
Abstract

Non-relativistic Quantum Theory fairly accurately describes the resonance

phenomena around a black hole, even though black holes are thought of as

general relativistic (GR) objects. Graphically and numerically we are able to

demonstrate that the form of the GR e↵ective gravitational potential energy

curves for photons and gravitons circling a non-rotating black hole which are

trapped in the gravitational potential cavity surrounding a black hole, are sim-

ilar to classical (non-relativistic) harmonic oscillator curves. This has been

obtained for several of the lowest quantized values of graviton and photon an-

gular momenta measured with respect to an origin situated at the center of the

black hole (that is, for orbital angular momentum quantum numbers equal to

L= 2, 3, 4 for gravitons and L=1, 2, 3 for photons).

In consequence, within the equations of the Theory of General Relativity,

the solutions of the lowest frequencies of photons and gravitons gravitationally

trapped in orbitals while circling a black hole closely match those quantized

frequencies possible for a harmonic oscillator within the non-relativistic theory

of Quantum Mechanics.

These orbital frequencies are seen in the Quasi-Periodic Oscillations (QPOs)

present in the Near Infrared (NIR) spectrum observed at Earth emitted from

near the black hole Sgr A* constituting the center of The Milky Way galaxy.

The region of emission is closer to the black hole than the accretion disk.

Though the Theory of General Relativity is often considered incompatible

with Quantum Mechanical predictions, this is an original demonstration that

the General Relativistic theory, published by Einstein 9 years before Quan-

tum Mechanics was discovered, did contain predictions matching those of non-

relativistic Quantum Mechanics.
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considered Extremely Low Frequency (ELF). ELFs generally range from 0-300 Hz,

making our wavelengths some of the more extreme ELFs [4].

This work constitutes an original description of the normal mode eigenstates of

gravitons and photons from General Relativity (GR) as discrete energy levels in a non-

relativistic quantum mechanical harmonic oscillator. The solutions to these harmonic

oscillator states provide more insight into the orbital nature and energies of the normal

modes. This includes the idea of standing waves existing in shaped orbitals around the

outside of a black hole, near the event horizon. The graviton and photon orbitals and

angular properties can be calculated through non-relativistic quantum mechanics, as

if the individual particles were each the electron in a Hydrogen-like atom, due to the

negligible interaction between particles. Electrons are fermions, meaning that they

cannot exist in the same energy state as another electron, but this is not the case for

bosons such as photons and gravitons. Bose-Einstein statistics allow for more than

one boson to exist in one energy state. This, combined with the idea that the e↵ective

particle interactions are negligible compared to the interaction with the black hole,

allows us to look at individual boson interactions with the black hole, as we would

single electron interaction with the nucleus of an atom. Since single electrons exist in

discrete energy states, we conclude similar findings for photons and gravitons. We can

then apply our findings from looking at single photon and graviton interactions with

the black hole, the preference for photons and gravitons to exist in specific energy

states in the orbital states.

The e↵ective potential energy in which the gravitons and photons exist in these

states is a set of potential cavities around a black hole, with highest density near 1.5

times the Schwarzschild radius. These cavities exist closer than the Innermost Stable

2



Circular Orbit (ISCO) for particles of nonzero rest mass, meaning that they are closer

to the event horizon than the accretion disk. Since the gravitational potential in GR

is usually represented as a potential squared, the cavity nature of this region has yet

to be studied. By taking the negative square root of the potential squared, we obtain

potential energy curves that closely resemble a potential energy curve for particles in

classical mechanics with non-zero orbital angular momentum. This potential consists

of a potential well which allows several resonance states for the gravitons and photons.

They can exist in these states with a degree of stability. The states correspond to

quantum mechanical resonance states, typically seen as orbitals.

In the hydrogen atom, single electron states exist in orbitals as directed by their

orbital angular momentum states. This would indicate that the gravitons and pho-

tons should also exist in orbital states due to their orbital angular momentum. The

graviton and photon orbitals correspond to the same basic orbital shapes that are

present in the hydrogen atom, due to the properties of the kinetic energy operator in

spherically symmetric systems. This indicates that the most stable state for gravitons

is a D-shaped orbital and the most stable state for photons is a P-shaped orbital.

The orbital energy of the lowest orbital can be observed in the Near Infrared (NIR)

spectrum of the Supermassive Black Hole Sagittarius A* (Sgr A*) at the center of our

galaxy. By studying the continued variability signal of Sgr A*’s NIR spectrum, we

can see the electron emissions caused by non-thermal synchrotron emission based on

electron grouping due to the coherent graviton or photon interaction with electrons

close to the black hole. This gives an observational confirmation of the existence of

the normal mode resonances for gravitons and photons in the lowest possible orbital

near the event horizon.
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“quanta.” This is where the title of “Quantum Mechanics” comes from.

The idea that energy was quantized led to a massive influx of scientific research and

ideas in the early 1900s that eventually evolved into quantum theory. Unlike classical

mechanics, there is no single person that is credited with the discovery of quantum

mechanics. It was instead created by dozens of scientists, such as Schrödinger, Bohr,

Einstein, Planck and many others all working together. In 1927 the field of quantum

physics was accepted at the Fifth Solvay Conference.

Research continued into the mid and late 1900s and there continues to be a large

amount of research in this field to this day. Quantum mechanics has led to many new

fields of study, such as semiconductor physics, which influence our world today. There

are still many theoretical models involving basic quantum mechanical properties, such

as the idea of quantum computers and quantum money (the idea that money could

theoretically be coded with quantum states so that it could not be counterfeited),

that are being studied to this day.

The theory of quantum mechanics is now at the core of atomic physics, physical

chemistry, solid-state physics, nuclear physics and particle physics.

2.2 General Relativity

In 1916, Albert Einstein developed the theory of GR in which space and time were

intimately connected and that gravitational bodies warped the space-time around

them [19]. This perfectly described the precession of the orbit of Mercury, which

could not be explained classically. This precession, according to general relativity

is caused by the slowing of time as Mercury nears the sun, due to the sun’s mass,

thus causing the speed to slow near the sun and become slightly o↵ course such
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that it creates a shifted orbital path [19]. This theory was observationally proven by

observing light bend around the sun; we now call this e↵ect gravitational lensing. It

enables researchers to see stars during a solar eclipse that should have been behind the

sun. We now observe this phenomenon when looking at distant galaxies or clusters,

and we utilize it to show where dark matter is located [13].

Another proof of general relativity was found when Pound and Rebka (1960)

performed their experiment on gravitational doppler shift [30]. They used gamma

rays generated by iron-57 which were then detected by exciting other iron-57 atoms

above or below the position of the source. This meant that the light frequency

needed to remain constant in order for the photon to be absorbed. At first there

was no absorbance, indicating that the light frequency was gravitationally shifted.

In order to find the exact shift, Pound and Rebka put the source in motion in order

to obtain a special relativistic doppler shift which cancelled the gravitational shift.

This allowed the iron-57 atoms to absorb the frequency. Their results found that the

general relativistic equations to determine gravitational frequency shift were validated

by their experiment.

More recently, the Nobel Prize in 1993 was awarded to Hulse and Taylor for the

use of their discovered binary pulsar system to study the loss in angular momentum

of the system and provide indirect evidence of the existence of gravitational waves, as

predicted by general relativity [12]. Much like it is understood that light is composed

of photons, it is believed that these gravitational waves are composed of gravitons.

This thesis focuses on the idea of having trapped gravitons in a gravitational potential

cavity around a black hole. The gravitational potential cavity exists due to the

curvature of space-time caused by the black hole mass. Gravitons become temporarily
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trapped in the cavity. Photons can also become temporarily trapped in a cavity

around the black hole, in a similar manner to the gravitons. The properties of these

trapped photons and gravitons will be discussed further in section 6.2. The specific

angular momentum properties will be discussed in section 6.3.
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nonzero rest mass within the ISCO falls inward rapidly toward the black hole. This

disk is made up of elementary particles, gas, dust, rocks, stars and any other objects

that the black hole can cause to orbit it, but all objects are torn apart before reaching

the black hole [36].

3.1 Types of Black Holes [4]

There are three basic size distinctions for black holes: stellar-mass, intermediate-

mass, and supermassive.

Stellar-mass black holes are the most common, and they have a mass range of 3-15

solar masses (M�). These black holes are the result of a core collapse of a supergiant

star. They can also be formed if a neutron star, a core collapse remnant, is in close

enough binary orbit that it strips mass from a secondary object until the pressure on

neutrons exceeds the degeneracy pressure (due to the exclusion principle of fermions)

causing the neutron star to collapse into a black hole.

Intermediate-mass black holes exist in the mass range of about 100-1000 M� but

have only been shown to exist by ultraluminous X-ray sources. They seem to exist

only in the center of globular clusters and very small galaxies. This suggests the

possibility that they may be correlated with the creation of globular clusters, but no

one is certain how intermediate-mass black holes are formed.

Supermassive black holes have been found to exist in the center of galaxies, such

as our own. These have masses on the order of 105-109 M�. The black hole at the

center of our galaxy, named Sgr A*, has a mass of about 3.7⇥ 106 M�. It is believed

that these supermassive black holes aid in the creation and stability of a galaxy, but

that has not been confirmed. What is known is that Quasi-Stellar Objects (QSOs,
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also known previously as Quasi-Stellar Radio-sources, QSRs or Quasars) are black

holes which are actively accreting in the center of premature galaxies. This indicates

that supermassive black holes actively accrete mass as galaxies form. They also

accrete mass when galaxies collide and introduce an instability into the galaxies. The

brightest supermassive black hole that we know of, the one in the center of the galaxy

M87, can absorb up to 3M� worth of material per year. At about 6 ⇥ 109 M� at

a distance of 6.3 ⇥ 107 lightyears (ly), M87 contains the largest black hole in our

local universe. There are about 40 galaxies in the Local Group, the galaxy cluster

containing the Milky Way, which is right beside a cluster of about 1500 large galaxies

known as the Virgo Cluster. M87 is the central galaxy of the Virgo Cluster, making it

an important and incredibly large galaxy that is relatively close to our own, compared

to any other galaxy of its size. M87 will be discussed in section 7, when we discuss

choosing a black hole for observation.

Primordial black holes are believed to have existed during the early stages of the

universe. They ranged in size from about 10�8kg to 105 M�. As of yet, there is no

experimental evidence to support the existence of primordial black holes.

3.2 How Collapse-formed Black Holes are Created

The model generally used of black hole creation is through massive object collapse.

This is because it is the only form of black hole creation that we have been able to

observe. The collapse method of creation is how stellar mass black holes are formed.

It has been applied, in theory, to the formation of other types of black holes, such as

supermassive black holes, but there are many competing theories for how these larger

black holes are formed [4].
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The collapse-form model starts with a massive star, with mass at least 20 M�. A

massive star, like our sun, fuses hydrogen in its core [33]. As it ages it loses hydrogen

in the core and gravitationally shrinks until it has enough energy to fuse helium. The

star then swells due to the energy production from the helium fusion. This continues

for higher and higher elements until iron is reached. Iron has the highest nuclear

binding energy, which means the fusion of iron results in a net energy loss. When

the star would fuse iron in its core, it instead continues to fuse lower order elements

around the core, but nothing inside the core. As the iron builds in the core, the

energy from the fusion reaction keeping the star bloated begins to fail. This causes

the star to collapse gravitationally and, due to angular momentum conservation, to

spin rapidly [4].

What results from this collapse is entirely dependent on the mass of the collapsing

star. If the star is large enough the heat produced from the collapse will cause protons

and electrons to combine into neutrons. Since these neutrons are uncharged, they are

able to form a very dense object at the center of the collapse. The neutrons are held

apart from one another by degeneracy pressure [4]. The degeneracy pressure is due

to the fact that fermions cannot exist in the same state, so as the neutrons occupy

the space of nearby neutrons, the Pauli exclusion principle causes their momentum

to di↵er more intensely. Higher momentum states are occupied based on this forced

di↵erence, which exerts a pressure [4]. A core remnant formed by neutrons held into a

sphere by degeneracy pressure is called a neutron star, but if the star is large enough

the degeneracy pressure will be overcome and the object will collapse further into a

black hole. The black hole will form if the density of any part of the core remnant is

high enough such that that mass is contained within the Schwarzschild radius.
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The outer layers of the star are often expelled from molecules bouncing o↵ the

core remnant resulting in a supernova explosion. Sometimes, when a black hole is

formed, instead of the matter exploding outward, the matter continues to fall into

the singularity and adds to the mass of the black hole[33].
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radius.

To find the event horizon in the Schwarzschild metric (also known as the Schwarzschild

radius), we use a classical mechanical approach by finding the escape velocity. We

set it to the speed of light (c) and solve for R. This gives R = 2GM/c2. By using

the convention of removing the fundamental constants we get that R = 2M . Since

we also typically remove the mass dependence, the radius of the event horizon is at

a unitless position of 2 away from the black hole. Note that the event horizon is

not a physical point, but rather a mathematical location at which light can no longer

escape. It is used as the radius of the black hole but there is no physical surface there.

It is important to note that in the Schwarzschild metric, the only criterion to have a

black hole is that the entire mass of the object be contained within the Schwarzschild

radius. The aforementioned ISCO is the closest point at which material can maintain

a completely stable orbit and exists at the point r = 6 in the Schwarzschild metric.

This unitless conversion is commonly used in the study of black holes. This is due

to the idea that all black holes in the Schwarzschild metric are the same except for

their masses, which makes the equations valid for all black holes. This means that

length normally in meters can be expressed as a unitless quantity based on mass,

which is how we scale our equations for di↵erent black holes. This will be referred to

at greater length in section 5.
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Quantity Normal Unit Unitless Conversion Factor

Distance m GM
c2

Time s GM
c3

Angular Momentum Js G
M2c

Energy J Mc2

Table 1: The typical unit conversions for distance, time, energy, and angular momen-
tum units to unitless quantities. This is commonly used in GR to represent these
quantities as mass scaled pure numbers to apply them to all black holes.
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zero at r = 2, and not exist for r less than 2. If we look at Equation 6.2, we see that

the
q
1� 2

r factor goes to zero at r = 2 and is imaginary beyond that point.

0 2 4 6 8 10 12
r

0.05

0.10

0.15

V2

Figure 1: The potential squared is the typical representation of the potential energy in
GR. This is due to the dependence on the energy squared in GR equations. The Red
curve represents the potential squared for photons, while the Blue curve represents
the potential squared for gravitons. As was discussed in section 4, all quantities shown
are dimensionless.

The classical curve for a gravitational potential as well as the negative gravita-

tional potentials from general relativity are seen in Figure 2 to provide a graphical

representation of the e↵ective potential energy curves. Both the photon and graviton

curves are represented for their lowest lying energy states (L=1 for photons and L=2

for gravitons).

For particles attracted to a central object of mass M , classically the gravitational
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potential energy is �GM
r . Since r is already scaled by GM in our units, the classical

potential is seen as �1
r for large r. For a standing wave in spherical coordinates, the

GR e↵ective potential energy includes a component based on
p

L(L+ 1), shifting the

limit for r large to a lower value, introducing properties of the circling particle into

the GR e↵ective potential energy, as well as the mass of the central object.

The classical equations do contain a term due to the angular momentum of circling

particles, which have a 1/r2 dependence. The GR potentials always go to zero at the

event horizon (r = 2) due to time dilation as seen from afar [36].

Photons and gravitons of certain frequencies exist in standing waves as they circle

the black hole. This will be further expanded upon in section 6.2.
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Figure 2: The potential energy curve from classical V = �1
r +

L2

2r2 is depicted in Black
(L=1) and Green for L=2. These are the classical gravitational potential energy
curves for particles with non-zero rest mass and non-zero angular momentum. We
did not include the classical curves for L=0 since no particle we worked with can
exist in an L=0 state. In Red is the gravitational potential curve for a photon with
s=1 and least allowed orbital angular momentum, L=1, and in Blue is the Graviton
gravitational potential curve for s=2 with least allowed orbital angular momentum,
L=2. Both the Photon and Graviton curves are given by the equations above.

The photon e↵ective potential energy well (Equation 6.2) has lowest position at

r = 3.000. The graviton e↵ective potential energy well has a minimum at r = 3.281.

This indicates that the lowest lying states for photons and gravitons should exist near

these radii.

Since these cavities exist within the ISCO, we do not anticipate that they contain

completely stable orbits. Instead, we anticipate what is known as a “leaky cavity.”

A leaky cavity is a cavity containing particles with a real and imaginary part to
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their energies and therefore frequencies, indicating that they have a half-life within

the cavity. This half-life means that the particles will eventually leave the cavity by

falling into the black hole or moving to a far distance from the black hole. In order

for the cavity to maintain a population of particles, the cavity acquires new particles

to replace the ones that are lost.

There exists a net attractive force, or inclusion principle, between large groups of

bosons and individual bosons that causes the individuals of proper frequency to enter

the same phase and direction as the group, as explained by Kaniadakis and Quarati

[23]. This net attractive force is what causes the photons and gravitons of correct

frequency from outside the cavity to enter coherently into the resonance state within

the cavity, thus replacing those that were lost due to the leaky nature of the cavity .

6.1 Using Quantum Mechanics to Approximate Resonance

Phenomena

The e↵ective potential energy within the cavities looks like a harmonic oscillator

potential near the bottom of the curve. The harmonic oscillator potential is the

most common potential found naturally and its eigenvalues and eigenfunctions can

be solved using the methods found in quantum mechanics.

In quantum mechanics, a resonance state is simply classified as the preference

for a particle to exist in one state over another. Since photons and gravitons are

uncharged bosons, large numbers of them can exist in the same state and they neg-

ligibly interact, unlike electrons which obey Fermi statistics and contain repulsive

charge. This means that not only can photons and gravitons exist in the same state,

but the only significant interaction in the system is between the individual photons
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or gravitons and the black hole. This means that each photon or graviton can be

treated separately when calculating the eigenfunctions (or “orbitals”) occupied by

individual bosons. There is a quantum e↵ect known as the inclusion principle that

causes bosons of the same frequency to experience a net force towards coherence [23]

as was mentioned earlier, in section 6. This forces the photons and gravitons in the

resonance states to be coherent with one another and thus occupy the same orbital.

This interaction does not e↵ect the energy of the bosons since they must already be

of the same frequency, so the energy calculations for trapped photons and gravitons

inside the cavity will not be e↵ected by this interaction.

To compare the gravitational e↵ective potential to a harmonic oscillator, it is

convenient to change coordinate systems so that this potential mirrors even better

the harmonic oscillator potential by removing the sharp rise to zero on the left hand

side of the potential. We do this by using what is known as the “tortoise coordinate”

system.

6.1.1 Tortoise Coordinates

The tortoise coordinate system is used to alleviate issues caused by singularities

or discontinuities in a function, like we have at the event horizon. The name ”tor-

toise coordinate” is an allusion to the story from Zeno’s Paradox of the Tortoise and

Achilles. The story goes that the tortoise challenges Achilles to a race so long as the

tortoise receives a head start. After Achilles agrees, the tortoise tells Achilles that he

will never be able to reach him since Achilles must first cover the distance already

traveled by the tortoise. In this time the tortoise will have traveled a distance, how-

ever small, that Achilles must then also make up. This means that Achilles would
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never be able to reach the tortoise to overtake him [31].

The story gives an explanation of what the tortoise coordinate system does. It

makes it such that we are able to approach the event horizon as r ! �1 but we are

never able to reach it. This e↵ectively removes the complications brought upon by

the event horizon from our calculations by eliminating the sharp rise of the potential

energy near r = 2. The system accomplishes this by the use of the natural log

function, which approaches negative infinity as the argument approaches zero. The

conversion equation between r and r⇤ (the radius in tortoise coordinate)[5] is given

by:

r⇤ = r + 2 ln(
r

2
� 1) + C (6.3)

where C is a constant used to shift the conversion to any numerical or graphical

location that is desired as part of the conversion.

In order to put the e↵ective potential into tortoise coordinates, we needed to solve

the conversion equation for r in terms of r⇤ and input it into the potential equation.

The conversion equation can only be solved numerically by the use of the ProductLog

function since it is not analytical. The ProductLog function is a representation of

the numerical solution to the equation y = x+ ln(x). The solution to the coordinate

conversion is then given by:

r = 2(1 + ProductLog(
p
e�2�C+r⇤)) (6.4)

Substitution into the e↵ective potential energy equation (6.2) gives us an e↵ective

potential energy equation in the Tortoise Coordinate system (Equation 6.5). We
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center the function at zero to facilitate calculations. Setting the derivative of the

potential equation to zero at r⇤ = 0 determines the value of C to center the e↵ective

potential at r⇤ = 0. We found this value to be -1.615 for all L values of photons. Since

the graviton curves were not all centered at the same radius, the di↵erent momentum

levels for gravitons had di↵erent constants. C = �2.514 for the L = 2 state, -2.000

for the L = 3 state, and -1.955 for the L = 4 state. The equation for the e↵ective

gravitational potential energy curves is:

VL,s(r
⇤) = �

s
1� 2

2(1 + ProductLog[
p
e�2�C+r⇤ ])

(6.5)

⇥
s

L(L+ 1)

(2(1 + ProductLog(
p
e�2�C+r⇤)))2

+
2(1� s2)

(2(1 + ProductLog[
p
e�2�C+r⇤ ]))3

VL,s(r⇤) e↵ective potentials, for both photons and gravitons (s=1 and s=2), for the

three lowest angular momentum states, are graphically represented in Figures 3 and

4.
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Figure 3: This shows the three di↵erent calculated photon potentials in the tortoise
coordinate system. The Red curve shows the potential well for L=1 photons. This
is the most preferred state for photons, despite not being the deepest well, because
it has the longest lifetime. The Blue curve shows the potential well for L=2 photons
and the Black curve shows the potential well for L=3 photons.
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Figure 4: This shows the three di↵erent calculated graviton potentials in the tortoise
coordinate system. The Red curve shows the potential well for L=2 gravitons. This
is the most preferred state for gravitons, despite not being the deepest well but with
the longest lifetime. The Blue curve shows the potential well for L=3 gravitons and
the Black curve shows the potential well for L=4 gravitons. Note that the potential
well is deeper for the preferred state of gravitons than it is for the photon preferred
state, but the states with the same orbital angular momentum are deeper for photons
than for gravitons.

6.1.2 The Harmonic Oscillator

Harmonic oscillators are expressed by Equation 6.6, so, in order to match it, we

needed to find the proper value of k to fit our curve. Since k is based on the curvature

of the function, the numerical value of the second derivative of the potential at r⇤ = 0

will provide the appropriate k value.
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r̈⇤|r⇤=0 = k (6.6)

V =
1

2
k(r⇤)2 (6.7)

Calculating the k value from Equation 6.6 allowed us to generate a harmonic

oscillator potential energy (Equation 6.7) that fits our potential, as seen in Figure 5.

We also calculated the primary wave function for the harmonic oscillator (Equation

6.8).

 =
(k2 )

1/4

p
⇡

⇥ e�( k2 )
1/2(r⇤)2 (6.8)

This showed that the two functions were in basic agreement in the area contained

by the wave function. Figure 6 shows the di↵erence between the harmonic oscillator

function and our potential to show more clearly how the two compare within the area

contained by the wave function, given by Equation 6.8.
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Figure 5: The generated harmonic oscillator function (given by Equation 6.7) for the
L = 1 photon state is shown in Blue on the same graph as the L=1 state for photons,
in Black, to show the fit. The photon curve has the lowest point of the potential
placed at zero in order to shift the potential upward by a constant such that it is
always positive. The first order wave function (given by Equation 6.8) is shown in
Red to highlight the important regions of the fit.
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Figure 6: The Blue curve shows the potential energy di↵erence between the photon
gravitational potential energy for L=1 and the harmonic oscillator potential with the
same curvature. This shows how well the two curves fit within the regime covered by
the wave function, in Red.

Figure 6 shows that the harmonic oscillator potential is a decent approximation for

the potential curve in the regime where the wavefunction is non-zero.

We calculated the eigenvalues for the harmonic oscillator curve, (n + 1
2)~!0 with

~ = 1, !0 =
q

k
m =

p
2k, and n=0, 1, 2... in our units . The eigenvalues for the har-

monic oscillator are presented in Table 2 on page 32. We then used correction terms

from perturbation theory to correct these eigenvalues so that they fit our potential

more closely.

The wave function in Figure 5 shows how the wave function fits into the potential
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well. The wave function does exist outside of the potential but with positive curva-

ture, as is common in harmonic oscillator wave functions. The probability density

(the square of the wave function) falls as the wave function becomes farther from the

potential, but does provide a probability for the particle to exist outside of the poten-

tial. This tells where the primary shape of the orbital exists. For photons this shape

is a ”teardrop,” as seen in Figure 8 on page 41, with the lowest probability closer to

the black hole. The orbital shape will be discussed in further detail in Section 6.3.

6.1.3 The Correction Terms from Perturbation Theory

Perturbation theory is often used in quantum mechanics as a tool to more accu-

rately describe a complex system. The general idea behind it is to take a system that

is known and matches fairly well, such as the harmonic oscillator potential, and con-

tinually correct the eigenvalues and eigenfunctions toward those of the more complex

potential. It does not usually take many correction terms to obtain accurate values,

if the two potentials are quite similar as in our case.

The harmonic oscillator energy eigenvalues were corrected in the form of Equation

6.9, using Equations 6.13 - 6.17, from perturbation theory, with definition of terms

given by 6.10 - 6.12. The numerical values for the dVnm and E
(0)
n terms, given by

Equations 6.12 and 6.13 respectively, are shown in Tables 2 and 3 for gravitons in the

L=2 state.
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En = E(0)
n + E(1)

n + E(2)
n + E(3)

n + E(4)
n + ... (6.9)

Enm = E(0)
n � E(0)

m (6.10)

dV = VGR � 1

2
kr⇤2 (6.11)

dVnm =< n(0)|dV |m(0) > (6.12)

E(0)
n =< n|1

2
kr⇤2|n > (6.13)

E(1)
n = dVnn (6.14)
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We calculated the perturbation corrections to the third order to find results that

closely match those from GR scattering calculations (which will be discussed in section

6.4). Tables 4, 5, and 6 show our calculated correction terms to the energy as well

as the energy values after the correction for that order. We did not calculate higher

orders due to the complexity of the fourth order correction in perturbation theory.

The location of this energy level is placed on the potential energy curve for the

L=2 state for gravitons in Figure 7 to give a graphical representation of where this

energy level is at. It is important to note that the calculated values are read from the

bottom of the curve, while the actual energy, which is used to calculate the frequency,
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is measured from the zero point on the energy. This means that the actual energy

value for our oscillations is the calculated value minus the value at the bottom of the

curve.

Harmonic Oscillator Eigenvalue Numerical Calculation

E
(0)
0 0.0392

E
(0)
1 0.118

E
(0)
2 0.196

E
(0)
3 0.275

E
(0)
4 0.353

E
(0)
5 0.432

E
(0)
6 0.510

Table 2: E
(0)
n terms, in a basis of two harmonic oscillator wave functions for gravi-

tons in the state L=2. These correction terms are used in the perturbation theory
corrections.

Wave Function |U0 > |U1 > |U2 > |U3 > |U4 > |U5 > |U6 >
< U0| -.00421 -.0289 -.0169 .000893 -.00892 .000764 .00268
< U1| -.0288 -.0281 -.0393 -.0471 .00349 -.0134 .000410
< U2| -.0168 -.0393 -.0738 -.0480 -.0815 .00569 -.0167
< U3| .000893 -.0471 -.0480 -.129 .0461 .117 .00760
< U4| -.00892 .00349 -.0815 .0461 .191 -.0471 -.156
< U5| .000764 -.0134 .00569 .117 -.0471 -.256 -.0475
< U6| .00268 .000410 -.0167 .00760 -.156 -.0475 -.323

Table 3: dVnm terms for perturbation theory for various combinations of wave func-
tions and dV , given by Equation 6.12 for gravitons in the L=2 state. The table is
arranged such that the Bra and Ket are each with dV , producing the value for dVnm

at the location of the intersection on the table of the Bra and Ket. The intersection
values represent the value of dVnm where n is the wavefunction on the left and m is
the wavefunction on the right. This is presented for a basis of seven wave functions
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Perturbation Order Perturbation Value Energy After Inclusion

E
(0)
0 .03927 .03927

E
(1)
0 -.004209 .03506

E
(2)
0 -.01270 .02235

E
(3)
0 -.007726 .01463

Table 4: The central, Perturbation Value, column displays the correction terms cal-
culated from perturbation theory. The Energy After Inclusion column shows the
calculations from Equation 6.9, in a basis of seven, for perturbation theory correc-
tions to harmonic oscillator energies for gravitons in the state L=2 of di↵erent orders
of correction.

Perturbation Order Numerical Value Energy After Inclusion

E
(0)
0 .03542 .03542

E
(1)
0 -.00829 .02713

E
(2)
0 -.00419 .02294

E
(3)
0 -.00344 .01950

Table 5: The central, Perturbation Value, column displays the correction terms cal-
culated from perturbation theory. The Energy After Inclusion column shows the
calculations from Equation 6.9, in a basis of seven, for perturbation theory correc-
tions to harmonic oscillator energies for photons in the state L = 1 of di↵erent orders
of correction.
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Perturbation Order Numerical Value Energy After Inclusion

E
(0)
0 .04671 .04671

E
(1)
0 -.008978 .03773

E
(2)
0 -.004530 .03320

E
(3)
0 -.003694 .02951

Table 6: The central, Perturbation Value, column displays the correction terms cal-
culated from perturbation theory. The Energy After Inclusion column shows the
calculations from Equation 6.9, in a basis of seven, for perturbation theory correc-
tions to harmonic oscillator energies for photons in the state L=2 of di↵erent orders
of correction.

2 4 6 8 10 12
r

-0.4

-0.3

-0.2

-0.1

V

Figure 7: The Blue curve shows the e↵ective potential energy curve for a graviton
of L=2, calculated by the potential energy curve, Equation 6.2 on page 17. The
Red line shows the location of the energy level calculated after the inclusion of the
perturbation theory corrections up to the third order.
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6.2 Properties of Trapped Photons and Gravitons

6.2.1 Photons

Photons are the particulate form of light. Though it is popularly understood that

light exists as a wave, it is also experimentally seen that it exists in a particulate

form. It is easier to think of this particle wave duality as the photon simply being

the smallest iteration of a wave packet that can exist. This gives the photon a wave

form, but a particulate nature. Photons carry electromagnetic energy.

Photons are zero rest mass particles, meaning that they do not exist unless they

are moving at the speed of light. They are purely relativistic particles.

The spin of a particle can easily be calculated by observing what rotational angle

over which the wave form of the particle is invariant. Equation 6.18 gives the spin for

the particle with wave function that is invariant over the phase angle ✓. For photons,

the wave function is invariant over a phase angle of 2⇡ indicating that the solution

for s is 1; photons have spin 1. This comes from the dipole moment of the electric

field, which causes a dipole nature in photons.

✓ =
2⇡

s
(6.18)

The dipole moment and dipole nature of the photons comes as a result of the

continuously oscillating electric field [24]. As the photon propagates, the electric

field oscillates back and forth. The electric field can be thought of as continuously

switching from positive to negative and back again. When the electric field moves

from positive to negative and back again, it can be approximated as a positive and

negative charge existing at the furthest part of the oscillation. This means that the
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electric field acts like a dipole, creating a dipole moment for the electric field and

therefore the photon. Since photons are the particulate form of the electric field, they

can be thought of as having a dipole nature. This causes them to exist in only specific

angular momentum states.

Particles and waves of spin 1 obey Bose-Einstein statistics. This property makes

them bosons. Due to the statistical properties of bosons, more than one photon may

exist in the same quantum state. Photons often exist in the lowest energy state in

which they are able to exist.

Due to the zero rest mass of the photon, the kinetic energy of a photon is given

by Equation 6.19, where h is Planck’s constant and f is the frequency of the photon.

For a photon in the cavity region, we calculate the period as 7.29min, this gives a

frequency of the wave to be 2.28mHz.

E = hf (6.19)

The kinetic energy of this wave is then calculated to be hf . Since Planck’s constant

is 6.63⇥10�34m2kg
s , that makes the energy of the photon equal to 1.52⇥10�36J . This

energy is negligible by comparison to the potential energy of the photons from being

close to the black hole. For photons of L=1, that energy can be seen in Figure 3 on

page 25 at the base of the photon potential energy curve. That energy has a unitless

value of �.272 which corresponds to a value in Joules, as converted by Table 1 on

page 16, of �2.09 ⇥ 1053J . This means that the potential energy is on the order of

1089 times larger than the kinetic energy of the waves.

It is possible for a wave function to remain stationary as the particle propagates.

This is known as a standing wave. For a standing wave, the wave function does not
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need to move in order for the particle to orbit. Since, in our case, the kinetic energy

of the wave function is so low, these waves can be understood as standing waves. This

means that all of their energy is contained in the potential energy due to the black

hole interaction. This potential also influences the frequency of the standing waves.

This is a di↵erence from quantum mechanics, which utilizes the Virial Theorem to

explain relations between kinetic and potential energy.

This causes a di↵erence from classical and quantum mechanics, but this should not

influence the calculations as long as we are aware of the implications this di↵erence

makes. The calculated wave function does not give the kinetic energy of the photon,

but rather only the potential energy. This means that we are only working with

the potential energy of the particle, rather than the connected kinetic and potential

energies given by the Virial Theorem.

As was previously mentioned, the trapped photons exist in a leaky cavity. The

calculations which we make from perturbation theory do not include the imaginary

component to the energy as the data from the GR calculations do.

As will be shown for di↵erent values of L in section 6.4, the imaginary part of

the frequency represents the stability of the orbit as having a proportionality to 1/⌧ ,

where the time, ⌧ , is the half-life. The imaginary part therefore is low for stable orbits

and high for unstable orbits in time. This will be further expanded upon in section

6.4.

Photons do have an e↵ective mass inside the cavity. They weakly interact grav-

itationally due to this e↵ective mass, but the interaction is negligible compared to

the interaction with the central black hole mass. Photons are uncharged, unlike elec-

trons which contain a repulsive charge and higher mass. Consequently, each photon
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contains its own wave function and energy that is independent of any other photon

energy in the resonance state. Large numbers of photons can gather in this cavity

due to the large energy preference to be in the lowest state coupled with the idea that

the photon to photon gravitational interactions are negligible inside the cavity.

6.2.2 Gravitons

As of right now, the graviton is a theoretical particle that exists as the smallest

wave packet possible of a gravitational wave. This is very similar to the photon, but

exists for gravitational waves as opposed to electromagnetic waves.

Gravitons are zero rest mass particles, making them purely relativistic. Much like

the photon with electromagnetic energy, gravitons carry gravitational energy [38].

Gravitational energy, unlike electromagnetic energy, has a quadrupole nature. This

comes from the second order tensor nature of gravity. The polarization tensor, which

is the linearization of the field equations, has two indices, which are symmetric. This

gives the polarization tensor, which describes gravitational waves, the property of

having a quadrupole moment [39]. The polarization tensor is also invariant over a

phase shift of ⇡, meaning that if we plug this into Equation 6.18 on page 35 for spin,

we see that gravitons have a spin of 2.

The quadrupole moment, which causes the spin nature of the graviton, also in-

fluences its angular momentum and orbital states. Since the graviton has a zero rest

mass, as with the photon, its mass cannot account for its spin properties. This means

that the graviton cannot exist in any state with an angular momentum less than 2.

Gravitons have whole number spin, meaning that they obey Bose-Einstein statis-

tics and can therefore exist in the same quantum state as other gravitons. This allows
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the gravitons to collect in the lowest energy state since that is the most stable state

(longest lifetime). Gravitons also obey the inclusion principle [23], meaning that

the cavity of gravitons will attract other gravitons of the same frequency to become

coherent with the cavity.

Since the gravitons are zero rest-mass particles, the kinetic energy of a graviton is

given by Equation 6.19 on page 36. The graviton has a calculated period of 4.84min.

The frequency of the graviton in the cavity is 3.44mHz based on this period. This

means that the energy for a graviton in the cavity is 2.28⇥ 10�36J . This is negligible

compared to the potential energy of the graviton in the cavity, which is about �.389,

as seen in Figure 5, or �3.00 ⇥ 1053J . This, as for the photon, indicates that the

kinetic energy of the graviton is negligible. The graviton therefore exists in a standing

wave.

Due to the energy being comprised of potential energy, the gravitons in the stand-

ing waves have the same general di↵erences from classical and quantum mechanics

that photons have, as discussed in the previous section.

6.3 How Angular Momentum Properties Influence the Or-

bitals

Since the L=1 state is the lowest state for photons, and photons are bosons which

will gravitate toward the lowest energy state for the highest stability, we anticipate

the majority of the trapped photons will exist in this state. This state in quantum

mechanics relates to a P shaped orbital (P-orbital), as seen in Figure 8, which is an

orbital with a zero probability at the nucleus. This is important since once a particle

enters the black hole, it can never escape, meaning that if there is a probability for
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the photon to exist in the center of the orbit, it could become absorbed by the black

hole. This would remove it from the orbit and therefore from our resonance state.

This would result in a di↵erent orbital stability. P-orbitals, on the other hand, o↵er

a degree of stability for the orbit since the probability distribution drops to zero

as the particle nears the center of the orbit. Photons cannot exist in an S shaped

orbital since they cannot exist in an orbital that will prohibit their spin state. An

electron, with spin 1/2 can exist in an S-orbital due to its nonzero rest mass, which

can account for the spin state of the electron rather than the wave properties of the

electron accounting for the spin state. Since photons have zero rest mass, their mass

cannot account for their spin.

This idea, that the lowest lying photon state is a p-orbital, stems from the dipole

nature of the electromagnetic waves of which photons are comprised. It limits their

angular momentum to have a unitless value of 1, therefore confining them to a non-

spherical distribution, such as a P-orbital around a black hole.
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Figure 8: This shows the basic shape of a P-orbital from quantum mechanics. The
Z-direction of the orbitals for a non-spinning black hole is defined by the magnetic
field of the accretion disk. P-orbitals are the shape associated with L=1 angular
momentum states, the shape of the orbital photons in the lowest energy state. (This
image was taken from http://nanotech.sc.mahidol.ac.th/genchem/atom1/p-orb.jpg)

In a similar manner, the quadrupole nature of the gravitational wave forces the

graviton to have a lowest lying angular momentum of 2. This, in quantum mechanics,

represents a D shaped orbital (D-orbital) for gravitons, as seen in Figure 9. D-

orbitals also have a zero probability at the center of the orbit, indicating that there

is no probability of the black hole absorbing the gravitons to remove them from their
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resonance state.

Figure 9: D-orbital shapes are typically the shape of L=2 states in quan-
tum mechanics. The Z-direction is defined by the magnetic field of
the accretion disk for a non-spinning black hole. This is the shape of
the orbital containing the most stable graviton state. (This image was
taken from http://chemistry.stackexchange.com/questions/2547/why-are-some-salt-
solutions-coloured.)

These orbitals compare to single electron orbitals, in hydrogen-like atoms, but in

this case the photons and gravitons are bosons. In this comparison model, the mass

of the black hole can be thought of as the net charge of the nucleus of the atom,
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which is quantized, but the mass of the black hole is not quantized.

6.4 Most-Stable Energy States of Trapped Photons and Gravi-

tons within the Cavity

Since photons and gravitons are bosons, and therefore obey the inclusion principle

[23], they will collect in the lowest energy level state for their angular momentum.

We did not calculate the frequency for di↵erent values of n due to this idea that in

order to show our theory is accurate, the most populated, and therefore lowest energy,

state should su�ce to show that these particles exist in these energy states. We did

conduct calculations for di↵erent angular momenta of the particles. This included

calculations based on the three lowest angular momentum states for photons and for

gravitons. These states are L=1, 2, and 3 for photons, and L=2, 3 and 4 for gravitons.

We looked at these states since these are the most likely states in which states

these bosons resonate. The L=1 state for photons and L=2 state for gravitons are

the most likely state for those particles to resonate in due to the stability of the orbits

at those levels. These are the orbits with lowest possible orbital angular momentum.

As previously mentioned, the potential energy in this region is often worked with

as a V 2 potential (Equation 6.1 on page 17). This potential, as seen in figure 1 on

page 18 is a scattering potential. A scattering potential, as commonly seen with high

energy particles above a potential barrier, can cause oscillations of the particles due

to the changing di↵erence in potential energy between a high potential region and low

potential regions. The modes of these oscillations were calculated for this potential

by Fröman et al. (1992) and Andersson (1992). They took the square root of their

calculated values for the potential squared, which are presented in Table 7.
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s L n Real Part Imaginary Part
1 1 0 .2483 -.09249

1 .2145 -.2937
2 0 .4576 -.09500

1 .4365 -.2907
3 0 .6569 -.09562

1 .6417 -.2897
2 2 0 .3737 -.08896

1 .3467 -.2739
3 0 .5994 -.09270

1 .5826 -.2813
4 0 .8092 -.09416

1 .7966 -.2843

Table 7: The square root of the normal modes calculated from the potential squared
given by Equation 6.1 for di↵erent values of L and s. The n represents the nth mode
for that iteration of L and s. States with n = 0 and n = 1 were included in this table
but only n = 0 states were calculated in this thesis. The n = 1 states are shown
to display the harmonic oscillator behavior of the scattering normal modes. A line
has been placed between the s=1 and s=2 values to show the change from photon to
graviton modes. These values were calculated by Fröman et al. [15].

This data is not comparable to our calculated values due to the fact that this

energy is measured from a zero potential and ours is measured from the bottom of a

potential well. Since the imaginary part of these values represent the stability of the

leaky cavity, we only need to concern ourselves with matching results with the real

part of the values. By subtracting the real part of these values from the bottom of

our curves, we obtain a comparable value to our calculated results, shown in Table 8.
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s L n Numerical Value
1 1 0 .0239

1 .0577
2 0 .0138

1 .0349
3 0 .0098

1 .0250
2 2 0 .0152

1 .0421
3 0 .0101

1 .0269
4 0 .0072

1 .0198

Table 8: The real part of the square root of the normal modes calculated from the
potential squared given by Equation 6.1 for di↵erent values of L and s from Table 7
as measured from the bottom of our potential wells. These values were calculated by
subtracting the real part of the values in Table 7 from the magnitude of the potentials
at the bottom of the wells, seen in Figure 2 on page 20 for photons and gravitons.

After measuring the values from the bottom of our potential curves, it is clear

that the normal mode for the L=2 state of the graviton is at the same energy as the

value from the perturbation theory calculations, in Table 4 on page 33. The potential

energy curves as calculated from non-relativistic quantum mechanics agree with the

calculated values of the normal modes from GR.

The energy values from the normal modes show a nature of a harmonic oscillator

potential, not just from our calculated results, but also due to the relationship between

di↵erent levels of n. In the harmonic oscillator, the discrete energy levels have whole

number separation starting at 1/2. The n = 1 state is 3 times the energy of the

n = 0 state. The same pattern is seen when we treat the normal modes in Table 8

as being energy eigenstates from a potential well. This pattern continues for many
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of the calculated values of n, but as n increases, due to the widening of the potential

compared to the harmonic oscillator potential, the intervals stray farther and farther

from the harmonic oscillator values. As the energy and radius increases, the levels

approach one another until they coalesce into a single blurred state. For large n, this

becomes very similar to how the energy levels of Hydrogen-like atoms behave.

If we wish to compare the energy values from our perturbation calculations with

these values from the scattering potential, we need to change the calculated values

from perturbation theory to ones measured from zero as opposed to ones measured

from the bottom of the curve. Table 9 shows the value from the normal mode of

the scattering potential with the value calculated from the third order perturbation

correction and the error between them. These values matched within 4% error, in-

dicating that our perturbation theory calculations nearly match the normal mode

calculations from the scattering potential.

s L Value from Scattering Potential Value from Perturbation Theory Percent Error
1 1 .2483 .2439 1.77%

2 .4576 .4733 3.43%
2 2 .3737 .3731 .161%

Table 9: The real part of the normal modes represent the energy of the state. These
values are comparable to our calculated values when those values are measured from
the zero energy line as opposed to the shifted potential we used when comparing to
the harmonic oscillator. In order to calculate the energies of our perturbation theory
corrections, the values were added to the bottom of the curve presented in Figure 2
on page 20.

As mentioned previously, the imaginary part of the energy and frequency relates

to the stability of the orbit. The value of the imaginary part is proportional to 1/⌧

(where ⌧ is the half-life time); therefore, the larger the imaginary part of the energy,

46



the more unstable the orbit.

As seen in Table 7 on page 44, the imaginary parts of the n = 1 states are much

larger than the imaginary parts for the n = 0 states. The n=1 states are much less

stable than the n = 0 states. The n=1 states are then, much less populated.

The n = 0 states all have comparable stability, since the lowest angular momentum

states have the lowest imaginary values. We calculated the stability of the states in

average number of cycles by dividing the real part, which is proportional to the

frequency, by the imaginary part. The results of this are shown in Table 10.

s L Average Number of Cycles
1 1 2.685

2 4.817
3 6.870

2 2 4.201
3 6.466
4 8.594

Table 10: The number of average cycles for the lifetime of the orbitals to show the
stability of each orbital based on number of cycles. These values were calculated from
the real and imaginary parts of the normal modes of the scattering potential, seen in
Table 7.

The time-based stability is important for consideration because the states with

the best time-based stability will be the highest populated states. This corresponds

to the L=1 state for photons and the L=2 state for gravitons. The stability in terms

of cycles shows how deep the potential energy wells are and how stable the orbits

are based on the deep curvature of the potential well. As is clear by Figure 3 and

Figure 4 on pages 25 and 26, the potential wells become deeper for higher values of

L, corresponding to more average cycle stability in terms of time for one orbit. This
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nature is confirmed by the normal mode stability by Table 10.

6.5 Photon and Graviton interaction with Electrons in the

Cavity Region

Electrons emit synchrotron radiation by being accelerated. When electrons orbit

an object, they are experiencing a centripetal acceleration causing them to emit syn-

chrotron radiation. This radiation intensity is based on the density and volume of

the electrons which are accelerated.

Electrons can form into high density “blobs” by interaction with photons or gravi-

tons. These blobs emit more radiation due to their higher density. Photons, which are

made up of electromagnetic radiation, interact with electrons based on the electron’s

charge. Photons that are in the same state have their electric field lined up, which

acts upon nearby electrons. The photons will oscillate, causing the electron density

to oscillate at the same frequency as the photons. This allows us to see the photon

frequency by the oscillating intensity of the electron emission.

The emission intensity is complicated by the volume of the blob oscillations, ther-

mal fluctuations, magnetic field variations and further density oscillations. We did not

fully investigate these interactions, since that involves calculations and understand-

ing beyond the scope of this work, but it is theorized that the emission from these

electrons should be heavily dependent on the density of the electron blobs caused by

the electron-photon interaction.

The gravitons interact with the electrons based on the mass of the electrons. This

causes a similar reaction of the electrons as in photons, but instead of grouping to-

gether based on charge, they group based on mass. Blobs of electrons form and emit
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radiation in a similar manner to the photon-electron interaction, but in this case the

electron emission fluctuations follow the pattern set by the gravitons. The graviton

oscillations are then visible through the electron emissions. Like the photon interac-

tion, this is also further complicated by thermal, magnetic, and volume oscillations

and instabilities.

In order to observe the photon and graviton cavity resonances, we must observe

the electron interactions with the cavity from the electron emissions. For this, we

looked at NIR non-thermal electron emissions near a black hole.
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means that Sgr A* is a better source to observe than the black hole in M87.

The Andromeda galaxy is the closest galaxy with a central black hole to the Milky

Way. This means that it is close enough that it could contain a black hole su�ciently

massive to be more apparently luminous than Sgr A*. At a mass of 3 ⇥ 107M� and

distance of 2.5⇥ 106ly, the black hole in the Andromeda galaxy is about 8.76⇥ 10�4

times the apparent luminosity of Sgr A*. It is not more apparently luminous than

Sgr A*. This indicates that we should not look at extragalactic black holes, since

both the largest and the closest were not more apparently luminous than Sgr A*.

Since intermediate-mass black holes have not yet been observed, we ignore them

as a possibility for data collection. We looked at a large, close stellar mass black hole

A0620-00/V616 Mon which has a mass of 11 M� at a distance of 3500ly. This means

that it is about 1.6 ⇥ 10�4 times the apparent luminosity of Sgr A*, making it less

suitable for observation.

This takes into account all possible types of confirmed black holes for observation

and has shown that Sgr A* is the best black hole to be observed. Since visible

light from the observation of Sgr A* is absorbed by dust, it is best to observe in

NIR, infrared and x-ray wavelengths, which are absorbed less because average dust

particles are usually the size of visible wavelengths, rather than NIR, infrared or x-ray

wavelengths.
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Figure 10: This is the NIR data from the 2003 article by Genzel et al [16]. It
clearly shows two separate NIR flares, each with subflares. The continuously varying
oscillations are visible when looking at the signal when the flare stops or on top of
the flares and subflares. For example, these oscillations can be clearly seen when
the flares are less prominent, as in the last 50min of the data taken on 15 June
2003 and in the first 40min of the 16 June 2003 data. This data was taken in the
Ks band (wavelength between 2 and 4 µm) of NIR, and the article by Genzel et al
makes note that it contains signal even during quiescent emissions (between flaring
events). Reprinted by permission of Macmillian Publishers Ltd: Nature Magizine
[16], copyright 2007.

8.1 NIR and X-Ray Flares

As previously mentioned, there are observed NIR flares coming from the area

very close to the black hole Sgr A*. These flares and subflares are classified as Quasi-

Periodic Oscillations (QPOs), meaning that they do not have a stable period.

The primary NIR flares happen about 4 times a day and about once a day are

accompanied by an X-ray flare. The X-ray flare always accompanies a NIR flare but

the NIR flares can exist without the X-ray flare. These flares each last about an

hour to 80 minutes in time. The NIR flares contain a riding subflare which has a

period of about 20 minutes, but this period can range from 13-30 minutes between
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each subflare [7].

Little is known about these flares or subflares, but there are some competing

theories as to what causes them. For the purpose of this research, the cause of the

flares and subflares is not important and so it will not be explained in much detail.

We will instead focus on the continuous variability of the NIR signal.

8.1.1 Possible Explanations for Flares and Subflares

As of right now the literature contains varying ideas as to what can cause the NIR

flares and/or subflares but there has been no observational confirmation of any of the

competing theories. One such theory was the idea of a “hot blob” that was orbiting

the black hole very rapidly. There are some other theories as to what mechanism

can cause these kind of flares. The paired X-ray and NIR flares can possibly be due

to synchrotron emission and submm photons due to inverse Compton scattering by

the NIR-emitting electrons. They can also be due to self Compton e↵ects, or cooling

break synchrotron emission [8].

The data concerning flares and subflares has been put through self correlating and

power density functions to show that these occur within certain degrees of confidence,

but it is still unknown what phenomenon is causing these emissions.

8.2 Possible Causes of the Continuous Variability Signal

No article in the literature has provided a model or idea to explain the existence

of a constantly varying source around the black hole beyond vague statements, such

as that it may have something to do with interactions with thermal electrons or

something to do with the interaction from the accretion disk [7]. These short and
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unexplained ideas do not provide su�cient information to account for the oscillations.

The accretion disk is too distant from the black hole to create an oscillation of this

speed. Many articles choose to ignore this varying signal or attribute it to noise,

even though there is no known form of noise to account for it and it is very regularly

oscillating below the Nyquist frequency for the data taken. Some articles, including

Dodds-Eden et al. [8] [7], have mentioned that determining what is causing the

emission is a “di�cult question.” The NIR spectrum is coming from non-thermal,

synchrotron, electron emission based on wavelength, and it has not been determined

what is causing the NIR intensity to vary in this way.

This continued variability is also di↵erent from any stellar observation to this

date. It was noted by Dodds-Eden et al. [7] that these variations were significantly

more intense than variations of stars with comparable flux. This indicates that it is

not likely to be variations caused by a nearby star and that it is not being caused

by a process that normally exists in stellar objects. Black holes must contain some

process or phenomenon that causes these oscillations that does not exist in less dense

objects.

As to our knowledge, no one has published anything on the oscillations from

the gravitational cavity or regarding any phenomenon that exists closer than the

accretion disk. This will be the first detailed explanation for the existence of the

continued variability signal present in the NIR spectrum of the black hole Sgr A*.

8.2.1 Our Theory Explains the Continuous Variability of Sgr A*

The continuously varying NIR signal, according to our calculations, is due to the

resonance cavities for standing wave photons and gravitons and their interaction with
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electrons within the cavity region.

The NIR flare data is presented in Figure 10 on page 53 and Figure 11. As seen

in Figure 11, the times of the oscillations matches well with observed fluctuations in

the NIR spectrum.

Figure 11: The NIR data from Figure 10 plotted with lines representing the corre-
sponding times for electron emissions due to photon and graviton resonances. We
used the June 16th data since the June 15th data had lower signal to noise ratio and
was missing data for certain times. The June 15th data does seem to convey the same
pattern, which lines up well with the June 16th data presented here for continuous
emission signals. The Red lines represent the oscillations due to the lowest photon
resonance and the Grey lines represent the oscillations due to the lowest graviton
resonance. Notice how these lines seem to correspond to small peaks in the NIR
data.
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Usually the validity of an oscillatory structure is given by a power density spec-

trum, but due to the flare and subflare nature of the data, the power density spectrum

of the signal is sometimes buried by the competing flare and subflares. The analysis of

Figure 10 was done by hand due to the di�culty of creating a power spectrum on the

data. The continuous variability signal is sometimes buried by other signals, possibly

for entire cycles. The signal intensity depends on the number of electrons in blobs

and the number of bosons in the coherent state, which both vary. The frequency is

dependent upon physical size of the cavity and character of the electromagnetic or

gravitational wave, but does not depend upon the number of electrons in blobs nor

the number of bosons in the resonant state. The variations in the signal intensity

combined with the overriding flare and subflare signals creates di�culty in obtaining

a power spectrum of the resonant states since they are often buried beneath the flares

or subflares for several cycles.

The periods, obtained by hand for Figure 10 on page 53 and illustrated in Figure

11 on page 56, for the lowest lying, and most stable, energy states for photons and

gravitons were 7.29 minutes and 4.84 minutes, respectively. These coincide well with

the continuously varying NIR oscillations.

In order to obtain a proper power density spectrum, we need to look at data from

the NIR spectrum of the black hole when it is not flaring. In this situation the only

present signal should be due to the continuously varying signal, at the resonant photon

and graviton frequencies. This should allow a power density spectrum so be obtained,

without interference from other sources of variation due to the complex situation in

the region immediately surrounding the black hole, including the accretion disk.

The inability to obtain a power density spectrum also makes it impossible to
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obtain a confidence interval value for the fit of the oscillations with our theory, but

once a power density spectrum is obtained for data obtained when the black hole is

not flaring, we will be able to obtain a confidence interval value for these oscillations.

We hope to be able to obtain non-flaring NIR data although this inter-flare period

is less interesting to scientists who obtain observational data. We are confident that

the statistical analysis of such data will provide a more direct observable proof of

our theoretical work. Our current analysis has pointed us in the direction needed to

more fully work with Sgr A* data emanating from low frequency photon and graviton

resonance states in the gravitational cavities surrounding any black hole.
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The same holds true for photons orbiting the black hole at the correct distance for

photon resonance. Large numbers of gravitons and photons may be coherent, having

not only the same frequency but also phase and direction. Within su�cient number

of gravitons and/or photons in the same resonant and coherent states, bunches of

electrons can be influenced jointly, emitting radiation at the same frequencies as the

resonant photons and gravitons.

Once spin is introduced into the equations, we expect to be able to show that

gravitons move at the same, constant speed of light (2.998 ⇥ 108 m/s) in a strong

gravitational environment. This can be tested by comparing the data to the exper-

imental results of QPO/NIR data from Sgr A*. This would be a proof of general

relativity rooted in experimentally observed data. Our work presented herein is valid

for all Schwarzschild black holes, whether large or small.

Our future work is planned to include: (1) How the electrons accumulate into

blobs of certain density and volume, including how this changes the intensity of

radiation emitted from these blobs. Naturally, the motion of the blobs depends on

the electric and gravitational fields of large numbers of coherent photons and gravitons

and their respective frequencies. (2) The theoretical (GR) prediction of the influence

of black hole spin on the surrounding photon and graviton orbitals and resonant

frequencies. (3) The confirmation of the existence of the influences predicted by GR

in the observational data from the supermassive black hole situated at the center of

the Milky Way Galaxy.
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Harmonic Oscillator Eigenvalue Numerical Calculation

E
(0)
0 .0355

E
(0)
1 .106

E
(0)
2 .177

E
(0)
3 .248

E
(0)
4 .319

E
(0)
5 .390

E
(0)
6 .461

Table 13: E(0)
n terms for perturbation theory corrections for harmonic oscillator wave

functions in the harmonic oscillator potential for photons in the state L=1.

Harmonic Oscillator Eigenvalue Numerical Calculation

E
(0)
0 .0467

E
(0)
1 .140

E
(0)
2 .234

E
(0)
3 .366

E
(0)
4 .420

E
(0)
5 .513

E
(0)
6 .607

Table 14: E(0)
n terms for perturbation theory corrections for harmonic oscillator wave

functions in the harmonic oscillator potential for photons in the state L=2.
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Harmonic Oscillator Eigenvalue Numerical Calculation

E
(0)
0 .0555

E
(0)
1 .167

E
(0)
2 .278

E
(0)
3 .389

E
(0)
4 .500

E
(0)
5 .611

E
(0)
6 .722

Table 15: E(0)
n terms for perturbation theory corrections for harmonic oscillator wave

functions in the harmonic oscillator potential for photons in the state L=3.

Wave Function |U0 > |U1 > |U2 > |U3 > |U4 > |U5 > |U6 >
< U0| -.00967 -.0238 -.0242 -.00321 -.00941 .00204 .00223
< U1| -.0238 -.0439 -.0392 -.0607 -.00186 -.0156 .00261
< U2| -.0242 -.0392 -.101 -.0484 -.104 .000126 -.0207
< U3| -.00321 -.0607 -.0484 -.171 .0542 -.151 .00225
< U4| -.00941 -.00186 -.104 .0542 .250 -.0580 -.200
< U5| .00204 -.0156 .000126 -.151 -.0580 -.334 -.0604
< U6| .00223 .00261 -.0207 .00225 -.200 -.0604 -.421

Table 16: dVnm terms for perturbation theory for various combinations of wave func-
tions and di↵erence between the harmonic oscillator and our calculated potential for
gravitons in the L=3 state.

Wave Function |U0 > |U1 > |U2 > |U3 > |U4 > |U5 > |U6 >
< U0| -.00836 -.00896 -.0219 -.00889 -.00965 .00361 .00181
< U1| -.00896 -.0393 -.0281 -.0574 -.0103 -.0169 .00553
< U2| -.0219 -.0281 -.0948 -.0400 -.101 -.0938 -.0236
< U3| -.00889 -.0574 -.0400 -.165 -.0498 -.150 .00760
< U4| -.00965 -.0103 -.101 -.0498 -.245 -.0569 -.202
< U5| .00361 -.0169 -.0938 -.150 -.0569 -.332 -.0621
< U6| .00181 .00553 -.0236 -.00760 -.202 -.0621 -.424

Table 17: dVnm terms for perturbation theory for various combinations of wave func-
tions and di↵erence between the harmonic oscillator and our calculated potential for
gravitons in the L=4 state.
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Wave Function |U0 > |U1 > |U2 > |U3 > |U4 > |U5 > |U6 >
< U0| -.00836 -.00896 -.0219 -.00889 -.00965 .00361 .00181
< U1| -.00896 -.0393 -.0281 -.0574 -.0103 -.0169 .00553
< U2| -.0219 -.0281 -.0948 -.0400 -.101 -.0938 -.0236
< U3| -.00889 -.0574 -.0400 -.165 -.0498 -.150 .00760
< U4| -.00965 -.0103 -.101 -.0498 -.245 -.0569 -.202
< U5| .00361 -.0169 -.0938 -.150 -.0569 -.332 -.0621
< U6| .00181 .00553 -.0236 -.00760 -.202 -.0621 -.424

Table 18: dVnm terms for perturbation theory for various combinations of wave func-
tions and di↵erence between the harmonic oscillator and our calculated potential for
photons in the L=1 state.

Wave Function |U0 > |U1 > |U2 > |U3 > |U4 > |U5 > |U6 >
< U0| -.00836 -.00896 -.0219 -.00889 -.00965 .00361 .00181
< U1| -.00896 -.0393 -.0281 -.0574 -.0103 -.0169 .00553
< U2| -.0219 -.0281 -.0948 -.0400 -.101 -.0938 -.0236
< U3| -.00889 -.0574 -.0400 -.165 -.0498 -.150 .00760
< U4| -.00965 -.0103 -.101 -.0498 -.245 -.0569 -.202
< U5| .00361 -.0169 -.0938 -.150 -.0569 -.332 -.0621
< U6| .00181 .00553 -.0236 -.00760 -.202 -.0621 -.424

Table 19: dVnm terms for perturbation theory for various combinations of wave func-
tions and di↵erence between the harmonic oscillator and our calculated potential for
photons in the L=2 state.

Wave Function |U0 > |U1 > |U2 > |U3 > |U4 > |U5 > |U6 >
< U0| -.00836 -.00896 -.0219 -.00889 -.00965 .00361 .00181
< U1| -.00896 -.0393 -.0281 -.0574 -.0103 -.0169 .00553
< U2| -.0219 -.0281 -.0948 -.0400 -.101 -.0938 -.0236
< U3| -.00889 -.0574 -.0400 -.165 -.0498 -.150 .00760
< U4| -.00965 -.0103 -.101 -.0498 -.245 -.0569 -.202
< U5| .00361 -.0169 -.0938 -.150 -.0569 -.332 -.0621
< U6| .00181 .00553 -.0236 -.00760 -.202 -.0621 -.424

Table 20: dVnm terms for perturbation theory for various combinations of wave func-
tions and di↵erence between the harmonic oscillator and our calculated potential for
photons in the L=3 state.
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