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Bacterial infections are a significant health problem that can be detrimental to the human 

population. It is estimated that bacterial infections are responsible for billions of dollars’ worth 

of damages in the health care field alone, and numerous deaths annually.  Bacterial infections 

can become so detrimental because they produce a structure called biofilm, which facilitates 

antibiotic resistance and is a major cause of chronic infections. In order to combat this threat, 

new anti-biofilm and antibiotic therapies are being developed and their efficiency must be tested. 

A series of antimicrobial peptides (AMP) containing unnatural Tic-Oic amino acids have been 

developed for this purpose. 

Traditional methods such as biological assays are the standard by which antibiotics are 

judged, but they have their drawbacks, such as the lengthy test times and the costs associated 

with it and the reagents. Electrochemical biosensors can remedy some of those drawbacks by 

offering speed and cost benefits.  Electrochemical biosensors consisting of Layer-by-Layer 

(LbL) modified electrodes were constructed.  These sensors were fabricated to test the anti-

biofilm activity of the aforementioned unnatural amino acid-containing antimicrobial peptides 



against a model of Pseudomonas aeruginosa or against the bacteria itself.  P. aeruginosa is a 

common biofilm producing bacteria. 

First, we employed alginate as one of the layers in our sensor as P. aeruginosa is known 

to produce this as its major biofilm component.  We show that the penetration of the alginate 

layer by the AMP can be detected electrochemically utilizing a solution-phase redox active 

molecule that produces an increasing signal upon electrochemical reduction when the film 

becomes compromised.  Biological assays are presented that provide some validation for the 

sensor, but elucidated a particular AMP as compared to the electrochemical alginate sensor.   

Based on this slight disagreement between our electrochemical model and the biological 

assay, we employed sensors that featured directly immobilized P. aeruginosa PAO1 on the 

electrode surface.  These bacteria are electroactive, which negated the need for an external redox 

active molecule, and allowed the monitoring of anti-biofilm activity via a signal decrease over 

time.  The P. aeruginosa sensor showed more agreement with the biological assay, highlighting 

the same AMP as active toward biofilm degredation at low (<1 µM) concentrations.  Overall, 

these electrochemical biosensors utilizing models of and actual P. aeruginosa have opened up 

new avenues to test for effectiveness of potential anti-biofilm agents toward biofilm forming 

bacteria.    
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CHAPTER 1: INTRODUCTION 

Bacterial Biofilm and Traditional Treatment Regimens 

Bacterial infections are a significant health problem that can be detrimental to the 

human population. It is estimated that bacterial infections are responsible for billions of 

dollars worth of damages and numerous human deaths annually.1  However, the manner 

in which bacteria cause their problems can be much more nuanced.  Bacteria can infect a 

host as free living cells, or planktonically, but as they grow they can aggregate and form 

secondary structures that make them much more problematic.2,3 As bacteria come 

together and aggregate, they can form structures termed biofilms.2-7 Some key biofilm 

forming bacteria that affect human health are summarized in Table 1.1.  These bacteria 

include methicillin-resistant Staphylococcus Aureus (MRSA), and Pseudomonas 

aeruginosa, which is associated with chronic respiratory illness in cystic fibrosis (CF) 

patients.  The NIH estimates that 3 out of 4 bacterial infections are biofilm based. 

Biofilms help to create multi-drug resistant (MDR) bacteria, which are becoming more 

common in healthcare.8 Other biofilm bacteria that impact the economy through the food 

and water supply as well as transportation and shipping industries include Escherichia 

coli, Listeria monocytogenes, and Salmonella typhi.9  

Biofilm is a structured community of bacterial cells enclosed in a self-produced 

polymeric, exopolysaccharide (EPS) matrix that adheres to an inert or living surface.5,10,11 

This EPS matrix is not solely structural, but also provides a protective aspect. Within the 

matrix, channels are formed for the transport of proteins and other nutrients to sustain of 

the viability of the bacterial colony. 7,11-16The EPS is comprised of many different 
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macromolecules including proteins, nucleic acids, peptidoglycan, lipids, phospholipids, 

and even dead bacteria.5,9,10,17-19 This structure is the basis for the protection of the  

Table 1.1.  Summary of biofilm producing bacteria with large impacts on human health. 

Common bacterial 
biofilm species Infection/disease 

CDC 
threat 
level 

Infections / 
Deaths per 

year 
Comment 

Methicillin-resistant 
Staphylococcus 
aureus (MRSA) 

Nosocomial infection 

Medical implantable devices 
Serious 

80,461 / 
11,285 

Leading cause 
of healthcare-

associated 
infections 

Carbapenem-resistant 
Enterobacteriaceae 

Biliary tract infection, 
Bacterial Prostatitis 

Urgent 9,000 / 600 

Has become 
resistant to 
nearly all 
available 

antibiotics 

Streptococcus 
pneumoniae 

Bacterial pneumonia and 
meningiti 

Serious 
1,200,000 / 

7000 

96 million in 
medical costs 

per year 

Pseudomonas 
aeruginosa 

Pneumonia, bloodstream, 
surgical site and urinary 

tract 
Serious 51,000 / 440 

6,700 
infections are 

multidrug-
resistant 

infections a 
year 

Vancomycin-
Resistant 

Enterococcus 

Bloodstream, surgical site, 
urinary tract infections 

Serious 66,000 / 1,300 

20,000 drug 
resistant 

infections with 
few treatment 

options. 

Drug-resistant 
Salmonella typhi 

Typhoid fever Serious 3800 

21,700,000 
infections 

worldwide 67% 
are drug 
resistant 
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bacterial colony from outside stressors, such as antibiotics, immune system responses of 

the host body, and also other bacteria.9,18,20,21 Scheme 1.1 shows the primary events that 

lead to formation of biofilm and eventual spread of these bacterial infections. 

  

Scheme 1.1.  Formation of biofilm.  a) Planktonic bacteria settle on 
an adequate surface such as an implanted device in human tissue.  b) 
Aggregation of the bacteria initiates QS, and c) biofilm EPS 
formation.  d) Antibiotics and microphage processes cannot penetrate 
the biofilm resulting in e) inflamed tissue.  Also, the biofilm can 
release persister cells that result in additional biofilm colonies.  
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As bacteria start to aggregate, they enter into a communication process called 

quorum sensing (QS) that allows for the coordination of the colony to form biofilm. QS is 

essentially influenced by a set of two proteins. One protein is responsible for the 

production of a signaling molecule, which is typically referred to as an autoinducer (AI), 

while the other protein responds to the AI. Once the AI have reached a critical threshold, 

the bacteria starts to produce biofilm.11,22-25 The biofilm then works to attenuate the 

effectiveness of antibiotic processes to become a chronic infection essentially acting as a 

shield to protect against outside stressors, like antibiotics. Bacterial colonies that form 

biofilm have been found to be over 100 times less susceptible to antibiotics and 

disinfecting agents when compared to their non-biofilm counterparts.2,7,16,23,25 This 

decrease is susceptibility is due to both tolerance and resistance.  Tolerance is the process 

where bacteria do not grow but do not die, while resistance is the ability of bacteria to 

grow in the presence of a drug designed to kill it. All bacteria have the ability to become 

resistant to antibiotics regardless of their phenotype, but only bacterial colonies that form 

biofilm exhibit tolerance. 23,25 

Tolerance within the bacterial colony is based on the structure and the matrix 

composition. The EPS acts as a shield to stop the penetration of foreign agents deeper 

into the core of the colony.2,25,26 The structure creates a layered environment where the 

core of the colony exists in a dormant state compared to the actively reproducing 

periphery. The dormant state works to minimize the effect of most antibiotics, which act 

by targeting metabolically active bacteria. The bulk of the bacterial colony exists in the 

dormant state until time comes for reproduction when persister cells are released.16,23 

Persister cells are bacterial cells that have attenuated metabolic and reproductive activity 



	
   5	
  

and are highly tolerant to antibiotics.  This tolerance is primarily because current 

antibiotic therapies target actively dividing cells.  Overall, it is through the protective 

biofilm itself and the release of persister cells that these bacterial infections evade 

destruction via natural or pharmaceutical means. 3,7,12,23,27 

Anti-Biofilm Strategies 

Biofilm-based bacteria are able to survive in hospital environments on tools and 

other non-biological instruments, evading eradication by cleaning agents such as 

triclosan, benalkonium chloride and chlorhexidine gluconate.2  Many chronic infections 

start from bacteria surviving on surfaces such as implants or catheters. When these 

instruments and surfaces are used on or introduced to patients, bacteria may spread to the 

patients causing chronic infections.1 The only way to remove biofilm infections is to 

remove the implant or infected tissue, which increases the risks of new infections and 

medical complications for the patient.2,4,7,23,25 A chronic infection progresses slower than 

an acute infection. This slow development is what allows the bacteria to create a biofilm 

before any antibiotics are administered. Chronic infections can be treated with antibiotics, 

but it is very difficult.2,4  Essentially the biofilm protects the underlying colony, the 

antibiotic is not effective at killing the dormant bacteria, and nutrient channels force the 

antibiotic out of the colony.  Natural defenses only serve to enhance inflammation of the 

surrounding tissue by subjecting the biofilm to reactive oxygen species.2,10,13,28  Also, 

only two new classes of antibiotics, oxazolidinones and lipopeptides, have been 

introduced into the clinic over the last 40 years. Oxazolidinones are broad spectrum 

antibiotics that inhibit protein synthesis by interfering with messenger RNA mechanisms. 
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Lipopeptides are antibiotics that disrupt several bacterial membrane functions, which 

causes an inhibition of protein, DNA and RNA synthesis.29-31 

Studies of bacterial biofilms have shown that biofilms increase resistance to many 

antibiotics including ampicillin, tetracycline, penicillin, erythromycin, and 

chloramphenicol. However, the current treatment for biofilm infection is treatment of the 

infection with these broad spectrum antibiotics over several weeks, which is the same as 

for an acute infection.6,9,22,23,27,32,33 This method may not successfully cure the infection. 

If a biofilm forms, then a persistent infection can occur leading to significant discomfort 

and prolonged illness. The methods currently used for suppressing or preventing bacterial 

biofilm formation are the early usage of antibiotics before biofilm can be formed, or the 

prolonged usage of antibiotics to suppress the bacteria once biofilm has been formed. 

Though both of these methods carry the risk of resistance being developed by the 

bacteria.32,33 The most effective way to prevent a bacterial biofilm-based infection is to 

prevent the initial biofilm formation. 

Based on the widespread health implications of biofilm, several antibiofilm 

antibiotic therapies have been proposed. Current promising methods for dealing with 

bacterial biofilm include the use of small molecules to control biofilm production. Small 

molecules such as autoinducing peptides, in addition to other signaling molecules, have 

been used to block bacterial signals that start production of biofilm within a colony. 

These molecules target the QS pathways described previously.  Focusing on the AI 

pathway, promising therapies include acyl homoserine lactones (AHLs) to target Gram-

negative bacteria and short peptides for Gram-positive bacteria. Overall, these studies 

essentially showed that small molecules that do not act as antibiotics or microbicides are 
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able to interfere with the regulatory systems that control biofilm formation and 

maintenance.15,22,29,31 These small molecules can then be used in conjunction with 

established antibiotics to increase overall effectiveness of the antibacterial agents.  

Another useful method for biofilm control is the use of natural products and 

natural product analogues.  Plant extracts have been used in medicine for thousands of 

years. An example is traditional medicine, in which plant extracts and herbs are used, 

which continues to this day. Plants such as garlic and blackberries have been shown to 

possess compounds with antibiotic properties, and several studies have shown that 

biofilm colonies treated in vitro with these extracts were more susceptible to treatment 

with antibiotics. Natural products can sometimes exhibit less toxicity within the human 

body but also tend to be less effective than other methods.17,29,31 

Antimicrobial peptides (AMP) have also been developed to control bacterial 

growth and biofilm formation. AMP are generally small, about 5-50 amino acid residues, 

and are highly positively charged.8,30,34 They contain both a polar and non-polar regions 

as well as a well-defined regions of hydrophobicity and hydrophilicity. Since bacterial 

cells contain high percentages of negatively charged phospholipids, this allows for 

bonding of the AMP to the membrane. One major drawback to the existing AMPs is their 

degradation by enzymes, which limits their therapeutic effectiveness. AMP containing 

unnatural amino acids in their structure are promising as they are resistant to degradation 

in the human body, which allows them to more effectively penetrate the bacterial 

membrane and biofilm.8,34  Theoretically, the unnatural AMP can create a path through or 

breakdown the biofilm, which in turn allows for the attack of antibiotics on the bacterial 

cells within the film.  Also, based on the lack of degradation and lower amounts of 
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bioactivated metabolite species, they also exhibit lower toxicity compared to small 

molecules. AMP effectiveness is due to their mechanism of antimicrobial activity and the 

difficulty of bacteria to develop a resistance to them. AMP have been shown to play 

major roles in the defense mechanism and innate immune response for several living 

organisms against bacteria.8 

 A series of antimicrobial peptides (AMP) containing unnatural amino acids were 

synthesized and have been shown to be effective against several bacteria associated with 

chronic infection.8 They were created to combat ESKAPE bacteria, which are known to 

commonly infect chronic wounds. These include Enterococcus faecium (meningitis), 

Staphylococcus aureus (boils, sinusitis), Klebsiella pnemoniae (pneumonia), 

Acinetobacter baumannii (“Iraqibacter”), Pseudomonas aeruginosa (opportunistic), and 

Enterobacter (opportunistic). The latter two are termed opportunistic pathogen in that 

they may lie dormant for periods of time in the body and cause little to no symptoms until 

overwhelming a compromised immune system that cannot raise adequate defenses.  The 

AMP developed as potential agents against these bacteria contained unnatural amino acid 

dipeptide units tetrahydroisoquinolinecarboxylic acid (Tic) and octahydroindolecarboxyl 

acid (Oic). These Tic-Oic dipeptide units form a hydrophobic backbone and were 

coupled with cationic ammonium side chain groups that were connected to the main 

peptide sequence with varying carbon chain linkers.8 A general structure of the unnatural 

amino acid containing AMP is shown below in Scheme 1.2, which also shows the Tic-

Oic dipeptide structure.  Due to the hydrophobic primary sequence interior, the peptide 

has been shown to primarily adopt an alpha helix structure.   
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In addition, these peptides were used against solution phase, or planktonic, 

bacteria from the aforementioned strains.  Several of the AMP variants showed 

effectiveness in killing the bacteria in solution based on measuring cellular absorbance as 

the bacteria were exposed to the peptides.  One peptide in particular, TTO-53 showed 

enhanced antimicrobial properties.  TTO-53 is described in Chapter 2, while the three 

main peptides used in this particular study are also summarized in Scheme 1.2.  Based on 

the effectiveness of the AMP toward the ESKAPE bacteria, we wanted to study these 

AMP for anti-biofilm activity, as this property has not yet been described for these 

peptides.8  As stated previously, it is through the biofilm formation that these bacteria are 

so difficult to eradicate.	
     

Scheme 1.2.  General structure of the unnatural amino acid containing AMP used in this study.   
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Analysis Methods/Electrochemical Sensor Development 

Currently, biological assays are the standard that is used to test the efficiency of 

antibiotics and antibiofilm agents. These assays include the introduction and exposure of 

the antibiotic or antibiofilm agent to a bacterial culture that is grown within the wells of a 

96-well plate. The introduction of the antibacterial or anti-biofilm agent is done during 

the growth of the bacteria, an inhibition assay, or after the establishment of a biofilm on 

the walls of the plate, a dispersion assay.7,32,35  In either case, the agent is allowed to 

interact over a timed period, usually 24 hours, and then compared to a control. This 

method allows for effective quantification of minimum inhibitory concentration (MIC) 

and also minimum bactericidal concentration (MBC). Both values are used to determine 

the viability of the agents against the tested bacterial strain. MIC is the lowest 

concentration of an antibacterial agent to inhibit growth. MBC is the lowest concentration 

of an antibacterial agent required to kill a particular bacterium. The testing can then be 

further analyzed through the use of dyes, such as crystal violet, and UV-Vis 

spectroscopy.  Crystal violet dye can permeate the biofilm that is to be imaged.  Later, the 

bound dye can be released via exposure to weak acid, and analyzed using visible 

spectroscopy.  This allows the concentration of biofilm within each well to be quantified 

when compared by absorbance. Major issues with the current method are the amount of 

time required to perform a single test, which can span 1-2 weeks, cost of the 

instrumentation, and the volumes of solution needed.  Larger volume amounts needed for 

well plate assays leads to high costs when employing unique small molecules or 

expensive synthesized peptides. 
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Electrochemical monitoring and sensor development have emerged as newer 

methods to determine the biological effectiveness of a variety of compounds.  

Electrochemical sensors offer speed, cost, and miniaturization benefits over standard 

assays. In addition, electrochemical sensors can offer answers to biological questions that 

take a fraction of the time compared to standard biological assays. Electrochemical 

methods include several different analysis techniques. Square wave voltammetry (SWV) 

and cyclic voltammetry (CV) are both highly utilized within electrochemical sensors. CV 

involves a linear increase and decrease of potential on a working electrode over time 

while monitoring the current. Current is then graphed vs. potential, which shows either 

diffusing or immobilized species reduced and oxidized at the electrode surface. CV 

provides directly quantitative information and also allows one to determine the redox 

potential of a species of interest. SWV offers enhanced sensitivity compared to CV. This 

technique differs from cyclic voltammetry in that it utilizes inputs of differential pulses as 

opposed to a linear sweep. The potential is pulsed forward and held for a period of time 

before being pulsed in the reverse direction and held again.  The forward pulses increase 

several mV each subsequent cycle, which allows the potential to gradually become more 

positive or negative. The current is sampled twice during each cycle, once on the forward 

pulse and and once on the backward pulse, and the output is the difference in the current 

versus potential. The main advantage of SWV is the removal of charging currents via the 

pulse sequence, which means the output current is strictly Faradaic, or due to the studied 

redox process.  Additionally, it is much faster than other derivative electrochemical 

methods. 20,24,36-38 
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Several groups have utilized these techniques to develop electrochemical sensors 

to assay bacterial growth and breakdown. An electrochemical sensor was developed to 

quickly quantify the presence of certain bacterial species related to P. aeruginosa.  This 

was through the detection of pyocyanin, which is produced by the bacteria.  Pyocyanin 

gives the bacteria its blue-green color.  Additionally, it plays a part in the QS mechanism 

of the bacteria colony while also acting as a toxin to fight off other bacteria. Studies using 

carbon fiber sensor assembly as combined detection element and transduction conduit 

were constructed to determine the concentration of pyocyanin in a system.20,24 

Rudimentary detection of pyocyanin in biological fluids has been studied before using a 

hanging mercury drop electrode (HMDE), but this method has not been used to detect 

pyocyanin in wound fluids. QS inhibition through pyocyanin detection has been seen 

using graphite rods as electrodes, relying upon differential pulse voltammetry (DPV). 

One of the main benefits of electrochemical biosensors is the ability for miniaturization.  

A miniaturized pyocyanin sensor was used to create a “smart-bandage,” which, in theory, 

was able to provide intelligent in situ wound monitoring. This would allow for early 

detection of P. aeruginosa via pyocyanin production, which can then be treated before 

the biofilm can be fully established. The concentration of pyocyanin was detected down 

to 10 µM with variance of approximately 2%.24   

Other studies focusing on the detection of P. aeruginosa via pyocyanin have 

utilized screen-printed electrodes and square wave voltammetry (SWV). Spiked urine 

sputum block and bronchial lavages were utilized to determine the detection limits of 

pyocyanin as an indicator of P. aeruginosa. The study was able to detect biologically 

relevant concentrations of pyocyanin, in the fluids spiked with P. aeruginosa, which 
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supported their hypothesis that electrochemical detection can be used to rapidly diagnose 

P. aeruginosa infections in biological fluids. These applications were both able to detect 

the presence of bacteria and show interactions within the bacterial system in a very rapid 

time frame.20  

A multi-array electrochemical sensor with pattern recognition has shown 

usefulness in identifying bacteria based on antibiotic susceptibility. This study utilized 

the electrochemical sensor to measure the dissolved oxygen content in a 96-well plate. 

The study found that there was a steady decrease in dissolved oxygen as cells grew; 

however, in the presence of antibiotics at the MIC, no oxygen consumption was 

observed. This study showed that different types of bacteria can be identified using 

oxygen consumption curves, and the addition of antibiotics to the growth medium can 

then further increase the discrimination.39  

While other studies have focused on detection of bacteria, we have developed an 

electrochemical sensor that seeks to mimic a standard biological biofilm assay where 

bacteria immobilized directly on an electrode surface can be monitored.  Our studies here 

focused primarily on P. aeruginosa, for a multitude of reasons. It is a known biofilm 

producer, ease of biofilm growth, and its electrochemical activity.7,20,23,40  The electrode 

biosensor was created using a layer-by-layer (LbL) method, which allowed the formation 

of a polymer bed on the electrode surface via subsequent and repeated exposure to 

polymers of opposite charge.41-43 Once an underlying polymer surface was created, the 

final layers were formed based on how P. aeruginosa forms biofilms.  We explored two 

avenues for the construction of the sensor.  Our early efforts described in Chapter 3 

focused on a more facile approach utilizing only the primary biofilm component 
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produced by P. aeruginosa, alginate. However, biological assay results described in 

Chapter 4 did not exactly match findings from the alginate electrochemical assay.  

Therefore, we explored ways to physically attach P. aeruginosa to the electrode surface 

in order to provide a more accurate sensor, which is described in Chapter 5.  We show 

herein that this new electrochemical approach can provide an estimate of the antibiotic 

and anti-biofilm efficiency of a series of the aforementioned unnatural amino acid 

containing AMP toward P. aeruginosa.  The sensor has the ability to evaluate anti-

biofilm activity related to the AMP against P. aeruginosa in a significantly shorter time 

frame utilizing vastly reduced solution volumes of the AMP as compared to standard 

biological assays.  Overall, the sensor technology described herein is a promising 

analytical method that may offer the ability to assay antibiofilm capabilities from a 

multitude of potential antibiotic drug candidates toward a variety of biofilm producing 

bacteria. 



	
  

References 

1. The direct medical costs of healthcare-associated infections in U.S. hospitals and the 

benefits of prevention - Scott_CostPaper.pdf. 

http://www.cdc.gov/HAI/pdfs/hai/Scott_CostPaper.pdf. Accessed 1/15/2015, 2015. 

2. Costerton JW. Replacement of acute planctonic by chronic biofilm diseases. In The 

Biofilm Primer, Eckey, C., Ed., Springer: Berlin, 2007. 

3. Costerton JW. Cystic fibrosis pathogenesis and the role of biofilms in persistent 

infection. Trends Microbiol. 2001;9(2):50 - 52.  

4. Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G. The application of 

biofilm science to the study and control of chronic bacterial infections. J. Clin. Invest. 

2003;112(10):1466 -1477. 

5. Jefferson KK. What drives bacteria to produce a biofilm? FEMS Microbiol. Lett. 

2004;236(2):163-173. 

6. Donlan RM, Costerton JW. Biofilms: Survival mechanisms of clinically relevant 

microorganisms. Clin. Microbiol. Rev. 2002;15(2):167-193. 

7. Singh PK, Parsek MR, Greenberg EP, Welsh MJ. A component of innate immunity 

prevents bacterial biofilm development. Nature. 2002;417(6888):552-555.  

8. Hicks RP, Abercrombie JJ, Wong RK, Leung KP. Bioorg. & Med. Chem. 2012;21:205. 



	
   16	
  

9. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: From the natural 

environment to infectious diseases. Nat. Rev. Microbiol. 2004;2(2):95-108.  

10. Hentzer M, Eberl L, Givskov M. Transcriptome analysis of pseudomonas aeruginosa 

biofilm development: Anaerobic respiration and iron limitation. Biofilms. 2005;2(1):37-

61.  

11. Folsom JP, Richards L, Pitts B, et al. Physiology of pseudomonas aeruginosa in 

biofilms as revealed by transcriptome analysis. BMC Microbiol. 2010;10, 294-2180-10-

294.  

12. Lewis K. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 

2001;45(4):999 -1007.  

13. Walters MC, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. Contributions of 

antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of 

pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob. Agents 

Chemother. 2003;47(1):317-323.  

14. Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. 

Microbiol. 2002;292(2):107-113.  

15. Rogers SA, Huigens RW,3rd, Cavanagh J, Melander C. Synergistic effects between 

conventional antibiotics and 2-aminoimidazole-derived antibiofilm agents. Antimicrob. 

Agents Chemother. 2010;54(5):2112-2118.  



	
   17	
  

16. Kim J, Hahn JS, Franklin MJ, Stewart PS, Yoon J. Tolerance of dormant and active 

cells in pseudomonas aeruginosa PA01 biofilm to antimicrobial agents. J Antimicrob 

Chemother. 2009;63(1):129-135.  

17. Gaddy JA, Actis LA. Regulation of acinetobacter baumannii biofilm formation. 

Future microbiol. 2009;4:273-278. 

18. Stoodley P, Wilson S, Hall-Stoodley L, Boyle JD, Lappin-Scott HM, Costerton JW. 

Growth and detachment of cell clusters from mature mixed-species biofilms. Appl 

Environ. Microbiol. 2001;67(12):5608-5613.  

19. Sutherland I. The biofilm matrix – an immobilized but dynamic microbial 

environment. Trends Microbiol. 2001;9(5):222-227.  

20. Webster TA, Sismaet HJ, Conte JL, Chan IP, Goluch ED. Electrochemical detection 

of pseudomonas aeruginosa in human fluid samples via pyocyanin. Biosens. Bioelectron. 

2014;60:265-270.  

21. Tenover FC. Mechanisms of antimicrobial resistance in bacteria. Am. J. Med. 

2006;119(6):S3- S10.  

22. Geske GD, Wezeman RJ, Siegel AP, Blackwell HE. Small molecule inhibitors of 

bacterial quorum sensing and biofilm formation. J. Am. Chem. Soc. 2005;127(37):12762-

12763.  

23. Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of 

bacterial biofilms. Int. J. Antimicrob. Agents. 2010;35(4):322-332.  



	
   18	
  

24. Sharp D, Gladstone P, Smith RB, Forsythe S, Davis J. Approaching intelligent 

infection diagnostics: Carbon fibre sensor for electrochemical pyocyanin detection. 

Bioelectrochemistry. 2010;77(2):114-119.  

25. Bjarnsholt T, Jensen PO, Burmolle M, et al. Pseudomonas aeruginosa tolerance to 

tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing 

dependent. Microbiology. 2005;151(Pt 2):373-383.  

26. Evans LR, Linker A. Production and characterization of the slime polysaccharide of 

pseudomonas aeruginosa. J. Bacteriol. 1973;116(2):915-924. 

27. Drenkard E, Ausubel FM. Pseudomonas biofilm formation and antibiotic resistance 

are linked to phenotypic variation. Nature. 2002;416(6882):740-743.  

28. Borriello G, Werner E, Roe F, Kim AM, Ehrlich GD, Stewart PS. Oxygen limitation 

contributes to antibiotic tolerance of pseudomonas aeruginosa in biofilms. Antimicrob. 

Agents Chemother. 2004;48(7):2659-2664.  

29. Worthington RJ, Richards JJ, Melander C. Small molecule control of bacterial 

biofilms. Org. Biomol. Chem. 2012;10:7457. 

30. Pigrau C, Almirante B. Oxazolidinones, glycopeptides and cyclic lipopeptides. 

Enferm. Infecc. Microbiol. Clin. 2009;27(4):236-246. 

31. Worthington RJ, Richards JJ, Melander C. Small molecule control of bacterial 

biofilms. Org. Biomol. Chem. 2012;10(37):7457-7474.  



	
   19	
  

32. Costerton JW. Bacterial biofilms: A common cause of persistent infection. Science 

1999; 284, 1318. 

33. Costerton, J. W., Lewandowski, Z., DeBeer, D., Caldwell, D., Korber, D., & James, 

G. Biofilms, the customized microniche. J. Bacteriol. 1994;176(8):2137. 

34. Russell AL, Kennedy AM, Spuches AM, Venugopal D, Bhonsle JB, Hicks RP. 

Spectroscopic and thermodynamic evidence for antimicrobial peptide membrane 

selectivity. Chem. Phys. Lipids. 2010;163(6):488-497.  

35. Stewart PS, William Costerton J. Antibiotic resistance of bacteria in biofilms. The 

Lancet. 2001;358(9276):135-138.  

36. Bogomolova A, Komarova E, Reber K, et al. Challenges of electrochemical 

impedance spectroscopy in protein biosensing. Anal. Chem. 2009;81(10):3944-3949.  

37. Baldrich E, Munoz FX, Garcia-Aljaro C. Electrochemical detection of quorum 

sensing signaling molecules by dual signal confirmation at microelectrode arrays. Anal. 

Chem. 2011;83(6):2097-2103.  

38. Hvastkovs EG, Buttry DA. Recent advances in electrochemical DNA hybridization 

sensors. Analyst. 2010;135(8):1817-1829.  

39. Karasinski J, White L, Zhang Y, et al. Detection and identification of bacteria using 

antibiotic susceptibility and a multi-array electrochemical sensor with pattern recognition. 

Biosens. Bioelectron. 2007;22(11):2643-2649.  



	
   20	
  

40. Wozniak DJ, Wyckoff TJ, Starkey M, et al. Alginate is not a significant component of 

the extracellular polysaccharide matrix of PA14 and PAO1 pseudomonas aeruginosa 

biofilms. Proc Natl Acad Sci U S A. 2003;100(13):7907-7912.  

41. Rusling JF, Hvastkovs EG, Hull DO, Schenkman JB. Biochemical applications of 

ultrathin films of enzymes, polyions and DNA. Chem. Commun. 2008; 141-154.  

42. Lvov YM, Lu Z, Schenkman JB, Zu X, Rusling JF. Direct electrochemistry of 

myoglobin and cytochrome P450cam in alternate layer-by-layer films with DNA and 

other polyions. J. Am. Chem. Soc. 1998;120(17):4073-4080.  

43. Borghol N, Mora L, Sakly N, et al. Electrochemical monitoring of chlorhexidine 

digluconate effect on polyelectrolyte immobilized bacteria and kinetic cell adhesion. J. 

Biotechnol. 2011;151(1):114-121. 

  

	
  



CHAPTER 2: EXPERIMENTAL 

Electrochemical Assay 

Materials 

The peptides used in this study were synthesized in Prof. Rickey Hicks’ lab 

following standard and reported protocols.1  Additional TTO-53 was purchased from 

New England Peptide (Gardner, MA).  The peptides had the general sequence:  

N-GF-(TicOic)-Gx-(TicOic)-Gx-(TicOic)-GxTic-xxxx-C 

Where is x =  

K (lysine, 4-carbon linker to amine, TTO-23) 

Dpr (diaminopropionic acid, 1-carbon linker, TTO-45) 

Dab (diaminobutyric acid, 2-carbon linker, TTO-53) 

Control Peptides 

Control peptide 14 exhibits Tic-Oic units but does not contain any positive charges 

Control peptide 34 only contains the cationic lysines.  

 

The naming of the peptides denotes the number of Tic-Oic dipeptides in the sequence (T 

= tri, three) and the last number denotes a synthesis marker produced by the Hicks group 

at ECU.  The peptides were delivered in previously lyophilized mg quantities.  They were 

diluted in 10 mM Tris/10 mM NaCl pH 7.4 (E-buffer) to approximately 900 µM then 
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distributed into 100 µL aliquots.  Before experiments, an aliquot was diluted with E-

buffer to desired concentrations 0.1-25 µM.  

Sodium alginate (Sigma Aldrich) solutions were created at approximately 3 mg 

mL-1 by mixing the alginate powder in E-buffer. After a short period to allow the alginate 

to solubilize, these solutions were used immediately.  

Pseudomanas aeruginosa (strain PAO1) was obtained from Dr. Eric Anderson in 

the Department of Biology at East Carolina University.  It was obtained from a glycerol 

stock and stored at -80oC.  

Tris(hydroxymethyl)amino methane buffer (Tris), potassium hexacyanoferrate 

(III) (ferricyanide, (Fe(CN)6
3-), poly(diallyldimethylammonium) chloride (PDDA), 

polystyrene sulfonate (PSS), and Luria broth mix (LB) were obtained from Sigma-

Aldrich.  All other materials were reagent grade and used as received. 

 

Electrode film assembly 

For the simplified alginate assay (Chapter 3), 2 mm-dia. pyroytic graphite (PG) 

electrodes were abraded on fine grit carbide paper and sonicated in water and ethanol 

followed by drying under a stream of argon. Layer by layer (LbL) films were formed on 

the electrodes by exposing the electrode to 30 µL drops of the following solutions for 15 

min. each: PDDA, 2 mg mL-1 in deionized water + 50 mM NaCl, PSS, 2 mg mL-1 in 

deionized water + 50 mM NaCl, and alginate (3 mg mL-1 + 50 mM NaCl).2  Electrodes 

were rinsed with deionized water between each layer.  The final film formation was 

(PDDA/PSS)2PDDA/Alg. 
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For the more detailed bacterial electrochemical assay (Chapter 5), electrodes were 

cleaned and prepared as described above followed by modifications with polymer and 

bacteria.  The underlying polymer layers were PDDA/PSS/PDDA, which was then 

followed by exposure to the PAO1 bacteria.  1 mL of LB broth was inoculated with P. 

aeruginosa PAO1 using a sterile loop and allowed to grow overnight in a shaking 

incubator at 370C at 150 rpm. The bacteria was introduced onto the polymer-modified 

electrode surface by the addition of 10 µL of bacteria in LB broth solution directly to the 

electrode surface as a single drop. The electrodes were then capped and parafilmed to 

stop evaporation of bacteria solution from the electrode surface. The electrodes were 

placed into the incubator/shaker at 37 0C for a minimum of 6 hours and 50 rpm.  Once 

complete, the final film formation was PDDA/PSS/PDDA/PAO1.  

  

Electrochemistry 

All electrochemical measurements were performed using a CH Instrument 660A 

work station. The modified electrodes were placed in an electrochemical cell containing 

10 mL E-buffer along with a saturated calomel electrode (SCE) or Ag/AgCl (saturated 

KCl) reference electrode and a platinum wire as a counter electrode. Solutions were 

purged with Ar for 1 minute before each electrochemical run.  For alginate films, cyclic 

voltammetry (CV) and square wave voltammetry (SWV) were employed to monitor the 

electrodes in the presence of 400 µM of Fe(CN)6
3-.  For PAO1 films, no ferricyanide was 

employed. 

CV and SWV scans were taken initially before any exposure to AMP.  This was 

the non-AMP exposure (t = 0 s) baseline.  The electrode was then removed from the E-
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buffer, rinsed briefly by submerging the electrode with a twisting motion in a solution of 

fresh E-buffer, and then exposed to 20 µL of the AMP.  After the timed interval (15 – 

600 s), the electrode was rinsed again with E-buffer, and placed back into the 

electrochemical analysis cell.  CV was obtained at 100 mV s-1 scanning a complete from 

0.5 V to 0.2 V forward scan and reversing back to 0.5 V, while SWV used the following 

parameters: potential range 0.5 to -0.2 V, step increment of 4 mV, amplitude of 25 mV, 

frequency 15 Hz, quiet time 2 s and sensitivity of 1x10-5 A. 

 

Biological Assay 

Materials 

LB broth is comprised of the following 1.0% Tryptone, 0.5% Yeast Extract, 1.0% 

sodium chloride (NaCl) at a pH 7.0 The LB broth is created using the following 

parameters for 1 liter, the following chemicals were dissolved 10 g Tryptone, 5 g yeast 

extract, and 10 g NaCl in 950 ml deionized water. The pH of the solution was then 

adjusted to 7.0 with NaOH and the volume was brought up to 1 liter. The solution was 

then autoclaved. 

LB Agar plates were created by preparing LB medium as above, but 15 g/L agar 

was added before autoclaving. After autoclaving, the solution was allowed to cool to 

approximately 55 0C, before being poured into 10 cm plates. The plates were allowed to 

solidify before they were inverted and stored at 40C.  

Pirate growth media (pirate media) was created using 6 g Na2HPO4, 3 g KH2PO4, 

0.5 g NaCl, 1 g NH4Cl, 4 g arginine, and 1 liter of deionized water. The pH was adjusted 
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to 7.4 then autoclaved. Once cooled, 2 mL of 1 M MgSO4 and 0.1 mL of 1 M CaCl2 were 

added. 

 All other compounds were reagent grade and used as received.  

Assay Procedure 

Two biological assays were employed.3,4 For the biofilm dispersion assay, LB 

broth 50 mL was inoculated with PAO1 using a sterile loop and allowed to grow 

overnight at 37oC in an incubating orbital shaker.  The bacterial solution was then plated 

on the agar plates and again allowed to grow overnight at 37oC.  Fresh LB medium was 

then inoculated with a single bacterial colony from the agar plate using a flame sterilized 

inoculating loop.  Following the overnight growth, 100 µL of the bacteria was diluted 

1:100 into pirate media. 100 µL of the PAO1/pirate media dilution was then added into 

each of the wells of a falcon brand flexible U-bottom 96 well-plate. The well-plate was 

then incubated overnight at 37°C on a shaker set at 250 rpm. Following the overnight 

growth, each well was then filled with 100 µL E-buffer containing peptide at desired µM 

concentrations.  The plate was then allowed to react overnight in a shaker/incubator in the 

same manner as before.  

For the inhibition biological assay, identical bacterial growth procedures were 

followed, but the peptides were then added into the bacteria/pirate media solution at the 

same time before reacting overnight in the shaker/incubator.  

After incubation, the solution was discarded, and the microtiter plate was gently 

submerged in a small tub of water.  The microtiter plate was filled with water and 

discarded several times. This rinsing step helps remove unattached cells and media 

components that can be stained in the next step, and significantly lowers background 
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staining.  Crystal violet (125 µL, 0.1%  in water) was added to each well of the microtiter 

plate, followed by incubating at room temperature for 10-15 min. The microtiter plate 

was then rinsed 3-4 times with water following the same protocol as outlined above.  On 

the last rinse, the plate was blotted vigorously on a stack of paper towels to rid the plate 

of all excess cells and dye. The microtiter plate was then inverted and dried for a few 

hours or overnight. Once dry, the microtiter wells were photographed using a flatbed 

scanner.  

 

UV-Vis Spectroscopy 

 To quantitatively measure the biofilm dispersion, 200 µL of 30% acetic acid were 

added to the wells to free the crystal violet from the film. The absorbance for each well at 

540 nm was measured employing an Infinite M200 Pro multimode microplate reader.  

 

Data Analysis 

Data collected using the CHI interface were saved as .txt files and imported into 

Microsoft Excel.  Columns could be manipulated in Excel and then it was imported into 

Origin Pro8 graphing software for further graphical analysis.  Specifically, background 

plots were subtracted where 0s SWV runs of a particular AMP concentration series were 

subtracted from subsequent timed runs.   

Images from the microtiter plate biological assay were imported into Adobe 

Photoshop for editing.  Faux color was added to the images to demonstrate the biofilm 

density.  The edited photos were then imported into Adobe Illustrator for further spatial 

manipulation. 
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CHAPTER 3: LbL MODEL ALGINATE SENSOR 

Results 

Initial studies focused on developing a simple sensor designed to give a rapid 

answer to whether or not the Tic-Oic containing AMP were effective in penetrating 

biofilm.  We were interested in testing the possibility that the AMP could penetrate a 

biofilm mimic, and that this penetration could be assayed electrochemically.  Because 

certain biofilm can consist of polysaccharide films, layer by layer (LbL) electrode 

modification strategies were a natural choice to utilize in forming the electrodes.1-3  

Additionally, Pseudomonas aeruginosa is known to produce alginate containing biofilm; 

therefore, we focused on utilizing alginate in our films.4,5   

LbL polymer films were formed by alternately exposing positive and negative 

Figure 3.1.  CV overlay showing the response of 
400 µM ferricyanide at a PDDA/PSS/PDDA 
modified PG electrode (black) and a 
PDDA/PSS/PDDA/Alginate modified electrode 
(red).  Conditions: E-buffer, pH 7.4, scan rate 100 
mV/s.   
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charged polymers on a freshly prepared PG electrode, ending with the anionic alginate 

layer.  The underlying layers act as a polymer “bed,” and each subsequent polymer 

exposure essentially switches the surface charge of the electrode.1  The films themselves 

are not electroactive; therefore, the films were monitored by probing the fate of a 

solution-phase redox active molecule, ferricyanide (Fe(CN)6
3-).  Initial studies were 

performed to demonstrate the presence of the alginate layer using cyclic voltammetry.  

This is shown in Figure 3.1.  The CVs shows that ferricyanide will exhibit redox activity 

at two distinct potentials.  The first location exhibits a formal redox potential at Ef at ~ 

+0.19V vs. Ag/AgCl.  This is a classic diffusion-controlled process.  The second, seen on 

the PG electrode without alginate in the black CV shows a Ef at +0.055 V vs. Ag/AgCl.  

This redox wave is more surface confined based on the ΔEp of only 50 mV.  The diffusive 

ferricyanide is also present at the non-alginate electrode as well.  Addition of the anionic 

alginate layer to the underlying bed repels the solution phase anionic ferricyanide from 

binding to the electrode, forcing the redox process to occur via diffusion.  The films are 

not sufficiently thick to eliminate this mode of electron transfer.  When ferricyanide is 

not electrostatically repelled by the alginate, it binds to the cationic PDDA, and due to the 

electrostatic interaction, its oxidiative state is more stable by ~10 kJ/mol based on the 100 

mV difference in redox potential between the two populations as shown in the 

relationship 

ΔG = -nFE  (3.1) 

where ΔG is the free energy change, n is the number of electrons (1), F is Faraday’s 

constant (9.65 x 104 C mol-1), and E is the reduction potential difference (0.1 V).  
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After confirming the presence of the alginate layer, the films were exposed to 

solutions of the Tic-Oic AMP.  This was performed by first obtaining a baseline SWV (or 

CV) in E-buffer, removing the electrode from that solution, applying a drop of the AMP 

containing solution to the electrode surface for a defined period of time, rising it off, and 

reinserting the electrode into the E-buffer.  The purpose of obtaining the initial SWV was 

to background subtract subsequent timed runs from the baseline in order to see the 

current change as a function of AMP exposure.  The first peptide to be tested was TTO-

53, as this particular peptide was singled out in previous work as being particularly active 

toward the destruction of select ESKAPE bacteria.6  Initial results were inconsistent, 

however, mainly due to the LbL formation protocols.  Typically, LbL films can be 

Figure 3.2.  Background subtracted SWV overlay 
showing the response of 400 µM ferricyanide at an 
alginate modified electrode exposed to TTO-53 for 
600 s.  Electrodes were stored at 4oC for 5 hr (black) 
24 hr (red) 48 hr (green) or 72 hr (blue) before use. 
Conditions: E-buffer, pH 7.4, SWV amplitude pulse 
15 mV, step height 4 mV, f = 15 Hz.  
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formed from stock polymer solutions and stored for prolonged periods with little impact 

to the resulting analytical signals.  This is one of the key benefits of the modification 

procedure.  In fact, LbL modified electrodes should sit for a time period (~24 hours) 

before electrochemical analysis, as it has been shown to improve the analytical results.1,7  

It became clear, however, that consistent results were only obtained by using fresh 

alginate solutions – i.e. made on the day of the electrode formation – and performing the 

electrochemical experiments within 24 hours of the electrode formation.  Figure 3.2 

shows the electrochemical response for alginate-modified electrodes stored for different 

periods of time exposed to TTO-53.  The figure shows the background subtracted 

response, and current growth at the surface confined ferricyanide potential described in 

Figure 3.1.  This will be discussed in more detail below; however, the change in current 

response was clearly more prevalent on electrodes analyzed within the 24-hr. window; 

therefore, analysis was performed on a consistent basis, allowing the electrodes to sit for 

5 hours before performing experiments.   

Following this regimented set of LbL-formation protocols, the complete series of 

AMP were studied to assess the possibility that they could disrupt the alginate layer.  

Figure 3.3 shows a typical example of this process employing 25 µM TTO-53 as the 

AMP.  The figure first shows the raw SWV data for comparison purposes.  The SWV of 

ferricyanide initially produces the single redox wave at the diffusion controlled potential, 

but after exposure to the AMP, the negative potential shifted peak grows in.  This is 

consistent with easier access of the ferricyanide to the electrode surface as the electrode is 

exposed to TTO-53 for longer periods of time, which results in higher currents as this 

molecule is reduced at the electrode surface.    
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Figure 3.3.  a) Raw SWV showing the response of 400 µM ferricyanide obtained at an 
alginate modified electrode exposed to 25 µM TTO-53 from 0s (black) to 600 s 
(mustard).  b) Background subtracted SWV overlay obtained by subtracting the 0s SWV 
(black) from all subsequent SWV plots in a). Conditions: E-buffer, pH 7.4, SWV 
amplitude pulse 15 mV, step height 4 mV, f = 15 Hz.  
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Figure 3.3b shows the background subtracted SWV overlay where the 0s SWV 

was subtracted from the subsequent timed exposure runs.  The differential plot provides a 

more convenient manner of showing that the ferricyanide population at +.075 V vs. 

Ag/AgCl emerges and grows with exposure to the AMP.   

Figure 3.4 shows an overlay of the responses for TTO-23, 45, and 53 at 25 µM, as 

well as control responses for peptides 14 and 34.  Peptide 14 contains three Tic-Oic 

residues, but does not contain the cationic tail, while Peptide 34 contains the lysine 

positive charged region, but is missing the Tic-Oic residues.  The figure shows that TTO-

23 was the most responsive toward alginate disruption causing higher ferricyanide 

Figure 3.4. Background subtracted SWV showing the response of 400 
µM ferricyanide obtained at an alginate-modified electrode at 300 s 
exposure to 25 µM TTO-23 (blue), TTO-53 (red), TTO-45 (black), 
Peptide 34 (dash purple), and Peptide 14 (dash dark maroon). Conditions: 
E-buffer, pH 7.4, SWV amplitude pulse 15 mV, step height 4 mV, f = 15 
Hz.  
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currents with time followed closely by TTO-53, and then TTO-45.  The controls showed 

very little current change over the initial SWV background, and as such show almost a 

flat response upon exposure.   

Figure 3.5 shows the time-dependent +0.070 V peak current response as a 

function of TTO-53 and TTO-23 concentration.  The plot shows that the +0.070 V peak 

currents increase faster as a function of AMP concentration, which can be seen from the 

initial slope of the plots increasing as the concentration of TTO-53 or TTO-23 increases.  

Figure 3.6 shows the response for three TTO AMP at 25 µM.  The figure also shows 

TTO-43, which is the peptide missing from the carbon-linker series that contains the 

three carbon linker to the ammonium.  This peptide produced abnormal responses in 

many analyses (data not shown); however, and as such, this is the only data plot showing 

its response.  The results show that TTO-23 was the most responsive, followed again by 

53 and 45.  Taken together, these data suggest that the breakdown of the alginate layer 

via exposure to the AMP is kinetically related to the following:  

Figure 3.5.  Change in SWV peak current vs. TTO-53 (left) and TTO-23 (right) 
exposure time for different µM AMP concentrations.   
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Rate = k’[AMP]  (3.2) 

Where AMP = the Tic-Oic peptide studied, and k’ is the pseudo-first order rate constant.  

By taking the initial slopes of 

the plots shown in Figures 3.4-

3.5, one can acquire the 

pseudo-first order rate 

constants for each of the 

peptides.  These are 

summarized in Table 3.1.  

Overall, the data from Figures 

3.5-3.6 and Table 3.1 show that 

TTO-23 was the most active 

toward alginate disruption 

causing increases in the +0.070 V ferricyanide peak current.   

Table 3.1 Pseudo-first order rate 
constants for the AMP described in 
this study.a 

TTO-53 3.7 
TTO-23 4.5 
TTO-45 2.9 
TTO-43 2.7 

a – nA µM-1 pepide s-1 
  

Discussion 

The goal of this part of the sensor project was to generate a simple model to test 

the effectiveness of a series of AMP to penetrate a biofilm mimic.  Alginate is the 

predominant biofilm compound produced by Pseudomonas aeruginosa, and as such was 

Figure 3.6.  Change in SWV peak current vs. denoted AMP 
exposure at 25 µM concentration.   
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a convenient polymer model employed and immobilized on the electrode using LbL 

methodology.  Figure 3.1 clearly shows that alginate goes on the electrode, and provides 

a barrier to ferricyanide form accessing the underlying PDDA layer.  When the 

ferricyanide can access the positively charged layer, it binds on the electrode surface 

electrostatically and generates a surface confined redox wave negative shifted from its 

diffusion redox wave.   

Additionally, the alginate changes over time as shown in Figure 3.2.  With time, 

the layers most likely swell due to the moisture on the electrode surface.  This “matured” 

alginate layer is not as responsive to the AMP.  Electrochemical responses were much 

lower for electrodes that had been allowed to sit for 3 days before exposure to AMP.  

Regardless, to obtain more consistent results, electrodes were used after allowing them to 

sit for 5 hours at 4oC.   

Figures 3.1-3.2 lay the foundation for the sensor responses seen when the alginate 

layers were exposed to the AMP.  As the alginate was exposed to the AMP, ferricyanide 

can more easily access and bind to the electrode surface, as seen from peak current 

growth at +0.070 V over time (Figures 3.3-3.4).  Peak growth at this potential is 

consistent with the breakdown of the alginate layer due to the AMP exposure and 

penetration of the outer alginate film, allowing ferricyanide to more easily access the 

electrode.   Scheme 3.1 gives a pictorial overview of this process.   
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Current growth at the +0.070 V potential was shown to be dependent on both 

AMP concentration and identity.  While all of the AMP (23, 45, and 53) all provided 

similar responses, TTO-23 was the most active, followed by 53, and then 45, which can 

be seen in Figure 3.6 and Table 3.1.  From a trend perspective, this may be due to the 

length of the side chain linker that leads to the quaternized nitrogen on the AMP.  TTO-

23 contains a four carbon chain to a lysine, followed by a two carbon chain for TTO-53, 

and finally a one-carbon chain to the positively charge for TTO-45.  The side chain linker 

may allow for easier initial access to the anionic alginate, which results in faster 

breakdown and ferricyanide access.  However, the controls using Peptides 34 and 14 

showed that the quaternized nitrogen cationic region was not sufficient by itself to 

breakdown the alginate.  Peptide 34 contains the cationic lysine tail similar to TTO-23, 

but it exhibited very little response toward allowing ferricyanide to access the electrode.  

Scheme 3.1.  I. The LbL electrode formed from i) a PG electrode, ii) inert 
polymers of opposite charge, and iii) alginate that prohibits iv) Fe(CN)6

3- 
from accessing the electrode.  II.  After peptide exposure, the alginate is 
broken penetrated, which allows Fe(CN)6

3- to access the electrode and 
produces higher electrochemical signals.   



	
   38	
  

This suggests two things: 1) the electrochemical response is due to the AMP opening up 

the alginate layer similar to what Scheme 3.1 depicts, and 2) the combination of Tic-Oic 

peptides as well as cationic charge are both necessary for this to occur.  The second 

control peptide, Peptide 14, showed negligible activity toward the alginate layer.  Peptide 

14 contains Tic-Oic regions, but no cationic charge.   

 Overall, the LbL alginate model was effective in showing that the AMP could 

penetrate a biofilm mimic, and this process could be detected electrochemically.  The 

electrode sensor showed that TTO-23 was the most active toward breaking down the 

alginate, followed by TTO-53 and then TTO-45.  All of the peptides containing Tic-Oic 

dipeptide and cationic regions altered the alginate in such a way to generate a surface 

bound ferricyanide response.  As discussed in Chapter 4 and 5, the elucidation that TTO-

23 was the most active was not necessarily confirmed by other validation experiments.  

This is most likely due to the limitations of this simple sensor model.  Some avenues for 

future studies include possibly studying how the AMP interact with the “mature” alginate 

layer (Figure 3.2) as this may change how each interacts altering the sensor output, which 

was not fully explored.  However, the alginate sensor described here was incredibly easy 

to produce and had the ability to quickly identify peptides that were active in penetrating 

a biofilm mimic, and from this standpoint, the research presented here was a large 

success.  This sensor could be thought of as a “first pass” type biofilm sensor, generating 

prospective “hits” that could be studied in more detail at later development stages.   
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CHAPTER 4: BIOLOGICAL ASSAYS 

Results 

After obtaining the results using the alginate LbL sensor, we explored ways to 

validate the results.  The standard assay to test for anti-biofilm activity is to perform 

biological assays in 96-well or related plate formats.  Here, two biological assays were 

performed.  The first of these was a biofilm dispersion assay where Pseudomanas 

aeruginosa PAO1 was grown in the well plate under conditions that favor biofilm 

formation.  The bacteria were diluted and stressed by placing them in what was termed 

“pirate media.”  This growth media is rich in arginine, hence the name.  The media 

stresses the bacteria to initiate and establish biofilm on the sides of the well plate.  After 

24 hr growth period, the bacteria are removed and the AMP are introduced at sufficient 

volume to cover the biofilm level.  The biofilm was exposed to the AMP for an additional 

24 hr, and discarded.  The remaining biofilm can then be stained using crystal violet, 

which penetrates and binds to the biofilm allowing it to be visualized.  The more intense 

color means the higher amount of biofilm that was established or remains in the well.   

Figure 4.1 shows the results of the biofilm dispersion assay where TTO-23, 45, 

and 53 at varying concentrations were exposed to the established PAO1 biofilm.  The 

figure visually shows that all AMP showed some degree of biofilm dispersion, but TTO-

53 was the most effective.  Figure 4.1c shows the quantitative plate readout measuring 

A540 of free crystal violet released from the films.  The plot shows that TTO-53 started to 

breakdown the biofilm at a concentration of about 1 µM, compared to approximately 10 

µm for the other peptides. This was also seen in the qualitative top and side pictures of 

the assay.   
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Figure 4.1. Top a) and side b) view of the dispersion assay where the denoted AMP 
were exposed to the established Pseudomonas aeruginosa PAO1 biofilm.  Color was 
enhanced for visualization purposes and scale is shown.  c) Quantification of the 
amount of crystal violet in the AMP-exposed wells measuring A540 vs. AMP 
concentration.     
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Figure 4.2. Top a) and side b) view of the inhibition assay where the denoted AMP 
were exposed to the Pseudomonas aeruginosa PAO1 solution concurrently.  Color was 
enhanced for visualization purposes and scale is shown.  c) Quantification of the amount 
of crystal violet in the AMP-exposed wells measuring A540 vs. AMP concentration.     
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Figure 4.2 shows the inhibition assay where the bacteria was grown concurrently 

with peptide exposure.  This assay measures the ability of the AMP to inhibit bacterial 

growth and biofilm before it is established.  The inhibition assay mirrored the dispersion 

assay results, but the AMP had much more of an impact inhibiting biofilm formation.  

This behavior was expected as these AMP had shown activity against planktonic 

Pseudomonas cultures.1  Once again, all peptides inhibited bacterial growth, but TTO-53 

was much more effective, inhibiting the biofilm at concentrations lower than 0.5 µM. 

A control dispersion assay is shown in Figure 4.3.  The figure shows that the 

control peptides 34 and 14 provided little anti-biofilm activity based on the similar color 

seen across the concentration range studied.   

 

Discussion 

The biological assay did not exactly agree with the preliminary electrochemical 

studies that showed that TTO-23 was the more effective AMP.  Here TTO-53 was clearly 

the most effective AMP in precluding the biofilm from forming, but more importantly, 

dispersing established PAO1 biofilm.  Based on previous results where these AMP were 

Figure 4.3. Top view of a dispersion assay where the denoted control peptide were 
exposed to the established Pseudomonas aeruginosa PAO1 biofilm.  Color was 
enhanced for visualization purposes and scale is shown.  
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exposed to the ESKAPE bacteria, these are not surprising findings. TTO-53 was shown 

to be more active toward bacterial killing based on in vitro susceptibility studies.3 The 

MIC and MBC values across most of the six bacterial species showed slightly lower 

values when using TTO-53 when compared to TTO-23, showing greater effectiveness of 

TTO-53.   

The data presented here is of high impact because it is the first example where 

these particular AMP were demonstrated to have anti-biofilm activity.  While the alginate 

LbL model showed that these AMP could be active toward the breakdown of a protective 

barrier, these data definitively show that the biofilm is being either inhibited or destroyed 

by the AMP.  Additionally, TTO-53 was a clear standout in terms of biofilm breakdown 

and inhibition, which provides additional support for its continued focus in the 

development as an antibacterial/anti-biofilm agent.  Concerning these AMP and their 

anti-biofilm activity in general, this is somewhat surprising in that these peptides were 

designed to penetrate the anionic cell membrane of the actual bacteria, not necessarily 

breakdown established biofilm.  Additionally, the controls show once again that it is the 

combination of the Tic-Oic units and the cationic charge that lead to effective biofilm 

disruption.  Peptides 14 and 34 that exhibit only Tic-Oic units or cationic charge, 

respectively, showed essentially zero anti-biofilm activity.   

The biological assay was explored to confirm, or validate, the electrochemical 

results, and while the agreement was not perfect, the discrepancies are not vastly 

different.  The main similarities between the two assays was that both identified that the 

TTO AMP were effective in breaking down biofilm, and that the combination of the Tic-

Oic residues plus cationic charge on the peptides was important.  However, the order of 
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effectiveness was not the same for both assays.  This main difference between the two 

methods is most likely due to the simplicity of the electrochemical model, which only 

highlights alginate penetration.  As discussed previously, TTO-23 has a four-carbon 

linker to each ammonium group compared to TTO-53 that has a two-carbon linker.  The 

four-carbon linker of TTO-23 may enhance alginate breakdown but not assist in killing 

the underlying bacteria at the lower concentrations where TTO-53 was more effective.   

In vivo, biofilm is created from the genetic material found within the bacterial 

colonies; therefore, different bacteria will produce a unique bacterial biofilm.  Therefore, 

while alginate provides a decent model to study the possibility of the AMP anti-biofilm 

activity, or in theory any potential anti-biofilm agent, toward P. aeruginosa, the actual 

situation is much more complex in scope.  As the biological assays demonstrated, the 

simplicity of the alginate model leads to its main drawback in that it can identify a series 

of anti-biofilm agents, but can’t accurately provide which agent exhibits the most anti-

biofilm activity.  In order to reconcile these main differences, the biological assay and the 

alginate model were essentially combined onto an electrochemical interface, which is 

discussed further in Chapter 5. 
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CHAPTER 5: ANTI-BIOFILM ELECTROCHEMICAL SENSOR WITH 

IMMOBILIZED BACTERIA 

In order to reconcile the biological data (Chapter 4) and the electrochemical 

sensor data (Chapter 3), the development of a more biologically accurate sensor was 

explored.  We desired the simplicity of our original sensor, but also to immobilize actual 

biofilm-forming bacteria on the electrode surface.  The original plan was to grow 

Pseudomonas aeruginosa on the electrode surfaces in a similar way as was performed for 

the biological assays, using Pirate media to induce biofilm production.  Following the 

bacteria growth on the electrode, similar protocols as were implemented for the alginate 

sensor would be utilized – i.e. electrochemical detection of ferricyanide while exposing 

Figure 5.1. SWV showing timed response of P. aeruginosa 
PAO1 modified electrode exposed to only E-buffer from 0 s 
to 600 s.  SWV Conditions: 20 mV pulse height, 4 mV step 
height, 15 Hz frequency, E-buffer pH 7.4.  
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the surface to the AMP.  Initial results were inconsistent, and it was clear that growing 

the bacteria on the electrode in this fashion was untenable.   

To remedy these drawbacks, a simpler method was utilized.  This involved 

growing the PAO1 in LB broth for a period of time until it was visually clear that the 

bacteria were inducing the QS pathways needed for biofilm production.  This is evident 

from the green color that is generated from expressed pyocyanin, which is discussed 

further below.  Once the bacteria produced suitable biofilm, an aliquot of LB broth was 

exposed directly to the PDDA/PSS/PDDA modified electrode surface.  The bacteria 

solution was then allowed to immobilize for a period of time.  This immobilization time 

turned out to be a vital aspect in the sensor design.  Figure 5.1 shows the SWV 

electrochemical response for an electrode modified with P. aeruginosa for 6 hours.  The 

figure shows two important things.  First, the bacteria itself is electroactive, which 

negates the need to include ferricyanide as a secondary solution-phase redox mediator.  

The redox active nature of P. aeruginosa arises from the expressed pyocyanin, which it 

releases as it forms biofilm.  The reduction peak at +0.030 V vs. Ag/AgCl is not as 

negative as pure pyocyanin immobilized on the electrode, and the reasons are discussed 

later (see below), which may result from the electrode environment including pH effects 

and other binding environments based on the LbL/bacterial nature of the film.1  Second, 

the SWV peak decreases slightly over the ten-minute analysis time, which is somewhat 

problematic, but manageable, as later results will show.  The decrease in peak current is 

consistent with loss of bacteria over time, or rearrangement of the film on the electrode 

surface over that time; however, it provides a useful electrochemical signal to probe the 

fate of the bacteria.   



	
   49	
  

Figure 5.2 shows the +0.030 V SWV peak current results over time for different 

electrodes modified in the same way, but allowing the bacteria to immobilize for the 

denoted period of time before placing the electrode in E-buffer.  The figure shows that 

the bacteria was least resistant to change on electrodes where it was allowed to 

immobilize for 6 hours.  The exact reasons for this are not fully understood at this time, 

but may include the conditions that the bacteria are exposed to on the electrode surface. 

For instance, ionic strength conditions may be affecting the viability of the bacteria, 

causing the peak decrease over time.  This possibility was not tested further.  However, 

the percent change at 6 hours was deemed satisfactory, and based on these results, P. 

Figure 5.2. Percent change of peak SWV current at +0.03 V vs. SCE 
for P. aeruginosa PAO1 modified electrodes.  Bacteria was allowed 
to immobilize on electrode for denoted amounts of time.  Error bars 
represent standard deviation for n = 3.  
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aeruginosa was allowed to immobilize on the electrode surface for 6 hours for the AMP 

experiments described below. 

Figure 5.3 shows the typical P. aeruginosa electrochemical reduction response 

over time as it was exposed to 0.1 µM TTO-53.  The figure shows a background 

subtracted then inverted plot that resembles peak growth, but the raw data plot is actually 

a peak decrease, which is seen looking at the y-axis showing current decrease.  The plot 

shows that exposure to TTO-53 results in a significant PAO1 peak decrease over the 

exposed time.  The current decrease at the final ten minute acquisition time corresponds 

to over 40% signal decrease from the initial peak obtained at the 0s exposure time.  This 

Figure 5.3. Background subtracted SWV showing timed 
response of P. aeruginosa PAO1 modified electrode 
exposed to 0.1 µM TTO-53 from 15 s to 600 s.  SWV 
Conditions: 20 mV pulse height, 4 mV step height, 15 Hz 
frequency, E-buffer pH 7.4.  
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shows that the exposure to the AMP results in significantly more current change vs. 

exposure to buffer alone (Figure 5.1).  

Figure 5.4 shows the peak current change responses for all peptides at 0.5 µM 

exposed to the Pseudomonas modified electrodes at 300 s.  The figure demonstrates that 

TTO-53 is much more active in promoting change to the bacteria at this lower 

concentrations than the other AMP.  The figure shows that the control peptides are 

slightly less active than the other AMP, TTO-23 and TTO-45, but only slightly at this 

low concentration.  

Figure 5.4. Background subtracted SWV showing response of P. 
aeruginosa PAO1 modified electrodes exposed to the denoted 
peptides at 0.5 µM for 300s.  Conditions: SWV amplitude pulse 20 
mV, step height 4 mV, 15 Hz, E-buffer pH 7.4.  
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TTO-53 was much more active toward decreasing the electrochemical PAO1 

signal at lower concentrations vs. the other peptides.  A plot showing the background 

subtracted peak current percent change at +0.03 V vs. TTO-53 exposure time for the 

entire studied concentration range is shown in Figure 5.5.  The figure shows that this 

particular peptide was very effective toward altering the Pseudomonas electrochemistry 

Figure 5.5. +0.03 V SWV Ip vs. TTO-53 exposure time at different 
concentrations in µM.  Error bars are for standard deviation (n = 3). 
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at lower concentrations, but this behavior was not as prominent at higher concentrations, 

as the response increased, but only slightly.  Other peptides, however, were much more 

active toward altering the Pseudomonas electrochemical behavior at higher 

concentrations.  A similar kinetic plot showing the response of all peptides at 0.5 µM and 

10 µM is shown in Figure 5.6 a-b.  Figure 5.6a shows that at the lower concentration, 

TTO-53 exhibited the most response, but at higher concentrations, TTO-45 was the most 

active.  All TTO AMP exhibited higher responses than the controls.  Also, it is important 

to remember that the responses seen here also include some current change from the 

bacteria by itself (Figure 5.1-5.2).  However, at 5-10 minutes the percent change from 

that process amounted to approximately 10-13% of the current loss.  Therefore, after 

accounting for this current, the AMP peptides are actually much more active toward 

altering the Pseudomonas on the electrode surface than the control peptides were.   

Figure 5.6. a) +0.03 V SWV Ip percent change decrease vs. peptide exposure 
time for all peptides at 0.5 µM.  b) The same plot for for peptides at 10 µM. at 
different concentrations.  
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The kinetic plots showing the response at different concentrations for the various 

AMP and control peptides were used to generate pseudo-first order kinetic rate constants 

for the different peptides exposed to Pseudomonas.  These data are summarized as 

relative values in Table 5.1 for the different high and low concentration ranges.  The data 

are presented in this manner, as there was a clear change in behavior for the peptides as 

the concentration of peptide increased.  The table shows that the AMP were up to five-

times more active in affecting Pseudomonas electrochemistry compared to the control 

peptides.  This was even more evident at the higher concentration ranges.   

 

Discussion 

 Pseudomonas aeruginosa was successfully immobilized on the PG-electrodes in 

order to create a biofilm sensor.  Data presented in Figure 5.1 show that a clear 

electrochemical signal is seen after exposure of the electrode to the bacteria, which means 

that this signal is clearly due to its presence on the electrode surface.  Exposure of the 

Table 5.1. Relative kinetic rates determined electrochemically 
for different TTO AMP toward Pseudomonas 
aeruginosa PAO1 breakdown.a 

Peptide < 1 µM  > 1 µM  
TTO-53 1 0.61 
TTO-45 0.62 1 
TTO-23 0.56 0.45 

Peptide 14 0.43 0.27 
Peptide 34 0.27 0.28 

a - Adjusted for current change due to E-buffer alone  
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bacteria-modified electrode resulted in a decrease in the bacteria-related current.  This is 

shown in Figures 5.3 and 5.4 where the background subtracted SWV denote current 

decrease.   

Previous data presented in Chapters 3 showed that the AMP would affect 

electrochemical signals on an alginate-modified electrode, but that TTO-23 was the most 

effective, followed closely by TTP-53.  The biological assay presented in Chapter 4 

showed that TTO-53 was the most effective AMP in treating biofilm.  Data presented 

here are more consistent with the biological response data of Chapter 4.  At low 

Figure 5.7. SWV response for pyocyanin modified electrode in 
different pH buffers.  Conditions: SWV peak amplitude 20 mV, step 
heigh 4 mV, 15 Hz. pH 5 buffer = ammonium acetate 50 mM, pH 7.5 
and 9 buffer: 10 mM Tris + 10 mM NaCl pH adjusted.   
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concentrations, i.e. below 1 µM peptide, the electrochemical change based on peptide 

exposure is higher for TTO-53 compared to the other peptides.  At higher concentrations, 

the other AMP become more effective in altering the electrochemical signals, and this 

was again seen in the biological assay where the biofilm was destroyed with these AMP 

at the higher concentrations.  

Concerning the electrochemical signal, it is most likely the electrochemical 

response of pyocyanin within the bacterial colonies that are immobilized on the electrode 

surface.  Figure 5.7 shows the electrochemical response of isolated pyocyanin 

immobilized on a bare PG electrode at different pH.  The responses seen in the figure are 

much more negative shifted compared to what was seen for the bacteria response like that 

shown in Figure 5.1.  The reasons for this potential difference could be the environment 

that the pyocyanin exists in while in the bacteria vs. isolated.  The figure shows that a 

clear pH dependence exists, which is indicative of a proton-coupled electron transfer 

process in the reduction of the molecule.  It is possible that the pyocyanin resides in an 

environment while immobilized in the LbL films that facilitates the proton coupled 

electron transfer resulting in the destabilization of the oxidized pyocyanin species and 

promotes the reduction at significantly positive shifted potentials.  More experiments are 

needed to fully understand this process. 

What is understood, however, is that upon exposure to the AMP, the pyocyanin-

related electrochemical peak from the P. aeruginosa decreases.  This decrease is 

consistent with some alteration of the bacterial environment on the electrode surface.  

This could be due to bacterial death or film modification due to the peptide exposure.  

Scheme 5.1 graphically demonstrates this process on the electrode.  These AMP have 
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been known to penetrate and aggregate within bacterial membranes based on the cationic 

charge that they exhibit, essentially resulting in bacterial lysis.2  This ability to utilize the 

cationic nature to bind to a surface was the main reason for the use of the anionic alginate 

model described in Chapter 3.  A similar process could be occurring here where the AMP 

initially bind, then aggregate to promote bacterial film breakdown and promote the death 

of the bacteria.   

Whether the pyocyanin electrochemical peak decrease is due to bacterial death or 

a rearrangement of the film present on the electrode surface is not vitally important.  

What is important for the presentation here that this electrochemical signal is a 

convenient electrochemical handle to monitor the effectiveness of the AMP toward the 

destruction of the P. aeruginosa film.  Coupling the data from Chapters 4 and 5, it is clear 

that these AMP are effective in destroying biofilm, and inhibiting its initial formation.  

Scheme 5.1.  Demonstration of processes resulting in current 
decrease at Pseudomonas aeruginosa modified electrode. I) a PG 
electrode modified with i) polymers and ii) P. aeruginosa provides 
large electrochemical responses due to the intact film containing 
pyocyanin.   Upon exposure to peptide, II) the film is altered in such a 
way to cause the electrochemical signal to decrease significantly.  
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This process can be measured electrochemically based on the pyocyanin signal decrease, 

and the effectiveness of these AMP can be determined within a matter of minutes.  

Overall, the data presented here demonstrate that the electrochemical sensor is effective 

in determining the anti-biofilm activity of a series of AMP in a very rapid fashion for P. 

aeruginosa PAO1. 
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CHAPTER 6: FUTURE DIRECTIONS AND CONCLUSIONS 

Future Directions 

The natural future path of this research is to continue to test the effectiveness of 

the AMP toward other biofilm-forming bacteria.  Figure 6.1 shows some preliminary 

results employing Staphylococcus aureus-modified electrodes.  These electrodes were 

formed in a similar manner as the P. aeruginosa electrodes then exposed to 1 mM TTO-

53.  Figure 6.1a shows the background subtracted response with added ferricyanide and 

Figure 6.1b shows the background subtracted response without the additional redox 

molecule.  S. aureus is not electrochemically active like P. aeruginosa; therefore, the use 

of ferricyanide was thought to be necessary.  An expected result might be the increase in 

Figure 6.1.  a) Background subtracted SWV showing voltammetric response of 400µM 
ferricyanide on a Staphylococcus aureus-modified electrode exposed to TTO-53 (1µM) 
for the denoted time in seconds. b) Similar plot without the added ferricyanide.  Arrow 
denotes possible trend region – currents in the oxidative region decrease with additional 
TTO-53 exposure time.  Conditions: Same as previously stated.  
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signal as the AMP compromises the biofilm in such a manner, allowing the ferricyanide 

to access the electrode.  This is similar to our work presented in Chapter 3.  However, as 

the figure shows, after the current increases up to 3 min TTO-53 exposure, an abrupt 

decrease in current is seen at 5 min.  This behavior is not understood at this time.   

The plot in Figure 6.1b shows similar data without the added ferricyanide.  The 

response from S. aureus alone is much smaller; the current seen is nA vs. µA on the P. 

aeruginosa electrodes.  While a small reduction peak does show up at ~0.00 V, and 

increases slightly over the course of the experiment, the current at positive potentials 

shows an interesting trend (arrow in the figure).  This current decreases with TTO-53 

exposure time, and it may provide a more useable metric to chart the viability of P. 

aureus vs. anti-biofilm agent exposure.  Changes in this region might be due to the TTO-

53 altering the film on the electrode surface, which changes the access of solution ions to 

the electrode, impacting the currents generated when acquiring the SWV.  Additional 

experiments are necessary to ascertain if this is indeed due to the AMP exposure.   

Overall, the data presented in Figure 6.1 demonstrate that this project is ripe with 

future possibilities.  Each bacteria that is used to form the sensor will need to be 

optimized, the AMP will be tested for anti-biofilm properties toward the bacteria in 

question, and biological assays will need to be completed to show that the 

electrochemical assay results are meaningful.  Additionally, other established anti-biofilm 

agents can be tested using the sensor platform.  Once the parameters are established for 

important biofilm-forming bacteria, array formats and sensor miniaturization strategies 

can be explored.   
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Conclusions 

Two electrochemical sensors have been developed for the purpose of testing the 

anti-biofilm activity of anti-microbial peptides containing unnatural amino acids.  Both 

sensors were constructed utilizing LbL protocols.  The first sensor utilized alginate as a 

P. aeruginosa biofilm mimic.  Upon exposure to the peptides, an electrochemical signal 

increase over background was seen at approximately +0.07 V vs. Ag/AgCl as the 

peptides penetrated the alginate, exposing the underlying polymer layers to solution-

phase ferricyanide.  Based on these current changes, this sensor responded in the order 

TTO-23 > TTO-53 > TTO-45, which proceeds in order from longest carbon-chain linker 

(4) to ammonium group to the shortest (1).  Control experiments showed that the 

combination of Tic-Oic amino acids and cationic charged side chains were both 

important for the peptide to penetrate the alginate layer. 

Utilizing actual immobilized P. aeruginosa on the electrode surface, we showed 

that exposure to the peptides resulted in a current decrease over time.  The bacteria was 

itself electroactive, and the current decrease was indicative of a change in the bacterial 

environment due to the peptide exposure.  Additionally, TTO-53 was the most active 

toward altering the P. aeruginosa electrochemical response at lower concentrations, 

which is indicative of its anti-biofilm activity.  This data was in better agreement with 

biological assays and previous results demonstrating that TTO-53 provided the most anti-

P. aeruginosa biofilm activity and also the highest antimicrobial ability toward not only 

P. aeruginosa, but toward the ESKAPE pathogens in general.  The findings and work 

presented here lay the foundation for a multitude of future studies related to anti-biofilm 

sensor development in the Hvastkovs lab at ECU.   
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