AN ASSESSMENT OF THE POLYTYPIC STATUS OF THE NAMIB DARKLING BEETLES ONYMACRIS UNGUICULARIS AND ONYMACRIS RUGATIPENNIS

by

Rachel Pollard

A Senior Honors Project Presented to the
Honors College
East Carolina University
In Partial Fulfillment of the
Requirements for
Graduation with Honors

by

Rachel Pollard
Greenville, NC
May 2014

Approved by:

Faculty Mentor:

Trip Lamb, Ph.D.
AN ASSESSMENT OF THE POLYTPIC STATUS OF THE NAMIB DARKLING BEETLES ONYMACRIS UNGUICULARIS AND ONYMACRIS RUGATIPENNIS

by

Rachel Pollard

A Senior Honors Project Presented to the

Honors College

East Carolina University

In Partial Fulfillment of the

Requirements for

Graduation with Honors

by

Rachel Pollard

Greenville, NC

May 2014

Approved by:

Faculty Mentor:

Trip Lamb, Ph.D.
I hereby declare I am the sole author of this thesis. It is the result of my own work and is not the outcome of work done in collaboration, nor has any of it been submitted elsewhere for another degree.

Signed: ___________________________ Date: _____________

Rachel M. Pollard

Date: __5/10/14___
An assessment of the polytypic status of the Namib darkling beetles Onymacris unguicularis and Onymacris rugatipennis

Rachel M. Pollard

Department of Biology, East Carolina University, Greenville N.C. 27858

ABSTRACT - The southern African beetle genus Onymacris (family Tenebrionidae) comprises 14 species, six of which are polytypic. Despite longstanding research on the physiological and behavioral adaptations of these desert beetles, little is known about their evolutionary relationships, particularly regarding the validity of currently recognized subspecies. In this study, I examined the polytypic status of the species Onymacris unguicularis and O. rugatipennis, each composed of two subspecies. The first, Onymacris unguicularis, is restricted to vegetationless dunes and is renowned for an unusual drinking behavior called fog basking. Northern populations—isolated from southern populations by approximately 300 km of duneless land—compose the subspecies O. u schulzeae, which exhibits only minor morphological differences from the southern subspecies, O. u. unguicularis. The second species, Onymacris rugatipennis, also contains two subspecies—O. r. rugatipennis and O. r. albotessellata—which are distinguished by the latter’s white wax bloom on the dorsum. Their ranges are contiguous and slightly overlapping, with O. r. rugatipennis occurring primarily along riverbanks and O. r. albotessellata occurring on dune bases. To assess the validity of the subspecies of O. unguicularis, I analyzed morphological variation in 35 specimens of O. u. schulzeae and 95 of O. u. unguicularis as well as mitochondrial DNA (mtDNA) sequence variation in five O. u. schulzeae and ten O. u. unguicularis. For O. rugatipennis, I examined only mitochondrial DNA sequence variation, generating sequence data for 11 O. r. rugatipennis and 12 O. r. albotessellata. Phylogenetic analysis of the mtDNA data revealed reciprocal monophyly between O. u. unguicularis and
O. u. schulzeae, a pattern complementary to their morphological variation. On the basis of congruent phenotypic diversity, geographic delimitation, and genetic variation, I support the recognition of *O. u. unguicularis* and *O. u. schulzeae* as valid taxa. Conversely, the limited genetic divergence, absence of phylogeographic structuring, and number of shared haplotypes between *O. r. rugatipennis* and *O. r. albotessellata* suggest this species would be better regarded as a monotypic taxon.
I thank Ruth Müller of the Ditsong National Museum of Natural History, Pretoria, South Africa for arranging specimen loan and shipment to Dr. Lamb. Dr. Thomas Fink kindly assisted with digital imaging and measurements. I would especially like to thank Dr. Trip Lamb for his time, knowledge, guidance, and support. This project was funded in part by two East Carolina University Undergraduate Research and Creative Activity Awards and a George T. Barthalmus Undergraduate Research Grant.
Table of Contents

Introduction 9

 Brief History of Subspecific Taxonomy 9
 Definitions of Subspecies 11
 Subspecific Delimitation in Invertebrates 11
 Subspecies in *Onymacris* 11

Materials and Methods 18

 Molecular Phylogenetic Analysis 18
 Morphometrics 19

Results and Discussion 22

 Future Studies 26
 Broader Implications 26

Literature Cited 28

Appendices 30
List of Tables

Table 1. Pronotal, prosternal, and elytral ratio means and ranges.
Table 2. Evaluation of Braby et al.’s (2012) criteria for Onymacris unguicularis and Onymacris rugatipennis
List of Figures

Figure 1. Range maps for (A) *Onymacris unguicularis* and (B) *Onymacris rugatipennis* depicting subspecific geographic distributions and collecting localities 15

Figure 2. Dorsal aspect of *Onymacris unguicularis unguicularis* 16

Figure 3. Dorsal aspect of *Onymacris unguicularis schulzeae* 16

Figure 4. Dorsal aspect of *Onymacris rugatipennis rugatipennis* 16

Figure 5. Dorsal aspect of *Onymacris rugatipennis albotessellata.* 16

Figure 6. Pronotum of *Onymacris unguicularis unguicularis* 20

Figure 7. Pronotal ratio calculations 20

Figure 8. Prosternum of *Onymacris unguicularis unguicularis* 20

Figure 9. Prosternal ratio calculations 20

Figure 10. Lateral aspect of the prosternal process of *Onymacris unguicularis schulzeae* 20

Figure 11. Lateral aspect of the prosternal process of *Onymacris unguicularis unguicularis* 20

Figure 12. Elytra of *Onymacris unguicularis unguicularis*, depicting measurements used for elytral ratio calculations 21

Figure 13. Elytra of *Onymacris unguicularis schulzeae*, depicting measurements used for elytral ratio calculations 21

Figure 14. Maximum likelihood tree for populations of *O. unguicularis* 23

Figure 15. Maximum likelihood tree for populations of *O. rugatipennis* 24
Introduction

Beetles of genus *Onymacris* (family Tenebrionidae) are dominant ecological entities in the sand seas and other dune systems of the Namib Desert in southern Africa. Six of the 14 named species of *Onymacris* are polytypic, containing two to four subspecies. Although behavioral and physiological adaptations of these flightless, diurnal beetles have been studied extensively (e.g., Hamilton and Seely 1976; Naidu 2008; De Villiers and Hanrahan 1991; Cooper 1982; Nørgaard and Dacke 2010) little is known about their evolutionary relationships, particularly regarding the validity of the currently recognized subspecies. I examined the polytypic status of two species: *Onymacris unguicularis* and *Onymacris rugatipennis*.

Brief History of Subspecific Taxonomy

The concept of subspecies first arose in the late 19th century as a way to formally recognize intraspecific geographic and morphological variation (Braby et al. 2012). The Swedish ornithologist Carl Sundevall is credited as the first to use trinomial nomenclature, assigning a third name to poorly delimited species of birds, which he described as geographic varieties, in 1840. Sundevall’s use of trinomial nomenclature was followed closely by Herman Schlegel (1844), who is considered the first to routinely use trinomials (Winker 2010). One of the major proponents of trinomial nomenclature was the American ornithologist Elliott Coues, who greatly aided its usage and popularization. He argued that the Linnaean system was a hindrance to our understanding of evolution and speciation.

It [the Linnaean system] answered, when a thing was either square or else it was round—when species were held for fixed facts as separate creations; but now that we know a thing may be neither square nor round, but something between, it is lamentably defective. Not many years hence, we trust, naturalists will have discarded it for some better method of notion; and then
the wonder will be that we advanced so far with such a stumbling-block in the
way. (Coues 1871)

Coues stressed that because all differentiation begins gradually and imperceptibly, intraspecific variation is visible evidence of divergence and naming divergent forms is therefore necessary. The concept of trinomial nomenclature quickly became established among ornithologists as well as entomologists in Europe and soon became a standard in the International Code of Zoological Nomenclature (ICZN), as it remains today (Mallet 2013). As a result of the trinomial revolution, taxonomists began directing a great deal of effort toward the characterization and discovery of new subspecies in the late 1800s and early 1900s. Over this time frame, trinomials were often grossly misused by taxonomists to recognize subtle intraspecific morphological differences. In extreme cases, species have been assigned up to 150 subspecies (Lamb and Avise 1992).

However, not all naturalists agreed with the widely accepted practice of official subspecific delimitation. Wilson and Brown (1953), two ant systematists, vehemently opposed the use of trinomials, which they considered a subjective and useless practice that merely appeases our “unceasing search for novelties.” In fact, they stated that “the subspecies concept is the most critical and disorderly area of modern systematic theory,” deeming its function both “illusory and superfluous” and predicting its imminent disappearance. Wilson and Brown’s (1953) major issues with subspecific delimitation were: (1) the lack of concordance between genetically independent characters and geography; (2) the recurrence of specific characters in more than one geographic location and thus the existence of polytopic races; (3) microgeographic races, or distinct local populations (common in snail species), that show extensive character variation and would therefore accumulate a long list of trinomials over time; and (4) the arbitrary lower limit of the subspecies, which they claimed would never be satisfactory due to borderline cases. They suggested that taxonomists
redirect their efforts by examining geographical variation of genetically independent characters before attempting to create racial groupings, and further recommended that the description of intraspecific variation be limited to locality citations or brief statements of variant ranges.

Definitions of Subspecies

Despite its strong opposition—and contrary to Wilson and Brown’s expectations—the subspecies concept has extended into the present day. Recognition of polytypic species has resulted in a huge reduction in the number of species-level taxa, from more than 20,000 in the 1920s to approximately 9,000 in the 1980s, with a fair amount of “overlumping” occurring and many valid allopatric species being designated as subspecies (Winker 2010). Although the battle over nomenclature is over, the ICZN does not provide a clear definition of what constitutes a subspecies or, in other words, which cases justify the application of trinomialism (Winker 2010). In a broad sense, trinomial labels function as descriptions of the intraspecific variation that is representative of evolutionary and developmental responses to geographically heterogeneous biotic and abiotic phenomena. The debate over the subspecies concept is ultimately the result of dissatisfaction with this broad definition and a lack of a better, more detailed one (Winker 2010). Concern over this issue is longstanding; Darwin (1859), noted:

> no clear line of demarcation has as yet been drawn between species and sub-species—that is, the forms which in the opinions of some naturalists come very near to, but do not quite arrive at, the rank of species: or, again, between sub-species and well-marked varieties, or between lesser varieties and individual differences.

Different definitions have since evolved in an attempt to provide a clear line of demarcation and resolve the subspecies debate. Hartert (1903) defined subspecies as “the
geographically separated forms of one and the same type, which taken together make up a species. Therefore, not just a small number of differences, but differences combined with geographic separation, permit us to determine a form as a subspecies.” Mayr (1942, 1963) described a subspecies as an “aggregation of phenotypically similar populations of a species inhabiting a geographical subdivision within the overall range and differing from other such subdivisions of the species.”

Despite the multitude of reasonable definitions, taxonomists have not strictly abided by any one, and the criteria used to describe subspecies have continued to be inconsistent and somewhat subjective. The development of genetic tools has further complicated our definition of subspecies; now both phenotypic variation and phylogeographic patterns, as demonstrated by neutral genetic variation in markers such as microsatellites and mitochondrial DNA (mtDNA), can be taken into consideration when delimiting subspecific groups (James 2010). Avise (2004) supported using a phylogenetic approach to designate subspecies, recommending subspecies be defined as groups of actually or potentially interbreeding populations (normally mostly allopatric) that are genealogically highly distinctive from, but reproductively compatible with, other such groups. Importantly, the empirical evidence for genealogical distinction must come, in principle, from concordant genetic partitions across multiple, independent, genetically based molecular (or phenotypic; Wilson and Brown 1953) traits.

Subspecific Delimitation in Invertebrates

Taxonomic problems in mammals, birds, and plants have been studied extensively, but the importance of subspecific delimitation in invertebrates has been largely neglected. Braby et al. (2012) argued that true subspecies represent valid, important evolutionary units, and the recognition of subspecies is important because it gives insight into intraspecific
variation, adaptation, and speciation. However, it is vital to use a clear, well-defined set of criteria for subspecific delimitation. The major issue involves setting the lower limit of what constitutes a subspecies in order to avoid arbitrary assignment of trinomials to forms that vary only slightly in phenotypic characteristics such as coloration, pattern, or size as recommended by Ernst Hartert in 1891 (Winker 2010).

Braby et al. (2012) recently provided an update of the subspecies concept, recommending subspecific delimitation be restricted to extant groups of “evolving populations representing partially isolated lineages of a species that are allopatric, phenotypically distinct, have at least one fixed diagnosable character state, and that these character differences are correlated with evolutionary independence according to population genetic structure.” Although limiting their definition to allopatric populations, they acknowledged that the subspecies concept could also be applied to “broadly sympatric lineages diverging in ecological space,” noting that subspecies status may be appropriate if differentiated sympatric lineages are phenotypically distinct with at least one fixed diagnosable character state (Braby et al. 2012). Molecular phylogenetic analysis is helpful in the reassessment of subspecific taxa. If genetic variation exhibits discordance with phenotypic or geographic variation in traditionally defined subspecies, morphological differences can be interpreted as local adaptation or clinal variation, and subspecific designation is therefore not valid (Lamb et al. 2013). Alternatively, if genetic variation corroborates phenotypic variation in subspecies, retention of the trinomial designations or elevation to full species should be considered.

Subspecies in Onymacris

One of the more intensely studied species of *Onymacris, O. unguicularis* has been the subject of much behavioral and physiological research (De Villiers and Hanrahan 1991; Cooper 1982; Nørgaard and Dacke 2010). The species is renowned for a unique behavior
called fog-basking; these otherwise diurnal beetles climb to the top of sand dunes at night, tilt head-down towards incoming fog, and use their bodies to collect drinking water (Hamilton and Seely 1976; Naidu 2008). Despite its interesting behavioral adaptations, *O. unguicularis* has been poorly studied from an evolutionary standpoint, though it is currently recognized as a polytypic species. Northern populations, which compose the subspecies *O. u. schulzeae*, are separated from the southern subspecies, *O. u. unguicularis*, by approximately 300 km of duneless land (Fig. 1A). The two subspecies, characterized by slight morphological differences in the shapes of the pronotum, prosternal process, and elytra, were described by Penrith (1984), following Schulze’s (1964) earlier notations of differences in larval morphology (Figs 2-3). Whether or to what degree genetic variation is congruent with morphological and geographic delimitation in *O. unguicularis* is unknown.

Schulze (1964) described an additional species of *Onymacris*—*O. albotessellata*—splitting it from *Onymacris rugatipennis* on the basis of differences in larval morphology, the larva of *O. rugatipennis* having a rounder apex and shorter setae (Osberg et al. 1986). Penrith (1984) later argued that from the standpoint of adult morphology, she could provide no justification for separating the two taxa beyond the level of subspecies. Their ranges are contiguous and slightly overlapping, with *O. r. albotessellata* occurring primarily on the vegetated dune bases of the south central Namib dune system and *O. r. rugatipennis* along the sandy riverbanks of the Kuiseb and Swakop rivers (Fig. 1B). Adults of *O. r. albotessellata* are distinguished from *O. r. rugatipennis* by the presence of a white wax bloom that protects the integument and by dense aggregations of microgranules in the elytral sculpturing (Penrith 1975). The bloom, which is composed of wax filaments that are extruded through pore openings to coat the insect’s body, is thought to affect water diffusion resistance and reflection of solar radiation, providing protection from dessication in the hot, dry interior of the Namib (Hauffe and Seely 1995). Osberg et al. (1986) conducted laboratory
breeding experiments demonstrating that *O. r. albotessellata* and *O. r. rugatipennis* are fully interfertile. However, the apparent non-existence of intermediates in the zone of overlap indicated that introgression between the two interfertile types does not occur in the field. Thus, they recommended *O. r. rugatipennis* and *O. r. albotessellata* should be considered separate species.

Alternatively, behavioral studies and allozyme analysis (Hauffe et al. 1993) indicated that introgression between the two subspecies does, in fact, occur and that there is limited genetic divergence among populations across the species range. Hauffe et al. (1993) found
Figures 2-3. Dorsal aspects of *Onymacris unguicularis unguicularis* (2) and *O. u. schulzeae* (3).

Figures 4-5. Dorsal aspects of *Onymacris rugatipennis rugatipennis* (4) and *O. r. albotessellata* (5).
that the morphotypes share similar precopulatory and copulatory timing and behaviors as well as daily activity patterns, and they provided evidence of intermediate forms in as much as the density of elytral microgranules varies continuously in *O. rugatipennis*, gradually increasing from west to east along the Kuiseb River. Additionally, the lack of genetic divergence revealed by their allozyme data indicated continuous gene flow or recent divergence between waxy and non-waxy forms. More recently, Hauffe and Seely (1995) applied a multidisciplinary approach to help solve the taxonomic problem in *O. rugatipennis*, considering morphological, physiological, behavioral, and genetic studies of adult individuals. They determined that the two forms of *O. rugatipennis* should be considered a single species, stating that they are probably not dissimilar enough to warrant even subspecific status (Hauffe and Seely 1995).

I will employ Braby et al.’s (2012) criteria to examine the validity of the subspecies in these two species of *Onymacris*, relying heavily on the use of molecular phylogenetic analysis. If the subspecies satisfy each criterion—allopatry, the presence of at least one fixed diagnosable character state, and the correspondence of character differences with evolutionary independence—I will consider them valid taxa. Alternatively, if they fail to meet these criteria overall, I will suggest that their subspecific status be reconsidered.
Materials and Methods

Molecular Phylogenetic Analysis

I obtained genetic data for 15 specimens of *Onymacris unguicularis*: five *O. u. schulzeae*, representing two populations, and ten *O. u. unguicularis*, representing three populations. Specimens were collected by T. Lamb in Namibia and preserved in 100% ethanol prior to DNA extraction with DNeasy Blood & Tissue Kits (Qiagen). I amplified two mitochondrial genes—cytochrome oxidase I (COI) and cytochrome oxidase II (COII)—using the following PCR conditions: initial denaturation at 94°C for 1 minute, annealing at 48 °C for 45 seconds, and extension at 72 °C for 1 minute (repeated five times), followed by denaturation at 94 °C for 45 seconds, annealing at 50 °C for 45 seconds, and extension at 72°C for 1 minute (repeated 45 times). Amplification products were cleaned using exoSAP-IT (USB Corp.) and sequenced on an Applied Biosystems 3130 capillary sequencer, yielding 1547 nucleotides for COI and 680 nucleotides for COII. Sequences were edited using Sequencher 4.9 (GeneCodes, Ann Arbor, MI) and Geneious R7 7.1.4 (Biomatters, Auckland, New Zealand) and aligned using ClustalX ver. 2.0. I calculated uncorrected pairwise genetic distance values within and among populations as well as between the two subspecies and produced a phylogenetic tree using maximum likelihood (ML) analysis, executed in RAxMLHPC and involving 1,000 random sequence addition replicates (RAS). Bootstrap support values, calculated using the same search parameters with 1,000 replicates, were applied to the best tree recovered in the RAS search. Two additional species of *Onymacris*, *Onymacris laeviceps* and *O. plana*, shown to be sister taxa to *O. unguicularis* (Lamb and Bond 2013), served as outgroups.

I generated COII sequence data for 23 *O. rugatipennis* individuals (collected by J.E. Bond and T. Lamb) using the methods described above, yielding 708 nucleotides. Specimens consisted of 11 *O. r. rugatipennis*, representing three populations, and 12 *O. r. albotessellata,
representing three populations. Phylogenetic analytical procedures were as above, with the sister taxon, *O. boschimana*, serving as the outgroup.

Morphometrics

I also conducted morphometric analysis to verify Penrith’s (1984) diagnostic morphological characters of *O. u. unguicularis* and *O. u. schulzeae*, which involved shape differences of the pronotum and prosternal process (Figs. 6-9). Specifically, she noted that the pronotum is more strongly transverse in *O. u. schulzeae*, and its prosternal process is typically larger, with a blunt apex that is not clearly visible in lateral aspect (Fig. 10). In contrast, the prosternal process in *O. u. unguicularis* can be seen in lateral aspect, its apex often appearing as a tooth-like projection (Fig. 11). I examined pinned specimens of *O. unguicularis* on loan from the Ditsong National Museum of Natural History (formerly Transvaal Museum) in Pretoria, South Africa. The museum specimens included 30 *O. u. schulzeae* representing four populations and 93 *O. u. unguicularis* representing 11 populations. I also included two *O. u. unguicularis* and five *O. u. schulzeae* from T. Lamb’s collection. I photographed the ventral and dorsal aspects of each beetle using an Olympus BX41 Laboratory Microscope with the assistance of Dr. Thomas Fink.

Penrith (1984) used the ratio of pronotal length to pronotal width (PL/PW) to quantify morphological differences between subspecies (Figs. 6-7). I repeated these measurements using Image J software and also quantified differences in the prosternal process by generating length/width ratios (Figs. 8-9). Additionally, Penrith (1984) identified potential differences in elytral shape, suggesting that it was “less elongate, broader, and more abruptly tapered posteriorly” in *O. u. schulzeae*. Therefore, I also measured the elytral length and elytral width (at the midpoint of elytral length) of each specimen and calculated elytral ratios (EL/EW) to assess putative differences in dorsal shape (Figs. 12-13). Although sexual dimorphism may potentially contribute to elytral shape variation, I chose to include both males and females in
Figures 6-9. Pronotum (6-7) and prosternum (8-9) of Onymacris unguicularis unguicularis (6,8) and O. u. schulzeae, illustrating measurements used for pronotal (7) and prosternal (9) ratio calculations.

Figures 10-11. Lateral aspects of the prosternal process, depicting a blunt apex (10) in O. u. schulzeae and a tooth-like apex (11) in O. u. unguicularis.
the morphometric analysis. Sexual dimorphism is evident in *Onymacris unguicularis*: males have longer legs and, uniquely within the genus, possess setose brushes on the anterior femora (Penrith 1975). However, only one species of *Onymacris, O. plana*, exhibits significant sexual dimorphism in elytral shape; in all others there is substantial overlap, with female elytra being only slightly broader than male elytra (Lamb et al. 2013).
Results and Discussion

Genetic divergence was negligible within and among populations for each subspecies of *O. unguicularis*; however, genetic divergence was substantial between subspecies (3.2% for COII and 3.0% for COI). Observed divergence levels were complemented by my results from the likelihood analysis: no haplotypes were shared between subspecies, which were identified as two well-supported lineages in the ML tree (Fig. 14). Additionally, morphological analyses revealed significant subspecific differences in the elytral, prosternal, and pronotal shapes (all p < 0.0001), with minimal overlap in the prosternal and pronotal data but broad overlap in the elytral ratios (Table 1). I also noted the position of the greatest elytral width in each specimen relative to the midpoint, finding that elytral width is widest anterior to the midpoint in both subspecies but closer to the pronotal suture in *Onymacris unguicularis schulzeae*.

Table 1. Pronotal, prosternal, and elytral ratio means and ranges.

<table>
<thead>
<tr>
<th>Character</th>
<th>Subspecies</th>
<th>N</th>
<th>Mean</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>pronotum</td>
<td>O. u. unguicularis</td>
<td>95</td>
<td>1.66 ± 0.08</td>
<td>1.47–1.83</td>
</tr>
<tr>
<td></td>
<td>O. u. schulzeae</td>
<td>35</td>
<td>1.97 ± 0.13</td>
<td>1.73–2.35</td>
</tr>
<tr>
<td>prosternum</td>
<td>O. u. unguicularis</td>
<td>94</td>
<td>2.22 ± 0.17</td>
<td>1.86–2.71</td>
</tr>
<tr>
<td></td>
<td>O. u. schulzeae</td>
<td>33</td>
<td>2.01 ± 0.14</td>
<td>1.65–2.34</td>
</tr>
<tr>
<td>elytra</td>
<td>O. u. unguicularis</td>
<td>95</td>
<td>1.44 ± 0.08</td>
<td>1.25–1.61</td>
</tr>
<tr>
<td></td>
<td>O. u. schulzeae</td>
<td>34</td>
<td>1.35 ± 0.07</td>
<td>1.24–1.47</td>
</tr>
</tbody>
</table>

Alternatively, genetic distance values between subspecies of *O. rugatipennis* were negligible (0.397% for COII) throughout its geographic range. Maximum likelihood analysis
revealed that the two groups are not reciprocally monophyletic; rather, haplotypes placement in the ML tree showed no structure or pattern with respect to geography or subspecific assignment (Fig. 15).

Figure 14. Maximum likelihood tree for populations of *O. unguicularis*.
Figure 15. Maximum likelihood tree for populations of *O. rugatipennis*. Purple squares represent haplotypes of *O. r. rugatipennis* and pink squares represent haplotypes of *O. r. albotessellata*. Numbers represent collecting localities listed in Fig. 1B.
To reiterate, I employed Braby et al.’s (2012) criteria for subspecific delimitation to evaluate the polytypic status of *Onymacris unguicularis* and *O. rugatipennis* (Table 3), which recommended subspecies be defined as “partially isolated lineages of a species that are allopatric, phenotypically distinct, have at least one fixed diagnosable character state, and that these character differences are correlated with evolutionary independence according to population genetic structure.” For *Onymacris unguicularis*, I found support for each criterion: (1) The two subspecies are allopatric, confined to dune fields that are separated by ~300 km of unsuitable habitat; (2) *O. u. unguicularis* and *O. u. schulzeae* are phenotypically distinct; they are distinguished by quantitative differences in pronotal, prosternal, and elytral shape—as demonstrated by significantly different ratios. Subspecies also exhibit distinguishing patterns in larval variation, with the ninth abdominal tergum shorter and broader in northern populations (Schulze 1964); (3) Phenotypic differences correspond with genetic variation. The phylogeographic profile is perfectly congruent with the north-south partition in phenotypic variation, and reciprocal monophyly observed between northern and southern haplotypes in the phylogenetic tree—with associated levels of genetic divergence—indicate evolutionary independence. Therefore, I support Penrith’s (1984) taxonomic interpretation that *Onymacris u. unguicularis* and *O. u. schulzeae* are valid subspecific taxa.

Alternatively, I found support for only one of Braby et al.’s (2012) criteria for *Onymacris rugatipennis*: (1) The two subspecies are not allopatric but parapatric, occupying contiguous, slightly overlapping ranges; (2) *O. r. rugatipennis* and *O. r. albotessellata* are phenotypically distinct; they are distinguished by differences in larval morphology and the presence of the waxy bloom in *O. r. albotessellata*. However, the adult forms are otherwise indistinguishable. (3) Molecular phylogenetic analysis revealed limited genetic divergence and no indication of evolutionary independence. The ML analysis did not resolve reciprocally monophyletic groups: rather the subspecies share two haplotypes, including a common haplotype found in
five of the six populations, which are distributed across the ML tree with no phylogeographic structure or subspecific patterning. On the basis of limited genetic divergence, parapatry, and a lack of evolutionary independence, I do not support *O. r. rugatipennis* and *O. r. albotessellata* as phylogenetically distinct lineages and therefore concur with Hauffe and Seely (1995) that a polytypic *O. rugatipennis* should be abandoned.

Table 3. Evaluation of Braby et al.’s criteria for *Onymacris unguicularis* and *Onymacris rugatipennis*

<table>
<thead>
<tr>
<th>Criterion</th>
<th>O. unguicularis</th>
<th>O. rugatipennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Met</td>
<td>Not met</td>
</tr>
<tr>
<td>2</td>
<td>Met</td>
<td>Met</td>
</tr>
<tr>
<td>3</td>
<td>Met</td>
<td>Not met</td>
</tr>
</tbody>
</table>

Future Studies

Although *Onymacris u. unguicularis* and *O. u. schulzeae* display reciprocal monophyly, evolutionary independence, and phenotypic distinctiveness, I would be reluctant to argue their elevation to full species because I analyzed only mtDNA sequences. Monophyly of alleles arises more quickly in mtDNA than nuclear loci because the genetically effective population size of organellar DNAs is approximately four times smaller than that of nuclear loci and thus genetic drift is faster (Palumbi et al. 2001). In mtDNA, this reduced genetically effective population size is due to uniparental inheritance and haploidy. Elevation of *O. u. unguicularis* and *O. u. schulzeae* to separate species should require demonstration of genetic divergence using nuclear genes; therefore, the next step of this study would be to analyze a series of appropriate nuclear loci.

Broader Implications

This study has broader implications due to its relevance to biodiversity and conservation. By some estimates (Maderspacher 2008), one out of every four animal species is a beetle! As
a result of their diversity and species-richness, many beetle taxa have not been well studied from an evolutionary perspective. Subspecific delimitation and confirmation thus have important applications in conservation and may be considered with respect to protective legislation in certain countries. Subspecies are often the focus of conservation efforts supported by substantial funding because they represent distinct evolutionary lineages with important genetic diversity. It is necessary to be able to recognize and confirm subspecies in order to ensure appropriate protective measures are taken to conserve them and their environments, thereby maintaining biodiversity.
Literature Cited

Schulze, L. 1964 The Tenebrionidae of southern Africa. XXXIX. A revised key to the larvae of *Onymacris* Allard (Coleoptera: Adesmiini). *Scientific Papers of the Namib Desert Research Station No 23*: 1-7.

Appendices

Appendix 1. Collecting localities and vouchers for *Onymacris* specimens.

<table>
<thead>
<tr>
<th>Subspecies</th>
<th>Dataset</th>
<th>N</th>
<th>Locality (locality number)</th>
<th>Vouchers</th>
</tr>
</thead>
<tbody>
<tr>
<td>unguicularis</td>
<td>morphometrics</td>
<td>10</td>
<td>Anigab</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>Blauberg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>Bogenfels</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Chaneis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>Gobabeb</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Grillental</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>Hottentot Bay</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Luderitz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>Spencer Bay</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>Swakopmund</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>Walvis Bay</td>
<td></td>
</tr>
<tr>
<td>genetics</td>
<td></td>
<td>4</td>
<td>Dune 7, near Walvis Bay (3)</td>
<td>TL022-025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Gobabeb (2)</td>
<td>TL026-030</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>20 km E Luderitz (1) near Foz du Cunene, 8 km from coast,</td>
<td>TL031-033</td>
</tr>
<tr>
<td>schulzeae</td>
<td>morphometrics</td>
<td>3</td>
<td>Angola</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Lacrau, 13 km N Fos du Cunene, Angola</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>Kaokoveld, between Koichab-Unjab rivers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>Unjab River, 8 km from mouth</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>near Torra Bay</td>
<td></td>
</tr>
<tr>
<td>genetics</td>
<td></td>
<td>3</td>
<td>near Torra Bay (1)</td>
<td>TL034-36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>near Torra Bay (2)</td>
<td>TL037</td>
</tr>
<tr>
<td>rugatipennis</td>
<td>genetics</td>
<td>7</td>
<td>Walvis Bay (1)</td>
<td>JEB 67, 69-75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Rooibank (2)</td>
<td>G1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Gobabeb (3)</td>
<td>G2-G5</td>
</tr>
<tr>
<td>albotessellata</td>
<td>genetics</td>
<td>6</td>
<td>Rostock Farm (4)</td>
<td>N19-24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Rostock Farm (5)</td>
<td>91-92, 94, 95, 97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>dunes 69km S Hy 407 on Rd 707 (6)</td>
<td>707</td>
</tr>
</tbody>
</table>
Appendix 2. Aligned COI sequences for *Onymacris unguicularis*. Localities for haplotype numbers are listed in Appendix 1.

```
TL026   AATAAATGATATTCTTCCACTAACAAAGACATTTGGAACACTTTACTTTATTTTTGGT
TL027   AATAAATGATATTCTTCCACTAACAAAGACATTTGGAACACTTTACTTTATTTTTGGT
TL022   AATAAATGATATTCTTCCACTAACAAAGACATTTGGAACACTTTACTTTATTTTTGGT
TL024   AATAAATGATATTCTTCCACTAACAAAGACATTTGGAACACTTTACTTTATTTTTGGT
TL025   AATAAATGATATTCTTCCACTAACAAAGACATTTGGAACACTTTACTTTATTTTTGGT
TL031   AATAAATGATATTCTTCCACTAACAAAGACATTTGGAACACTTTACTTTATTTTTGGT
TL032   AATAAATGATATTCTTCCACTAACAAAGACATTTGGAACACTTTACTTTATTTTTGGT
TL033   AATAAATGATATTCTTCCACTAACAAAGACATTTGGAACACTTTACTTTATTTTTGGT
TL037   AATAAATGATATTCTTCCACTAACAAAGACATTTGGAACACTTTACTTTATTTTTGGT
TL036   AATAAATGATATTCTTCCACTAACAAAGACATTTGGAACACTTTACTTTATTTTTGGT

TL026   GCATGAGCAGGAATAGTGGGAACATCTCTAAGTTTATTAATTCGAACAGAATTAGGAAAC
TL027   GCATGAGCAGGAATAGTGGGAACATCTCTAAGTTTATTAATTCGAACAGAATTGGGAAAT
TL022   GCATGAGCAGGAATAGTGGGAACATCTCTAAGTTTATTAATTCGAACAGAATTGGGAAAT
TL023   GCATGAGCAGGAATAGTGGGAACATCTCTAAGTTTATTAATTCGAACAGAATTGGGAAAT
TL024   GCATGAGCAGGAATAGTGGGAACATCTCTAAGTTTATTAATTCGAACAGAATTGGGAAAT
TL025   GCATGAGCAGGAATAGTGGGAACATCTCTAAGTTTATTAATTCGAACAGAATTGGGAAAT
TL031   GCATGAGCAGGAATAGTGGGAACATCTCTAAGTTTATTAATTCGAACAGAATTGGGAAAT
TL032   GCATGAGCAGGAATAGTGGGAACATCTCTAAGTTTATTAATTCGAACAGAATTGGGAAAT
TL033   GCATGAGCAGGAATAGTGGGAACATCTCTAAGTTTATTAATTCGAACAGAATTGGGAAAT
TL037   GCATGAGCAGGAATAGTGGGAACATCTCTAAGTTTATTAATTCGAACAGAATTGGGAAAT
TL036   GCATGAGCAGGAATAGTGGGAACATCTCTAAGTTTATTAATTCGAACAGAATTGGGAAAT

TL026   CCCGGATCCCTAATTGGAGACGATCAAATCTATAACGTTATTGTAACCGCCCACGCATTT
TL027   CCCGGATCCCTAATTGGAGACGATCAAATCTATAACGTTATTGTAACCGCCCACGCATTT
TL022   CCCGGATCCCTAATTGGAGACGATCAAATCTATAACGTTATTGTAACCGCCCACGCATTT
TL023   CCCGGATCCCTAATTGGAGACGATCAAATCTATAACGTTATTGTAACCGCCCACGCATTT
TL024   CCCGGATCCCTAATTGGAGACGATCAAATCTATAACGTTATTGTAACCGCCCACGCATTT
TL025   CCCGGATCCCTAATTGGAGACGATCAAATCTATAACGTTATTGTAACCGCCCACGCATTT
TL031   CCCGGATCCCTAATTGGAGACGATCAAATCTATAACGTTATTGTAACCGCCCACGCATTT
TL032   CCCGGATCCCTAATTGGAGACGATCAAATCTATAACGTTATTGTAACCGCCCACGCATTT
TL033   CCCGGATCCCTAATTGGAGACGATCAAATCTATAACGTTATTGTAACCGCCCACGCATTT
TL037   CCCGGATCCCTAATTGGAGATGATCAAATCTATAACGTTATTGTAACCGCCCACGCATTT
TL036   CCCGGATCCCTAATTGGAGATGATCAAATCTATAACGTTATTGTAACCGCCCACGCATTT

TL026   ATTATAATTTTCTTTATAGTTATACCTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL027   ATTATAATTTTCTTTATAGTTATACCTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL022   ATTATAATTTTCTTTATAGTTATACCTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL023   ATTATAATTTTCTTTATAGTTATACCTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL024   ATTATAATTTTCTTTATAGTTATACCTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL025   ATTATAATTTTCTTTATAGTTATACCTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL031   ATTATAATTTTCTTTATAGTTATACCTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL032   ATTATAATTTTCTTTATAGTTATACCTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL033   ATTATAATTTTCTTTATAGTTATACCTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL037   ATTATAATTTTCTTTATAGTTATACCTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL036   ATTATAATTTTCTTTATAGTTATACCTATTATAATCGGGGGATTTGGAAATTGATTAGTC

TL026   CCCCTAATATTAGGTGCACCCGATATAGCATTTCCACGTATAAATAATATAAGATTCTGG
TL027   CCCCTAATATTAGGTGCACCCGATATAGCATTTCCACGTATAAATAATATAAGATTCTGG
TL022   CCCCTAATATTAGGTGCACCCGATATAGCATTTCCACGTATAAATAATATAAGATTCTGG
TL023   CCCCTAATATTAGGTGCACCCGATATAGCATTTCCACGTATAAATAATATAAGATTCTGG
TL024   CCCCTAATATTAGGTGCACCCGATATAGCATTTCCACGTATAAATAATATAAGATTCTGG
TL025   CCCCTAATATTAGGTGCACCCGATATAGCATTTCCACGTATAAATAATATAAGATTCTGG
TL031   CCCCTAATATTAGGTGCACCCGATATAGCATTTCCACGTATAAATAATATAAGATTCTGG
TL032   CCCCTAATATTAGGTGCACCCGATATAGCATTTCCACGTATAAATAATATAAGATTCTGG
TL033   CCCCTAATATTAGGTGCACCCGATATAGCATTTCCACGTATAAATAATATAAGATTCTGG
TL037   CCCCTAATATTAGGTGCACCCGATATAGCATTTCCACGTATAAATAATATAAGATTCTGG
TL036   CCCCTAATATTAGGTGCACCCGATATAGCATTTCCACGTATAAATAATATAAGATTCTGG

TL026   ATTATAATTTTCTTTATAGTTATACCTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL027   ATTATAATTTTCTTTATAGTTATACCTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL022   ATTATAATTTTCTTTATAGTTATACCTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL023   ATTATAATTTTCTTTATAGTTATACCTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL024   ATTATAATTTTCTTTATAGTTATACCTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL025   ATTATAATTTTCTTTATAGTTATACCTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL031   ATTATAATTTTCTTTATAGTTATACCTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL032   ATTATAATTTTCTTTATAGTTATACCTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL033   ATTATAATTTTCTTTATAGTTATACCTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL037   ATTATAATTTTCTTTATAGTTATACCTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL036   ATTATAATTTTCTTTATAGTTATACCTATTATAATCGGGGGATTTGGAAATTGATTAGTC

TL026   CTCTTACCCCCATCATTAACACTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL027   CTCTTACCCCCATCATTAACACTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL022   CTCTTACCCCCATCATTAACACTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL023   CTCTTACCCCCATCATTAACACTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL024   CTCTTACCCCCATCATTAACACTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL025   CTCTTACCCCCATCATTAACACTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL031   CTCTTACCCCCATCATTAACACTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL032   CTCTTACCCCCATCATTAACACTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL033   CTCTTACCCCCATCATTAACACTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL037   CTCTTACCCCCATCATTAACACTATTATAATCGGGGGATTTGGAAATTGATTAGTC
TL036   CTCTTACCCCCATCATTAACACTATTATAATCGGGGGATTTGGAAATTGATTAGTC
```

********** ** *********************************** ******

********** ******** ***********************

********** *** *********************************** *********
TL023 CTCTTACCCCTACTATTACATTACTATTATATTAAGAGAAGATCTGATGAGAGGAGGCGGA
TL024 CTCTTACCCCTACTATTACATTACTATTATATTAAGAGAAGATCTGATGAGAGGAGGCGGA
TL025 CTCTTACCCCTACTATTACATTACTATTATATTAAGAGAAGATCTGATGAGAGGAGGCGGA
TL031 CTCTTACCCCTACTATTACATTACTATTATATTAAGAGAAGATCTGATGAGAGGAGGCGGA
TL032 CTCTTACCCCTACTATTACATTACTATTATATTAAGAGAAGATCTGATGAGAGGAGGCGGA
TL033 CTCTTACCCCTACTATTACATTACTATTATATTAAGAGAAGATCTGATGAGAGGAGGCGGA
TL034 CTCTTACCCCTACTATTACATTACTATTATATTAAGAGAAGATCTGATGAGAGGAGGCGGA
TL035 CTCTTACCCCTACTATTACATTACTATTATATTAAGAGAAGATCTGATGAGAGGAGGCGGA
TL036 CTCTTACCCCTACTATTACATTACTATTATATTAAGAGAAGATCTGATGAGAGGAGGCGGA

******** ** ************************** ********** ***********

TL034 TTCATTACTACAGTTATTAATATACGACCCCAGGGTATAACATTTGACCGAATACCTTTA
TL036 TTCATTACTACAGTTATTAATATACGACCCCAGGGTATAACATTTGACCGAATACCTTTA
TL037 TTCATTACTACAGTTATTAATATACGACCCCAGGGTATAACATTTGACCGAATACCTTTA
TL033 TTCATTACTACAGTTATTAATATACGACCCCAGGGTATAACATTTGACCGAATACCTTTA
TL032 TTCATTACTACAGTTATTAATATACGACCCCAGGGTATAACATTTGACCGAATACCTTTA
TL031 TTCATTACTACAGTTATTAATATACGACCCCAGGGTATAACATTTGACCGAATACCTTTA
TL025 TTCATTACTACAGTTATTAATATACGACCCCAGGGTATAACATTTGACCGAATACCTTTA
TL024 TTCATTACTACAGTTATTAATATACGACCCCAGGGTATAACATTTGACCGAATACCTTTA
TL023 TTCATTACTACAGTTATTAATATACGACCCCAGGGTATAACATTTGACCGAATACCTTTA
TL022 TTCATTACTACAGTTATTAATATACGACCCCAGGGTATAACATTTGACCGAATACCTTTA
TL027 TTCATTACTACAGTTATTAATATACGACCCCAGGGTATAACATTTGACCGAATACCTTTA
TL026 TTCATTACTACAGTTATTAATATACGACCCCAGGGTATAACATTTGACCGAATACCTTTA

************************ *** ** ***** *********** **********

TL034 GATTTAGCTATTTTTAGTCTTCATTTAGCAGGAATCTCATCAATTCTTGGGGCAGTAAAC
TL036 GATTTAGCTATTTTTAGTCTTCATTTAGCAGGAATCTCATCAATTCTTGGGGCAGTAAAC
TL037 GATTTAGCTATTTTTAGTCTTCATTTAGCAGGAATCTCATCAATTCTTGGGGCAGTAAAC
TL033 GATTTAGCTATTTTTAGTCTTCATTTAGCAGGAATCTCATCAATTCTTGGGGCAGTAAAC
TL032 GATTTAGCTATTTTTAGTCTTCATTTAGCAGGAATCTCATCAATTCTTGGGGCAGTAAAC
TL031 GATTTAGCTATTTTTAGTCTTCATTTAGCAGGAATCTCATCAATTCTTGGGGCAGTAAAC
TL025 GATTTAGCTATTTTTAGTCTTCATTTAGCAGGAATCTCATCAATTCTTGGGGCAGTAAAC
TL024 GATTTAGCTATTTTTAGTCTTCATTTAGCAGGAATCTCATCAATTCTTGGGGCAGTAAAC
TL023 GATTTAGCTATTTTTAGTCTTCATTTAGCAGGAATCTCATCAATTCTTGGGGCAGTAAAC
TL022 GATTTAGCTATTTTTAGTCTTCATTTAGCAGGAATCTCATCAATTCTTGGGGCAGTAAAC
TL027 GATTTAGCTATTTTTAGTCTTCATTTAGCAGGAATCTCATCAATTCTTGGGGCAGTAAAC
TL026 GATTTAGCTATTTTTAGTCTTCATTTAGCAGGAATCTCATCAATTCTTGGGGCAGTAAAC

************************ **************** ***** ************

TL034 ACTGGATGAACAGTCTACCCCCCCCTATCATCAAATATTGCCCATGGGGGGTCATCCGTT
TL036 ACTGGATGAACAGTCTACCCCCCCCTATCATCAAATATTGCCCATGGGGGGTCATCCGTT
TL037 ACTGGATGAACAGTCTACCCCCCCCTATCATCAAATATTGCCCATGGGGGGTCATCCGTT
TL033 ACTGGATGAACAGTCTACCCCCCCCTATCATCAAATATTGCCCATGGGGGGTCATCCGTT
TL032 ACTGGATGAACAGTCTACCCCCCCCTATCATCAAATATTGCCCATGGGGGGTCATCCGTT
TL031 ACTGGATGAACAGTCTACCCCCCCCTATCATCAAATATTGCCCATGGGGGGTCATCCGTT
TL025 ACTGGATGAACAGTCTACCCCCCCCTATCATCAAATATTGCCCATGGGGGGTCATCCGTT
TL024 ACTGGATGAACAGTCTACCCCCCCCTATCATCAAATATTGCCCATGGGGGGTCATCCGTT
TL023 ACTGGATGAACAGTCTACCCCCCCCTATCATCAAATATTGCCCATGGGGGGTCATCCGTT
TL022 ACTGGATGAACAGTCTACCCCCCCCTATCATCAAATATTGCCCATGGGGGGTCATCCGTT
TL027 ACTGGATGAACAGTCTACCCCCCCCTATCATCAAATATTGCCCATGGGGGGTCATCCGTT
TL026 ACTGGATGAACAGTCTACCCCCCCCTATCATCAAATATTGCCCATGGGGGGTCATCCGTT

************************ **************** **** ************

TL034 CTCTTACCTCCCTCATTAACATTATTATTAATAAGAAGAATCGTAGAAAGAGGGGCCGGA
TL036 CTCTTACCTCCCTCATTAACATTATTATTAATAAGAAGAATCGTAGAAAGAGGGGCCGGA
TL037 CTCTTACCTCCCTCATTAACATTATTATTAATAAGAAGAATCGTAGAAAGAGGGGCCGGA
TL033 CTCTTACCTCCCTCATTAACATTATTATTAATAAGAAGAATCGTAGAAAGAGGGGCCGGA
TL032 CTCTTACCTCCCTCATTAACATTATTATTAATAAGAAGAATCGTAGAAAGAGGGGCCGGA
TL031 CTCTTACCTCCCTCATTAACATTATTATTAATAAGAAGAATCGTAGAAAGAGGGGCCGGA
TL025 CTCTTACCTCCCTCATTAACATTATTATTAATAAGAAGAATCGTAGAAAGAGGGGCCGGA
TL024 CTCTTACCTCCCTCATTAACATTATTATTAATAAGAAGAATCGTAGAAAGAGGGGCCGGA
TL023 CTCTTACCTCCCTCATTAACATTATTATTAATAAGAAGAATCGTAGAAAGAGGGGCCGGA
TL022 CTCTTACCTCCCTCATTAACATTATTATTAATAAGAAGAATCGTAGAAAGAGGGGCCGGA
TL027 CTCTTACCTCCCTCATTAACATTATTATTAATAAGAAGAATCGTAGAAAGAGGGGCCGGA
TL026 CTCTTACCTCCCTCATTAACATTATTATTAATAAGAAGAATCGTAGAAAGAGGGGCCGGA

******** ** ********* ********************************** ***

TL026 TTCATTACTACAGTTATTAATATACGACCCCAGGGTATAACATTTGACCGAATACCTTTA
TL027 TTCATTACTACAGTTATTAATATACGACCCCAGGGTATAACATTTGACCGAATACCTTTA
TL028 TTCATTACTACAGTTATTAATATACGACCCCAGGGTATAACATTTGACCGAATACCTTTA
TL029 TTCATTACTACAGTTATTAATATACGACCCCAGGGTATAACATTTGACCGAATACCTTTA
TL030 TTCATTACTACAGTTATTAATATACGACCCCAGGGTATAACATTTGACCGAATACCTTTA
TL031 TTCATTACTACAGTTATTAATATACGACCCCAGGGTATAACATTTGACCGAATACCTTTA
TL032 TTCATTACTACAGTTATTAATATACGACCCCAGGGTATAACATTTGACCGAATACCTTTA
TL033 TTCATTACTACAGTTATTAATATACGACCCCAGGGTATAACATTTGACCGAATACCTTTA

************* ********* *** ****************************

TL026 TTGGTGGGAGCTGTGCTGTTATTACAGACAGATCTTCTACCTCGCTGTCTCCCGATTTAGCC
TL027 TTGGTGGGAGCTGTGCTGTTATTACAGACAGATCTTCTACCTCGCTGTCTCCCGATTTAGCC
TL028 TTGGTGGGAGCTGTGCTGTTATTACAGACAGATCTTCTACCTCGCTGTCTCCCGATTTAGCC
TL029 TTGGTGGGAGCTGTGCTGTTATTACAGACAGATCTTCTACCTCGCTGTCTCCCGATTTAGCC
TL030 TTGGTGGGAGCTGTGCTGTTATTACAGACAGATCTTCTACCTCGCTGTCTCCCGATTTAGCC
TL031 TTGGTGGGAGCTGTGCTGTTATTACAGACAGATCTTCTACCTCGCTGTCTCCCGATTTAGCC
TL032 TTGGTGGGAGCTGTGCTGTTATTACAGACAGATCTTCTACCTCGCTGTCTCCCGATTTAGCC
TL033 TTGGTGGGAGCTGTGCTGTTATTACAGACAGATCTTCTACCTCGCTGTCTCCCGATTTAGCC

************* ********* *** ****************************
Appendix 3. Aligned COII sequences for Onymacris unguicularis. Localities for haplotype numbers are listed in Appendix 1.
TL031 TCATTCTTCTCACGGACATACCCCTTAATTTTAGTAATTATTACTATTTTAGTTGGGCAA
TL037 TCATTCTTCTCACGGACATACCCCTTAATTTTAGTAATTATTACTATTTTAGTTGGGCAA
TL034 TCATTCTTCTCACGGACATACCCCTTAATTTTAGTAATTATTACTATTTTAGTTGGGCAA

*********** **

TL026 ATACTAACAGGGCTATTTTTTAATAAATACACCCACCGATACCTTTTAGAGGGACAACTA
TL027 ATACTAACAGGGCTATTTTTTAATAAATACACCCACCGATACCTTTTAGAGGGACAACTA
TL022 ATACTAACAGGGCTATTTTTTAATAAATACACCCACCGATACCTTTTAGAGGGACAACTA
TL025 ATACTAACAGGGCTATTTTTTAATAAATACACCCACCGATACCTTTTAGAGGGACAACTA
TL031 ATACTAACAGGGCTATTTTTTAATAAATACACCCACCGATACCTTTTAGAGGGACAACTA
TL037 ATACTAACAGGACTATTCTTCAACAAATACACCCACCGATACCTTTTAGAGGGACAACTA
TL034 ATACTAACAGGACTATTCTTCAACAAATACACCCACCGATACCTTTTAGAGGGACAACTA

*********** ***** ** ** **********************************

TL026 ATTGAAATCATCTGAACAATCCTTCCCGCAATCACCTTAATCTTCATTGCACTACCATCC
TL027 ATTGAAATCATCTGAACAATCCTTCCCGCAATCACCTTAATCTTCATTGCACTACCATCC
TL022 ATTGAAATCATCTGAACAATCCTTCCCGCAATCACCTTAATCTTCATTGCACTACCATCC
TL025 ATTGAAATCATCTGAACAATCCTTCCCGCAATCACCTTAATCTTCATTGCACTACCATCC
TL031 ATTGAAATCATCTGAACAATCCTTCCCGCAATCACCTTAATCTTCATTGCACTACCATCC
TL037 ATTGAAATCATCTGAACAATCCTTCCCGCAATCACCTTAATCTTCATTGCACTACCATCC
TL034 ATTGAAATCATCTGAACAATCCTTCCCGCAATCACCTTAATCTTCATTGCACTACCATCC

*********************************** ***************** ****

TL026 CTTCAACTAATTTATATCCTAGACGAAACTAATAACCCATTAATTTCAATTAAAGCTATT
TL027 CTTCAACTAATTTATATCCTAGACGAAACTAATAACCCATTAATTTCAATTAAAGCTATT
TL022 CTTCAACTAATTTATATCCTAGACGAAACTAATAACCCATTAATTTCAATTAAAGCTATT
TL025 CTTCAACTAATTTATATCCTAGACGAAACTAATAACCCATTAATTTCAATTAAAGCTATT
TL031 CTTCAACTAATTTATATCCTAGACGAAACTAATAACCCATTAATTTCAATTAAAGCTATT
TL037 CTTCAACTAATTTATATCCTAGACGAAACTAATAACCCATTAATTTCAATTAAAGCTATT
TL034 CTTCAACTAATTTATATCCTAGACGAAACTAATAACCCATTAATTTCAATTAAAGCTATT

**

TL026 GGACATCAATGATACTGGTCATATGAATATTCAGATTTCAAAAACATTGAATTCGATTCT
TL027 GGACATCAATGATACTGGTCATATGAATATTCAGATTTCAAAAACATTGAATTCGATTCT
TL022 GGACATCAATGATACTGGTCATATGAATATTCAGATTTCAAAAACATTGAATTCGATTCT
TL025 GGACATCAATGATACTGGTCATATGAATATTCAGATTTCAAAAACATTGAATTCGATTCT
TL031 GGACATCAATGATACTGGTCATATGAATATTCAGATTTCAAAAACATTGAATTCGATTCT
TL037 GGACATCAATGATACTGGTCATATGAATATTCAGATTTCAAAAACATTGAATTCGATTCT
TL034 GGACATCAATGATACTGGTCATATGAATATTCAGATTTCAAAAACATTGAATTCGATTCT

***** ** ***

TL026 TATATGATTCCTCAAACAGAAATAAATCAATTCAACTTCCGGCTATTAGACGTTGACAAT
TL027 TATATGATTCCTCAAACAGAAATAAATCAATTCAACTTCCGGCTATTAGACGTTGACAAT
TL022 TATATGATTCCTCAAACAGAAATAAATCAATTCAACTTCCGGCTATTAGACGTTGACAAT
TL025 TATATGATTCCTCAAACAGAAATAAATCAATTCAACTTCCGGCTATTAGACGTTGACAAT
TL031 TATATGATTCCTCAAACAGAAATAAATCAATTCAACTTCCGGCTATTAGACGTTGACAAT
TL037 TATATGATTCCTCAAACAGAAATAAATCAATTCAACTTCCGGCTATTAGACGTTGACAAT
TL034 TATATGATTCCTCAAACAGAAATAAATCAATTCAACTTCCGGCTATTAGACGTTGACAAT

** ************* ***

TL026 CGAATAGTAGTCCCCTATCTTTCACAAATTCGCATACTTATCTCAGCAGCAGACGTTATT
TL027 CGAATAGTAGTCCCCTATCTTTCACAAATTCGCATACTTATCTCAGCAGCAGACGTTATT
TL022 CGAATAGTAGTCCCCTATCTTTCACAAATTCGCATACTTATCTCAGCAGCAGACGTTATT
TL025 CGAATAGTAGTCCCCTATCTTTCACAAATTCGCATACTTATCTCAGCAGCAGACGTTATT
TL031 CGAATAGTAGTCCCCTATCTTTCACAAATTCGCATACTTATCTCAGCAGCAGACGTTATT
TL037 CGAATAGTAGTCCCCTATCTTTCACAAATTCGCATACTTATCTCAGCAGCAGACGTTATT
TL034 CGAATAGTAGTCCCCTATCTTTCACAAATTCGCATACTTATCTCAGCAGCAGACGTTATT

**

TL026 CACTCTTGAACTGTTCCATCTCTAGGAGTTAAAGTAGATGCAACACCAGGACGATTAAAT
TL027 CACTCTTGAACTGTTCCATCTCTAGGAGTTAAAGTAGATGCAACACCAGGACGATTAAAT
TL022 CACTCTTGAACTGTTCCATCTCTAGGAGTTAAAGTAGATGCAACACCAGGACGATTAAAT
TL025 CACTCTTGAACTGTTCCATCTCTAGGAGTTAAAGTAGATGCAACACCAGGACGATTAAAT
TL031 CACTCTTGAACTGTTCCATCTCTAGGAGTTAAAGTAGATGCAACACCAGGACGATTAAAT
TL037 CACTCTTGAACTGTTCCATCTCTAGGAGTTAAAGTAGATGCAACACCAGGACGATTAAAT
TL034 CACTCTTGAACTGTTCCATCTCTAGGAGTTAAAGTAGATGCAACACCAGGACGATTAAAT

************** *********************** ******** ************

TL026 CAAGTTAGATTCATTGCAAACCGACCAGGATTAATATATGGACAATGTTCTGAAATTTGT
TL027 CAAGTTAGATTCATTGCAAACCGACCAGGATTAATATATGGACAATGTTCTGAAATTTGT
TL022 CAAGTTAGATTCATTGCAAACCGACCAGGATTAATATATGGACAATGTTCTGAAATTTGT
TL025 CAAGTTAGATTCATTGCAAACCGACCAGGATTAATATATGGACAATGTTCTGAAATTTGT
TL031 CAAGTTAGATTCATTGCAAACCGACCAGGATTAATATATGGACAATGTTCTGAAATTTGT
TL037 CAAGTTAGATTCATTGCAAACCGACCAGGATTAATATATGGACAATGTTCTGAAATTTGT
TL034 CAAGTTAGATTCATTGCAAACCGACCAGGATTAATATATGGACAATGTTCTGAAATTTGT

**

TL026 CACTCTTGAACTGTTCCATCTCTAGGAGTTAAAGTAGATGCAACACCAGGACGATTAAAT
TL027 CACTCTTGAACTGTTCCATCTCTAGGAGTTAAAGTAGATGCAACACCAGGACGATTAAAT
TL022 CACTCTTGAACTGTTCCATCTCTAGGAGTTAAAGTAGATGCAACACCAGGACGATTAAAT
TL025 CACTCTTGAACTGTTCCATCTCTAGGAGTTAAAGTAGATGCAACACCAGGACGATTAAAT
TL031 CACTCTTGAACTGTTCCATCTCTAGGAGTTAAAGTAGATGCAACACCAGGACGATTAAAT
TL037 CACTCTTGAACTGTTCCATCTCTAGGAGTTAAAGTAGATGCAACACCAGGACGATTAAAT
TL034 CACTCTTGAACTGTTCCATCTCTAGGAGTTAAAGTAGATGCAACACCAGGACGATTAAAT

**
Appendix 4. Aligned COII sequences for *Onymacris rugatipennis*. Localities for haplotype numbers are listed in Appendix 1.

67 AGAATAGCTACATGAAAAACCCTTCTTCTTCAAGATAGAGTATCACCATTAATAGAACAA
69 AGAATAGCTACATGAAAAACCCTTCTTCTTCAAGATAGAGTATCACCATTAATAGAACAA
71 AGAATAGCTACATGAAAAACCCTTCTTCTTCAAGATAGAGTATCACCATTAATAGAACAA
72 AGAATAGCTACATGAAAAACCCTTCTTCTTCAAGATAGAGTATCACCATTAATAGAACAA
73 AGAATAGCTACATGAAAAACCCTTCTTCTTCAAGATAGAGTATCACCATTAATAGAACAA
74 AGAATAGCTACATGAAAAACCCTTCTTCTTCAAGATAGAGTATCACCATTAATAGAACAA
75 AGAATAGCTACATGAAAAACCCTTCTTCTTCAAGATAGAGTATCACCATTAATAGAACAA
90 AGAATAGCTACATGAAAAACCCTTCTTCTTCAAGATAGAGTATCACCATTAATAGAACAA
91 AGAATAGCTACATGAAAAACCCTTCTTCTTCAAGATAGAGTATCACCATTAATAGAACAA
92 AGAATAGCTACATGAAAAACCCTTCTTCTTCAAGATAGAGTATCACCATTAATAGAACAA
94 AGAATAGCTACATGAAAAACCCTTCTTCTTCAAGATAGAGTATCACCATTAATAGAACAA
95 AGAATAGCTACATGAAAAACCCTTCTTCTTCAAGATAGAGTATCACCATTAATAGAACAA
97 AGAATAGCTACATGAAAAACCCTTCTTCTTCAAGATAGAGTATCACCATTAATAGAACAA
G1 AGAATAGCTACATGAAAAACCCTTCTTCTTCAAGATAGAGTATCACCATTAATAGAACAA
G2 AGAATAGCTACATGAAAAACCCTTCTTCTTCAAGATAGAGTATCACCATTAATAGAACAA
G3 AGAATAGCTACATGAAAAACCCTTCTTCTTCAAGATAGAGTATCACCATTAATAGAACAA
G4 AGAATAGCTACATGAAAAACCCTTCTTCTTCAAGATAGAGTATCACCATTAATAGAACAA
G5 AGAATAGCTACATGAAAAACCCTTCTTCTTCAAGATAGAGTATCACCATTAATAGAACAA
N19 AGAATAGCTACATGAAAAACCCTTCTTCTTCAAGATAGAGTATCACCATTAATAGAACAA
N20 AGAATAGCTACATGAAAAACCCTTCTTCTTCAAGATAGAGTATCACCATTAATAGAACAA
N21 AGAATAGCTACATGAAAAACCCTTCTTCTTCAAGATAGAGTATCACCATTAATAGAACAA
N22 AGAATAGCTACATGAAAAACCCTTCTTCTTCAAGATAGAGTATCACCATTAATAGAACAA
N23 AGAATAGCTACATGAAAAACCCTTCTTCTTCAAGATAGAGTATCACCATTAATAGAACAA
N24 AGAATAGCTACATGAAAAACCCTTCTTCTTCAAGATAGAGTATCACCATTAATAGAACAA
albo707 AGAATAGCTACATGAAAAACCCTTCTTCTTCAAGATAGAGTATCACCATTAATAGAACAA
