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Components of Reproductive Isolation between Subspecies of an Annual Plant 

Evan Arthur 

Department of Biology, East Carolina University, Greenville N.C. 27858 

 

ABSTRACT - Reproductive isolation is required in the divergence of species. The 

components of reproductive isolation are separated into either ecological or 

genetic components. In plants these include: habitat, flowering phenology, 

pollinator fidelity, gametic incompatibility, zygotic mortality, hybrid viability, 

male and female hybrid sterility and hybrid breakdown. Cleistogamy, the 

production of closed obligate self-fertilizing flowers, creates a barrier to gene 

flow by preventing hybridization. However, there have been few studies that have 

investigated its impact in reproductive isolation. A unique opportunity arose to 

determine the degree of isolation that cleistogamy provides. In multiple sites 

within Pitt County two subspecies of an annual, cleistogamous plant Triodanis co-

occur. Each subspecies exhibit a mixture of closed (cleistogamous) and open 

(chasmogamous) flowers. Soil moisture and content were quantified for several 

sites where they co-occur to calculate the extent that each contributes to the 

isolation of the two subspecies. Calculations show that there are significant 

differences between the subspecies in the moisture and composition of soils. 

Observations in the field were also made to calculate the overlap of flowering and 

it was found that the species do in fact overlap, therefore, unlikely to impact 

prezygotic isolation. To quantify the extent of isolation due to cleistogamy, the 

number of seeds produced was quantified between open and closed flowers. By 
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using hand pollination, an F1 generation was made and raised in the greenhouse 

to calculate viability (survivorship and biomass). Results show that F1’s are in 

fact viable and in some cases appear to be as large or larger than parentals. 

Quantifying a variety of reproductive barriers allowed us to determine the total 

amount of isolation for each subspecies as well as the relative amount of isolation 

due to cleistogamy. This study is essential to the understanding of cleistogamy as 

a component of total reproductive isolation  
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Introduction 

Reproductive isolation is required in the divergence of species because of its role 

in determining gene flow (Coyne and Orr 1998). Reproductive isolation has several 

components, which fall into two categories, ecological or genetic, either of which can act 

before or after the formation of a zygote (Widmer 2009). Although there is great interest 

in understanding reproductive isolation, few studies have looked into the contribution of 

different isolating barriers in reproductive isolation or have tried to estimate their relative 

importance. (Ramsey et al. 2003).   

In plants, isolation can occur in a variety of ways. The most common and well 

known of these mechanisms in plants include: habitat, flowering phenology, pollinator 

fidelity, gametic incompatibility, zygotic mortality, hybrid viability, and male and female 

hybrid sterility. Plant species are rarely isolated solely by a single mechanism but rather a 

combination (Widmer 2009). More specifically, components work in a sequential 

combination to each other; as a consequence, each component acts only on the potential 

gene flow remaining after previous barriers have acted. For example, the first barrier, 

divergence in habitat preference, isolates species based on the relative location of the 

plants. For populations that co-occur and are not isolated by location, the second 

mechanism, flowering phenology, can isolate them dependent upon the blooming time. 

However, since the components act sequentially, the relative isolation that flowering 

phenology provides can only act on the amount of gene flow left over from the previous 

barrier. If flowers of both species are open simultaneously, then pollen transfer can be 

limited if flowers are visited by different pollinators.  Once the pollen transfer has taken 

place, the gametes can be incompatible. If the gametes are compatible then a zygote can 
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form. Once the zygote forms and a hybrid has grown, that hybrid may have decreased 

size and biomass which causes it to be less competitive. If the hybrid is large enough to 

compete, then in the next mechanism, species can be isolated by the inability of the 

hybrids to reproduce. Not only do these components act in sequential combination to 

each other but they also work asymmetrically. The amount of isolation that species A 

experiences from species B may be significantly different than the amount of isolation 

species B experiences from species A.  

One factor that has received little to no consideration for its effect in reproductive 

isolation is self-fertilization. Self-fertilization, also known as selfing, is the merging of 

male and female gametes that come from the same individual. Selfing facilitates 

speciation by preventing gene flow between individuals (Martin and Willis 2006).  

In plants, an extreme version of selfing is cleistogamy. Cleistogamy is the 

production of closed, obligate self-fertilizing flowers which creates a barrier to gene flow 

by preventing hybridization. This unique characteristic has been studied since the work of 

Charles Darwin in his book, The Different Forms of Flowers on Plants of the Same 

Species (1887). However no research has been done on the role it plays in reproductive 

isolation.  

 

Study Species 

Studies that have looked at isolating mechanisms typically target one or a few 

barriers to gene flow without consideration of the other components of isolation (Ramsey 

el al 2003). A unique opportunity arose to determine the degree of isolation that 

cleistogamy provides with respect to other components of isolation in a local plant 

11 
 



species. Two subspecies of an annual, cleistogamous plant, Triodanis co-occur in Pitt 

County, NC: Triodanis perfoliata subsp. perfoliata  (hereafter referred to as perfoliata) 

and Triodanis perfoliata subsp. biflora  (hereafter referred to as biflora). Each subspecies 

exhibits a mixture of closed (cleistogamous) and open (chasmogamous) flowers but their 

divergence has created a difference in the ratio each produce. They occur in sympatry 

throughout most of the southern region of the United States  (USDA, NRCS 2012) and 

some hybridization has been reported between the two subspecies but they continue to 

stay morphologically distinct (Goodwillie and Stewart 2013). Another unique 

characteristic of these plants is in the sexual phase observed in their chasmogamous 

flowers. When chasmogamous flowers first open, the stamens, have deposited pollen on 

the outside of the stigma. This is considered the male phase because the receptive surface 

of the stigma is covered. After a few days, the stigma lobes open and expose the receptive 

surface of the stigma making it readily available to accept foreign pollen, the female 

phase. My study quantifies the components that contribute to the reproductive isolation of 

these two subspecies, including cleistogamy, by studying them in both their natural 

habitat and in a laboratory setting. By calculating the extent that each component 

contributes to isolation we will calculate the total isolation for each subspecies as well as 

the relative contribution that cleistogamy provides.  
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Materials and Methods 

To quantify the relative contribution of cleistogamy to reproductive isolation, we 

first had to quantify the known components of isolation. In this study we quantified 

habitat, flower phenology, seed germination, hybrid viability, female fertility and male 

fertility with the addition of cleistogamy. Since these components act sequentially, the 

first step was to determine where cleistogamy would be placed in the sequential time line 

of isolation. We propose that if that the first barrier states the flowers must occur in the 

same place and the second barrier states they have to bloom at the same time, then we 

assumed that prior to flowering phenology, the plant must produce chasmogamous 

flowers that can open.  

 

Prezygotic isolation 

Habitat Preference 

The two subspecies of Triodanis perfoliata occur in sympatry on a continental 

scale, especially in the south eastern region. The same, although, cannot be said on a 

local scale. The first component, habitat preference, was calculated with the aid of Dr. 

Carol Goodwillie and her lab whom over the past five years have done an extensive 

search throughout the Greenville/Pitt County area and identified 23 different sites where 

one or both subspecies of Triodanis perfoliata occur. Each site was identified as either a 

mixed site, where both subspecies occur, or pure site, where only one subspecies is 

present.  

The anecdotal observation of differentiation in habitat led us to look at the 

microhabitat, specifically soil moisture and composition, to quantify the divergence in 
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habitat. To determine soil moisture, a Decagon EC 5 moisture sensor was used in the 

previously identified sites that are known to contain on or both subspecies. Each site was 

designated as either a pure biflora, pure perfoliata, or mixed site. Three readings were 

taken at each site at the same time for a more accurate result and averaged together for 

comparison.  

 To compare composition we also dug out a shovel length (approximately 6” x 4”) 

soil sample. Each soil sample was filtered through a large screen and placed in a test tube. 

After filling the test tube 1/3 with soil and 2/3 with water and detergent, the test tube was 

shaken for five minutes and allowed to settle for 24 hours. This allowed the soil to be 

disturbed so that the heaviest particles in soil settle first, sand, followed by silt then clay. 

Once all the soil is settled, measurements of each component were taken as vertical 

height along the test tube and recorded. The relative amount of each component was then 

calculated to determine the classification of soil.   

 

Cleistogamy 

The extent of cleistogamy was calculated using the greenhouse grow out. By 

carefully counting the cleistogamous vs. chasmogamous flowers of 20 plants for 

perfoliata (P), and biflora (B), we were able to find the ratio of flowers for cleistogamous 

flowers vs. total flowers. Using data generated by Emily Stewart in a previous study of 

seeds produced by each type of flower, we were able to extrapolate seed counts for each 

plant and average them. This number was used to more accurately weigh our calculations 

of reproductive isolation due to cleistogamy. 
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Flowering Phenology 

If plants of the subspecies are not blooming at the same time then gene flow 

between them will be shut off, known as asynchrony in flowering phenology. We 

quantified this component of reproductive isolation by studying sites in three areas where 

the subspecies co-occur: a site in Greenville, Falkland, and Winterville. In each site, three 

distinct transects were mapped to inspect each sampling day for open flowers. The 

phenology data were intricate because with Triodanis perfoliata, both subspecies have a 

male and female phase in their chasmogamous (open) flowers. So instead of only 

counting the chasmogamous flowers that were open, we had to take into consideration the 

sexual phase of the flower.  

The first task was to identify each subspecies. Identification was based on known 

identifiable traits: pore position, chasmogamous flower vs. cleistogamous flower position 

and ratio, leaf shape and pollen color (Stewart 2013). Biflora plants typically have narrow 

leaves and cleistogamous fruits a pore position found close to the top. Chasmogamous 

flowers in biflora are found in much fewer number per stalk and exhibit a determinate 

inflorescence with the apical meristem becoming a chasmogamous flower. These 

typically have whitish pollen.  

Perfoliata plants, in contrast, have heart shaped leaves. The cleistogamous fruits 

are shorter and broader with pore position found close to the bottom. Open, 

chasmogamous, flowers are found in high number per stalk with dark purple pollen. 

Once the subspecies of an open flower was determined, each flower was closely 

examined to determine whether it was exhibiting a male or female phase. Approximately 

15 
 



every other day at each site, the number of open flowers of each subspecies was flower 

counted and sexual phase was noted. Data were recorded throughout the flowering period 

from early May to early June.    

 

Postzygotic isolation 

In the greenhouse, plants of each subspecies were raised and crosses were made in 

both directions to create an F1 generation. Pure biflora and perfoliata were grown, as 

well as hybrids in both directions--- perfoliata ovules by biflora pollen (P x B) and the 

reverse (B x P)--- to see if maternal or paternal effects play a role in growth and 

survivorship.  

  

Seed Germination 

The seed germination trials were done within a petri dish. A small piece of filter 

paper was placed at the bottom of a petri dish. Just enough water was added to saturate 

the paper. Three sets of 20 seeds were germinated for each cross type then placed evenly 

throughout the dish. Once placed, the dishes were wrapped and sealed to prevent 

bacteria/ other organisms from getting in. Seeds were given two weeks to germinate until 

seeds they were considered inviable. 

Sixty plants from each cross type --- P, PxB, BxP, B --- were individually planted 

in containers. Plants were then randomized and placed on a grid in the greenhouse. All 

plants were sub-irrigated and rotated twice a week to control for variation in the light 

environment.  
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Hybrid Viability 

  During the hybrid grow out, 20 plants of each cross type were counted with 

respect to number of branches, chasmogamous/cleistogamous flowers on the main stem, 

chasmogamous/cleistogamous flowers on the side branches and main stem height. After 

the counts were done, all of the plants were placed in the drying over and weighed for 

biomass. These two measurements were used together to portray hybrid viability.  

 

Ovule Fertility 

 To calculate ovule fertility in F1 plants, seeds were counted in one cleistogamous 

fruit of 12 plants of each cross type from the lab grow out. 

 

Male Fertility 

 To quantify male fertility in F1 plants, pollen counts were conducted. One flower 

was collected from approximately nine plants of each of the four cross types. One 

recently opened chasmogamous flower was taken and the anther and stamen were 

plucked as to ensure all pollen was obtained. Pollen was stained with 30 µL of methylene 

blue and centrifuged. Pollen was then viewed with a hemocytometer. Pollen grains were 

counted under the microscope  and then multiplied to find total pollen grains per flower.  

 

Calculations 

The model for calculating reproductive isolation (RI) values for each component was 

modeled after Ramsey et al. (2003). This value indicates the extent to which a given pre 
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or postzygotic component reproductively isolates and typically varies between 0 and 1 

(Ramsey 2003).  It also takes into account negative values for situations such as hybrid 

vigor, where hybrid performance is greater than intraspecific performance. Total values 

between perfoliata and biflora were calculated based on a multiplicative function of the 

individual components of reproductive isolation (Ramsey et al 2003).  In order to ensure 

the sequential aspect of isolation, absolute contribution is calculated as shown in 

equations 1-4. 

(1) AC1 =RI1 

(2) AC2 = RI2(1-AC1) 

(3) AC3=RI3[1-(AC1+AC2)] 

Generally summarized: 

(4) ACi=RIn(1-∑ 𝐴𝐶𝑛−1
𝑖=1 i) 

This formula ensures that for any given component of reproductive isolation can only 

act to limit the gene flow that has not previously been isolated.  

Once these numbers have been calculated, we simply sum the absolute contribution to 

find total reproductive isolation (T) which also varies from 0 to 1, so for m components 

of isolation: 

(5)  T=∑ 𝐴𝐶𝑚
𝑖=1 i 

The relative contribution (RC) of a reproductive barrier at stage n, is then calculated as a 

ratio of absolute contribution to total contribution: 

(6) RCn = 
𝐴𝐶
𝑇

n 
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We used the Excel spreadsheet made available at 

http://www.plantbiology.msu.edu/schemske.shtml to calculate total isolation and absolute 

contributions to the total.   
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Results 

Prezygotic isolation 

Habitat preference 

 To investigate habitat isolation, populations of biflora and perfoliata were found 

in 23 sites throughout the Greenville, Pitt County area. It was found that 12 sites were 

mixed, 6 sites were pure perfoliata and 5 sites were purely biflora. The next step was to 

derive an equation so that RI was 0 the subspecies always occurred together in the same 

area and 1 if they never overlapped. In order for these conditions to be met, we calculated 

the RI value as 1 minus the ratio of mixed sites to total sites where the subspecies were 

found (mixed sites plus pure sites). 

(P) RIp = 1 – (mixed(12)/total perf(18)) = 0.333 

(B) RIb = 1 – (mixed(12)/total bif(17)) = 0.294 

 When characterizing differences in soil habitats of the two subspecies percent 

sand was chosen as the factor to compare. In the test tube assays, each layer of soiled was 

measure with respect to height as an indication of volume. By comparing the height of 

each layer to the total height of the soil (T), percent composition was calculated:  

(7) % Sand = 
𝑠
𝑇
 x100 

Another trait of soil we used to compare was average moisture based upon the 

readings taken at each site. By using a t-test we found that both characteristics of the soil 

have significant differences. While biflora prefers a moister environment with less sand, 

perfoliata thrives in environments with significantly less moisture and more sand shown 

in Table 1. 
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Cleistogamy 

Unlike the other prezygotic isolating barriers, cleistogamy was studied in the lab. 

Using data generated by Emily Stewart (2013), average seed count for each perfoliata 

and biflora were found. Reproductive isolation caused by cleistogamy was calculated 

using the following formula, which yields a value of 0 when all seeds are chasmogamous 

(CH) and 1 when all seeds are cleistogamous and therefore cannot be hybridized.  

 (P) R.I. = 1 – (CH seeds (15,400)/total seeds(46,347.9)) = 0.668  

(B) R.I. = 1 – (CH seeds(5547.41)/total seeds(59,564.68)) = 0.9069 

 

Flowering Phenology 

To quantify reproductive isolation caused by asynchrony in flowering phenology 

we modeled the system used by Martin and Willis (2006)  in their paper on ecological 

divergence in mating systems.  Figure 1 and 2 shows the overlap of flowers open on each 

day throughout the blooming period (note that for hybridization to occur a male biflora 

  Average Moisture 

(m3/m3) 

Average % Sand 

biflora 0.125 53.9% 

perfoliata 0.0398 73.9% 

t-test P-value <0.001 <0.001 

Table 1. – Soil moisture and sand content in soils of two subspecies of Triodanis perfoliata 
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flower must be open simultaneously with a female perfoliata or vice versa). These 

numbers were used in our calculation of RI. Because the frequency of hybridization 

depends on the relative frequency of the species’ flowers; let q0p represent the proportion 

of all hybrids formed from perfoliata ovules and similairlyq0b represent the proportion of 

all hybridized flowers that were formed by biflora throughout the season.  The subscripts 

will direct us on the stage of isolation (time 0) and which subspecies fertilized the ovules.  

On any given, ith day, the frequency of hybrid pollen that is deposited on 

perfoliata q1,p,,I or biflora q1,b,I is the fraction of flowers open on that day that are biflora 

(bi) or perfoliata  (pi) respectively (pi + bi = 1). Allow the proportion of all perfoliata 

flowers across the season on the ith day be si and for biflora be ti. The expected 

hybridization of perfoliata ovules then is    q1,p,,i = ∑  si * bi  and the expected frequency 

for biflora ovules would be  q1,b,i = ∑  ti * pi  . Once these numbers have been derived, we 

can then calculate the strength of the barrier on each subspecies as  

 w1p =    
𝑞1,p,/q0p

(1−𝑞1,p,)/(1−q0p) 
  

w1b =    
𝑞1,b,/q0b

(1−𝑞1,b,)/(1−q0b) 
 

These values were used to calculate RI values due to flowering phenology as  

 (P) R.I. = 1 – w1p (1.01) = -0.01  

(B) R.I. = 1 – w1b (0.095) = 0.095 

(Ramsey et al 2003) 
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Figure 2 – Overlap of open Male biflora vs. Female perfoliata chasmogamous flowers 

Figure 1 – Overlap of open male perfoliata and female biflora chasmogamous flowers 
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Postzygotic isolation 

For all components of postzygotic isolation the general formula can be applied: 

(8) RI = 1 – (hybrid performance/parental performance) 

 

Seed germination 

The first component of postzygotic isolation was seed germination. By counting the 

mean number of seeds out of 20 that had germinated, that number was recognized as 

“performance” and plugged in to our generalized equation (8) for this component. Figure 

3 shows the number/performance for each cohort.  
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Figure 3– Results of seed germination trials. Values 
shown are means of three replicate dishes of 20 seeds 
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RI calculations were as followed for germination rates based on equation 8: 

(P) RI = 1 – (16/16) = 0.00 

(B) RI = 1 – (15/17) = 0.17 

 

Because of to the positive linear relationship between flower count and dry 

biomass (Figure 4), we compared the means for dry biomass in Figure 5 as the most 

relevant source of information to quantify hybrid viability. PxB far outperformed 

perfoliata which was quantified as a negative RI value for perfoliata. This negative 

number shows the strength of hybrid vigor, the more negative the RI value, the stronger 

the hybrid vigor. This trend, however, was not seen in biflora as BxP did not perform as 

well as biflora.  
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Figure 4 – A positive linear relationship was found between flower number and biomass. 
General trends also show that pure biflora seems to produce more flowers on average per 
gram of biomass than the other cohorts 
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Applying equation 8 to results found for biomass:  

(P) RI = 1 – (2.14/1.34) = -0.597 

(B) RI = 1 – (1.63/1.75) = 0.0686 

 

Ovule fertility 

Average number of seeds produced per flower was chosen as our performance 

factor for ovule fertility as shown in Figure 6. In this experiment, biflora continued to just 

lightly outperform BxP, but there was a large difference in counts for perfoliata and PxB. 

PxB fell off in its production of seeds dramatically compared to perfoliata.  

 
Figure 5 - Average biomass of each cohort shows a substantial 
amount of hybrid vigor in perfoliata with the PB plants out 
performing its parental 
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Applying equation 8 to results found for seed count: 

(P) RI = 1 – (57.08/116.42) = 0.5098 

(B) RI = 1 – (79.54/87.62) = 0.0923 

 

Male fertility was calculated based on pollen counts taken in the lab using the 

hemocytometer. Pollen counts were multiplied by 300 (based on the volume of solution 

in the hemocytometer and the total volume of the solution). Intermediate values for PxB 

and BxP were exhibited, yet, BxP exhibited a closer resemblance to perfoliata while PxB 

resembled biflora more. Total pollen counts per flower are shown in Figure 7.  

Figure 6 – Ovule fertility parental and F1 offspring. 
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After plugging in the counted values into equation 8, the quantified amount of isolation 

were as follows: 

(P) RI = 1 – (204.2/93) = 0.271 

(B) RI = 1 – (180.67/247.7) = -1.196 

 

Summarized Results 

Once RI values were calculated we then calculated absolute contribution (ACn). 

Results for absolute contribution (ACn), relative contribution (RCn), and total 

reproductive isolation (T) are shown in Table 2 for perfoliata and Table 3 for biflora. A 

Figure 7 – Average pollen grains per flower, extrapolated 
from counts using a hemocytometer 
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graphical analysis for relative contribution to isolation is shown in Figure 8 for perfoliata 

and Figure 9 for biflora. 

 

Barrier perfoliata Absolute 

Contribution 

perfoliata Relative 

Contribution  

(1) Habitat 
0.3300000000 0.3785338487 

(2) Cleistogamy 
0.4475600000 0.5133836646 

(3) Flowering Phenology 
-0.0022244000 -0.0025515476 

(4) Seed Germination 
0.0000000000 0.0000000000 

(5) Hybrid Viability 
-0.1341246468 -0.1538506629 

(6) Female Fertility 
0.1829106561 0.2098117412 

(7) Male Fertility 
0.0476630439 0.0546729559 

 
Total Reproductive Isolation: 0.8718 

 Table 2 

  

 Table 3 

Barrier biflora  Absolute 

Contribution 

biflora  Relative 

Contribution  

(1) Habitat 
0.2940000000 0.3236682596 

(2) Cleistogamy 
0.6402714000 0.7048827542 

(3) Flowering Phenology 
0.0062442170 0.0068743362 

(4) Seed Germination 
0.0101123451 0.0111328066 

(5) Hybrid Viability 
0.0033869218 0.0037287044 

30 
 



(6) Female Fertility 
0.0042444262 0.0046727417 

(7) Male Fertility 
-0.0499218651 -0.0549596027 

 
Total Reproductive Isolation: 0.9083 
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Reproductive Isolation (perfoliata) 

Table 2 and Table 3 – Relative contribution of each component shows that 
cleistogamy is the most important isolating mechanism for both perfoliata and 
biflora 
 

Figure 8    shows the relative contribution that each barrier provides to the 
isolation of perfoliata  
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Figure 9   shows the relative contribution that each barrier provides to the 
isolation of biflora  
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Discussion 

This study contributes to our understanding of reproductive isolation and 

specifically the effect that cleistogamy has as a component of reproductive isolation 

between divergent plant taxa. In both subspecies, cleistogamy was the strongest barrier in 

the reproductive isolation. Biflora was almost exclusively isolated by the first two 

barriers: cleistogamy and habitat preference, yet cleistogamy, despite being the second 

barrier, isolated more than twice the amount then did habitat preference. The relative 

amount cleistogamy provided to the total isolation was over two thirds for biflora. A 

similar result occurred with perfoliata as well. The two most strongly isolating barriers 

were still habitat preference and cleistogamy, however cleistogamy contributed just over 

one half of the total isolation while habitat preference contributed just over a third. It was 

expected that biflora would be isolated by cleistogamy more than perfoliata since biflora 

produces almost exclusively cleistogamous flowers with relation to chasmogamous 

flowers, much more than we see in perfoliata.  

“Detailed knowledge of the strength and nature of these barriers provides insight 

into ecological and genetic factors that directly or indirectly influenced their origin, and 

may help predict whether they will be maintained in the face of sympatric hybridization 

and introgression” (Martin and Willis 2006).  

 As we look at each component of isolation and its relation to total reproductive 

isolation there are some limitations to keep in mind. Our study only focused on seven 

potential barriers to isolation and did not look at every possible component such as 

pollinator fidelity, pollen competition, F2 or F3 viability. It is unlikely, however, that 

adding these factors would change the overall findings of the study. While it might 
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produce a slight change in the total reproductive isolation, and as a result, relative 

contribution (RCn), it is unlikely to change the absolute contribution cleistogamy 

provides. Because cleistogamy is only the second barrier to isolation, and all the barriers 

act sequentially, the potential that cleistogamy has does not change with the addition of 

additional barriers (since these added factors act later in the timeline of isolation). Thus 

stating that with such a large amount of total isolation due to habitat and cleistogamy 

alone, then even if other components were added, their potential for isolation would not 

make a significant difference in the findings of this study.  

 In the habitats of these subspecies, the significant differences we found in soil 

moisture and composition are likely to provide explanation for spatial separation in the 

occurrence of the subspecies. Another factor that seemed to differ in their spatial 

separation was different type of light environments. Perfoliata is typically found near the 

edge of woods while biflora is typically found farther in the open, yet,we did not measure 

them in this study.   

 When looking at the relative amount of isolation that each component provides 

for biflora and perfoliata, we see that although cleistogamy provides a substantial amount 

of isolation for perfoliata, there is still a significant contribution from other barriers. 

Since the F1s resulting from hybridization of perfoliata by biflora pollen showed a 

negative RI value for biomass (hybrids were larger than parental offspring), barriers 

acting after that contribute a larger amount, relatively. More specifically, after perfoliata 

F1s performed so well in viability, we see that the opposite trend occurs in female 

fertility, with F1s having lower pollen production than parental offspring. The RI values 

for hybrid viability and female fertility almost exactly counteracted each other. Perhaps 
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the lack of performance in female fertility was due to the lack of energy the plant was 

able to devote to reproduction because its use of so much energy in creating a large viable 

hybrid. We saw hybrid vigor contribute to the negative RI value in biomass for 

perfoliata, while pollen production was lower in hybrids because the trait seemed to be 

intermediate.  

It is also known, thanks to Emily Stewarts study on these plants, that it takes 

substantially less energy for the plants to produce cleistogamous flowers than 

chasmogamous flowers. Since biflora is producing almost all of its seeds through self 

fertilization in cleistogamous flowers, it in turn does not have to devote so much energy 

to reproduction. Due to the less amount of energy that is required for reproduction it is 

able to perform better or devote more energy, to its biomass/hybrid viability.  

A potentially interesting trend in the hybridization of these subspecies is seen in 

male fertility. In most plant species mitochondrial DNA is known to be passed on by the 

maternal plant, therefore we would expect to see intermediate values for F1s produced by 

perfoliata (PxB) and F1s of biflora (BxP) that more closely resembled the maternal 

subspecies. If this were the case we should have seen a steady decline in pollen grains per 

flower as we go from P to PxB to BxP to B. Instead we see quite the opposite. We do see 

intermediate values for pollen grains, as expected, however the values for each hybrid 

seem to more closely resemble the paternal than the maternal subspecies. What then is 

the cause for this observation? More study to explain why this occurs is being done. A 

remote possibility could be that the mitochondrial DNA is paternally inherited in this 

subspecies, as is true in some plants. 
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The total reproductive isolation values were consistent with what was observed in 

the field as well as with the results of previous genetic marker studies of Triodanis 

perfoliata hybrid zones (Stewart 2013). With such high amount of isolation, it is rare to 

observe hybrids, yet the possibility still exists. The substantial amount of reproductive 

isolation between the subspecies, though, does explain why gene flow is limited between 

the two and why the subspecies are remaining divergent phenotypically. Our results also 

tell us that for both subspecies, the isolation of these subspecies occurs almost entirely in 

the prezygotic stage. If pollen transfer does take place, there is almost nothing due to 

postzygotic isolation that prevents the formation of a strong viable hybrid, able to 

reproduce.  The dominant force of isolation, nonetheless, is cleistogamy and should be 

considered further as an important component of reproductive isolation.  
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