direction, magnitude, and statistical 

significance (while controlling for other factors) – in many instances, or with additional 

assumptions, these correlations are indicative of causal relationships. Thus, regression is a 

valuable analytical approach for conducting statistics with large and complex datasets that 

conform to the requirements of the approach (with binary, categorical, or various scaled 

measures). 

We acknowledge some limitations of quantitative analysis.  The approach is somewhat 

limited to analyzing factors that can be quantified (though some specifications of regression 

models allow for unobserved factors).  Regression analysis is not well suited for exploring 



3 
 

contextual factors or discovering latent patterns or idiosyncrasies in underlying processes.  For 

these and other reasons, qualitative research procedures, such as interviews, focus groups, case 

studies, and textual analysis, are also useful approaches for study social phenomena.  These 

approaches are generally complementary to quantitative analysis, and so-called “mixed methods” 

approaches can be instrumental in creating new knowledge.  Nonetheless, the focus of this 

dissertation is on quantitative methods.  But, we note that mixed methods remain a viable and 

important approach for future research. 

The plan of the dissertation is as follows. The work format will be organized into two 

primary sections. The first section includes this introduction and provides an overview of the 

entire dissertation. Traditional flood damage mitigation focused on structural engineering 

solutions, such as dams, levees, and channel improvements.  Non-structural measures include 

zoning ordinances, building codes, flood warning systems, emergency planning, flood insurance, 

and so forth. Because this dissertation focuses primarily on non-structural hazard mitigation, the 

second chapter provides details on non-structural flood mitigation, as recognized by the 

Community Rating System of the National Flood Insurance Program. These sections are meant 

to help provide an interdisciplinary audience with the necessary background for reading the 

empirical studies. 

The second section, which is divided into three chapters, comprises the dissertation’s 

empirical focus. The first portion, which is entitled “Participation in the Community Rating 

System of NFIP: An Empirical Analysis of North Carolina Counties”, tests a number of 

hypotheses offered by previous researchers regarding factors that motivate local hazard 

management initiatives through an examination of patterns in CRS participation across all 100 

North Carolina counties from 1991 to 2002. Specifically, we examine the influence of flood 
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experience, hydrological risk, local capacity, and socioeconomic factors on county hazard 

mitigation decisions. Results indicate that flood history and physical risk factors increase 

likelihood of local hazard mitigation adoption. We find evidence that the probability of CRS 

participation is lower in counties with a greater proportion of senior citizens and greater level of 

education, and that flood hazard mitigation activities at the county level are more likely when a 

greater number of nested of municipalities participate in CRS. 

The second portion, which is entitled “Evaluation of the Community Rating System of 

National Flood Insurance Program – An Application of Propensity Score Matching”, develops 

innovative ways to assess the performance of the CRS. The true performance of CRS can be 

determined if one compares a meaningful outcome – such as the average property damage during 

a flood event – for a participating county with their untreated selves. However, it is impossible to 

observe what would have happened to CRS participants in absence of their participating in the 

CRS – there is no counterfactual. The primary objective of this chapter is to use propensity score 

matching (PSM) methods to correct sample selection bias due to observable differences between 

the CRS participants and comparison groups. Although there is substantial variation in the 

results, the findings show that all of the effects are in the same direction, indicating that CRS 

effectively reduces the average property damage due to flood hazard. The methodology in this 

chapter makes important advances in understanding how to measure and conceptualize the 

performance of a mitigation program as it is applied to reducing the adverse effects of flooding. 

The study also yields insights into performance evaluation of mitigation plans for other natural 

disasters, such as hurricanes, fire, and earthquakes.  

The third portion, which is titled which is entitled “Estimation of a Dynamic Model: 

Policy Learning in Hazard Mitigation”, addresses the dynamic nature of flood hazard mitigation 
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policy learning by examining the patterns in CRS scores across all 100 North Carolina counties 

from 1995 to 2010, with controls of flood experience, hydrological risk factors, local capacity, 

and socioeconomic factors. It is important for local governments to maintain stability and 

transparency in planning and policy-making processes, so that agents and institutions can form 

reasonable expectations upon which to make development and investment decisions.  As a result, 

the establishment of a new framework of hazard mitigation can present a considerable challenge, 

involving a change of momentum which requires commissioner meetings, public hearings, and 

ordinance revisions, all of which are costly. Therefore, we postulate that hazard mitigation policy 

evolution in response to natural disasters can be described in terms of a dynamic mechanism. 

The dynamic panel model is characterized by the presence of a lagged dependent variable among 

the regressors, incorporating both dynamics and individual-specific effects. The result show that 

once local governments regulate their floodplains beyond the minimum levels required by the 

NFIP, they tend to make incremental improvements in mitigation over time despite changes in 

staff and shifts in the local political regime. Each empirical study will include a discussion on the 

policy implications of any relevant findings.  Following these chapters, the dissertation will 

conclude with a discussion of research extensions and directions for future development. 

 



 

Chapter 2: Flood Hazard Mitigation and the Community Rating System of National Flood 

Insurance Program  

Flooding events, including coastal, estuarine, riverine, and flash floods, cause 

considerable losses to individuals and businesses in the United States. In recent decades, over 80 

percent of all presidentially declared disaster losses have been attributed to flooding. The average 

damages from floods in the United States are $115 million per week (Burby 2001), and property 

damages caused by flooding have been increasing at an alarming rate. Data from Federal 

Emergency Management Agency (FEMA) indicate that significant floods caused more than $5 

billion in average annual damage to property from 1993 to 2007 compared to about $0.6 billion 

from 1978 to 1992.  

Scholars generally recognize two types of hazard mitigation that can be adopted for flood 

risk management.  Traditionally, flood damage mitigation focused on structural engineering 

methods, such as dams, levees, and channel improvements. FEMA (1986) estimates over $7 

billion in public monies were spent on large scale flood control works between the mid-50s and 

mid-80s.  Zahran, et al. (2008) estimate that an increase in the number of dams in Texas 

decreased the odds of death or injury due to flood by 22.6 percent.  Due to increasing population 

and development pressures, however, average annual flood property damage in the U.S. is rising 

continually. The overwhelming expense and adverse environmental effects of structural flood 

mitigation works have lead to more emphasis being place on smaller scale non-structural 

mitigation methods. Non-structural measures include land use planning, zoning ordinances, 

building codes, flood warning systems, emergency planning, flood insurance, and so forth. This 

study focuses primary attention on non-structural mitigation. 
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In the federal-state-local floodplain management nexus, each level of government can 

play a role in flood loss reduction. The federal government has preeminent regulatory authority 

and financial capacity to provide assistance in flood management and protection projects and 

administer disaster relief to flood victims.  Given increasing pressure on federal funds, the high 

cost of structural flood protection works, and community requests for more regulatory control, 

there has been a movement towards building stronger state capacity to implement flood loss 

programs (Burby 2006, ASFPM 2007). Experience suggests that effective local management 

occurs in the presence of strong state floodplain management programs. Burby (2005) finds 

evidence that insured losses to residential property from natural disaster are significantly reduced 

if the state mandates local comprehensive plans with hazard mitigation elements (which are 

currently optional in some U.S. states).  Other roles of state governments include providing 

direct technical assistance to local government, training local floodplain mangers, managing or 

assisting with hazard mitigation activities, and implementing permit processes.  Under the 

authority delegated by federal and state governments, local governments are primarily 

responsible for zoning and planning, while sharing in the management of hazard mitigation 

activities within their jurisdictions. As such, local governments can play a critical role in flood 

hazard mitigation (Prater and Lindell 2000).  Many hazard mitigation measures have elements of 

local public goods, as they provide community-wide benefits and individuals in the community 

are not excluded once they have been made available.  

2.1 National Flood Insurance Program (NFIP) 

As a part of floodplain management and flood loss reduction programs, the National 

Flood Insurance Program (NFIP) was designed as a non-structural approach to flood risk 

management, and the program was seen as a complement to structural flood protection works 
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(Kunreuther and Roth 1998).  In order to provide recovery resources for flood disaster 

(Kunreuther and Roth 1998), reduce the public burden of disaster relief payments (Kriesel and 

Landry 2004), and dissuade uneconomic uses from locating in flood hazard areas (Burby 2001), 

the US Congress passed the National Flood Insurance Act of 1968. This act created the National 

Flood Insurance Program (NFIP), which has two primary goals: identification of flood hazard at 

a fine spatial scale and mitigation of hazard through planning, zoning, improved building 

standards, and provision of insurance for businesses and households (Burby 2001). NFIP is a 

voluntary joint venture between federal and state governments, private insurance companies, and 

local communities. Participating communities are required to adopt and enforce floodplain 

management ordinances and construction standards in flood hazard areas (Dixon, et al. 2006).  

The federal government is primarily responsible for conducting detailed hydrological 

assessments used to produce flood insurance rate maps (FIRMs) and setting flood insurance 

premium schedules. The state governments hold regulatory authority over insurance contracts in 

their state. Under the Write Your Own (WYO) program, private insurers sell and service 

policies, with the premiums (net of administrative fees that go to private insurers) deposited in a 

federally operated flood insurance fund, which then pays all claims (Kunreuther 1996). Based on 

FEMA’s statistics, currently more than 20,000 communities across the United States and its 

territories participate in the NFIP (roughly 75 percent of all communities in the United States) 

with an estimated 4.5 million policies in force by 2006 (Dixon, et al. 2006).  

FEMA estimates that flood damage is reduced by nearly $1 billion a year as a result of 

the NFIP floodplain management regulations for new construction. Prior studies, however, 

highlight numerous shortcomings of the program. First, community participation does not 

necessarily imply that individual property owners will opt to purchase flood insurance. 
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According to FEMA, only 2.5 million of the nearly 10 million households in flood-prone areas 

had purchased flood insurance by 1995 (Kunreuther 1996).  Dixon, et al. (2006) estimate the 

NFIP nationwide market penetration rate for signal family homes in Special Flood Hazard Areas 

(SFHAs) at 49 percent in 2003. Second, Flood Insurance Rate Maps (FIRMs), which FEMA uses 

to delineate flood hazard areas within a community, are not updated frequently. Thus, the risk 

designation conveyed by FIRMs can produce severe underestimates in some areas (Michel-

Kerjan and Kousky 2010). Third, FEMA offers Pre-FIRM properties explicitly subsidized 

premiums, which are 30 to 40 percent of the full-risk premium.  Price Waterhouse Coopers 

(1999) concludes that the premiums of some Pre-FIRM properties are much less than what 

would be required to cover payouts, partly due to repetitive losses for particular parcels. 

Moreover, there exists significant skepticism over whether NFIP rate schedules for new 

construction (referred to as “actuarial”) accurately reflect expected loss; prior to the 2005 

hurricane season (a record loss year), NFIP exhibited a cumulative deficit of $3 billion after 37 

years of operation (Wharton 2008).  Finally, research in coastal housing markets has produced 

evidence that flood zone designation and insurance premiums convey risk information to 

potential buyers in housing market; thus allowing premiums to reflect objective risk assessment 

is important in providing incentives for better individual investment and mitigation decision 

(Krutilla 1966; MaDonald, et al. 1990; Bin, Kruse, and Landry 2008; Bin, et al.2008). Chivers 

and Flores (2002), however, provide contradictory evidence suggesting a majority of people in 

Colorado did not acquire information about flood risk and cost of insurance until after property 

purchase.  

2.2 Community Rating System (CRS) 
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In order to increase flood hazard awareness, motivate flood insurance purchase, and 

promote flood hazard mitigation, the CRS was instituted by the Federal Insurance 

Administration (FIA) as a voluntary program for NFIP-participating communities. The goals of 

this program are to reduce flood loss through community-level mitigation projects, facilitate 

accurate insurance rating, and promote the public’s awareness of flood hazard and insurance. 

When flood management activities of a CRS community comply with these goals, flood 

insurance premiums for its citizenry are adjusted to reflect mitigation efforts to effectively 

reduce flood risk (Kunreuther and Roth 1998). 

The CRS credits 18 community floodplain management activities which are organized 

under four broad categories: (1) Public information, (2) Flood mapping and regulation, (3) Flood 

damage reduction, and (4) Flood preparedness (see Table 2.1).  FEMA classifies the portfolio of 

community flood management practices on a ten point scale, reflecting the overall level of 

mitigation. The CRS classification determines the premium discounts which range from 0 

percent to a maximum of 45 percent (see Table 2.2).  All communities that are in full compliance 

with the NFIP and are in the regular phase of the program but have not taken additional measures 

to reduce flood risks receive a CRS rating of 10 – no flood insurance premium discount. CRS 

class 1 requires the most credit points and gives the greatest premium discount of 45%. Each 

year, local governments can submit documentation to a specialist from the Insurance Services 

Office, Incorporated (ISO – an independent contractor that handles certification for CRS) to 

verify that they are continuing to perform hazard management activities for which they receive 

CRS credit, and they can apply to receive credit for new hazard management initiatives that 

improve their classification.  
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CRS provides premium discounts for residents in a qualified community in an effort to 

encourage hazard mitigation and individual participation in NFIP.  Since rates are adjusted to 

reflect risk, CRS can help to alleviate moral hazard.  By offering CRS credit for updating of 

flood risk data, information on flood hazard can be updated, expanded, and refined, and may 

become more accurate over time, leading to better delineation of flood hazard areas within a 

community.  Flood Damage Reduction activities (series 500 - see Table 2.1) include acquisition, 

relocation, or retrofitting of existing high-risk structures, which could prevent repetitive losses. 

Finally, CRS credit is provided if a community’s real estate agents (and others involved in land 

development and investment decisions) advise prospective floodplain occupants about flood 

hazard and the flood insurance purchase requirement for mortgaged properties in the SFHA. In 

an analysis of 832 large scale flooding events in Texas between 1997 and 2001, Zahran, et al. 

(2008) find suggestive evidence that community hazard mitigation programs promoted by CRS 

resulted in significantly lower loss of human lives. Since CRS uses standardized quantitative 

measures for representing local hazard mitigation activities, it provides an excellent source of 

information for empirical analysis of community hazard mitigation decisions. 
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Table 2.1: Community Rating System (CRS) Activities and Credit Scores 

Series Descriptions Creditable Activities Points 

Public 
Information 

(300) 

CRS will credit those local 
activities that advise people about 
the flood hazard, flood insurance 
and flood protection measures. 

1. Elevation Certificates 162 

2. Map Information 140 

3. Outreach Projects 380 

4. Hazard Disclosure 81 

5. Flood Protection 
Information 102 

6. Flood Protection 
Assistance 71 

Mapping and 
Regulations 

(400) 

CRS provides credit to 
communities that enact and 
enforce regulations that exceed the 
NFIP’s minimum standards so that 
more flood protection is provided 
for new development.  
 

1. Additional Flood Data 1346 

2. Open Space 
Preservation 900 

3. Higher Regulatory 
Standards 2740 

4. Flood Data 
Maintenance 239 

5. Stormwater 
Management 670 

Flood 
Damage 

Reduction 
(500) 

This series of activities addresses 
flood damage to existing 
buildings. It complements the 
previous series that dealt with 
preventing damage to new 
development.  

1. Floodplain 
Management Planning 359 

2. Acquisition and 
Relocation 3200 

3. Flood Protection 2800 

4. Drainage System 
Maintenance 330 

Flood 
Preparedness 

(600) 

Activities in this series include 
actions that should be taken to 
minimize the effects of a flood on 
people, property, and building 
contents. 

1. Flood Warning 
Program 225 

2. Levee Safety 900 

3. Dam Safety 175 

Source: NFIP CRS Coordinator’s Manual (2007). 
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Table 2.2: CRS Credit Points Earned, Classification Awarded, and Premium Reductions 
Score Credits Discount in SFHA* Discount in non-

SFHA** 
1 4,500+ 45% 10% 
2 4,000-4,499 40% 10% 
3 3,500 – 3,999 35% 10% 
4 3,000 – 3,499 30% 10% 
5 2,500 – 2,999 25% 10% 
6 2,000 – 2,499 20% 10% 
7 1,500 – 1,999 15% 5% 
8 1,000 – 1,499 10% 5% 
9 500 – 999 5% 5% 
10 0 – 499 --- --- 
*Special Flood Hazard Area 
**Preferred Risk Policies are available only in B, C, and X Zones for properties that are 
shown to have a minimal risk of flood damage. The Preferred Risk Policy does not 
receive premium rate credits under the CRS because it already has a lower premium than 
other policies. The CRS credit for AR and A99 zones are based on non-SFHAs (B, C, 
and X). Credits are: scores 1-6, 10% and scores 7-9, 5%. Premium reductions are subject 
to change. 
Source: NFIP CRS Coordinator’s Manual 2007. 



 

Chapter 3: Participation in the Community Rating System of NFIP: An Empirical Analysis 
of North Carolina Counties 

 
In this chapter, we synthesize previous research and formulate and test a number of 

hypotheses regarding participation in CRS. We examine the influence of flood experience, 

hydrological risk factors, local capacity, and socioeconomic factors on community hazard 

mitigation decisions as indicated by CRS participation, through examination of patterns in CRS 

involvement across all 100 North Carolina counties from 1991 to 2002. We use panel data 

models in order to control for unobserved cross-sectional level heterogeneity within a multiple 

regression framework.  Our goal is an improved comprehension of why some local governments 

adopt hazard mitigation measures while others do not. The results contribute to a better 

understanding of collective decision making for environmental management (specifically natural 

hazard risk) and help to assess vulnerability by providing information on mitigation decisions. 

Through an improved understanding of the factors that influence the initiation and 

implementation of mitigation policies, FEMA and state governments can better encourage 

participation in the CRS and similar voluntary, incentive-based programs in order to provide for 

improved environmental management. 

The following section presents detail on previous literature on natural hazard mitigation 

and formulates research hypotheses. Section 3 describes the data used for analysis. Section 4 

presents the random effects Probit model which we employ to study CRS participation. Section 5 

interprets the regression results.  

3.1 Literature Review: Hazard Mitigation  

The Federal government’s role in flood risk management originated with the Flood 

Control Act of 1928, which authorized the U.S. Army Corps of Engineers to design and 

construct projects for the control of floodwaters. Passage of the National Flood Insurance Act in 
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1968, marked a movement towards land-use planning, construction standards, and federally 

backed flood insurance (Pasterick 1998).  Political pressures, however, have created impetus for 

increasing amounts of disaster relief payments for flood victims, despite the fact that many 

communities have allowed risky development in floodplains (ASFPM 2007; Michel-Kerjan and 

Volkman-Wise 2011). The expectation of disaster assistance can create a disincentive for self-

protection, insurance, and mitigation, because the federal government significantly aids the 

reconstruction after each natural disaster (Beatley 1989; Coate 1995; Burby, et al. 1999; Haddow 

and Bullock 2003). In order to address local capacity and encourage local commitment (rather 

than facilitating further development in floodplains), the National Academy of Public 

Administration (NAPA) has recommended establishing a “cooperative intergovernmental 

system” to build state and local capacity  in place of ex post disaster assistance (Godschalk, et al. 

1998). The emerging cooperative system has focused natural hazard mitigation efforts at the state 

and local level, with the federal government providing support in the forms of resources and 

guidance. Within this framework, local hazard mitigation efforts can be enhanced by direct 

regulation, incentive programs, and supervision of flood loss reduction programs (ASFPM 

2007). 

In accord with the recommendations of NAPA and the delegation of responsibility for 

planning activities, there appears to be a general consensus in the planning literature that hazard 

mitigation policy should be carried out at the local level. As such, local governments play a 

critical role in flood hazard mitigation (Mileti 1999; Prater and Lindell 2000). Floodplain 

management, however, is sometimes viewed by local government personnel as someone else’s 

responsibility (Burby, et al. 1985), and the reluctance of local elected officials to advocate 

mitigation measures is identified as a primary impediment to hazard mitigation (Burby 1998; 
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Burby and May 1998).  Just as individuals are wont to, local government officials often 

underestimate the risks involved in developing flood plain areas unless they have recently 

experienced a flood event. The occurrence of floods can influence political will and public 

support of hazard mitigation (Clary 1985; Burby and Dalton 1994). Disaster events can open 

“windows of opportunity” by exposing vulnerability and focusing the political agenda on hazard 

mitigation issues (Kingdon 1984; Berkes 2007). Protracted planning, permitting, and 

implementation procedures, however, may introduce significant time lags between the 

occurrence of hazard events and successful completion of mitigation projects (NOAA 2010). 

Burby and French (1985) conclude that while a window of opportunity may exist in the 

aftermath of disaster, prospects for improved hazard mitigation dim rapidly as political attention 

and local efforts turn to recovery and a return to normalcy. Moreover, in his events-related policy 

study, Birkland (1998) concludes few will take advantage of a disaster event to pursue the policy 

change without some sort of policy community or advocacy coalition providing support and 

coordination. 

Since natural hazards are large scale events, mitigation and planning require substantial 

resources.  Thus, local government potential for hazard mitigation is largely dependent upon 

local capacity – in particular, trained staff and budget (Kunreuther and Roth 1998). While 

knowledge of local circumstances increase as one moves from state or national level down to 

local jurisdictions, local capacity is comparatively much more limited and varies widely across 

locales (Perry and Lindell 2003). The amount of governmental resources that are allocated to 

hazard mitigation is dependent on the available fiscal resources in a jurisdiction (Prater and 

Lindell 2000). Moreover, the extent of on-hand resources and the array of human capital may 

differ significantly from one community to another, due to idiosyncratic differences in 
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experience, local culture, and histories. Previous researchers have examined policy 

implementation and pointed out that strong mitigation capacity is most likely to be found in 

larger communities and communities with higher property values (Burby and French 1981; 

Godschalk 2003). Therefore, local government revenue, which is mainly derived from taxes on 

property, is likely to directly influence community mitigation capacity. The benefits of hazard 

mitigation, however, are only realized after disasters occur and are difficult to quantify, while the 

costs are incurred immediately and are easy to calculate. Therefore, other problems, such as 

crime control and improving the quality of education, may garner more attention and funding 

compared with hazard mitigation projects (Prater and Lindell 2000).  

An analysis of the effectiveness in floodplain management programs in 1,203 NFIP 

jurisdictions shows that varying constraints such as flood risk factors, land use in flood hazard 

areas, and demographic characteristics, require different mixes of program components in order 

to mitigate hazards (Burby and French 1985). Posey (2009) examines the influence of local 

socioeconomic status on the adaptive capacity of municipal governments, using CRS 

participation and classes as proxies for local capacity to adapt to environmental hazards. His 

study employs cross-sectional regression analysis to explore the effects of population, historical 

flood losses, and socioeconomic factors (including income, education, race, housing values, etc.) 

on mitigation levels and premium discounts in CRS for over 10,000 communities across the US.  

In addition, Posey examines the influence of local government structure (presence of city 

manager), municipal budget, and cities’ net valuation on CRS participation and premium 

discounts for New Jersey communities (also using cross-sectional regression models).  He finds a 

positive effect of historical flood losses on flood hazard mitigation and a negative effect 

attributed to population.  Using variables derived from principle component analysis, he finds 
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evidence that hazard mitigation is more likely to occur in affluent communities with greater 

levels of education and lower proportions of minority households. The results make intuitive 

sense, as citizens can apply direct and indirect pressure to motivate hazard mitigation on the part 

of local government officials through elections, town hall meetings, editorials in local papers, 

and public opinion polls, which provide an opportunity for feedback on the performance of local 

officials (Prater and Lindell 2000).  While the causal mechanism between individual socio-

economic status and local government’s adaptive capacity remains to be empirically verified, the 

results highlight correlation patterns among flood hazard mitigation efforts and community 

characteristics.   

Brody, et al. (2009) examine adaptive management and policy learning for flood 

mitigation as reflected in CRS scores in Florida counties from 1999 to 2005. Specifically, they 

track annual point totals for the four CRS mitigation series (described in Table 2.1) for 52 of the 

67 Florida counties that exhibit some level of voluntary participation in the CRS. They use 

population-adjusted measures of CRS points and regression covariates to account for both 

participating counties and nested municipalities, and examine the influence of hydrologic 

conditions, flood disaster history, socioeconomic, and human capital controls on CRS points. 

Their results suggest that flood history induces flood policy adaptation and the frequency of 

events is more influential than the level of damage; jurisdictions with greater proportion of land 

in the 100-year floodplain have lower CRS points, which the authors attribute to higher levels of 

mitigation expense.  CRS points tend to be greater in wealthier and more highly educated 

jurisdictions.  Local governments in Florida have tended to focus on less expensive mitigation 

measures, such as information provision and flood information updating, to earn CRS points, 

rather than costly structural measures, such as parcel acquisition and retro-fitting. The body of 
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research on flood hazard mitigation provides important insight into and evidence of aspects that 

influence local jurisdictions’ willingness and ability to address flood risk management. Critical 

questions remain, however, as to the significance, strength, and relative importance of driving 

factors in implementation of hazard mitigation policies at the local level – what distinguishes 

those communities that are active in flood hazard mitigation from those that are not.  

In summary, the literature on flood hazard mitigation suggests that local risk factors, risk 

information, historical flooding experience, political agency, public participation in planning, 

and financial capacity can be important in determining local flood hazard mitigation efforts.  By 

exposing vulnerability and focusing the political agenda, hazard events can open a “window of 

opportunity” for initiation of flood hazard mitigation.  But, this window may be short-lived, as 

other matters – such as crime and education – press for attention of citizens and local 

bureaucrats.  The literature suggests that characteristics of the population, such as income, 

housing values, education, and ethnicity can influence hazard mitigation, presumably through 

direct and indirect citizen involvement in local politics (but perhaps other ways as well).   

3.2 Objectives 

We examine participation in CRS for all 100 North Carolina counties from 1991 – 2002.  

This time period covers the inception of CRS to the year in which the last NC County enrolled.  

Since CRS credit is only awarded upon verification by an external party (ISO), active 

participation in CRS includes adoption and implementation of (at least some) hazard mitigation 

efforts.  As such, we hope to learn about the importance and relative magnitude of factors that 

influence communities’ willingness to adopt and implement incentive-based hazard mitigation 

measures.  
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We test a number of hypotheses offered by previous researchers to uncover the factors that 

motivate local hazard management initiatives through an examination of patterns in participation 

in CRS across a panel dataset of NC Counties. We posit the following hypotheses: 

� H1: Historical Flood Experience: Counties with greater historical flood experience (such as 

flood events and property damage) are more likely to participate in CRS. 

� H2: Window of Opportunity: Counties with recent flood experience (such as flood events and 

property damage) are more likely to participate in CRS. 

� H3: Flood Risk Factors: Counties with higher overall level of hydrological risk (average 

annual precipitation, proportion of water bodies to surface area, and coastal location) are 

more likely to participate in CRS. 

� H4: Local Capacity: Counties with greater financial resources (such as property tax revenue) 

are more likely to participate in CRS. 

� H5: Crowding Out: Counties with more severe day-by-day social problems in the recent past 

(such as high crime and poor school quality) are less likely to participate in CRS. 

� H6: Socioeconomic Characteristics: Counties’ likelihood of participation of CRS is 

influenced by socioeconomic characteristics (such as population, age distribution, education 

level, and number of housing units).   

We elaborate on these hypotheses and the data used to test them in the next section. 

3.3 Data 

The list of CRS communities and their 2008 CRS scores are available on the FEMA 

website (http://www.fema.gov/pdf/nfip/manual200805/19crs.pdf). With publicly available data, 
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we are unable to observe many of the variables of interest at scales below the county level, so we 

confine our analysis to NC counties and save a multi-jurisdictional analysis for future research.  

We focus on the time period 1991 to 2002; CRS was initiated in 1990 and our chosen time 

period encompasses initial enrollment activities of all participating North Carolina counties. A 

drawback associated with focusing on this period of time is that some data (such as digital flood 

maps) are unavailable. Figure 3.1 displays a map depicting all NC counties that have participated 

in CRS. 

NC Counties that did not participate in NFIP during 1991-2002 are coded as non-

participants in CRS (CRS_dummy = 0).  As of 1991, however, most NC Counties were enrolled 

in NFIP, so that they could apply for and receive credit for flood hazard mitigation activities 

recognized by CRS.  If these counties undertake no additional flood hazard mitigation activities 

or fail to apply for CRS credit, they receive a CRS score of 10 – no flood insurance discount; 

these counties are coded as non-participants (CRS_dummy=0).  Any counties that received less 

than 500 CRS points in any given year are also counted as non-participants (CRS_dummy=0).  

We cannot observe local flood hazard mitigation activities that result in less than 500 points, as 

they are not included in the CRS-points data series.  Nonetheless, the CRS Coordinator’s Manual 

contains an easy-to-use checklist that allows local officials to determine if their community 

currently undertakes enough activities to attain Class 9 (>499 CRS points).  Many recommended 

activities can be implemented for a relatively low up-front cost (e.g. public information activities 

Series 300-responding to inquires to identify a property's FIRM zone can earned up to 138 CRS 

points) (FEMA 2007, page 120-3).  Any mix of flood hazard mitigation activities from table 2.1 

that results in 500 points is sufficient to attain a score of 9, and additional activities can lower the 

score.  Thus, counties with a score of 9 or less are coded as CRS participants (CRS_dummy=1).  
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Since we do not observe flood hazard mitigation activities that result in less than 500 points, our 

estimates can be viewed as conservative (requiring a threshold level of activity before mitigation 

is recognized in the statistical model). Moreover, since we use the CRS framework to identify 

mitigation activities, our model accounts for adoption and implementation (as is generally 

required for CRS credit), and we do not analyze mitigation activities that might occur outside of 

the CRS framework. On average, 17% of NC Counties participated in CRS during 1991 – 2002, 

with a high of 20% (in 1996) and a low of 8% in the initial year (1991).  Figure 3.2 shows the 

proportion of participating counties over time.  At the end of the time-series, 18 of the 100 NC 

counties were participating in CRS. 

Table 3.1 presents a summary of the variables to be used in our analysis. The explanatory 

variables are organized under four broad categories. First, six flood experience variables that 

were collected from National Climate Data Center (NCDC) are proposed to account for the 

history and severity of community flood hazard. These variables include data on flood events 

and property damage in each county. We use ten years flood experience (1980-1989) prior to 

CRS, fixed for a given county in our longitudinal dataset, to test H1. We postulate that greater 

historical experience with floods (in terms of events and property damage) will motivate more 

stringent hazard mitigation, increasing the likelihood of CRS participation. While hazard 

exposure can influence political will and build public support of hazard mitigation (Kingdon 

1984; Clary 1985; Burby and Dalton 1994; Berkes 2007), laborious and protracted planning, 

permitting, and implementation processes may introduce significant time lags between hazard 

events and successful completion of mitigation projects (NOAA 2010). Nonetheless, the 

occurrence of floods can focus the political agenda on the importance of flood hazard mitigation, 

especially if flood damages are severe.  To account for this, we use previous one year and two 
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years flood events and flood-related property damage to test H2.  Our community flood 

experience variables thus include events in the distant and recent past in order to account for a 

legacy of flooding events that could have motivated mitigation activities over longer time 

periods, while also allowing for short term influence of flooding that may open “windows of 

opportunity” and thus have more immediate impacts on mitigation activities. 

Second, we use three variables that reflect a county’s hydrological conditions and overall 

level of potential flood risk to test H3. Our first flood risk variable measures the average annual 

precipitation (1991-2002) at weather stations within the county and is provided by the State 

Climate Office of North Carolina. The rainiest counties face a higher probability of riverine and 

flash floods, which could be a catalyst for local flood hazard mitigation. Given their position in 

the watershed, coastal counties convey floodwaters to the ocean and can suffer coastal flooding 

and storm surge problems due to hurricanes and Nor’easters. Thus, we expect the 20 North 

Carolina Coastal Area Management Act (CAMA) counties to be more likely to adopt flood 

hazard mitigation activities due to the higher level of flood risk (all else being equal). (CAMA is 

legislation passed by the North Carolina General Assembly in 1974.  This legislation is 

applicable to all 20 coastal counties and the municipalities located within these counties. The 

purpose of CAMA is to protect the unique natural resources of North Carolina coastal areas.) 

Digital data on area of surface water bodies (such as streams, rivers, lakes, reservoirs, and 

estuaries) were collected from North Carolina Center for Geographic Information and Analysis. 

The percentage land cover of water bodies in a county is calculated with ArcGIS software; we 

expect a higher likelihood of mitigation for counties with a greater proportion of surface water. 

Unfortunately, we are unable to use proportion of land in the SFHA as a covariate, because 

digital flood hazard maps in the North Carolina Floodplain Mapping Program are available only 
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back to 2008. We expect more densely populated areas to be more likely to engage in hazard 

mitigation due to greater benefit of flood protection accruing to more local residents. These data 

were collected from U.S. Census Bureau. We find a significant correlation between population 

and housing density (Corr[population density, housing density]= 0.9943), so we include only 

housing density in our analysis.  

Third, we include three variables reflecting local capacity for hazard mitigation and 

competing priorities to test H4 and H5. Data on per capita county property taxes, which is 

collected from NC Association of County Commissioners Budget & Tax Survey, represent local 

government financial resources available for hazard mitigation projects. We expect counties with 

greater tax revenue to be more likely to engage in flood hazard mitigation.  Competing priorities, 

on the other hand, may crowd out hazard mitigation.  The benefits of hazard mitigation are only 

realized after a disaster occurs and are difficult to quantify (as there is typically no 

counterfactual), but the costs are incurred immediately and are easily calculated. Therefore, other 

problems, such as control of crime and improving the quality of education, usually garner more 

attention than hazard mitigation projects. The pressing needs of such “here and now” issues may 

attract more time, money, and other resources and can crowd out hazard mitigation initiatives 

(Prater and Lindell 2000). We account for these other potential county policy priorities in our 

regression models. We use the ratio of enrolled students to instructional staff in county public 

school to measure local school quality (Card and Krueger 1992); these data were collected from 

NC Department of Public Instruction. We use the crime rate to proxy for the competing concerns 

over criminal activity in the county; the number of reported crimes (including murder, forcible 

rape, robbery, aggravated assault, burglary, larceny, and motor vehicle theft) per household was 

derived from NC Department of Justice. To account for the timing of competing priorities, we 
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analyze the lag of school quality and crime rate in our regression models. We expect concern 

over education quality and crime control could shift attention and funding away from hazard 

mitigation projects, and we thus expect negative coefficients on these variables.  

Lastly, we examine the influence of community characteristics on local hazard 

mitigation.  We use the percentage of citizens with a bachelor or graduate degree, median 

household income, and the percentage of senior citizens to test H6. We expect that the likelihood 

of flood hazard mitigation is increasing with the level of education, all else being equal. Data on 

percentage of population with college degree or higher is derived from census data with missing 

years interpolated. Annual data on median household income for each NC County is not 

complete from U.S. Census. Thus, we use estimates from the Department of Housing and Urban 

Development (HUD), which are prepared as part of the process of updating eligible income 

limits for the community development program. Median household income provides a proxy for 

the level of individual wealth. We conjecture that wealthier communities may exhibit a greater 

demand for hazard mitigation, but since wealthier households are better able to afford individual 

mitigation measures and insurance they may put less pressure on local governments for hazard 

mitigation.  

In his study of local adaptive capacity, Posey (2009) doesn’t include age structure among 

his socio-economic variables. While a community’s willingness to support mitigation activities 

may depend on the local severity of risk and the community’s commitment to dealing with the 

problem (Burby 1998), the vulnerability of elders as a group could be an important factor in 

overall vulnerability assessment which may increase the likelihood of local hazard mitigation. 

North Carolina, however, has become a popular retirement destination due to the state’s varied 

terrain, moderate climate, reasonable housing prices, and special tax exemptions for military and 
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other federal employees’ retirement pay. This has led to increasing numbers of migrating 

retirees, many of which may have limited experience with flood hazards. Thus, our expectations 

of the impact of proportion of senior citizens on hazard mitigation activities are ambiguous. We 

collected data on the senior population from U.S. Census.  

Data that we are unable to collect include the proportion of minorities in the county, the 

extent of local political participation, and the structure of local government (i.e. presence of city 

manager).  Our statistical model (described in the methods section below) helps to address this 

lack of information, to some extent; using panel data on participation, we are able to control for 

time-invariant, unobserved heterogeneity, which may account for some of these factors (e.g. 

government structure).  While information on average property values is available, we expect 

this will be highly correlated with property tax revenue. 

Since the structure of NFIP rests on a multi-jurisdictional configuration which allows for 

participating counties, towns, and cities, the extent and timing of enrollment in CRS for county 

and municipalities within the county may vary. To account for this structure, we measure the 

proportion of participating CRS municipalities that are nested within the county. Since the 

damage from flooding may occur at a large geographic scale, hazard assessment and 

management requires communication and coordination among the county and its municipalities. 

The county and municipalities can share technologies (GIS Mapping), resources (hazard 

mitigation personnel), and information. We expect more flood hazard mitigation activities to be 

undertaken where a larger proportion of nested municipalities participate due to technology 

spillovers and agglomeration effects (which can lower the cost of hazard mitigation).  

We harbor some concerns over possible spatial dependence in our model. Spatial 

dependence occurs when response variables in one space are correlated with the responses in 
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another (Anselin 1988). Spatial dependence may arise in this study because counties sharing 

common geographic features and unobservable flood risk factors may tend to cluster in space. If 

the relevant spatial dependence is ignored in estimation, the estimated coefficients could be 

inefficient or inconsistent, which may mislead inference and conclusions (Ward and Gleditsch 

2008). Testing for spatial dependence in the probit model, however, is more difficult than for the 

continuous case due to the fact that neither residual nor dependent variable in the latent variable 

model can be observed. Recent theoretical literature discusses a generalization of Moran’s I for 

probit models (Kelejian and Prucha 2001) but to date this test statistic has seen little application. 

Moreover, software packages such as ArcGIS and Geoda have not developed a tool to test spatial 

dependence in binary response models. In this study, we use the proportion of bordering counties 

that participate in CRS as a crude control for spatial dependence. Lastly, with many floodplain 

management workshops and conferences offered each year, more information on flood hazard 

mitigation, including CRS activities, becomes available for local floodplain managers over time. 

We explore this effect by examining the impact of the length of time that the county has been 

enrolled in NFIP. Summary statistics for the dataset are presented in table 3.2. 

3.4 Methods 

Our dependent variable, CRS participation, takes on only two values: zero and one, 

which indicates whether or not the county participates in the Community Rating System 

according to the aforementioned definition. The linear probability model is generally regarded as 

inappropriate, since the dependent variable takes only limited values and the error term will be 

heteroskedastic (Long 1997; Wooldridge 2002). As one of the Qualitative Response Models, the 

logit and probit models are widely used when the dependent variable takes discrete values 
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(Mckelvey and Zavoina 1975; Matyas 1992; Greene 2002; Wooldridge 2002). We begin with a 

latent variable model:  

y�� � x��β � ε� 
where 
�� is a latent (unobservable) variable which represents community 
’s propensity to adopt 

CRS activities (i.e.,  implement projects to lower flood risk); �� is a vector of explanatory 

variables which are organized under the four broad categories discussed above; � is a vector of 

unknown parameters  to be estimated, and �� is an unobserved random error term.  

The latent variable, 
�� , ranges from �∞ to �∞. Instead of observing 
��, we observed 
� 
indicating the sign of 
��:   


� � �1, if y�� � 00, otherwise  
Therefore, the probability of participation in CRS is:  

!"y� � 1| $% � !"
�� � 0|$% � !"ε� � x��β| X% � G"x��β% 
When the error term has a standard normal distribution: �� ~)"0,1%, the response 

probability G"x��β% gives rise to the probit model: 

G"x��β% * Φ"x��β% � , -".%/012
34 5. 

where Φ"·% is standard normal cumulative distribution function.  When the error term has a 

standard logistic distribution, it gives rise to the logit model: 

G7x�′β8 * Λ7x�′β8 � exp7x�′β8 /;1 � exp7x�′β8< 
Since the logistic distribution is similar to the normal distribution (except with heavier 

tails), the two models produce similar effects estimates and give very similar predictions in most 

applications (Greene 2002). In both cases, the parameter vector () and associated standard 

errors are obtained by Maximum Likelihood Estimation (MLE). 
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A handy way to get the magnitude of the partial effects is to estimate average partial effects 

(APEs): 

=∑ ?"��′�@%A�BC D E �FG  

where the APEs scale factor, ?"��′�@% � -(��′�@% for the probit model and ?7��′�@8 � exp7��′�@8 /
H1 � exp7��′�@8IJ for the logit model. If �� is discrete, the marginal effect is computed as the 

difference in the estimated probabilities with �� � 1 and �� � 0 and other variables at their 

means. 

Aside from the limited values of the dependent variable, our dataset has annual 

observations for each county from 1991 to 2002, which forms a combined time-series, cross-

sectional dataset, also known as longitudinal or panel data. An advantage of panel data over the 

cross-sectional format is that it allows the analyst to account for cross-sectional unobserved 

heterogeneity. For instance, in a typical cross-sectional regression analysis, the researcher can 

account for observable heterogeneity using covariates; in our application, this would include 

county characteristics, such as property tax revenue, housing units, and population. In some 

cases, the covariate effects are of direct interest to test hypotheses about causation or correlation, 

while in others they are introduced as control variables.  If, however, there are other unobserved 

factors influencing the counties’ propensity to conduct flood hazard mitigation activities, the 

regression parameter estimates can be inconsistent (creating bias in parameter estimates that does 

not decrease or disappear as the sample size increases). For our application, local government 

structure and perceptions of flood hazard, as well as idiosyncratic features like history or culture, 

which are unobserved or unobservable, may affect CRS participation, and thus controlling for 

unobserved heterogeneity could be very important.  
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To control for unobserved heterogeneity, we consider the unobserved effects panel data 

model for latent dependent variable:  

y�K� � x�K�  β � c� � ε�K, 
where ci represents an unobserved , time-invariant cross-sectional effect for unit i.  Random 

effects and fixed effects are two approaches to estimate this model under strict exogeneity of the 

explanatory variables (M"��N|��, O�% � 0). The random effects approach to estimating  involves 

specifying a distribution for components of the error term, O� and εit, under the assumption that O�  
and xit are independent. The random effects probit model has been considered in several research 

papers (e.g., Bjorklund 1985; Clark 2003; Das and Arthur 1999; Gerlach and Stephan 1996; 

Korpi 1997; Schwarze 2003; Winkelmann and Winkelmann 1998).  An alternative specification, 

the fixed effects approach attempts to estimate the individual ci, or condition them out of the 

likelihood function.  For the probit model, the fixed effects specification typically cannot be 

estimated due to the incidental parameters problem, which inhibits identification of fixed effect 

parameters. For the logit model, the fixed effects specification is only suitable when there is 

variability in the dependent variable at the level of the cross-section – this applies to only a small 

proportion of observations in our dataset.    

 We focus on a panel of 100 NC counties over a period of 12 years. In the unobserved 

effects latent variable model: 

y�K� � x�K′  β� P�K,            
=1,2,…,100,   Q=1,2,…,12          where   P�K �  c� � ε�K 
where ε�K~N"0,1% and  c�|x�~N "0, σSJ%, Var(P�K)=1+σSJ. The importance of the unobserved effect 

is measured as T � UVWCXUVW, which is the correlation between P�K across any two time periods 

(Wooldrige 2002; Greene 2002). Standard statistical packages report estimated rho "TY% and its 

standard error along with other random effects probit parameters, which allows for 
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straightforward testing of the presence of unobserved, time-invariant cross-sectional effects. The 

unobserved factor, c�, accounts for  cross-sectional, time invariant factors that influence the 

counties’ propensity to conduct flood hazard mitigation activities. Our specification does not, 

however, account for time shocks that may affect local hazard mitigation decisions. Examples 

might include changes in government personnel, or the occurrence of a major hurricane event 

that doesn’t directly impact the area of interest. Thus a strong argument supports the inclusion of 

time effects in the unobserved effects probit model (Wooldrige 2002, page 484). We use time 

dummies to control for unobserved temporal effects. The likelihood function for random effects 

probit model can be found in Wooldridge 2002 (Chapter 15), along with formulas for the 

calculation of APEs. An alternative to random effects probit is random effects logit, which can 

provide consistent estimates of β without the assumption about the relationship between 

O� and ��N. There are, however, no simple estimators available for this model (Woodridge 2002, 

page 490), necessitating use of random effects probit.  

The issue of endogeneity arises whenever an explanatory variable is correlated with the 

error term, either because of the omitted variables, measurement error, or simultaneity 

(Wooldridge 2002). In our study, we are concerned about endogeniety bias due to simultaneity: 

some explanatory variables are jointly determined with the dependent variable. It is helpful to 

outline a heuristic framework in order to provide the background for the specifications: 

Z[\_Z^__�N � `N � �Cab^a_5c_c?d�N � ��J$�N � P�K 
where $�N is a vector including all other covariates in Table 3.2.  Simultaneity in property 

damage (for single-year and two-year lags) can arise because property damage stemming from 

floods is influenced by lagged CRS participation decisions. Consider the equation: 

ab^a_5c_c?d�N � eN � fCZ[\_Z^__N3C � g�N 
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If  fC h 0, the exogeneity assumptions (M"��N|��N% � 0% will be violated. If  fC i 0 (as would be 

expected), the regression estimate of  �C will be attenuated (downward biased) and inconsistent, 

and regression estimates for covariates that are correlated with past property damage may also be 

biased.  

One might also harbor concern over the flood events variable, but it depends how flood 

events is defined.  If defined as water levels reaching flood stage, this variable should not be 

endogenous.  If, however, designation of a flood event is triggered by occurrence of property 

damage or other factors that can be influenced by mitigation, then the variable could be 

endogenous. Our flood events variable is derived from National Weather Service (NWS) reports. 

The NWS receives storm information including flood events from: county, state and federal 

emergency management officials; local law enforcement officials; skywarn spotters; NWS 

damage surveys; newspaper clipping services; the insurance industry; and the general public. As 

such, there is no clear and consistent definition of flood events. While correcting for explanatory 

variables that are not strictly exogenous is difficult in nonlinear models, Wooldridge (2002) 

suggests an easy test of strict exogeneity.  Wooldridge’s test involves adding future realizations 

of the potential endogenous regressor to the estimating equation. Under the null hypothesis of 

strict exogeneity these regressors should be statistically insignificant. Undertaking this test with 

flood events, we find that coefficients on future realizations are all insignificant, which provides 

some justification for the strict exogeneity assumption.  We thus estimate two versions of the 

regression model, one with flood events as the experience variable and the other with property 

damage. To the extent that parameter estimates for other covariates are similar across the two 

models, we express confidence in the results that use property damage as an experience measure.  
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Nonetheless, we expect that the parameters on property damage will be downward biased (by an 

unknown magnitude).  

3.5 Results 

We use the random effects probit model in two specifications – Model 1 (flood events 

specification) and Model 2 (flood damage specification). Both models are estimated using 

STATA statistic analysis software. The estimation results for each of the models with Average 

Partial Effects (APEs) are shown in Table 3.3. Concerned with endogeneity of lagged property 

damage, we focus primary attention on the results in Model 1. The signs for most of the 

covariate parameters, which indicate the direction of impact on probability of participation in 

CRS, are consistent across both models. The exception is elapsed years since joining NFIP 

(NFIP_Year), which is estimated to have a negative effect in the Model 1 but a positive effect in 

the Model 2 (both of which are statistically insignificant). Since the probit models use maximum 

likelihood estimates derived from an iterative process (instead of minimizing the sum of squared 

errors), the standard R-square measure does not apply. McFadden (1974) suggests the measure 

1 � jkl/jm (pseudo R-squared), where jkl is the value of the log-likelihood function for the 

estimated model, and jmis the value of log-likelihood function for the model with only an 

intercept term. The pseudo R-squared ranges from 0 to 1 with higher values indicating better fit. 

Both pseudo R-squares indicate good fit for the maximum likelihood models, with pseudo R-

sq=42.3% for the Model 1 and pseudo R-sq=41.8% for the for the Model 2. The number of 

statistically significant covariates decreases from ten to nine when we move from Model 1 to 

Model 2.  To account for unobserved heterogeneity, the random effects probit model is employed 

under the assumption of strict exogeneity of the explanatory variables. The statistically 

significant rho parameter"TY n 0.958% indicates the existence of an unobserved time invariant 
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effect at the cross-sectional level. Therefore, the random effects model is preferred to a pooled 

probit specification. 

We consider first the impact of flood experience on CRS participation. In Table 3.3, the 

pre-CRS flood event variable is statistically significant and positive in Model 1, suggesting that 

an additional flood from 1980-1989 (before the establishment of CRS) increases likelihood of 

participating in CRS by 6.56%.  Short term flood events, however, appear to have no statistically 

significant impact on CRS participation. This result is robust to different lag lengths for flood 

events (i.e. three or four years – results available upon request). Results from Model 2 are 

statistically insignificant for pre-CRS and one- and two-year lagged property damage.  For the 

lag results, the lack of significance could be expected given attenuation of the estimated 

coefficients. Thus, we find some support for historical flood experience motivating participation 

in CRS, but no support for initiation of CRS activities in the short term during windows of 

opportunity that follow storm events. The lack of support for the windows of opportunity 

hypothesis in our case may be an artifact of our focus on counties as the level of analysis (as 

hazard mitigation could be occurring at the level of nested municipalities) and may reflect a lack 

of clarity regarding responsibility for floodplain management (Godschalk, Brody and Burby 

2003). Long term experience with flood events, however, appears to strongly encourage local 

hazard mitigation activities at the county level. 

We account for potential variability in flood risk across counties with a number of 

covariates –average annual precipitation (from 1991-2002), a dummy variable for CAMA 

counties (meant to capture additional risk associated with downstream riparian flooding and 

storm surge), and water body coverage (measured as percentage of total county area). Our 

expectations are that higher risk factors will be associated with greater likelihood of 



35 
 

participation. Results indicate that counties with greater average rainfall and a greater proportion 

of water body are more likely to participate in CRS.  Focusing on Model 1, a one-inch increase 

in annual precipitation increases participation likelihood by 0.16% and a one percent increase in 

the proportion of water body in a county increases the likelihood of CRS participation by 1.82%. 

The estimates from Model 2 are roughly equivalent.  From an economic and public policy 

perspective, these results are encouraging, as they suggest that flood hazard mitigation is more 

likely to occur in areas that face greater flood risk.  

Surprisingly, the marginal effect for CAMA counties is statistically significant and 

negative in Tables 5, suggesting that CAMA counties are less likely to participate in CRS (all 

else being equal).  The average partial effects are -12.80% in Model 1 and -10.19% in Model 2. 

Coastal counties are exposed to storm surge, coastal flooding associated with upstream rainfall 

and coastal storms, and erosion hazards. In North Carolina, under the Coastal Area Management 

Act (CAMA) of 1974, all 20 counties classified as ‘coastal’ have been required to prepare local 

land use plans that include provisions for storm hazard mitigation, post-disaster recovery, and 

evacuation (Beatley, et al. 2002).  

Under CRS Activity 430 Higher Regulatory Standards, state-mandated regulatory 

standards (SMS), which are included in NC CAMA regulations, are credited up to 45 CRS 

points. In North Carolina, only coastal counties receive SMS credit associated with CAMA 

regulations. To explore whether coastal counties are receiving CRS credit for higher mandated 

regulatory standards, we analyze CRS point data from 2002 – 2008.  (Detailed CRS points data 

are not currently available for the time period 1991 – 2001.)  A two sample t-test reveals that the 

mean of CRS points for Activity area 430 is significantly greater for participating CAMA 

counties (t = -1.863, p-value < 0.03, df = 123).   We interpret CAMA CRS counties’ higher 
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Activity 430 points as indicating a rather limited impact of the mandated CAMA program on 

county-level flood hazard mitigation (or at least a failure on the part of county officials to 

translate hazard mitigation into flood insurance premium discounts by applying for CRS credit). 

Our data suggest that, aside from the mandated activities, CAMA counties are not as active in 

hazard mitigation (as reflected in CRS participation) when we control for other factors (such as 

flood experience, risk factors, and financial capacity). It is possible, however, that coastal flood 

hazard mitigation is occurring at the level of waterfront towns and cities in CAMA counties, 

rather than at the county jurisdiction.  The multi-jurisdictional scale of NFIP and CRS makes this 

possible.  As of 2010, 37 municipalities (38.9%) within the CAMA counties were participating 

in CRS on their own behalf – most of these 37 towns and cities are waterfront 

coastal communities (including CAMA municipalities located on the oceanfront, estuaries, and 

rivers). The fact that many coastal counties in North Carolina have limited commercial and 

residential development, except along river, estuary, and oceanfront shorelines could reasonably 

explain such mitigation patterns. Mitigation activities across the various local jurisdictions 

remain an important area for future research.  

The estimated average partial effect of per capita property tax levy exhibits a positive and 

statistically significant sign, which abides our expectations that financial capacity would increase 

the likelihood of the policy adoption & implementation. Results of the preferred Model 1 

indicate that one hundred dollar increase in average property tax per capita increases the 

likelihood of CRS participation by 6.23%. Similar results are obtained in Model 2 (6.17%). 

These findings imply that flood hazard mitigation is more likely to occur in wealthier  districts 

with greater tax revenue and that poorer districts with less financial capacity may be more 
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vulnerable to flood hazard. In addition, wealthier districts might also be expected to have more 

valuable building stock and thus more incentive to protect it.  

For competing local public policy priorities, we use student-teacher ratio to account for 

local public school quality and crimes per household to account for public safety. We expect 

school quality and crime could be strong competitors with hazard mitigation projects for limited 

local financial resources. The estimated coefficients for lag(student-teacher ratio) exhibit an 

unexpected negative sign, but they are not statistically significant. We also used (lagged) local 

education expenditures per student as an alternative proxy for school quality and found similarly 

insignificant results. The estimated coefficients for crimes per household exhibit a positive sign, 

but are also not significant. A better proxy for public safety would be the local budget for public 

safety or police protection (for which data are unavailable). The statistically significant and 

positive coefficient on Hu_density indicates that more densely developed counties are more 

likely to participate in CRS. According to the result of Model 1, increasing houses per square 

mile by one unit increases the probability of participation by 0.14%. This could indicate a pure 

benefit effect (as more homes exposed to risk increases the benefit of mitigation), but could also 

reflect greater local government financial capacity (tax base). 

Holding flood experience, hydrological risk factors, and level of financial resources 

constant, the influence of median household income on likelihood of participation in CRS is 

positive in both models, but neither coefficient is statistically significant. The percentage of 

senior citizens in a community has significant and negative impact on likelihood of participation 

in CRS. In Model 1, the probability of participation decreases 1.66% for a 1% increase in 

proportion of senior citizens; we find similar results for Model 2. We expect that this result may 

be driven by migration patterns of retirees (Deller 1995). Having a temperate climate, varied 
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natural resources, low cost of living, and favorable tax treatment for former federal employees, 

North Carolina has witnessed a tremendous influx of migrating retirees. Due to scenic beauty, 

hazard-prone areas tend to be primary destinations for retiree migration. The potential increase in 

tax base is particularly attractive to local governments, and many of the migrant retirees may be 

uninformed about potential flood hazards. This is a plausible explanation for the negative effect 

of senior population, and suggests that targeted information campaign and education initiatives 

could be effective at improving flood hazard mitigation in some areas. Unlike the studies of 

Posey (2009) and Brody, et al. (2009), our random effect probit model finds a negative and 

statistically significant impact for proportion of college (and higher degree) educated citizens 

attributed to CRS participation. Our prior expectations were that counties with more educated 

residents might have higher demand for mitigation projects that can lower flood damage. The 

negative result could be an artifact of our research design, as participation in wealthier counties 

may be occurring at the municipality level (for which data are currently unavailable). We also 

note that our education measure is derived from linear interpolation using U.S. decadal Census 

data (1990, 2000).  Thus, this unexpected result could be due to systematic measurement error.  

Nonetheless, this result deserves further exploration in future research.   

For each model, the estimated coefficient for CRS_Muni is positive and statistically 

significant at 5% level. Increasing the proportion of participating municipalities within a county 

by one percent, the county participation probability increases by 1.37% in the Model 1 (1.38% in 

Model 2).  We construe this as evidence of strong agglomeration and spillover effects in local 

hazard mitigation. Since hazard identification, management, and mitigation requires specialized 

equipment and expertise, more involvement by nested towns and cities could increase the 

likelihood of county participation. Causation could also go in the other direction. We used the 
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proportion of CRS neighbor counties to partially account for spatial dependence. The estimated 

impact is not statistically significant in either model. Lastly, we find that the number of years 

since joining regular NFIP has contradicting signs in the two models, but insignificant impact on 

likelihood of participating in CRS.  

3.6 Conclusions and Policy Implications 

While the dynamics of weather patterns play an important role in the recent growth of 

damaging floods in the U.S., intensive development in floodplains and extensive population 

growth in low lying and coastal areas have increased human beings’ exposure to flood hazard. 

The communities that engage in hazard mitigation planning and management activities are less 

prone to flood hazard and recover faster from disaster than those communities which do not 

(NOAA 2010). The CRS rewards communities for undertaking mitigation activities beyond the 

minimum requirements of NFIP with reduced flood insurance premiums.  Most of the rewarded 

activities, such as stricter regulation of building codes, relocation of repetitive loss structures, 

and education and outreach, can reduce injuries, deaths, and damages and increase the 

communities’ awareness of and resilience to flood hazards. Since CRS uses standardized 

quantitative measures for representing local hazard mitigation activities, it provides an excellent 

source of information for empirical analysis of community hazard mitigation decisions.  

Evidence of the effectiveness of CRS has been provided in a study by Brody, et al. 

(2007), which indicates that flood damage can be decreased by approximately 15% by increasing 

CRS rating by 1unit. Participation in CRS, however, is as low as five percent of eligible NFIP 

communities nationwide. Given substantial variability in local physical, political, and social 

conditions, the existing voluntary framework for local hazard mitigation may have advantages in 

allowing locals to identify “low-hanging fruit” while tailoring their hazard mitigation plans to 
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local factors and concerns. In the flood hazard management network, disaster assistance and 

flood insurance are handled at the federal level due to the existence of greater financial capacity 

and the larger policy base needed for risk pooling; state governments are to provide policy 

guidance, technical assistance, and integration of floodplain management issues within a state; 

local government, however, is the locus of comprehensive land use planning, including 

floodplain management, within their jurisdictions. What drives community participation in CRS 

within the current voluntary framework is an important policy question. 

Our empirical models explore the impact of previous flood events and flood related 

property damage over both the long (pre-CRS) and short term (previous one and two years). We 

find evidence that flood events can influence hazard mitigation over longer time periods, but we 

do not find evidence in support of shorter term impacts of flood events. A null result for one-year 

lag could be expected, as local resources and personnel may be focused on recovery, but the null 

for short term impacts is robust to different window lengths (e.g., three- and four-year). The 

effects found for historical flooding may indicate that certain communities that had have 

experienced hazards were more likely to enroll in CRS at the program inception, and those 

communities continue to obtain credits for hazard mitigation activities, while other communities 

are more resistant to voluntary hazard mitigation and remain unconvinced of the potential 

benefits even in the wake of flood events.  

Prater and Lindell (2000) argue that the immediate aftermath of hazard events can open a 

“window of opportunity” as public sentiments shift to support of hazard mitigation, but this 

window soon closes as attention shifts to other pertinent issues, such as job creation, school 

quality, transportation, and crime. Our results do not support the hypothesis that windows of 

opportunity immediately following disasters are important determinants of flood hazard 
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mitigation (at least as measured by CRS). There are a number of possible explanations for this. 

The effects of recent disaster events may be attenuated by continual federal disaster assistance 

and subsidies for rebuilding in high-risk areas.  Federal and state agencies should seek to provide 

a stronger framework for grants-in-aid, low interest loans, and technical assistance to help build 

resilient communities before disasters instead of focusing attention on post-disaster rebuilding 

efforts. Moreover, the description of flood hazard mitigation activities in the CRS Coordinator’s 

Manual focuses primarily on the process used to assign mitigation points, with less attention paid 

to the potential local benefits of mitigation activities, in terms of property damage avoided and 

lives saved.  While these factors could be very difficult to quantify from a general standpoint, 

examples or brief case studies could be useful to illustrate the benefits of flood risk management.  

FEMA and state agencies could take a more active role in demonstrating successful hazard 

mitigation programs after local flood events, especially focusing on differences between CRS 

and non-CRS participants. Cases of successful hazard mitigation could be publicized in the wake 

of catastrophic events, with the goal of transferring effective mitigation strategies to other 

hazard-prone NFIP communities. The real limitation in such a demonstration is establishing an 

accurate counterfactual – what would flood impacts have been in the absence of existing hazard 

mitigation projects. Searching for appropriate comparison groups or designing simulations that 

measure the effectiveness of mitigation could be useful strategies. These information conduits 

could help local governments understand and visualize the potential benefits of the flood hazard 

mitigation projects, which could strengthen their own flood protection programs.  Lastly, the lack 

of empirical support for the window of opportunity hypothesis may be an artifact of our research 

design, as we only focus on the county level.  Future research should incorporate the multi-

jurisdictional structure of CRS. 
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Our results suggest that physical risk factors play a significant role in the likelihood of 

CRS participation, as does the density of development. We find higher water body percentage of 

total land area and greater average rainfall within a county each significantly increases the 

likelihood of CRS participation. This is encouraging, as it suggests that voluntary adoption of 

hazard mitigation activities is more likely to occur in areas that face greater risk, as well as in 

areas that are more densely developed. Given this evidence in support of systematic hazard 

assessment on the part of local government, community assistance programs that emphasize 

scientific applications in estimation of potential flood losses could increase the adoption of flood 

hazard mitigation in vulnerable areas. In 1997, FEMA developed a science-based software tool 

for estimating flood damages – HAZUS – which can facilitate local communities’ analysis and 

mitigation of flood damage.  Limited sources of input data, however, degrade the ability of 

communities to use HAZUS for hazard assessment (ASFPM 2007). Recommendations include 

enhancing data inventory and strengthening loss simulation models (Chang, Peacock and French 

2008; Davidson, Schneider and Muthukumar 2008). FEMA and state governments could 

encourage the use of HAZUS and similar hazard assessment technology through aggressive 

advertising  and additional technical assistance. 

Our results suggest that, holding other factors constant, the likelihood of mitigation is 

lower in coastal counties, which face greater flood risk due to downstream riparian flooding and 

storm surge. The Coastal Zone Management Act (CZMA) was enacted in 1972 to encourage 

coastal states to develop comprehensive programs to manage competing uses of coastal 

resources. Incorporated with CZMA, the NC Coastal Area Management Act (CAMA) 

regulations apply to coastal counties and mandate setback rules and building code standards to 

protect coastal communities from erosion, wind, and storm surge. CRS provides limited credit to 
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coastal counties for state-mandated regulatory standards under CAMA, and our results indicate 

the among CRS participants, point totals in for this activity area are higher for coastal counties 

relative to other counties.  Nonetheless,  the credit awarded (45 points total) is very small and 

potentially inconsequential in relation to the total points necessary to decrease CRS score (500 

points) to receive additional discount on flood insurance premiums. Examining the raw data, 

however, we find that 34 of the 60 (56.7%) waterfront municipalities participated in CRS as of 

2010, and a smaller proportion of the overall municipalities in the CAMA counties – 35.8% – 

participate in CRS. Thus, it appears that flood hazard mitigation may be occurring at a finer scale 

(where development is more focused) along the NC coast.   

Like CZMA, federal leadership to build the strong state capacity could be an efficient 

way to achieve more commitment in local level mitigation. Experience suggests that effective 

local management occurs in the presence of strong state floodplain management programs. 

Burby (2005) finds evidence that insured losses to residential property from natural disaster are 

significantly reduced if the state mandates local comprehensive plans with hazard mitigation 

elements (which are currently optional in some U.S. states). State programs could go further to 

achieve more initiation of local mitigation projects through state mandates of some CRS 

activities, such as public outreach about coastal hazards. Also, similar to NFIP, the state could 

provide direct technical assistance to local governments in initiation of CRS activities, training of 

local floodplain mangers, and managing or assisting with hazard mitigation.  

We find that education level and age structure are important factors in local hazard 

mitigation adoption and implementation. Counter to expectations, we estimate a negative effect 

of education attainment on the likelihood of CRS participation. This is a surprising result that 

requires further exploration.  We find evidence that the proportion of senior citizens within a 
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county has a negative influence on the likelihood of CRS participation. While elderly people 

may suffer more injuries and loss of life in disasters than younger population, with greater and 

more diverse life experiences and social support, elders exhibit greater resilience to the effects of 

disaster (Tierney, Lindell and Perry 2001), which may explain this result. In addition, by offering 

significant tax advantages for military and other federal retirees, low cost of living, and attractive 

recreation opportunities, North Carolina has become a primary destination state for migrating 

retirees. Data from the U.S. Census (He and Schachlter 2003) indicates that North Carolina 

witnessed a 22% senior net migration rate from 1995 to 2000, which ranks 5th in U.S. during this 

period. While we do not observe senior migration rates in our data, age structure of the 

community could reflect these retiree migration patterns. Migrating seniors can induce 

significant potential for economic development in scenic, rural communities, and local elected 

officials may focus more on this development opportunity (which can create significant 

economic benefits and a larger tax base) and less on potential changes in vulnerability to natural 

hazards that can be associated with rapid economic development. Migrating retirees from outside 

the state may be less aware and knowledgeable of flood hazards and thus could put less pressure 

on local government to engage in flood hazard mitigation.  As the U.S. population continues to 

age, it becomes increasingly important to consider elders in pre-disaster mitigation planning. Our 

result has implications for targeting of information and outreach programs which could be 

conveyed through public meetings, media, or other venues where senior members of the 

communities could be well represented.  

Holding risk and population factors constant, the average county property tax levy has a 

positive and statistically significant impact on CRS participation. This indicates that financial 

capacity is an important determinant of flood hazard mitigation (supporting the findings of Prater 
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and Lindell (2002)), and suggests that vulnerability may be higher in poorer communities with 

lower property tax revenue. The findings would support the establishment of low-interest loan 

programs or state grant-in-aid programs targeting counties without adequate resources, high risk 

factors, and high potential for floodplain development. Subsidized interest rates and outright 

grants could be economically justified in terms of foregone disaster aid and lower business 

interruption (resulting in lower tax revenue losses). 

In a recent report, NOAA Community Service Center (CSC) (2010) summarizes a 

number of factors that contribute to specific risk and resilience-related behavior derived from a 

series of structured interviews with local planners. This report concludes that barriers to hazard 

planning include competing priorities, among other factors. We do not find supporting evidence 

of competing priorities on diminished CRS participation, as the effect of lagged crime rates and 

student-teacher ratios are not statistically significant in our regression models. There is much 

greater variability in crime rates at the municipal (i.e. sub-county) level, which may explain the 

lack of significance of this covariate in our models.  Future research should also attempt to refine 

our approach (with better data) and explore the extent to which other local problems 

(transportation and economic development) crowd out investments in hazard mitigation. 

CRS community divisions rest on a multi-jurisdictional scale which includes towns, 

cities, and counties. Therefore, the county and nested municipalities may exhibit divergent flood-

loss reduction efforts with separate floodplain management ordinance and regulations. In their 

study, Brody, et al. (2009) use population-adjusted measures of CRS activities, CRS score, and 

community-level covariates to account for nested municipalities and the county itself in their 

county-scale analysis.  They find that local governments adjust their policies to improve risk 

management efforts after flooding events. Our analysis is a contribution to the limited 
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quantitative literature exploring the influence of flood experience, hydrological risk, financial 

capacity, and socio-economic factors on local hazard mitigation decisions. We focus on the CRS 

participation decision and only on the county level, primarily because data on covariates are not 

readily available at lower jurisdiction levels.  We find evidence of agglomeration and spillover 

effects among the various jurisdiction levels, as the probability of county participation is 

augmented by the presence of nested participating cities and towns; the magnitude of this effect 

is quite large at 1.37% for just a one percent increase in the proportion of participating nested 

municipalities.  A more detailed and thorough analysis of the relationship between hazard 

mitigation at the level of counties and cities & towns remains an important area for future 

research. 
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Table 3.1: Data Description 

Variable Description 

Dependent Variable 

CRS_dummy CRS participation dummy (1,0) (1991-2002) 

Flood Experiences Variables 

PreCRS_floods Total number of floods in county prior to CRS (1980 to 1989) 

PreCRS_damage 
Total amount of flood-related property damage in county prior to CRS (1980 to 
1989) (in millions of dollars -year 2000 inflation adjusted dollars) 

Lag_1_floods Total number of flood events in previous year in county (1990-2001) 

Lag_1_damage 
Total amount of flood-related property damage in previous year in county 
(1990-2001) (in millions of dollars -year 2000 inflation adjusted dollars) 

Lag_2_floods Total number of flood events in previous two years in county (1989-2000) 

Lag_2_damage 
Total amount of flood-related property damage in previous two years in county 
(in millions of dollars - year 2000 inflation adjusted dollars) (1989-2000) 

Environmental and Risk Control Variables 

Precipitation 
Average annual precipitation – collected from weather stations in each county 
(inches) (1991-2002)  

CAMA Dummy variable, equal one for CAMA county, equal zero otherwise. 

Water_precentage 
Percentage of county area covered by surface waters (streams and rivers, lakes, 
reservoirs, and shorelines) (%) 

Resources Variables 

Avg_Tax 
Property tax levy per capita in each county (in thousand dollars - year 2000 
inflation adjusted dollars) (1991-2002) 

Student_Teacher Students and teachers ratio in public schools in previous year (1990-2001)  

Crime_density Number of reported crimes per household in previous year (1990-2001) 

Hu_density Number of housing units per square mile (1991-2002) 

Social Variables 

Income 
Median household Income (in thousand dollars-year 2000 inflation adjusted 
dollars) (1991-2002) 

Senior 
Percentage of senior citizens (65 years and over) out of total population (%) 
(1991-2002) 

College Percentage of residents with college degree or higher (%) (1991-2002) 

CRS_muni 
Percentage of CRS municipalities out of total number of municipalities nested 
in each county (%) (1991-2002) 

CRS_neighbor 
Percentage of neighbored CRS counties out of total number of neighbored 
counties (%) (1991-2002) 

NFIP_year Number of years since the county joined regular program of NFIP (1991-2002)  
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Table 3.2: Data Summary Statistics  

Variable Mean Std. Dev. Min Max 

CRS_dummy 0.170 0.376 0 1 

PreCRS_floods 1.940 1.038 1 6 

PreCRS_damage 0.086 0.504 0.001 5.001 

Lag_1_floods 0.353 0.629 0 5 

Lag_1_damage 0.113 1.115 0 31.100 

Lag_2_floods 0.387 0.674 0 4 

Lag_2_damage 0.115 1.128 0 31.100 

Precipitation 47.551 6.041 37.266 71.607 

Water_percentage 5.225 12.325 0 69.280 

CAMA 0.200 0.400 0 1 

Avg_Tax 0.352 0.120 0.126 0.892 

Student_Teacher 14.431 1.182 8.756 20.278 

Crime_density 0.102 0.057 0 0.376 

Hu_density 77.196 103.171 4.806 751.182 

Income 40.468 8.297 22.499 68.248 

Senior 14.514 3.492 5.562 26.262 

College 14.944 7.522 6.770 51.989 

CRS_muni 8.821 20.717 0 100 

CRS_neighbor 14.644 16.212 0 75 

NFIP_year 9.738 6.116 0 29 
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Table 3.3 Radom Effects Probit Estimation Results 
Models Model 1 Model 2 

Variables 
Estimated Coeff. 

APEs 
Estimated Coeff. 

APEs 
(Standard Error) (Standard Error) 

PreCRS_floods 
0.858* 

0.0656 

Not Included 

(0.502) 

Lag_1_floods 
0.187 

0.0154 
(0.264) 

Lag_2_floods 
-0.382 

-0.0314 
(0.317) 

PreCRS_damage 

Not Included 

1.185 
0.0964 

(1.018) 

Lag_1_damage 
0.093 

0.0076 
(0.129) 

Lag_2_damage 
-0.135 

-0.0111 
(0.206) 

Precipitation 
0.233** 

0.0016 
(0.251)** 

0.0012 
(0.090) (0.090) 

Water_percentage 
0.241** 

0.0182 
0.239** 

0.0179 
(0.069) (0.101) 

CAMA 
-7924** 

-0.1280 
-6.040** 

-0.1019 
(2.074) (2.168) 

Avg_Tax 
9.287** 

0.6027 
9.753** 

0.6172 
(3.989) (3.948) 

Student_Teacher 
-0.321 

-0.0167 
-0.261 

-0.0158 
(0.227) (0.218) 

Crime_density 
7.386 

0.5976 
4.613 

0.3750 
(7.706) (7.847) 

Hu_density 
0.018** 

0.0014 
0.018** 

0.0013 
(0.009) (0.008) 

Income 
0.032 

0.0026 
0.037 

0.0029 
(0.084) (0.077) 

Senior 
-0.371** 

-0.0166 
-0.352** 

-0.0167 
(0.157) (0.166) 

College 
-0.187* 

-0.0128 
-0.141** 

-0.0103 
(0.096) (0.071) 

CRS_muni 
0.189** 

0.0137 
0.192** 

0.0138 
(0.028) (0.030) 

CRS_neighbor 
-0.027 

-0.0022 
-0.020 

-0.0017 
(0.024) (0.025) 

NFIP_year 
-0.007 

-0.0006 
0.003 

0.0003 
(0.090) (0.098) 

Time Dummies Included Included 

Constant 
-13.457** 

_ 
-15.690** 

_ 
(7.519) (6.335) 

Log-likelihood -98.623 -99.500 
pseudo R-squared 0.423 0.418 TY 0.958 0.958 

Obs 1189 1189 
Note: * means that the estimation is significant at 10%; ** means that the estimation is significant at 5%. 
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Figure 3.1: North Carolina Counties’ Participation in the Community Rating System of NFIP. 
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Chapter 4: Evaluation of the Community Rating System of National Flood Insurance 
Program – An Application of Propensity Score Matching  

 

4.1 Introduction 

As a part of floodplain management and flood loss reduction programs, the National 

Flood Insurance Program (NFIP) has been successful in helping flood victims get back on their 

feet. Federal Emergency Management Agency (FEMA) estimates that over 940,000 claims, 

totaling approximately $14 billion, have been paid from 1978 to 2004 and flood damage is 

reduced by nearly $1 billion a year as a result of the NFIP floodplain management regulations for 

new construction (FEMA 2007). Prior studies have identified potential improvements to the 

program, such as more timely updates to Flood Insurance Rate Maps (FIRMs), the alleviation of 

repetitive losses for some parcels, and increasing premiums for pre-FIRM and other 

policyholders so that they more accurately reflect risk. In order to reduce flood loss through 

community-level mitigation projects, facilitate accurate insurance rating, and promote the 

public’s awareness of flood hazard and insurance, the Community Rating System (CRS) was 

instituted by Federal Insurance Administration (FIA) as a voluntary program for NFIP-

participating communities in 1990. CRS credits 18 community floodplain management activities 

in four broad categories: (1) public information; (2) flood mapping and regulation; (3) flood 

damage reduction; and (4) flood preparedness. FEMA classifies the portfolio of community 

flood management practices on a ten point scale, reflecting the overall level of mitigation. The 

CRS classification determines premium discounts for insurance purchases under the NFIP. 

Discounts range from five to 45 percent. By offering CRS credit for updating of flood risk data, 

information on flood hazard may become more accurate over time, leading to better delineation 

the flood hazard areas within a community. The CRS rewards communities for undertaking 
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mitigation activities beyond the minimum requirements of NFIP with reduced flood insurance 

premiums.  Most of the rewarded activities, such as stricter regulation of building codes, 

relocation of repetitive loss properties, and education and outreach can reduce injuries, deaths, 

and damages and increase the communities’ resilience to flood hazards.    

In 2007, the CRS Task Force and FEMA revised the 1987 goals, which had been the 

foundation of the CRS since its inception. The new, 2007, goals are to (1) reduce flood damage 

to insurable property; (2) strengthen and support the insurance aspects of the NFIP; (3) 

encourage a comprehensive approach to floodplain management. Although the CRS has been 

recognized as a successful and mature program within the NFIP, FEMA wants to improve the 

public contribution made by the CRS. To do so, it is critical to assess the performance of the 

CRS and to develop innovative ways to enhance its operations and outcomes. In order to enhance 

the operation of CRS and encouraging the participation of the eligible communities, society must 

understand the effectiveness of CRS flood mitigation activities before it can decide whether to 

allocate management resources. However, there is few, quantitatively, research modeling 

evaluation of the CRS in term of its impact on reducing flood damage, which the study in this 

section will cover.  This chapter uses propensity score methods to estimate the impact of the 

CRS on the property damage protection. 

The objective of evaluating voluntary programs is to compare the two outcomes from the 

same unit when it is treated and not treated (Imbens and Wooldridge 2009). The true 

performance of CRS can be determined if one compares the same group of outcomes in term of 

average property damage reduction in the flood events having been managed with their untreated 

selves. However, it is impossible to observe what would have happened to CRS participants in 

absence of the participating into the CRS, which is called the counterfactual (Smith and Todd 
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2005). Meanwhile, the data or budgetary constraints necessitate using observational data to 

evaluate the effect of programs. However, underlying factors may affect the individual decision 

make regard to enter the program. In other words, there is self-selection into CRS: it is possible 

to observe the communities with higher levels of mitigation activities to have also more loss 

from a flood event. Therefore, studies conducted using endogenously stratified samples may 

benefit from decrease data collection costs but inference from these samples must account for 

non-random sample selection bias.  

The candidate communities participate CRS on the basis of eligibility criteria (i.e. must 

be a NFIP community with minimum 500 CRS points). Because the treatment assignment is 

nonignorable (i.e. the decision to participate may not be random and may correlate with the 

outcomes), the self-selection of participants imposes a challenge on the evaluation. The counties 

who choose to enroll in the CRS are different from those who choose not to enroll. These 

differences may invalidate causal comparisons of property damage reduction by local mitigation 

projects, possibly even after adjusting for observed covariates. Therefore, comparisons of 

outcome (i.e. property damage reduction) between CRS counties and non-CRS counties may 

have less to do with the program effects and more to do with other differences between the two 

groups. The primary objective of this chapter is to use the propensity score matching (PSM) 

methods to correct sample selection bias due to observable differences between the CRS 

participants and comparison groups. The methodology in this chapter makes important advances 

in understanding how to measure and conceptualize the performance of a mitigation program as 

it applied to reducing the adverse effects of flooding. The study also yields insights into the 

influences on the performance evaluation of the mitigation plan for other natural disaster such as 

hurricanes, fire, and earthquakes.  
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The following section presents on using challenge in the assessment of the treatment 

effect of CRS in a nonexperimental design. It will become a starting point to review the 

preliminary concepts and introduce more advanced approaches. In section 3, we describe the 

strategies for employing PSM to evaluate treatment effect in nonexperimental study. Section 4 

describes the propensity score analysis with nonparametric regression. Section 5 presents the 

calculation of the average treatment effect which we employ to study CRS performance. Section 

6 described the application of difference-in-difference estimator for panel data structure. Finally, 

section 7 concludes the chapter. 

4.2 Experimental Studies and Observational Studies 

In the evaluation of treatment effect, we have two outcomes1, sA , for every unit, D. One 

is the value associate with treated unit, sA"1%, and other is the value associate with nontreated 

unit, sA"0%. We use tA as a dichotomous variable indicating treatment (i.e. participation in CRS 

in our case), tA � 1, or nontreatment, tA � 0. The traditional experimental work assigns the 

units to treatment randomly. The treatment and control groups are drawn from the same 

population (i.e.  tA u 2sA"1%, sA"0%) (Dehejia and Wahba1999). Therefore, measure the 

treatment effect, sA"1% � sA"0%, for same unit at same time. In the randomized experiments, we 

can measure the mean impact for participation by MHsA"1% � sA"0%I .  M"·% denotes expectation 

in the population. 

In the observational study, the treatment and comparison groups are often drawn from 

different populations. Since we can only observe sA"1% or sA"0% but never both, it is challenge to 

measure the treatment effect, sA"1% � sA"0%, for same unit at same time. The treatment effect 

that we are interested in is Average Treatment Effect for Treated (ATT) which can be 

                                                 
1 In our application, the outcome is the average property damage in flood events. 
2 where “u” denotes independence 
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represented by wtt � M"sAC|tA � 1% � M"sAm|tA � 1%. Since sAm (no treated outcome for 

treated unit) are not observable for treated unite, Rubin (1974) formulated an approach to 

analysis the causal effects in observational studies: 

 wtt � MxM"sA|$A, tA � 1% � M"sA|$A, tA � 0%|tA � 1y        (1) 

 

where $A is a group of observable covariate which is related to the distribution of both sA andtA. 

In order to construct the unbiased estimation for the ATT, Rosenbaum and Rubin (1983) impose 

two assumptions: (1) ignorable assumption: "sA"1%, sA"0%% u tA|$A (i.e. there is no difference 

between the groups assigned to treatment and control with conditioning on observable 

covariates,  $A). (2) overlap assumption: 0 i !"tA � 1|$A% i 1 (i.e. for a setting of the 

covariates $A, there is a chance of having units in both the non-treatment and treatment groups.) 

Ignorable assumption and overlap assumption together are called strong ignorability (Wooldrige 

2002 page 910).  

With high dimensional $A, it is difficult to estimate equation (1)3. Instead of conditioning 

on $A, Rosenbaum and Rubin (1983) recommend estimating each unit’s propensity to receive a 

binary treatment as a function of observable factors. Then, matching unites with similar 

propensity score can reduce the problem of dimensionality. In the following section, We take 

advantage of the balancing properties of propensity score methods to measure the treatment 

effect of the CRS. 

4.3 Propensity Score Matching Algorithm 

Based on work of Rosenbaum and Rubin (1983), an alternative approach to estimate the 

treatment effect between comparison groups is Propensity Score Matching (PSM). The following 

                                                 
3 With increasing number of variables (Xz%, it is difficult to find exact matches for each of the treated units.  
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description of PSM draws heavily from a wide variety of previous works which focus on binary 

treatment or programs. Motivated by evaluation of labor market program, Heckman, Ichimura 

and Todd (1998), Dehejia and Wahba (2002), and Smith & Todd (2005) use PSM to estimate the 

impact of training programs on employees’ income. Meanwhile, a rich literature exists in 

formulation the approach to the analysis of causal effects in observational studies. Galiani, 

Gertler and Schargrodsky (2005) study the effect of water supply on child mortality. Trujillo, 

Portillo and Vernon (2005) analyze the impact of health insurance on medical-care participation. 

Lavy (2002) estimates the effect of teachers’ performance incentives on pupil achievement. The 

general story behind their approaches is straightforward. In experimental design, the two 

treatment groups can be compared, because the two treatments are drawn from the same 

population. In the observational experience, however, it cannot assume that the populations 

between two treatments are derived from the same population. The PSM find a nontreated unit 

that is similar to a participating unit, allowing the estimation of the treatment’s impact as the 

different between a participant and the matched comparison case. The result will provide an 

estimation of the mean impact for the participations.  

The PSM is to compare cases that are similar in terms of �A, where participating units are 

matched with untreated units based on an estimate of the probability (i.e. the propensity score ) 

that the unit receives the treatment. The propensity score can be conveniently represented as a 

scalar value, which can then be used to balance observed differences between treatment and 

control group (balancing refers to the fact that the distribution of the observable factors, $A, 

should not differ across the treatment and control group after conditional on the propensity 

score). By using the PSM, we assume the adjusted pre-treatment differences allow us to draw the 

causal inferences as if the data set were random (Imbens and Wooldridge 2009).  
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4.3.1 Estimating the Propensity Score 

Rosenbaum and Rubin (1983) define the propensity score is a balancing score for $A, 

{"�A%, which assure the conditional distribution of $ will be the same for teated (Q � 1) and 

control (Q � 0) units by given value of {"�A%. The propensity score estimation for an individual 

D "D � 1,2, … , )% occurs by estimating the probability of a treatment (QA � 1%, given the 

covariates, �A. The standard probability model can be used for estimating the propensity score. 

Most applications take advantage of the logit model: 

!}"$A% � !b"QA � 1|$A% � d~"��%1 � d~"��%,  
where ?"$A% is made up of linear, higher-orders, and interacted covariates so to obtain an 

ignorable treatment assignment (Dehejia and Wahba, 2002). The form of propensity score 

estimators can also utilizes the probit model: 

!}"$A% � !b"QA � 1|$A% � ΦH?"$A%I 
where the Φ"�% denotes the standard cumulative normal distribution. Logit and Probit models 

casually provide similar estimation of propensity score. 

4.3.2 Variable Selection in Parametric Propensity Score Estimation 

In practice, the functional form of the propensity score model is unknown (Dehejia and 

Wahba 2002). Therefore, the primary specification issues driving the estimation of propensity 

score are to decide on the model to estimate the propensity scores and well-defined criteria for 

variable selection. As showed previous section, the linear logistic regression model can be used 

as the propensity score models. The interaction terms and higher order transformations are 

utilized to count for non-linear relationships. 
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The variable selection becomes an essential component in PSM. The choice of variables 

for propensity score model plays a role in the bias values of the estimation (Smith and Todd 

2005). For each application, it is important to consider what factors make the comparison units 

distinct from treated units. Essentially, variables should be included based on the researchers’ 

knowledge of the subjects. In their work, Heckman et al. (1998) provide the evidence that a rich 

set of relevant variables that are related to the program-participation decision results lowest 

estimate bias in PSM. Higher bias estimation is obtained for including a set of irrelevant 

variables. Also, a variable selection should account for nonlinear relationships in the model. In 

their study, Rubin and Thomas (1996) recommend that the relevant variables should be included 

from a theoretical bases and previous research that it is related to the outcome and the choice of 

treatment even if it is not statistically significant. In most practice, one selects the variables 

according to the data-driven ways. Most applications use stepwise variable section algorithms 

based on a predetermined level of balance. The balance can be tested by determining difference 

in mean across treated and comparison units are not significantly different from zero. 

For parametric logistic regression model, I adopt the Dhejia and Wahba’s (2002) 

algorithm for variable selection that is similar with Rosenbaum and Rubin’s work (1984)4. The 

algorithm first start with a logit specification with main effect factors to estimate the propensity 

score. Then it stratifies the treated and comparison groups such that the estimated propensity 

scores within a stratum5 are not significant different. Next, the algorithm conduct statistical test 

for the differences in means across treated and comparison units within each stratum.  The 

balance is achieved if there is no statistically significant difference. If the covariates are not 

balanced, then one needs either divide the stratum into finer strata or adds interactions and (or) 

                                                 
4 The algorithm of balancing test is so-called DW test, see Dehejia and Wahba (2002) for more detail. 
5 The stratum is one of equal propensity score range (i.e. 0-0.2, 0.2-0.4,…,0.8-1). 
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higher order polynomial terms into the model. The reevaluation will continue until the balance is 

achieved. The shortcoming of this algorithm is the balance may become difficult with the 

number of observable variables increasing. Besides the work by Dehejia and Wahba (2002), 

there are different balancing tests in the literature. In his work, Rosenbaum (2002) utilizes a 

variable trimming process. It recommends that the variables with the differences below a 

threshold significance level (�1.5 � Q � 1.5% should be removed from the model. Smith and 

Todd (2005) test for the joint equality of covariate means across groups using the F-test.  Here, 

we should note the treated and comparison groups will have little overlap if the participation 

model is perfectly predicted. The propensity score is not necessarily an efficient score if it does 

not create an adequate overlap within each stratum. 

4.3.3 Matching Algorithm 

After estimation of propensity score, there are a variety of ways to use propensity score to 

match compassion units with treated units. First of all, matching without replacement, meaning 

the each comparison group unit could be included as a matched case only once. Described by 

Dehejia and Wahba (2002), there are low-to-high, high-to-low, and random matching. Take the 

low-to-high for example, the treated units are ranked from lowest to highest propensity score. 

The lowest-ranked unit is matched first, and the matched comparison unit will not be used for 

further matching. The matching without replacement, however, increases bias when there is few 

comparison units with similar propensity score to the treated units.  

Secondly, matching with replacement considers all comparison cases that are sufficiently 

close to a given treated case. The comparison units can be used more than once. If the number of 

comparison units is large, it may have number of good matches for each treated unit. By doing 

so, it can reduce variance in the treatment effect estimates. First, the nearest-neighbor matching 

will choose _ individuals (_ � 1% from comparison group as a match for treated individual with 
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the closet propensity score. The untreated individual can be used more than once in the nearest-

neighbor matching. With increasing _, it can reduce the variance due to utilizing multiple 

matches. However, it will increase bias since the matched propensity score are moving away 

from the 1st closet match.  

Second, the caliper matching will use all of the units in the comparison group within a 

specified propensity score range (i.e. radius). In their work, Cochran and Rubin (1973) show that 

using calipers of width equal to 0.2 of the standard deviation of the propensity score can remove 

98% of the bias of the estimation. Generally, the 0.25 standard deviations of the estimated 

propensity score can work well (Rosenbaum and Rubin 1985). Comparing with the nearest-

neighbor matching, the advantage of the caliper matching is that it can use as many comparison 

units as available within a radius (Dehejia and Wahba 2002).  

Third, the kernel matching compares the outcome of treated units to the kernel-weighted 

average over the units in the comparison group. The kernel estimation is a non-parametric 

estimation for the probability density function. Unlike the nearest-neighbor matching which 

gives zero weights for unmatched comparison units, the kernel matching will assign more weight 

to the comparison units with similar propensity score and less weight to the less similar units. 

Since it use more information, the kernel matching results the lower variance. A drawback of 

kernel matching is that it needs to choose the kernel function and the bandwidth6 (smoothing) 

parameter. There are some different kernel functions. Since the different kernels impose nothing 

on the shape of the probability density function, choice of the kernel function is not a particular 

important (DiNardo and Tobias 2001). A trade-off exists in the choice of bandwidth. Increasing 

                                                 
6 The bandwidth defines the neighborhood around the probability density function. The points falling in the bandwidth receive 
constant weight, while they receive zero weight when falling outside the bandwidth (Dinardo and Tobias 2001). High bandwidth 
values create a smoother estimated density function, which leads to a better fit. 
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the bandwidth will increase the bias but reduce the variance of the estimation by collecting more 

distant observation in constructing the counterfactual observation (Smith and Todd 2005).  

Unfortunately, there appears to be uncertainty for how one should select matching 

algorithm. Generally, as the number of comparison unit rises, one decreases the variances of 

estimation with cost of increased bias (Dehejia and Wahba 2002). The different matching 

algorithms should yield similar results if there is substantial overlap in the comparison group and 

treatment group in terms of propensity score. To determine there is enough overlapping, the most 

straightforward method is to visual analysis of the density distribution of the propensity score in 

both treated and control groups. The overlaps should contains most subjects in both treated and 

control group’s propensity score distribution. Heckman et al (1997) argue that the propensity 

score densities made at a points where the comparison group density is extremely small are 

likely to be inaccurate. They recommend adding the common support constraint to eliminate the 

subjects lying outside common region and within “trimming” level �. The same algorithm can 

also be found in Smith and Todd (2005). 

Different matching methods are used in this section to ensure that similar counties are 

being compared. Such a comparison of the observable factors, X , relies on the previous 

literature in order to evaluate the appropriateness of comparison groups. X variables are as same 

as the variables that used in the third chapter (Participation in the Community Rating System of 

NFIP: An Empirical Analysis of North Carolina Counties) (see table 3.1). The means for the 

sample characteristics of entire sample are described in the table 4.1. The means for sample 

characteristics before matching and after matching for different parametric matching strategies 

are shown in the table 4.2. The first column lists the characteristics for the CRS county 

(treatment) group while the second column displays the characteristics for the non-CRS county 
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(control) group. The t-test results (chi-square test for the dummy variable CAMA) clearly show 

statistically significant different distribution of the observable characteristics between the 

treatment and control group. Of 16 variables, CRS counties are significantly different from the 

non-CRS counties (expect the previous one year number of flooding, Lag_1_floods). 204 treated 

units will be matched with 996 control units. It implies that some control units will be given 

considerable weight.  

The table 4.3 presents the results from four logistic regression models to estimate the 

propensity score. We first run the base logistic model which only includes 16 variables. The 

balancing test will then split the observations into different groups (i.e. strata) based on equally 

space intervals of the estimated propensity score. It then performs the t-test for the differences in 

each covariate mean within each stratum at 5% significant level (Dehejia and Wahba 2002). 

Table 4.2 shows that the means between treatment and control groups are statistically significant 

different before matching (expect the variable Lag_1_floods). Using Rosenbaum’s variable 

inclusion threshold, where t-statistic must be greater than 1.50 (less than -1.50), we reduce the 

dataset: modified from the base logistic model, the Logistic 1 is created by dropping the variable 

of Lag_1_floods. In order to create to sufficient overlaps between treated and control groups, in 

Logistic 2, we add some higher ordered polynomial and interaction terms of the covariates that 

show significance after matching. We put Lag_1_floods back into the Logistic 3. The guideline 

for formulating the Logistic 3 regression models is to ensure the covariate to account for a legacy 

of flooding events that could have motivated mitigation activities over different time periods. We 

attempted over 100 different specifications of propensity score. With large number of covariate, 

it is difficult to pass the Dehejia and Wahba balancing test. Logistic 2 and 3 are the best function 

forms so far to achieve the balance within each stratum.  
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There are three matching algorithms for Logistic 1-3. Within each set of schemes using 

the same logistic regression, the first scheme uses nearest-neighbor matching (1-on-1). The 

second scheme uses the caliper matching by setting propensity score range of width equal to 0.2 

of the standard deviation of the estimated propensity score. The third scheme uses nonparametric 

normal kernel matching. Generally, the table (last page) shows the different matching algorithms 

has resulted in balanced covariate between the treatment and control groups. Within Logistic 1- 

3, it is clear that much less imbalance occurs when we use kernel and caliper rather than nearest-

neighbor. All schemes using nearest-neighbor 1-on-1 matching could not remove most 

significant difference between two groups. The use of many-on-more (from 2 to 5) did not help 

either. Although many variables are marginally better matched in Logistic 1, little significant 

improvement can be discerned when we use caliper methods in Logistic 1. Nine out of 15 

variables are still significantly different between the treated and control groups in Logistic 1 

(Caliper). In contrast, Logistic 2 and 3 show the caliper algorithm’s remarkable ability of 

randomization to help attain balance in covariates, though three covariates in Logistic 2 and two 

covariates in Logistic 3 are remain imbalance. We set up the caliper with 0.25 of the standard 

error in practice.  The results showed the reduction in the number of balancing covariates.  

Among nine matching schemes, Logistic 2 Kernel and Logistic 3 Kernel are only two 

matching methods that have generally resulted in balanced covariate distributions between 

treated and control groups. The significant differences picked up by the t-test are for College and 

CAMA in Logistic 2 Kernel. College and Average_tax are significant difference in Logistic 3 

Kernel.  Our practice test shows much more imbalances occur when we drop each (or both) 

variables. We set up bandwidth in 0.06 as the STATA package default value. One wants to 

choose the bandwidth as small as the data allows. However, there is always a trade-off between 
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the bias of the estimator and its variance. With less than 0.06 bandwidth, the result from kernel 

matching generally increases the degree of imbalance in difference between treated and control 

groups. 

4.4 Non-Parametric Propensity Score Estimation: An Application of Boosting 

In our application, the propensity scores are unknown and so as the correct functional 

form for the propensity score model which account for all covariates related to both CRS 

participation and property damage prevention. As originally proposed by Rosenbaum and Rubin 

(1984), Dhejia and Wahba (2002) use parametric models with selected interaction and higher 

ordered polynomial terms for estimating the propensity score. However, with more selected 

variables adding into the model, it becomes more and more difficult to achieve the balance 

within each stratum. McCaffrey, Ridgeway and Morral (2004) suggest that the boosting method 

may create better balance in covariates by using flexible non-parametric modeling. In addition to 

the parametric models for estimating propensity scores, we utilize a more flexible, nonparametric 

application via the generalized boosted model (GBM). Boosting allows models to be specified 

with large numbers of covariates in a nonlinear fashion. Our preliminary result shows that the 

GBM does not appear to be any benefit to create the balance. This issue will be further 

investigated in following section. 

The description of boosting, GBM, and its connection to the PSM in this section relies 

heavily on the work by McCaffrey, Ridgeway, and Morral (2004). The boosting method can 

combine the number of simple functions which, individually, is poor approximation to the 

function of interest. In contrast, the combination of the simple functions can approximate a 

smooth function that uses a large number of covariates to fit the nonlinear surface and predict 

treatment assignment (Freund and Schapire 1999). As the boosting procedure, GBM uses 
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regression trees as the sample functions to smooth the function of interest. The regression tree is 

a nonparametric method which uses the recursive algorithm to estimate a functional relationship 

by partitioning a data space and representing each partition by the sample mean of that space 

(Breiman et al 1984). Take our application for example, a basic partition of dataset may occur by 

splitting individual counties by the number of flood events which is less than or equal to one in 

the last year and those counties have flood events more than one time (The split can start 

between any pair of observed values of any of covariates). Next, the partition will be then 

subdivided into four distinct groups (i.e. flood events<=0 and CAMA county, flood events>=0 

and CAMA county, flood events<=0, non-CAMA county, flood events>=0 and non-CAMA 

county).Within each division, the estimated function equals the sample mean of the outcome for 

observations within the partition. With continued split, it adds additional interaction between the 

variables and complexity of the tree. The algorithm chooses splits by minimizing prediction 

error. The GBM linearly combines all single trees to estimate a smooth function of large number 

of covariates. 

To describe the boosting algorithm in GBM, we take a logistic transformation of 

propensity score  a"�% which ensures the estimation will always be in [0, 1]: 

a"�% � 11 � exp "�?"�%%                                 "2% 

Where ?"�% represent some unknown function form of �. To estimate a"�%, we utilize the 

expected Bernoulli log-likelihood function: 

M7jj"a%8 � M"Q7�^?a"�% � "1 � Q% log71 � a"�%8 ��8                       "3% 

We use equation (3) substitute  a"�% in equation (3). The equation (3) then becomes the 

likelihood function of ?"�%: 

M7jj"?%8 � M"Q7?"�% � log71 � exp7?"�%88 ��8                      "4% 
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Instead of assuming  ?"�% to be a linear combination, boosting algorithm allows ?"�% to be a 

flexible function form. The algorithm then maximizes the equation (4) to find the function ?"�%. 

Rather than modeling propensity score directly, GBM algorithm starts by setting the log-

odds of treatment assignment to a constant value, ?Y"�% � log " N�C3N�%,  where Q� is the proportion of 

treated of observation. The algorithm then makes the improvement to fit the model with 

iterations by adding a small adjustment, �"�%. The goal is to find the �"�% that can increase the 

expected log-likelihood: 

M"jj"?Y"�% � ��"�%% � M"jj"?Y"�%% 

where ?Y"�% � ?Y"�% �  ��"�%, � represents some step size. ��"�% represents an improvement in 

the log odds from previous iteration. In order to find the right �"�%, Friedman (2001) suggest to 

derivative of (4) respect to ?"�%: 

�"�% � �M7jj"?%8�?"�% � M �Q � 11 � exp "�?"�%% | �� � M"Q � a"�%|�% 

Therefore, the adjustment, �"�%,  is a type of residual of the expected log-likelihood, 

which is the different between the treatment indicator, t , and the probability of assignment to the 

treatment, a"�%. The regression tree estimates the residual, (Q � a"�%), using a flexible iterative 

least squares procedure. The tree first splits the observations into different regions. The residuals 

are homogeneous within each region. The tree then estimates the optimal adjustment of ?Y"�%, 

�"�%, conditional on � in the same region.  The algorithm then uses a line search to find the 

coefficient � with the greatest increase in the log likelihood. � is called the shrinkage value. The 

shrinkage means reducing the impact of each additional tree to avoid overfitting (Schonlau 

2005). 
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The GBM requires no functional form for estimating the propensity score. However, the 

most boosting algorithm requires the specification of at least three parameters before the 

estimation (Friedman 2001). First is the number of iterations (i.e. number of splits for the trees) 

to minimizing prediction error. Second is the number of the variable interactions allowed. Third 

is the shrinkage coefficient. The smaller shrinkage value can reduce the impact of each 

additional split of trees to avoid overfitting the data. The GBM catalogs a set of propensity 

scores for each iteration. After running all the iteration, an optimal set of propensity scores are 

chosen. We fit the GBM using the generalized boosted modeling package developed at the 

RAND Corporation (McCaffrey, Ridgeway and Morral 2004). For example, by using all the 

variables from the table 1, the figure 1 describes the boosting procedure uses 18960 iterations to 

find the best maximum likelihood estimation of equation (4). 

 

Figure 4.1: This graph depict the relationship between the average effect size and the number of iterations for the basic 

estimation of propensity scores. The optimal point is found after 18960. 

 

 

The table 4.4 shows the results from four different nonparametric propensity score 

matching using general boosting model (GBM). The first two models (boost 1 and boost 2) 
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include all variables within the dataset and only vary in the size of shrinkage coefficient. Similar 

with boost 1 and boost 2, the second two models (boost 3 and boost 4) use same set of shrinkages 

(0.01and 0.005), but dropped the variable, Lag_1_floods, which has t-test less that is less than 

1.50 (t-test of Lag_1_floods = 0.4). We use these different algorithm settings to test the 

sensitivity of our estimation.  

Compared to the balance in mean difference of covariates before GBM score matching, 

the table3 shows the matching leads to better balance. However, compared with the results from 

parametric models, relatively more unbalances are found. Boost 1 has 8 out of 16 covariates 

unbalanced. Using a smaller shrinkage value (0.005), 6 covariates were still unbalanced in 

Boost2. For the matching results in models without Lag_1_floods, similar results are found when 

checking the Boost 3 and Boost 4. 7 covariates remind unbalanced after matching. Whereas the 

some studies have shown that boosting outperforms logistic regression when it comes to 

prediction (Bauer and Kohavi 1999, Friedman 2001). All four models using GBM could not 

remove all significant difference between treated and non-treated groups. Our application 

confirms that good predictive ability may not result balancing matching (Rubin 2004). It 

suggests that there does not appear to be any benefit in using GBM for treatment effect 

estimation in our application. Our estimation for CRS impact on property damage reduction will 

base on logistic model estimated propensity score. 

4.5 Estimates the Effect of CRS on Property Damage Reduction 

In cross sectional estimation, after propensity scores have been estimated, the impact of 

the CRS creditable activities is calculated by an estimation of the average treatment effects for 

the treated group: 
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wtt � 1)C � �sC� � � �"
, �%sm�� �� , 
 

where )C is the number of treated units, sC� is the outcome (i.e. property damage in flood events) 

for treated unit 
, sm� is the outcome for control unit �, and weight �"
, �% depends on the 

distance between the estimated propensity score between unit i and j. Different matching 

methods will use different weighting functions (Smith and Todd 2005).  

In casual effect estimation, it is also reasonable to calculate the Average Treatment Effect 

(ATE): 

wtM � 1) � �sC� � � �"
, �%sm�� �� , 
where N is the number of all units. First, we need to know the treatment effect on the groups 

where the treatment actually applied (ATT). Second, we can also estimate what might have 

happened if the treatment is applied on both groups (ATE). In this paper, we focus on ATT as the 

quantity of interest when it is conceptually or algebraically simpler.  

The estimation of standard errors of propensity score matching is obtained using 

bootstrap methods. It is difficult to calculate the standard errors for the treatment effect in PSM 

by using conventional methods. Because the estimation should also include the variance due to 

the propensity score estimation, common support imputation, and the treated individuals 

matching. Lechner (2002) suggests using bootstrapping as an alternative to asymptotic 

approximations for obtaining standard errors, confidence intervals, and P-values for test 

statistics. Based on bootstrapping method, re-estimation a new sample of the same size will be 

drawn with replacement and all the steps including from first steps (i.e. propensity score, 

common support, etc.).  The repeating bootstrapping will lead to the distribution of the means 
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and standard error for the estimated average treatment effects is treated as the population mean 

and standard error. 

The table 4.5 presents the estimates of ATT from different parametric matching models. 

As the statistics show, the impacts by treatment (CRS participation) are different in term of 

propensity damage changing cross all matching schemes. While result of Logistic (1on1 and 

caliper) has different sign which may caused by large number of imbalance covariates, all 

matching schemes in Logistic 2 and 3 show the property reduction in the same direction, that is, 

the CRS counties has less property damage than non-CRS counties. Taking the result in Logistic 

3 Kernel for example, average property damage for CRS counties is $14,837 lower than that for 

the non-CRS counties.  

4.6 Difference-in-Differences Matching Estimates in Panel Data Structure 

We should note that our study formulates the propensity score by using CRS participation 

across all 100 North Carolina counties from 1991 to 2005. The previous chapter has 

demonstrated the unobserved factor, accounts for cross-sectional, time invariant factors that 

influence the counties propensity to conduct flood hazard mitigation activities, exists in the 

analysis. For example, local government structure and perceptions of flood hazard, as well as 

idiosyncratic features like history or culture, which are unobserved or unobservable, may affect 

CRS participation. The cross-sectional matching assumes that the mean of outcome are 

independent from the treatment assignment after conditioned on the observable factors. As such, 

it does not account for unobservable factor that may affect local hazard mitigation decisions. The 

selection bias may be also caused by some unobservable characteristics instead of only resulting 

from the differences in observable factors in treated and control groups (Rubin 1997, Heckman, 

Lalonde and Smith 1999). Therefore, the cross-section approach is problematic in our 
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application, because some systematic differences between the treated and control groups may 

exist even after conditioning on observables.  

Heckman et al (1997) employed panel data and Difference-in-Difference (DID) method 

to calculate the treatment effect. The DID matching strategy allows for the unobserved 

heterogeneity in outcomes between the treated and control groups (Smith and Todd 2005). We 

start with a simplest example to describe the DID estimation. The property damage due to 

flooding are observed for two groups of counties for two time periods. First group of counties 

participates into CRS in the second period of time but not in the first period. The second group of 

counties doesn’t participate into CRS in both periods of time. DID method subtracts the average 

property damage changing between two time periods in the second group (non-CRS group) from 

the average property damage changing between two time periods in the first group (CRS group). 

As the result, DID method removes the time-invariant unobservable effect that may not captured 

by propensity score method. In their application, Smith and Todd (2005) demonstrate that DID 

estimator perform better than the cross-sectional matching method in panel data structure. 

In this section, we take advantage of our panel data structure. The DID propensity score 

matching estimator assume: 

M"smN � smN1|!, t � 1% � M"smN � smN1|!, t � 0% 

And the DID estimator can be written as: 

��� � 1)C � �"sC�N � sm�N1% � � �"
, �%7sC�N � sm�N18� ��  

where, �"�% is estimated by the cross-sectional matching estimators which have been discussed 

before. Q and Q� are the time indicator for after and before the participation of the CRS. "sC�N �
sm�N1% is the difference in outcome for treated unite after and before participation. This difference 
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is then further differenced with respect to the after and before difference of the matched control 

groups, 7sC�N � sm�N18. DID matching is similar with fixed-effects and can eliminate the 

unobservable individual specific effect. 

In the table 4.6, the Kernel Matching of Logistic 2 and Logistic 3 are the best two models 

generally meet the assumption about ignorable treatment assignment (except the variable of 

College). The results of using Logistic 2 (Kernel) and Logistic 3 (Kernel) with DID estimation 

are shown in Table (below). We first set bandwidth equal to 0.06 without trimming, which is the 

default value in STATA software package. In this case we find $27,106 property damage 

reduction in CRS counties. Similarly, we find estimated $28,991.95 reduction in Logitic 3 

Kernel. However, both estimations are not statistically significant. We use different bandwidth 

and trimming value to test sensitivity of our estimation. Our results are mixed. Both models are 

quite sensible. The estimated average property damage reductions for CRS are not statistically 

significant in case of the trimming=0.02 with different bandwidths (0.06 and 0.1). Heckman et al 

(1997) recommend adding the common support constraint to eliminate the subjects lying outside 

common region. The figure 4.2 shows the estimation lacks of enough overlapping in the strata 

which is greater than 0.8 in estimated propensity score, may explain the inconsistent results. We 

increase the common support constraint by rising trimming level to 0.1. Given the consistent 

results from both Logistic 2 and 3, we estimate stable and statistically significant property 

damage reduction effects for CRS. Moving from cross-sectional matching estimation to DID of 

panel data estimation, the effect of CRS on propensity damage reduction increases from the 

range of approximated 14,837-17,537 to the range of 22,543-23,403. Since we prefer DID 

estimation which allows unobserved heterogeneity, our estimation provide some evidence that 
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the cross-sectional estimation underestimates the property damage reduction effect from CRS 

mitigation projects. 

4.7 Conclusions 

The objective of the Community Rating System (CRS) is to encourage local communities 

to take additional efforts to mitigate flood risk (over the minimum NFIP requirements) and to 

initiate new flood protection activities. Little empirical evidence exists, however, to shed light on 

the impact of the CRS on flood related property damage reduction. In essence, estimating a 

treatment effect in an observational study is challenging. This chapter uses propensity score 

matching (PSM), an innovative analytic method, with empirical data from 100 North Carolina 

counties to assess whether the CRS actually results in lower property damage. PSM aims to 

balance the differences in observable county characteristics between CRS and non-CRS 

participants (when treatment assignment is non-ignorable) and (under certain conditions) allows 

one to draw causal inferences as if group assignment were randomized. 

Evidence of the effectiveness of CRS has been provided in a study by Brody, et al. 

(2007), which indicates that flood damage can be decreased by approximately 15% by increasing 

CRS rating by 1unit. However, due to the endogenous nature of CRS mitigation activities, 

traditional regression models may prove inadequate and misleading. Instead, we apply the PSM 

method to correct sample selection bias due to observable differences between the CRS 

participants and comparison groups across all 100 counties in North Carolina from 1995 to 2010. 

After controlling for potential endogeneity, we estimate the effect of CRS on property damage 

reduction to be in the range of $14,837 to $23,403 per county, flooding event. This result 

coupled with Brody, et al (2007) suggests that CRS creditable mitigation projects appear to limit 

flood related property damage.  Still, the magnitude of the reduced damage appears modest; 
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more research is needed to explore the robustness of these findings, and perhaps more 

importantly, the effectiveness of different CRS mitigation activities. 

Our study shows the potential for applying PSM in the evaluation of causal effects of 

hazard mitigation projects on property damage reduction. The selection of covariates for the 

first-stage probability model has impact on PSM estimation. The results indicate that elimination 

of one variable (Lag_1_flood) resulted in a better model fit. Although there is substantial 

variation in the results, the findings show that all of the effects are in the same direction, 

indicating that CRS effectively reduces (albeit somewhat modestly) the average property damage 

during a flood event. However, we expect the matching of CRS and non-CRS counties for 

comparison may be problematic due to a lack of balance in constructing the counterfactual and 

because of the possible influence of unobservable factors. For the DID exercise, we find 

evidence that time-invariant unobservable effects do influence selection, which may cause 

downward bias the estimation of treatment effects. From our preferred DID, the effect of CRS on 

propensity damage reduction is in the range of $22,543 to $23,403 per county, per flood event. 

While somewhat modest, these estimates of damage reduction would increase by two orders of 

magnitude when scaled up to the state level.  CRS may also have impacts of flood-related 

fatalities (which we do not analyze due to very sparse data). 

The CRS Coordinator’s Manual contains an easy-to-use checklist that allows local 

officials to determine if their community currently undertakes enough activities to attain Class 9 

(>499 CRS points), and many recommended activities can be implemented for a relatively low 

up-front cost (e.g. public information activities Series 300-responding to inquires to identify a 

property's FIRM zone can earned up to 138 CRS points) (FEMA 2007, page 120-3). Any mix of 

flood hazard mitigation activities from credible CRS activities that results in 500 points is 
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sufficient to attain a score of 9, and additional activities can lower the score. Therefore, with low 

cost of CRS participation, combining with the insurance premiums discount, the benefit of CRS 

from the reduction of property damage could be attractive to the local community. The 

effectiveness of the various CRS activities, however, remains an important topic for future 

research.  For example, it may be the case that cheaper and easier mitigation activities are less 

effective at actually mitigating flood damage.  Moreover, since our models only account for CRS 

adoption (extensive margin) and we do not analyze the level of mitigation (reflected in total CRS 

points – the intensive margin), our estimates can be viewed as conservative. 

Despite the inconsistent estimation with small trimming level (less than 0.1), other results 

are consistent across different models and show the CRS can effectively reduce the property 

damage at the county level. As such, our results provide some insight into the development of 

future evaluation strategies aimed at addressing the effectiveness in mitigation planning, but we 

acknowledge that our propensity score estimation results are lacking in terms of balance and 

overlap – important metrics for evaluating the efficacy of the PSM approach. Keeping these 

limitations in mind, we recommend that future studies explore different methods for covariate 

selection in the first-stage probability model. Increasing our sample size to the multi-state level 

may result in more balanced estimation of PSM and increase the accuracy in expected 

relationships between treatment and outcomes. Our method provides researchers with a potential 

strategy to evaluate the performance of similar public policies.  
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Table 4.1: Data Summary Statistics  

Variable Mean Std. Dev. Min Max 

CRS_dummy 0.170 0.376 0 1 

PreCRS_floods 1.940 1.038 1 6 

floods 0.297 0.573 0 4 

Lag_1_floods 0.353 0.629 0 5 

Precipitation 47.551 6.041 37.266 71.607 

Water_percentage 5.225 12.325 0 69.280 

CAMA 0.200 0.400 0 1 

Avg_Tax 0.352 0.120 0.126 0.892 

Student_Teacher 14.431 1.182 8.756 20.278 

Crime_density 0.102 0.057 0 0.376 

Hu_density 77.196 103.171 4.806 751.182 

Income 40.468 8.297 22.499 68.248 

Senior 14.514 3.492 5.562 26.262 

College 14.944 7.522 6.770 51.989 

CRS_muni 8.821 20.717 0 100 

CRS_neighbor 14.644 16.212 0 75 

NFIP_year 9.738 6.116 0 29 
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Table 4.2: Sample Means before and after Parametric Estimation of Propensity Score Matching. 

  Before Match Logistic 1 Logistic 1 Logistic 1 

  Mean Mean 1 on 1 Kernel  Caliper (0.012) 

Variable Treated Control Control Control Control 

PreCRS_floods 
2.6552 1.7893*** 2.6618* 2.3371 2.4333 

  (12.91) (1.72) (0.32) (0.57) 

floods 
0.42529 0.3745** 0.40196 0.23861** 0.22778*** 

  (2.05) (3.65) (2.09) (3.19) 

Lag_1_floods 
0.39847 0.37934 - -  - 

  (0.4)       

Precipitation 
50.215 46.99*** 50.347*** 51.064* 52.127*** 

  (8.9) (-3.62) (-1.73) (-2.95) 

Water_percentage 
16.009 2.9537*** 16.15*** 4.2257*** 3.2731*** 

  (16.98) (7.81) (3.22) (5.11) 

CAMA 
0.31801 0.16303*** 0.31863*** 0.15552*** 0.11667*** 

  (5.86) (5.52) (2.74) (4.27) 

Avg_Tax 
0.4745 0.3471*** 0.45752*** 0.37474*** 0.38477*** 

  (15.58) (5.02) (3.01) (3.93) 

Student_Teacher 
13.985 14.374*** 14.199*** 13.86 13.601*** 

  (-3.76) (-3.24) (1.57) (3.77) 

Crime_density 
0.13032 0.09271*** 0.13462*** 0.14958** 0.16166*** 

  (10.05) (-5.52) (-2.55) (-4.51) 

House_density 
206.06 53.625*** 199.07 164.48 189.29 

  (24.27) (-0.14) (0.97) (1.06) 

Income 
44.64 40.481*** 43.351 42.486 43.092 

  (7.44) (0.71) (1.04) (0.78) 

Senior 
12.779 14.962*** 12.852 13.203 12.893 

  (-9.34) (-2.4) (-0.66) (-0.58) 

College 
21.878 14.024*** 12.583 20.123 20.845 

  (16.21) (0.23) (0.24) (0.54) 

CRS_Muni 
33.112 3.9783*** 11.287*** 15.717 12.792*** 

  (23.88) (7.3) (1.85) (4.62) 

CRS_neighbor 
24.76 13.366*** 9.5728 14.239*** 10.849*** 

  (10.4) (8.21) (3.56) (5.64) 

NFIP_year 
15.475 10.211*** 13.961** 13.687 14.533 

  (11.96) (2.01) (0.43) (1.62) 

N (Untreated) 996 - 269 269 269 

N(Treated) - 204 67 66 63 

Note: T-statistics of the difference in means between the treatment and control groups are in parentheses (Chi-sq for 
dummy variable). * statistically significant at the 10 percent level, ** statistically significant at the 5 percent level;  *** 
statistically significant at the 1 per cent level. 
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Table 4.2 (continued): Sample Means before and after Parametric Estimation of Propensity Score Matching. 

 Logistic 2 Logistic 2 Logistic 2 Logistic 3 Logistic 3 Logistic 3 

 
1 on 1  

Caliper  
(0.014) 

Kernel 1 on 1 
Caliper 
(0.029) 

Kernel 

Variable Control Control Control Control Control Control 

PreCRS_floods 
3.299 2.3889 2.2506 2.7895 2.4286 2.1858 

(-1.51) (0.74) (0.88) (-0.92) (1.53) (0.92) 

floods 
0.28431 0.33909 0.1277 0.1358** 0.175 0.13026 

(1.07) (1.3) (0.97) (1.98) (0.38) (0.71) 

Lag_1_floods 
- -  - 0.26173 0.575 0.23662 

      (0.58) (-0.89) (0.64) 

Precipitation 
 47.061* 45.07 45.617 45.75 45.653 48.39 

(1.74) (1.14) (0.7) (1.01) (1.15) (-0.04) 

Water_percentage 
5.4828 2.915** 6.9466 1.4828 0.13125 0.4383 

(1.67) (2.2) (0.64) (0.67) (1.49) (1.34) 

CAMA 
0.16049 0.11111 0.25804*** 0.16049 0.1625 0.1625 

(1.56) (1.52) (2.63) (1.56) (1.53) (1.53) 

Avg_Tax 
0.5070 0.43557 0.41604 0.41002 0.37315 0.38935** 

(-1.07) (1.29) (0.52) (0.94) (-0.95) (1.97) 

Student_Teacher 
15.453 14.41 14.072 14.608 16.036 15.612 

(-1.41) (-1.04) (-0.88) (-0.095) (-1.74) (-1.01) 

Crime_density 
0.0618*** 0.11454 0.11041 0.13344 0.13471 0.11567 

(12.04) (0.71) (0.4) (-0.24) (-0.86) (0.2) 

House_density 
84.984*** 214.16 127.62 249.06 177.18 172.63 

(7.18) (0.07) (0.66) (-1.16) (1.78) (1.82) 

Income 
41.731 44.752 50.124 44.752 47.208 48.095 

(0.61) (-1.48) (-0.82) (1.48) (-1.08) (-1.35) 

Senior 
12.049 10.179** 13.353 14.684* 8.3783* 11.458 

(0.07) (2.12) (0.21) (-1.78) (1.98) (0.77) 

College 
16.961*** 29.917* 23.193* 10.389*** 28.586*** 29.523** 

(3.86) (-1.6) (-1.77) (5.59) (-1.84) (-2.18) 

CRS_Muni 
28.571 16.162 29.207 11.111*** 15.1948 8.1133 

(0.34) (1.21) (0.2) (3.06) (0.17) (1.63) 

CRS_neighbor 
26.832 35.926 23.402 18.772 22.381 16.509 

(-1.48) (-1.26) (-0.24) (1.14) (0.05) (0.81) 

NFIP_year 
20 17.556 16.764 17.368* 14.571 15.164 

(-0.99) (-0.69) (-0.14) (-1.98) (0.8) (-0.98) 

N (Untreated) 352 352 352 414 414 414 
N(Treated) 80 89 88 163 136 217 

Note: T-statistics of the difference in means between the treatment and control groups are in parentheses (Chi-sq for 
dummy variable). * statistically significant at the 10 percent level, ** statistically significant at the 5 percent level;  *** 
statistically significant at the 1 per cent level. 
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Table 4.3: Parametric Propensity Score Estimation by logistic functions. 

Variables Base Logistic Logistic 1 Logistic 2 Logistic 3 

PreCRS_floods 
0.2865*** 0.0017 0.015 0.3241*** 
(0.0172) (0.0290) (1.3467) (0.1098) 

floods 
0.2381 0.2171*** 0.1475 0.1917 

(0.2242) (0.0817) (0.2778) (0.2773) 

Lag_1_floods 
-0.1452 _ _ -0.3045 
(0.2147) 

  
(0.2601) 

Precipitaion 
0.1967*** 0.1986*** 0.2422*** 0.2265*** 
(0.0277) (0.0546) (0.0635) (0.0383) 

Water_percentage 
0.1821*** 0.3516*** 0.4805*** 0.4290*** 
(0.0227) (0.1368) (0.1103) (0.1330) 

CAMA 
-4.6479*** -2.2586 -2.7109** -2.4229 

(0.9834) (2.2990) (1.2643) (1.7584) 

Avg_Tax 
4.1725 6.1228*** 8.9536** 7.6284* 

(3.0493) (1.1384) (4.4768) (4.4257) 

Student_Teacher 
-0.4976** -0.65** -0.7692** -0.7830*** 
(0.2024) (0.2646) (0.2867) (0.2826) 

Crime_density 
6.2496** 6.5307** 8.1586** 7.9426** 
(2.2233) (2.8214) (3.3727) (3.1071) 

House_density 
0.0179*** 0.0223 0.0248*** 0.0233*** 
(0.0023) (0.0032) (0.0033) (0.0034) 

Income 
0.0029 0.0264 0.0115 0.0186 

(0.0306) (0.0408) (0.0428) (0.0381) 

Senior 
-0.3552*** -0.3546*** -0.3391*** -0.3628*** 

(0.0951) (0.1243) (0.1098) (0.1161) 

College 
-0.0176 -0.0227 -0.0125 -0.0149 
(0.0279) (0.0369) (0.0376) (0.0408) 

CRS_Muni 
0.0741*** 0.1014*** 0.1001*** 0.0996*** 
(0.0133) (0.0220) (0.0203) (0.0214) 

CRS_neighbor 
0.0375*** 0.0163 0.2247*** 0.0927** 
(0.0090) (0.0110) (0.0624) (0.0393) 

NFIP_year 
0.0536* 0.1425*** 0.1693*** 0.1635*** 
(0.0287) (0.0333) (0.0404) (0.0363) 

PreCRS_flood*Precipitation 
_ _ -0.0068 _ 

  
(0.0270) 

 
Water_percentage^2 

_ _ 0.0065 0.0052 

  
(0.0032) (0.0114) 

Water_percentage^3 
_ _ _ 0.00002 

   
(0.00013) 

CAMA*Water_percentage 
_ _ -0.6033** -0.5815** 

  
(0.1699) (0.2758) 

Avg_Tax^2 
_ _ 0.2716 0.4621 

  
(0.2240) (0.5301) 

Student_Teacher^2 
_ _ 0.0325 _ 

  
(0.0834) 

 
Student_Teacher*Crime_density 

_ _ _ -0.00367 

   
(0.0043) 

CRS_neighbor^2 
_ _ -0.0083*** -0.0017** 

  
(0.0022) (0.0008) 

CRS_neighbor^3 
_ _ 0.00008*** _ 

  
(0.00002) 

 
Constant 

-0.6416 2.2154 2.1790 3.1765 
(2.6396) (3.6170) (3.2950) (3.3507) 
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Table 4.3 (continue): Parametric Propensity Score Estimation by logistic functions. 

 Base Logistic Logistic 1 Logistic 2 Logistic 3 

Log likelihood -257.409 -257.443 -235.024 -241.070 

Pseudo R2 0.6271 0.6271 0.6596 0.6508 

LR chi-square(16, 15,23,22) 865.93 865.87 910.7 898.61 

P-value of LR 0.000 0.000 0.000 0.000 

N 1485 1485 1485 1485 
Note: standard errors in parentheses. * means that the estimation is significant at 10%; ** means that the estimation is 
significant at 5%; *** means that the estimation is significant at 1%. Pseudo R-square is used to show the explanation 
power of the model. The pseudo R-squared ranges from 0 to 1 with higher values indicating better fit. Likelihood 
Ratio (LR) tests the joint significance of all coefficients. LRs are distributed chi-squared with degrees of freedom 
equal to the number of variables added to the model 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



82 
 

Table 4.4: Sample Means before and after General Boosting Model Score Matching 

Before Match Boost 1 Boost 2 Boost 3 Boost 4 

Variable Mean Mean shrinkage=0.01 shrinkage=0.005 shrinkage=0.01 shrinkage=0.005 

Treated Control Control Control Control Control 

PreCRS_floods 2.6552 1.7893*** 2.04* 2.08 2.041*** 2.042** 

(12.91) (1.949) (1.27) (3.69) (2.607) 

floods 0.42529 0.3745** 0.373 0.311 0.305* 0.307 

(2.05) (0.731) (0.52) (1.89) (1.11) 

Lag_1_floods 0.39847 0.37934 0.353 0.332 - - 

(0.4) (0.674) (1.046) 

Precipitation 50.215 46.99*** 47.806** 48.452*** 48.5*** 48.552*** 

(8.9) (2.525) (3.188) (3.054) (2.933) 

Water_percentage 16.009 2.9537*** 4.393*** 6.901** 7.12** 7.199 

(16.98) (6.474) (2.528) (2.235) (1.38) 

CAMA 0.31801 0.16303*** 0.242 0.262 0.26 0.26 

(5.86) (1.572) (0.876) (0.859) (0.841) 

Avg_Tax 0.4745 0.3471*** 0.369 0.401 0.301** 0.352 

(15.58) (1.271) (1.855) (2.16) (1.034) 

Student_Teacher 13.985 14.374*** 14.399 14.239 14.203 14.19 

(-3.76) (-1.84) (-1.061) (-0.862) (-0.79) 

Crime_density 0.13032 0.09271*** 0.113*** 0.117** 0.127 0.101* 

(10.05) (2.73) (2.528) (1.869) (1.912) 

House_density 206.06 53.625*** 93.689*** 88.03*** 88.044** 87.397** 

(24.27) (5.738) (6.442) (2.098) (2.123) 

Income 44.64 40.481*** 43.551 42.204* 42.17* 42.125* 

(7.44) (1.159) (1.781) (1.66) (1.708) 

Senior 12.779 14.962*** 13.747** 14.15** 14.18 14.223 

(-9.34) (-2.411) (-2.436) (-1.291) (-0.953) 

College 21.878 14.024*** 17.671** 17.983 18.009*** 17.975*** 

(16.21) (2.415) (1.82) (2.642) (2.659) 

CRS_Muni 33.112 3.9783*** 8.977 10.314 10.002 9.91 

(23.88) (0.223) (0.193) (0.294) (0.376) 

CRS_neighbor 24.76 13.366*** 18.989 18.643 18.724** 18.767** 

(10.4) (0.32) (0.95) (2.376) (2.405) 

NFIP_year 15.475 10.211*** 12.52* 11.652 11.552 11.519 

(11.96) (1.949) (1.37) (1.62) (1.233) 
Note: T-statistics of the difference in means between the treatment and control groups are in parentheses (Chi-sq for dummy 
variable). * statistically significant at the 10 percent level, ** statistically significant at the 5 percent level;  *** statistically 
significant at the 1 per cent level. 
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Table 4.5: CRS Effect on Propensity Damage Reduction, Cross Sectional Propensity Score Matching  

Unmatched Sample 
Treated Control Difference S.E. t P-value 

321,464 291,723 29,741 63279.12 0.47 0.643 

        
Model Matching Treated Controls Difference S.E. t P-value 

Logistic 1 1 on 1 244,525 209,591 34,934 79780.23 0.44 0.664 

Logistic 1 Caliper (0.063) 243,853 240,057 3,796 39282.77 0.1 0.920 

Logistic 1 Kernel 281,818 282,584 -766 14244.51 -0.05 0.961 

Logistic 2 1 on 1 293,625 308,700 -15,074 9385.86 -1.61 0.123 

Logistic 2 Caliper (0.071) 233,147 245,684 -12,537 9702.96 -1.29 0.212 

Logistic 2 Kernel 244,525 259,648 -15,123 7070.89 -2.14 0.045 

Logistic 3 1 on 1 294,525 312,062 -17,537 6407.02 -2.74 0.013 

Logistic 3 Caliper(0.061) 220,525 232,362 -11,837 9538.35 -1.24 0.229 

Logistic 3 Kernel 244,525 259,362 -14,837 8288.70 -1.79 0.089 
Note: Property Damage is in 2000 dollar. 
Difference = Property Damage in CRS – Matched Property Damage in non CRS counties. 
Standard Errors are calculated by bootstrapping method. 
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Table 4.6:  CRS Effect on Propensity Damage Reduction, Difference-in-Difference Matching  

 

Logistic 2 (Kernel) Logistic 3 (Kernel) 

Property Damage 
S.E. t 

P-
value 

Property Damage 
S.E. t P-value 

Reduction Reduction 

Bandwidth=0.06 

No Trimming -27,106 18934.78 -1.43 0.1679 -28,919 23514.18 -1.23 0.232 

         
Bandwidth=0.01 

Trimming 
(0.02) 

-22,146 13927.64 -1.59 0.1275 -23,515 17950.68 -1.31 0.206 

         
Trimming 

(0.1) -23,442 13471.29 -1.74 0.0972 -22,543 10689.27 -2.11 0.048 

         
Bandwidth=0.1 

Trimming 
(0.02) 

-23,965 15974.36 -1.5 0.1492 -22,145 18002.31 -1.23 0.233 

         
Trimming 

(0.1) -22,767 11499.5 -1.98 0.0613 -23,403 9174.874 -2.55 0.0191 

Note: Property Damage Reduction is in 2000 dollar. 
Standard Errors are calculated by bootstrapping method. 
STATA program default: Bandwidth=0.06, no trimming. 
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Figure4.2: This graph depicts the overlapping between the CRS and non CRS counties with similar 
propensity score. 
 
Logistic 2: Propensity Score Estimation                        Logistic 3: Propensity Score Estimation 

       

Note: The treated group represents CRS counties; the untreated group represents non-CRS counties  
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Chapter 5: Estimation of a Dynamic Panel Data Model: Policy Learning in Hazard 
Mitigation 

 

5.1 Introduction 

Mandates for environmental management often originate at the highest levels of 

government.  Commitment at the local level, however, can vary widely, and this ‘commitment 

conundrum’ can persist within top-down coercive arrangements as well as cooperative risk 

management agreements within the federal-state-local nexus. (Burby and May 1998).  Under the 

authority delegated by federal and state governments, local governments are primarily 

responsible for zoning, planning, and managing hazard mitigation activities within their 

jurisdictions. The average tenure of local government officials and managers (typically 7-8 

years) is generally adequate to allow for the interactive study of local policies and to monitor 

feedback from management practices. Therefore, local governments are able to adjust their 

mitigation policies and planning regulations to react to periodic natural hazard events such as 

floods, hurricanes, and earthquakes, and from changing environmental and socio-economic 

conditions. Brody, et al. (2009) describe this policy evolution in response natural disasters as a 

result of policy learning, a type of adaptive management approach. In adaptive management, the 

policies are designed as hypotheses, and policies are implemented as experiments to test those 

hypotheses (Holling 1995). Cumulative learning can occur with opportunity for trial-and-error 

studies (Lee 1993).  

Following Brody, et al.(2009), we consider policy learning with application to flood 

hazard mitigation projects. It is important for local government to maintain stability and 

transparency in planning and policy-making processes, so that agents and institutions can form 

reasonable expectations upon which to make development and investment decisions.  As a result, 

the establishment of a new framework of hazard mitigation presents a considerable challenge, 
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involving a change of momentum which requires commissioner meetings, public hearings, and 

ordinance revisions, all of which are costly. Nonetheless, Weir and Skocpol (1985) argue that the 

goals and objectives that policy makers pursue are influenced by the “meaningful reaction to 

previous policies”.  Hall (1993) contends that policies respond more to the consequences of past 

policy than to current social and economic conditions. Therefore, we postulate that hazard 

mitigation policy learning can be described in terms of a dynamic mechanism which is 

characterized by the presence of a lagged dependent variable among the regressors. 

Our dynamic model was first introduced by Balestra and Nerlove (1966) to estimate the 

demand of natural gas at the household level. They argue that gas consumption is closely related 

to the stock of gas appliances in existence and that to a large extent it is governed by such stocks. 

Therefore, the behavior of the consumer can be best described in terms of a dynamic mechanism. 

In time-series analysis, a lagged dependent variable is included in the model to account for 

behavioral persistence – “the past can affect the future, but not vice versa” (Wooldridge 2002). 

In the previous chapter, we applied panel data models to control for unobserved individual 

heterogeneity. The dynamic panel model allows for modeling both dynamics and individual-

specific effects. It thus enables us to parse out whether local officials are learning from the 

planning experience to pursue better mitigation outcomes or whether unobserved differences 

across counties are more persistent in their influence on mitigation activities.  

Gujarati (2002, chapter 17) concluded three main reasons for lagged phenomena and 

dynamic models in a production framework: (1) psychological reasons: with force of habit, 

people do not change their behavior immediately following a external shock (e.g. income 

increase or price decrease); (2) technological reasons: technology may be slow to adopt or 

difficult to implement; (3) institutional reasons: institutions may limit economic choices and 
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speed of adjustment. Within the context of comprehensive planning, policy learning not only 

stems from the outcome of current mitigation project buffering the adverse impact from the flood 

events. It may be also derived from alteration of the policy goals and mutual debates over the 

core value of the policy (Brody 2003). As a result, we consider policy learning as consistent over 

short periods of time and dynamic in nature. The dynamic panel model specifies both lagged 

dependent variables and unobserved effects which enable us to test for a type of dynamics that 

frequently occurs in community hazard mitigation (i.e. find out if past community hazard 

mitigation policy directly affects current policy) and to see whether individual specific effects 

drive this policy change over time.  

This chapter addresses the dynamic nature in flood hazard mitigation policy learning by 

examining the patterns in score of Community Rating System (CRS) under the National Flood 

Insurance Program (NFIP) across all 100 counties in North Carolina from 1995 to 2010 with 

controls of flood experience, hydrological risk factors, local capacity, and socioeconomic factors. 

CRS is designed to encourage local governments to do more to reduce flood losses, protect their 

residents, and improve flood insurance coverage. By earning points for activities that exceed 

NFIP standards, CRS communities obtain reductions in flood insurance premiums for their 

residents. While the CRS has been recognized as a successful and mature program within the 

NFIP, the Federal Emergency Management Agency (FEMA) is seeking to develop innovative 

ways to enhance its operations and outcomes (CRS strategic plan 2008-2013).  The goal of this 

study is to provide an empirical verification of whether the dynamic mechanism exists in the 

(self) policy learning process within the CRS communities. The empirical evidence will provide 

advice about policy design and further information for those who seek a better understanding of 

the relationships between policy formation and outcomes. The following section examines the 
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existing literature on policy learning. We utilize CRS program as an empirical target for 

investigating learning within the context of the hazard mitigation planning.  

5.2 Literature of Adaptive Management and Policy Learning 

The concept of policy learning has been well documented in the previous literature 

(Helco 1978, Sacks 1980, May 1992, Holling 1996, Brody 2003). A conventional theory of 

conflict-oriented assumes policy formulation and implementation are driven by conflicts7 in a 

given governmental structure and changing socioeconomic environment (Sabatier 1987, Bennett 

and Howlett 1992). The notions of learning suggest a new approach to public policy-making 

with consideration of substantive policy information processing and feedback. It argues that 

government agents can modify their actions by learning from and interpreting their previous 

policy initiatives. The notion of learning from public policy has been conceptualized by a long 

list of literatures, including “political-learning” (Heclo 1974), “government learning” (Etheredge 

1983), “policy-oriented learning” (Sabatier 1987), “lesson drawing” (Rose 1991), “social 

learning” (Hall 1993), and “instrumental learning” (May 1992). While previous scholars working 

in different fields utilize different terms to conceptualize “learning”, all notions imply the policy 

makers or political community take lessons from the observation of policy experience and 

problems, which lead to change in public policy-making (Bennett and Howlett 1992).  

Policy development can be best understood as a process of collective political learning. It 

leads to alterations in behavior reflected in changed social policies and new policy innovations. 

Therefore policy must be regarded as both an independent and dependent variable (Heclo1974). 

In his study, Sacks (1980) analyzes the pattern of public choice in social policy from a state-

                                                 
7 The policy change “will ultimately entail a set of judgments that is more political in tone, and the outcome will depend, not only 
on the arguments of competing factions, but on their positional advantages within a broader institutional framework, on the 
ancillary resources they can command in the relevant conflicts, and on exogenous factors affecting the power of one set of actors 
to impose its paradigm over others.”(Hall 1993) 
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centric perspective8. His work support Heclo’s conclusion that the interaction of pressure groups 

and government has far less influence on the outcomes of public policy. The formulation of 

policy objectives and the choice of strategies for influencing societal behavior could be better 

explained by a “statist” approach. Following Heclo (1974), Hall (1993) studies the nature of 

social learning aligning with the theory of state: 

 

“Their central contention (for the theory of state) is that the state, broadly understood as the 

executive, legislative, and judicial apparatus of the nation, has an important impact of its own on 

the nature of public policy and considerable independence from organized social interests and 

the electoral coalitions that might otherwise be said to drive policy.” 

 

His work, however, shows that social learning can neither be described entirely by a 

learning process taking place inside the state itself, nor by social pressures. May (1992) defines 

policy learning as the policy instruments or designs which are preferred by the policy domain 

with formal evaluation and limited comparison. While, rather than systematic policy evolution, 

trail-and-error procedures create the basis for responding to public problems; the self-correction 

is far from automatic due to the complexity of the political reality and evaluation of policy 

performance. Therefore, the political process should be seen as susceptible to path dependence 

(Pierson 2000).  

While previous literatures on policy learning are in agreement on the principle impacts of 

previous policy efforts on current goals and objectives that policy makers pursue, they have 

different descriptions of the learning process. As Heclo (1974) has noted, the policy actors, or 

                                                 
8 The state-centric suggests the policy is made by public officials, which emphasizes the autonomy of the state from societal 
pressure (Hall 1993). 
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‘policy middlemen’, who are able to influence policy making learn about the substance and 

process of past government efforts. This conceptualization is, however, too general to be used in 

empirical studies (Bennett and Howllett 1992). By adapting elements of individual and 

organizational learning to policy studies, Etheredge and Short (1983) describe the learning 

process in government as reflecting the intelligence and sophistication of administrative officials, 

at both the senior and junior levels of public service, and how administrative capital evolves due 

to knowledge accumulation and value change – both of which can enhance the effectiveness of 

government actions. While some political and sociological variables, such as current active 

political conflicts, input from the news media, and methodological innovations from university 

research, may also influence the process, policy makers appear to predominanrly adjust goals 

and techniques of policy in response to past experience and new information (Hall 1993). 

Sabatier (1987) expands the agent of learning from “policy middlemen” (Heclo) and state 

officials (Etheredge) to a policy network. He argues that “policy-oriented learning” is a major 

determinant of policy change. Policy change due to learning is best seen as characterized by 

fluctuations in dominant beliefs, which are influenced by experience within a given policy area 

over time. With limited capacities and time, policymakers in cities, regional governments, and 

nations could draw lessons from how their counterparts elsewhere respond, and this may affect 

how they deal with their own problems.  

In summary, the literature on “policy learning” suggests that policy makers have an 

opportunity to learn and improve policy so that future decisions can proceed from better base of 

understanding. The CRS score is a proxy of the quality of local flood hazard mitigation and 

planning. Since all CRS creditable activities are voluntarily, the change in CRS scores reflect 

how the local policy decision making groups learn from previous adopted floodplain regulation, 
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which can be a way to measure the policy learning in flood hazard mitigation planning. The 

following section presents details on dynamic panel data model measuring policy learning by 

using CRS score as both an outcome variable and a casual variable for local flood mitigation 

planning 

5.3 Methods 

The estimation approach underlying the dynamic model described in this section is a 

consideration of CRS mitigation policy in a policy learning framework (i.e. the CRS mitigation 

is not only influenced by flood experience, hydrological risk, local capacity, and socioeconomic 

characteristics, but also closed related to the previous CRS mitigation efforts and outcomes). The 

purpose of this section is to discuss the specific approaches that are applicable for estimating a 

dynamic model with panel data. We start with a basic dynamic panel data model with 

unobserved heterogeneity: 


�N � e
�,N3C � ��N� � ��N ,    (��N �  O� � �N � g�N, )          (1) 

where the subscript 
 denotes the 
th county (
 � 1, … ,100% and Q denotes the Q th year (Q �
1, … 16%. 
�N denotes the population weighted CRS points for each county from 1995 to 2010 

(see Appendix for details).  ��N is a K x 1 vector of time-varying exogenous regressors, including 

the constant term; � is a K x 1 vector of parameters to be estimated; O� is a time-constant 

unobserved effect for country i (O�~)"0, ��J%; �Nis a time-period effect, that is assumed to be a 

fixed parameter (estimated as coefficients of time dummies for each year in the sample), and g�N 
is random disturbance term, g�N~)"0, �kJ%. Variables in ��N are assumed to be strictly exogenous 

conditional on the unobserved effect, but may be correlated with O�. When the scale factor e h 0 

the current state 
�N depends on last period’s state 
�,N3C, after controlling for O� and ��N. If e � 0, 
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it means 
�,N3Cdoes not help to predict 
�N after unobserved heterogeneity has been controlled 

along with ��N.  
5.3.1 Ordinary Least Square (OLS) 

The Ordinary Least Square (OLS) estimators eY and �@ are consistent if equation (1) 

satisfies the assumption that the residual is not correlated with any other regressors. But this 

assumption is violated in the model with lagged dependent variable (e h 0). Consider a two-

period time lag: 


�,N3C � e
�,N3J � ��N� � ��,N3C, 
 � 1, … , ), Q � 1, … , t,        (2) 

Since the unobserved effect  O� appears in both ��N and ��,N3C, 
�,N3C is correlated with ��N causing 

serial correlation in the error terms (O^bb"��N, �� % h 0, ¡^b Q h ¢%, which seriously biases the 

OLS estimator. 

5.3.2 Fixed Effect (FE) and Random Effect (RE) Estimators 

Standard panel data estimators either treat O� as a fixed parameter (rendering it orthogonal 

to explanatory variables) or as a random parameter drawn from a specific distribution (with 

unknown parameters). Generalized Least Squares (GLS) is used in FE and RE estimations to 

correct for the serial correlated errors as well as for panel heteroskedasticity. Even standard panel 

data estimators, however, are not appropriate for estimating model (1) with the correlation 

between the lagged dependent variable (
�,N3C) and the component disturbance (��N), even if it is 

assumed that  ��N is not itself autocorrelated. 

For the fixed effect estimator, the within transformation9 wipes out the unobserved effect, O� 
(Wooldridge 2002, page 267). Therefore, without lagged dependent variable, fixed effect 

estimator is the best linear unbiased estimates (BLUE) as long as g�N is normally distributed with 

                                                 
9 
�N � 
£� � "��N � ���%� � g�N � g£�, where 
£�,N � ∑ 
�,N/t¤NBC ,  ���,N � ∑ ��,N/t¤NBC , g£�,N � ∑ g�,N/t¤NBC  
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mean 0 and variance matrix �k¥¦J �§¤. In the dynamic model, however, g£�N contains g�,N3C which is 

correlated with lagged dependent variable 7
�,N3C � 
£�,N3C8 where 
£�,N3C � ∑ 
�,N3C/"t � 1%¤NBJ  

will be correlated with (g�N � g£�N% even though g�N are not serially correlated. Therefore, fixed 

effect estimation generates biased coefficients. Nickell (1981) derives an expression for the bias 

when there are no exogenous regressors, showing that the bias approaches zero as t approaches 

infinity. Thus, the fixed effect estimator only performs well when t ¨ ∞. But in our analysis, N 

is large (100 counties) and T is fixed (16 years), so the within estimator is biased and 

inconsistent. For random effect estimator, quasi-time demanded transformation 7
�,N3C � ©
£�8 

will correlate with 7g�,N3C � ©g£�810, so the random effect GLS estimator is also biased in the 

dynamic panel model (Wooldridge 2002 chapter 10). 

5.3.3 Anderson-Hsiao Estimators 

Hsiao (1986) develops a maximum likelihood estimator for first-order autoregression, 

AR(1), panel data. The distribution of dependent variables, however, depends upon the initial 

conditions 
�,C. A wide variety of likelihood functions with different assumptions about the 

nature of the initial conditions can be inconsistent when the initial conditions process is mis-

specified. In addition, many previous studies (Balestra and Nerlove 1966, Maddala 1971, and 

Nerlove 1971) have demonstrated poor performance of maximum likelihood estimation (MLE) 

for panel data that has a large number of cross-sectional units, but only a few time periods. 

Anderson and Hsiao (1981, 1982) introduce an instrumental variables estimator for 

dynamic panel data models which requires much weaker assumptions about the initial 

conditions. It removes the unobserved effect by first differencing and then using "
�,N3J � 
�,N3ª% 

or 
�,N3J as an instrumental variable (IV) for (
�,N3C � 
�,N3J%: 
                                                 
10 © � 1 � « U¬WU¬WX¤UVW­®W
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�N � 
�,N3C � e"
�,N3C � 
�,N3J% � �"��N � ��,N3C% � "g�N � g�,N3C%         (3) 

The variables "
�,N3J � 
�,N3ª% and 
�,N3J are correlated with "
�,N3C � 
�,N3J% but neither of them 

are correlated with "g�N � g�,N3C%, as long as  g�N are not self serially correlated11.  Thus, the 

Anderson-Hsiao estimator can provide for consistent estimation of e and � (Hsiao 1986). The 

standard application of the instrumental variables technique can be found in Wooldridge (2002) 

(page 83-86). Arellano (1989) provides evidence that the use of differences instruments,7
�,N3J �

�,N3ª%, has a singularity point and very large variances over a range of parameter values, 

particularly, when e ¨ 1. The estimator that uses levels instruments, 
�,N3J, has no singularities 

and much smaller variances, which is preferred in our application. For simplicity, we transform 

the model (3) to: 

 


�N � 
�,N3C � f"¯�N � ¯�,N3C% � "g�N � g�,N3C%         (4) 

where f � "e �%′ and ̄ �N � "
�,N3C ��N%′. 
The instrumental variables estimators of Anderson-Hsiao is given by 

f@ � "� � °�N∆¯�N′
¤

NBª
§

�BC %3C � � °�N∆
�N
¤

NBª
§

�BC  

where 

°�N � "
�,N3J ∆��N%′ denotes the instrument set as period t (∆��N � ��N � ��,N3C). 

∆¯�N � ¯�N � ¯�,N3C 

∆
�N � 
�N � 
�,N3C 

The asymptotic variance matrix of f@ is: 

 

                                                 
11 See later discussion of the Arellano-Bond test for first-ordered serial correlation.  
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w�cb7f@8 � ²3C³²3C 

where 

² � "t � 2%M"°�N∆ �̄N′ %, 

³ � �kH2"t � 2%M"°�N°�N ′% � "t � 3%M7°�N°�,N3C′8 � "t � 3%M7°�,N3C°�,N ′8]. 

5.3.4 Arellano-Bond Estimators 

Building upon the innovative work by Anderson-Hsiao, Arellano and Bond (1991) use a 

Monte Carlo experiment to gauge the performance of the Anderson-Hsiao IV estimator against 

Generalized Method of Moments (GMM). They find GMM improves the efficiency of 

estimation because it uses all available lagged dependent variables and lagged exogenous 

regressors as instruments – information that the Anderson-Hsiao IV estimator neglects12 (Baltagi 

2005, page 136-137). The GMM is a generic method for estimating parameters in the model, 

where the parameter of interest is finite-dimensional, whereas the full shape of the distribution of 

the data may not be known, and therefore maximum likelihood estimation is not applicable. The 

first-differenced GMM estimator for the AR(1) model has been discussed in previous research 

(Holtz-Eakin, Newey and Rosen 1988, Arellano and Bond 1991). 

Let transformed residuals satisfy the population moment condition: MH´�N′ ∆g�NI � 0 (t= 

2…T), where ́ �N is a set of instrumental variables;  ∆g�N is differences of random disturbances. 

For notational efficiency, we stack the time period Q by following transformation: 

´� � µ 
�,C ∆��,ª¶ ¶
�,¤3J ∆��,¤
·        $� � µ 
�,J ∆��,ª¶ ¶
�,¤3C ∆��,¤

·         s� � µ∆
�,ª¶∆
�,¤
·    

 

                                                 
12 The panel data structure provides a large number of instrumental variables in the form of both lagged endogenous and 
exogenous variables. 
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´ � �´C¶́
§

�       $ � �$C¶$§
�     s � �sC¶s§

�      
Therefore, the sample analogue of the population moment condition (MH´�N′ ∆g�NI � 0) 

that can enter the construction of a GMM estimator is: 

 

C§ ´�"s � $f%=0          (5) 

 

The optimal GMM estimator is then given by: 

 

f@¸¹¹ � "$′´w§´′$%3C$′´w§´′s 

 

Arellano and Bond (1991) suggest using  

w§ � "1) � ´�′²´�
§

�BC %3C 

to produce the initial consistent estimator (one-step GMM estimator), where: 

 

² �
º»»
»¼ 2  �1   0   0 ½ 0�10 2 �1     0 ½�1   2   �1 ½ 00¶0    ¶ 0    ¶   0 ¶   0 ½ ¶2¾¿¿

¿À 
(² is a (T − 2) square matrix with 2 on the main diagonal, -1 on the first off-diagonals and zeros 

elsewhere.) 

A consistent estimator of the asymptotic covariance is given by: 

M¢Q. w¢
. Ácb;f@< � "$′´Á§´′$%3C 
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where Á§ � "∑ ´��"∆g�%"∆g�%′´��§�BC %3C 

 

Under heteroskedasticity of the disturbances, the two-step GMM estimators for the first-

differencing can be obtained by change the  w§ to: 

 

"1) � ´�′∆gY�∆gY�′´�
§

�BC %3C 

where the ∆gY� are the estimates of the first-differenced residuals.  

The one-step and two-step GMM estimators are asymptotically equivalent for the first-

difference estimator (Arellano and Bond 1991). Results from simulation studies suggest the two-

step GMM estimator produces efficiency gains with heteroskedastic disturbance, but this 

estimator has the disadvantage of relatively slow convergence to its asymptotic distribution. The 

asymptotic standard errors associated with the two-step GMM estimator in finite sample case can 

be seriously biased downwards. Several previous applied studies focus on the results from one-

step estimator, since it appears to be more reliable for making inferences in small samples 

(Arellano and Bond 1991, Baltagi 1995, Blundell and Bond 1998, Wawro 2002). With this in 

mind, we prefer to report the results for the one-step GMM estimator13. 

5.3.5 Testing the Specification 

The consistency of estimation in the previous discussion depends on the assumption that 

the random disturbance g�N is serially uncorrelated. In equation (1), if g�N is first-ordered serial 

correlation "g�N � Tg�,N3C � ��N,  ��N~
. 
. 5%, then the ∆g�N in equation (3) is second-ordered 

                                                 
13 In this chapter, our studies have found that one-step estimator outperforms the two-step estimator in terms of 
producing a much smaller standard errors of the estimates. 
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serial correlated14.  As a result, 
�,N3J are no longer valid instrumental variable for "
�,N3C �

�,N3J% in equation (4). Therefore the consistency of the GMM estimator relies on that there is no 

second ordered serial correlation in g�N. Arellano and Bond (1991) propose a test for the 

hypothesis that there is no second-order serial correlation in the random disturbance. The test 

statistic can be found in equation (8) and (9) of Arellano and Bond (1991, page 282). The 

shortcoming of this test is that it is defined only if Q � 4. 

When Q � 3, the model is overidentified15, Arellano and Bond (1991) use Sargan’s test of 

over-identifying restrictions in the moment condition, MH´�N′ ∆g�NI � 0. The function is given by: 

¢ � gY ′´"� ´�′gY�gY�′´�%§
�BC

3C ´′gY ~Â"Ã3Ä3C%J  

where gY  is the vectors of estimated first differenced residual for all 
 and t. p is the number of 

columns in vector of instrumental variables, ´. Å � 1 is the number of explanatory variables. ¢ 

has an asymptotic chi-square distribution under the null hypothesis that the moment conditions 

are valid.  

5.4 Data 

The list of CRS communities and their 2008 CRS scores are available on the FEMA 

website (http://www.fema.gov/pdf/nfip/manual200805/19crs.pdf). The structure of NFIP rests on 

a multi-jurisdictional configuration which allows for participating counties, towns, and cities. 

Therefore, the extent and timing of enrollment in CRS for county and municipalities within the 

county may vary. Since the local CRS score reflects the population directly benefiting from 

mitigation efforts, we population-weight their CRS scores and calculate an aggregated score for 

                                                 
14 ∆g�N � g�,N � g�,N3C � Tg�,N3C � ��N � Tg�,N3J � ��N � T7g�,N3C � g�,N3J8 
15  In an overidentified equation, the number of instrumental variables is greater than the number of endogenous explanatory 
variables.  
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the county and nested municipalities as a single unit. This calculation was performed for all 100 

NC counties (and nested municipalities) for 1995 to 2010 (see Appendix 1 for details). 

The table 5.1 presents a summary of the variables to be used in our analysis. The 

explanatory variables are organized under three broad categories. First, previous flood events 

were collected from National Climate Data Center (NCDC) and are proposed to account for the 

severity of community flood hazard experience. We postulate that greater historical experience 

with floods will motivate more stringent hazard mitigation, increasing the CRS score. The first 

different GMM model requires the use of time-variant data. As such, we use a time variant risk 

index to account for risk characteristics of each county. We created a risk index variable by 

multiplying annual precipitation with the percentage of land in the local Special Flood Hazard 

Area (SFHA). The average annual precipitation (1995-2010) at weather stations within the 

county is provided by the State Climate Office of North Carolina. The digital flood hazard maps 

in the North Carolina Floodplain Mapping program are available only back to 2008. Given the 

rainiest and more floodplain counties face a higher probability of riverine and flash floods, which 

could be a catalyst for local flood hazard mitigation, we expect county with higher risk index to 

be more likely to engage in  hazard mitigation due to greater benefit of the CRS credible projects 

accruing to more local residents. But since counties with large floodplains require more 

resources to conduct rigorous flood mitigation planning, higher risk index could reduce the 

political incentive for intervention.  

Next, we include five variables reflecting local capacity for hazard mitigation and 

competing priorities. Data on per capita county property taxes, which is collected from NC 

Association of County Commissioners Budget & Tax Survey, represents local government 

financial resources available for hazard mitigation projects. We expect counties with greater tax 
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revenue to be more likely to engage in flood hazard mitigation. In local government, the 

available funding for emergency management and hazard preparedness are important to the 

community’s floodplain management staff and to its participation in the CRS. We expect the 

counties with greater percentage of emergency management expenditure over general 

government expenditure are more likely to improve their CRS score. Competing priorities, on 

the other hand, may crowd out hazard mitigation. The benefits of hazard mitigation are only 

realized after a disaster occurs and are difficult to quantify, but the costs are incurred 

immediately and are easily calculated. Therefore, other problems, such as job creation, control of 

crime, and improving the quality of education, usually garner more attention than hazard 

mitigation projects. The pressing needs of such “here and now” issues may attract more time, 

money, and other resources and can crowd out hazard mitigation initiatives (Prater and Lindell 

2000). We account for these other potential county policy priorities in the regression models. We 

collected the unemployment rate from North Carolina Department of Commerce. The data use 

the ratio of enrolled students to instructional staff in county public school to measure local 

school quality (Card and Krueger 1992). These data were collected from NC Department of 

Public Instruction. The crime rate is a proxy for the competing concerns over criminal activity in 

the county; the number of reported crimes (including murder, forcible rape, robbery, aggravated 

assault, burglary, larceny, and motor vehicle theft) per household was derived from NC 

Department of Justice.  

Lastly, we include factors that account for the effect of community characteristics on 

local hazard mitigation. We include the population density, median household income, a 

migration dummy variable, and the percentage of senior citizens. Population density is calculated 

as the total population in a county divided by the county area in miles. Population data is 
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collected from U.S. Census. The data on land area of each county is derived from averaging 

1990 and 2000 U.S. census data. We expect more densely populated areas to be more likely to 

engage in hazard mitigation due to greater benefit of flood protection accruing to more local 

residents. Annual data on median household income is not complete from U.S. Census at county 

level. Thus, we use estimates from the Department of Housing and Urban Development (HUD), 

which are prepared as part of the process of updating eligible income limits for the community 

development program. Median household income provides a proxy for the level of individual 

wealth. We conjecture that wealthier communities may exhibit a greater demand for hazard 

mitigation, but wealthier households may put less pressure on local governments for hazard 

mitigation since they are better able to afford individual mitigation measures and insurance.  

In previous studies of CRS, neither Brody et al (2009) nor Posey (2009) include age 

structure or  migration trends among their socio-economic variables. While a public’s 

willingness to support and contribute to the mitigation activities may depend on the local severity 

of risk and the community’s commitment to dealing with the problem (Burby 1998), the 

vulnerability of elders as a group could be an important factor in overall vulnerability assessment 

which may increase the likelihood of local hazard mitigation. North Carolina, however, has 

become a popular retirement destination due to the state’s varied terrain, moderate climate, 

reasonable housing prices, and special tax exemptions for military and other federal employees’ 

retirement pay. This has led to increasing numbers of immigrating retirees, many of which may 

have limited experience with flood hazards. Thus, our expectations of the impact of proportion of 

senior citizens and migration on hazard mitigation activities are ambiguous. Census data on age 

of migrants is not available. We collected data on the senior population from U.S. Census. Data 

estimates of net migration are derived from NC Office of the Governor. 
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5.5 Result 

Brody, et al. (2009) examine policy learning for flood mitigation as reflected in CRS 

scores in Florida counties from 1999 to 2005. Specifically, they track annual point totals for the 

four CRS mitigation series for 52 of the 67 Florida counties that exhibit some level of voluntary 

participation in the CRS. They use population-adjusted measures of CRS points and regression 

covariates to account for both participating counties and nested municipalities, and examine the 

influence of hydrologic conditions, flood disaster history, socioeconomic, and human capital 

controls on CRS points. Their study use feasible GLS (FGLS) regression models with a panel-

specific AR(1) correlation for correcting the groupwise heteroskedasitcity and serial 

autocorrelation (see Appendix 2 for the description of FGLS). First, without considering state 

dependence, we repeat Brody et. al’s work using the variables described in Table 5.1. The 

specification of the empirical model is given as follows: 

 

Log"Z[\�N% � �m � �C³�^^5�N � �JLog"[
¢Ç_�D5d��N% � �ªLog"tc��N% � �ÈLog"\Qc¡¡�N%
� �ÉLog"Zb
_d�N% � �ÊLog"gDd_a�^
_dDQ�N%��ËLog"\Qg5dDQ_tdcO�db�N%
� �ÌLog Í!^ag�cQ
^DÎÏA �NÐ�NÑ � �ÒLog"\dD
^b�N% � �CmLog"�DO^_d�N%
� �CCLog"Ó
?bcQ
^D�N% � O� � �N � g�N                         "6% 

We take natural logarithm of CRS scores and continuous dependent variables so that 

coefficient estimates indicate the percentage change of the CRS score in response to a one 

percentage change in the explanatory variables. It is difficult to measure the goodness-of-fit of 

the model when the sample data are generated by the general linear regression model. The FGLS 

estimator is simply the OLS estimator applied to a transformed regression that purges the 

heteroscedasticity and/or autocorrelation. We report the squared correlation coefficients between 
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actual and predicted levels of the dependent variable. This squared correlation measure is 

equivalent to the standard [J in an OLS regression, and is recommended as a goodness-of-fit 

measure for instrumental variable regressions by Windmeijer (1995). (We also use same 

measurement for GMM). The transformed RJ ranges from 0 to 1 with higher values indicating 

better fit.  We also report two Wald statistics. The first is a test of the joint significance of the 

time dummy variables, while second is a test of the joint significance of all explanatory 

variables. Both tests are asymptotically distributed as chi-square. The significant result from 

Wald test of time dummy variables indicated that the time shocks play a significant role in local 

hazard mitigation. The unobserved effect can be measured as T � UVWCXUVW, (��J is the variance for 

the time invariant unobservable effect) (Wooldrige 2002, Greene 2002). Standard statistical 

packages reports estimated rho "TY%, which allows for straightforward testing of the presence of 

unobserved, time-invariant cross-sectional effects. The statistically significant rho 

parameter "TY � 0.83% indicates the existence of an unobserved time invariant effect at the cross-

sectional level. As shown in the Table 5.2, the signs for the covariate parameters, which indicate 

the direction of impact on probability of participation in CRS, are consistent with Brody et al.’s 

work. 

We then introduce the lagged dependent variable which is added into the equation (6). 

The equation (7) is a dynamic panel data model: 
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Log"Z[\�N% � �m � �Cj^?"Z[\�,N3C% � �J³�^^5�N � �ªLog"[
¢Ç_�D5d��N% � �ÈLog"tc��N%
� �ÉLog"\Qc¡¡�N% � �ÊLog"Zb
_d�N%
� �ËLog"gDd_a�^
_dDQ�N%��ÌLog"\Qg5dDQ_tdcO�db�N%
� �ÒLog Í!^ag�cQ
^DÎÏA �NÐ�NÑ � �CmLog"\dD
^b�N% � �CCLog"�DO^_d�N%
� �CJLog"Ó
?bcQ
^D�N% � O� � �N � g�N        "7%                        

 

We use first differences of the dependent variable in order to eliminate the individual time-

invariant effect O�. The Arellano Bond estimation then uses the GMM with lagged values of the 

endogenous variable ((Log"Z[\�,N3ª%) as instruments.  The results of the one-step Arellano-Bond 

Difference GMM estimation are presented in Table 3. The result of Arellano-Bond test for zero 

autocrorrelation in first-differenced errors shows that there is no second order serial correlation 

in g�N, as desired (p � valueÙÚ"C% � 0.026; p � valueÙÚ"J% � 0.630). Concerning the 

instruments, the Table 5.2 also reports the Sargan statistic, which tests the over-identifying 

restrictions. The validity of 
�,N3J as instruments in the equation is not rejected by the Sargan test 

of overidentifying restrictions in the moment condition at 1% significant level.  

Comparing FGLS and GMM in table 3, the signs for the covariate parameters are 

consistent across both models. While not directly comparable to the transformed R-square, both 

R-squares indicate fairly good fit for the models R-sq=28% for FGLS and pseudo R-sq=39% for 

GMM. The number of statistically significant covariates increases from seven to ten when we 

move from FGLS to the more appropriate GMM. Concerned with the dynamic mechanism in 

policy learning, our explanation of the results focuses primary attention on the result of GMM 

one-step, while making some comparisons with FGLS as a more basic model. 
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The estimated coefficient on the lagged dependant variable is statistically significant at 

1% in GMM. We find a highly significant impact of previous CRS score on the current local 

CRS point improvement (�ÜÝ~"Þßà�,N3C% � 0.6120%. For example, a one percent increase in the 

previous CRS points is associate with an increased change in current CRS points by 

approximately 0.612 percentage. This result supports the theory that the most important 

influence in policy learning is past policy itself and established policy legacies (Brody 2003).  

Holding flood experience, hydrological risk factors, and level of financial resources constant, 

once the local governments regulate their floodplains beyond the minimum required by the 

NFIP, it tends to carry on incrementally year by year, despite potential changes in staff changes 

and shifts in local political regimes. This suggests a commitment amongst some local 

governments to high levels of floodplain management activities that can benefit the entire 

community. Furthermore, we note that marginal increases in CRS points are relatively more 

difficult to achieve when initial points have already been obtained, since it generally requires 

increased resource allocation and continued political support and.  

We consider both models to discuss the impact of the flood experience on CRS score 

improvement. We find previous one year flood events have statistically significant and positive 

effect on CRS creditable activities for FGLS and GMM; results indicate that an additional flood 

event in the previous year increases the change in CRS score by 0.96% and 1.11% for the FGLS 

and GMM, respectively. We did try using different time lags for flood experience (e.g., two- and 

three-years), but found no statistically significant effects for more  distant flooding events.   

Landry and Li (2012) demonstrate that long term experience with flood events appears to 

encourage local hazard mitigation project adoption (as reflected in CRS participation). The 

effects they found for historical flooding may indicate that certain communities that had 
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experienced hazards were more likely to enroll in CRS at the program inception. However, with 

established mitigation regulations, the immediate aftermath of hazard events can open up a 

“window of opportunity” for local authorities to focus attention on hazard mitigation and 

continue to obtain additional credits for hazard mitigation activities. FEMA and state agencies 

should take a more active role in demonstrating successful hazard mitigation programs after local 

flood events. This information sharing project could help local governments understand the 

potential benefits of the flood hazard mitigation projects, which could strengthen their own flood 

protection programs. 

We account for potential variability in flood risk across counties with a risk index which is 

created by multiplying annual precipitation with the percentage of local Special Flood Hazard 

Area (SFHA). Our expectations are that higher risk factors will be associated with greater 

improvement of local mitigation. However, results indicate that counties with greater average 

rainfall and a greater proportion of SFHA exhibit significantly lower flood hazard mitigation 

activities within the CRS system. Focusing on GMM results, a one percentage point increasing in 

the risk index decreases the change in the score by 0.0088%. One interpretation of this result 

rests on recognizing that the larger the proportion of floodplain land in the county, the less land 

available for the potential development. From an economic and public policy perspective, 

mitigation activities in these counties may require more resources given the level of 

vulnerability, and since more land is in the floodplain, interventions in economic development 

within this area may be politically less desirable. The estimates from FGLS are roughly 

equivalent – in both cases the estimated effects are relatively small. Given the composition of the 

risk index, it is impossible to isolate the effects of precipitation from the percentage of land in the 
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SFHA. The impact of different vulnerability measures on mitigation activities remains an 

important area for future research. 

The estimated effect of per capita property tax levy exhibits a positive and statistically 

significant sign in both FGLS and GMM, which abides our expectations that financial capacity 

would increase mitigation policy adoption and implementation. Results of the GMM model 

indicate that one percentage increase in average property tax per capita increases the change in 

CRS score by 0.1872%, while the FGLS puts the marginal effect at 0.1226%. These findings 

imply that flood hazard mitigation is more likely to occur in wealthier districts with greater tax 

revenue and that poorer districts with less financial capacity may be more vulnerable to flood 

hazard. In addition, wealthier districts might also be expected to have more valuable building 

stock and thus more incentive to protect these assets. The results also indicate that one 

percentage increase in funding available for emergency management planning increases the 

change in CRS score by 0.0309% in GMM, or 0.023% in the FGLS. Continued financial support 

of emergency management and public safety likely reflects a political commitment to hazard 

mitigation planning and thus strengthens flood mitigation policy.  

For competing local public policy priorities, we use local unemployment rate to account 

for general local economy condition, student-teacher ratio to account for local public school 

quality, and crimes per household to account for public safety. Our previous expectations were 

that the unemployment issues, school quality, and crime could be strong competitors with hazard 

mitigation projects for limited local financial resources. The estimated coefficients for all three 

variables exhibit expected negative signs, but their significance levels are mixed. The estimated 

coefficients for crime density are significant; a one percentage increase in crime density 

decreases the change in CRS score 0.0203% in GMM (0.0306% for FGLS). According to the 
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results of GMM, increasing the unemployment rate by one percentage decreases the change in 

CRS score by 0.065%. Compared with other crowding-out factors, local economic conditions 

appear to play an important role for influencing the allocation of financial resources (relative to 

flood hazard mitigation). The influence of student teacher ratio on CRS score is negative but not 

statistically significant in both models. There is much greater variability in teacher and student 

ratio at the school district, which may explain the lack of significance of this covariate in our 

models. Future research should attempt to refine our approach (with better data) and explore the 

extent to which other local problems (transportation and economic development) crowd out 

investments in hazard mitigation.  

Holding flood experience, risk factors, and level of resources constant, the influence of 

population-density on likelihood of participation in CRS is positive but not statistically 

significant in the GMM model. Our prior expectations were that counties with more residents 

might have higher demand for mitigation projects that can lower flood damage. According to the 

FGLS results, increasing population-per-square-mile by one percent increases the change in CRS 

points by 0.6245%. This could indicate a pure benefit effect (as more household exposed to risk 

increases the benefit of mitigation), but could also reflect greater local government financial 

capacity (tax base). The insignificant result in GMM may be due to correlation between crime 

and population density (Corr (crime, population density) =0.9152). As benefits of hazard 

mitigation are likely greater in densely populated area, a better proxy for population would be the 

number of local housing units (for which annual data are unavailable). 

Community-wide levels for income may shape the type and speed of learning from the 

flood risk mitigation efforts (Brody, et al 2009). Our results show that county CRS-creditable 

activities are sensitive to median household income levels. For each model, the estimated 
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coefficient for Log(Income) is positive and statistically significant at 5% level, and it has a very 

strong impact on the CRS score. Increasing the median household income by one percentage 

increases the change in CRS score by 0.3689% in the GMM (0.3836% in FGLS). This result 

suggests that household level financial capital in the community may influence the speed of 

learning and lead to improvements in mitigation efforts.  

Landry and Li (2012) show evidence that the proportion of senior citizens in a 

community has significant and negative impact on probability of participation in CRS. They 

argue the impact may be induced by a tremendous influx of immigrating retirees. However, the 

results in table 3 show that the estimated coefficients of Log(Senior) and Migration are positive 

and significant in GMM, but both are insignificant in FGLS. The change in CRS score increases 

0.1683% for a 1% increase in proportion of senior citizens; we find similar results for the 

migration dummy – that the change in CRS score is 0.028% higher in counties with a positive 

net migration relative to counties with a negative net migration rate. Thus, our results do not 

support the counter-intuitive findings of Landry and Li (2012) regarding the influence of senior 

citizens nor the potential explanation of immigrating retirees.   

5.6 Conclusions 

The suffering from flooding events can be reduced by appropriate floodplain regulation 

and hazard mitigation planning. This chapter discussed how to use dynamic panel data models as 

a powerful tool to better understand how local communities adopt and improve their flood 

mitigation policies. Flooding, like other natural disaster such as hurricane and earthquake, 

reoccurs over time. Therefore, hazard mitigation plans and policies need to be updated and 

adjusted by policy makers over time in order to adapt to the uncertain environment. The 

authorities have the opportunity to recognize the effectiveness of previous policies and improve 
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their strategies as well. Brody, et al. (2009) conceptualize this policy adjustment in the flood risk 

management as policy learning - “a change in policy or the strength of a policy in response to 

flood events or some other factors”. This chapter focuses on one specific FEMA mitigation 

program-Community Rating System which offering reductions in flood insurance rates in 

exchange for local flood hazard mitigation efforts that exceed minimum standards of floodplain 

management set by the National Flood Insurance Program.  

We describe the course of CRS creditable activities chosen by the local authorities as a 

policy learning process. This policy learning reflects political dominance that leads to the 

adoption of new mitigation projects and regulations into local mitigation policy design, but also a 

consideration of substantive policy processing and feedback of flood risk management 

experience. While there is no shortage of theories about policy learning, all postulates are in 

agreement on the principle impacts of previous policy efforts on current goals and objectives that 

policy makers pursue; the existence of dynamic nature can be accounted for in empirical analysis 

with suitable econometrics modeling techniques. In this chapter, we present a study of the 

determinants of the policy learning related to flood hazard mitigation. The analysis is preformed 

using data pertaining to 100 NC counties for the period 1995-2010 in a dynamic panel 

framework. The dynamic panel data model includes lag of dependent variable (aggregated CRS 

score) to accommodate the theory of state in an intuitive manner. We applied the GMM approach 

and instrumental variables to deal with endogeneity issues.  

This chapter provides some important insights for policy learning related to the flood 

mitigation. The previously established mitigation policy (CRS score) has great impact on 

subsequent policy change. The local authorities could draw lessons from their previous policy 

design and summarize the strengths of local mitigation projects while minimizing shortcomings. 
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The creation of “policy legacies” is an underlying catalyst for policy learning (Brody 2003). 

Therefore, FEMA and state agencies could take a more active role in providing a stronger 

framework for grant-in-aid and technical assistance to help local communities initiate mitigation 

planning. Once the strengthen policy is adopted, local mitigation activities may perpetuate due to 

self learning which can help ensure the long term development of resilient communities. 

While our results demonstrate that the change in the current policy is strongly influenced 

by previous rounds of policy development, the analysis suggests that policy learning is in fact a 

more complex phenomenon in that it also responds to some environmental and social stimulus, 

such as vulnerability measures, tax revenues, population, and etc. Although, our study provides 

evidence that local mitigation policy learning exhibits a change-inducing mechanism, it is 

difficult to include as many environmental and social factors as we would like since the first-

difference structure of the GMM model requires the time-variant data, and longitudinal data on 

covariates such as annual precipitation, education level, and housing density are not readily 

available at county levels. When such data become available, future research should also attempt 

to refine our approach and explore the extent to which other local condition affect investments in 

hazard mitigation.  
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Table 5.1: Data Description for 100 Counties in North Carolina, 1995-2010 
Variable Description Mean Std Dev 

CRS 
Population weighted CRS score for all community in each county 
(1995-2010)16 

192.511 395.601 

  
  Risk Variables     

Flood Total number of flood events in previous year in county (1995-2010) 
0.357 0.802 

  

Risk-Index 
Annual precipitation multiplied by percentage of 2008 SFHA in 
county  

7.114 8.173 

  
  Resources Variables     

Tax Property tax levy per capita in each county (in thousand dollars-year 
2000 inflation adjusted dollars) (1995-2002) 

0.476 0.195 

  

Staff Percentage of government expenditures for emergency management 
and other public safety out of total expenditure (%) 

15.519 4.735 

  

Unemployment Unemployment rate in county (%) (1995-2010) 
5.961 2.618 

  

Student-Teacher 
Students and teachers ratio in public schools in previous year (1995-
2010) 

13.805 1.745 

  

Crime Reported crime and population ratio in county (1995-2010) 
0.036 0.019 

  
  Social Variables     

Population- 
Density 

Number of population per square mile (1995-2010) 
176.614 220.350 

  

Income 
Median household income (in thousand dollars-year 2000 inflation 
adjusted dollars)(1991-2002) 

41.759 8.089 

  

Migration 
Dummy variable, equal one for positive migration, equal zero 
otherwise 

0.825 0.380 

  

Senior 
Percentage of senior citizens (65 years and over) out of total 
population (%) (1995-2010) 

0.141 0.036 

    

Note: The total number of the observation is 1600 
  

 

 

 

 

 

 

                                                 
16 See Appendix 1 for detail. 
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Table 5.2: Estimation Result for FGLS and GMM One-Step 

  FGLS GMM One-Step 
Variables Coef. P-value Coef. P-value 

  (S.E.)   (S.E.)   
Log( CRSi,t-1)     0.6120 0.000 

      (0.0273)   
Flood 0.0096 0.014 0.0110 0.000 

  (0.0036)   (0.0014)   
Log(Risk-Index) -0.0118 0.015 -0.0088 0.043 

  (0.0052)   (0.0043)   
Log(Tax) 0.1206 0.001 0.1872 0.000 

  (0.0379)   (0.0208)   
Log(Staff) 0.0230 0.182 0.0309 0.000 

  (0.0172)   (0.0062)   
Log(Crime) -0.0306 0.08 -0.0203 0.000 

  (0.0175)   (0.0052)   
Log(Unemployment) -0.0402 0.095 -0.0657 0.000 

  (0.0240)   (0.0076)   
Log(Student-Teacher) -0.0177 0.688 -0.0297 0.140 

  (0.0442)   (0.0201)   
Log(Population-Density) 0.6245 0.017 0.5353 0.486 

  (0.2611)   (0.0769)   
Log(Income) 0.3836 0.051 0.3689 0.000 

  (0.2008)   (0.0669)   
Migration 0.0079 0.299 0.0208 0.000 

  (0.0076)   (0.0056)   
Log(Senior) 0.3216 0.216 0.1683 0.012 

  (0.2601)   (0.0670)   
Constant 0.4104 0.775 2.7789 0.000 

  (1.4383)   (0.4023)   
Time Dummies Included   Included   

          
Wald time dummies  40.45 0.0004 490.68 0.000 

(df=15)         
Wald joint significance  77.76 0.000 395.32 0.000 

(df=11, 12)         
R^2 0.28   0.39   

First-order serial correlation      -2.23 0.026 
Second-order serial correlation     0.48 0.630 

Sargan Test     456.48 0.000 
Number of Observation 1482   1376   

Note: Standard errors in parentheses  

 
 

 

 



 

Chapter 6: Conclusions 

While dynamics of weather play an important role in recent growth of damaging floods in 

the US, intensive development in the floodplain and extensive population growth in low lying 

coastal areas have increased human beings’ exposure to flood hazards. The American Housing 

Survey estimates that 4.6% of new houses (595,000) built between 1999 and 2007 were located 

in the floodplain. Data from US Census Bureau indicate that more than half of the US population 

lives in the coastal zone, even though coastal counties constitute only about one fourth of the 

countries landmass. Despite the ostensible elevation of risk, studies on individual mitigation 

behavior indicate that few property owners voluntarily adopt measures to reduce their potential 

losses from future catastrophes (Kunreuther 1996; Kunreuther and Roth 1998; Siegrist and 

Gutscher, 2008; Mileti 1999).  

 As such, local governments can play a critical role in flood hazard mitigation (Prater and 

Lindell 2000). Scholars generally recognize two types of hazard mitigation that can be adopted 

for flood risk.  Traditional flood damage mitigation focused on structural engineering solutions, 

such as dams, levees, and channel improvements. FEMA (1986)  estimates over $7 billion in 

public monies have been spent on large scale flood control works between the mid-50s and mid-

80s.  Zahran et al. (2008) conclude that an increase in the number of Texas dams decreased the 

odds of death or injury due to flood by 22.6 percent.  Average annual flood property damage is 

rising continually, however, and estimated to exceed $3 billion in coming years.  The 

overwhelming expense and adverse environmental effects of structural flood mitigation works 

have lead to more emphasis being place on smaller scale non-structural mitigation methods. 

Non-structural measures include zoning ordinances, building codes, flood warning systems, 

emergency planning, flood insurance, and so forth. Many of these measures have elements of 
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local public goods, in that they provide benefits for an entire community and agents in the 

community are not excluded once they have been made available. Our study focuses primary 

attention on non-structural mitigation, as recognized by the Community Rating System of the 

National Flood Insurance Program.  

In order to motivate flood insurance purchase and promote flood hazard awareness and 

mitigation, the Community Rating System (CRS) of National Flood Insurance Program (NFIP), 

credits floodplain management activities and awards flood insurance premium discounts. 

Limiting its potential effectiveness, CRS has been marked by a lack of active participation since 

its inception.  As of January 2008, 1080 communities, represents only 5% of all the NFIP 

communities, had enrolled in CRS.  Of the 469 NFIP communities in North Carolina, only 75 

(slightly over 15%) have a CRS score that is less than 10 (implying that they have initiated 

activities to improve awareness and reduce risk and applied for credit). Since CRS uses 

standardized quantitative measures for representing local hazard mitigation activities, it provides 

an excellent source of information for empirical analysis of community hazard mitigation 

decisions. The objective of this dissertation is to provide empirical evidence related to 

community decisions involving incentive-based flood risk mitigation projects. Our overarching 

hypothesis is that community characteristics can influence the local government decision-making 

process and the amount of hazard mitigation that takes place locally.  In addition, the overall 

level of risk in the community and other day-by-day issue such as crime and school quality 

should influence hazard mitigation.  Higher perceived risk should motivate more mitigation, all 

else being equal. We use these intuitive propositions, built upon previous literature, to structure 

our empirical analysis.  Through an improved understanding of CRS, state governments and 

FEMA can better encourage participation in the CRS and similar programs in order to provide 
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for better protection from natural hazards. It also allows for a better targeting of resources to 

improve hazard vulnerability. 

 Given substantial variability in local physical, political, and social conditions, the existing 

voluntary framework for local hazard mitigation may have advantages in allowing locals to 

identify “low-hanging fruit” while tailoring their hazard mitigation plans to local factors and 

concerns. What drives community participation in CRS within the current voluntary framework 

is an important policy question. In chapter 3, we test a number of hypotheses offered by previous 

researchers regarding factors that motivate local hazard management initiatives through an 

examination of patterns in CRS participation across all 100 North Carolina counties from 1991 to 

2002. Specifically, we examine the influence of flood experience, hydrological risk, local 

capacity, and socioeconomic factors on county hazard mitigation decisions. Results indicate that 

flood history and physical risk factors increase likelihood of local hazard mitigation adoption. 

Federal and state agencies should seek to provide a stronger framework for grants-in-aid, low 

interest loans, and technical assistance to help build resilient communities before disasters 

instead of focusing attention on post-disaster rebuilding efforts. Moreover, community assistance 

programs that emphasize scientific applications in estimation of potential flood losses could 

increase the adoption of flood hazard mitigation in vulnerable areas. We find evidence that the 

probability of CRS participation is lower in counties with a greater proportion of senior citizens. 

While we do not observe senior migration rates in our data, age structure of the community could 

reflect retiree migration patterns. Migrating seniors can induce significant potential for economic 

development in scenic, rural communities, and local elected officials may focus more on this 

development opportunity (which can create significant economic benefits and a larger tax base) 

and less on potential changes in vulnerability to natural hazards that can be associated with rapid 
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economic development. Migrating retirees from outside the state may be less aware and 

knowledgeable of flood hazards and thus could put less pressure on local government to engage 

in flood hazard mitigation.  As the U.S. population continues to age, it becomes increasingly 

important to consider elders in pre-disaster mitigation planning. Our result has implications for 

targeting of information and outreach programs which could be conveyed through public 

meetings, media, or other venues where senior members of the communities could be well 

represented.  

The description of flood hazard mitigation activities in the CRS Coordinator’s Manual 

focuses primarily on the process used to assign mitigation points, with less attention paid to the 

potential local benefits of mitigation activities, in terms of property damage avoided and lives 

saved.  These factors could be very difficult to quantify from a general standpoint. The real 

limitation in such a demonstration is establishing an accurate counterfactual – what would flood 

impacts have been in the absence of existing hazard mitigation projects. In chapter 4, we use the 

propensity score matching (PSM) methods to correct sample selection bias due to observable 

differences between the CRS participants and comparison groups. The methodology in this 

chapter makes important advances in understanding how to measure and conceptualize the 

performance of a mitigation program as it applied to reducing the adverse effects of flooding.  

Our study shows the potential for applying PSM in the evaluation of the causal effects of CRS 

mitigation projects on damage reduction. The selection of covariates is confirmed to be 

important. For the DID exercise, we find evidence that time-invariant unobservable effects 

contribute to selection bias which may lead to a downward bias in the estimation of treatment 

effects. Although there is substantial variation in the results, the findings show that all of the 

effects are in the same direction, indicating that CRS effectively reduces average property 
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damage due to the flood hazard. As such, our results give considerable insight into the 

development of future evaluation strategies aimed at addressing the effectiveness in mitigation s 

activities. Examples or brief case studies could be useful to illustrate the benefits of flood risk 

management in the future.  FEMA and state agencies could take a more active role in 

demonstrating successful hazard mitigation programs after local flood events, especially 

focusing on differences between CRS and non-CRS participants. Cases of successful hazard 

mitigation could be publicized in the wake of catastrophic events, with the goal of transferring 

effective mitigation strategies to other hazard-prone NFIP communities. These information 

conduits could help local governments understand and visualize the potential benefits of the 

flood hazard mitigation projects, which could strengthen their own flood protection programs.   

The previous chapters demonstrated that community characteristics can influence the 

local government decision-making process and the amount of hazard mitigation that takes place 

locally.  Local governments are able to adjust their mitigation policies and planning regulations 

to react to periodic natural hazard events such as floods, hurricanes, and earthquakes, and from 

changing environmental and socio-economic conditions. In chapter 5, we describe the course of 

CRS creditable activities chosen by the local authorities as a policy learning process. This policy 

learning reflects political dominance that influences initial adoption of new mitigation projects 

and regulations in the local mitigation policy design, but also substantive policy processing and 

feedback of flood risk management experience. The goal of this study is to provide an empirical 

verification of whether the dynamic mechanism exists in the (self) policy learning process within 

the CRS communities. The empirical evidence provides advice about policy design and further 

information for those who seek a better understanding of the relationships between policy 

formation and outcomes.  
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The analysis is performed using data pertaining to 100 NC counties for the period 1995-

2010 in a dynamic panel framework. The dynamic panel data model includes lag of dependent 

variable (aggregated CRS score) to accommodate the “theory of state” in an intuitive manner.  

We apply the GMM approach and instrumental variables to deal with endogeneity issues. While 

our results demonstrate that the current policy is significantly influenced by some environmental 

and social stimuli, such as vulnerability, tax revenues, population levels, etc, the analysis 

suggests that policy learning is in fact a more complex phenomenon that also responds to 

previous policy development. Holding flood experience, hydrological risk factors, and level of 

financial resources constant, once the local governments regulate their floodplains beyond the 

minimum required by the NFIP, it tends to carry on incrementally over time, despite changes in 

staff and shifts in changes and the local political regimes. This suggests a commitment amongst 

some local governments to high levels of floodplain management activities that can benefit the 

entire community. Furthermore, we note that marginal increases in CRS points are relatively 

more difficult to achieve when initial points have already been obtained, since it generally 

requires increased resource allocation and continued political support. The findings would 

support the establishment of low-interest loan programs or state grant-in-aid programs targeting 

counties without adequate resources, high risk factors, and high potential for floodplain 

development. Subsidized interest rates and outright grants could be economically justified in 

terms of foregone disaster aid and lower business interruption (resulting in lower tax revenue 

losses). 

Study of local government behavior in adapting to natural hazards warrants serious 

investigation.  In particular, we examine an innovative incentive policy under the Community 

Rating System (CRS) of the National Flood Insurance Program. CRS is unique and potentially 
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an important federal experiment since it incentivizes community behavior to mitigate, rather than 

mandates or withhold funds (which is the more common approach of state and federal 

regulation). We argue that given growing risks, uncertainties and complexities required to 

effectively adapt to environmental change, communities will increasingly serve a critical role in 

building societal resiliency to future vulnerabilities posed by natural hazards. The dissertation is 

a contribution to the limited quantitative literature exploring the influence of flood experience, 

hydrological risk, financial capacity, and socio-economic factors on local hazard mitigation 

decisions at the county level. We focus on CRS participation decisions and point totals at only on 

the county level, primarily because data on covariates are not readily available at lower 

jurisdiction levels.  

There are promising extensions to this research.  CRS community divisions rest on a 

multi-jurisdictional scale which includes towns, cities, and counties. Therefore, the county and 

nested municipalities may exhibit divergent flood-loss reduction efforts with separate floodplain 

management ordinance and regulations. A multilevel model provides a framework to analyze 

how the covariates measured at different level affect the outcome variable.  Municipalities in the 

same county tend to be more alike in their social and environmental characteristics than the ones 

from other counties. For example, under the multi-jurisdictional mitigation planning context, 

hazard identification, management, and specialized equipment and expertise are generally similar 

between nested municipalities. To ignore this relationship risks overlooking the importance of 

county effects and may render invalid results from traditional statistical analysis. A multilevel 

analysis could account for the variance in the outcome that is measured at the lowest level by 

considering information from all hierarchical levels. We recommend a study that incorporates 

the hierarchical structure, which may provide more satisfactory answers to the question of how 
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to forge a better understanding of community decision making at the municipality scale, as 

related to natural hazards. It is also of considerable interest in the relative ranking of counties, 

using the performance of its nested municipalities in terms of mitigation level after adjusting for 

the cluster characteristics. Since we need to combine county level data with municipality level 

data in the multilevel modeling, data source may continue to provide significant constraints on 

analytical capabilities.  A more detailed and thorough analysis of the relationship between hazard 

mitigation at the level of counties and cities & towns remain an important area for future 

research. 
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Appendix 1:  Population Weighted Measurement of County CRS Points. 

 

CRS community divisions rest on a multi-jurisdictional scale which includes towns, cities, and 

counties. Therefore, the county and nested municipalities may exhibit divergent flood-loss 

reduction efforts with separate floodplain management ordinance and regulations. In their study, 

Brody, et al. (2009) use population-adjusted measures of CRS activities, CRS score, and 

community-level covariates to account for nested municipalities and the county itself in their 

county-scale analysis. Based on Brody’s work, the figure and table below show the logic of our 

measurement for population weighted CRS points. In the figure, Pitt County and incorporated 

municipalities of Ayden, Bethel, Falkland, Farmville, Fountain, Greenville, Grifton, Grimesland, 

Simpson, and Winterville have learned different CRS points. First, we divided the population of 

each community by the total county population to derive the population ratio. Second, we obtain 

the population weighted CRS points for each community by multiplying the CRS points of each 

community with its population ratio. Finally, we add up all weighted CRS points to derive the 

population weighted point for Pitt County. By this measurement, our dependent variable could 

summarize the CRS mitigation activities in all nested municipalities and the county itself. 
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Figure: Measurement of Population Weighted CRS Points for County (An Example for Pitt County, NC 2005) 

 
 
Table: Measurement of Population Weighted CRS Points for County (An Example for Pitt County, NC 2005) 

Community 
County 

Population 
2005 CRS 

Points 
2005 

Population  
Population 

Ratio 
 Weighted 

CRS Points 
Ayden 133759 0 4782 0.0358 0 

Bethel 133759 0 1766 0.0132 0 

Falkland 133759 0 114 0.0009 0 

Farmville 133759 1110 4611 0.0345 38.264 

Fountain 133759 0 550 0.0041 0 

Greenville 133759 1412 68852 0.5147 726.822 

Grifton 133759 2926 2378 0.0178 52.019 

Grimesland 133759 0 441 0.0033 0 

Simpson 133759 0 471 0.0035 0 

Winterville 133759 0 7682 0.0574 0 
County unincorporated 

area 
133759 1035 42112 0.3148 325.854 

Pitt County Population Weighted CRS Points 1142.960 
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Appendix 2: Generalized Least Square (GLS) and Feasible Generalized Least Square 

(FGLS). 

 

Heteroskedasticity means the standard deviations of a variable are non-constant, which causes 

OLS no longer asymptotically efficient in the estimation. The response to the detecting of 

heteroskedasticity is to use the GLS method. GLS assume: 

 Ácb"g�|��% � M"g�J|��% � �J�"��% 

 

where �"�% is some function form of the explanatory variables. Because: 

M áâ g�ã��äJå � M"g�J%�� � �J���� � �J 

Therefore, we transform the original equation: 
� � �m � �C��C � �J��J � ½ � �A��A � g�  
to: 

 


�/ã�� � �m/ã�� � �C"��C/ã��% � �J"��J/ã��% � ½ � �A"��A/ã��% � g�/ã��          "1% 

Or  


�/ã�� � em � eC°�C � eJ°�J � ½ � eA°�A � �� 
where °�A � ��A/ã�� and M"��J% � �J. eA is called GLS estimator. 

 

Because we don’t know the function form of �"��% in most case, FGLS estimator uses �FG  instead 

of �� in the equation (1). The step of FGLS is described in Woodridge (2002): 

1) Run the regression of 
� on �C, �J, … , �A to obtain the residual, gY�. 
2) Run the regression of log "gY�J% on �C, �J, … , �A to obtain the fitted value, ?Y�. 
3) Estimated ��: �FG � exp "?Y�%. 

4) Run the regression of equation (1). 



 

 


