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Abstract 

 Bacteroides fragilis is a Gram negative anaerobe and member of the human 

intestinal tract microbiome. B. fragilis serves many beneficial roles within the intestinal 

tract; however, its translocation to the peritoneal cavity and the blood stream can result 

in peritonitis, intra-abdominal abscess formation, bacteremia and sepsis. We have 

shown that B. fragilis mediates both acute and Prolonged Oxidative Stress (POST) 

responses both in vitro and in vivo. This report characterizes the role and the genetic 

regulation of the iron storage proteins Dps and DpsL during the POST response. To test 

sensitivity to oxidative stress during the POST response a disk diffusion assay was 

developed using tert-butyl hydroperoxide (tBOOH). When the assay plates received 

aerobic exposure for three hours there was no zone of growth inhibition, whereas those 

kept under anaerobic conditions were highly sensitive to tBOOH. These results 

demonstrated an oxygen induced resistance to tBOOH that was mediated by prolonged 

aerobic exposure. To determine a mechanism for this POST induced resistance to 

tBOOH, a series of oxidative stress mutants were assayed. Only the Δdps mutant was 

sensitive to tBOOH after aerobic exposure indicating that Dps mediated the POST 

phenotype. Because of the similarities to Dps, the recently characterized DpsL (bfr) was 



tested for a role in the POST response. The Δbfr mutant demonstrated resistance to 

tBOOH after aerobic exposure similar to wildtype (WT); however, when a double Δdps 

Δbfr mutant was generated it demonstrated sensitivity to tBOOH that was greater than 

the Δdps mutant indicating that both Dps and DpsL play a role in the resistance 

phenotype. To explore the role that Dps and DpsL play in the survival of B. fragilis 

during infection, animal experiments were performed in the rat abscess model. 

Interestingly only the double Δdps Δbfr mutant was attenuated in this model whereas 

neither of the single mutants showed a defect in competition experiments with WT. This 

indicated that both Dps and DpsL play a role in survival during infection.  

 To investigate genetic regulation during the POST response, it was essential to 

identify the second regulator of dps expression. It was previously shown that OxyR is a 

strong inducer of dps expression during acute oxidative stress; however, the ΔoxyR 

mutant was resistant to tBOOH after prolonged aerobic exposure similar to WT. This 

indicated that there was a second regulator of dps expression during the POST 

response. A known POST regulator, SigOF was investigated to determine if it played a 

role in this response. Similar to ΔoxyR the ΔsigOF mutant was resistant to tBOOH. 

Interestingly though a double ΔsigOF ΔoxyR mutant was sensitive to tBOOH in the 

POST assay and dps expression was reduced as shown by qRTPCR. These results 

strongly suggest that SigOF is the regulator responsible for dps expression during the 

POST response.  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ROLE OF THE IRON STORAGE FERRITINS DPS AND DPSL DURING THE 

PROLONGED OXIDATIVE STRESS RESPONSE OF BACTEROIDES FRAGILIS 

 

 

A Dissertation Presented to 

The Faculty of the Department of Microbiology and Immunology 

Brody School of Medicine at East Carolina Univeristy 

 

 

 

 

In Partial Fulfillment of the Requirements for the Degree 

 

Doctor of Philosophy in Microbiology and Immunology 

 

 

 

By 

 

Michael I. Betteken 

October 28, 2015 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

All materials except Chapter two and Fig. 1.3: Copyright 2015 Michael I. Betteken 
Fig. 1.3 Journal of Bacteriology. Gauss GH, Reott MA, Rocha ER, Young MJ, Douglas 
T, Smith CJ, Lawrence CM. Characterization of the Bacteroides fragilis bfr gene product 
identifies a bacterial DPS-like protein and suggests evolutionary links in the ferritin 
superfamily. J Bacteriol. 2012 Jan;194(1):15-27. doi: 10.1128/JB.05260-11. Copyright © 
2012, American Society for Microbiology 
Chapter Two: Copyright American Society for Microbiology, The Journal of Bacteriology, 
2015 Oct 15;197(20):3329-38. doi: 10.1128/JB.00342-15. Epub 2015 Aug 10. Copyright 
©2015 American Society for Microbiology 
Copyrighted material was used with permission Appendix A 
 

 

 

 

 

 

 

 

 

 

 



ROLE OF THE IRON STORAGE FERRITINS DPS AND DPSL DURING THE 

PROLONGED OXIDATIVE STRESS RESPONSE OF BACTEROIDES FRAGILIS 

by 

Michael I. Betteken 

APPROVED BY: 

 

DIRECTOR OF DISSERTATION                   _________________________________ 
                      C. Jeffrey Smith, Ph.D. 
 
 
COMMITTEE MEMBER                                 _________________________________ 
                                                                       Richard A. Franklin, Ph.D. 
 
 
COMMITTEE MEMBER                                 _________________________________ 
                                                                       Ronald S. Johnson, Ph.D. 
 
 
COMMITTEE MEMBER                                 _________________________________ 
                                                                       Isabelle M. Lemasson, Ph.D. 
 
 
COMMITTEE MEMBER                                  _________________________________ 
                                                                        R. Martin Roop II, Ph.D. 
 
INTERIM CHAIR OF THE DEPARTMENT 
OF MICROBIOLOGY AND IMMUNOLOGY   _________________________________ 
                                                                        Everett C. Pesci, Ph.D. 
 
 

DEAN OF THE 
GRADUATE SCHOOL                                   __________________________________ 
                                                                        Paul J. Gemperline, Ph.D. 

 

 

 

 



ACKNOWLEDGEMENTS 

  

I would like to first thank my parents Joseph C. Betteken III and Patricia Betteken 

for their continued support throughout this process as this would not have been possible 

without them. I would also like to thank Jake Melnyk for his support and understanding 

throughout my time in graduate school. I would like to thank all my family and friends for 

all their kind words and encouragement especially my grandparents Joe Betteken, Jane 

Betteken, Fred Stewart, and Mary Ann Stewart. Special thanks to my advisor C. Jeff 

Smith for his continual support and guidance during this process. Without Jeff’s insight 

and expertise this project would not have developed as well as it has. Finally I would 

like to thank the members of the Smith lab both past and present especially Anita 

Parker and Ivan Ndamukong, the Department of Microbiology staff and students, and 

the Office of Graduate studies for their assistance, helpfulness, and for all the wonderful 

and crazy things that have happened over the last several years.    

 

 

 

 

 

 

 

 

 

 

 



Table of Contents 

LIST OF TABLES……………………………………………………………………………...viii 

LIST OF FIGURES…………………………………………………………………………..…ix 

LIST OF ABBREVIATIONS……………………………………………………………………xi 

CHAPTER ONE: INTRODUCTION ................................................................................. 1 

B. fragilis as a member of the normal intestinal flora ............................................ 1 

Intra-abdominal abscess ...................................................................................... 3 

B. fragilis oxidative stress response ..................................................................... 6 

B. fragilis Iron storage proteins ........................................................................... 11 

Regulation of the B. fragilis oxidative stress response ....................................... 21 

CHAPTER TWO: DPS AND DPSL MEDIATE SURVIVAL IN VITRO AND IN VIVO 

DURING THE PROLONGED OXIDATIVE STRESS RESPONSE IN BACTEROIDES 

FRAGILIS ...................................................................................................................... 28 

Abstract .............................................................................................................. 28 

Importance.......................................................................................................... 29 

Introduction ......................................................................................................... 29 

Materials and Methods ....................................................................................... 32 

Bacterial strains and growth conditions. ................................................ 32 

Construction of mutant strains. .............................................................. 35 

Disk Diffusion assays. ........................................................................... 36 



Cell viability assays. .............................................................................. 36 

In vivo competition assays. ................................................................... 37 

Results ............................................................................................................... 38 

Dps mediates POST resistance to tBOOH. ........................................... 41 

DpsL contributes to tBOOH resistance. ................................................ 44 

Dps and DpsL mediate protection by sequestering iron. ....................... 48 

Dps and DpsL promote survival within the abscess. ............................. 51 

Oxygen induced resistance to tBOOH is not conserved across all 

members of the Bacteroides genus. ...................................................... 54 

Discussion .......................................................................................................... 58 

Acknowledgements ............................................................................................ 63 

Supplemental section ......................................................................................... 64 

CHAPTER THREE: STRATEGIES TO IDENTIFY A SECOND REGULATOR OF DPS 69 

Rationale: ........................................................................................................... 69 

Introduction ......................................................................................................... 69 

Methods and materials ....................................................................................... 73 

Bacterial strains and growth conditions ................................................. 73 

Construction of mutant strains ............................................................... 73 

Disk Diffusion Assays ............................................................................ 79 

Growth conditions for microarray and qRT-PCR analysis ..................... 79 



RNA isolation and qRT-PCR analysis ................................................... 80 

Microarray analysis ............................................................................... 80 

Results ............................................................................................................... 81 

EcfO/Reo are not involved in the tBOOH resistance response ............. 81 

PerR affects the tBOOH resistance phenotype but does not affect dps 

expression ............................................................................................. 85 

dps is not part of the Fur regulon and does not respond to excess iron.91 

The role of SigOF as a regulator of dps and bfr expression .................. 96 

Discussion ........................................................................................................ 105 

CHAPTER 4: SUMMARY ............................................................................................ 113 

REFERENCES ............................................................................................................ 124 

Appendix A Copyright and Permissions ...................................................................... 135 

Appendix B IACUC Protocol Approval Letters ............................................................. 137 

 



 

LIST OF TABLES 

Table 2.1 Strain and plasmid used in the work presented in Chapter 2.       33-34 

Table 2S-1    Primers used in this study Chapter 2                                               66 

Table 2S-2  Gene accession numbers for Ferritin homologs in the                    67 

Bacteroides 

Table 2S-3  Strains used in supplemental section                                                68 

Table 3.1  Strains used in the experiments outlined in Chapter 3                  75-76 

Table 3.2  Table of all primers used in studies outlined in Chapter 3            77-78 

Table 3.3  Gene expression patterns in the ΔperR mutant                           89-90 

Table 3.4  Microarray results from analysis of expression patterns              93-94 

 of  Δfur mutant 

 

  



 

LIST OF FIGURES 

Fig. 1.1  Hydroxyl radical formation in the cytoplasm                                         7-8 

Fig. 1.2  The B. fragilis Iron Storage proteins                                                   12-13 

Fig. 1.3  Characteristics of the ferritin family proteins                                       17-18 

Fig. 1.4  B. fragilis oxidative stress response                                                    23-24 

Fig 2.1.  Sensitivity to tBOOH after oxygen exposure                                       39-40 

Fig. 2.2.  Dps mediates oxygen induced resistance to tBOOH                          42-43 

Fig. 2.3.  Dps and DpsL both contribute to tBOOH resistance                          46-47 

Fig. 2.4.  Chelation of iron rescues all strains under anaerobic conditions       49-50 

Fig. 2.5.  Dps and DpsL are important for survival in vivo                                 52-53 

Fig. 2.6.  Oxygen induced resistance to tBOOH is not conserved                     55-56 

across the Bacteroides genus   

Fig. 2S-1  Additional controls to supplement Fig. 2.3                                            64 

Fig. 2S-2  The double Δdps Δbfr mutant does not have a general                        65 

growth defect 

Fig. 3.1  Role of EcfO and Reo in dps expression                                            83-84 

Fig. 3.2  The activity of Per influences the tBOOH resistance response          86-87 



 

Fig. 3.3  The effect of SigOF on resistance to tBOOH after                             97-98 

prolonged exposure to air.              

Fig. 3.4  SigOF regulates the expression of dps during the                           100-101 

POST response 

Fig. 3.5  Expression levels of dps in the double ΔsigOF ΔoxyR                    103-104 

mutant are reduced 

Fig. 4.1  Model of the regulation of dps during the Acute and                       117-118 

POST response  

Fig. 4.2  B. fragilis oxidative stress response and dps expression                120-121 

 

 

 

 

 

 

 

 



 

LIST OF ABBREVIATIONS 

Ahp: alkyl hydroperoxide reductase 
Bfr: bacterioferritin (unless referring to the B. fragilis bfr gene) 
bfr: gene that encodes the DpsL protein of B. fragilis  
BHIS: brain heart infusion supplemented with cysteine  
CCF: commensal colonization factor 
Cef: cefoxitin 
Don: polysaccharide utilization locus mediates catabolism of N-glycans 
Dps: DNA binding protein under starved state 
DpsL: Dps like protein 
ECF: extra cytoplasmic function 
EcfO: ECF sigma factor 
Erm: erythromycin 
Fe2+: ferrous iron 
Fe3+: ferric iron 
Fis: nucleoid associated protein 
Ftn: Ferritin 
Fur: ferric uptake regulator 
Gad: glutamate decarboxylase 
Gls: glutaminase 
H2O2: hydrogen peroxide 
H-NS: nucleoid associated protein 
Kat: catalase 
Nig: nigrescin 
O2

-: superoxide 
OH.: hydroxyl radical 
Osu: B. fragilis starch utilization operon 
OxyR: oxidative stress regulator 
PerR: peroxide resistance regulator 
POST: Prolonged Oxidative Stress 
PSA-H: Polysaccharide 
Rbr: rubrerythrins  
Reo: anti-sigma factor partner to EcfO 
Rif: rifampicin 
ROS: reactive oxygen species 
SigOF: ECF sigma factor induced by oxygen 
Sod: superoxide dismutase 
tBOOH: tert-butyl hydroperoxide 
Tet: tetracycline 
Tps: thiol peroxidase  
Tpx: thioredoxin peroxidase 
Trx: thioredoxin  
σ70:  E. coli Housekeeping sigma factor 
σS: E. coli stationary phase sigma factor 

 



1 

 

CHAPTER ONE: INTRODUCTION 

The focus of this body of work was to determine the role that the DNA binding 

protein under starved state (Dps) plays during the Prolonged Oxidative Stress (POST) 

response in Bacteroides fragilis. Additional work showed that the Dps-like protein 

(DpsL) also plays a role during the POST response and that the differential regulation of 

these two genes contributes to increased survival during oxidative stress. The 

experimental data demonstrated a link between intracellular ferrous iron, oxidative 

stress, and the roles that Dps and DpsL play in converting and storing reactive iron 

leading to the protection of the cell during periods of oxidative stress. Overall these 

studies provide insight into the robust oxidative stress response and start to tease apart 

the differences between the acute and POST oxidative stress responses. This 

dissertation is organized in four chapters. Chapter one is a general overview of B. 

fragilis physiology, its role in intra-abdominal abscesses, the acute and POST oxidative 

stress responses, intracellular iron management, and the development of an extended 

exposure to air assay for the POST response. The second chapter then addresses 

specifically the roles of Dps and DpsL in providing protection both in vitro and in vivo 

during the POST response. Chapter three describes the identification of a second 

regulator that controls dps during the POST response. The last chapter is a summary of 

the work presented in this dissertation and future experimental directions for this project. 

B. fragilis as a member of the normal intestinal flora 

 The Bacteroides are Gram negative, non-spore forming, non-motile, anaerobic 

bacteria and members of the normal flora of the human intestinal tract.  As a member of 
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the normal intestinal flora, B. fragilis plays many beneficial roles such as polysaccharide 

degradation, protection of the gut epithelia from colonization by pathogenic bacteria, 

development of the intestinal tract, maturation of mucosal and systemic immune 

systems, and transformation of toxic and mutagenic compounds (1-4). Recent work has 

focused on the role that the B. fragilis polysaccharide capsule plays in generation of an 

anti-inflammatory response believed to promote tolerance of this organism within the 

intestinal tract. The B. fragilis polysaccharide capsule A (PSA) has been shown to 

promote an anti-inflammatory response through stimulating the production of IL-10, an 

anti-inflammatory cytokine (5). This response is unique in that PSA is presented on a 

major histocompatibility complex class II (MHCII) and recognized by a subset of T-

regulatory T-cells that are CD25, CD4, and Foxp3 positive driving an anti-inflammatory 

response (4, 6). Classic MHCII presentation occurs by presenting a peptide and it was 

later determined that the zwitterionic nature of PSA allows it to be recognized, bound, 

and presented in this manner (6, 7). This response promotes the tolerance of B. fragilis 

within the intestinal tract and is one of the many different tolerance mechanisms that 

have been discovered (7). 

 The human colon provides a nutrient rich and anaerobic environment that is 

favorable for the growth of Bacteroides. Interestingly though, recent work has 

demonstrated that the human colon is not uniformly anaerobic (8). An oxygen gradient 

is present from the submucosa to the lumen of the colon with the colonic crypts 

reaching up to 8% oxygen. This gradient can extend even further during nutrient 

absorption resulting in an expansion of the microaerophilic zone of the colon into the 

colonic lumen zone containing facultative anaerobic microbes (8). B. fragilis has been 



3 

 

known to colonize both the mucosal layer of the colon and inside the colonic crypts. The 

commensal colonization factor (CCF) has been shown to mediate colonization of the 

colonic crypts (9). This ability also was shown to promote survival during 

reestablishment of the B. fragilis population following challenge with antibiotics or the 

inflammatory response to invading pathogens. Interestingly colonization of the colonic 

crypts puts B. fragilis in an environment where oxygen levels can rapidly change thus 

exposing this organism to periods of oxidative stress. This may in part explain why B. 

fragilis has such a robust oxidative stress response and is one of the most aerotolerant 

anaerobes known (1).  

Intra-abdominal abscess 

 The Bacteroides play many beneficial roles in the intestinal tract; however, in the 

event of an intestinal tear or a breakdown of the intestinal lining, translocation of the 

flora to the peritoneum occurs and disease can result. The B. fragilis group (B. fragilis, 

B. thetaiotaomicron, B. vulgatus, B. uniformis, and Parabacteroides distosonis) are the 

most frequently isolated anaerobes from cases of bacteremia, sepsis, meningitis, 

peritonitis, intra-abdominal abscesses, and other anaerobic infections, with B. fragilis 

being the predominantly isolated species (10). In the year 2000 these infections 

accounted for more than $500 million in medical cost annually making them a significant 

burden on the health care system (11).  

 B. fragilis is best known for its persistence in intra-abdominal abscesses.  When 

a perforation or compromise in the integrity of the intestinal lining occurs due to trauma, 

abdominal surgery or diseases such as appendicitis, perforated ulcer, diverticulitis, and 
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colon cancer, B. fragilis is able to translocate into the peritoneum. Translocation of the 

colonic natural flora leads to high levels of bacteria being present within the once sterile 

peritoneum. The majority of these organisms will be removed by the diaphragmatic 

lymphatics, the resident peritoneal macrophage population, and the influx of 

polymorphonuclear (PMN) cells. Those organisms that are not cleared are then 

subjected to encasement in fibrin matrices and the establishment of an abscess begins. 

As deposition of fibrinogen and the immune response continues formation of a mature 

abscess occurs. A mature abscess consists of a core which contains necrotic debris 

and surviving bacteria surrounded by a ring of neutrophils and macrophages, and a 

peripheral ring of fibroblasts and smooth muscles cells within a collagen capsule (11). 

At this point the immune system has effectively isolated the invading organisms 

however many organisms are unable to be effectively cleared from the abscess. These 

organisms can replicate within the abscess and reach a high cellular density. In the 

event the abscess ruptures high levels of bacteria can be released leading to 

bacteremia, sepsis, and in certain instances death (11-13) 

 B. fragilis is the most common anaerobic organism isolated from intra-abdominal 

abscesses and has been shown to possess many factors that promote its survival within 

the abscess. The most studied factor is the polysaccharide capsule. There are several 

reasons that the capsule is required for effective survival within the abscess. First is that 

the capsule allows for adherence to the peritoneal mesothelium which will prevent 

physical clearance of the organism after translocation into the peritoneum (14). The 

second reason is that the B. fragilis capsule is antigenically heterogeneous allowing for 

the production of eight distinctive polysaccharide capsule components (PSA-H) (15). A 
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plethora of work has been done on the roles that PSA plays during abscess formation 

(16-18). PSA is needed for intra-abdominal abscess formation by B. fragilis and a PSA 

knockout mutant is significantly attenuated in a murine abscess formation model (19). T 

cells are required for abscess formation and it has been shown that PSA and other 

bacterial components stimulate T cell dependent production of IL-17 a pro-inflammatory 

cytokine (16, 18, 20). IL-17 neutralization through use of an antibody prevents abscess 

formation in vivo demonstrating the importance of this response in abscess formation 

(21).  Peritoneal macrophages produce IL-10 an anti-inflammatory cytokine in response 

to presence of B. fragilis in the peritoneum (21). This production of IL-10 has been 

shown to significantly decrease the severity of disease. IL-10-/- mice experienced 

significantly higher levels of mortality in a murine model of intra-abdominal abscess 

formation showing the importance of production of IL-10 during abscess formation (21). 

This work has demonstrated the interesting and important role that B. fragilis plays 

during abscess formation and the significant impact this organism has on the 

progression of intra-abdominal abscesses.  

 After establishment of an intra-abdominal abscess, B. fragilis is able to survive 

and reach high concentrations within the abscess. The abscess is a harsh environment 

where all nutrients must be derived from host factors. B. fragilis also has to survive the 

oxygenated peritoneum (6% O2) and the immune system which are significant sources 

of oxidative stress (11, 22-24). Several factors promote survival during the 

establishment and within the abscess including proteases, neuraminidase, iron 

acquisition, hemolysins, and resistance to oxidative stress (1, 2, 25, 26). Recent work 

has shown that a polysaccharide utilization locus (Don) which mediates catabolism of 
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N-glycans on transferrin as the sole carbon source is important for survival within the 

abscess (27). The oxidative stress response also promotes survival of B. fragilis during 

formation of the abscess and provides a significant advantage for survival within the 

abscess. This was demonstrated by attenuation of the ΔoxyR and Δdps mutants in a 

murine abscess model (28). This dissertation will focus on the B. fragilis oxidative stress 

response and the role it plays in promoting survival within the abscess.  

B. fragilis oxidative stress response 

 B. fragilis has a robust oxidative stress response that results in the expression of 

detoxification enzymes, metabolic modifications, and a significant change in cell 

physiology (1, 28). This robust response prevents the accumulation of reactive oxygen 

species during periods of oxygen exposure and prevents cellular damage. B. fragilis is 

an anaerobic organism unable to grow in the presence of greater than 2% oxygen, 

however it is incredibly aerotolerant being able to survive for greater than 3 days in a 

fully aerobic environment (22% O2) (29-31). Oxygen within the cytoplasm can quickly be 

converted to superoxide, hydrogen peroxide, and the damage inducing hydroxyl 

radicals Fig. 1.1.  
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Fig. 1.1 Hydroxyl radical formation in the cytoplasm. The conversion of oxygen to 

reactive oxygen species is shown from left to right. Molecular mechanisms for 

detoxification of the different reactive oxygen species are listed along with the B. 

fragilis proteins that utilize that mechanism. 
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The presence of oxygen within the cytoplasm in aerobic organism is beneficial as 

it can be used as a terminal electron acceptor in the generation of ATP. However, 

though energetically unfavorable, O2 can accept electrons from donors within the cells 

leading to the formation of superoxide (O2
-) Fig. 1.1. If superoxide receives an additional 

electron, hydrogen peroxide is produced (H2O2), and by accepting another electron a 

hydroxyl radical (OH.) is produced. Conditions that favor the production of these reactive 

oxygen species (ROS) occur during substrate limitations during metabolism where 

oxygen is able to accept available electrons that would normally be funneled to the 

missing substrate (32). Glycyl-radical enzymes such as the anaerobic ribonucleotide 

reductase, pyruvate:formate lyase, and 2-ketobutyrate:formate lyase, are particularly 

susceptible to this when oxygen is present thus promoting the production of ROS (32, 

33). 

 The production of ROS results in damage to the cells. Superoxide can react with 

iron-sulfur clusters producing H2O2  and an oxidized iron-sulfur cluster which is then 

hydrolyzed to free ferrous iron (Fe2+) and  results in an inactive iron sulfur cluster (32, 

34). This inactivates the enzyme until the iron-sulfur cluster can be repaired. Hydrogen 

peroxide itself is unable to damage biomolecules due to the high energy of activation 

needed to react with these molecules. However, H2O2 readily will react with free ferrous 

iron to produce hydroxyl radicals through the Fenton Reaction. Hydroxyl radicals are 

very reactive and will react with most organic molecules causing damage close to the 

site of radical formation (32, 35). This makes the production of these ROS particularly 

dangerous to the cell and must be prevented or managed effectively for a cell to remain 

viable.  
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 In order to prevent damage from ROS, B. fragilis has an extensive system of 

enzymes to detoxify the various ROS. As shown in Fig. 1.1, B. fragilis utilizes a 

superoxide dismutase (SOD) enzyme to convert superoxide to hydrogen peroxide. This 

enzyme is capable of utilizing either iron (Fe) or manganese (Mn) to catalyze this 

reaction (36). Many bacterial SODs cannot effectively substitute the metal but rather 

have two SODs, one that incorporates Fe and the second that utilizes Mn (32, 36). 

Additionally a series of peroxidases have been identified in B. fragilis that are 

responsible for keeping levels of H2O2 low. Alkyl hydroperoxide reductase (AhpCF) 

functions to convert hydrogen peroxide into water thus preventing the accumulation of 

H2O2. An ahpCF deficient strain of B. fragilis demonstrated sensitivity to peroxides as 

well as increased mutagenesis indicating that the role of this protein is to prevent 

peroxide driven damage to the cell (37). Further work has been done to show that the 

thioredoxin peroxidase (Tpx) and the thiol peroxidase (Tps) play a role in the oxidative 

stress response and in resistance to peroxides (38-40). Additionally there are two 

rubrerythrins encoded in the B. fragilis genome that may serve as peroxidases. In the 

closely related organism Bacteroides thetaiotaomicron, a similar number of peroxidases 

have been identified and it has been shown that the activity of these enzymes depends 

on the level of H2O2 within the cell. Under anaerobic conditions the rubrerythrins are the 

active peroxide scavengers until aeration occurs and the rubrerythrins become inactive 

and AhpCF and catalase (Kat) become the predominant peroxide scavengers (41). 

Catalase also was shown to play an important role in the oxidative stress response of B. 

fragilis where it promotes protection during high levels of peroxide exposure (31, 42). B. 
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fragilis has a broad network of enzymes responsible for the degradation of ROS but 

there are additional systems that also contribute to survival during oxidative stress. 

B. fragilis Iron storage proteins  

  As previously mentioned, the most damaging reaction that occurs when high 

levels of H2O2 are reached in the cytoplasm is the Fenton reaction and the generation of 

hydroxyl radicals (Fig. 1.2). Hydroxyl radicals (OH.) can cause DNA damage, DNA 

strand cleavage, destruction of iron sulfur clusters, damage proteins, and possibly 

cause lipid peroxidation (32). The DNA damage is particularly dangerous as it is lethal 

to the cell. Unincorporated iron has been shown to bind to DNA thus when levels of 

hydrogen peroxide rise formation of the hydroxyl radical occurs near the DNA (43). This 

in turn puts the hydroxyl radical in close proximity to the DNA allowing for the 

abstraction of an electron from the ribose moiety resulting in a ribosyl radical that can 

react with oxygen leading to strand cleavage (32, 44). There are no known 

detoxification systems to resolve the hydroxyl radical in a safe manner within the cell. 

Therefore, it is necessary to prevent the generation of hydroxyl radicals by limiting the 

pools of Fe2+ and H2O2.  

 As previously discussed there are many different mechanisms for the reduction 

of H2O2 in the cell. On the other hand, to prevent the accumulation of Fe2+, cells utilize 

proteins belonging to Ferritin superfamily. These proteins effectively convert free soluble 

Fe2+ to the insoluble Fe3+
 and store the Fe3+ within their core.  
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Fig. 1.2 The B. fragilis Iron Storage proteins. The Fenton reaction is shown which 

promotes the production of hydroxyl radicals. The hydroxyl radical is capable of 

damaging macromolecules in the cell. As shown, B. fragilis proteins belonging to the 

ferritin-like superfamily are able to remove reactive Fe2+ from the cytoplasm 

preventing the generation of hydroxyl radicals.  
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This process effectively removes the Fe2+ from the cytoplasm until the cytoplasm is 

returned to a reduced state. Bacteria possess four different types of ferritin proteins 

Ferritins, Bacterioferritins, Dps-like, and Dps. All of these proteins have very similar 

structure in that their subunits consist of a bundle of four alpha helices that form two 

homologous pairs of anti-parallel helices (45). The subunits then assemble to form a 

large spherical protein with a hollow center. These four types function in a similar 

manner to convert Fe2+ to Fe3+ but they accomplish this in different ways.  

Ferritins and Bacterioferritins utilize O2 to catalyze the conversion of Fe2+ into 

Fe3+ and store it in a ferri-oxyhydroxide mineral within their core Fig. 1.2 (45, 46). This 

conversion is achieved initially within the ferroxidase center which is located within the 

channel formed by the four alpha helices. These proteins consist of 24 subunits that 

form the largest hollow sphere of the Ferritin family (47). This allows them to store large 

amounts of iron (3000-4000 atoms) within the core (45). Bacterioferritins are very similar 

to ferritins but they incorporate up to 12 heme moieties within their spherical shell (48). 

The role of this heme group is unknown but it is believed to allow for release of iron from 

the core through a reduction mechanism (49). In aerobic bacteria ferritins and 

bacterioferritin are believed to store iron when excess levels become present in the 

cytoplasm thus limiting the amount of iron available to produce hydroxyl radicals when 

oxidative stress occurs in the cells.  

Dps proteins display major differences from the ferritins and bacterioferritins. 

Fully functional Dps consists of a cluster of 12 subunits which form a spherical structure 

with a hollow center. This smaller structure only allows for the storage of up to 500 iron 
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atoms within the core (45). Unlike the ferritins and bacterioferritins, the ferroxidase site 

is formed within the interface of two subunits as opposed to be being contained within 

the four helix bundle as seen in ferritins and bacterioferritins. This ferroxidase site also 

catalyzes a different reaction as demonstrated in Fig.1.2 hydrogen peroxide is used to 

convert ferrous iron to ferric iron. The coordination between the two iron binding 

residues within the ferroxidase center promotes a two step process that results in 

conversion of 2 Fe2+ to 2 ferrihydrite-like molecules by consuming one molecule of 

hydrogen peroxide while avoiding the production of a hydroxyl radical (50).  

Dps is well known for its ability to protect DNA from damage during oxidative 

stress and this protective mechanism has been demonstrated in many different 

organisms. The association between Dps and DNA is well understood in the model 

organism Escherichia coli. The E. coli Dps binds to DNA non-specifically by a 

mechanism that is mediated through conserved residues of the N-terminus (51). This 

assists in localizing Dps to the DNA where under oxidative stress any free iron 

associated with the DNA can be converted to the non-reactive ferric form (51, 52). It is 

important to note that while not all Dps proteins have the ability to bind DNA they are 

still able to protect the DNA from oxidative stress damage (53-55).  The mechanism of 

DNA binding is not well conserved and there are several unique mechanisms for DNA 

binding or association. On the other hand the ferroxidase activity and the resistance to 

oxidative stress is well conserved pointing to the importance of the ferroxidase activity 

for protection of the cells (56, 57).  
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The recently identified Dps-like (DpsL) class of proteins demonstrate similarities 

to both the Dps and Bacterioferritin classes. As shown in Fig. 1.3, the DpsL proteins 

have a similar tertiary protein structure to the ferritin and bacterioferritin with conserved  

α-helices and the ferroxidase center buried within the channel formed by the cluster of 

helices. The DpsL protein also contains a dimetal binding site similar to ferritin and 

Bacterioferritin (58). However, the DpsL protein assembles into a 12 subunit hollow 

sphere and has a preference for H2O2 in the ferroxidase reaction which is similar to Dps 

(58). This protein was first identified in the archaea Sulfolobus solfataricus and 

Pryrococcus furiosus with roles involved in protecting the cells from oxidative stress 

damage (59, 60). Given the unique characteristics of this protein and the work done on 

the S. solfataricus DpsL protein, it has been hypothesized that this protein is capable of 

a peroxidase activity where Fe2+ is used to catalyze a reaction to detoxify H2O2 while 

simultaneously reducing the free iron within the cell, a function similar to Dps (58).  

B. fragilis contains three homologues belonging to the Ferritin superfamily of 

proteins. They belong to the ferritin, DpsL, and Dps classes of proteins and several 

studies have characterized the role these proteins play in the oxidative stress response. 

Many prominent members of Bacteroides contain several homologues of ferritin family 

proteins but the specific roles that these proteins play in survival of these organisms as 

well as the specific reason why this genus requires so many is unknown (61).  
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Fig. 1.3 Characteristics of the ferritin family proteins. DPSL proteins combine 

features from other members of the ferritin superfamily.  All ferritins assemble into 

hollow, spherically shaped oligomers made up of either 24 subunits (ferritins and 

bacterioferritins) or 12 subunits (DPSLs and DPS proteins).  A representative 

member of each class of the ferritin superfamily from the bacterial domain of life is 

shown as both the complete oligomer, and as a two subunit assembly: Helicobacter 

pylori ferritin (PDBID 3EGM), E. coli bacterioferritin (1BCF) Bacteroides fragilis DPSL 

with its N-terminal and extended D helices (2VZB) and bacterioferritin (1BCF), 

Bacteroides fragilis DPSL with its N-terminal and extended D helices (2VZB) and 

Bacillus brevis DPS (1N1Q).  DPSLs share the dodecameric (12-mer) quaternary 

structure of DPS proteins.  However, the DPSL ferroxidase site (red spheres) is 

buried within the subunit, similar to ferritins and bacterioferritins, rather than at the 

subunit interface like DPS.  Furthermore, residues that constitute the DPSL 

ferroxidase site most closely resemble those in bacterioferritin, with the addition of a 

conserved cysteine pair.  Note that bacterioferritins differ from ferritin, DPS and 

DPSL by incorporating a heme at the subunit interface (pink) (66). *Human ferritin 

has been shown to bind DNA in the presence of iron (116). †Not all Dps proteins are 

able to bind DNA (see text for further explanation).   

This figure is originally published in the Journal of Bacteriology. Gauss GH, Reott 
MA, Rocha ER, Young MJ, Douglas T, Smith CJ, Lawrence CM. Characterization of 
the Bacteroides fragilis bfr gene product identifies a bacterial DPS-like protein and 
suggests evolutionary links in the ferritin superfamily. J Bacteriol. 2012 
Jan;194(1):15-27. doi: 10.1128/JB.05260-11. Copyright © 2012, American Society 
for Microbiology Appendix A 
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  Ferritin Bacterioferritin DpsL Dps 
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subunits 

24 24 12 12 

Ferroxidase 
core 

Similar Similar Similar Unique 

Predominant 
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Storage 

Iron storage Unknown DNA 
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ferroxidase 
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Oxygen Oxygen H
2
O

2
 H

2
O

2
 

Iron capacity 
(in atoms) 

4500 4500 Unknown 500 

DNA Binding Yes/No* No No Yes/No† 
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The Bacteroides have more ferritin homologues than any other known bacterial species 

(61). In the case of B. thetaiotaomicron homologues for three ferritins, one DpsL, and 

one Dps are present within its genome. Many of the other Bacteroides species share a 

similar number of ferritin family homologues (further discussed in Chapter 2).  

 The role that the three Ferritin family homologues FtnA, Dps, and DpsL play in 

the cell has been investigated in B. fragilis. The majority of the work on these proteins 

has been to characterize their genetic regulation (to be discussed in the next section). 

Ferritins play central roles in the oxidative stress response, management and storage of 

excess iron, and are expressed during stationary phase. Organisms that have multiple 

ferritins similar to B. fragilis control their expression under specific conditions. In the 

case of Salmonella enterica sv. Typhimurium there are four proteins belonging to the 

Ferritin family FtnA, FtnB, Bacterioferritin (Bfr), and Dps. Bfr serves as the predominant 

ferritin for managing elevated levels of Fe2+ within the cell and is the main ferritin 

involved in iron storage. FtnA also appears to be specific for the management of high 

levels of Fe2+ within the cells while Dps and FtnB are involved in the oxidative stress 

response (62). The regulation of and the specific characteristics of these ferritins allows 

for S. enterica to utilize them under specific conditions. This specialization may also be 

the reason why B. fragilis and the Bacteroides have several ferritins.  

Characterization of the B. fragilis Ferritin homologue FtnA showed that 

expression of the ftnA gene product occurred only in the presence of oxygen and not 

under excess iron conditions under anaerobic conditions (63). This makes sense as 

ferritins utilize oxygen to catalyze the conversion of Fe2+ to Fe3+ and without it the 

protein would be non-functional. Characterization of a ΔftnA mutant however showed 
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that oxygen exposure had no effect on the viability of this strain. It was not until a 

multiple ΔftnA Δdps ΔoxyR mutant was generated that a loss in cell viability in response 

to oxygen was seen (63). This has been seen in other organisms where defects in 

resistance to oxidative stress and loss of iron storage capability are not seen until 

inactivation of multiple ferritin family genes (62, 64, 65). Overall this work indicated that 

FtnA functions to prevent the accumulation of Fe2+ during exposure to oxygen and thus 

demonstrated a role in the oxidative stress response. 

The B. fragilis DpsL was originally annotated as a bacterioferritin because of the 

conserved iron binding site motif and it was assigned the gene name bfr. However, later 

work demonstrated that the B. fragilis bfr gene actually encodes a DpsL (66). For 

clarification purposes in this document when the gene name bfr is used it refers to the 

gene that encodes the B. fragilis DpsL. Studies with DpsL showed a role in the oxidative 

stress response and that the purified protein is able to protect DNA from cleavage in the 

presence of iron and hydrogen peroxide, an activity that is similar to Dps proteins of 

other organisms (51, 66). It was also shown that this protein formed a 12 subunit 

complex with preferential use of H2O2 as a substrate for ferroxidase activity. 

Characterization of the Δbfr mutant further showed a deficiency in the ability to resist 

oxidative stress inducing agents as well as to survive prolonged exposures to oxygen 

(66). This work demonstrated the importance of DpsL in the oxidative stress response 

and was the first ever DpsL to be identified and characterized in bacteria.   

To date most of the work with the B. fragilis Dps has focused on the regulation of 

the dps gene by the oxidative stress regulator OxyR. Interestingly it has been shown 

that the B. fragilis Dps does play a role in abscess formation as demonstrated by the 
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attenuation of the Δdps mutant in a mouse abscess model indicating a role in survival of 

this organism during infection (28). The work described in this dissertation has further 

characterized the role of Dps in survival of B. fragilis in both the acute and POST 

oxidative stress responses (see Chapter 2).  

Overall the role of the ferritin family proteins in B. fragilis is very important to the 

cells ability to survive. This survival is directly influenced by the tight regulation and 

control of these various ferritins by a wide variety of regulators that coordinate their 

expression during the oxidative stress response. It is this regulation that allows B. 

fragilis to resist oxidative stress and be one of the most aerotolerant anaerobic 

organisms (1).  

Regulation of the B. fragilis oxidative stress response 

 Regulation of the oxidative stress response in B. fragilis is complex and involves 

many different regulators some of which have been identified and others which have 

not. When B. fragilis is first exposed to oxygen a rapid induction of 28 peptides occurs 

as part of the acute oxidative stress response (28). This response occurs within the first 

five minutes of exposure and the predominant function of this response appears to be to 

prevent the accumulation of ROS. If oxidative stress is prolonged then the cells undergo 

a significant change in cell physiology and metabolism which is driven by a genome 

wide change in transcription (45% of the genome) patterns known as the POST 

response (28). This response is designed to put the cell in a state where it is able to 

resist oxidative stress for extended periods of time by inducing carbohydrate utilization 

systems, altering central metabolism, transport and efflux and repressing DNA 
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synthesis, translation, and membrane biogenesis (28). The coordination and the genetic 

regulation of these two responses are of key interest to understanding the B. fragilis 

oxidative stress response and how it promotes survival of this organism during infection.  

 Regulation of the acute OSR response has focused on the role of OxyR in 

preventing the accumulation of H2O2. As shown in Fig. 1.4 a major branch of the acute 

response involves the activation of OxyR and the rapid induction of genes that focus on 

the detoxification of H2O2 (28, 67, 68). The activation of OxyR requires the oxidation of 

two conserved cysteine residues that form a disulfide bridge which then promotes 

transcription of the OxyR regulon (32). In B. fragilis the activation of OxyR leads to the 

transcription of aphCF, tpx, katB, and dps all of which are directly responsible for 

detoxifying H2O2 within the cell (28, 68, 69). Also during the acute OSR the induction of 

sod, tps, trxD, and other genes occurs in an OxyR independent manner. Several of 

these genes are associated with the detoxification of ROS (sod and tps) whereas others 

are involved in repair and metabolism (28, 39, 69, 70). Together the OxyR dependent 

and OxyR independent branches of the acute response provide the cell with a quick and 

efficient response to rapid rises in oxidative stress protecting the cell from any 

immediate damage.  

  



23 

 

 

  

Fig. 1.4 B. fragilis oxidative stress response. A flow chart demonstrating the 

regulation of the oxidative stress response. The B. fragilis OSR is separated into 

the acute and post response. The blue represents known and unknown 

regulators involved in the control and expression of the genes listed in the green 

background. Lines indicate which genes are controlled by the regulator and what 

response that regulator is involved in. Overlap between the two responses can be 

seen in the regulation of the dps gene (28, 38, 39, 63, 68, 69, 71).  
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 With a greater than 45% change in transcription patterns, the regulation of the 

POST response is quite complex. A major focus of research has been on the regulation 

of this response by extra cytoplasmic function (ECF) sigma factors that are induced 

during exposure to oxygen (28). These ECF sigma factors were designated SigOA-K 

(SigOD was renamed EcfO) and investigation of EcfO and SigOF has been pursued. 

EcfO and its anti-sigma factor partner Reo have been shown to play roles in resistance 

to oxidative stress inducing agents as well as survival during prolonged exposure to 

oxygen (71). An increase in induction of ecfO is seen starting after one hour oxygen 

exposure indicating this ECF sigma factor plays a role in the POST response. The EcfO 

regulon has been determined and contains several genes that share homology to a 

genetic locus for production of nigrescin (Nig), a bacteriocin secreted by Prevotella 

nigrescens (71, 72). As shown in Fig. 1.4 the regulon also includes a member of the 

Radical SAM family which is a large protein family containing iron sulfur clusters and 

having diverse functions involved in protein modifications and general metabolism. 

Additionally this regulon also contains secreted lipoproteins of unknown function. 

Although the function of the EcfO regulon is unknown it has been shown to play a role in 

resistance to oxidative stress and play a part in the POST response. Future work will 

hopefully shed light onto the specific activities of this regulon.  

 Another ECF sigma factor that is expressed during the post response is SigOF. 

Expression microarray analysis has determined the SigOF regulon includes bfr (DpsL), 

a glutamate decarboxylase gadB, glutaminase glsA, a putative transporter 

BF638R_0458, and an operon containing several putative fimbrin associated anchor 

proteins (unpublished data Ndamukong and Smith). Of particular interest is the 
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transcriptional induction of bfr (DpsL) after prolonged oxygen exposure. As will be 

demonstrated in Chapter 2, DpsL and Dps contribute to resistance to tert-butyl 

hydroperoxide by preventing the accumulation of free Fe2+ within the cell during 

prolonged exposure to oxygen. This could indicate that SigOF is controlling the 

expression of bfr (DpsL) during the POST response and may be playing a significant 

role in promoting long term survival of B. fragilis when exposed to oxygen. Further work 

is needed to determine the exact role that SigOF plays to promote survival of B. fragilis 

during the POST response.  

 Understanding the regulation and control of the POST response has resulted in a 

greater understanding of the physiological processes that the cells undertake in order to 

survive prolonged oxygen exposure. However, there still are several important genes 

induced during the POST response for which no regulation have been identified Fig. 

1.4. Studies of ftnA and the oxygen induced starch utilization operon, osuA, have 

demonstrated important roles for both in survival during oxygen exposure (63, 73) 

however the identity of regulators that control the expression of these genes during the 

POST response remains elusive. Identification of these regulators will provide great 

insight into the many different processes that B. fragilis utilizes for survival during the 

POST response.  

 The focus of the work in this dissertation has been to determine the roles that 

Dps and DpsL play in the POST response. To achieve this, an assay was designed that 

demonstrated resistance to tert-butyl hydroperoxide (tBOOH) only after prolonged 

oxygen exposure. Using this assay Dps and DpsL were identified as contributors to the 

increased resistance to tBOOH. Tert-butyl hydroperoxide is not easily detoxified within 
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B. fragilis as indicated by extreme sensitivity to this agent (39). This sensitivity may be 

due to several factors, the first being that tBOOH cannot fit within the cleft of catalase 

thus preventing detoxification by this enzyme (74).  Another property of tBOOH that 

makes it useful for this study is that activation of OxyR which requires oxidation of two 

cysteine residues (68), is less efficient due to inefficient oxidation of cysteine by tBOOH 

(75). This property of tBOOH also makes detoxification by AhpCF, Tpx, Tps, and most 

peroxidases that utilize a mechanism of oxidation of a cysteine residue inefficient in 

detoxifying tBOOH.  A final factor makes tBOOH an attractive agent for this study is the 

high affinity for transition metals, such as Fe2+ and Cu2+, which it reacts with to form 

hydroxyl radicals and damage macromolecules (76). Additionally tBOOH has been 

shown to have a Fe2+ dependent mechanism of producing methyl radicals which has a 

mutagenic effect on DNA (77, 78). The tert-butyl hydroperoxide resistance phenotype 

has been very useful in demonstrating a role for Dps and DpsL in the POST response in 

an iron dependent manner and showing the importance of a second regulator of dps 

expression during the POST response.  
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CHAPTER TWO: DPS AND DPSL MEDIATE SURVIVAL IN 

VITRO AND IN VIVO DURING THE PROLONGED OXIDATIVE 

STRESS RESPONSE IN BACTEROIDES FRAGILIS 

  

Abstract 

Bacteroides fragilis is a Gram negative anaerobe and member of the human intestinal 

tract microbiome where it serves many beneficial roles. However, translocation of the 

organism to the peritoneal cavity can lead to peritonitis, intra-abdominal abscess 

formation, bacteremia, and sepsis. During translocation, B. fragilis is exposed to 

increased oxidative stress from the oxygenated tissues of the peritoneal cavity and the 

immune response. In order to survive B. fragilis mounts a robust oxidative stress 

response consisting of an acute and a Prolonged Oxidative Stress (POST) response. 

This report demonstrates that the ability to induce high levels of resistance to tert-butyl 

hydroperoxide (tBOOH) after extended exposure to air can be linked to the POST 

response. Disk diffusion assays comparing wild type to the Δdps and a double Δdps 

Δbfr mutant showed greater sensitivity of the mutants to tBOOH after exposure to air 

suggesting that Dps and DpsL play a role in the resistance phenotype. 

Complementation studies with dps or bfr (encoding DpsL) restored tBOOH resistance 

suggesting a role for both of these ferritin-family proteins in the response. Additionally, 

cultures treated with the iron chelator dipyridyl were not killed by tBOOH indicating Dps 

and DpsL function by sequestering iron to prevent cellular damage.  An in vivo animal 
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model showed that the double Δdps Δbfr mutant was attenuated indicating that 

management of iron is important for survival within the abscess. Together these data 

demonstrate a role for Dps and DpsL in the POST response which mediates survival in 

vitro and in vivo.  

Importance 

B. fragilis is the anaerobe most frequently isolated from extraintestinal opportunistic 

infections but there is a paucity of information about the factors that allow this organism 

to survive outside of its normal intestinal environment. This report demonstrates that the 

iron storage proteins Dps and DpsL protect against oxidative stress and they contribute 

to survival both in vitro and in vivo. Additionally this work demonstrates an important 

role for the POST response in B. fragilis survival and provides insight into the complex 

regulation of this response.  

Introduction 

The Bacteroides are members of the normal intestinal microbiome of humans. 

The intestine is a consistent and favorable environment that provides continuous access 

to nutrient sources for these strict anaerobic organisms. The Bacteroides play many 

important roles in maintaining a healthy intestinal tract such as polysaccharide 

degradation, protection of the gut epithelia from colonization by pathogenic bacteria, 

development of the intestinal tract, maturation of the mucosal and systemic immune 

systems, and transformation of toxic and mutagenic compounds (1-4). However, when 

the integrity of the intestinal wall is breached due to trauma, abdominal surgery, or 

diseases such as appendicitis, perforated ulcer, diverticulitis, and colon cancer 
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translocation of the normal flora into the peritoneal cavity can result in peritonitis and 

establishment of an intra-abdominal abscess. The inability of the host immune system 

to resolve the abscess can lead to bacteremia, sepsis, and in certain instances death 

(12, 13).  B. fragilis is the most common anaerobe isolated from intra-abdominal 

abscesses and it has been demonstrated to possess many factors that promote its 

survival outside of the intestinal tract such as capsular polysaccharides, proteases, 

neuraminidase, iron acquisition, hemolysins, and resistance to oxidative stress (1, 2, 25, 

26). Oxidative stress occurs immediately when B. fragilis translocates from the 

anaerobic intestine to the more oxygenated (6% O2) peritoneal cavity, and there is 

additional oxidative stress resulting from the immune response and PMN recruitment to 

the site of infection (11, 22-24). Thus the oxidative stress response is needed for 

survival during abscess formation (28).    

 The B. fragilis oxidative stress response is a well-coordinated global response 

(28). Numerous studies have identified genes and proteins involved in the acute 

oxidative stress response, many of which are controlled by the LysR family 

transcriptional regulator, OxyR (28, 31, 39, 68). This response occurs rapidly after 

exposure to H2O2 or oxygen and involves activation of OxyR followed by induction of its 

regulon whose gene products are aimed at peroxide detoxification such as catalase 

(katB), alkyl hydroperoxide reductase (ahpCF), the non-specific DNA binding protein 

Dps (dps) and others (28, 37, 68).  If oxidative stress and exposure to air are extended 

for an hour or more, a global shift in transcription occurs referred to as the Prolonged 

Oxidative Stress (POST) response aimed at remodeling cell physiology. This shift alters 

transcription of nearly 45% of the genes within the genome with significant changes in 
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the expression of genes for carbohydrate utilization, central metabolism, transport, and 

transcriptional regulators (28).  These changes allow B. fragilis to survive for extended 

periods in air, (>100 hours) but specific regulatory factors that control the response have 

not yet been identified.  

  Management of intracellular iron availability is a key component of the oxidative 

stress response. The ferritin family of proteins is responsible for removing excess 

ferrous iron (Fe2+) from the cytoplasm of cells to prevent generation of the damage 

inducing hydroxyl radicals via the Fenton reaction (52). These proteins bind and convert 

Fe2+ to non-reactive insoluble ferric (Fe3+) iron thus preventing production of hydroxyl 

radicals (51, 79, 80). Members of this family include ferritin, bacterioferritin, Dps, and 

the recently discovered Dps-like (DpsL) proteins (52, 58). Dps protects cells from 

oxidative stress damage and shows a strong induction in response to oxidative stress in 

many organisms (28, 56, 81, 82). The B. fragilis dps gene has been shown to be rapidly 

induced by the oxidative stress regulator OxyR in the acute oxidative stress response 

however an OxyR independent induction of dps transcription also has been reported  

(68). Those results demonstrated that activity of a dps::xylB transcriptional fusion was 

significantly induced during aerobic incubation of the ΔoxyR mutant. This result was 

only seen for dps expression and not with other members of the OxyR regulon 

indicating a second regulator was responsible (68).  The DpsL protein has been shown 

to have very similar structure and function to Dps in both the archaea Sulfolobus 

solfataricus and B. fragilis (58, 66). B. fragilis DpsL, the first identified in bacteria, is 

induced by oxygen and has been shown to play a protective role during periods of 

oxidative stress (28, 66). The DpsL gene was originally incorrectly annotated as a 
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bacterioferritin and was designated bfr, however later structural studies determined it 

actually encodes a DpsL protein (66). B. fragilis does not have a true bacterioferritin. In 

this report we used an assay to examine the protective response induced by extended 

exposure to air. The results demonstrated a role for Dps and DpsL in the POST 

response which promotes survival both in vitro and in vivo. The protective role that Dps 

and DpsL play during the POST response is linked to the presence of ferrous iron 

indicating that these proteins function to convert and store reactive ferrous iron to non-

reactive ferric iron. Additionally this work indicates that transcriptional control of dps is 

mediated by a second unknown regulator during the POST response and these data 

are consistent with previous findings (28, 68).  

Materials and Methods 

Bacterial strains and growth conditions. Bacteroides strains used in this study 

are listed in Table 2.1. All strains were grown anaerobically in brain heart infusion broth 

supplemented with hemin, cysteine, and NaHCO3 (BHIS) unless otherwise noted (83). 

Rifampicin (20 µg/ml), gentamicin (50 µg/ml), tetracycline (5 µg/ml), cefoxitin (25 µg/ml), 

and erythromycin (10 µg/ml) were added to the media when needed.  
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Table 2.1 Strain and plasmid used in the work presented in Chapter 2. 
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Table 2.1: Strains and Plasmids used in this study 

a
Erm

r
, erythromycin resistance; Cfx

r
, cefoxitin resistance; Rif

r
 rifampicin resistance; Tet

r
, 

tetracycline resistance; Sp
r
, spectinomycin resistance; Amp

r
, ampicillin resistance. For 

Bacteroides-E. coli shuttle vectors, parentheses indicate antibiotic resistance expression in E. 

coli. 

 

 

Strains or 

plasmids 

Phenotype and/or genotype
a 

Reference or source 

Bacteroides   

IB-101 B. fragilis 638R clinical isolate, Rif
r 

(84) 

IB-260 IB-101 Δkat::tetQ, Rif
r
 Tet

r
 (31) 

IB 298 IB-101 ΔoxyR::tetQ, Rif
r
 Tet

r 
(68) 

IB 336 IB-101 Δdps::tetQ, Rif
r
 Tet

r 
(63) 

IB-430 IB-101 Δaphc::tetQ Rif
r
 Tet

r 
This Study 

IB-445 
ADB77 (isogenic with IB101) reverted to thyA

+
, Δtps 

Rif
r
 

(38) 

IB-542 IB-336 Δbfr::cfx, Rif
r 
Tet

r
 Cfx

r 
This Study 

IB-567 IB-542 pFD288::bfr, Rif
r 
Tet

r
 Cfx

r
 Erm

r
 bfr

+
 This Study 

IB-572 IB-336 pFD288::dps, Rif
r
 Tet

r
 Erm

r
 dps

+
 This Study 

IB-573 IB-542 pFD288::dps, Rif, Tet
r
 Cfx

r
 Erm

r
 dps

+ 
This Study 

BER-74 IB-101 Δbfr::cfx Rif
r
, Tet

r 
(66) 

IB-102 
Bacteroides uniformis, VPI strain 006-1 (ATCC 8492) 

Rif
r 

(85) 

IB-103 Bacteroides ovatus, VPI 0038 (ATCC 8433) (86) 

IB 114 Bacteroides fragilis, ATCC 25285, clinical isolate, Rif
r
 (28) 

IB-116 Bacteroides thetaiotaomicron, VPI 5482 (ATCC 29148) (86) 

IB-351 Bacteroides vulgatus, ATCC 8482 (86) 

IB-568 Bacteroides caccae  VPI 3452A (ATCC 43185) (87) 

BER-37 Parabacteroides distasonis, clinical isolate CLA 348 (88) 

BER-39 Parabacteroides merdae,VPI T4-1 (ATCC 43184) (87) 

   

E. coli   

DH10B F– mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 

ΔlacX74 recA1 endA1 araD139 Δ(ara leu) 7697 galU 

galK rpsL nupG λ–  

Invitrogen 

HB101::RK23

1 

HB-101 containing RK231, Km
r
 Tc

r 
St

r 
(89) 

   

Plasmids   

pFD288 (Sp
r
),Erm

r
, oriT, pUC19::pBI143 8.8-kb shuttle vector (90) 

pFD516 Bacteroides suicide vector derived by deletion of pBI143 

from pFD288, (Sp
r
), Erm

r 
(90) 
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Construction of mutant strains. All primer sequences used for genetic 

manipulations are listed in the supplemental material Table 2S-1. Briefly, the ΔahpC 

mutant was constructed by PCR amplification of the N-terminal fragment of ahpC using 

oligonucleotides containing EcoRI sites. The fragment was cloned into a suicide vector, 

pFD516. A C-terminal fragment was amplified using the same approach except 

oligonucleotides contained a BamHI recognition site at the 5’ end and SphI at the 3’ 

end. This was then cloned into pFD516 containing the N-terminal fragment. A 2.2kb 

tetracycline cassette (tetQ) was inserted in between the N and C-terminal fragments 

using the SacI site. This plasmid was then mobilized into B. fragilis IB-101 and 

exconjugants were selected on BHIS plates containing rifampicin, gentamicin, and 

tetracycline (91). Sensitivity to erythromycin was determined, and PCR was performed 

to confirm the double-crossover allelic exchange of ahpC::tetQ mutation in strain IB430.  

 Construction of the double Δdps Δbfr mutant, IB-542, was performed by 

mobilizing the BER-74 (66) mutational construct into IB-336 (63). Mutants were selected 

on rifampicin, gentamicin, and cefoxitin. PCR was performed to confirm the double-

cross over allelic exchange of bfr::cfxA. Complementation of the Δdps mutation in IB-

336 and IB-542 was done as follows. The full length dps gene including its native 

promoter was excised with SphI and EcoRI from plasmid pFD750, cloned into pFD288, 

and then mobilized into IB-336 and IB-542 respectively (68). Complemented mutants 

were selected on erythromycin to create IB-572 and IB-573 respectively. 

Complementation of Δbfr (IB-542) was performed by PCR amplification of full length bfr 

gene including its promoter and insertion into pFD288. Complemented mutants were 

plated on erythromycin to confirm presence of the plasmid.  
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 Disk Diffusion assays. Disk diffusion assays were performed as previously 

described (66). In brief, 100µl of overnight culture was spread on BHIS plates (without 

cysteine) and a 6-mm filter disk was placed in the center of the plate. The disks were 

then saturated with 10µl of 55 mM tBOOH. Plates either were immediately incubated 

anaerobically at 37°C or they received 3 hours of aerobic incubation at 37°C prior to 

anaerobic incubation. Following overnight anaerobic incubation, the diameters of the 

zones of growth inhibition were measured, and the results were reported as the average 

of at least two independent experiments performed in triplicate. A Student’s two tailed t-

test was performed to determine significant differences between populations when 

appropriate.  

 Cell viability assays. Cell viability assays were performed by growing cultures to 

an OD550 of 0.3 in BHIS without cysteine. Cultures were then split and half of the culture 

was shaken at 250 rpm in air at 37°C for three hours. The remaining half was kept 

under anaerobic conditions and challenged with 500 µM tBOOH. Samples were taken 

over time and washed three times with BHIS to remove tBOOH. These samples were 

then serially diluted and plated to determine number of CFU/ml. After three hours of 

aerobic shaking, the other half of the culture was challenged with 500 µM tBOOH. 

Samples were taken and processed as described above. Results are reported as an 

average of two independent experiments performed in triplicate.  

 Cell viability assays performed using 2,2’-dipyridyl (Sigma-Aldrich, St. Louis) 

were done as follows. Cultures were grown in BHIS without cysteine to an OD550 of 0.3 

and then split. All cultures were kept under anaerobic conditions, but half of the culture 

was treated with 2,2’-dipyridyl (300 µM) 30 minutes prior to challenge with 500 µM 
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tBOOH. Samples were taken over time and CFU/ml was calculated as described above. 

Results are reported as an average of two independent experiments performed in 

triplicate.  

 In vivo competition assays. The rat tissue cage infection model has been 

described previously (26, 92). Briefly a perforated sterilized ping pong ball is surgically 

implanted into the peritoneal cavity of an adult male Sprague-Dawley rat and allowed to 

encapsulate for 4-5 weeks. During this time the ball becomes encapsulated in 

connective tissue, the tissue becomes vascularized, and the ball fills with sterile serous 

fluid (~25 mL per ball). Competition assays were performed in this model as previously 

described (27). In brief, overnight cultures were diluted in PBS [50 mM sodium 

phosphate, 150 mM sodium chloride, pH 7.4] and mixed in a 1:1 ratio of wild type (IB-

101) and mutant (Δdps, Δbfr, or Δdps Δbfr) to a total of 1x105 CFU/ml as a standard 

inoculum. Four ml of inoculum were injected into the tissue cage. Samples were taken 

at specific time points, serially diluted and plated on rifampicin and gentamicin. After 2-3 

days incubation, 200 colonies from each sample were tested for growth on BHIS plates 

with or without antibiotic (tetracycline for Δdps and Δdps Δbfr; cefoxitin for Δbfr) to 

check the resistance phenotype and determine the ratio of mutant to wild type.  

Competitive indices were calculated for each rat by dividing the number of 

surviving mutants by the number of surviving wild type. This was then divided by the 

ratio of mutant to wild type in the inoculum. A Student’s t-test was performed to 

compare the differences between the single and double mutants ability to compete. All 

procedures involving animals followed National Institutes of Health guidelines (93) and 
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were approved by the Animal Care and Use Committee of East Carolina University. For 

each bacterial strain two trials of at least 3 animals each were performed. 

Results 

B. fragilis exhibits an oxygen induced resistance to tBOOH. To observe the 

protective effects of the POST response, disk diffusion assays were used to measure 

sensitivity to the organic peroxide tBOOH. tBOOH is not easily degraded by cells and 

can persist allowing for extended periods of oxidative stress and also causes an Fe2+ 

dependent mechanism promoting DNA damage (74, 76-78, 94). B. fragilis was very 

sensitive to tBOOH under anaerobic conditions but when cells were pre-exposed to 

aerobic conditions for six hours they were completely resistant to tBOOH (Fig. 2.1A). 

Similar results were seen in assays with two B. fragilis strains, IB-101 and ATCC 25285, 

as shown in the quantified results in Fig. 2.1B. Disk diffusion assays that received six 

hours of aerobic exposure prior to anaerobic incubation demonstrated no zone of 

inhibition whereas assays that received no aerobic incubation had a zone of inhibition of 

about 50 mm. In order to determine a time course for this induced response assays 

were performed in which we varied the length of time of aerobic exposure. As seen in 

Fig. 2.1C, complete resistance to tBOOH was only achieved after three hours of aerobic 

incubation. Interestingly this air induced response requires extended oxygen exposure 

whereas the rapid peroxide resistance response mediated by OxyR requires less than 

30 minutes to mediate protection (68). 
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Fig 2.1. Sensitivity to tBOOH after oxygen exposure. (A) B. fragilis IB-101 was 

exposed to 55 mM tBOOH either under anaerobic incubation or six hours of 

aerobic incubation prior to anaerobic incubation. No zone of inhibition is visible in 

the assays that received aerobic incubation. (B) B. fragilis strains IB-101 and 

ATCC 25285  were exposed to 55 mM tBOOH in a disk diffusion assay and 

zones of inhibition were measured in mm. Dark grey bars represent cells that 

were exposed to air for 6 hours prior to anaerobic incubation. Light grey bars 

represent assays that were not exposed air. (C) Sensitivity of IB-101 exposed to 

55 mM tBOOH in disk diffusion assays where time of aerobic incubation was 

varied. Data represents triplicate assays performed over two independent 

experiments with average and standard deviation shown.  
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 Dps mediates POST resistance to tBOOH. To identify gene products that 

mediate the increased resistance to tBOOH, disk diffusion assays were performed with 

known oxidative stress mutants. We first looked at the thiol-peroxidase scavengase 

(Δtps) and the thioredoxin peroxidase (Ωtpx) because previous studies have shown the 

mutants to be sensitive to tBOOH under anaerobic conditions (38, 39). Figure 2.2A 

shows the results from these experiments. Both mutant strains (Δtps and Ωtpx) had 

complete resistance to tBOOH after incubation in air indicating these do not play a role 

in the air induced resistance response. We additionally looked at alkyl-hydroperoxide 

reductase (ΔahpC) and catalase (Δkat) because of the role they play in the 

detoxification of peroxides but found that both mutants were similar to wild type after 

aerobic incubation. Interestingly we found that the Dps mutant (Δdps) had a zone of 

inhibition of 42 mm even after aerobic incubation. These results indicated that Dps was 

required for most of the air induced resistance. Previous studies have shown that 

exposure of B. fragilis cells to air generates a rapid induction of dps in an OxyR 

dependent manner (68). However when the ΔoxyR mutant was screened in the tBOOH 

disk diffusion assays complete resistance was demonstrated after aerobic incubation. 

This indicated that Dps mediated the response in an OxyR independent manner 

suggesting a second regulator of dps was responsible for inducing POST dps 

expression.  
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Fig. 2.2. Dps mediates oxygen induced resistance to tBOOH. (A) Oxidative stress 

mutants were tested for sensitivity to 55 mM tBOOH in disk diffusion assays. Dark 

grey bars represent assays exposed to air for 3 hours prior to anaerobic 

incubation. Light grey bars represent assays that were maintained under 

anaerobic conditions.  (B) Cell viability assays were performed using wild type IB-

101 and ΔoxyR and Δdps mutant strains. Cultures were grown to OD 0.3 and then 

split. Half of the culture was shaken in air for three hours and the other half was 

incubated under anaerobic conditions. The cultures were then challenged with 500 

µM tBOOH. Samples were taken over time and CFU/ml was determined. Red (IB-

101), blue (ΔoxyR), and green (Δdps) lines represent the data from the aerobically 

incubated cultures (solid lines) and the anaerobic cultures (dashed lines). Data 

represents the mean of three biological replicates performed over two 

independent experiments with standard deviation shown. 
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To confirm the results seen in the disk diffusion assays, cell viability assays were 

performed. Cultures were grown to mid-logarithmic phase and then split.  One half was 

immediately challenged under anaerobic conditions with 500 µM tBOOH and the 

number of surviving cells was measured.  The other half received aerobic shaking at 

37°C for three hours prior to tBOOH challenge. Results in Fig. 2.2B show that IB-101, 

ΔoxyR, and Δdps demonstrated a rapid loss in cell viability when exposed to tBOOH 

under anaerobic conditions (dashed lines). However, IB-101 cultures that received three 

hours of aerobic incubation prior to challenge demonstrated no loss in cell viability. In 

contrast the Δdps mutant demonstrated a significant, >4 log decrease in cell viability 

after aerobic induction indicating that Dps is important for this resistance phenotype. 

Interestingly the ΔoxyR mutant was more similar to IB-101 and showed a much smaller 

decrease in cell viability than the Δdps mutant indicating that expression of dps was still 

induced in the ΔoxyR mutant. Together the data from the disk diffusion assays and the 

cell viability assays show that Dps is largely responsible for the oxygen induced 

resistance to tBOOH in an OxyR independent manner.  

 DpsL contributes to tBOOH resistance. Previous work has demonstrated that 

the BfDPSL (DpsL) and Dps are similar in protein structure and function (66). 

Consequently DpsL was investigated to determine if it might account for some of the 

tBOOH resistance phenotype. Disk diffusion assays were performed with the Δbfr 

(DpsL) mutant and the results in Fig. 2.3 show that the Δbfr had the same phenotype as 

wild type. We rationalized that the presence of Dps might be masking the role of DpsL 

so a Δdps Δbfr double mutant was constructed. The double Δdps Δbfr mutant had a 

greater sensitivity to tBOOH (72 mm of inhibition) than the single Δdps mutant (53 mm 
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of inhibition). This increased sensitivity to tBOOH also was observed after aerobic 

incubation suggesting that the absence of both Dps and DpsL causes the cells to be 

more sensitive to tBOOH. 

 To confirm the roles of Dps and DpsL, the native genes with their native 

promoters were cloned on a multi-copy plasmid (pFD288) and used to complement the 

double mutant strain. The bfr complemented mutant demonstrated complete protection 

after aerobic incubation and a significant increase in resistance to tBOOH under 

anaerobic conditions (Fig. 2.3 and supplemental materials Fig. 2S-1). This was 

interesting because it demonstrated that bfr alone was able to fully protect cells from 

tBOOH even in the absence of dps. Additionally we were able to complement both the 

single Δdps mutant and the double Δdps Δbfr mutant with dps on pFD288 and restore 

the oxygen induced resistance response. Together these results indicate that over 

expression of Dps and DpsL can mediate this oxygen induced resistance to tBOOH.  
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Fig. 2.3. Dps and DpsL both contribute to tBOOH resistance. Δdps, Δbfr (DpsL), 

and double Δdps Δbfr mutants were exposed to 55 mM tBOOH in disk diffusion 

assays. Dark grey bars represent assays exposed to air for three hours prior to 

anaerobic incubation and light grey bars are assays that received only anaerobic 

incubation. Strains were complimented with pFD288 carrying the natural promoter 

of dps(pFD288::dps) or bfr(pFD288::bfr) genes to restore function. Data 

represents the average of triplicate assays performed over two independent 

experiments with standard deviation shown. *= P<0.01 
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Dps and DpsL mediate protection by sequestering iron. In many organisms 

Dps converts Fe2+ to non-reactive Fe3+ during periods of oxidative stress to prevent 

production of highly damaging hydroxyl radicals (50, 56, 79). Similarly it has been 

shown that the B. fragilis DpsL protects against oxidative stress and is structurally very 

similar to Dps although it contains an iron binding site similar to a bacterioferritin (66). 

To determine if the oxygen induced response to tBOOH was linked to available reactive 

iron in the cytoplasm, cell viability assays were performed on cultures treated with 

dipyridyl, an iron chelator that can enter the cell.  As shown in Fig. 2.4, cultures that 

were treated with dipyridyl (solid lines) did not show a loss in cell viability when exposed 

to tBOOH whereas cultures that were not treated (dashed lines) showed significant 

killing. This result demonstrates that the chelation of intracellular iron by dipyridyl 

rescued the wild type and all mutants suggesting that the mechanism of killing during 

exposure to tBOOH is linked to the presence of reactive iron. The ability of tBOOH to 

cause oxidative stress by destruction of iron sulfur clusters and DNA cleavage has been 

documented (76). Since chelation of iron prevents killing of cells by tBOOH it is likely 

that the POST response results in the reduction of cytoplasmic iron availability by Dps 

and DpsL protecting the cells from damage.  

  

  

 * 
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Fig. 2.4. Chelation of iron rescues all strains under anaerobic conditions. Cell 

viability assays were performed with cultures of IB-101 (Red triangles), Δdps 

(green squares), Δbfr (orange circles), and Δdps Δbfr (purple diamonds). Cultures 

were grown to an OD of 0.3 and then split. Half was treated with 2,2’-dipyridyl 

(300 µM) (solid lines) and half was not treated (dashed lines). All cultures were 

then challenged with 500 µM tBOOH and CFU/ml was determined over time. 

Data represents the average of three biological replicates performed over two 

independent experiments with standard deviation shown.  
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Dps and DpsL promote survival within the abscess. Factors that contribute to 

B. fragilis survival within the abscess are poorly understood. In a previous study using 

the rat tissue cage model in vivo microarray analysis was used to demonstrate that the 

don locus was highly expressed in the infected tissue cages and was required for 

maximum survival in vivo (27). We reexamined these microarray data and found that 

there was a 4- to 6-fold increase in expression of dps and bfr suggesting Dps and DpsL 

may promote survival within the abscess. Consequently competition assays were 

performed to determine if the Δdps, Δbfr, and Δdps Δbfr mutant strains could be out 

competed by wild type.  

 Equal numbers of wild type and mutant cells were co-infected into rat tissue 

cages and samples were taken over a time course. The surviving number of wild type 

and mutant cells was determined for each sample and a competitive index was 

calculated. These results are shown in Fig. 2.5 where a competitive index score of 1 

indicates that the mutant and wild type compete equally. The mean competitive index 

scores for Δbfr were 0.82, 0.76, and 0.89 for days 1, 4, and 8 respectively indicating that 

this mutant was able to compete with wild type. The Δdps mutant showed slight 

attenuation with mean competitive index scores of 0.64, 0.53, and 0.60 on days 1, 4, 

and 8. Although there was a decrease in competitive index score the values were not 

statistically significant.  Most interesting was the decreased ability of the double Δdps 

Δbfr mutant to compete with wild type. The Δdps Δbfr mutant had low competitive index 

scores of 0.21 and 0.17 on days 4 and 8. These competitive index scores were 

significantly lower than that seen in the single Δdps and Δbfr mutants indicating that 

loss of both was necessary to significantly affect survival within the abscess.  
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Fig. 2.5. Dps and DpsL are important for survival in vivo. In vivo competition 

assays were performed in the rat tissue cage model. Rat tissue cages were 

inoculated with equal amounts of WT and either Δdps, Δbfr, or Δdps Δbfr strains 

to a final inoculum of 1x10
5
 CFU/mL. Samples were taken on days 1, 4, and 8 

and plated to determine total CFU/mL. Colonies were then tested for antibiotic 

resistance phenotypes to determine the ratio of WT to mutant. Competitive 

indexes were then calculated for each rat using the following formula: output 

ratio of mutant/WT divided by the input ratio of mutant/WT. Data represents 

trials of at least three rats from two independent experiments. Mean values for 

each day are represented by a horizontal line. Student t-tests were performed to 

compare the single mutant competition assays to the double mutant. *= P<.05 

was found when the double mutant was compared to either Δdps or Δbfr 

mutant. †=P<.01 was found when the double mutant was compared to either of 

the single mutants . No difference was seen between Δdps and Δbfr in 

competition assays. 
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Overall these results indicate that both Dps and DpsL may serve compensatory roles 

that contribute to survival within the abscess. 

 Oxygen induced resistance to tBOOH is not conserved across all members 

of the Bacteroides genus.  The Bacteroides show large variability in the number of 

ferritin and ferritin-like proteins coded in their genomes and this diversity is apparent by 

the many combinations of ferritins, DpsL, and Dps homologues present as shown in Fig. 

2.6A (Supplemental materials Table 2S-2) (61). For instance Bacteroides vulgatus lacks 

dps but has the genes for DpsL and three ferritins. In contrast, B. fragilis contains 

homologues for Dps, DpsL, and one ferritin and Bacteroides thetaiotaomicron has one 

Dps, one DpsL, and three ferritins. In general the distribution of the genes for these 

proteins is conserved in each of the Bacteroides species. Based on available genome 

sequences for B. fragilis [83 strains], Bacteroides uniformis [3], Parabacteroides merdae 

[3], Parabacteroides distasonis [8], Bacteroides caccae [2], Bacteroides ovatus [7], B. 

vulgatus [8], and B. thetaiotaomicron [3] we observed that all strains of species 

possessing dps and dpsL homologues were consistent. With respect to conservation of 

the ferritins (ftnA), ftnA1 was conserved in all strains but the presence of ftnA2 and 

ftnA3 was variable in strains of B. thetaiotaomicron, B. uniformis, and P. merdae (40). 

Because of the great diversity seen in the ferritin family proteins and the different 

responses to oxidative stress in these organisms we wanted to look at whether the 

oxygen induced resistance to tBOOH is conserved across the genus.   
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Fig. 2.6. Oxygen induced resistance to tBOOH is not conserved across the 

Bacteroides genus (A) Graphic representation of the number and type of ferritins 

(based on sequence homology). Only species that have one dps, one dpsL and 

one ftna demonstrate the oxygen induced resistance to tBOOH. (B) Disk diffusion 

assays were performed with 55mM tBOOH with closely related strains of 

Bacteroides and Parabacteroides. Dark grey bars represent assays exposed to 

air for 3 hours prior to anaerobic incubation. Light grey bars represent assays that 

were not exposed to aerobic incubation. Zones of inhibition were measured and 

reported above. 
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Disk diffusion assays were performed using several members of the Bacteroides 

genus with results shown in Fig. 2.6B. Interestingly the species could be grouped based 

on the number and type of ferritin homologues found in each genome. Bacteroides 

caccae and Bacteroides ovatus were similar to B. fragilis containing the same number 

and type of ferritin homologues (1 Dps, 1 DpsL, and 1 ferritin) and they all demonstrated 

the same phenotype in the tBOOH sensitivity assays. None of the other species tested 

demonstrated the aerobic induced resistance to tBOOH. B. vulgatus, which has no Dps 

homologue showed greater sensitivity to tBOOH after oxygen exposure than under 

anaerobic conditions. Additionally B. uniformis, B. thetaiotaomicron, and P. merdae 

showed little to no difference in resistance levels regardless of aerobic incubation 

indicating these species do not have the oxygen induced resistance response. Most 

noteworthy was the complete resistance to tBOOH seen in P. distasonis under both 

conditions.  

 When comparing the number and type of ferritins in each species and their 

resistance profiles some interesting trends can be seen. The first is that only species 

that contain one Dps, DpsL, and ferritin homologue have the oxygen induced resistance 

response phenotype. Interestingly, B. vulgatus which lacks Dps had high sensitivity to 

tBOOH after aerobic exposure whereas P. distasonis which has two Dps homologues, 

was completely resistant to tBOOH supporting the idea that Dps plays a central role in 

resistance to tBOOH. However, B. uniformis, B. thetaiotaomicron, and P. merdae, which 

do have a dps homologue did not show the inducible resistance phenotype. One 

explanation for this is that these species have evolved different regulatory mechanisms 

for dps and dpsL expression.  
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Discussion 

B. fragilis has an extensive network of iron storage proteins in the ferritin 

superfamily, Dps, DpsL, and ferritin, all of which are linked in some way to the oxidative 

stress response (28, 63, 68). The current report is focused on the role of Dps and DpsL 

in protection against extended exposure to oxidative stress as part of the POST 

response.  The assay used for this work required a period of prolonged aerobic 

incubation to rescue cells from tBOOH killing and the results showed that Dps and to a 

lesser extent DpsL both contributed to protection (Fig. 2.3). Support for this is that the 

Δdps mutant was extremely sensitive to tBOOH and could not be rescued by aerobic 

induction. In addition, the double Δdps Δbfr mutant had greater sensitivity to tBOOH 

than the single mutants indicating that Dps and DpsL function in a similar manner to 

protect against this stress. Complementation of the Δdps Δbfr mutant with either bfr or 

dps resulted in complete resistance to tBOOH after oxygen exposure and provided 

greatly enhanced resistance under anaerobic conditions (Fig. 2.3). Finally the Δdps, 

Δbfr, and Δdps Δbfr mutants were equally protected from tBOOH killing by the iron 

chelating agent dipyridyl indicating that the protective mechanism provided by both of 

these proteins involves removal of reduced iron from the cytoplasm during periods of 

oxidative stress (Fig. 2.4). Taken together these data are evidence that during the 

POST response induction of Dps and DpsL protects cells from damage caused by 

cytoplasmic ferrous iron. Given that Dps and DpsL share similar functional properties 

and either can rescue the POST phenotype it appears that it is differential regulation of 

the dps and bfr genes that is key to understanding their varied contributions to 

protection.  
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 The acute oxidative stress response is designed to rapidly detoxify and minimize 

the effects of a sudden exposure to oxidative stress. This occurs within minutes of 

exposure and OxyR is the major regulator for this response (15). By comparison, 

previous work and the findings from this paper show that the POST response is a more 

global shift in cellular regulation and physiology occurring after exposure to air for 

greater than 1 hour (13). Analysis of dps regulation in B. fragilis has shown that 

transcription is rapidly induced by exposure to either H2O2 or air during exponential 

growth (15). This is mediated by OxyR and is considered to be part of the acute 

oxidative stress response. However, as demonstrated by the studies in this report, as 

well as microarray analysis of gene transcription during prolonged air exposure, Dps 

also plays an important role in the POST response and this regulation is independent of 

OxyR (13).  Most interesting was that prolonged exposure to air was required for 

protection from tBOOH. In exponentially growing cells OxyR rapidly induces dps 

expression during oxidative stress, however as shown in E. coli, OxyR does not induce 

expression of dps during stationary phase growth even when cells are exposed to 

hydrogen peroxide (95). This suggests that the POST response requires the second 

regulator to induce expression of dps because OxyR does not function in the non-

growing cells which is similar to how E. coli regulates dps expression during various 

growth phases (50, 95). In contrast, bfr gene expression is relatively insensitive to H2O2 

but it is strongly induced by exposure to air for greater than 1 hour or in anaerobic 

stationary phase cultures (28, 66).  Overall these data demonstrate a role for Dps in 

both the acute and POST oxidative stress responses whereas DpsL appears to only 

have a role in the POST response. The regulation of the POST response is of great 



60 

 

interest because it leads to protection when cells are not rapidly growing and allows for 

the high aerotolerance seen in B. fragilis.  Dps and DpsL both have roles during 

prolonged oxidative stress and further studies of their differential regulation should help 

identify the important POST regulator(s).  

To investigate the roles of Dps and DpsL in survival in vivo, growth of wild type 

and mutant strains were compared in a rat tissue cage model of infection. This model 

has effectively been used to show the attenuation of mutant strains of B. fragilis within 

an artificial abscess (26, 27). Experiments that compared the ability of the wild type 

strain to outcompete single Δdps and Δbfr mutants showed only slight attenuation that 

was not statistically significant. However the double Δdps Δbfr mutant was significantly 

attenuated, as shown in Fig. 2.5, indicating that Dps and DpsL are both required for 

maximum survival in the abscess model. These data also indicate that Dps and DpsL 

may be playing overlapping roles in protecting the cells from oxidative stress damage in 

vivo because the absence of both was required to see the phenotype. As previously 

shown in this model, B. fragilis reaches high cell numbers and then enters into a 

stationary-like phase where that high cell density is maintained (26, 27). Interestingly, 

on day 1 the double Δdps Δbfr mutant was able to compete effectively with wild type 

and was close to 50% of the 108-109 CFU/ml, however on day 4 and 8 there was a 

decrease in the competitive ability of the double mutant as seen in Fig. 2.5. Results 

from the in vitro growth analysis (Supplemental materials Fig. 2-S2) indicate there is no 

general growth defect in the double mutant. It is reasonable to suggest from these data 

that the double mutant may be experiencing DNA and protein damage due to oxidative 

stress and higher levels of ferrous iron within the cytoplasm during days 4-8.  
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Oxidative stress occurs immediately upon bacterial translocation from the 

anaerobic intestinal tract to the oxygenated peritoneal cavity with additional stress 

resulting from the immune systems response to bacterial presence in the peritoneum 

making high levels of ferrous iron toxic to cells. To survive, B. fragilis requires an 

effective system for management of intracellular iron which in part is provided for by 

Dps and DpsL.  The contribution of Dps and other ferritins to virulence has been shown 

in other organisms. Mutations in ferritin family genes in Salmonella enterica, 

Haemophilus influenzae, and Streptococcus pyogenes were responsible for defects in 

survival in vivo and effected susceptibility to killing from oxidative stress (96-99). These 

results are similar to those seen here with B. fragilis. Though the majority of the 

Bacteroides have dps and bfr (DpsL), only three species, B. fragilis, B. caccae, and B. 

ovatus demonstrate the air inducible tBOOH resistance phenotype suggesting that the 

regulation of these genes may provide some advantage in an extraintestinal site (Fig. 

2.6). 

The normal environment for B. fragilis is the large intestine which is known to be 

highly anaerobic yet B. fragilis has a robust oxidative stress response. It has been 

shown that resistance to oxidative stress is important for establishment of intra-

abdominal abscesses but this habitat is a dead end leaving the question of what selects 

for resistance to oxidative stress in the colon. One thought is that this stress may occur 

during the inflammatory response. Inflammation of the intestinal tract caused by 

Campylobacter jejuni, Helicobacter pylori, and many other pathogens results in 

increased levels of oxidative stress within the epithelial layer and the intestinal tract 

(100-103). B. fragilis is closely associated with the intestinal epithelium which has been 



62 

 

shown to receive significant DNA damage from reactive oxygen species from the host 

immune response (9, 101, 104). Additionally it has been shown that an oxygen 

concentration gradient exists extending out from the epithelial surface so that B. fragilis 

may be exposed to an environment with as much as 8% oxygen depending on precise 

site of colonization (8, 9). It is reasonable to suggest that these conditions could cause 

significant oxidative stress to the organism. Being able to store and scavenge reactive 

ferrous iron would be essential for survival of the Bacteroides in this changing 

environment and during the inflammatory response. Therefore the diversity and quantity 

of ferritin-like proteins used by B. fragilis would give it an advantage and promote 

survival during these times. Then in the event of intestinal damage and the translocation 

of the natural flora into the peritoneal cavity, those organisms that are better suited to 

survive the oxidative burst of the immune response will be able to persist promoting the 

establishment of an abscess. This may in part explain why B. fragilis is so frequently 

isolated from intra-abdominal abscesses. Additionally, transmission of B. fragilis from 

mother to child results in exposure to an aerobic environment and an effective oxidative 

stress response would provide for more efficient transmission (1, 105).  

This report demonstrates that Dps and DpsL are part of the POST response in B. 

fragilis. These proteins are responsible for storing and preventing ferrous iron from 

producing hydroxyl radicals in the cytoplasm during periods of oxidative stress. Studies 

are needed to further elucidate the regulation of the POST response and transcriptional 

control of dps and bfr. Dps and DpsL provide protection for the cells during survival 

within the abscess and ultimately within the intestinal tract. Overall these data indicate 

that B. fragilis and potentially other members of the Bacteroides must be able to 
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efficiently manage iron in order to survive as members of the natural flora of the 

intestinal tract. 
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Supplemental section 

Supplemental Fig. 2S-1 Additional Disk diffusion assay controls

 

Supplemental Fig. 2S-1: Disk diffusion assays were performed as described in the 

Materials & Methods. In brief, plates were inoculated and then challenged with tBOOH 

filter disks. Assays were kept either under anaerobic conditions (light grey bars) or given 

three hours of aerobic incubation prior to anaerobic overnight incubation. Zones of 

inhibition were measured in mm. This figure is a control that demonstrates the empty 

vector, pFD288, does not complement the Δdps and Δdps Δbfr mutants.  
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Supplemental Figure 2S-2: Growth curve of Δdps Δbfr 

 

 

Supplemental Figure 2S-2: The double Δdps Δbfr mutant does not have a general 

growth defect. Cultures were subcultured from overnight stationary phase cultures and 

growth was measured for IB-101 and Δdps Δbfr in BHIS under anaerobic conditions. 

Triplicate cultures for each strain were followed over two independent experiments. 

Averages of the six replicates are reported with standard deviation shown. Results 

indicate that the double mutant does not have a growth defect when compared to WT 

under normal anaerobic growth conditions.  
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Table 2S-3: Strains used in supplemental section 

Strain or plasmid Phenotype and/or genotype
a 

Reference or source 

Bacteroides 

strains 

  

IB-101 B. fragilis 638R Clinical Isolate, Rif
r 

(84) 

IB 336 IB-101 Δdps::tetQ, Rif
r
 Tet

r 
(63) 

IB-542 IB-336 Δbfr::cfx, Rif
r 
Tet

r
 Cfx

r 
This Study 

IB-574 IB-336 pFD288, Rif
r
, Tet

r
, Cfx

r
 Erm

r
 This Study 

IB-575 IB-542 pFD288, Rif
r
, Tet

r
, Erm

r
 This Study 

IB-579 IB-101 pFD288, Rif
r
, Tet

r
, Erm

r
  

Plasmids   

pFD288 (Sp
r
),Erm

r
, oriT, pUC19::pBI143 8.8-kb shuttle 

vector 

 

a
Erm

r
, erythromycin resistance; Cfx

r
, cefoxitin resistance; Rif

r
 rifampicin resistance; Tet

r
, 

tetracycline resistance; Sp
r
, spectinomycin resistance. For Bacteroides-E. coli shuttle vectors, 

parentheses indicate antibiotic resistance expression in E. coli. 
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CHAPTER THREE: STRATEGIES TO IDENTIFY A SECOND 

REGULATOR OF DPS 

  

Rationale:  

 The findings in Chapter 2 demonstrated an important role for a second regulator 

of dps expression. This was shown by the ΔoxyR mutant being fully resistant to tBOOH 

after prolonged exposure to air Fig. 2.2. This result was surprising because previous 

work had shown that OxyR rapidly induced the expression of dps in response to oxygen 

and hydrogen peroxide (68). These data indicated that a second regulator was able to 

induce expression of dps during exposure to oxygen that was independent of OxyR. A 

second regulator in dps expression was suggested by expression data from microarray 

data from cultures receiving extended aerobic exposure (28). These results shaped the 

idea that the unidentified second regulator was important in mediating protection from 

extended oxygen exposure during the POST response. Characterization of this 

regulator will provide significant insight into the control and understanding of the POST 

response.  

Introduction 

 The induction and repression of ferritin genes is complex and typically will involve 

several regulators in order to accomplish effective regulation. There are three conditions 

which lead to the induction of ferritin genes. Under conditions of excess iron, ferritins will 

be induced in order to prevent the accumulation of high levels of ferrous iron within 
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cells. A second condition is oxidative stress which has been previously discussed. The 

third condition that causes induction of ferritin genes occurs when cells enter into 

stationary phase. Under all three conditions the presence of excess ferrous iron is 

dangerous for the cell and thus the cells have developed many strategies to control 

these genes in a coordinated manner and reduce the levels of ferrous iron.  

 The expression of dps has been best studied in E. coli and has been shown to be 

multi-leveled. Expression of dps in E. coli occurs under oxidative stress conditions as 

well as during stationary phase. However, the expression of dps is managed by several 

different regulators. During oxidative stress, OxyR becomes active and recruits σ70 

resulting in a rapid induction of dps expression thus protecting the cell from hydroxyl 

radical production and DNA damage (50). When the cells begin to enter into stationary 

phase, the stationary phase sigma factor σS controls the expression of dps. In contrast, 

during logarithmic growth the nucleoid-associated proteins Fis and H-NS work in 

conjunction to repress the expression of dps under logarithmic growth (50, 106). It has 

been shown that H-NS binds to the dps promoter and prevents transcription initiation by 

the housekeeping sigma factor, σ70. However this repression can be overcome by σs 

which is induced when the cells begin to enter stationary phase resulting in the 

increased expression of dps. Additionally Fis forms a complex with σ70 which is able to 

block transcription by σs thus preventing dps expression when Fis is present. As cells 

enter into stationary phase, the levels of Fis decrease and will eventually free the σs 

promoter sequence (50, 106, 107). Therefore the activities of these two repressors keep 

the expression levels of dps very low during logarithmic growth unless the cell 

experiences oxidative stress at which point OxyR is able to drive expression. H-NS and 
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Fis in conjunction with OxyR and σs limit the expression of dps in E. coli to conditions of 

oxidative stress and during stationary phase.  

 The organisms Bacillus subtilis and Streptococcus pneumoniae utilize the 

peroxide resistance regulator PerR to regulate the expression of their dps homologues 

(mrgA and dpr respectively) (81). PerR is a member of the ferric uptake regulator (Fur) 

family of metallo-regualtors and utilizes Fe2+ to sense and respond to peroxide stress 

(108, 109). This protein family functions as repressors which in the presence of their 

respective metal ligand prevent the expression of genes by binding and blocking 

transcription. In the case of the ferrous iron uptake regulator Fur, when levels of Fe2+ 

are high, Fur binds to Fe2+ and represses genes associated with iron uptake (108).  This 

serves to prevent the accumulation of excess transition metals in the cytoplasm. PerR 

also binds ferrous iron however the iron binding cleft, unlike other members of the Fur 

family, is sensitive to oxidation in the presence of peroxides. In the event of oxidative 

stress the resulting hydrogen peroxide will catalyze a Fenton reaction with the iron 

bound in the cleft resulting in oxidation of conserved histidine residues, resulting in the 

release of iron and the loss of gene repression (108). The coordinated activity of Fur 

and Per will result in the expression of genes such as mrgA and dpr  and repression of 

iron acquisition systems in response to excess iron and oxidative stress.  

 Given the diversity of candidate regulators found in B. fragilis, a variety of 

approaches were undertaken to identity the second regulator of dps expression. The 

first was to investigate and define the regulons of two potential candidate regulators that 

fall into the Fur family of regulators. B. fragilis  has three Fur-like regulators FurA, B, and 

C. Based on homology the three Fur-like regulators appear to fit into the three known 
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classes of Fur family regulators and were thus assigned as follows: FurA as Fur, FurB 

as PerR, and FurC as Zur. Given the role that PerR plays in the regulation of dps 

expression in Gram positive organisms it was given a high priority for investigation as 

the second regulator of dps.  

 Another possible second regulator would be a stationary phase sigma factor 

homologue. No stationary phase sigma factor has been identified in B. fragilis but there 

are many ECF- family sigma factors that could act cooperatively to manage gene 

expression during stationary phase. Of these, there are 14 that are affected by aerobic 

exposure (71). Given that expression of these sigma factors is affected by oxygen 

exposure and that the resistance to tBOOH is also mediated by extended aerobic 

exposure, these regulators are worth investigating as potential second regulators of dps 

expression. Of particular interest are EcfO and SigOF because of the roles these 

regulators have shown in response to oxidative stress.  

 This chapter is focused on a series of experiments performed in the attempt to 

identify the second regulator of dps. The genetic regulation of dps in other organisms is 

multifaceted and that appears to be true for B. fragilis as well. The work in this chapter 

provides strong evidence that SigOF is the second regulator of dps and describes dps 

expression patterns consistent with POST phase induction of dps. We have also gained 

a great deal of information about the regulatory activities of the B. fragilis Per and Fur 

homologues providing some understanding into the role these two regulators are 

playing. The data show that regulation of dps expression during the POST response is 

important for survival and therefore the identification of the second regulator provides 
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information into the different cellular processes that allow for the tolerance of extended 

aerobic conditions.  

Methods and materials 

 Bacterial strains and growth conditions. Bacteroides strains used in this study 

are listed in Table 3.1. All strains were grown anaerobically in brain heart infusion broth 

supplemented with hemin, cysteine, and NaHCO3 (BHIS) unless otherwise noted (83). 

Rifampicin (20µg/ml), gentamicin (50µg/ml), tetracycline (5µg/ml), cefoxitin (25µg/ml), 

and erythromycin (10µg/ml) were added to the media when needed. 

 Construction of mutant strains. Primer sequences used for genetic 

manipulations are listed in Table 3.2. Briefly, the ΔsigOF Tetr mutant was constructed by 

PCR amplification of the N-terminal fragment of sigOF using oligonucleotides containing 

EcoRI recognition site at the 5’ end and BamHI site at the 3’ end. The fragment was 

cloned into a suicide vector, pFD516. A C-terminal fragment was amplified using the 

same approach except oligonucleotides contained a BamHI recognition site at the 5’ 

end and PstI at the 3’ end. This was then cloned into pFD516 containing the N-terminal 

fragment. A 2.2kb tetracycline cassette (tetQ) was inserted in between the N and C-

terminal fragments using the BamHI site creating pFD1090. This plasmid was then 

mobilized into IB-101 generating IB-478 ΔsigOF::tetQ.  The ΔsigOF::cfx (IB-577) mutant 

was constructed by modifying pFD1090 (plasmid used to construct ΔsigOF::tetQr) by 

removing the tetQ cassette by restriction digest with BamHI. The 1.3kb cfx cassette was 

then PCR amplified from pFD351 with flanking BamHI restriction enzyme sites. The cfx 

cassette was then cloned into pFD1090 creating pFD1250. This plasmid was then 
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mobilized into B. fragilis IB-101 and exconjugants were selected on BHIS plates 

containing rifampicin, gentamicin, and cefoxitin (91). Sensitivity to erythromycin and 

PCR were used to confirm the double-crossover allelic exchange of sigOF::cfx mutation 

in strain IB-577.  

 Construction of the double ΔsigOF Δdps mutant, IB-580, was performed by 

mobilizing pFD786 (Δdps mutational construct) into IB-577. Mutants were selected on 

rifampicin, gentamicin, and tetracycline. PCR was performed to confirm the double-

cross over allelic exchange of dps::tetQ. Construction of the double ΔsigOF ΔoxyR IB-

578 mutant was performed in a similar manner where the pFD-754 (ΔoxyR mutational 

construct) was mobilized into IB-577. Mutants were selected on rifampicin, gentamicin, 

and tetracycline. PCR was performed to confirm the double-cross over allelic exchange 

of oxyR::tetQ. 
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Table 3.1: Strain table. Strains used in the experiments outlined in Chapter 3. 



 

76 

 

Strain or 

plasmid 

Phenotype and/or genotype
a 

Reference or source 

Bacteroides 

strains 

  

IB-101 B. fragilis 638R Clinical Isolate, Rif
r 

(84) 

IB 298 IB-101 ΔoxyR::tetQ, Rif
r
 Tet

r 
(68) 

IB 336 IB-101 Δdps::tetQ, Rif
r
 Tet

r 
(63) 

IB-368 IB-101 Δper::cfx Rif
r
 Cef

r
  

IB-542 IB-336 Δbfr::cfx, Rif
r 
Tet

r
 Cfx

r 
This Study 

IB-577 IB-101 ΔsigOF::cfx Rif
r
, Cfx

r
 This Study 

IB-578 IB-577 ΔoxyR::tetQ Rif
r
, Tet

r
, Cfx

r
 This Study 

IB-580 IB-577 Δdps::tetQ Rif
r
, Tet

r
, Cfx

r
  

BER-2 IB-101 Δfur::tetQ Rif
r
 Tet

r
  

BER-74 IB-101 Δbfr::cfx Rif
r
, Tet

r 
(66) 

E. coli 

strains 

  

DH10B F– mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 

ΔlacX74 recA1 endA1 araD139 Δ(ara leu) 7697 galU 

galK rpsL nupG λ–  

Invitrogen 

HB101:RK2

31 

HB-101 containing RK231, Km
r
 Tc

r 
St

r 
(89) 

   

Plasmids   

pFD516 Bacteroides suicide vector derived by deletion of 

Bacteroides replicon pBI143 from pFD288, (Sp
r
), Erm

r 
(90) 

pFD754 

 

pFD786 

 

 

pFD1090 

 

 

pFD1250 

2.2kb tetQ cassette was inserted into NdeI/SalI sites of 

pFD750 to generate ΔoxyR::tetQ.  

A fragment of the dps gene was removed from pFD760 at 

BamHI and MscI and replaced with tetQ to generate 

Δdps::tetQ 

A deletion of the sigOF gene cloned into EcoRI/PstI sites 

of pFD516 with a 2.2kb tetQ cassette inserted in the 

BamHI site. 

A 2.2kb tetQ cassette was removed from pFD1090 using 

BamHI and replaced with a 1.4kb cfx cassette. 

(69) 

 

(63) 

 

 

________________________________________________________________________________________________________________ 

a
Erm

r
, erythromycin resistance; Cfx

r
, cefoxitin resistance; Rif

r
 rifampicin resistance; Tet

r
, 

tetracycline resistance; Sp
r
, spectinomycin resistance; Amp

r
, ampicillin resistance. For 

Bacteroides-E. coli shuttle vectors, parentheses indicate antibiotic resistance expression in E. 

coli. 
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Table 3.2 Table of all primers used in studies outlined in Chapter 3 
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Table 3.2 Primers used in this study  

Primer 5’-3’ Sequence Purpose 

Nterm-

eco 

acgtgaattcttcggagcctcttctaaattgg Forward primer for amplification 

of the N-terminal portion of the 

ΔsigOF mutant 

Nterm-

bam 

acgtggatccgttgccggtttttaagcggttaa Reverse primer for amplification 

of the N-terminal portion of the 

ΔsigOF mutant 

C-term-

bam 

acgtggatccggaactgaaggactttgtttg Forward primer for amplification 

of the C-terminal portion of the 

ΔsigOF mutant 

C-term-

pst 

acgtctgcagaattgtcctaacatggcagg Reverse primer for amplification 

of the C-terminal portion of the 

ΔsigOF mutant 

cfx-F  

BamHI 

gtcgactctagaggatcccc Amplify cefoxitin cassette with 

flanking BamHI sites 

cfx-R 

BamHI 

gactggatccgccgcaacaggaagaaagaaa Amplify cefoxitin cassette with 

flanking BamHI sites 
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 Disk Diffusion Assays. Disk diffusion assays were performed as previously 

described (66). In brief, 100µl of overnight culture was spread on BHIS plates (without 

cysteine) and a 6-mm filter disk was placed in the center of the plate. The disks were 

then saturated with 10µl of 55 mM tBOOH unless otherwise noted. Disk diffusion assays 

were also exposed to 10% H2O2 where noted. Plates either were immediately incubated 

anaerobically at 37°C or they received 3 hours of aerobic incubation at 37°C prior to 

anaerobic incubation. Following overnight anaerobic incubation, the diameters of the 

zones of growth inhibition were measured, and the results were reported as the average 

of at least two independent experiments performed in triplicate. A Student’s two tailed t-

test was performed to determine significant differences between populations when 

appropriate.  

 Growth conditions for microarray and qRT-PCR analysis. All cultures were 

grown to an OD550 of 0.4-0.5. For microarray analysis to determine the PerR regulon 

WT IB-101 and the ΔperR mutant (IB-368) cultures were grown to an OD550 of 0.5 and 

then split. Half the culture was shaken aerobically for 3 hours at 37°C. The remaining 

half was treated with chloramphenicol and harvested immediately by centrifugation. 

After three hours of aerobic exposure the culture was harvested as described above. 

Analysis of the Fur regulon under iron deplete conditions was performed as follows. IB-

101 and the Δfur mutant (BER-2) were grown in minimal media supplemented with 

5µg/mL Protoporhyrin IX to an OD550 of 0.4 (63). Additionally IB-101 and the ΔfurA 

mutant were grown in iron deplete conditions. The iron depletion media was prepared 

from minimal media treated with 40 µM of  2,2’-dipyridyl an iron chelating agent. Cells 

were then grown to an OD550 of 0.4 and harvested as previously described. To 
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investigate the levels of dps in the double ΔsigOF ΔoxyR mutant cultures of WT, ΔoxyR, 

ΔsigOF and ΔsigOF ΔoxyR were grown to an OD550 of 0.5 and then split. Half received 

1 hour of aerobic shaking at 37°C while the other half was treated with chloramphenicol 

and harvested. After 1 hour of aerobic exposure the remaining culture was harvested. 

RNA was isolated for these cultures as described below.  

 RNA isolation and qRT-PCR analysis. RNA isolation was done by the hot-

phenol method as previously described (42, 71). The samples were treated three times 

with Turbo DNA-free DNase (Ambion/Life technologies Inc.) and purified by phenol 

chloroform extraction. Twenty micrograms of DNA was used for first strand cDNA 

synthesis in a reaction mixture with 13ng per µL random hexamers, 0.5mM 

deoxynucleotide triphosphates (dNTPs), 1 X first-strand buffer, and 1 µL Superscript II 

RNase-H-reverse transcriptase I (Invitrogen, Carlsbad, CA). For quantitative reverse 

transcriptase PCR (qRT-PCR) the reaction mixture contained 12.5 µL of 2 X iQ SyBR 

green Supermix, 1.5 µL of 5mM forward primer, 1.5 µL of 5mM reverse primer, 4.5 µL 

H2O, and 5 µL of cDNA template (diluted to 2 ng per µL) per well. All samples were run 

in duplicate from at least two biological replicates. Relative expression level was 

determined by the Pfaffl method (110) using 16S RNA as a reference.  

 Microarray analysis. For microarray expression analysis, single stranded cDNA 

was converted to double stranded cDNA as previously described (71). Double-stranded 

cDNA was synthesized with the Super ScriptR Double-Stranded cDNA synthesis kit (Life 

technologies, Inc.). One microgram of double stranded cDNA was labeled with cy3 and 

hybridized to microarray slides, and processed by the Florida State University 
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Roche/NibleGen Microarray Facility. For each experimental condition at least two 

independent trials were performed. Each trial consisted of a high-density oligonucleotide 

whole-genome expression microarray (Roche/NimbleGen) with eight technical 

replicates of each probe per slide. The raw microarray expression data was normalized 

together by using the robust multiarray average (RMA) algorithm, as implemented in 

Roche Deva 1.1 software. The normalized data were analyzed by using ArrayStar 

software (Dnastar, Inc., Madison, WI). Putative regulons were determined for Fur and 

PerR by comparing genes that were highly expressed (≥ 5 fold) in the mutant strain but 

not in Wild type. A significant increase in gene expression would be expected in the 

mutant strains due to absence of the Fur and Per repressor functions.  

Results 

 In order to determine the identity of the second regulator of dps expression, a 

variety of methods were used. First a transposon mutagenesis strategy coupled with a 

screen for dps expression was attempted but due to a poor conjugation frequency in the 

ΔoxyR mutant the efficiency of this strategy was too low to pursue. As an alternative 

strategy, the tBOOH sensitivity assay was used to screen mutated strains lacking 

oxidative stress regulatory genes. We reasoned that in the absence of the second 

regulator we would see a change in phenotype. The results of these experiments are 

detailed in this chapter.  

EcfO/Reo are not involved in the tBOOH resistance response. B. fragilis 

possesses many ECF sigma factors which in many other organisms, are known to 

respond to a variety of stimuli and induce changes in gene transcription. This type of 
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sigma factor typically works in conjunction with an anti-sigma factor which represses the 

activity of the sigma factor until an appropriate stimulus is detected at which point the 

sigma factor is free to induce transcription of its regulon.  It has been shown in B. fragilis 

that after aerobic exposure a large number of transcription factors including 14 ECF 

sigma factors are induced (28, 71). This includes the ECF sigma factor EcfO which 

works in conjunction with its anti-sigma factor Reo. Further work has demonstrated that 

the ΔecfO mutant had an increased sensitivity to extended oxygen exposure and 

various oxidative stress inducing agents (71). A regulon for EcfO was determined to 

contain seven genes. The genes within this operon are all of unknown function but do 

contain several members of the novel NigD superfamily found only in the Bacteroidetes 

and several members that are lipoproteins (71, 72). It is still unclear as to what role 

EcfO is playing in the POST response.  

 Interestingly ecfO, reo, and a gene in the regulon, Bf638R_1335 (Bf_1335), are 

located in the genome adjacent to oxyR and dps as depicted in Fig. 3.1 A. We reasoned 

that perhaps EcfO might be the second regulator of dps expression given the close 

proximity to the dps gene. To test this, we performed disk diffusion assays with the 

ΔecfO and the Δreo mutants for sensitivity to tBOOH after aerobic exposure. Given the 

nature of the function of EcfO and Reo we would expect that if they were involved in dps 

expression that the ΔecfO mutant would have a zone of inhibition after aerobic 

incubation whereas the Δreo mutant may have increased resistance as similar 

phenotypes have been noted (71). As shown in Fig. 3.1 B, when the ΔecfO mutant was 

exposed to tBOOH it had  
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Fig. 3.1 Role of EcfO and Reo in dps expression. A. A schematic representation 

of the genetic organization of ecfO, reo, dps, and oxyR. Genes are drawn to 

scale. As can be seen these genes are grouped next to each other in B. fragilis 

chromosome. B. Disk diffusion assays performed with 0.375% tBOOH under 

anaerobic (red bars) and exposure to air (blue bars). Assays were performed in 

triplicate over two independent experiments with standard deviations shown.  
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similar zones of inhibition to the WT indicating that EcfO is not involved in this 

resistance reponse. The same was seen for a mutant from the EcfO regulon Δ1335. 

Interestingly the anti-sigma factor mutant, Δreo, showed increased sensitivity to tBOOH 

under anaerobic conditions but complete resistance after oxygen exposure. Together 

this indicates that EcfO is not the secondary regulator of dps responsible for resistance 

seen to tBOOH in the POST response.  

PerR affects the tBOOH resistance phenotype but does not affect dps 

expression. One class of regulators that commonly regulate oxidative stress and iron 

acquisition are those of the Fur (ferric uptake regulator) family of metallo-regulators 

(109). Members of this family work as repressors and respond specifically to the 

presence of metals within the cytoplasm and control expression of genes involved in 

regulating the availability of these metals and limiting their toxic effects. PerR (peroxide 

resistance regulator) is a member of this family and in Bacillus subtilis is the major 

oxidative stress regulator in this organism (108). In B. subtilis, PerR binds iron when it is 

plentiful which leads to an active repressor that then prevents the transcription of 

several genes such as ahpCF, katA, and mrgA a dps homologue (108). As shown in 

Fig. 3.2A, when cells experience oxidative stress H2O2 accumulates and reacts with the 

metal containing site of PerR resulting in the release of the iron molecule and a loss in 

transcriptional repression occurs.  
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Fig. 3.2 The activity of PerR influences the tBOOH resistance response. A 

graphic representation of the regulation mechanism of PerR. When cells are not 

experiencing oxidative stress, iron is bound to PerR and the repressor function is 

active. However, in the presence of increased levels of H2O2, the iron is released 

from PerR and the repressor becomes inactive allowing for transcription. B. Disk 

diffusion assays of the ΔperR mutant were performed with 0.375% tBOOH under 

anaerobic (red bars) and after three hours of aerobic exposure (blue bars). 

Assays were performed in triplicate over two independent experiments. Standard 

deviation is shown and a student’s T-test was performed P-value is indicated by 

the *.  
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B. fragilis contains three Fur homologues furA, furB, and furC. As previously 

mentioned furB was given the perR designation and will be referred to as perR. 

Because of the role that PerR plays in resistance to oxidative stress in a wide variety of 

other organisms we wanted to investigate B. fragilis PerR and determine what role it 

plays in resistance to tBOOH. To do this we performed disk diffusion assays as shown 

in Fig. 3.2 B. Interestingly the ΔperR mutant had increased resistance to tBOOH under 

anaerobic conditions which is similar to ΔperR mutants in other organisms which 

demonstrated increased resistance to oxidative stress (81, 108). These data were 

consistent with the possibility that PerR was the regulator of dps expression. It was 

determined that further investigation of the role in B. fragilis was warranted and that the 

PerR regulon should be determined.  

 To elucidate the PerR regulon, we performed microarray analysis to determine 

the change in gene transcription patterns of the whole genome. To do this cultures were 

grown to an OD550 of 0.5 and then split. Half of the culture was immediately harvested 

and the remaining culture was exposed to aerobic shaking for three hours. RNA was 

purified from cells, converted to double stranded cDNA, and sent for microarray 

analysis. The PerR regulon was determined by comparing gene transcription patterns 

under anaerobic conditions and genes that have a greater than 5 fold increase in 

transcription in the ΔperR mutant compared to WT were identified. These results can be 

seen in Tables 3.3 A and B.   
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Table 3.3 Gene expression patterns in the ΔperR mutant. A. Shows the 

difference in transcription patterns of dps, bfr, and ftnA under anaerobic 

conditions. B. Genes that are part of the PerR regulon based on microarray 

analysis. Column 3 is the fold increase in transcription in the ΔperR mutant as 

compared to WT.  
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GENE_TAG FUNCTION ΔperR/WT 

BF638R0477 putative exported protein 41.4 

BF638R3069 putative exported protein 35.4 

BF638R1171.2 putative type I DNA restriction-modification 31.6 

BF638R2559 putative lipoprotein 18.2 

BF638R3068 Putative penicillin-bindin protein 17.2 

BF638R2520 putative exported transmembrane protein 10.4 

BF638R2532 tyrosine site-specific recombinase 9.8 

BF638R3888 putative zinc metaloprotein  9.5 

BF638R3051 putative membrane protein 9.2 

BF638R4484 putative lipoprotein 9.2 

BF638R1440 putative transmembrane protein 9.0 

BF638R0793 putative polysaccharide biosynthesis protein 8.9 

BF638R0573 putative aspartate kinase 8.7 

BF638R1630 hypothetical protein 8.0 

BF638R3066 putative periplasmic protease 7.7 

BF638R0796 putative transmembrane polysaccharide modification protein 7.6 

BF638R3253 putative lipoprotein 7.1 

BF638R1941 hypothetical protein 6.7 

BF638R3258 putative membrane protein 6.6 

BF638R3388 putative lipoprotein 6.6 

BF638R2028 putative transcriptional regulator MarR family 6.4 

BF638R0771 conserved hypothetical protein 6.2 

BF638R2661 putative mobilization protein 6.1 

BF638R3801 putative RNA polymerase sigma factor 6.0 

BF638R3922 hypothetical protein 5.9 

BF638R0795 conserved hypothetical protein 5.9 

BF638R0694 putative transmembrane immunity protein 5.9 

BF638R4138 putative outer membrane lipoprotein 5.8 

BF638R4317 putative autotransporter 5.8 

BF638R3213 putative exported protein 5.8 

BF638R0408 putative transporter 5.8 

BF638R2399 putative lipoprotein 5.7 

BF638R0808 putative transposase 5.6 

BF638R3722 conserved hypothetical protein 5.5 

BF638R0787 putative transmembrane protein 5.5 

Gene_Tag Function ΔperR/WT 

BF638R_1333 Dps 1.225 up 

BF638R_3305 DpsL/bfr 1.727 up 

BF638R_2891 FtnA 2.693 down 

B. 

A. 
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If a gene was regulated by PerR we would expect to see the transcription 

significantly increased under anaerobic conditions due to absence of the repressor. 

Comparing the expression patterns of dps under anaerobic conditions in both the WT 

and the ΔperR mutant we did not see a significant increase in transcription as seen in 

table 3.3 A. These results indicate that PerR is not the second regulator of dps. We also 

looked at the transcription patterns of DpsL (bfr) and FtnA . Neither demonstrated an 

increase in the ΔperR mutant. These data indicate that the PerR regulator is not 

responsible for controlling the transcription of dps, bfr, or ftnA. We also compared the 

transcription patterns of cultures that were exposed to air and saw similar results.  

 When comparing the transcription patterns in microarray analysis of the ΔperR 

mutant and WT we were able to determine a putative PerR regulon. As shown in Table 

3.3 B those genes that experienced a significant increase in transcription in the ΔperR 

mutant (5 fold or greater) were grouped into this putative PerR regulon. Unfortunately, 

all the genes that can be grouped into this regulon are genes of unknown function. 

Among these were genes for putative lipoproteins and putative membrane proteins 

indicating the PerR regulon may play a role in modifying the membrane during periods 

of stress. Further work is needed to elucidate the role of PerR tBOOH resistance but it 

does not appear that PerR is the second regulator of dps.  

 dps is not part of the Fur regulon and does not respond to excess iron.   

Many organisms such as E. coli, B. subtilis, and Neisseria gonorrhoeae utilize Fur to 

control the expression of the iron storage proteins (81). Iron bound in the Fur iron 

binding cleft does not react with H2O2, therefore as long as iron is in excess it will be 
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bound to Fur and the protein will continue to repress gene transcription. When iron 

concentrations become limited, Fur will become inactive and gene transcription will 

occur. Fur works in conjunction with many different regulators and genetic regulatory 

elements in order to provide sufficient iron for essential activity without allowing for too 

much which can result in significant damage to the cells (81). We questioned whether 

the B. fragilis Fur could influence the expression of dps or bfr (DpsL). In an effort to 

elucidate the role for Fur, microarray analysis was performed with the B. fragilis Δfur 

mutant and WT grown in iron limited conditions and iron replete conditions. Results are 

shown in Table 3.4. 
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Table 3.4. Microarray results from analysis of expression patterns of  Δfur mutant. 

A. Columns 1 and 2 contain the gene number designation in strain BF638R (IB-

101) and the putative function based on gene homology. Columns 3, 4, and 5 

display the results of the microarray analysis indicating the fold increase 

measured. Column 3 represents the results when WT in iron depleted conditions 

(-Fe) was compared to WT under normal growth conditions (+Fe). Column 4 

shows results from the Δfur mutant and WT under normal growth conditions. 

Column 5 shows results from Δfur mutant under iron depleted conditions when 

compared to WT under normal growth conditions. B. Shows the expression 

patterns of dps, bfr, and ftnA under the same conditions as detailed above. 

Columns 3-5 in B correspond to the same conditions as described in A.  
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GENE_TAG FUNCTION WT -Fe/ 

WT +Fe 
fur+Fe/ 

WT +Fe 
fur –Fe/ 

WT+Fe 

BF638R1275 alkyl hydroperoxide 

reductase subunit F 
39.2 20.4 30.4 

BF638R1276 alkyl hydroperoxide 

reductase C subunit 
36.6 12.6 25.7 

BF638R1422 hypothetical protein 8.4 17.9 17.3 

BF638R1421 putative 

transmembrane ferrous 

transport fusion protein 

(FeoAB) 

5.8 13.3 9.7 

A. 

Gene_TAG Function WT-Fe/WT +Fe fur + Fe/WT +Fe fur -Fe /WT + Fe 

BF638R_1333 Dps 6.2  1.1 4.0 

BF638R_3305 DpsL/bfr 4.9  0.9 3.0 

BF638R_2891 FtnA 1.067 down 1.279 1.005   

 

B. 
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 In table 3.4 A the microarray data show that the Fur regulon is limited with few 

iron responsive genes in the putative regulon. Four genes were found to be both iron 

responsive and regulated by Fur. Those genes are ahpC, ahpF, BF638R1421, and 

feoAB. This was determined by looking at transcription levels under all three conditions 

and observing genes that were iron responsive in WT and were dysregulated in the Δfur 

mutant. Similar to other organisms, the B. fragilis ferrous iron transporter is controlled by 

Fur to regulate the uptake of ferrous iron. AhpCF is also controlled by Fur which is 

unusual for true Fur homologues. In fact it is more common for PerR homologues to 

regulate the transcription of oxidative stress genes as is seen in B. subtilis and 

Deinococcus radiodurans (81). What is more interesting is that the Fur regulated 

expression of ahpCF would occur under iron limited conditions which would be less of a 

concern for oxidative stress given that there is less iron available to participate in the 

Fenton reaction. There is no known function of BF638R1422 and a homology search 

indicates that it is specific to the Bacteroides only. It is contained in an operon with 

feoAB and therefore could play some role in iron uptake but that has yet to be tested.  

 Shown in Table 3.4 B are the expression levels of dps, bfr and ftnA. Expression 

of ftnA does not change across all tested condition indicating it is not part of the Fur 

regulon or iron responsive. The expression levels of dps and bfr are similar across all 

tested conditions although there was a slight increase in the expression under iron 

limited conditions. However when the expression levels of dps and bfr are compared in 

the Δfur mutant and WT under normal growth conditions expression levels were similar. 
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These data indicate that Fur is not the second regulator of dps or a regulator of bfr in B. 

fragilis. 

 The role of SigOF as a regulator of dps and bfr expression. Current work is 

focused on the role of SigOF in the POST response (Ndamukong, Smith unpublished 

data). This regulator was identified as one of the 14 ECFs that were regulated by 

oxygen (28) along with EcfO. Recently SigOF was found to regulate bfr induction after 

prolonged exposure to oxygen thus it was tested in the tBOOH assay. As detailed in 

Chapter 2, DpsL only shows a phenotype in the Δdps mutant background Fig. 2.3. 

Therefore when the ΔsigOF mutant was assayed it was not surprising that it did not 

demonstrate any defect in resistance to tBOOH Fig. 3.3. We reasoned that because 

Dps was still present it was able to protect the cells from tBOOH thus the effects of 

SigOF would be masked in the single ΔsigOF. Thus a double ΔsigOF Δdps mutant was 

generated to determine whether this mutant was still resistant to tBOOH. The disk 

diffusion assays showed that the double ΔsigOF Δdps mutant was more sensitive to 

tBOOH than the Δdps mutant and was similar to the double Δdps Δbfr mutant. Because 

the effect of adding the ΔsigOF mutant to the dps mutant was additive this suggested 

that loss of SigOF caused the increased sensitivity to tBOOH similar to the phenotype in 

the double Δdps Δbfr mutant. Taken together these data support that SigOF is the 

regulator controlling the expression of bfr during the POST response.  
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Fig. 3.3 The effect of SigOF on resistance to tBOOH after prolonged exposure to 

air. Disk diffusion assays were performed as previously described where cells 

were exposed to 55mM tBOOH. Blue bars represent assays that received three 

hours of oxygen exposure and red bars represent the results from assays that 

were kept under anaerobic conditions. Assays were performed in triplicate over 

two independent experiments. Averages of these are reported with standard 

deviation shown.  
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 Based on RNA seq and microarray data analysis, a putative SigOF regulon was 

generated and a promoter recognition sequence was established (Ndamukong, 

unpublished data). The promoter logo can be seen in Fig. 3.4 A. Interestingly when the 

dps intergenic region was analyzed a SigOF promoter sequence was observed 50 base 

pairs upstream of the start codon (shown in bold in Fig. 3.4 B) for Dps. This observation 

suggested that SigOF also was the second regulator of dps expression. To evaluate the 

role of SigOF and OxyR in the POST response tBOOH disk diffusion assays were 

performed and the results are shown in Fig. 3.4 C.  

 The hypothesis was that a double ΔsigOF ΔoxyR mutant would be sensitive to 

tBOOH after exposure to air as there would be no or limited induction of dps expression. 

As shown in Fig. 3.4 C, the Δdps mutant was the only single mutant that demonstrates 

sensitivity to tBOOH after oxygen exposure and both of the ΔsigOF and ΔoxyR single 

mutants demonstrated full resistance to tBOOH after aerobic exposure. As previously 

shown, the double Δdps Δbfr mutant was more sensitive to tBOOH than the Δdps 

mutant. Most interesting was the sensitivity of the double ΔsigOF ΔoxyR mutant. This 

mutant showed high sensitivity to tBOOH after aerobic exposure similar to the results 

seen for the double Δdps Δbfr mutant. This indicates that the double ΔsigOF ΔoxyR 

mutant has a defect in dps expression that is not seen in the single mutants. Overall this 

suggests that in the absence of both SigOF and OxyR, dps expression is either 

abolished or so low that the double mutant is not resistant to tBOOH. This is strong 

evidence that SigOF is the second regulator of dps expression.  
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Fig. 3.4 SigOF regulates the expression of dps during the POST response. A. 

SigOF regulon and logo was generated by Ndamukong et. al (unpublished 

data). B. The intergenic region of dps with the conserved SigOF promoter 

sequence (in bold) is shown 50bp upstream from the Dps start codon. C. Disk 

diffusion assays of the double ΔsigOF ΔoxyR mutant exposed to tBOOH. Disk 

diffusion assays were performed as previously described with 55mM tBOOH. 

Assays were performed in triplicate over two independent experiments. Average 

zones of inhibition are reported with standard deviation of the population shown.  
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 Further evidence for the role of SigOF was obtained from qRTPCR analyses of 

IB-101, ΔsigOF, ΔoxyR, and the double ΔsigOF ΔoxyR mutant cultures shaken 

aerobically at 37°C for one hour. One hour of aerobic shaking was chosen because 

previous studies had demonstrated OxyR independent expression of dps after 1 hour of 

aerobic exposure (31). RNA from these cultures were purified, qRTPCR was performed 

to detect dps expression, and results are shown in Fig. 3.5.  The expression of dps was 

significantly reduced under anaerobic conditions (red bars). The dps expression in the 

double ΔsigOF ΔoxyR mutant was lower than either of the other strains under anaerobic 

condition and this was statistically significant (P ≤ 0.004). When the expression of dps 

was measured in the cultures after one hour of aerobic exposure a significant decrease 

in dps was seen when the double ΔsigOF ΔoxyR was compared to the WT IB-101 and 

the ΔsigOF mutant (p≤0.004). However when the relative expression levels of dps were 

compared for the ΔsigOF ΔoxyR mutant to the ΔoxyR mutant the decreased expression 

was not statistically significant. Interestingly the dps expression levels measured in each 

of the three biological replicates in the ΔoxyR mutant varied greatly as evidenced by the 

high standard deviation seen in this population. This difference could have resulted from 

experimental error. Further experiments are needed to elucidate whether the second 

regulator of dps is SigOF but the data presented here supports this idea. Interestingly 

though, there appears to still be an induction of dps expression in the double ΔsigOF 

ΔoxyR mutant of about 5 fold after aerobic exposure. These data could indicate that 

there may be some other form of induction of dps but further experiments are needed in 

order to determine what is responsible for this induction.  
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Fig. 3.5 Expression levels of dps in the double ΔsigOF ΔoxyR mutant are 

reduced. The average relative expression levels of dps for each strain are 

reported here. Three biological replicates for each strain were measured in 

duplicate during growth under anaerobic mid-logarithmic phase and post 1 hour 

aerobic exposure at 37°C. Standard deviation for each population is reported. 

Relative levels of expression were measured compared to the double ΔsigOF 

ΔoxyR mutant under anaerobic condition as the control.  
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Discussion 

 The focus of this chapter was on the identification of the second regulator of dps 

expression in B. fragilis. It is not uncommon for multiple regulators to control the 

expression of dps under different conditions. Dps has been shown to promote survival 

under a variety of conditions including oxidative stress, acid stress, and provides 

protection from a variety of different stress inducing agents such as hypochlorous acid 

(50, 51, 81, 111). To respond to these conditions several different regulatory 

mechanisms are utilized in order to sense the correct conditions and adjust the 

expression of dps appropriately. Regulation of dps in E. coli is the best studied and 

several regulators are required for control. These regulators include OxyR, the 

stationary phase sigma factor σs, and two repressors Fis and H-NS (50). In contrast B. 

subtilis utilizes PerR solely to control the expression of the Dps homologue mrgA and it 

uses the stationary phase sigma factor sigma B to control a second Dps homologue 

(81, 112). As more organisms are studied it has become clear that Dps is utilized in a 

variety of different conditions and the regulation of this one gene is very important to the 

overall physiology of the organism.  

 Dps belongs to the ferritin super family of proteins and it is important to note that 

organisms that have multiple ferritin super family homologues utilize a diverse series of 

mechanisms to regulate their expression. There are three stress conditions that 

modulate expression of these proteins, high iron, oxidative stress, and stationary phase 

metabolism. E. coli utilizes members of the ferritin super family to respond to all three 

stress conditions listed above. For oxidative stress OxyR induces the expression of dps 
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thus protecting the cell from DNA damage and preventing the Fenton reaction. 

Additionally the stationary phase sigma factor controls the expression of dps to protect 

the DNA. To manage iron concentrations Fur is used. Under excess iron conditions Fur 

upregulates the expression of the major iron storage protein FtnA and through a 

mechanism involving the repression of the small RNA RhyB it induces the expression of 

bacterioferritin to decrease the levels of iron within the cytoplasm (81).  

 B. fragilis has three members of the ferritin super family FtnA, DpsL, and Dps. 

Interestingly all three of these are induced under aerobic conditions (28, 63, 66, 113). 

Additionally Dps and DpsL are induced during anaerobic stationary phase growth and 

during the POST response (66, 113). It is interesting to see that ftnA, dps, and bfr 

(DpsL) are all induced in response to aerobic exposure. This would traditionally be 

considered a response to oxidative stress but what is interesting is only dps is induced 

strongly in response to H2O2 (31). Oxidative stress is considered an accumulation of 

high levels of H2O2 with in the cell. In B. fragilis the oxidative stress regulator OxyR 

responds to this excess H2O2 and induces the expression of a regulon of genes that are 

responsible for reducing the levels of H2O2 with dps being one of the genes induced. 

These data suggest that Dps is the oxidative stress responsive ferritin superfamily 

member in B. fragilis.  

 When comparing the induction of ferritins in an anaerobe to that of a facultative 

aerobe it is important to note one thing. The ferroxidase activity of ferritins and 

bacterioferritins require oxygen for the conversion of ferrous iron to ferric iron whereas 

Dps and DpsL utilize H2O2. Therefore in the anaerobe B. fragilis it would not be 
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beneficial to induce the transcription of ftnA in the absence of oxygen therefore it is 

logical to have evolved a mechanism that is dependent on the presence of oxygen. 

FtnA and Bfr have a high capacity for storing iron and in many organisms such as E. 

coli and N. gonorrhoeae the iron responsive Fur regulator is utilized either directly in the 

case of E. coli or indirectly in the case of N. gonorrhoeae to induce the expression of 

these ferritins under high iron conditions. Both of these organisms are facultative 

aerobes and therefore have oxygen present during growth. In addition both organisms 

have a secondary input that regulates the expression of the iron storage ferritins in 

response to oxidative stress. In E. coli, Fur is directly influenced by H2O2 and the activity 

of OxyR (81). This allows for the input of two stimuli to induce the expression of FtnA 

and Bfr during high concentrations of iron and oxidative stress. In N. gonorrhoeae, Fur 

senses and responds to high concentrations of iron and represses the iron uptake 

systems. Fur can also influence the transcription of the small RNA NrrF. When Fur is 

actively bound to iron it directly represses the transcription of NrrF which then allows for 

the transcription of bfr which reduces the levels of iron within the cell (81). 

 As shown in Table 3.4, the transcription of dps, bfr (DpsL), and ftnA were similar 

in both WT and the Δfur. This observation rules out a role for Fur directly regulating the 

expression of the ferritins in B. fragilis. However these experiments were not performed 

under aerobic conditions and an indirect role for Fur cannot be ruled out. It is possible 

that Fur is active under conditions of excess iron and it represses a second 

transcriptional repressor that can promote transcription of (one or more) ferritin genes. It 

is also possible that a different regulatory network has evolved in B. fragilis where both 
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the presence of oxygen and excess iron are required to induce the transcription of ftnA. 

Further experiments are needed in order to determine what factors contribute to the 

induction and possible repression of the ferritin genes. An interesting observation from 

the microarray experiments with the Δfur mutant was that both dps and bfr (DpsL) were 

induced under low iron conditions. B. fragilis grows slowly under low iron conditions and 

this may indicate that these cells may be in a transition to stationary phase during which 

Dps and DpsL might play a role. Further work is needed in order to determine if 

induction of dps and bfr occurs in this manner due to stationary phase metabolism. 

 In many organisms, the PerR repressor regulates the transcription of dps. 

Organisms such as B. subtilis and Streptococcus pyogenes utilize the dual regulatory 

abilities of PerR to coordinate the transcription of dps (81). PerR directly represses the 

transcription of dps until it is exposed to oxidative stress and increased levels of H2O2. 

When this occurs the H2O2 displaces the iron bound to PerR and the regulator becomes 

inactive allowing for the transcription of dps. Therefore PerR mutants have increased 

resistance to oxidative stress inducing agents (mainly H2O2). This is similar to what was 

observed for the B. fragilis ΔperR mutant in tBOOH assays under anaerobic conditions 

Fig. 3.2. However, the PerR regulon suggested by microarray analysis did not include 

dps (Table 3.3). We also did not see an increase in bfr (DpsL) expression indicating that 

the increased resistance to tBOOH was not being conferred through the increased 

expression of dps or bfr. 

 Furthermore the putative PerR regulon was composed primarily of genes that 

encoded hypothetical proteins and this makes it difficult to deduce what type of stress 
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this regulon responds to. There are a large number of putative lipoproteins, 

transmembrane, and transporter proteins so it is possible that this response modifies 

the permeability of the cells and alters the ability of tBOOH to enter into the cells. Also 

the genes for two genetic regulators had increased transcription in the ΔperR mutant, 

BF638R3801 and BF638R2028. These may influence the transcription of dps or dpsL 

but they have never been shown to have increased expression under oxidative stress. 

Overall these results indicated that PerR is not a second regulator of dps and though it 

influences the tBOOH resistance phenotype it is through an unknown mechanism and 

does not appear to be regulating expression of the iron storage genes.  

 The Fur family of proteins are the most common transcription factors used to 

regulate the acquisition of iron though they do not appear to participate in the control of 

iron storage in B. fragilis. Usually mutations in these regulators will show some form of 

deregulation of ferritin transcription but this was not observed in the in the ΔperR and 

Δfur mutants. This may mean that B. fragilis did not evolve a mechanism utilizing the 

ferritins as iron storage proteins under conditions of high iron. It is possible that B. 

fragilis only needs to respond to high iron concentrations in the presence of oxidative 

stress and therefore does not require an iron responsive induction of the ferritins. 

However further work is needed to determine how cellular iron fit into this complicated 

ferritin regulatory cascade in B. fragilis.  

 As previously shown in Chapter 2, the second regulator of dps expression which 

results in resistance to tBOOH is part of the POST response. The POST response is an 

extensive genome wide change in transcription patterns that occurs after prolonged 
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exposure to air (28, 113). Several ECF sigma factors have been shown to become 

active during the POST response including EcfO, SigOF, and several others (28). 

Therefore it is possible that these regulators control dps expression. As previously 

mentioned dps expression in E. coli is controlled by the stationary phase sigma factor 

σs. Though still requiring more investigation, we hypothesize that the POST response 

and stationary phase have significant overlap. B. fragilis does not have a known 

stationary phase sigma factor however it does have a large number of ECF sigma 

factors. The POST response is characterized by significant changes in transcription of 

metabolic genes and a repression of DNA synthesis, translation, and membrane 

biogenesis which are all characteristic of stationary phase in other organisms (28). 

Additionally in organisms such as B. subtilis, Staphylococcus aureus, and 

Streptococcus mutans an ECF sigma factor (RpoE) is utilized to regulate stationary 

phase (114). Therefore it is reasonable to suggest that the second regulator of dps 

expression may be important in regulation of stationary phase metabolism.  

 Interestingly, overexpression of sigOF resulted in significant upregulation of bfr 

(DpsL) (Ndamukong, unpublished data). A ΔsigOF Δdps mutant was constructed to 

determine if SigOF was responsible for the POST induction of bfr and results showed 

that the double mutant had similar sensitivity to tBOOH as the double Δdps Δbfr mutant 

indicating it was the regulator responsible for bfr expression during the POST response 

Fig. 3.3. Additionally bioinformatic analysis of the dps intergenic region revealed a 

match to the consensus SigOF promoter recognition sequence (Fig. 3.4 A). To 

investigate the possibility that the second regulator of dps is SigOF, a double ΔsigOF 
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ΔoxyR mutant was assayed for resistance to tBOOH after aerobic incubation. The 

double mutant had a high sensitivity to tBOOH after aerobic exposure (Fig. 3.4 B). 

Interestingly complete resistance to tBOOH after aerobic exposure was seen in both of 

the single ΔsigOF and ΔoxyR mutants. Further studies examined dps transcription 

patterns in the various mutants (Fig. 3.5). Both the single ΔsigOF and ΔoxyR mutants 

expressed dps under aerobic conditions. In the double ΔsigOF ΔoxyR mutant, dps 

expression was decreased relative to the single mutants providing further evidence that 

both are controlling the expression of dps. This indicates that in the absence of one 

regulator the second regulator is able to express enough dps to protect the cells from 

tBOOH.  

 Taken together these data suggest that dps expression occurs during both the 

acute and POST response and is regulated by OxyR and SigOF. This coordinated 

response promotes the survival of B. fragilis under very diverse conditions. Within the 

intestinal tract, B. fragilis has been shown to occupy the intestinal crypts a location that 

experiences variable levels of oxygen (8, 9). Under normal conditions, the crypts can 

experience oxygen concentrations up to 8%. However, during periods of nutrient 

absorption the crypt becomes oxygen depleted. B. fragilis may require the coordination 

of the acute and POST response to survive and thrive in this environment where there 

are rapid changes in oxygen concentration as well as prolonged exposure to it. It is 

possible that through this sophisticated oxidative stress response; B. fragilis is able to 

occupy a niche in the crypt which is inhospitable to other organisms. Furthermore, 

survival within the intestinal tract also requires resistance to the host immune response. 
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Therefore in the event of an intestinal tear and translocation into the peritoneal cavity, B. 

fragilis is already prepared to survive the increased oxidative stress and the immune 

responses allowing for survival within the abscess. Through the coordination of the 

acute and POST response and the coordinated transcription of dps and bfr (DpsL) B. 

fragilis is able to survive under these diverse and harsh conditions.  
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CHAPTER 4: SUMMARY 

 This project details the role of Dps during the acute and POST oxidative stress 

responses in B. fragilis. These studies were the first to demonstrate a role for Dps in the 

POST response through use of a newly developed phenotypic assay that measures the 

effect of oxygen exposure on resistance to tBOOH. This assay showed that three hours 

of aerobic exposure prior to anaerobic incubation was required to induce complete 

resistance to tBOOH. This extended aerobic incubation is characteristic of the POST 

response and by assaying several oxidative stress mutants it was demonstrated that the 

Δdps mutant was sensitive to tBOOH after aerobic exposure. This is the only single 

mutant that has increased sensitivity in the POST assay. Because of the known role for 

OxyR in the regulation of dps we wanted to determine whether this transcription factor 

was responsible for the expression during the POST response. Interestingly the ΔoxyR 

mutant still demonstrated complete resistance to tBOOH after aerobic exposure 

indicating that dps was expressed during the POST response in an OxyR independent 

manner. This result indicated that there was a second regulator of dps controlled its 

expression during the POST response.  

 The similarities between the recently characterized DpsL and Dps led us to 

consider that DpsL might also be playing a role in resistance to tBOOH. Previous 

characterization of the DpsL protein indicated that it had ferroxidase activity, a similar 

structure, and function to the Dps protein. Further work demonstrated expression of bfr 

(DpsL) was during the POST response. Initial tests assayed the Δbfr mutant for 

resistance to tBOOH but the mutant was completely resistant to tBOOH. We 
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rationalized that because Dps was still present it was masking the phenotype. Therefore 

a double Δdps Δbfr mutant was constructed and it was shown to have a much greater 

sensitivity to tBOOH than the single Δdps mutant. This indicated that DpsL contributed 

to tBOOH resistance but to a lesser extent than Dps. DNA damage is the only lethal 

form of oxidative stress and Dps specifically protects the DNA which may explain why 

the Δdps mutant is so sensitive to tBOOH. DpsL contributes to resistance to tBOOH 

indicating a role protecting DNA but it may also have a role in protecting iron containing 

proteins as well.   

 Dps and DpsL are known to decrease the concentration of Fe2+ in cells therefore 

the role of iron in tBOOH sensitivity was examined. Cell viability assays were performed 

in the presence or absence of the intracellular iron chelating agent dipyridyl and then 

challenged with tBOOH. Cultures treated with dipyridyl were found to be completely 

resistant to tBOOH whereas untreated cultures were very sensitive. These results 

indicate that the tBOOH sensitivity is linked to available Fe2+
 within cells. Therefore it 

can be inferred that the sensitivity of the Δdps and Δbfr mutants to tBOOH is due to 

increased levels of Fe2+
. 

 To further study the roles of Dps and DpsL in the survival of B. fragilis, in vivo 

survival assays were performed in the rat abscess model. Results demonstrated that 

the single Δdps and Δbfr mutant did not exhibit an obvious defect in competition with the 

WT indicating these mutants were not attenuated. Interestingly though, the double Δdps 

Δbfr mutant had a significant defect in survival within the abscess indicating that both 

Dps and DpsL affects the survival of B. fragilis. These data indicate that both Dps and 
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DpsL contribute to survival during infection but the specific role that each are playing 

and why the absence of both was required to see a defect in survival is still unknown.  

 Several strains of Bacteroides have Dps, DpsL, and an assortment of ferritins 

(Ftna1, Ftna2, and Ftna3) but the number and types are not conserved across the 

genus. Therefore we wanted to determine if this somehow correlated with resistance to 

tBOOH. The results of these assays showed that the aerobic resistance phenotype was 

not conserved across the genus and only three B. fragilis, B. ovatus, and B. caccae 

exhibited an increased resistance to tBOOH after aerobic exposure. This was 

interesting considering that many other species of Bacteroides such as B. 

thetaiotaomicron have Dps and DpsL homologues but not this response. These results 

indicate that B. fragilis and others have developed unique forms of regulation which 

resulted in the increased resistance to tBOOH.  

 Understanding the regulation of dps during the POST response was dependent 

on determining the identity of the second regulator. To this end, known oxidative stress 

regulator mutants were assayed for resistance to tBOOH. Attention was focused on the 

ECF sigma factor SigOF when bioinformatic analysis demonstrated a consensus 

promoter sequence for the sigma factor in the dps intergenic region. The ΔsigOF mutant 

was resistant to tBOOH after aerobic exposure therefore we hypothesized that OxyR 

control of dps expression may provide enough protection for the cells to survive. A 

double ΔsigOF ΔoxyR mutant was constructed and it was found to be highly sensitive to 

tBOOH after aerobic exposure. This was similar to the double Δdps Δbfr mutant 

indicating that SigOF plays a role in the transcription of both dps and bfr (DpsL) during 
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the POST response. To further address this possibility we performed qRTPCR to 

determine expression levels of dps during aerobic incubation in the various mutants. A 

significant decrease in transcription of dps was seen in the double ΔsigOF ΔoxyR 

mutant indicating that these two regulators contribute to the expression of dps during 

exposure to air. However, further work is needed to confirm these results.  

   Taken together these data demonstrate a multifaceted regulatory network for 

the control of dps and other genes during the acute and POST responses. As shown in 

Fig. 4.1, the current hypothesis is that dps is controlled during the acute response by 

OxyR which will rapidly induce dps leading to a decrease in intracellular ferrous iron and 

protection of the DNA. As oxidative stress continues and the cells shift to the POST 

response, dps expression is controlled by SigOF and the expression of dps can 

continue throughout this extended stress. In E. coli when cells enter into stationary 

phase, OxyR is prevented from accessing the dps promoter. It would be interesting to 

see if this is also the case in B. fragilis. It is possible that the cell is utilizing OxyR to 

quickly decrease the levels of reactive ferrous iron within the cells and as oxidative 

stress become prolonged SigOF drives the expression of dps but at a lower expression 

rate to maintain a low level of ferrous iron. It has been shown that OxyR drives a very 

high level of expression of dps upon activation and that the second regulator of dps 

induces a lower expression of dps (69).  
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Fig. 4.1 Model of the regulation of dps during the Acute and Post response. As 

shown under the acute response when levels of hydrogen peroxide rise, OxyR 

becomes activated and recruits σ70 to the dps gene allowing for transcription. In 

the POST response SigOF controls the expression of dps. Yet to be determined 

is whether SigOF is able to prevent OxyR from activating the expression of dps 

during the POST response or whether there is some other mechanism that fine 

tunes the control of the two regulators.  
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This in turn would keep levels of iron low and would also save cellular resources by 

producing a lower level of dps during periods of extended oxidative stress. It is also 

possible that SigOF is able to sense and respond to both oxidative stress and iron 

levels but further investigation is needed. The regulatory cascade network has been 

updated to represent the dual regulation of dps by SigOF and OxyR Fig. 4.2 based on 

the findings in this report.    

 Future directions for this project should focus on confirming that SigOF is the 

regulator responsible for the transcription of dps during the POST response. Recently a 

group working on the closely related Porphyromonas gingivalis has shown that a 

purified ECF sigma factor was able to initiate in vitro transcription of the sigma factor 

specific promoter sequence with purified E. coli RNA polymerase (115). A similar 

approach could be used to show that SigOF can begin in vitro transcription of the dps 

gene. The SigOF promoter sequence from the sigOF gene or the bfr gene could be 

used as controls in these experiments. Additionally we could make point mutations in 

the suspected SigOF promoter sequence in the dps intragenic region and then see if 

this mutant was resistant to tBOOH. Ideally this mutation would be made in the ΔoxyR 

mutant and the resulting strain would be sensitive to tBOOH if SigOF was now unable to 

induce dps transcription. That would provide further evidence that SigOF is the second 

regulator of dps.  
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Fig. 4.2 B. fragilis oxidative stress response and dps expression. The B. fragilis 

OSR is separated into the acute and post response. The blue represents known 

and unknown regulators involved in the expression of the genes listed in the 

green background. Overlap between the two responses can be seen in the 

regulation of the dps gene in the regulation by OxyR and SigOF.  
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 Additionally current data from Ndamukong et al. indicate that SigOF works in 

conjunction with another ECF sigma factor SigOA. Though the relationship between 

these two regulators is currently unknown it has been shown that the SigOF regulon is 

affected by the presence of SigOA. It is possible and very likely that these two 

regulators have significant overlap in their regulons. It would be interesting to address 

whether SigOA influences the transcription of dps. As seen in Fig. 3.5, expression of 

dps was still induced, though at a reduced level, in the double ΔsigOF ΔoxyR mutant 

after aerobic exposure. It would be interesting to address whether this induction results 

from the activity of SigOA. To address this an ΔoxyR mutation could be introduced into 

the double ΔsigOF ΔsigOA mutant to see if dps levels are affected and whether there is 

increased sensitivity to tBOOH 

 The dps gene is commonly induced during stationary phase growth. What has 

not been addressed is whether SigOF is the stationary phase regulator of dps. It is 

known that dps is expressed during the POST response but less is known about its 

expression during anaerobic stationary phase growth. Expression of dps could be 

determined during stationary phase by qRTPCR. If dps is expressed it could be tested 

whether SigOF induces this expression by observing dps expression in the ΔsigOF 

mutant during stationary phase. B. fragilis has no known stationary phase sigma factor 

and we currently hypothesize that during stationary phase there are several ECF sigma 

factors and other regulators that control stationary phase gene expression. It would be 

interesting if dps which has a known role in stationary phase metabolism could be used 

to study the B. fragilis stationary phase (50). 
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 In conclusion the work detailed in this report demonstrates a role for Dps during 

the acute and POST oxidative stress responses.  Future studies using the information 

provided here could help with the elucidation of the POST response, the roles of SigOF 

in the physiology and survival of cells, and possibly better define the regulation of 

stationary phase in B. fragilis. These studies have laid the ground work for the further 

elucidation of the POST response and have shown the connections between Dps and 

the closely related DpsL. By studying the genetic and post transcriptional regulation of 

the ferritin family genes and proteins a better understanding of the B. fragilis cellular 

physiology and how this organism uses these proteins for survival will be obtained. This 

in turn would allow for an increased understanding of the different mechanisms this 

organism utilizes for survival and overall may lead to better treatment options for this 

organism during infection.  
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