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Endocrine disrupting chemicals (EDCs) have become of concern for a variety of health issues. 

Bisphenol-A (BPA) is a widely studied EDC and has been characterized by its estrogen-like 

effects. BPA is a prevalent component in polycarbonate plastics, having one of the highest 

production volumes in the world. Humans are exposed to BPA in products such as water bottles, 

dental sealants and on the inside of food and beverage cans. Due to frequent human exposure to 

BPA, research on the resulting biological effects is highly significant. In this study, we utilized 

the model organism Caenorhabditis elegans (C. elegans) to investigate potential impacts of BPA 

on growth, reproduction, locomotion and feeding behaviors and gene expressions. At dosage of 

1.0 µM of BPA exposure from L1 stage to adulthood, the worm’s body size was significantly 

reduced. To test the hypothesis that BPA exposure may associated with obesity risk, we 

conducted Oil Red O staining to test fat storage in worms exposed to 0.1 and 1.0 µM of BPA 

exposure from L1 stage to adulthood, using glucose as a positive control. However, our results 

show that the body fat storage decreased when exposed to BPA at both tested concentrations. For 

behavior assays, worms experienced a decrease in locomotion speed when exposed to high 

concentration of BPA (1.0 µM) and a stimulation of locomotion speed at low concentration BPA 

exposure (0.1 µM). Attainment levels of worms were significantly decreased in the high 

concentration treatment group. At the first 8 hrs of observation, less than 10% of 1.0 µM of BPA 

treated worms were able to reach the food source. Additionally, high BPA exposure (1.0 µM) 



 

 

decreased egg productions throughout the egg-laying period. The brood size of 1.0 µM treated 

worms was reduced to 7% of control. In contrast, low BPA treatment group (0.1 µM) 

significantly increased early egg laying between 65-96 hr period after L1. The expression of 3 

(egl-10, sod-1 and old-1) selected genes were affected significantly. Changes in gene expression 

were more evident at high dosage than at the relatively low level. Egl-10 and old-1 genes 

implicated in egg-laying and stress resistance was upregulated by BPA. Sod-1 associated with 

protecting cells from oxidative damaged was down regulated. Other tested genes were cat-4, 

egl-5, egl-19, egl-44, egl-46, egl-47, pink-1, age-1, old-1 and ric-3. Together these results 

suggest BPA-associated reproductive toxicity and neurobehavioral deficits.    
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INTRODUCITON: PROJECT DESCRIPTION 

Nature of the Problem 

 Bisphenol A, a chemical widely used to make polycarbonate plastics, is a growing public 

concern regarding its potential effects on the brain, behavior and reproduction. BPA acts as an 

endocrine-disrupting compound that mimics the naturally occurring estrogen hormone (Fig.1). It 

can interfere with hormone synthesis, hormone receptor expression and alter gene activities in 

target tissues (Diamanti-Kandarakis et al., 2009). The primary source of exposure to bisphenol A 

is through the diet (Shelby, 2008). This is alarming due to the fact that general population 

exposer to BPA occurs on a daily basis. My goal is to discover what potential consequences may 

arise in the future after increasingly recurrent exposure to BPA. 

More than 1 million pounds of BPA are released into the environment annually (Shelby, 

2008). In particular, due to physical properties such as durability, transparency and 

weightlessness, BPA containing plastics are found in a variety of common household products. 

Common uses include food and beverage cans, dental sealants, sunglasses, compact disc and 

baby bottles (Li et al., 2013). It is equally important to understand how safety and human health 

are impacted as a result of prolonged exposure. The National Toxicology Program (NTP) 

expressed concern ranging from “negligible to some concern” for potential exposures (Shelby, 

2008). The FDA’s current assessment is that BPA is safe at low levels (Shelby, 2008). To 

address uncertainties about the safety of BPA more research is needed to determine if BPA poses 

a risk to human health. 
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Literature Review 

The scientific literature evaluating the toxic effects of bisphenol A in laboratory animals 

are expanding (Shelby, 2008). However, only a very small number of studies have looked at 

associations between bisphenol A exposure and disorders of reproduction or developmental 

effects utilizing Caenorhabditis elegans as a model organism.  

Two previous studies done by Allard et al and colleagues helped to gain insights into the 

effect of BPA on reproduction by exposing worms to BPA medium, delivering a continuous high 

dose of BPA throughout the worms development and reproductive periods (Allard & Colaiacovo, 

2010; Allard & Colaiacovo, 2011). Results revealed that an exposure to 1 mM BPA in the plate 

medium corresponds to an internal concentration of 2 µg/g (2ppm) detected from worm extract 

(Allard & Colaiacovo, 2011). This is the range of the internal concentrations reported for several 

rodent models and human serum levels following occupational exposure. A marked reduction in 

the number of eggs laid and embryonic viability were observed suggesting meiotic impairment 

(Allard & Colaiacovo, 2011). To address reproductive impairments, four parameters were tested: 

BPA concentration (100 µM, 500 µM, or 1 mM), vehicle (DMSO or ethanol), cholesterol 

concentration (5µg/mL, 0.5µg/mL, or none), and culture method (liquid or plate). Interestingly, 

cholesterol is thought to mask the effect of endocrine-disrupting chemicals in C. elegans and was 

omitted from the medium. The most consistent results were low overall toxicity, as judged by 

both growth and behavior, was seen in worms exposed to BPA dissolved in ethanol at a final 

concentration of 1mM for 4 days (Allard & Colaiacovo, 2010). However, a six fold reduction in 

the mean number of eggs laid and a dramatic increase in embryonic lethality was observed 

(Allard & Colaiacovo, 2010). The mechanism of reproductive toxicity of BPA is still 

unexplained, but was suspected to be related to hormonal activity. A 2009 study suggested that 

exposure of placental cells to low doses of BPA ranging from 0.0002 to 0.2 µg/ml may cause 
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detrimental effects in association with high blood pressure, intrauterine growth limitations and 

miscarriages (Benachour & Aris, 2009).    

Kohra et al exposed two and half-day old worms to 10 and 0.1 µM BPA and recorded 

attainment levels (the number of worms reaching the food source divided by the total number of 

worms on the Petri plate) at 2,4,6,8 and 24hrs. Additionally, experimental plates of two controls, 

one containing only medium and the other containing dimethyl sulfoxide (DMSO), were tested. 

There was no evidence of altered attainment levels between the two controls. However, at 10 µM 

treated group the attainment levels decreased significantly compared to the untreated control in 

all observations (Shinya et al., 2002). Similarly, at a lower concentration of 0.1 µM group, the 

attainment levels decreased significantly at 2, 4, 6 and 8 hrs (Shinya et al., 2002). Comparing 

attainment levels between both concentrations showed no significant difference. Thus foraging 

behavior of C. elegans in response to the environment is an interesting test endpoint for chemical 

hazard assessment.  

Emerging evidence has linked BPA to the worldwide obesity epidemic, particularly 

among children. Obesity is known to result in several adverse health effects including, but not 

limited to type 2 diabetes, insulin resistance, hypertension, coronary heart disease and liver and 

kidney disease (Li et al., 2013). In countries with differing dietary styles and physical activity, 

the increasing prevalence of obesity suggests the existence of exposure to environmental risk 

factors, collectively termed “environmental obesogens.” One such important potential obesogen 

is BPA. Exposure to BPA has been shown to suppress the release of adiponectin, an 

adipocyte-specific hormone that increases insulin sensitivity (Li et al., 2013).Therefore, there is a 

biological plausibility that BPA could lead to insulin resistance and increased susceptibility to 

obesity and metabolic syndromes. In a recent study, Li et al conducted a population-based study 

to examine the relationship between urine BPA and obesity in school-age children. Spot urine 



4 

 

samples and anthropometric measurements were collected. Results indicated high urine BPA 

levels (≥2 µg/L), associated with overweight female student’s ages 9-12, but not in males (Li et 

al., 2013). BPA is an environmental estrogen which could accelerate females’ pubertal 

development and weight gain. This study provided some evidence for an association between 

BPA exposure and obesity-related outcomes in childhood. However, literature is limited on this 

association (Li et al., 2013).  

Research conducted by Nomura et al, on C. elegans provided a more efficient means of 

studying the lipid metabolism because of the ease with which fat can be visualized in its body. 

Nomura and colleagues investigated the ability of C. elegans to accumulate body fat following 

the consumption of excess calories and the mechanism it uses to metabolize fat. The C. elegans 

were grown on media containing glucose (0, 0.1, 2, 5, 10, 50 and 100 mM) or 10 mM of various 

types of sugars (fructose, mannose, galactose and xylose) and monitored for changes in body fat 

using the Nile red staining and monitored for the expression of sbp-1, which facilitates fat 

storage in C. elegans. After adding either glucose or fructose to culture dishes containing C. 

elegans, there was a considerable increase in fluorescence from the Nile red staining, indicating 

an increase in intracellular fat (Nomura, Horikawa, Shimamura, Hashimoto, & Sakamoto, 2010). 

Additionally, sbp-1 was strongly expressed in the intestine. The fat content started increasing 

with 2 mM glucose and continued to rise with increasing concentrations of glucose in a dose 

dependent manner (Nomura et al., 2010). In order to test if sbp-1 regulates fatty acid synthesis, 

sbp-1 knockdown was tested via RNAi feeding and then stained. Results indicated a “clear” or 

relatively transparent body without fat storage. Nile red analysis indicated a decrease in the 

amount of fat stored in C. elegans also supports findings from other assays which indicated 

decreased body size and delayed growth. Additionally, the number of eggs laid decreased 

considerably (Nomura et al., 2010).        
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More recently in December 2013, Tseng et al and colleagues demonstrated phthalates, a 

common endocrine disruptor, inducing neurotoxicity affecting locomotion behaviors through 

oxidative stress in C. elegans (Tseng, Yang, Yu, Li, & Liao, 2013). The most commonly used 

phthalates are bis(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), and diisobutyl 

phthalate (DIBP), which are used as plasticizers, solvents, and additives in numerous consumer 

products, such as vinyl flooring, food containers, cosmetics, pharmaceuticals, and children's 

toys (Schettler, 2006; Wormuth, Scheringer, Vollenweider, & Hungerbuhler, 2006). For body 

bend analysis, L4-stage wild-type worms were exposed to various concentrations of commonly 

used phthalates (DEHP (2 and 20 ppm), DBP (500 and 1000 ppm), and DIBP (100 and 1000 

ppm)) for 24 h at 20°C. The results showed that all of the examined concentrations of DEHP, 

DBP, and DIBP caused significant reductions in the number of body bends compared with those 

of non-exposed control worms (Tseng et al., 2013). Similarly, a substantial decrease in head 

thrashing occurred in worms exposed to DEHP (2 and 20 ppm), DBP (500 and 1000 ppm), and 

DIBP (1000 ppm), compared with non-exposed control worms (Tseng et al., 2013). Moreover, 

while L4-larval stage nematodes were exposed to DEHP, DBP, and DIBP for 24 h, a significant 

decrease in reversal frequency was observed in worms in all examined concentrations of DEHP, 

DBP, and DIBP, compared with the non-exposed control worms (Tseng et al., 2013). When 

L4-larval stage nematodes were exposed to DEHP at a concentration of 2 ppm, significant 

(P<0.001) body bend, head thrash, and reversal frequency defects were observed, whereas the 

adult nematodes required higher concentrations of DBP (500 ppm) and DIBP (100 ppm) 

exposure to exhibit similar defects (Tseng et al., 2013). The results indicate that the endocrine 

disruptor phthalates DEHP, DBP, and DIBP can cause locomotion behavior defects in C. elegans 

so it will be interesting to determine if BPA affects behaviors as well.  
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Hypothesis 

Exposure to BPA will cause various sublethal effects including growth and reproduction 

inhibition, abnormal locomotion behaviors, and affect key genes involved in these processes.   

Objectives 

 Evaluate the impact of BPA exposure on growth and major fat stores   

 Investigate locomotion and foraging behaviors following BPA exposure  

 Evaluate reproduction rates following BPA exposure  

 Analyze the expression of selected genes following BPA exposure and study the gene 

functions in response to BPA exposure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

METHODS/MATERIALS 

Organism 

Caenorhabditis elegans are free-living, soil-dwelling, roundworms commonly used in research 

as model organisms for the study of gene regulation and function (Hubbard & Greenstein, 2005). 

C. elegans were the first multicellular organisms to have their entire genome sequenced with 

more than 20,000 genes identified (Hubbard & Greenstein, 2005). They have 60-80% homology 

with the human genome, a short life cycle (approximately 3 days), and life span (approximately 

2-3 weeks), and are also easily cultured and maintained. Observing complex developmental 

processes in C. elegans such as embryogenesis and morphogenesis is convenient. Their 

transparent body and genetic tractability makes them easy to manipulate by adding, removing, or 

altering specific genes (Fig. 2). As a food source, C. elegans use Escherichia coli (E.Coli OP50), 

which is easily cultured. C.elegans are used as great models for toxicological studies for an 

extensive amount of environmental toxicants (Leung et al., 2008). C.elegans life cycle consist of 

four larval stages (L1-L4) before reaching the adult stage (Fig.3). Due to high level of conserved 

genes and gene pathways from C.elegans to humans, data collected in C.elegans can be 

indicative for higher organisms. C.elegans can be hermaphrodites, males and females and can 

therefore self-cross fertilize. 
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Assays 

Growth and Locomotion  

The synchronized, wild type N2, L1 stage worms were cultured on Nematode Growth 

Medium (NGM) media including a control and two treatment groups containing 0.1 µM and 1.0 

µM BPA, respectively. The treatment last for 2.5 days until adulthood (65 hours), once embryos 

appeared in the body. Three replicates were performed for each treatment. Two and a half days 

later, five worms were collected from each of three replicates and transferred onto each of 3 BPA 

free tracking petri dishes, previously seeded with E. coli OP50. Using a worm tracking system, 

five minute-videos were taken per replicate per treatment and analyzed by the Wormlab software. 

Nine behavioral parameters were used as toxicity endpoints, including: mean body area, body 

length, wavelength, body width, bending angle, omega bends, reversals ratio, smoothed forward 

movement speed and smoothed backward movement speed. Each endpoint is defined based on 

Wormlab software in Table 1 (MFB, 2010).  

Reproduction  

L1 worms were exposed to 0.1 µM or 1.0 µM BPA on NGM agar for 65 hr. After 65 h 

worms were collected and transferred onto new treatment matched petri dishes, previously 

seeded with OP50. At a fixed time for three consecutive days, the worms were transferred onto 

new treatment matched plates seeded with OP50 to allow egg laying. On the day of transfer, the 

eggs and larvae on plate previously occupied by the worms, was counted using a light 

microscope.  

 

 

 

 

 

 

 



9 

 

Gene Expression 

For gene expression, there were 5 biological replicated for each group (control, 0.1 µM 

and 1.0 µM BPA). Several plates of wild type N2 worms were synchronized. Over 2,000 L1 

worms were plated onto each plate. Both treatment and control plates were incubated at 20
o
C for 

~65 hours (L1-early adult). Each plate was washed several times into 15ml falcon tubes. The 

tubes were centrifuged and washed 3× with M9 and the supernatant was discarded. Worm pellets 

were then transferred into 2ml microfuge tubes, centrifuged, frozen with liquid nitrogen and 

stored in a -80°C freezer until RNA extractions were performed. RNA extractions were 

performed (see detailed methodology for procedure process) on each of the 15 frozen tubes of 

worms (5 for control, 5 for low BPA treatment, 5 for high BPA treatment). RNA quality of each 

tube was measured using the NanoDrop ND-1000 Micro-Volume UV-Vis Spectrophotometer 

(NanoDrop Technologies, Wilmington, DE) and based on the absorbance ratios of 260/280 and 

260/230 (the 3 best replicates were chosen). Next, I performed reverse transcription (see detailed 

methodology for procedure process) to obtain cDNA using TaqMan microRNA Reverse 

Transcription kit from Applied Biosystems (Foster City, CA). The RT product was then used to 

perform qRT-PCR (see detailed methodology for procedure process)  on 96-well-plate using the 

7300 Real-Time PCR System (Applied Biosystem) using the SYBR Green PCR master mix from 

SuperArray Bioscience Corp. (Frederick, MD). 13 genes were analyzed: cat-4, egl-5, egl-10, 

egl-19, egl-44, egl-46, egl-47, pink-1, sod-1, age-1, old-1, oxi-1, ric-3 using tba-1 as a reference 

gene. The detailed description and classification information of these genes is listed on Table 2. 

Feeding Behavior  

Feeding behavior testing was conducted as described by Kohra (Shinya et al., 2002). L1 

worms were cultured on experimental plates consisting of two concentrations (0.1µM and 1.0 

µM) of BPA, and two controls, one containing only medium and the other containing ethanol 
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(EtOH), which the same amount was used as the solvent for BPA. Each plate was previously 

seeded with E. coli OP50. The set-ups were then incubated at 20
o
C for 60 h, and then the 

worms were transferred to chemical free 10-cm plates for the feeding behavior assay. On the 

latter, E.coli was grown circularly within a 0.5cm radius from the center of the plate. Each 

exposed worm was rinsed three times with M9 buffer and transferred one-by-one onto the 

chemical free plates. Each plate was loaded with 7 worms evenly placed 4 cm from the 

center. Ten replicates were performed for each treatment (70 worms total per treatment). At 

time points 2, 4, 6, 8, and 24 hr of incubation at 20
o
C, the number of worms that reached the 

central E. coli colony was counted using a light microscope. The attainment level of C. 

elegans was obtained by dividing the number of worms that reached the food source by the 

total number of worms on the plate.     

Oil Red O staining 

Oil-Red-O staining for major fat storage was conducted as descried by O’Rourke 

(O'Rourke, Soukas, Carr, & Ruvkun, 2009). Oil red O staining represents a validated method to 

study the regulation of long-term energy stores (O'Rourke et al., 2009). We put to use oil red O 

staining as a facile method to study fat mass in C. elegans. Oil red O staining correlates, in all 

cases tested, with biochemically measured triglyceride mass. Using glucose as a positive control, 

synchronized L1 larva were bred on NGM plates containing 2mM of glucose. One gram of 

glucose was dissolved into 10 mL of water and 90 µL was placed directly on top of the agar until 

dry. A total of 200-300 day-1 synchronized adult worms were separately washed from control 

and treatment plates with 1x PBS. Worms were washed three times with 1x PBS pH 7.4 and 

allowed to settle by gravity. To permeabilize the cuticle, worms were resuspended in 120 μl of 

PBS to which an equal volume of 2x MRWB buffer containing 2% paraformaldehyde (PFA) was 

added. 2x MRWB buffer: 160 mM KCl, 40 mM NaCl, 14 mM Na2EGTA, 1 mM 
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spermidine-HCl, 0.4 mM spermine, 30 mM Na-PIPES pH 7.4, 0.2% ß-mercaptoethanol). 

Samples were gently rocked gently for 1h in a 1.5 mL centrifuge tube at room temperature 

(allowing animals to rock inside the volume, without spreading the 240μl volume over the whole 

tube). Animals were allowed to settle by gravity, buffer was removed using pipette, and worms 

were washed three times with 1x PBS to remove PFA. Worms were then resuspended in 5 mL of 

60% isopropanol and incubated for 15 minutes in a 15 mL centrifuge tube at room temperature to 

dehydrate. Oil-Red-O is prepared as follows: a 0.5g Oil-Red-O powder /100 mL isopropanol 

stock solution (100 %) equilibrated by rocking for several days was freshly diluted to 60% with 

water and rocked again for at least 1h, then filtered with 0.45 or 0.22μm-filter. After allowing 

worms to settle, isopropanol was removed, 1 mL of 60% Oil-Red-O stain was added, and 

animals were incubated overnight with rocking gently. Dye was removed after allowing worms 

to settle, and 200 μL of 1x PBS 0.01% Triton X-100 was added. Animals were mounted and 

imaged with a Leica colour camera outfitted with DIC optics. 

RNAi by Feeding  

The technique of RNAi, coupled with the availability of the complete genomic sequence 

of C. elegans (C. elegans sequencing consortium, 1998), has made possible the rapid study of 

gene function, both on a single gene level and at a global scale (Ahringer, 2006). Exposing C. 

elegans to dsRNA causes a reduction in the level of mRNA for the corresponding endogenous 

gene (Bargmann, 2001). RNAi plates were prepared by adding 25 mg Ampicillin and 240 mg 

IPTG (Isopropyl-β-D-thiogalactopyranoside) to 1L of cooled NGM media before pouring plates. 

The 30 µL of 250 mg/mL Ampicillin was added to 30 mL 2xYT media. 2xYT buffer: 10 g 

Bacto-tryptone, 5g Bacto-yeast extract, 5g NaCl, add H2O for a total volume of 500 mL. Target 

RNAi bacteria (sod-1 and old-1) were inoculated in 2xYT solution and incubated at 37
o
 C at 225 

rpm for 14-16 hours. RNAi bacteria were collected by centrifuging at 4,400 rpm for 10 minutes. 
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The supernatant was removed and 450 µL of supernatant was saved for future use. The 450 µL 

of supernatant was added back into the tube to suspend the bacteria. The 100 µL of each 

bacterium was added to RNAi plates and plates were kept in a dark space at room temperature 

for 2 days to dry. L1 of F0 worms were cultured on this media for two and half days followed by 

synchronization. The F1 generation was then cultured on experimental plates consisting of two 

concentrations (0.1µM and 1.0 µM) of BPA until adulthood, and an average length of 50 worms 

per treatment was measured using Leica software.  

 

 

 

 

Fig.1. Chemical structure for bishenol A (BPA) 

Fig.2. Translucent body of C.elegan 
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Length 

 

Distance from head 

to tail along central 

axis (red central 

line) 

Width Distance along the 

cross section of the 

worm averaged over 

its entire body from 

head to tail.(blue 

cross-section lines) 

Area Space covered by 

green external 

contour. 

Fig.3. C. elegans life cycle at 22˚C (artwork by Altun and Hall, © Wormatlas) 

 

http://www.wormatlas.org/handbook/anatomyintro/anatomyintro.htm
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Wavelength  

Distance between 

negative and positive 

inflection points 

Smoothed Speed 

 

A three-frame 

moving average 

speed smoothed 

over a 20 second 

span. The moving 

average speed is the 

instantaneous 

velocity along the 

worm’s central line 

averaged over a 

number of frames. 

Bending angle  

The angle between the 

centroids of both the 

head and the tail. 

Omega bend  

Occurs when the worm 

makes an omega-shaped 

movement. 

 

 

 

 

 

 

Table 1: Definitions of endpoints calculated by the Wormlab MBF software 
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Gene 

symbol 

Locus tag Gene description Egg-laying/ 

reproduction 

Stress/Life 

Span 

Development/ 

Cell Fate 

Muscle 

& 

Neuron 

Reference 

cat-4 F32G8.6 abnormal 

CATecholamine 

distribution 

√     √ (Hardaker, Singer, 

Kerr, Zhou, & 

Schafer, 2001) 

egl-5 C08C3.1 Egg Laying 

defective 

√   √   (Kalis, Murphy, & 

Zarkower, 2010; 

Nicholas & Hodgkin, 

2009) 

egl-10 F28C1.2 Egg Laying 

defective 

√     √ (Chase, Pepper, & 

Koelle, 2004; van der 

Linden, Simmer, 

Cuppen, & Plasterk, 

2001) 

egl-19 C48A7.1 Egg Laying 

defective 

√     √ (Frokjaer-Jensen et 

al., 2006) 

egl-44 F28B12.2 Egg Laying 

defective 

√   √   (Wu, Duggan, & 

Chalfie, 2001) 

egl-46 K11G9.4 Egg Laying 

defective 

√   √   (Wu et al., 2001) 

egl-47 C50H2.2 Egg Laying 

defective 

√     √ (Moresco & Koelle, 

2004) 

pink-1 EEED8.9 PINK 

(PTEN-INduced 

Kinase) homolog 

√ √     (Samann et al., 2009) 

sod-1 C15F1.7 SOD (superoxide 

dismutase) 

√ √     (Doonan et al., 2008; 

Shibata, Branicky, 

Landaverde, & 

Hekimi, 2003)  

age-1 B0334.8 AGEing 

alteration 

  √ √  (Ayyadevara et al., 

2009) 

old-1 C08H9.5 Overexpression 

Longevity 

Determinant 

  √     (Murakami & 

Johnson, 2001) 

oxi-1 Y39A1C.2 Oxidative stress 

Induced 

  √    (Camon et al., 2003; 

Yanase & Ishi, 1999) 

ric-3 T14A8.1 Resistance to 

Inhibitors of 

Cholinesterase 

      √ (Halevi et al., 2002; 

Shteingauz, Cohen, 

Biala, & Treinin, 

2009) 

Table 2: Description and classification of 13 selected genes 
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Statistical Analysis 

For statistical analysis, the IBM SPSS Statistics 20 software for Windows 7 was used. To 

determine statistical differences between treatment and control groups in apoptosis cell counts 

and gene expression fold changes the statistical test analysis of variance (ANOVA) was used. If 

treatment groups were statistically significant at p < 0.05 level, least significant difference (LSD) 

multiple comparisons were carried out to compare means among groups. 

Project Relevance 

Given concern about BPA, and the ongoing evaluation and studies on its safety, 

providing additional information and addressing uncertainties would yield supporting evidence 

of adverse effects contributing to the medical field, environment and public. Further 

investigation using C. elegans will provide additional insight into the toxicity of chemicals 

including environmental pollutants to the reproductive and neurological effects in humans at the 

molecular level. Additionally, this study will help agencies, such as the National Toxicology 

Program and FDA’s National Center for Toxicological Research, better regulate production of 

BPA.        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

RESULTS 

 

Impact of Bisphenol A on growth 

BPA treated two and a half-day old N2 worms had an average length of 1100 + 22.4, 700 + 21.9, 

and 500 + 23.1 µm for the control, 0.1 µM, and 1.0 µM treatments respectively (Fig 4). There 

was a significant difference in body length when comparing the high concentration treatment 

group to both the control and low concentration treatment group. Findings in body width, area, 

and wavelength show consistent results with body length as they are dependent upon one another. 

As the concentration increased, the values for all four parameters decreased (P<0.05). BPA 

treated N2 worms had an average width of 150, 70, 65 µm; average area of 22000, 8000, 4000 

µm
2
; and average wavelength of 520, 290, 240 µm

 
for the control, 0.1 µM, and 1.0 µM 

treatments respectively (Figs.5, 6, 7). The wavelength showed a significant difference when 

comparing the high concentration treatment group to both the control and low concentration 

treatment. The body area and body width showed significant differences in both treatment groups 

compared to the control, but not between low and high treatments. 
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Fig.4. Average body length of N2 worms after L1-Adult dosing. Different letters denote 

statistically significant differences. Error bars indicate standard deviations of 15 worms 

tracked in 3 individual experiments. N= 15 

Fig.5. Average body width of N2 worms after L1-Adult dosing. Different letters denote 

statistically significant differences. Error bars indicate standard deviations of 15 worms 

tracked in 3 individual experiments. N= 15 
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Fig.5. Average body width of N2 worms after L1-Adult dosing. Different letters denote 

statistically significant differences. Error bars indicate standard deviations of 15 worms 

tracked in 3 individual experiments. N= 15 

 

Fig.6. Average body area of N2 worms after L1-Adult dosing. Different letters denote 

statistically significant differences. Error bars indicate standard deviations of 15 worms 

tracked in 3 individual experiments. N= 15 

 

Fig.7. Average body wavelength of N2 worms after L1-Adult dosing. Different letters 

denote statistically significant differences. Error bars indicate standard deviations of 15 

worms tracked in 3 individual experiments. N= 15 
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Impacts of Bisphenol A on C. elegans locomotion 

A dose-dependent and statistically significant decrease in the average reversals was 

observed in worms exposed to low and high BPA concentrations (Fig.8). There were no 

statistical differences in the bending angle or omega bends (Fig. 9, 10). However, the average 

values of reversals and bending angles were higher in the control than in BPA treatment groups, 

while the higher concentration treated worms did the most omega bends.     
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Fig.8. Reversal behavior in adult hermaphrodite C. elegans as a function of BPA 

exposure. The y-axis represents a ratio calculated from the proportion of time that worms 

move backward. Different letters correspond to statistically significant differences 

(p<0.05). N = 15 
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Fig.9. Bending angel in adult hermaphrodite C. elegans as a function of BPA exposure. 

The y-axis represents the average bending angle represented by radian values. Different 

letters correspond to statistically significant differences (p<0.05). N=15 

Fig.10. Omega bends in adult hermaphrodite C. elegans as a function of BPA exposure. 

The y-axis represents a ratio calculated from the proportion of times the worms perform 

the omega bend. Different letters correspond to statistically significant differences with 

respect to the control (p<0.05). N=15 
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Effect of BPA on locomotion speed in C. elegans 

A stimulation of locomotion at 0.1µM BPA treated group was seen; 67.1% of the worms 

traveled at forward speeds of >160 µm/s and 68.7% at backward speeds of >160 µm/s at 0.1 µM 

(Fig. 11). The control group had its highest percentage of worms distributed at low speed ranges 

of between 20-80 µm/sec, with 57.1% in the forward direction and 61.4% in the reverse. Only 

2.9% and 5.7% of total worms display the lowest control locomotion speed between 0-20 µm/s 

for forward and reverse speeds, respectively. At high BPA treatment, most worms display a low 

locomotion speed of between 0-40 µm/s, with 58.3% of worms traveling in the forward direction 

and 57.8% in the reverse direction. In summary, a majority of worms experienced a decrease in 

locomotion speed when exposed to high BPA concentration and increase in speed when exposed 

to low BPA concentration as compared to the control.   
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Fig.11. The impact of BPA on the forward and backward locomotion speed (µm/s) in 

adult C. elegans N2 hermaphrodites. Different letters correspond to statistically 
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Effects of BPA on reproduction 

Worms were dosed from L1 for 65 h until adulthood, and then transferred to new BPA 

containing plates for continuing reproduction assay. At 89 and 96 hours after L1, there was a 

significant difference in egg production among control and the 1.0 µM treatment group. The 

average number of eggs laid per worm at 89 h for control was approximately 152 and for those 

exposed to high concentration BPA was significantly reduced to 12 (p < 0.05; Fig.12). Similarly, 

at 96 h time point, an average of 192 control group eggs were counted and those exposed to high 

concentration BPA was significantly reduced to 14 (p < 0.05, Fig.12). However, no significant 

difference among control and 0.1 µM BPA was noted at any time point. The 0.1 µM dosed group 

produced slightly more eggs compared to the control during 65-113 h post-L1 with a total 

average of 451 in 0.1 µM group verses 420 in the control. The number of eggs laid from 120-137 

h after L1 dropped until no eggs were observed. At 120 h the control, low dose and high dose 

produced 44, 24 and 0 eggs per worm respectively. By 137 h no more eggs were produced.    
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Effects of BPA on Feeding Behavior 

As shown in Fig. 13, there was no difference in (p>0.05) altered attainment levels 

between the untreated control and the EtOH vehicle control. When the C. elegans were exposed 

to 1.0 µM BPA, the attainment levels decreased significantly compared to the untreated control 

at 2, 6, 8, and 24 hr. There was also significant difference in attainment level compared to 

control when exposing to 0.1 µM BPA at 4 and 6 hr. A comparison between the attainment 

levels of the organism treated with 0.1 µM and 1.0 µM showed a significant difference at all 

time points except 6 hr.   
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Fig.12. The impact of BPA on reproduction, represented by the number of eggs plus 

larvae produced during the time interval between the parent worms transfer. Worms were 

dosed from L1for 65 hours and then moved to NGM agar plate with food and the same 

concentration of BPA to allow egg-laying. The x-axis represents the time period in hours 

after L1. The y-axis represents the average number of eggs plus larvae produced per 

worm over time (n=15 per treatment). Different letters in the same group of bars at each 

time point correspond to statistically significant differences at p<0.05 level. 
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Effects of BPA on Gene Expression 

This study identified the effect of BPA on the expression levels of 13 genes selected for 

testing, including cat-4, egl-5, egl-10, egl-19, egl-44, egl-46, egl-47, pink-1, sod-1, age-1, old-1, 

oxi-1, ric-3 using tba-1 as reference gene which is required partially for normal embryonic 

development (Fig. 14). Of the 13 selected genes, 9 are related to egg-laying, 5 are stress-response 

related gene and 2 incorporate both functions (Table 2). Gene expression experiments indicated 

that an important egg-laying related gene egl-10 was significantly up-regulated at 1 µM BPA 

treated group. We also found that old-1 which plays a role in stress resistance and regulation of 

adult lifespan was significantly up-regulated at 1 µM BPA while sod-1 known to protect cells 

from oxidative damage was down-regulated at both BPA treated groups. This indicated BPA 

Fig.13. Influence of BPA in attainment level of C. elegans. The x-axis represents the 

time, in hours, used to measure the number of nematodes reaching the E.coli colony. The 

y-axis represents the attainment levels (obtained by dividing the number of worms that 

reached the food source by the total number of worms on the plate). Different letters 

correspond to statistically significant differences (p<0.05). N=70  
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may affect the stress-defense system and results in life-span defects. Fig. 11 shows the fold 

change in gene expression of the 13 tested genes varying from 12.5-fold down-regulation (sod-1) 

to 14.9-fold up-regulation (egl-10). Statistical analysis indicated that there were 3 tested genes 

expressed aberrantly in response to at least one dosage of BPA. These three genes are egl-10, 

sod-1 and old-1. Among the 3 genes, 2 (egl-10 and old-1) were significantly up-regulated, 1 gene 

(sod-1) was significantly down-regulated. Gene regulation was active at the high concentration 

BPA treatment group; 3 (egl-10, old-1, and sod-1) and 1 (sod-1) were differentially expressed at 

1.0 µM and 0.1 µM BPA treatment groups, respectively.  

 

 

 

 

Effects of BPA on fat storage 

Here we show staining of C. elegan major fat stores using the Oil Red O (O’Rourke et al., 2009). 

We used worms exposed to glucose as a positive control and monitored for changes in body fat 
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Fig.14 Gene expression of selected genes following exposure. X-axis represents different 
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as BPA concentration increased. Fig.15 A shows an increase in fat storage, following the 

consumption of glucose, in comparison to the control (Fig.15B). However, as the concentration 

of BPA increased the amount of fat accumulation decreased (Fig. 15C, 15D) when compared to 

the control.  

 

 

 

 

 

Fig.15. BPA (Dose L1-L4). Images of stained fat stores in C. elegans represented by O Red Oil stains. 

A) Positive control using glucose diet. B) N2 worms (control). C) 0.1 µM BPA. D) 1.0 µM BPA 
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Roles of sod-1 and old-1 in growth regulation in response to BPA (RNAi by Feeding) 

Based on the significant results of the gene expression, we next assayed the functions of genes 

involved in stress response (sod-1 and old-1) by RNAi feeding (Fig.16). In worms exposed to 

low concentration BPA, the average body length of the vector N2 worms was 1170 µm. In 

comparing the 0.1 µM vector to the old-1 gene knockdown, there was an increase in length. 

However, comparing the 0.1 µM vector to the sod-1 gene knockdown, there was a decrease in 

length. In worms exposed to high concentration BPA, there was a decrease in length for both 

old-1 and sod-1 gene knockdown. All results were statistically significant. 
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Fig.16. Average length of N2 worms after RNAi feeding (n = 50), followed by 

L1-Adult BPA dosing. Different letters denote statistically significant differences.  



 

 

DISCUSSION 

Chronic BPA exposure at the high concentration (1.0 µM) causes BPA-induced growth 

inhibition. Since BPA exposure in humans occurs at various ranges and last for a prolonged 

period of time, it is important to investigate effects of chronic exposure to high concentrations of 

BPA. Based on the available data the primary source of exposure to biphenol A for most people 

is through diet. The highest estimated daily intake of bisphenol A in the general population 

occurs in infants and children and there is some indication that exposure to bisphenol A is 

increasing (Shelby, 2008). The median levels of BPA in human urine doubled from 1.3 µg/L to 

2.7 µg/L from 1988-2004 (Shelby, 2008).   

In this study we observed a dose-dependent decrease in length, width, area and 

wavelength when L1 stage C. elegans were exposed to low (0.1 µM) and high (1.0 µM) 

concentrations of BPA for 2.5 days. This suggests that exposure to a range of levels of bisphenol 

A can reduce growth in C. elegans. 

At approximately 65 hrs posthatch at 20
o
C, C. elegans begin egg laying and remain 

fertile until egg laying ends ~128 h post-hatching (Altun & Hall, 2009). We incorporated these 

time intervals for comparison of reproductive effects. We found that the majority of eggs laid for 

each treatment was a ~96 h after L1 and by ~137 h after L1 no eggs were produced. These 

findings are consistent with the fact that egg laying maximal of wt C. elegans occurs ~31 h after 

egg-laying begins (Altun & Hall, 2009). Chronic exposure to 1.0 µM BPA significantly inhibited 

egg production (Fig. 12) from 24 hours after egg laying began until the egg laying maximum. 

Conversely, exposure to 0.1 µM BPA significantly induced egg laying at ~96 h and remained 

slightly greater than the control at 65, 89 and 113 h after L1. At 72 h (The time point 137 hr post 

L1) after the start of egg laying, no more eggs were observed, although, however 1.0 µM BPA
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exposed worms stopped egg laying at ~120 h time point as compared to the control and 0.1 µM 

treatment groups which still laid 44 and 24 eggs, respectively. Taken together, exposure to 

micromolar concentrations of 1.0 µM BPA, decreases egg productions throughout C. elegans 

reproductive period. 

Speed can be calculated as wavelength x oscillation frequency. Therefore, the wavelength 

and speed are directly proportional. This is consistent with our data, where a decrease in speed in 

1.0 µM BPA was associated with a decrease in wavelength. The high concentration treatment 

group showed BPA-induced systemic toxicity as it was negatively affected in all the locomotive 

indices. Most of the worms had minimal forward and reverse speeds (0-20µm/s) at 1.0 µM BPA 

treated group. In normal food-replete conditions, worms tend to be “dwelling,” a behavior with 

frequent reversals and increased turn angles. This was not observed in our case, rather the 

number of reversals significantly decreased at 1.0 µM BPA treated group. This suggests that 

BPA exposure impacts locomotion and consequently affects worm dietary consumptions. It was 

reported that slow locomotion speed is associated with impaired neuronal network formed by 

interneurons AVA, AVB, AVD, and PVC (Leung et al., 2008). 

We then investigated the feeding behaviors of C. elegans after exposure to BPA by 

measuring their attainment levels (the number of worms reaching the food source divide by the 

total number of worms on the plate). Before 24 hr time point, more than half of the worms at 1.0 

µM BPA treated group did not reach the food source, suggesting inadequate feeding. This data 

supports and lends a probable explanation for reduced body growth. 

 We also investigated the expression patterns of 13 genes. Many of these selected genes 

are known to regulate functions including: movement, mating, foraging, cell migration, egg 

laying and stress response (Altun & Hall, 2009; Kim et al., 2001; Wu et al., 2001) The egl family 
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gene egl-10 along with two others (sod-1 and old-1) exhibited significant changes. Egl-10 

functions to encode an RGS protein which modulates motor neuron functions related to 

egg-laying (Moresco & Koelle, 2004; Wu et al., 2001). We found that at 1.0 µM BPA, egl-10 

exhibited a significant 14.9-fold up-regulation, suggesting egl-10 is among those sensitive to 

high dose BPA exposure. This may suggest an adaption mechanism to compensate the 

reproduction deficits. Additionally, we tested if the oxidative stress-responsive genes are 

changed in C. elegans following BPA exposure. We found that old-1, playing a role in stress 

resistance and regulation of adult lifespan was significantly up-regulated while sod-1, known to 

protect cells from oxidative damage had a 12.5-fold down-regulation. This indicated BPA may 

affect the stress-defense system and results in life-span defects. 

 To determine whether old-1 and sod-1 is involved in regulating growth in response to 

BPA exposure, we evaluated their effect with knockdown old-1 and sod-1. In worms exposed to 

0.1 and 1.0 µM BPA there was a decrease in length in the sod-1 loss of function mutants. These 

results were consistent with the gene expression data and indicated a possible involvement of 

sod-1 in growth regulation. Studies have shown lack of sod-1 results in increased age-related 

muscle mass loss (sarcopenia), macular degeneration, and shortened lifespan among others 

(Muller, Lustgarten, Jang, Richardson, & Van Remmen, 2007). The transcription of old-1 is 

upregulated in response to heat, UV light, and starvation (Murakami & Johnson, 2001). Our 

experiment indicated that old-1 is also upregulated in response to BPA treatment. However, our 

results did not support that old-1 is related to growth regulation.  

Indicated by Oil Red O fluorescence and consistent with our growth results, we found 

that increasing BPA concentration shows a decreasing amount of body fat. We used glucose as a 

positive control to illustrate that fat accumulation increased with the intake of excess calories 

(Fig.15A). C. elegans fat stores following exposure to 0.1 µM and 1.0 µM BPA showed an 

http://en.wikipedia.org/wiki/Sarcopenia
http://en.wikipedia.org/wiki/Macular_degeneration
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evident decrease in the amount of body fat. Contrary to previous studies, our observations 

suggest that BPA exposure at tested concentrations is not associated with increased fat 

storage/obesity in worms.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

GENERAL METHODS 

C.elegans Treatments  

All chemicals were obtained from Sigma-Aldrich Chemicals Co. (St. Louis, MO, USA). 

BPA suspension was made in 5 mL ethanol and ultrapure water. N2 strain was synchronized and 

eggs were collected (Brenner, 1973) (see detailed methodology). Eggs were allowed to hatch as 

L1 worms without food. N2 L1s were kept at 20
o
C on an NGM agar medium with OP50 as food 

source. For the treatment, agar dose plates were made by mixing BPA solution into the agar 

medium to make a low and high concentration (0.1 µM and 1.0 µM BPA). Exposure time for 

both treatment and control (unexposed worms of the same living conditions) was from the L1 to 

adult stage (~72 hr).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

DETAILED METHODOLOGY 

Synchronization Process 

The synchronization and collection process is as follows, NGM plates containing the N2 worms 

were washed 3x with M9 solution and transferred into 15 ml centrifuge tubes. These tubes were 

centrifuged, supernatant discarded, and 5 ml M9 added, then centrifuged again. This step was 

repeated 2 more times to wash the worms. After the third wash the supernatant was discarded, 5 

ml of synchronization solution (0.675 mL NaOH , 1.25 mL bleach and 4.375 mL distilled water ) 

was added, and tubes were gently hand shaken for 5-8 minutes. Tubes were then centrifuged, 

supernatant discarded, 5 ml of M9 added, and tubes centrifuged again. The synchronization 

process will lyse the worms, killing them, and leaving behind eggs left inside and outside of the 

body to be collected. The remaining eggs inside the tubes with M9 will be incubated at 20° C on 

a shaker for 12-18 hours, where they will hatch as L1s. 

RNA Extraction 

RNA was extracted using a mirVANA miRNA isolation Kit. To begin, each of 10 frozen 

tubes containing all the worms were thawed on ice for 10 minutes. 600 μl of Lysis/Binding 

Buffer was added to all 10 tubes and each tube was sonicated, to disrupt and homogenize the 

tissue, using an ultrasonic converter on ice. Following sonication, 60 μl of RNA homogenate 

additive was added to each tube and each tube was vortexed for 30 seconds and placed on ice for 

10 minutes. After ice incubation, each tube received 600 μl of Acid-Phenol Chloroform then 

vortexed for 60 seconds. Tubes were then centrifuged for 5 minutes (10.000 rpm) and the 

aqueous phase of each tube was transferred into 10 new 2 ml centrifuge tubes (this process was 

repeated X2). The final aqueous phase of each tube was transferred into a new tube and 1.25 

volume of 100% ethanol was then added to each tube. Each of the lysate/ethanol mixtures were 

then transferred to filter cartridges in new tubes and centrifuged for ~15 seconds (10,000 rpm).
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Each filter cartridge of each tube was then washed with miRNA wash solution 1 and 2/3 

provided in kit. Next, each filter cartridge of each tube was transferred into new tubes and 50 μl 

of pre-heated (95°C) nuclease-free water was applied to each filter. Each tube containing filter 

cartridges were then centrifuged for 5 seconds (5,000 rpm) to recover RNA product. Finally, 

each RNA product was quantified using a NanoDrop ND-100 spectrophotometer and 

immediately stored in the -80 ºC freezer until time for reverse transcription. 

Reverse Transcription (RT) 

After NanoDrop analysis of the RNA samples, I chose the 4 best treatment and 4 best 

control RNA samples to use for RT-PCR (8 tubes). RT-PCR was performed using a TaqMan® 

MicroRNA Reverse Transcription Kit. 8 new 0.5 ml microfuge tubes were collected. Several 

calculations were made to determine how much nuclease free water, RNA sample, and master 

mix would be added to each the microfuge tubes. The master mix contained calculated volumes 

of components provided by the kit (RNase inhibitor, 100 mM dNTPs, 10X Reverse Transcription 

Buffer, Multiscribe™ Reverse Transcriptase, and primer mix (not provided in kit)). After each 

tube received calculated volumes of nuclease-free water, RNA sample, and the master mix, the 

tubes were mixed gently and centrifuged for 10 seconds (200 rpm). The tubes were then 

incubated on ice for 5 minutes and loaded into the thermal cycler for reverse transcription. The 

thermal cycler process includes 30 minutes at 16°C, 30 minutes at 42°C, 5 minutes at 85°C, and 

will hold at 4°C. After RT-PCR, each tube, now containing RT product or cDNA, was removed 

from the thermal cycler and each tube received 80 μl of DNase-free water. The tubes were then 

mixed by vortexing and immediately stored at -20°C until needed for qRT-PCR. 

Quantitative Real-Time PCR (qRT-PCR) 

Previously made RT-PCR products and purchased SYBR® Green dye were placed on ice 

to thaw. Using a 384-well plate microplate, following a written template, I loaded each 
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individual well with 5.5 μl RNase DNase-free water, 7.5 μl SYBR® Green dye, and 1 μl 

RT-PCR product. I then loaded each well with 1 μl of primer solution (20 μl forward, 20 μl 

reverse, 60 μl water) specific to the genes of interest. For each RT-PCR product there were 3 

technical replicates. Once the plate was fully loaded it was covered and sealed tightly with a film 

to prevent evaporation of any well samples. The plate was then centrifuged to ensure each 

sample mixture is settled on the bottom of each well. Next, the plate was loaded into the 

qRT-PCR machine to undergo one 10 minute cycle at 95°C (enzyme activation), and 45 PCR 

cycles including 15 seconds at 95°C (denaturation of DNA), and 60 seconds at 60°C (DNA 

annealing and extension). 
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