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Radiation therapy is a prevalent cancer treatment therapy. The goal is to kill all tumor cells while 

minimizing damage to healthy cells and new methods that can accomplish this goal are 

continually being investigated. Cerium Oxide (CeO2) or ceria nanoparticles have recently shown 

to act as a radioprotector for non-malignant cells while sensitizing tumor cells to x-rays. 

However, research is required to determine if the same benefits are present for heavy charged-

particle radiation. This dissertation research investigates the efficacy of ceria nanoparticles 

(CNPs) as a radioprotector of normal cells irradiated with 3-4 MeV protons at doses of 1-6 Gy in 

the East Carolina University Accelerator Laboratory. The CNPs were synthesized at the 

University of Central Florida Nanoscience Technology Center and were transferred to ECU. Cell 

viability was measured with the Microculture Tetrazolium (MTT) assay 24 and 48 hours post 

irradiation.  DNA damage was determined using the Terminal Uridine Nick-End Labeling 

(TUNEL) assay. While showing promise for potential radioprotection of non-malignant cells 

using both assays, the MTT assay results were less conclusive and require further research. The 

TUNEL assay results are preliminary but show that CNPs reduce DNA damage to non-malignant 

cells compared to those cells which were not treated.  
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Chapter 1: Introduction 

Ionizing radiation impacts humanity in many areas of daily life from occupational 

hazards to medical applications. Between 1982 and 2006, the radiation exposure per capita 

increased 600% from medical exposure alone.[1] The average American receives a radiation 

dose of about 620 millirem each year, half it coming from background radiation.[2] It can be 

advantageous in areas of medicine, research, agriculture and energy, but it can also be a danger 

to people as well. One particular area of concern is the exposure of people to radiation from 

uncontrolled sources in cases of industrial accidents, terrorism, and space travel.[3, 4] Excess 

exposure can cause immediate effects such as radiation sickness as well as long term effects such 

as cancer.[5]  In regards to long term space travel, adequate medical care may not be available 

for astronauts suffering from short term effects, so ongoing research is being conducted to find 

methods of prevention and mitigation of radiation effects.[6]  

As radiation travels through matter, it interacts with orbital electrons and the atomic 

nuclei by either elastic, inelastic or absorption events. The kinetic energy can be deposited along 

the path of the radiation with the amount and distribution being dependent upon the type of 

radiation and the interactions taking place between the particles within the matter and the 

radiation. This deposited energy can cause excitation or ionization of atoms within the target, 

allowing it to absorb the energy and thereby reducing the intensity of the incident radiation. 

When the atoms are ionized, the electrons overcome their binding energy, carrying energy that 

can either be deposited locally or farther away from their original location. The measurement of 

this energy deposition in matter is defined as dose, measured in Gray (Gy).[5]  
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The deposition of dose can be facilitated by several different forms of radiation, 

both particulate and electromagnetic. Each form has several methods of interaction in matter and 

several ways of depositing energy within that matter. Photons and x-rays are considered 

electromagnetic radiation and protons, neutrons, electrons and heavy ions are considered 

particulate radiation and are discussed in further detail here.  

Photons 

Coherent scattering – Coherent scattering, also known as Rayleigh scattering, takes place when 

photons interact elastically with the atom and do not transfer energy to the atom. This interaction 

type dominates at photon energies below 10 keV.  

Photoelectric Effect- Photoelectric effect takes place when the incident photon is absorbed 

completely by the target atom causing ionization which results in an inner shell electron being 

ejected from the atom. The vacancy left behind leaves the atom in an excited state which causes 

a de-excitation process involving an outer electron falling to the inner orbit to fill the vacancy. 

This transition results in the emission of secondary radiation in the form of characteristic X-rays 

and/or Auger electrons. The probability of the photoelectric effect is inversely proportional to the 

photon energy, dominating at energies up to 500 keV; and directly proportional to the atomic 

number Z, dominating at Z>20.[7] 

Compton Effect – As the energy of the incident photon increases, some of the energy is deposited 

in the atom when the photon and the orbital electron interact and the electron recoils to conserve 

momentum. In this case, the incident photon energy is much greater than the orbital electron 

energy so as a result of the collision, the electron is ejected from the atom while the photon is 

scattered to undergo further interactions, losing more energy until the photon is finally absorbed 
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by an orbital electron. The Compton electron also undergoes interactions until an atom captures 

it. The subsequent events of Compton scattering are the source of dose deposition within the 

target which will be discussed in greater detail later. The probability of Compton scattering is 

nearly independent of the atomic number of the target atoms and primarily is inversely 

proportional to the photon energy. The Compton effect dominates over a wide range of energies 

between 100 keV to 10 MeV. [7] 

Pair Production- When the incident photon reaches the threshold energy of 1.022 MeV, it is 

possible for it to interact with a nuclear field and annihilate resulting in the creation of an 

electron-positron pair. The threshold energy represents the total rest mass of the pair while any 

excess energy over the threshold is shared as kinetic energy between the electron-positron pair. 

The probability of pair production increases with increasing atomic number as well as increasing 

photon energy above the threshold energy. The electron encounters subsequent interactions 

within the target while the positron interacts with an electron and annihilates, creating two 511- 

keV photons emitted in opposite directions. This photon creation allows for the conservation of 

momentum and energy. Just as in the Compton Effect interaction, the subsequent electrons and 

photons interact throughout the target material, depositing their energy.  

 

Neutrons 

 Neutrons primarily interact with atomic nuclei through either elastic scattering (neutron 

moderation) or inelastic scattering (neutron resonance scattering). Absorption can also take place 

in the form of a nuclear reaction. Due to the small cross section of neutrons and their neutral 

charge, they have no definitive range of penetration.[8] Neutrons are more likely to transfer 
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energy to atomic nuclei, specifically those that are light in mass, such as hydrogen nuclei (single 

protons) which have almost the same mass as the neutron and recoil in the interaction taking a 

significant amount of the neutron’s kinetic energy.  Heavy atomic nuclei (Z>20) only receive a 

small fraction of the neutron’s energy in the interaction which contributes to a long range for the 

neutron.[9] Fast moving neutrons (0.1 MeV< E <10 MeV) tend to interact through elastic 

collisions while slow or thermal neutrons tend to be captured by nuclei to form radioactive 

isotopes.[9] The mechanism of dose deposition in the target is the result of the recoil protons 

interacting within the target medium. 

Electrons 

The Coulomb force governs the interaction of electrons in matter with the primary interaction 

taking place between the incoming electrons and the orbital electrons. When the electrons 

interact elastically, it is referred to as Rutherford scattering. Inelastic events with the atomic 

nuclei can result in in bremsstrahlung radiation or “breaking” radiation where the electron emits 

a photon as it interacts with a nuclear field.  Bremsstrahlung radiation can occur when electrons 

experience deceleration from the interaction with another charged particle, usually the atomic 

nucleus. This can cause a change in kinetic energy which produces a photon with the same 

energy. These bremsstrahlung photons can then interact in all the ways described previously in 

the last section. Bremsstrahlung contamination when determining dose makes up less than 1% at 

4 MeV electrons and less than 4% for 20 MeV electrons.[10] Since the masses are the same for 

the incoming electron and the orbital electron, large energy losses and wide scattering angles are 

common resulting in tortuous paths within the target material. Their penetration paths are short 

compared to photon paths and the energy loss is continuous over the range of the electron as 

opposed to the energy loss of photons. As the electron slows down towards the end of its range, 
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the deposition of energy increases due to the strong dependence of the ionization cross section on 

the velocity but due to their small mass, the deposition of energy is widespread within the target. 

For low Z targets (Z<10), the electrons primarily interact with the orbital electrons resulting in 

loss of energy due to ionization.[11] If the energy is sufficient, secondary electrons, also called 

delta rays, can result from further ionization.[9] For low z targets, the occurrence of 

bremsstrahlung is a rare occurrence since it is a function of Z2 of the target.  

Protons and Charged Ions 

Similar to electrons, heavy charged particles are governed by the Coulomb force and 

involve Rutherford scattering. Similar to neutrons, they can undergo the absorption process into 

an atomic nuclei. The principle method by which heavy charged particles lose their energy is 

through ionization and excitation of orbital electrons, a process called collisional energy loss. 

Secondary electrons (delta rays) produced in the collisions are able to cause subsequent 

ionization in the target matter with sufficient energy. The rate of energy loss by the heavy 

charged particles is proportional to the electron density of the medium.  

The probability of losing energy through bremsstrahlung radiation, also called radiative loss, 

increases directly with the energy of the incoming charged particle. The probability of 

production of bremsstrahlung by heavy charged particles is negligible at low energies with the 

primary energy loss mechanism taking place through ionization of target atoms. Because of their 

heavy mass, heavy charged particles have essentially a straight path through the target medium 

and tend to have a much shorter path than electrons or uncharged particles. As the heavy charged 

particles move through the matter, they begin to lose energy at a higher rate towards the end of 

their path reaching a maximum called the Bragg peak.[8] When plotting stopping power vs. 
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range in matter, the Bragg peak represents the point where the rate of energy loss is at a 

maximum. The peak is seen at greater ranges as the energy of the incident particles increases. 

Radiation Damage and Protection 

When charged particles and neutrons interact with DNA to cause strand breaks it is referred to as 

direct damage and is associated with high linear energy transfer (LET) radiation.[12] Direct 

damage tends to be more damaging, causing more DNA double-strand breaks which are more 

difficult for the cell to repair. Low LET radiation causes molecules in water to ionize and creates 

free radicals, that cause damage to DNA strands through single strand breaks which are easier for 

the cell to repair.[13] Radioprotectors can improve cell survival by removing free radicals by 

providing valence electrons that bind to the radicals and neutralize them. A more detailed 

description is provided in the literature.[14]  The current gold standard of radioprotection, 

amifostine, is a Food and Drug Administration (FDA) approved radioprotector and it is widely 

used in radiation therapy procedures to protect healthy tissues. [4]  Amifostine has been shown to 

selectively protect a broad range of normal tissues including oral mucosa, salivary glands, lungs, 

bone marrow, heart, intestines, and kidneys as well as protect against cytotoxic effects of 

chemotherapeutic agents.[15]  When biological cells are exposed to radiation, free radicals are 

formed through ionizing reactions which then react with DNA and RNA, which can cause 

chromosomal aberrations and apoptotic (cell) death. [16] Amifostine is an effective free-radical 

scavenger that helps prevent indirect radiation damage.  However, amifostine has a short half-life 

in serum, requires medical personnel to administer, can have side effects such as nausea or 

vomiting, and is unable to protect all human organ systems. [17-19] For these reasons, it would 

be advantageous to find alternatives that are both an effective radioprotector of normal tissues 

and an effective radiosensitizers of tumor tissue in radiation therapy applications.  Recently, 
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cerium oxide (ceria) nanoparticles (CeO2) have been tested as suitable free radical scavengers 

and have shown promise in increasing cell survival while having no effect on the viability of 

tumor cells. [17, 20] While research has been conducted using photon (x-ray) radiation, the 

effect of the cerium oxide nanoparticles with regards to charged particle radiation is unknown. 

This research seeks to determine these effects. The research aims are threefold: 1) design 

and develop a system to irradiate the cells with protons, including the development of an ion 

beam imaging system, 2) determine a proton radiation survival curve development of non-

tumorigenic cell lines, and 3) assess DNA damage analysis of the A184 cell line with and 

without the presence of CeO2 nanoparticles.  



 

 

Chapter 2: Radiation Dose Theory and Radiation Biology 

  

2.1 Dose Theory 

Stopping Power 

Stopping power represents the average rate of energy loss of a heavy charged particle in a 

medium, typically measured in units of MeV cm-1 or keV/µm.[9] It is a fundamental quantity in 

dosimetry and radiation physics. It is often designated as –dE/dx with E representing energy and 

x (cm) representing distance and can be calculated as  

S(E) = -dE/dx = μQavg = μ ∫ QW(Q)dQ
Q

max

Q
min

                                        (2.1)     

with μ representing the probability per unit length that an electronic collision will occur (also 

known as the attenuation coefficient) measured in cm-1, Qavg representing the average energy 

loss per collision measured in eV which is equal to the integration of the single collision energy-

loss spectra. This includes the W(Q)dQ, the probability that a given collision will result in an 

energy loss between Q and Q+dQ, and Q, the energy loss for each collision measured in eV. 

When traveling short distances in matter, the total number of interactions is small; this could 

cause a substantial difference in the average energy lost by the charged particle versus the 

probable energy lost by said particle. Stopping power can be divided by the density of the 

material, ρ (g/cm3), to become the mass stopping power (-dE/ρdx), measured in units of MeV 

cm2 g-1. It is a useful quantity since it expresses the rate of energy loss of the charged particle 

per g cm-2 of the target medium penetrated. This means that in the case of a gas, where stopping 
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power depends on the pressure, the mass stopping power does not since it is accounted for by the 

target density.   

Also, the mass stopping power does not vary greatly among materials with similar atomic 

compositions.[9] 

Restricted Stopping Power and LET 

Stopping power represents the energy lost by a charged particle as it traverses through a 

medium; however, it is not equal to the absorbed energy in the target especially if the target is 

small compared to the range of the secondary electrons produced by the incident radiation. This 

is common in the case for biological targets, i.e. living cells that have a diameter of the order of 

microns or DNA strands that are 20 Å in width. [9] Delta rays with sufficient energy can easily 

escape from a small volume where the radiation particle originally lost energy. Restricted 

stopping power is a more accurate representation of the energy that is lost that is actually 

absorbed in the target on the microscale.[9] The restricted stopping power is defined as the linear 

rate of energy loss only to collisions in which the energy transfer does not exceed a specified 

value Δ and is written as –(dE/dx)Δ.  Different values for Δ can be selected and can be used to 

consult tables that give mass stopping powers for energies up to a limit of Δ. Understandably, the 

higher the incident radiation energy, the higher the maximum energy transfer to the secondary 

particle in the interaction.  

In the early 1950’s, the concept of LET, another form of stopping power, was introduced 

to characterize the rate of energy transfer per unit distance along the path of the charged 

particle.[7] This term is synonymous with unrestricted stopping power and can be defined in the 

same manner with units of keV/μm for water.  
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Energy and Range Straggling 

 As each charged particle traverses through matter, the number of collisions, amount of 

energy lost due to each collision and the path length all fluctuate due to the stochastic nature of 

the process. Therefore, with a number of identical particles, each can have a varying energy 

spectrum as they pass the same point within the target, causing each to have a different path 

length. This is referred to as energy straggling and range straggling.[7] As the energy of the 

incident radiation increases, the projectile velocity increases leading to a decrease in the 

ionization cross section Therefore, the range of the charged particle increases. Logically, the 

stopping power decreases with the increase of energy since the number of interactions decreases 

and the chance to slow the particle down with particle collisions becomes less probable. In order 

to increase probability of interaction, the energy of the charged-particle radiation must decrease, 

the target medium density must increase, or the target volume must be made larger to increase 

the chance of a collision between the charged particle and an orbital electron. The mean range is 

defined as the absorber thickness at which the relative count rate is 0.5 on a plot of relative count 

rate vs. absorber thickness. The extrapolated range can be found by extending the straight portion 

of the curve tail down to the axis. Range straggling for protons is not significant; for a 100 MeV 

protons in biological tissue, the root mean square (RMS) fluctuation in range is 0.09 cm while 

the range is 7.57 cm, revealing a 1.2% difference. [9] According to Monte Carlo simulations by 

the Stopping and Range of Ions in Matter (SRIM) code, the approximate range straggling 

difference for 3 and 4 MeV protons is 8%.[21] The SRIM code will be discussed later in detail. 

Dose Measurements for Charged Particles 

 Measuring dose from charged-particle beams for radiobiological experiments is often 

done using ionization chambers placed at different distances incident to the charged particle 
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beam within the target material. The dose is proportional to the beam current and for a 

monoenergetic beam, the depth dose curve with a maximum dose rate in the region of the Bragg 

peak near the end of the particle’s range with the maximum LET also present at the depth in the 

target. When the charged particles are relatively low-energy protons (≤400 MeV), the energy 

loss is almost entirely due to collisions with orbital electrons so the dose rate will mimic the 

mass stopping power curve.[9] For high energy protons, the interactions begin to become more 

nuclear in nature and therefore change the depth dose cure relative to the mass stopping 

power.[9]  

Dose Calculations for Charged Particle Beams 

 For a uniform parallel beam of monoenergetic charged particles normally incident on a 

tissue slab with a fluence rate 𝜑̇ measured in cm-2 s-1 at a given depth of x, the dose rate at that 

point can be determined. A thin disc shaped volume with thickness Δx is assumed along the 

central axis of the beam with an area A normal to the beam. The rate of energy deposition,𝐸̇ in 

the volume could be calculated using the collisional stopping power (-dE/dx): 

Ė=φ̇A (-
dE

dx
) Δx                                                          (2.2) 

measured in MeV s-1.[9] The dose rate,𝐷̇ can be determined by dividing the energy deposition by 

the mass, ρAΔx,  

Ḋ = 
φ̇A(-

dE

dx
)Δx

ρAΔx
= φ̇(-

dE

ρdx
)                                                    (2.3) 

where ρ is the density of the tissue and 𝐷̇ is measured MeV g-1 s-1.[9] Hence, the dose per unit 

fluence at any depth is equal to the mass stopping power for the particles at that depth, i.e., if the 

mass stopping power is 2 MeV cm2 g-1, then the dose per unit fluence can be stated as 2 MeV g-1 
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if the fluence unit is cm-2. As mentioned earlier, for high energy charged particles, the depth dose 

curves cannot be calculated and Monte Carlo calculations must be performed due to the 

substantial nuclear interactions that take place. These calculations consider each individual 

interaction and their cross sections and determine the outcome statistically. Due to the energies 

(<5 MeV) used in this research, Monte Carlo calculations were not required to determine the 

dose.  

 

2.2 Biological and Chemical effects of Radiation 

Chemical and physical changes in irradiated water 

 Ionizing radiation produces secondary electrons which in turn deposit their kinetic energy 

throughout a water volume; this is relevant when studying mammalian tissue which is 

constituted of approximately 70-85% water.[8] Initially, physical changes take place once the 

radiation interacts with the water volume creating energetically ionized molecules, H2O
+, H2O

*, 

and free electrons within 10-15 seconds.[9] In the window of 10-15 to 10-12 sec, these three species 

induce changes within the volume producing free radicals.[9] The ionized water molecule reacts 

with a neighboring water molecule forming a hydronium ion and a hydroxyl radical: 

H2O
+ + H2O → H3O

+ + OH- 

The excited water molecule can transfer its energy through two processes, either by losing an 

electron thereby becoming an ion or by molecular dissociation: 

H2O
* → H2O

+ + e- 
aq 

H2O
* → H + OH-  
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The free electrons lose energy through vibrational and rotational excitation of water molecules 

and become thermalized within 10-12 sec.[9] The thermalized electrons are then captured by 

surrounding water molecules that orient their permanent dipole moments and becoming a cluster 

or aqueous electron. Of these four chemically active species, three of these, OH-, H2O
+ and e-

aq, 

are reactive due to their unpaired electrons. These radical species are also known as free radicals 

and can be responsible for biological damage. Due to cells being made of 80% water, these free 

radicals cause a great deal of the DNA damage, as much as two thirds of the DNA damage when 

the cells are exposed to both ionizing and non-ionizing radiation, specifically low LET (<2 

keV/µm) radiation (x-rays or gamma rays). [22]  

Biological Effects of Radiation 

 Radiation damage to biological cells occurs due to both direct damage and indirect 

damage.[5] Direct damage is a result of the radiation itself interacting with the cells components, 

for instance where proton radiation creates ions that physically break base pairs in the DNA 

strand or both of the DNA phosphate backbones otherwise known as a single or double strand 

break, respectively.  These, in addition to other types of changes in the DNA structure (i.e. point 

mutations, crosslinks between strands, or chromosome aberrations), if not repaired can lead to 

cell damage, apoptosis ( programmed cell death), or necrosis (death due to injury).[5] Direct 

damage is the primary reason for cell death when the cells are exposed to high LET (> 4 

keV/µm) radiation (i.e. protons, neutrons heavy ions). Direct damage to DNA due to high LET 

radiation is difficult to repair and the process is challenging to modify by chemical or physical 

means. [22] Indirect damage takes place due to chemical reactions with free radicals created by 

the radiation interaction with the biological material, an example being where an OH- radical 

attacks a DNA sugar resulting in a single strand break. Double strand breaks can be caused by a 
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single radiation track by both high and low LET radiation or multiple breaks caused within a 

close proximity (within 6-10 base pairs) to the break termini.[23] 

 The biological effects of dose can vary widely according to dose, type of radiation and 

observed timespan. Some effects can be immediate while others can take years to manifest. 

Generally, these effects are categorized as either stochastic or non-stochastic.[9] There is no 

definite determination that the effect will be present, an example of that effect being cancer. A 

large population of individuals can be exposed to radiation, however, they may not all develop 

cancer in their lifetime. In addition, since cancer can occur naturally without exposure, it is not 

guaranteed that any radiation exposure is the cause of the incidence of cancer. Rather, the odds 

of cancer incidence increase with radiation exposure dose and there is no threshold dose under 

which there is zero probability of developing cancer. Shortened lifespan, genetic effects and 

mutated offspring are possible stochastic effects of ionizing radiation. Non-stochastic effects, in 

contrast, have a clear causal effect with dose and have a threshold dose.[9] Skin erythema, 

infertility and cataracts are examples of non-stochastic effects as well as acute radiation 

syndrome, or ACR.[9] ACR can develop when a person receives a single, large, short-term 

whole body dose of radiation causing a depletion of radiosensitive cells in the blood and 

digestive tract. This can cause bone marrow damage, infection and at high doses, death.   
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2.3 Radioprotectors 

To delay or prevent the effects previously discussed, there are methods including incorporating 

shielding, reducing time of exposure and increasing the distance between the source and the 

individual to protect individuals who are exposed to radiation. In those cases where the 

individual may not have practiced these safety procedures, it may be necessary to use 

radioprotectors to reduce or eliminate the effects of ionizing radiation. An ideal radioprotector 

would provide: significant protection against radiation effects, a general protective effect on the 

majority of internal organs, an acceptable route of administration, an acceptable toxicity and 

stability profile, an effective time-window effect, and must be compatible with a wide range of 

other drugs available to patients and personnel. [4] While there is no radioprotector that satisfies 

all of these conditions, there are those that are able to provide some protection from the effects of 

indirect damage from radiation.  

Amifostine and other Synthetic Radioprotectors 

The current gold standard used is WR-2721, otherwise known as amifostine, a prodrug 

meaning it must experience a chemical conversion through metabolic processes before becoming 

an active compound. It is administered in a pharmacologically inactive form.[15] Once the 

thioester bond is cleaved by a phosphatase within the normal endothelium yielding a free thiol, 

the active free radical component of amifostine can permeate the cell membrane.[24] The active 

molecule, WR-1065 in thiol form, has shown to provide radioprotection for cells preventing 

death in the presence of  both direct and indirect ionizing radiation as well as mitigating the 

effects of genomic instability for the surviving cells. [25, 26] Amifostine can also protect by 

binding to free radicals allowing for detoxification, enhance DNA protection and repair, and 

induce hypoxia, preventing reactive oxide radicals from forming.[27, 28] Its effectiveness as a 
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radioprotector has allowed it to be used it in industry, medical and government applications, 

including as a safety precaution for astronauts on previous missions to the moon in case of a 

solar event. It is the most widely used cytoprotective compound approved by the Food and Drug 

Administration as a radioprotector. [22, 25] However, amifostine is not without drawbacks. It 

must be administered by trained personnel, which in the case of a nuclear disaster or attack could 

be problematic. Gaining access to large amounts of the compound as well as gathering a 

sufficient medical staff to administer the drug might face considerable problems. Also, side 

effects are possible with amifostine including acute hypertension, severe nausea, vomiting and 

allergic reactions.[18] In addition, amifostine is unable to provide protection for all the human 

organ systems, the central nervous system is completely unprotected due to the inability of the 

drug to pass the blood-brain barrier. [29] As mentioned before, a beneficial time-window effect 

is necessary for an ideal radioprotector but with amifostine, it must be administered before 

exposure to maximize its effect, which could be next to impossible in the case of a nuclear 

accident or terrorist attack. Finally, the cost of amifostine does not make it a viable option to the 

population at large with a minimum price tag of $1000. [30] While amifostine is useful in certain 

situations, it is necessary to find other potential radioprotectors that better satisfy the conditions 

of an ideal radioprotector.  

Palifermin is a radiomitigator, meaning it is delivered after radiation exposure, but 

before the manifestation of normal tissue toxicity, in an attempt to prevent or limit the 

expression of radiation-induced side effects.[28] Radiomitigators primarily target the series of 

cellular recognition/repair responses initiated after radiation exposure, including DNA repair, 

apoptosis activation and the cell proliferation and immunoinflammatory responses. Palifermin is 

considered a prototype mitigant.[28] 
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 Nitroxides are stable free radical compounds that have been shown to interact with other 

free radicals such as those that arise from ionizing radiation. Tempol is an example of a nitroxide 

that has demonstrated protective properties in vitro for mammalian cells against cytotoxicity 

from radiation in aerobic conditions as well as in vivo after whole body irradiation.[31, 32] 

Nonetheless, similar to amifostine, tempol has potential side effects such as hypotension and 

seizures at doses required to operate at full potential as a radioprotector and it has a limited time 

window.[4]  

 Bisbenzimidazol compounds, specifically Hoechst 3342, have been shown to be 

radioprotectors in vivo with an intravenous administration half an hour prior to a single dose of 

radiation of 12 Gy in mouse lung model. [33] However, Hoechst 3342 shows cytotoxicity and 

mutagenic effects at higher concentrations so efforts are being made to explore derivatives of 

Hoechst that show less of a negative effect. [34]  

Natural Radioprotectors 

 Cytokines are another group of radioprotectors that consist of a group of soluble 

glycoproteins and low molecular weight peptides that stimulate cell proliferation and 

differentiation between hematopoietic and lymphoid tissues.[35]  The most extensively 

researched cytokine as a potential radioprotector is Interleukin-1 (IL-1). IL-1 is produced by 

monocytes and macrophages in response to the presence of toxins, other cytokines, and 

microbial and viral agents. [35] Cytokines have shown potential as a viable radioprotector but 

they do have cytotoxicity effects which have encouraged researchers to discover a non-cytokine 

drug that can perform the same function. Immunomodulators have been shown to increase 

cytokine activity which can stimulate growth, differentiation and proliferation of stem cells. 

They seem to protect and repair the hematopoietic system through a greater production of bone 
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marrow cells which in turn produce more lymphocytes, platelets and granulocytes.[36]  

Immunomodulators are promising in protecting the hematopoietic system but unfortunately do 

not protect other organ systems and are not generally available to the public. Furthermore, as 

seen with many other radioprotector drugs, it must be administered by a professional 

intravenously which causes problems in cases of nuclear accidents and attacks.  

 Many natural antioxidants and herbal medicines have shown some potential in providing 

radioprotection of biological tissue. Vitamin E is free radical scavenger, shows low toxicity even 

at high doses and is naturally occurring. [37] Vitamin E has been shown to be effective in 

improving survival rates when injected into mice exposed to radiation but showed no effect then 

taking the same dose orally.[38] It also shows a lower dose reduction factor (DRF) than 

amifostine. Dose reduction factor is determined by dividing the dose of radiation in the presence 

of the drug by the dose without the drug present to cause a set lethality e.g., a lethal dose to 50 

percent of the population after 30 days (LD 50/30). Therefore, it still does not take as large a 

dose of radiation to cause biological tissue death with vitamin E present as it takes when 

amifostine is present.  Melatonin is hormone produced in the pineal gland that is used as an over- 

the-counter (OTC) sleep aid and studies have suggested that it is capable of scavenging free 

radicals [39] but has shown to have side effects such as sleepiness and hypotension and also 

interacts with nifiedipine, a hypotension drug, intensifying the effect.[40] Ginseng, a popular 

OTC herbal medicine, lauded for its benefits for improving aging, diabetes, reducing stress and 

fatigue and promotion of DNA, RNA and protein synthesis. [41-43] Human lymphocytes treated 

with ginseng extract were exposed to radiation and showed a reduction in micronuclei, an 

indicator of cellular DNA damage. [44] Further studies are necessary to determine the toxicity of 

ginseng and its derivatives as a potential oral delivery antioxidant. 
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 A very promising area of natural radioprotectors is soy and soy products. Consumption of 

soy products has shown to reduce risk of cardiovascular disease and reduced the chances of bone 

loss in postmenopausal women.[45-47] Genistein, a naturally occurring compound in soybeans, 

shows benefits in improving cardiovascular disease, high cholesterol and osteoporosis. [48] It 

has also shown promise as a radioprotector, increasing survival rate when intravenously injected 

into mice 24 hours in advance of being subsequently exposed to gamma radiation.[49] However, 

no effect was determined in the same experiment when injection took place 1 hour before 

exposure. While it shows to have radioprotection properties for normal cells, it has also shown 

radiosensitizing properties in regards to tumor cells, particularly human cervical cancer cells.[50] 

Genistein has shown ability to inhibit growth of different cell lines and reduce viability with an 

enhanced effect when combined with radiation.[51] While it shows a growth inhibitory effect at 

genistein concentration doses greater than 10 μM, it stimulates growth at doses below the same 

value. One study observed the effects of different doses of genistein between 0.01-100 μM on 

human breast cancer carcinoma cells with low doses from 1-10 μM showing growth promotion 

while inhibition was displayed at higher doses. [52]  

Cerium Oxide Nanoparticles  

 In recent years, nanotechnology has come to the forefront of biomedical research with 

applications in drug delivery systems, luminescent biomarkers, tissue engineering as well as 

many others. [53] One specific application, cerium oxide nanoparticles (CNPs), has shown great 

promise as a radioprotector and radiosensitizer. CNPs consist of a cerium core surrounded by an 

oxygen lattice and are synthesized using a micro-emulsion process consisting of surfactant 

sodium bis(2-ethylhexyl) sulfosuccinate (AOT) toluene, and water.[20] The CNPs exhibit 

regenerative antioxidant properties in the reaction cycle of Ce3+ to Ce4+ to Ce3+ which continues 



20 

 

on the surface of the CNPs providing antioxidants with unique protection properties.[54, 55] 

Cerium oxide can be designed to retain a specific Ce3+/ Ce4+  ratio which when controlled can 

determine its distinction as an effective catalase mimetic, superoxide dismutase (SOD) mimetic, 

or both, cleaving O2 radicals and hydrogen peroxide and rendering them inactive.[56-58]   They 

have shown other antioxidant behaviors including nitric oxide scavenging [59] and hydroxyl 

radical scavenging [60]. In contrast, CNPs have also shown oxidant behaviors as well under 

certain environmental conditions.[61] Both properties have proven beneficial in research of the 

effects of CNPs on normal cells as well as cancer cells. CNPs have been shown to possess an 

inherent cytotoxicity to cancer cells as well as the ability to sensitize tumor cells to radiation 

induced apoptosis while protecting the surrounding healthy tissue. [17, 20, 62-64] It is not well 

understood for the cytotoxicity to tumor cells but it is theorized that the CNPs provide free 

radicals that increase oxidative stress to the tumor cells. Not only have they shown cytotoxicity 

towards cancer cells, studies have shown them to limit the invasive characteristics of tumor cells. 

In one study, they reduced the ability of myofibroblasts to induce invasion by squamous tumor 

cells and also restricted the inherent ability of squamous tumor cells to invade without the 

presence of myofibroblasts stimulation. [65, 66]  

 The dual impact of CNPs as an oxidant for cancer cells as well as an antioxidant for 

normal cells makes it an ideal candidate for radiation therapy especially since studies have 

shown that natural antioxidants can be dangerous to cancer patients who are currently receiving 

treatment.[67] In several studies, when treated with CNPs prior to radiation therapy, cell damage 

and death were decreased for normal tissue in the gastrointestinal (GI) tract [62], lung [20], and 

head and neck [68]. In contrast, when treating certain cancer cells with CNPs in low pH 

conditions before radiation therapy, tumor cell death was enhanced.  A recent study has shown 
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the ability of CNPs to drive radiation induced oxidative species in pancreatic cancer cells to 

higher levels.[69] These results show that CNPs can radiosensitize cancer cells by encouraging 

production and maintenance of reactive oxygen species (ROS) and maintaining their levels 

within tumor cells. Combined with their direct toxic effects, CNPs show potential as a very 

effective weapon against tumor cell viability and growth. 

 Extending beyond cancer treatment, CNPs show promise in treating other diseases 

characterized by ROS accumulation. Neurodegenerative diseases such as Huntington disease, 

Parkinson’s disease, Alzheimer’s, and age related macular degeneration have been linked to 

increased levels of ROS which can prevent cellular mechanisms from combating oxidative 

stress.[70] The impact of CNPs on such diseases have yet to be fully explored, however, 

preliminary studies have shown they scavenge ROS in mouse models of hereditary retinal 

degeneration, preventing retinal deterioration and reducing apoptosis in photoreceptor cells. [71] 

CNPs have also demonstrated the ability to induce the regression of pre-existing pathologic 

retinal neovasculature suggesting an antiangiogenic property to CNPs, another valuable benefit 

to add to the long list. [70] In regards to diabetes, increased ROS, especially in the liver where 

free radicals are removed from the bloodstream, has been recognized as an important factor in 

the progression of the disease. [72] CNP treatment of diabetic rats has allowed hepatic ROS 

levels to return to levels comparable to non-diabetic rats as well as decrease triglycerides and 

increase HDL in the blood. [72] CNPs have also shown to increase the viability of pancreatic 

islet function increasing insulin secretion and decreasing ROS levels in isolated, cultured 

pancreatic islet cells. [73] Both studies show the great promise that CNPs have in not only 

treating diabetes but curing it as well.  
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 While CNPs have shown an apparent lack of toxicity in animal models, studies 

demonstrate conflicting evidence in regards to cells in vitro. This conflict is attributed to as yet 

undetermined cellular and environmental factors that influence both the oxidant and antioxidant 

behavior of CNPs. They have found to be toxic to bronchial epithelial lung fibroblasts in culture 

[74], yet non-toxic to mammary epithelial cells [17], macrophages [75], keratinocytes [76], and 

pancreatic cells [69]. In normal cells, the pH level of the cellular environment enables the CNPs 

to perform radical scavenging. Other studies show that CNPs are toxic to several types of human 

cancer cells in vitro, including squamous cell carcinoma [65], alveolar epithelial cancer cells 

[64], and pancreatic carcinomas [69]. They also show toxicity to pancreatic tumors in vivo 

reducing the tumor volume by almost 40%.[69] As mentioned earlier, this cellular toxicity is 

attributed to the ability of CNPs to increase levels of ROS and maintain them within the tumor 

cells. Despite the conflicting evidence of CNPs’ effect on cells in vitro and the evidence of 

toxicity in in vivo studies, their ability to behave as both an oxidant and antioxidant for tumor 

cells and normal cells, respectively, demonstrates the need for further research of CNPs. While 

many current radioprotectors are characterized by one antioxidant scavenger for every radical to 

be scavenged, a single CNP particle can scavenge many free radicals and can induce oxidation of 

many targets through its auto-regenerative capability and their regenerative antioxidant 

properties prevent the need for multiple treatments. [71] As is evident, CNPs can have 

widespread influence in biomedical applications.  
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2.4 Hypothesis and Specific Aims 

 Radiation exposure is progressively becoming a concern to the general population as 

evident by past nuclear accidents and disasters as well as the threat of terrorist attack.[77] In 

addition, as mankind sets sights on deep space travel, an effective radioprotector will be 

necessary to protect astronauts from the overwhelming amount of radiation associated with deep 

space.[78] Radiation therapy is always in need of solutions for improving tumor cell kill while 

protecting normal cells in greater amounts and reducing negative side effects.  Amifostine and 

Palifermin, a radiomitigator, are currently the only FDA approved radioprotectors but they have 

significant drawbacks in their effectiveness to the general population. Amifostine requires 

treatment before radiation exposure takes place, has a short half-life (<1 hr.), is quite expensive 

and has toxicity issues.[79] CNPs show great promise in the areas that remain drawbacks for 

amifostine. It is the objective of this study to determine the effectiveness of CNPs in protecting 

human breast epithelial cells when they are exposed to heavy charged particle radiation by 

measuring the cell survival and determining the DNA damage. These effects will be compared 

with the effects of those of WR-1065 with a human breast epithelial cell line representing a 

normal cell population. To accomplish this, three specific aims have been developed. 

Specific Aim 1 

 The first aim of this study was to design and develop a system to irradiate the A184 

epithelial breast cell line using a proton beam. This required a beam imaging system in order to 

characterize the beam by measuring the flux and flux uniformity to determine the dose to the 

cells.  



24 

 

Specific Aim 2 

The second goal was to develop a cell survival curve of the A184 cell line, irradiate the 

cells both with and without the CNP’s and compare the two conditions to determine their 

radioprotective effectiveness. This was measured by a methylthiazol tetrazolium, or MTT assay, 

a colorimetric assay that measures the conversion the yellow dye to a purple derivative. The 

radioprotective effects of the CNP’s were also be compared to the current gold standard, 

amifostine, in the form of its active component WR-1065.  

Specific Aim 3 

 The third goal was to perform DNA damage assays on all cells exposed to CNP’s as well 

as those that are not exposed to determine the cell damage caused by the proton beam as well as 

the influence of the CNPs in regards to protecting the cells from heavy charged particle radiation.  

A discussion of the results includes possible theories to explain the mechanisms in which the 

CNPs influence the normal cell line in the presence of charged particle radiation. 

 

 

 

 

 



 

 

Chapter 3: Materials and methods 

3.1 Research Design 

 The Atomic Physics Laboratory at East Carolina University provides a 2 MV tandem 

Pelletron accelerator that produces particle beams of various energies and charge states to study 

atomic collisions.[80] The accelerator produces an ion beam that proceeds through various 

focusing and steering components to be directed toward an exit point covered with a thin 

titanium foil where the beam will interact with a cell tray containing the target cells. The target 

cells are exposed to a predetermined dose and then analyzed for cell survival and DNA damage.  

Accelerator System and External Beamline at ECU 

 A schematic of the accelerator system used at ECU is shown in Fig. 3.1. A general Ionex 

Corporation model 860A cesium-sputter ion source is used to produce various atomic and 

molecular ions and is capable of producing negative ion beams in the microampere range as 

described by Middleton. [81, 82] The production of the wide range of ions that can be produced 

and their relative abundances have been described in previous literature.[83] For this study, H-

ions are produced by the ion source from a TiH cathode and then accelerated by a 30 kV 

potential along a 1 m acceleration region. A sample diagram of an ion sputter source is provided 

in the literature.[83]  The H- ions are momentum selected by an inflection magnet and then 

injected into a 2 MV tandem Pelletron accelerator, model 6SDH-2 from National Electrostatic 

Corporation.  
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Figure 3.1 ECU Particle Accelerator layout (not drawn to scale) 

 

Previously, the ECU accelerator lab used a tandem Van De Graff accelerator for nearly 4 

decades until 2009 when a National Science Foundation grant was awarded to fund the purchase 

and installation of a new 2 MV Pelletron tandem accelerator. Renovations began in 2010 to 

expand the lab to house the larger accelerator and expanded beamlines and concluded with its 

installation in 2012. The Pelletron accelerator is an electrostatic accelerator with a metal and 

ceramic accelerating tube, two Pelletron chains, and a gas stripping system encased in a 

pressurized tank that contains up to 550 kPa of SF6 of insulating gas to prevent discharge. To 

produce the ion beam, a cesium ion source is heated creating cesium vapor which is released in 

an enclosure containing a copper cathode and the heated ionizer.  Some of the cesium vapor 

condenses on the cathode while the rest is ionized to become Cs+. The cathode is held at a 
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negative potential, attracting the Cs+ ions and impacting them on the cathode sample cone 

(composed of titanium hydride) sputtering H- ions out of the cone. The cathode is 12.5 mm in 

length and 10 mm in width with a 1.6 mm well drilled in the center to a 5 mm depth. The well is 

packed with the TiH powder. Due to the shapes of the potential surfaces defined by the cathode 

and ionizer potentials, these ions are focused into a beam while other ions including the Cs+ ions 

are scattered. Details of the cathode configuration are provided in the literature.[83] The beam is 

extracted by an extraction potential Vs and focused with an electrostatic Einzel lens, a device that 

varies electric fields in order to focus the ion beam using ion optics.[84] The beam is momentum 

selected by the inflection magnet and then is focused using another Einzel lens followed by a 

pair of electrostatic steerers and injected into the tandem accelerator.  

 The accelerator creates electric charge by transportation of two Pelletron chains, made of 

metal pellets connected by insulated nylon links, through a closed pulley system. For a positive 

terminal Pelletron, a negatively charged inductor pushes electrons off the pellets while in contact 

with the grounded drive pulley. They retain their charge as they exit the inductor and proceed to 

the high voltage terminal where the reverse occurs: the chain goes through a suppressor to 

prevent arcing when coming in contact the terminal pulley on which the positive charge is 

deposited giving a positive charge to the terminal.[85] The advantage of Pelletron accelerators 

lies in the fact that they can operate at a higher speed transferring charge more efficiently thus 

attaining higher voltages. In addition, the chain is more uniformly charged than a Van de Graff 

belt allowing for a more stable terminal voltage and particle energy. The H- ion beam is 

accelerated toward the positive high voltage terminal of the accelerator where they proceed 

through a stripping gas, N2, becoming H+ ions and accelerated once again to ground potential. 

This configuration can produce singly charged ions up to 4 MeV which was used for this 
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experiment along with a 3 MeV beam.  More details about the design and operation of the 

accelerator system are provided in the literature.[80, 86] A pair of quadrupole magnets is 

positioned after the accelerator, focusing the H+ beam followed by an analyzing magnet used to 

select the beam of the appropriate mass and energy, directing the beam down the left 15° 

beamline where the target cells are located. A diagram of the 15° beamline is provided in Fig. 

3.2.  

Fig. 3.2 15˚ beamline side view of irradiation setup 

 

The experimental beamline is pumped by a turbomolecular pump where the pressure is 

maintained at approximately 10-7 torr. Several devices are used to monitor the beamline pressure, 

beam intensity and beam profile. An ion gauge is used to measure the vacuum pressure by 

heating a filament which releases electrons that are attracted to a grid held at a positive potential. 

In their progression toward the grid, they collide with gas molecules creating gas ions. These gas 

ions are collected with a wire held at a negative potential. The current is measured to determine 
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the vacuum pressure. A fast shut valve is positioned near the analyzing magnet so that in the case 

of a sudden loss of pressure due to a foil puncture, the vacuum can be preserved further up the 

beamline. A quartz crystal is mounted onto a feedthrough block in order to see the beam through 

fluorescence giving a view of the beam spot through a viewing window on the side of the 

beamline. Immediately after the feedthrough, a Faraday cup (F.C.) is mounted and used to 

measure the beam current by insertion into the beam to confirm the number of ions in the beam 

striking the target. 

 At the end of the beamline, immediately behind the F.C., a vacuum window consisting of 

a 12.5-μm-thick titanium foil is epoxied to a brass beamline blank with a 1.4 cm aperture drilled 

in the center. The window was made as thin as possible to prevent a large loss of energy of the 

ion beam due to interactions with the nuclei in the foil. With this window thickness, energy loss 

was determined to be 10% for 4 MeV protons and 15% for 3 MeV protons. Once the beam exits 

through the foil, it goes through 3.2 cm of air before irradiating the cells contained in a single 

layer of cells in a single well in the center of a 48 well microtiter plate. The microtiter plate is 

held in place by two brackets that are secured to a Teflon stand with a reservoir to catch and hold 

any excess growth medium that may exit the cell plate. The setup is shown in Fig. 3.3. 
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Fig. 3.3 End of Beamline setup 

Beam Dose Calculation and Profiling 

 In order to determine the correct dose to the cells, the beam must be profiled and 

characterized using information provided by the F.C. at the end of the beamline positioned 

directly in front of the beam window as well as an yttrium aluminum garnet (YAG) scintillation 

crystal secured in the cell plate well that is positioned directly in front of the titanium exit 

window. The dose is calculated using Eq. 2.3, with the fluence rate of the proton beam provided 

by the beam current measured using the F.C. and the stopping powers predicted by Stopping and 

Range of Ions in Matter (SRIM) code.[21] The SRIM code calculates the stopping and range of 

ions into matter at energies up to 2 GeV/amu using a quantum mechanical treatment of ion-atom 

collisions. This calculation makes use of statistical algorithms which take into account calculated 

ion collisions and averages the results over the intervening gaps. A detailed description of this 

calculation is provided in the literature.[21] The SRIM program is able to provide stopping 

powers for a wide range of types of matter including those used in this experiment, specifically 

titanium, air and human epithelial cells.  
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 The LET of the beam was first calculated in order to determine the energy loss of the 

beam as it traveled through each material. The LET equation used is 

LET= (-
dE

ρdx
) * ρ                                                        (3.1) 

which is then used in to determine the energy loss of the beam as it exits each material thickness 

ΔE=E0-(LET*∆x)                                                      (3.2) 

providing the energy value to determine the next LET value as the beam travels through the 

subsequent materials in its path. Once the beam exited the 12.5 µm thick titanium window, it 

traveled through approximately 3.2 cm of air into the single layer of epithelial cells with an 

assumed thickness of 5 µm, consistent with other similar studies. [87-89] The assumed thickness 

was an simplification of the true conditions where cells vary in size in shape in true conditions 

although in regards to the relative dose to the cell, this estimate was not critical and was 

sufficient for dose calculations. After determining the energy loss due to the exit foil and air, the 

incident energy was approximately 1 MeV less than the beam energy in the beamline prior to 

exiting the foil. 

 After calculating the energy loss through the various materials, the dose is calculated 

relative to the midpoint of the cell. The dose rate at the midpoint of the cell is calculated with the 

following equation 

Ḋ=Fluence Rate*Mass Stopping Power*1.6*10
-7

                    (3.3)                               

Dose rate is measured in Gy/sec, fluence rate is measured in cm-2 sec-1 and mass stopping power 

is measured in MeV*cm2/mg; 1.6*10-7 is a conversion factor to convert MeV/mg to Gy (J/kg) 

the standard unit of dose. Calculating the dose rate at the midpoint of is consistent with previous 
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studies as a standard.[89-91]  The cells were irradiated for the correct time according to the 

prescribed dose.  

To ensure proper beam irradiation of our cell sample, the beam was characterized using 

an yttrium aluminum garnet (YAG) crystal. The crystal scintillates when exposed to charged 

particles which gives the position of the beam spot relative to the cell sample. The YAG crystal 

was secured in a sample microtiter plate with same well count as the plates in which the cells 

were seeded, specifically the E5 well. Due to the orientation of the wells on the plates, a 180 

degree rotation of the plate places the B4 well directly in the path in the beam, allowing for two 

irradiated cell wells per plate. A camera was attached directly behind the cell plate holder 

focused on the well containing the YAG crystal capturing an image using XCAP® for Windows 

that is then characterized using ImageJ, a public domain, Java based script program developed at 

the National Institute of Health.[92] The image is processed and portrayed in a 3D image that 

gives variations in the scintillation of the crystal, representing the variability in the beam flux on 

the YAG crystal. The beam is adjusted using the previously mentioned quadrupole magnets until 

the beam is uniform with estimated <5% variation across the YAG crystal. A sample 3D image 

representing the beam flux is shown in Figure 3.4. 
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Fig. 3.4 Sample Beam Intensity Image on ImageJ software (side view and top view) 

 

Cell lines and Culture Conditions 

The experiment model used for the non-tumorigenic cell line in this study  is the A184 

epithelial breast cell line(ATCC® PCS-600-010).[93] The cell culture procedure was used in 

previous CNP research involving x-ray radiation.[20, 62] The stock cultures were maintained in 

75 cm2 culture flasks in Mammal Epithelial Basal Medium (MEBM) complete media (minus 

gentamycin-amphotericin B) purchased from Lonza® supplemented with 1 ng/ml cholera toxin 

and 0.005 mg/ml transferrin and incubated at 37˚ C in a 5% CO2 environment. The cholera toxin 

stimulates cell growth and the transferrin is an important extracellular antioxidant preventing the 

production of free radicals by binding iron, a free radical catalyst.[94] For experiments, the cells 

were washed with 10 ml of phosphate-buffered saline (PBS) solution for several seconds to 

remove any residual media. The PBS was aspirated and the cells were trypsinized with 3 ml of 

0.25% Trypsin/EDTA (Ethylenediaminetetraacetic acid) solution (Invitrogen/Life Technologies, 
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Inc.). The cells were then incubated for 15 minutes at 37˚ C with 5% CO2 until the cells were 

rounded and had detached from the flask wall. The cell suspension was then added to a 15 ml 

centrifuge tube and 9 ml of media were added to dilute the trypsin. The cells were spun at 150 x 

g for 10 minutes at 4˚ C and then were re-suspended in 3 ml of MEBM media. One ml of the cell 

suspension was added to a new 75 cm2 flask with 15 ml of media to produce a new stock culture. 

The remaining 2 ml were used for plating cells for experiments. For cell counts, 100 µL were 

removed from the remaining cell suspension. Of this, 50 µL were removed and placed into an 

Eppendorf tube with 50 µL 0.4% trypan blue. After mixing, 10 µL were immediately loaded into 

a hemocytometer and trypan-blue excluding cells in four 1 mm2 sectors were counted. An 

example of the cell counts for all four sectors would be 74, 89, 82 and 76 giving an average of 80 

cells. This number is then doubled to account for 1:2 dilution in the trypan solution, giving a 

number of 160 x 104 cells/ml. The desired number of cells per well in a 48 well microtiter plate 

were 4 x 104 cells in a total volume of 200 µL solution meaning that the dilution would require 

20 x 104 cells/ml. The dilution factor would therefore be  

          1.6 x 106 / 20 x 104 = 8  

Therefore, 1.0 ml of cell solution were added to 7.0 ml media giving a 1:8 ratio of cell solution to 

media. Wells B4 and E5 were seeded for irradiation and wells B1 and C1 were seeded for 

controls in a 48 well microtiter culture plate with 200 µL of the 20 x 104 cells/ ml suspension. 

Wells B1 and C1 were seeded with 200 µL of cell solution as non-irradiated controls and wells 

B8 and C8 were seeded with 200 µL of cell solution as non-irradiated CNP control when 

required for a particular experiment. This allowed for comparison between the non CNP control 

and CNP control for possible toxicity. CNPs were added in a total volume of 50 ml (see below). 
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The plates were incubated at 37˚ C with 5% CO2 for 24 hours to allow the cells to grow toward 

confluence. 

 CNP and WR-1065 Preparation 

The CNP synthesis is described in detail in the literature.[20] Several methods exist for 

the synthesis of stable nanoceria involving a hydrothermal process or precipitation and re-

dispersion techniques that do not produce surface active nanoceria particles. To retain surface 

active states and ensure non-toxicity, controlled room temperature techniques that can yield a 

nanosuspension in a one pot reaction are necessary.[95] Therefore, nanoceria must be 

synthesized in water soluble, biocompatible mediums to retain surface activity over a diverse 

range of pH and cellular environments. [95] 

 The CNPs for this experiment were synthesized using several different methods to achieve 

different effects when exposed to the cells and subsequent irradiation and were manufactured at 

Burnett College of Biomedical Sciences and Advanced Materials Processing and Analysis 

Center and the Mechanical, Materials and Aerospace Engineering, and Nanoscience and 

Technology Center (NSTC), University of Central Florida in Orlando, FL. Due to the proprietary 

nature of the CNPs, only three methods will be described here. [96] Method 1 uses the 

microemulsion process comprising surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT), 

toluene and water. The AOT is dissolved in 50 mL of toluene and 2.5 mL of 0.1 M aqueous 

cerium nitrate solution is then added and stirred for 45 minutes. After stirring, 5 mL of 30% of 

hydrogen peroxide is added was then added by drop method. The reaction takes place for one 

hour and then the mixture is left to separate into two layers, the upper layer consisting of toluene 

containing non-clustered ceria nanoparticles and the lower level the aqueous phase. The CNPs 

are precipitated by addition of 30% ammonia solution and washed with acetone and water to 
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completely remove the surfactant. The CNP’s are then suspended in deionized water at a 5 mM 

concentration.  

Method 2 synthesizes s higher surface Ce3+ CNPs using simple wet chemical procedures. 

Cerium nitrate hexahydrate is dissolved in deionized water and then filtered using a 20 nm filter 

to remove undissolved impurities and is then oxidized using hydrogen peroxide and stirred 

overnight.[54, 60, 95] The CNPs can be dialyzed against DI water to remove excess oxidizers 

and nitrate ions from the solution. Method 3 is similar to method 2 with the difference being 

ammonium hydroxide is used instead of hydrogen peroxide is used to form the CNPs with a 

higher surface Ce4+ concentration. The CNPs manufactured with method 2 are 3-5 nm in size 

while the method 3 CNPs are 5-8 nm in size.  

The CNPs are characterized using x-ray photoelectron spectroscopy (XPS) and high-

resolution transmission electron microscopy (HRTEM). The resulting nanoparticles are ultrafine 

in the range of 2-5 nm, uniformly distributed and have nanocrystallinity.[17, 97] The XPS 

spectrum shows the presence of a mixed valence state with Ce+3 and Ce+4 peaks and is provided 

in the literature.[17] The Ce+3 are present in the crystal lattice due to oxygen vacancies created by 

the surface chemical reactions. [98]  

The WR-1065 preparation was done according to a similar experiment referenced in the 

literature.[25, 26] WR-1065 was obtained from Sigma-Aldrich®. Immediately before treatment, 

WR-1065 was dissolved at a concentration of 20 mM in phosphate-buffered saline (PBS) and 

then filter sterilized. 50 µL were added to the cells 60 minutes prior to irradiation for final 

concentration 4 mM.  
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3.2 Cell Survival and DNA damage assay 

 

 24 hour after seeding, the cells were treated with the CNPs. Serial dilutions of a 5 

mM stock were made according to the required concentration for treatment. One ml of the 5-mM 

concentration was added to 9 ml of media lacking phenol red (clear media) for a 1:10 solution, 

and then subsequent dilutions were made down to a 500-nM concentration. Then the desired 

concentration is added to the plates. For example, if the desired concentration was 1 µM 

concentration, then 50 µL of the 5 µM CNP solution is added to the 200 µL of media in the cell 

well giving a 1:5 dilution and resulting in a final concentration of 1 µM. The concentrations 

tested throughout this research were controllably varied from 100 nM to 10 µM. After addition 

of the CNPs, the cell plates were incubated for another 24 hours.  

On the day of irradiation, the media was aspirated and the cell wells were washed with 

100 µL of media. For the WR-1065 experiments, 50 µL of a 20 mM stock was added for a final 

treatment concentration of 4 mM one hour before irradiation. Prior research indicates this is the 

ideal exposure time for maximum cell protection.[25, 26] Due to the cytotoxicity of WR-1065, a 

24 hour exposure similar to the CNP concentration was not feasible. The media was then 

aspirated and the plates were transported to the accelerator lab where they were mounted on the 

cell plate holder and irradiated for the required dose. Once irradiation is complete, the plates 

were then transported back to the cell biology lab and 200 µL of clear media were added to the 

cell wells, along with wells A1 and B1 for a background control for the MTT assay. The plates 

were then returned to the incubator for an additional 24 hours. 
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3.3 MTT and TUNEL Assays 

 Twenty-four hours after irradiation, cell viability was assessed using the MTT assay. The 

MTT assay is a colorimetric assay that measures cell viability by the reduction of tetrazolium 

salts, particularly for this assay, yellow tetrazolium MTT (3-(4, 5-dimethlylthiazolyl-2) -2, 5- 

diphenyltetrazolium bromide). When MTT is reduced by metabolically active cells by 

dehydrogenase enzymes, the resulting intracellular purple formazan can be quantified using 

spectrophotometry. The assay can determine metabolic activity and conversely the reduction of 

said activity due to apoptotic events or necrosis.  

 44.5 µL of 5 mg/ml MTT reagent (Sigma-Aldrich®) dissolved in PBS were added to the 

all plate wells that contain media and allowed 2 hours to incubate. The media was then removed 

being careful to not disturb the purple crystals in each well. The purple crystals were re-

suspended in 400 µL of 100% 2-propanol until they were completely dissolved.[99] The 

suspensions were then measured for their absorbance at 570 nm wavelength in a Tecan plate 

reader, model Infinite 200PRO. The absorbance values were recorded and saved in an Excel 

spreadsheet. 

 The survival rates were calculated by averaging the absorbance values of the wells that 

were irradiated, subtracting the averaged absorbance values of the background wells, then that 

value is divided by the average of the non-irradiated, non-CNP control absorbance values (minus 

background) and normalized to 1. The standard error is calculated by taking the standard 

deviation and dividing by the square root of the number of trials. For each experiment, two cell 

plates were seeded and treated per concentration as well as two cell plates for the irradiated 

control. P-values were calculated for each experiment using a 2 sample mean t-test to determine 
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if the difference in cell survival of the CNP treated cells was statistically significant (p<0.05) 

compared to the irradiated, non-treated control cells. 

 The degradation of nuclear DNA into nucleosomal units is the defining feature of 

apoptosis. At the beginning of the process, the chromosomes are cleaved into large fragments 

after which endogenous Ca+2 and Mg+2 –dependent endonucleases cleave the chromatin at the 

linker DNA sites between the nucleosomes, creating DNA fragments.  Terminal 

deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling, or TUNEL 

assay is a quantitative and qualitative assay that detects DNA strand breaks by labeling the 

terminal end of nucleic ends which are identified with terminal deoxynucleotidyl transferase 

(TdT) that will act as a catalyst for the addition of dUTPs that mark the strand breaks with a 

fluorescence marker. TdT catalyzes the template-independent addition of deoxynucleotide 

triphosphates to the 3 ́-OH ends of DNA. When fluorophore labeled nucleotides are incorporated 

by TdT, nuclei with degrading DNA can be detected by immunofluorescent techniques. The 

brighter the fluorescence indicates a higher measure of cell damage, an effective sign of likely 

apoptosis. A more detailed description of the TUNEL assay can be found in the literature.[100] 

To perform the TUNEL assay, cells were seeded in 6 well plates on top of coverslips 

similar to the earlier process for cell plating with one major difference: in order to maintain the 

same cell density as for the 48 well plates, the surface area was calculated to be 10 times larger 

in the 6 well plate as the 48 well plate well, so 10 times as many cells were seeded. 4 x 105 cells 

total in a total volume of 2 ml were added to the wells and they were incubated 24 hours. 5x 

CNP stock solutions were added at a 1:5 ratio in the same manner as for the MTT assay and were 

again incubated for 24 hours. The same method of irradiation was performed for the TUNEL 
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with the exception of 2 mL of clear media added post irradiation. The plates were then incubated 

an additional 24 hours.  

 The TUNEL protocol began with removal of the media and a PBS wash of the coverslips. 

500 µL of 4% paraformaldehyde fixative was added to completely cover the coverslips which 

were then incubated for 15 minutes at room temperature. Fixative was removed and 2 mL of 

0.25% Triton® X-100 permeabilization reagent was added followed by a 20 minute incubation at 

room temperature. The coverslips were then washed twice with PBS. In order to ensure that the 

TUNEL assay was effective in marking DNA strand breaks, it was necessary to induce DNA 

strand breaks in a positive control. The positive control non-irradiated coverslips were fixed and 

permeabilized with 10 µL of DNase I diluted in 90 µL of water for 30 minutes at room 

temperature. After incubation, the control coverslips were washed with PBS and then subjected 

to the TdT protocol along with the irradiated coverslips.  

 The Click-It® TUNEL assay protocol is provided by Life Technologies™.[101] 100 µL 

of TdT reaction buffer were added to all coverslips to cover the entire coverslip and then 

incubated for 10 minutes at 37˚ C. After incubation, the TdT reaction buffer is removed and 50 

µL of a TdT reaction mixture consisting of the reaction buffer, Ethynyl-dUTP (EdUTP) and the 

TdT enzyme is added to each coverslip and then incubated for 60 minutes at 37˚ C. After 

incubation, the coverslips are washed twice with 3% bovine serum albumin (BSA) in PBS for 5 

minutes each. 50 µL of a Click-iT® Plus TUNEL reaction cocktail is added to each coverslip 

and then allowed to completely cover the surface. The coverslips are incubated for 30 minutes at 

37˚ C, protected from light. The reaction cocktail is then removed and each coverslip is washed 

with 3% BSA in PBS for 5 minutes. The coverslips are mounted on microscope slides with a 

drop of from an eyedropper of 4',6-DiAmidino-2-PhenylIndole (DAPI) a fluorescent stain that 



41 

 

binds to A-T regions in DNA, a common stain used in fluorescence microscopy and is effective 

in staining of fixed cells. The coverslips are sealed with an adhesive to the slides and then 

examined with a fluorescence microscope. The slides were examined using a confocal 

fluorescence microscope brand and model number Zeiss LSM700. The confocal microscope is 

able to detect several wavelengths simultaneously, two of which are fluoresced in this particular 

assay, DAPI which fluoresces at 405 nm, and the TUNEL which incorporates an AlexaFluor 568 

nm fluorophore that attaches to the nicked-end DNA strand. The DAPI reveals the presence of 

the DNA with a blue/violet fluorescence while the fluorophore indicates DNA damage with a red 

fluorescence. The more abundant and brighter the red fluorescence, the more extensive the DNA 

damage.  

 

 

 

 

 

 

 

 



 

 

Chapter 4: Results 

 

4.1 Dose Adjustments 

  In order to determine the accurate dose administered to the cells in the plate well, the flux 

incident on the well surface needed to be determined. While the F.C. gives the total beam current 

before it exits through the foil window, it measures the total current over an area of 

approximately 7 cm2 while the area of the cell well is approximately 1 cm2. While the beam area 

is not as large as the area of the F.C. due to several collimators situated in the path of the beam, it 

is still collecting both the proton beam and subsequent scatter released as the result of interacting 

with the collimators. To measure the approximate beam incident on the cell well, a larger YAG 

crystal with a diameter of 2 cm was placed in the same position of the irradiated cell well and a 

beam profile was measured. Using ImageJ, a 2D slice was taken from the midpoint of the crystal 

image and plotted in a beam intensity vs. channel (position) plot. The crystal image and 2D 

profile is shown in Fig. 4.1. This slice was taken in both the x and y direction (y in the direction 

of gravity). Based on the orientation, the YAG crystal in the 48 cell well plate was set in the 

center of the position of the larger YAG crystal. The profile of the smaller crystal was also taken 

and a length was measured and placed in the center of the larger crystal 2D profile. The intensity 

in this region was integrated and normalized to the total beam intensity in both the x- and y- 

direction. To determine the fraction of beam incident on the cell well, the intensity of the smaller 

beam profile was divided by the intensity of the larger beam well. The percentage of beam 

incident on the cell well was calculated to be approximately 55 percent of the measured beam 

current. The other 45 percent was beam scatter caused by the beam exiting the foil window and 
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scatter due to air. Once the doses were adjusted, the cell survival curves that were measured 

showed good agreement to previous research of proton irradiation cell survival curves.[89] These 

results will be discussed later. While the beam energies used were 3 MeV and 4 MeV for the 

proton beam before exiting the foil, the results will be characterized by the incident beam energy 

in order to give better understanding of the dose deposition within the cells. 

Fig. 4.1 YAG crystal image of beam profile including scatter. The plot shows the beam 

profile intensity vs. position across the line at the midpoint. The position is measured in 

pixels. 

 

  

 

4.2 CNP survival results with 2 MeV protons 

 Several CNP types were tested and were all named according to the labels on their vials 

received from UCF. A typical experimental run would include 2 plates per CNP type and two 
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plates of irradiated controls with no additives to determine the radiation damage to unprotected 

cells. Dose was administered in different amounts to see the effect of the CNPs at different levels 

of damage. 

 

Fig. 4.2 Surviving fraction of A184 breast epithelial cells irradiated with an incident energy 

of 2 MeV protons for a dose of 1.1 Gy vs. CNP concentration. An MTT assay was used to 

assess surviving fraction based on metabolic activity. The control represents the irradiated 

non-treated cells.  Error bars represent standard error. 

  

1 Gy Proton Dose Results 

 The results of the first CNP tested is shown in Fig. 4.2. Since it was the first CNP type, it 

was the only one received without a label or distinction. Cell survival following exposure at 

different concentrations was measured at a dose of 1 Gy. As shown in the plot, the 100 nM 

concentration appears most effective in improving cell survival, however the p-value was 0.37, 

well above the standard of p<0.05, therefore these results were statistically insignificant. The 100 
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nM concentration was shown to be effective in previous research with respect to x-rays while the 

higher concentrations were tested to determine if increased concentration was more effective in 

improving cell survival.[17]   

 

Fig. 4.3 Surviving fraction of A184 breast epithelial cells irradiated with an incident energy 

of 2 MeV protons for a dose of 1.1 Gy vs. CNP concentration and type. An MTT assay was 

used to assess surviving fraction based on metabolic activity. The control represents the 

irradiated non-treated cells. Error bars represent standard error.  

 

The results of exposure to CNP types ASR, NH4 and NC are shown in Fig. 4.3 at a dose of 

approximately 1.1 Gy. Two concentrations of 1 mM and 100 nM were used to determine if there 

is any difference in the effect seen post irradiation. The irradiated control showed 42 percent 

survival while the 1 mM NC treated cells showed a 6% increase in cell survival, however a p-

value of 0.26 determines that this increase in survival is not statistically significant. The ASR 
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and NH4 showed lower survival fractions compared to the irradiated control. It is worth noting 

that this batch of CNPs were tested in this experiment a month after they were received and 

recent research suggests that age affects the efficacy of CNPs as a free radical scavenger.[102]  

 

Fig. 4.4 Surviving fraction of A184 non-malignant breast epithelial cells irradiated with an 

incident energy of 2 MeV protons for a dose of 3.6 Gy vs. CNP concentration and type. An 

MTT assay was used to assess surviving fraction based on metabolic activity. The control 

represents the irradiated non-treated cells.  Error bars represent standard error. 

 

3 Gy Results 

In Figure 4.4, the survival fractions are shown for the three CNP types at a dose of 3.6 Gy. 

Contrasted to the effects seen at 1.1 Gy, these data showed a lower survival fraction for the control 

which is expected. However, the set of data displayed a higher survival for both ASR 

concentrations and for the 100 nM NH4 CNPs with a p-value of .14 which is higher than our 



47 

 

accepted value of 0.05.  Also, while the ASR type showed higher survival at lower concentrations 

as it did for 1.1 Gy, now both the NH4 and NC types have shown a reversal of the trend seen at 

the lower dose of 1 Gy. It is not clear why but it is thought that the variation of cell plating that is 

inherent to the technique could be a cause. An alternative method could improve the consistency 

of the cell counts and is discussed later. 

 

 

Fig. 4.5 Surviving fraction of A184 non-malignant breast epithelial cells irradiated with an 

incident energy of 2 MeV protons for a dose of 3.6 Gy vs. CNP concentration and type. An 

MTT assay was used to assess surviving fraction based on metabolic activity. The control 

represents the irradiated non-treated cells.  Error bars represent standard error. 

  

Fig. 4.5 is a plot of the surviving fraction of cells after treatment with the CNP types ASR, NH4, 

and NC. This experiment was unintentionally seeded for 250 µL instead of the usual 200 µL, 

adding 20% more cells. This is most likely the reason behind the control being more than double 

the survival rate as the previous 3.6 Gy experiment and while it makes it difficult to compare 

survival to other trials, it is sufficient to compare survival between the irradiated control and the 
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various CNP treated cells due to all the cell counts increasing in each trial. The concentrations 

and types that displayed the largest increase in cell survival were the 1 µM NC, 100 nM ASR 

and 1 µM NH4 with p-values of 0.07, 0.11 and 0.06, respectively. None are less than 0.05, most 

likely due to the low number of trials (n=4) and could be improved by repeating the experiment 

and increasing the number trials. It is worth noting that this experiment was run with fresh 

solution of CNPs and displays higher values for most of the CNP types. Again, age seems to play 

a factor in the free radical scavenger efficiency as seen in the 1.1 Gy data. 

 
Fig. 4.6 Surviving fraction of A184 non-malignant breast epithelial cells irradiated with an 

incident energy of 2 MeV protons for a dose of 4.4 Gy vs. CNP concentration and type. An 

MTT assay was used to assess surviving fraction based on metabolic activity. The control 

represents the irradiated non-treated cells. WR-1065 treated cell survival is also shown at a 

4 mM concentration. Error bars represent standard error. 
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4 Gy Results 

Figure 4.6 shows the surviving fraction of cells when exposed to a dose of 4.4 Gy and include 

the effects of WR-1065, the active agent in amifostine. Again, the control showed a lower 

survival rate at a higher dose than the two previous dose measurements. The WR-1065 treated 

cells indicated a slightly increased survival with a p-value of 0.02 making it statistically 

significant while the lower concentration of NC and ASR exhibited a 9 and 8 percent increase 

relative to the control, respectively. However, only the p-value (.004) of the100 nM ASR 

concentration was significant. While this research would benefit from more trials to improve the 

p-values, this plot seems to indicate that all CNP types could be providing some measure of 

radioprotection to the cells.   
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Fig. 4.7 Linear quadratic fit of cell survival curve for A184 non-malignant breast epithelial 

cells irradiated with an incident energy of 3 MeV protons vs. dose. Cells were assayed using 

an MTT assay. Error bars represent standard error. 

 

 

 

 

4.3 Survival Curve of 2 MeV and 3 MeV Proton Irradiation 

In order to determine if the cell doses were accurate, cell survival values were plotted using the 

irradiated controls for both the 2 MeV and 3 MeV data and were fitted with the linear quadratic 
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model, a widely used model for plotting cell survival rates in radiobiology.[89-91, 103, 104] The 

linear-quadratic model is: 

Surviving Fraction= e-(αD+βD2)                                             (4.1) 

where α and β are constants and D is dose measured in Gy. The 3 MeV survival curve is shown 

in Fig. 4.7. In the plot, a linear quadratic equation was fitted using the least squares method with 

an adjusted R2 value of 0.87. The adjusted R2 value was used due to the small number of trials 

(n=4) for each data point including the assumed survival fraction of 1 at a dose of 0 Gy. At the 5 

Gy dose, the surviving fraction was shown to be higher than expected based on the linear 

quadratic fit. A possible reason for this could be the MTT assay overestimating cell survival at 

higher doses due to cells being metabolically active but having little to no proliferation, the true 

definition of cell survival.[105]  An alternative method to account for this overestimation will be 

discussed later. Also, the cell population is asynchronous and research has shown cells in mitosis 

and the G2 (second gap before mitosis) phase have been shown to be more radiosensitive than 

those in the G1 (first gap after mitosis) phase or the S phase (DNA synthesis).[106] This can lead 

to two distinct populations, one more radiosensitive than the other, leading to a survival curve 

that is initially steep due to high cell kill of the radiosensitive cells, then progressing to a less 

steep curve at higher doses as the radioresistant population determines survival.[107]  
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Fig. 4.8 Linear quadratic fit of cell survival curve for A184 non-malignant breast epithelial 

cells irradiated with an incident energy of 3 MeV protons vs. dose on a semi-logarithmic 

plot. Cells were assayed using an MTT assay. Error bars represent standard error. 

 

When fitted on a semi-logarithmic plot, as shown in Fig. 4.8, a straight fit is observed with no 

shoulder which is expected with high LET radiation such as proton radiation as seen in similar 

experiments. Proton curves from previous research involving hamster cells exhibiting a similar 

straight fit for a comparable LET value can be found in the literature, indicating  somewhat good 

agreement; however, earlier curves demonstrated a slight shoulder for lower doses, suggesting 

some repair.[89] This was not present in the survival curves in this research, possibly due to 
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differences in hamster and human cell morphology, the small sample size for each dose point, or 

a smaller number of dose values over the same 1-5 Gy range.[108]  

 

Fig. 4.9 Linear quadratic fit of cell survival curve for A184 non-malignant breast epithelial 

cells irradiated with an incident energy of 2 MeV protons vs. dose. Cells were assayed using 

an MTT assay. Error bars represent standard error. 

  

Fig. 4.9 shows the 2 MeV survival curve on a semi-logarithmic plot fit with a linear 

quadratic equation using the least squares method. The adjusted R2 value is 0.84 again, due to a 

small number of trials (n=4). As seen at the 4 MeV the lack of shoulder associated with high 

LET radiation is present and confirms the expected behavior of cell survival decline with 
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increasing proton radiation dose. While the linear quadratic model is a standard and has 

remained one in radiobiology, it does not account for DNA repair and transformation of cells 

after radiation exposure. Transformation could include mutations that allow cells grown in cell 

cultures to grow beyond the restrictions set when growing cell cultures, finding new ways of 

survival. Newer models that consider these factors could provide a better fit for high LET 

radiation that could include a combination of linear, quadratic and higher order terms.[109, 110] 

 

Fig. 4.10a and b. Cell survival vs concentrations for A184 non-malignant breast epithelial 

cells treated with a dose of 1 Gy at an incident energy of 3 MeV protons. The control 

represents the non-treated irradiated control. Error bars represent the standard error. The 

results on the right were taken 7 days after the results on the right.  

 

4.4 3 MeV Proton Irradiation Data 

 Since the scope of potential research of CNPs and their effect on cells exposed to proton 

radiation is so broad, different variables were tested in order to find conditions for use in future 

studies. Many of the plots in this section tested variables such as CNP concentration, time of 

assay post-irradiation, CNP type and time of exposure to CNPs. In order to determine if 

concentration of CNPs had an effect on cell survival, cells were exposed to concentrations of 100 
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nM, 1 µM, and 10 µM and the results were measured at a dose of 1 Gy. The results are shown in 

Fig. 4.10. While both plots displayed a decrease in cell survival as the CNP concentration 

increases, Fig. 4.10a indicated a greater cell survival rate and the 100 nM and had a calculated p-

value of 0.01 indicating a statistical significance. While a trend can be seen showing there is a 

higher cell survival at 100 nM concentration, more data is needed to come to a definitive 

conclusion on the efficacy of the CNPs at the 3 MeV proton energy. 

 

Fig. 4.11 Cell survival fractions for various CNP types at 10 µM and 1 µM concentrations 

for A184 non-malignant breast epithelial cells treated with an incident energy of 3 MeV 

protons at a dose of 1 Gy. NC shows values higher than 1 due to contamination of the CNPs 

when they were produced. Error bars represent standard error. 
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 CNP type offers a wide variety of potential radioprotectors to be tested and for this 

project, many were tested at various concentrations. Various CNPs types were tested at 3 MeV in 

the same manner the others were at the 3 MeV proton energy and the results are shown in Fig. 

4.11. The CNP types were labeled according the names attached to the vials or whatever 

distinguishing factor existed on the vial as in the case of the “foil” CNP type. In the case of all 

the CNP varieties measured for this experiment, nothing showed a significant increase in cell 

survival. In addition, the NC CNPs were found to be contaminated by a misstep in the synthesis 

process but was unknown until survival fractions were found to be higher than one The NC 

CNPs were cultured and they were found to contain bacteria. From that point, all CNP solutions 

were tested for contamination upon arrival before being used to treat the cells. 

 

Fig. 4.12 Surviving fraction vs. time of CNP treatment for A184 non-malignant epithelial 

breast cells treated with 100 nM CNP treatment and irradiated with protons at an incident 

energy of 3 MeV for a dose of 1 Gy. Treatments took place 24 hours and 1 hour pre-

irradiation and 2 hours post-irradiation. Error bars represent standard error. 
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 The time of application of the CNPs was of interest since a practical application in the 

future could require an administration of the CNPs in the event of an unexpected radiation 

exposure event. The question was asked would the CNPs be effective in providing radiation 

protection if applied immediately before or after proton irradiation of the cells. For the other 

experiments, the standard exposure time of the cells to the CNPs was 24 hours. To test the time 

of exposure, the cells were treated either 1 hour pre-irradiation or 2 hours post irradiation. The 

results are shown in Fig. 4.12. The 24 hour pre-irradiation clearly allowed for the CNPs to 

increase cell protection compared to the irradiated control and is confirmed with a p-value of 

0.02 giving statistical significance to this increase in survival. While the 1 hour pre-irradiation 

application to the cells is not as effective as the 24 hour exposure, there is higher cell survival 

than the irradiated control as well but has a p-value of .10. The post irradiation application 

demonstrates that treating cells after irradiation is not effective in increasing cell survival.  

 Another time dependent variable that was tested was the time of the MTT assay once the 

cell were irradiated. The standard assay time for all the experiments performed was 24 hours post 

irradiation but for this experiment, the 24 hour assay was compared to the 48 hour assay. The 

results are shown in Fig 4.13.  The time of application was at 24 hours pre, 1 hour pre-irradiation 

and 2 hours post-irradiation. The CNP concentration was 100 nM.  
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Fig. 4.13 Surviving fraction vs. CNP treatment time and assay time for A184 non-

malignant breast epithelial cells irradiated with protons at an incident energy of 3 MeV for 

a dose of 1 Gy. The black represents the 24 hour assay while the gray represents the 48 

hour assay. The control assay was performed at 24 hours. The error bars represent 

standard error. 

 

The pretreated cells showed lower cell survival after 48 hours, possibly due to a cell cycle time 

greater than 24 hours allowing for the cells to progress through a mitosis that caused them to die 

upon reproduction (apoptosis). The p-value for the 24 vs. 48 hour assay for the 24 hour pre-

treatment was .003 showing definite decrease in cell metabolic activity. Previous research on 
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cells similar to the A184 cell line show a cell cycle time that ranges from 24-28 hours.[111, 112] 

The 2 hour post treatment showed a higher cell survival possibly due to the fact that a longer 

time between irradiation and the assay allows for more time for cell repair. However, with a p-

value of 0.19, it is not statistically significant.  

4.5 TUNEL Assay Data 

 The TUNEL assay allowed for the imaging of the cell nuclei and provides an indicator of 

the DNA strand nicks that are caused by radiation exposure. The DAPI that was used to stain the 

cells is a marker for DNA and has a blue fluorescence. The TUNEL fluorophore that labels the 

DNA nick ends exhibits a red fluorescence. The images are shown in Fig. 4.15 and 4.16. The 

TUNEL images show that the irradiated controls contain more of the TUNEL marker indicating 

more DNA damage than those treated with the NH4 and ASR CNPs. All were treated at 2 MeV 

incident proton energy for a dose of 2.8 Gy. In addition, there are more cells present on the plates 

containing the CNPs than in those that were irradiated without CNP treatment. This suggests that 

while the cells in the treated wells may have been damaged, they were able to survive, repairing 

and continuing to multiply unlike those that were not treated which led to cell death and 

detachment from the plate. This could be tested with assays that specifically measure DNA 

repair and the factors that influence DNA repair to determine if they are more abundant in CNP 

treated cells than in the non-treated cells. The TUNEL images show that the CNPs have a 

potential to be a radioprotector for cells exposed to charged particle radiation. A clustering effect 

also is shown in both figures although it is unknown if it affects survival. 
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 Fig. 4.14 TUNEL images showing DNA damage (red) and DNA (blue). A184 non-

malignant breast epithelial cells were irradiated for a dose of 2.8 Gy at an incident proton 

energy of 2 MeV.  The image on the left was an irradiated control while the two on the 

right were the CNP treated cells. The irradiated control shows brighter TUNEL markers 

revealing more damage than CNP treated cells. 

 

Irr Contr. NH4  Irr ASR Irr 
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Fig. 4.15 A184 non-malignant breast epithelial cells were irradiated for a dose of 2.8 Gy at 

an incident proton energy of 2 MeV.  The top two images are the irradiated controls and 

the bottom images are the CNP treated cells. TUNEL images are merged with both the 

DAPI (blue) and the TUNEL fluorophore (red) to show evidence of the DNA and where it 

is damaged.  
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Chapter 5: Discussion 

The aims of this research were 1) to develop a system with which A184 breast epithelial 

breast cells could be irradiated with protons to a specified dose, 2) to determine the efficacy of 

CNPs as a viable radioprotector for normal cells and to test different variables to determine cell 

survival as well as develop a cell survival curve to confirm a consistent dose delivery system at 

different energies and 3) to perform a DNA damage assay to determine the damage to CNP 

treated cells. 

5.1 Radiation Beam Dose Measurement System 

 The measured beam current and published stopping powers were used to determine dose 

to the cells, a process that has proved to be effective and outlined in detail in the literature.[113] 

While this method is based on averaged quantities including LET and mass stopping powers, it 

was effective for this research considering the focus was the effect of relative dose to cells with 

and without CNP treatment rather than absolute dose.  

The uncertainty in relative dose is estimated to be less than 10%. This is due to 

fluctuations in the beam current and control of the exposure times.  The YAG crystals used were 

useful in determining the variation across the flux incident on the cells and allowed for a more 

uniform dose across the entire surface area of the cells. While they were sufficient to collect 

preliminary data in this new area of radiation biology research, a more advanced beam imaging 

system would be advantageous in the future to allow for a more streamlined process to 

characterize the beam. A method of determining dose would be advantageous in seeing the effect 

that CNPs have at different absolute doses. The use of surface barrier detectors or an ionization 
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chamber would be a valid method of measuring both the flux and the energy spread at the cell 

plate’s position in the path of the beam.  

 While the titanium foil allowed for a reduction in proton beam energy loss while 

maintaining vacuum, stronger metal alloy foils could allow for a thinner exit window and a 

further reduction of energy loss can be obtained, including Havar foil which has been used in 

other research experiments.[114] With a thinner window, it could be possible to test lower proton 

energies to test the CNP effect at higher LET values.  

5.2 Cell Survival Data 

 Due to the immensely wide scope of the emerging field of nanoparticle research 

particularly in the area of charged-particle radiation, there were so many potential areas of study 

that they had to be narrowed down to a few variables of interest due to availability of resources. 

Cell survival curves were measured first to ensure the dose administered was within range of 

what was expected based on earlier proton radiation research as detailed earlier. Using the 2 

MeV and 3 MeV incident proton energy beams, the survival curves proved to have good 

agreement with regards to direct relationship: as dose was increased, cell kill also increased and 

could be plotted with limited success with the linear quadratic model. The shoulder present on 

proton radiation survival curves in earlier research was not seen in this research and may require 

more dose trials at smaller intervals to obtain a more accurate dose curve. However, as 

mentioned previously, the proton radiation cell survival curve could be unique when treating 

human cells as opposed to treating hamster cells which were the focus in earlier studies. Also, at 

higher doses, radiation resistant populations were shown to survive which could be caused due to 

an overestimation by the MTT assay for cell survival as discussed earlier. In addition, due to the 
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asynchronous cell cycle of the cell culture, the combination of radiosensitive and radioresistant 

cells causes an initial steep dose response that becomes less steep at higher doses. 

 Once proton radiation was shown to be effective with cell irradiation, the various types 

of CNPs were tested to determine if they had the same efficacy of radioprotection as they do 

with regards to x-rays. While the CNPs did show promise in increasing cell metabolic activity as 

compared to cells that were not treated, the data suggests that it is not conclusive. Part of the 

issue could be due to the plating process of cells in the individual wells, while the magnitude of 

the number of cells can be determined and controlled to be consistent from well to well, cell 

growth, much like radiation, is a stochastic process. The variation would require an assay that 

counts cells individually that are still proliferating, the true definition of a living cell. A 

clonogenic assay is a good example of one that could perform this function.  Also, while MTT 

assays are useful in determining metabolic activity of the cells at the moment they are assayed, it 

may not account for cells that may be metabolically active but can no longer proliferate, giving a 

false fraction of survival, especially at higher doses. In addition, while the assays were 

performed at 24 hours after irradiation of the cells, it may require a longer time for the cells to 

become active once cell repair is finished, or to go through a cell cycle to perform apoptosis, 

therefore a 48 hour or 72 hour wait time may allow for repair and a restart of the cell cycle or 

apoptosis.  

 The cell concentration showed no definitive value where cell protection is peaked, 

however, 100 nM showed promise in different trials. While higher concentrations showed 

potential, it may not be feasible in a clinical setting due to complication with high concentrations 

of metal in the blood possibly causing clots in the circulatory system. Therefore, it is necessary 
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to test lower concentrations and test in smaller intervals both above and below 100 nM to 

determine if it is truly the ideal concentration.  

 The main method of CNP radioprotection has been shown to be free radical scavenging 

which is abundant with indirect radiation damage caused by x-rays, which is the main reason for 

a much higher cell survival rate with previous research. Charged particle radiation is responsible 

for more direct damage to the DNA with less indirect damage to the DNA from free radicals. 

This could be the reason why the CNPs were not as effective in maintaining metabolic activity as 

it was with cell exposure to x-rays.  

 Since conducting this experiment, new research suggested that time plays a factor in the 

effectiveness of the CNPs to scavenge free radicals. In a recent study, CNPs had showed reduced 

scavenging with different solutions aged 1,7, 14 and 28 days, even assisting the radicals rather 

than inhibiting them after 28 days.[102] The change is believed to be due to the agglomeration of 

the CNPs as time progresses, reducing the effective surface area and consequently the oxygen 

vacancies present on the surface of the nanoparticles, hindering the mechanism the CNPs use to 

scavenge the free radicals. Similar studies confirm these findings showing that upon aging, the 

Ce+3 transition to Ce+4 reducing the active sites for free radical scavenging. A higher Ce+3/Ce+4 

has been shown to correlate with higher oxygen and electron vacancies and a smaller size, 

increasing the surface area/volume ratio.[115]  A higher initial concentration of Ce+3 is required 

for redox cycling as well as activity in the biological media.[116] 

 

 



66 

 

5.3 DNA Damage Assay 

 The most promising results from this research were presented by the TUNEL assay 

which gives a visual representation of the DNA damage to treated and untreated cells. Unlike the 

MTT assay, this allows for a direct determination of the effect of the proton radiation on the 

DNA. Since proton radiation provides direct damage, interacting directly with the DNA strands 

and causing single and double strand breaks that may lead to apoptotic cell death, the irradiated 

cells that were not treated showed widespread damage and lower confluence possibly due to 

many cells dying between irradiation and the assay procedure. The results of the TUNL assay 

convey a radioprotection aspect of the CNPs that were seen in earlier research with x-rays.[17]  

 

 

5.4 Future Directions 

 As mentioned before, the scope of this new field of radiation research is broad and 

extends over many different areas. While the research here seems to point to a radioprotector that 

is possibly as effective as amifostine, its potential as a radiosensitizer is very promising as seen 

in the literature.[54, 68, 69] All research so far in regards to radiosensitizers has been measuring 

the effect to cancer cells exposed to x-rays but no experimental data has been published showing 

results with charged particle radiation. Also, there is an extensive amount of nanoparticle types 

that have shown promising results in the area of radiation therapy including gold, platinum and 

gadolinium.[117-122] With the capabilities of the ECU Pelletron Accelerator, different ions can 

be tested as well to determine efficacy against heavy charged particles. With the rapidly 

emerging field of heavy ion therapy, it would be valuable to test the effects of different 

nanoparticles used to treat tumor cells, possibly increasing cell killing while protecting normal 
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cells. If the benefits of CNPs could have a two-fold benefit as a radioprotector and 

radiosensitizer for normal cells and tumor cells respectively, it would be valuable in radiation 

cancer therapy. If the in vitro studies show promise for data for the protection and sensitization, 

then the next step would be in vivo studies with mice. For proton and heavy ion therapy, a higher 

beam energy would be necessary for mouse models and would require a larger accelerator 

facility than is currently at ECU. As more potentially effective nanoparticles are discovered, 

many new avenues of research in the area of radiation protection and sensitization should 

emerge.   
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