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ABSTRACT
Emberizid sparrows (emberizidae) have played a prominent role in the study of avian
vocal communication and social behavior. We present here brain transcriptomes
for three emberizid model systems, song sparrow Melospiza melodia, white-throated
sparrow Zonotrichia albicollis, and Gambel’s white-crowned sparrow Zonotrichia
leucophrys gambelii. Each of the assemblies covered fully or in part, over 89% of the
previously annotated protein coding genes in the zebra finch Taeniopygia guttata,
with 16,846, 15,805, and 16,646 unique BLAST hits in song, white-throated and
white-crowned sparrows, respectively. As in previous studies, we find tissue of origin
(auditory forebrain versus hypothalamus and whole brain) as an important deter-
minant of overall expression profile. We also demonstrate the successful isolation
of RNA and RNA-sequencing from post-mortem samples from building strikes and
suggest that such an approach could be useful when traditional sampling opportuni-
ties are limited. These transcriptomes will be an important resource for the study of
social behavior in birds and for data driven annotation of forthcoming whole genome
sequences for these and other bird species.

Subjects Animal Behavior, Evolutionary Studies, Genomics, Neuroscience
Keywords Song learning, Illumina, RNA-seq, Zonotrichia, Song sparrow, White-throated
sparrow, White-crowned sparrow, Zebra finch

INTRODUCTION
The comparative method, broadly speaking, is a powerful approach for understanding

adaptations including behavior and central control of physiological responses to

environmental change. Natural variation in behavior among species has been used in

various taxonomic groups to begin to unravel the molecular underpinnings of animal
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social behavior. Among these comparative studies of behavior, different strategies and

technologies have been deployed in order to gain an understanding of the proximate

mechanisms at play. For example, experimental hormonal manipulations and gene

sequence comparisons in different species of Microtus voles led to insights into the

mechanisms of parental care (Young et al., 1999). Similarly, quantitative trait locus (QTL)

mapping studies have recently revealed the genetic architecture of burrowing behavior

in Peromyscus mice (Weber, Peterson & Hoekstra, 2013). Phylogenetic analyses of rates of

molecular evolution based on transcriptomes in eusocial and solitary bees has also led to

insights into potential underpinnings of social behavior variation (Woodard et al., 2011).

Songbirds, or oscine passerines, comprise roughly half of avian diversity and also serve

as important models for the study of social behavior. Arguably the most prominent of the

songbird species for behavioral research is the zebra finch Taeniopygia guttata, which now

boasts a full suite of genomic and molecular tools including a complete genome sequence

(Warren et al., 2010), RNA-seq based mRNA (Warren et al., 2010; Balakrishnan et al.,

2012) and microRNA data (Gunaratne et al., 2011; Luo et al., 2012), transgenics (Agate

et al., 2009) and cell lines (Itoh & Arnold, 2011; Balakrishnan et al., 2012). A key strength

of songbirds as a model system, however, has always been the behavioral complexity and

diversity of songbirds as a group (Beecher & Brenowitz, 2005; Brenowitz & Beecher, 2005;

Clayton, Balakrishnan & London, 2009).

Among songbirds, many comparative neurobiological studies have focused on three

species of new world sparrows (emberizidae). Before the zebra finch assumed its role

as a model system for vocal learning, Peter Marler and colleagues had demonstrated

age-limited song learning and cultural transmission of song dialects in the white-crowned

sparrow, Zonotrichia leucophrys (Marler & Tamura, 1964). There is also a striking behav-

ioral polymorphism in which some subspecies, such as Gambel’s white-crowned sparrow

Z. l. gambelii, are migratory, living in large non-territorial flocks during non-breeding

seasons, whereas other subspecies are non-migratory and are territorial throughout

the year (DeWolfe, Baptista & Petrinovich, 1989). White-throated sparrows Zonotrichia

albicollis also show polymorphism in behavior but in this case, the polymorphism is known

to be caused by a large chromosomal rearrangement on chromosome 2 (Thorneycroft,

1966; Thorneycroft, 1975). Tan morph individuals are homozygotic for the metacentric

form of the chromosome whereas white morphs are almost always heterozygous. In

addition to coloration, the two morphs differ in a suite of behaviors including increased

aggression and promiscuity and decreased parental care in birds of the white morph

(Knapton & Falls, 1983; Collins & Houtman, 1999; Tuttle, 2003). Male song sparrows

Melospiza melodia are distinctive in that they are territorial during both the breeding

season (summer) and much of the non- breeding season (autumn and winter) (Wingfield

& Hahn, 1994; Mukai et al., 2009). Different hormonal mechanisms, however, appear

to underlie this similar behavioral phenotype with increased plasma testosterone levels

driving intensity and persistence of aggression during breeding, but not at other times

of year (Wingfield, 1994; Wingfield & Soma, 2002). With this comparative perspective

in mind, we have generated brain transcriptomes for these three historically important
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emberizid songbird models for the study of social behavior: white-throated sparrow,

Gambel’s white-crowned sparrow, and song sparrow.

METHODS
Sample collection
Samples for each of the three species were collected for diverse research purposes of the

laboratories involved, so sampling strategy for each species was unique. Animal procedures

were approved by the Institutional Animal Care and Use Committees of the University of

California, Davis (protocol 07-13208) and the University of Illinois (protocol 11062) and

were conducted in accordance with the NIH Guide for the Principles of Animal Care.

White-throated sparrow
During migration, white-throated sparrows and other birds are often killed in collisions

with buildings. We took advantage of this unfortunate fact by sampling white-throated

sparrows that had been opportunistically collected following night migration and

collision into McCormick Place, Chicago, IL. Birds that had been killed overnight were

collected first thing in the morning beginning at dawn by David Willard, Collection

Manager—Birds, Field Museum of Natural History, Chicago, IL. Specimens used in this

study were collected during the spring migration in 2010. Each specimen was immediately

vouchered at the Field Museum where they were dissected to determine sex. Whole brain

tissue was stored in RNA-later (Life Technologies, Carlsbad, CA). Prior to analysis we

determined the morph of each bird sampled using a modification of Michopoulos et

al. (2007), which is based on the identification of a morph-specific SNP present in the

vasoactive intestinal peptide (VIP) gene. We modified the protocol by using labelled PCR

primers, so that the amplification products could be analyzed on an ABI PRISM Genetic

Analyzer (Life Technologies). For RNA sequencing we used the brains from six males, three

white and three tan.

Gambel’s white-crowned sparrow
We captured Gambel’s white-crowned sparrows within the University of California, Davis

campus in February 2008, using Potter traps baited with seed, and determined their sex

using published PCR methods (Griffiths et al., 1998). After two weeks of acclimation

in captivity we anesthetized 12 male birds with with isoflurane, decapitated them and

collected the whole hypothalamus from each bird. After dissection we immediately froze

the samples in liquid nitrogen. Fieldwork in California was covered by the US Fish and

Wildlife permit (MB713321-0) and State of California permit (SC-004400).

Song sparrow
Between July and August 2011 we captured seven male song sparrows using song playbacks

from behind a mist net. We conducted fieldwork at two locations in central Illinois:

“Phillips Tract” (40 07′ 54.74′′N 88 08′ 39.66′′W) and Vermillion River Observatory

(40 03′ 50.79′′N 87 33′ 30.30′′W). We euthanized the birds immediately following capture

in the net, and then dissected auditory forebrain tissue (auditory lobule, or AL). AL is

a composite brain area including the caudomedial nidopallium (NCM), caudomedial
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mesopallium (CMM) and Field L and can be readily dissected following bisection of the

brain along the midline (Cheng & Clayton, 2004). We immediately froze the specimens on

dry ice. Flat skins of collected song sparrows have been accessioned in the Illinois Natural

History Survey, Urbana, Illinois. We conducted fieldwork in Illinois under US Fish and

Wildlife Service Permit SCCL-41077A.

RNA extraction, library preparation and sequencing
White-throated sparrow and song sparrow
In order to broadly describe the brain-expressed transcriptome of the white-throated

sparrow, we extracted RNA from whole brain. We homogenized the entire brain in

Tri-Reagent (Molecular Research Center, Cincinnati, OH) for RNA purification and

extracted total RNA following the Tri-Reagent protocol. We then DNase treated (Qiagen,

Valencia, CA) the total RNA to remove any genomic DNA contamination, and further

purified the resulting RNA using Qiagen RNeasy columns. We assessed the purified

total RNA for quality using an Agilent Bioanalyzer (Agilent Technologies, Wilmington,

DE). Library preparation and sequencing were done at the University of Illinois Roy J.

Carver Biotechnology Center. The RNAseq libraries were constructed with the Illumina

TruSeq RNA Sample Prep Kit (Illumina, San Diego, CA). Briefly, polyA+ messenger

RNA was selected from 1ug of total RNA and chemically fragmented. First-strand cDNA

was synthesized with a random hexamer and SuperScript II (ThermoFisher, Waltham,

MA). After second-strand synthesis, the double-stranded DNA was blunt-ended, 3′-end A

tailed, ligated to barcoded adaptors and amplified with 15 cycles of PCR using Kapa HiFi

polymerase (Kapa Biosystems, Woburn, MA). The six barcoded libraries were quantitated

with Qubit (ThermoFisher) and the average size was determined on a Bioanalyzer

DNA7500 DNA chip (Agilent). The libraries were pooled in equimolar concentration

and the pool was quantitated by qPCR on an ABI 7900HT (ThermoFisher). Sequencing

was done in a single lane of an Illumina HiSeq2000 using a TruSeq SBS sequencing kit

version 3. Fastq files were demultiplexed and generated with the software Casava 1.8.2

(Illumina). The same basic procedure was used to sequence the song sparrow except for the

fact that we extracted RNA from the dissected AL (rather than whole brain) tissue, and that

samples from seven individuals were run in a single lane of paired end (rather than single

end) sequencing.

Gambel’s white-crowned sparrow
We extracted total RNA from each hypothalamus using TRIzol reagent (Life Technologies)

followed by RNA cleanup using Qiagen RNeasy Mini Kits. We then pooled RNA samples,

quantified them using a Nanodrop (ThermoFisher) and ran them on a Bioanalyzer for

quality control (RIN = 8.5). We used this pooled RNA sample to generate a mRNA-seq

library of 400 bp size with a mRNA-Seq 8 sample prep kit (Illumina) following manufac-

turer’s protocol with slight modifications. We began by isolating mRNA using oligo(dT)

and then fragmented it using divalent cations under elevated temperature. We then reverse

transcribed the RNA into cDNA using random primers, modified and ligated with GEN PE

adapters. We ran the resulting cDNA on an agarose gel, excised a 400 bp band and enriched
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the library with 15 cycles of PCR. We validated the final library using a Bioanalyzer and

confirmed a distinct band at approximately 400 bp. Pair-end sequencing (100 bp × 2) was

performed by the Genome Center DNA Technologies Core at the University of California,

Davis, using an Illumina HiSeq 2000 and TruSeq SBS kit version 2.

Zebra finch
To provide a benchmark for comparison, we compared our newly collected data with

previously published data from zebra finches Taeniopygia guttata (Balakrishnan et al.,

2012, GenBank Accession: SRX493920–SRX493922). These data were derived from RNA

extracted from the AL of female zebra finches. The three libraries were derived from pools

of 10 female finches each, and sequenced on an Illumina Genome Analyser and processed

with Illumina pipeline 1.6.

Transcriptome assembly, annotation and assessment
We checked overall sequence quality using FastQC (http://www.bioinformatics.babraham.

ac.uk/projects/fastqc/) and trimmed reads using ConDeTriV2.2 (Smeds & Kunstner, 2011).

We used default settings for trimming except for the high quality (hq) threshold which was

set to 20 and lfrac, the maximum fraction of reads with quality <10, which was set to 0.2.

The lfrac parameter allows for trimming, rather than complete removal, of reads with low

quality ends.

We used the Trinity (version r20131110) assembler (Grabherr et al., 2011) to generate

de novo assemblies for each species. For white-throated sparrow we assembled the reads

for the two color morphs both separately and combined. Assembling the reads separately

was reasonable given evidence of sequence divergence within the inversion (Thomas et al.,

2008) and assembling the reads together was reasonable to improve coverage outside such

areas. We used default settings in Trinity besides those specific to our computing system

(we generally used 24 CPUs and allowed for 100G of memory). We used TransDecoder

(included in the Trinity package) to identify open reading frames (ORFs) in our predicted

transcripts.

We assessed the quality of our assembly by estimating N50 and average transcript length.

The shortcomings of such metrics for transcriptome assessment have been described

(O’Neil & Emrich, 2013) and we use them here primarily to facilitate comparison with pre-

viously published studies. To provide further insight into assembly quality, we also assessed

5′ to 3′ gene model coverage relative to annotated zebra finch genes (see details below)

and quantified the number of transcripts containing both start and stop codons using the

annotation information provided by TransDecoder (“type:complete” in the fastq header).

We used BLAST (Altschul et al., 1990) searches against a database of Ensembl (release 74)

zebra finch transcripts to annotate our ORF-containing transcripts. Functional description

of annotated transcripts was conducted using Gene Ontology, and statistical over and

under representation was tested using CORNA software (Wu & Watson, 2009) and Fisher’s

Exact Tests with p values adjusted for multiple testing (Benjamini & Hochberg, 1995). For

each assembly we tested our identified set of putative zebra finch orthologs relative to the

full population of Ensembl transcripts.
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Figure 1 RNA quality from post-mortem sampled sparrows. Bioanalyzer gel image showing RNA
extracted from 12 white-throated sparrows sampled post-mortem. RNA integrity numbers (RIN) are
given at the bottom and ranged from 6.4 to 8.5. Samples chosen for sequencing are indicated by tan
and white circles, representing tan and white morph sparrows, respectively.

Gene expression and read-mapping profiling
In order to compare read mapping and gene expression profiles across libraries, we

mapped RNA-seq reads to the zebra finch whole genome assembly (2.3.4) using Stampy,

a read mapper tailored for divergent reads relative to the reference genome (Lunter

& Goodson, 2011). We mapped reads for all six individual white-throated sparrows,

three of the seven song sparrows, and the pooled white-crowned sparrow using default

settings but with the substitution rate set to 0.05 to accommodate sequence divergence. In

addition, we mapped reads from previously published zebra finch auditory forebrain reads

(Balakrishnan et al., 2012) using substitution rate = 0.01.

To quantify gene expression, we used htseq-count (Anders, Pyl & Huber, 2014) to tally

reads relative to Ensembl gene models and then normalized the read counts using the

regularized log transformation in DE-Seq2 (Anders & Huber, 2010). Expression profiles

were then visualized by Euclidean distance based clustering and principal components

analysis (PCA) using heatmap.2 in the gplots R package, and the plotPCA function in

DE-Seq2. We then also used the geneBody.py script within the RseqC package (Wang,

Wang & Li, 2012) to describe read coverage across gene models and to test specifically for a

3′ bias in transcript coverage in post-mortem samples.

RESULTS & DISCUSSION
RNA extraction and sequencing
Despite collecting tissues for the white-throated sparrow opportunistically from building

strikes, we were able to extract reasonably high quality RNA from all samples (Fig. 1).

This finding suggests that post-mortem collected birds can be used as a viable source

of RNA for transcriptome sequencing. From a total of twelve samples, we selected a
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Table 1 RNA-seq dataset. Raw number of reads and bases before and after trimming with ConDeTri.

Species Reads before Bases before Paired reads after Paired read bases after Single reads after Single read bases after

WTSP-Tan 99,374,744 9,937,474,400 NA NA 97,162,587 9,014,814,467

WTSP-White 97,605,312 9,760,531,200 NA NA 95,347,015 8,779,352,471

SOSP-Paired 271,249,550 27,124,855,000 245,289,038 23,613,455,033 11,228,223 992,474,010

WCSP-Paired 160,229,712 16,022,971,200 153,636,836 14,171,465,431 2,871,235 213,815,184

Table 2 Transcriptome assembly description. Tissue of origin, pool size, assembly statistics (N50, average transcript length, number of transcripts)
and annotation description (number of zebra finch genes with significant BLAST hit) for whole assembly and open reading frame (ORF) containing
transcripts. “Complete Transcripts” are those containing both a start and stop codon. We used the individual tan and white morph assemblies in the
subsequent BLAST search and annotation which yielded 15,805 genes.

Species Tissue Pool size N50 Mean length # Transcripts # ORF Complete transcripts ZF genes

WTSP-Tan Whole brain 3 2,557 1,119 116,894 54,868 22,799 –

WTSP-White Whole brain 3 1,942 960 95,129 37,910 11,855 –

WTSP-Both Whole brain 6 2,284 982 149,184 58,284 24,388 15,805

SOSP Auditory forebrain 7 4,072 1,416 276,670 133,740 79,451 16,864

WCSP Hypothalamus 12 3,415 1,591 307,617 206,926 115,515 16,646

set of six (three per morph) with Bioanalyzer RNA integrity numbers (RIN) above 7

(10-083 (7.2), 10-092 (7.2), 10-093 (7.7) and 10-118 (8.5), 10-124 (8.0) and 10-308

(7.9)). Samples for sequencing were also chosen such that tan and white morphs were

collected at the same time of year (spring migration 2010). By chance, our tan samples

had higher average RINs than the white morph samples did (Fig. 1). RNA from the other

two species were of good quality and met Illumina’s standard QC benchmark of RIN

> 8. All of our sequencing runs yielded high quality sequence data. After fairly stringent

quality trimming, we retained over 89% of the initial nucleotides sequenced (Table 1). Raw

RNA seq reads have been deposited to the GenBank Short Read Archive under accession

numbers SRX342288–SRX342293, SRX493875–SRX493882, and SRX514971.

Transcriptome assembly and annotation
We reconstructed a large number of transcripts (>95,000) and open reading frame (ORF)

containing transcripts (>54,000) in all of our assemblies, exceeding the likely number

of coding genes (Table 2). These transcripts reflect a combination of partial transcripts,

alternative isoforms, allelic variants, and noncoding transcripts. We were able to generate

high quality transcriptomes based on N50 and average transcript length (Table 2). N50s

for the assemblies were 1,942 for the white morphed white-throated sparrow, 2,557 for the

tan morph, 3,415 for Gambel’s white-crowned sparrow and 4,072 for the song sparrow

(Table 2). For the song sparrow, this is an improvement over a recent 454-based

transcriptome (N50 = 482; Srivastava et al., 2012). As expected, N50 in general improved

with increased sequencing depth (with paired end data sets benefitting from both the reads

being paired and having more reads). One exception to this rule was in the white-throated

sparrow, where combining reads from the two morphs actually generated a worse assembly

in terms of N50 relative to the “tan morph only” assembly (combined N50 = 2,284, tan
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only N50 = 2,557). Tan morph individuals are homozygous for a large structural polymor-

phism spanning much of chromosome 2 whereas white morph individuals are heterozy-

gous. Recombination within the inversion is suppressed, allowing genetic divergence in

this region (Thomas et al., 2008), and potentially explaining the drop in N50 in the com-

bined assembly. For the purposes of annotation of the white-throated sparrow we therefore

used the two morph-specific assemblies, merging them after the assembly process.

Although N50s were generally high, the white-throated sparrow assemblies, which were

based on smaller, single-end datasets and post-mortem samples, had the lowest scores. This

effect was even more dramatic when assemblies were assessed in terms of the number of

complete transcripts possessing both a start and stop codon. Gambel’s white-crowned,

song, and white-throated sparrow transcriptomes contained 115,515, 79,451, and 24,388

complete transcripts, respectively (Table 2). Because the white-throated sparrow samples

were collected post-mortem and had the fewest reads, we cannot determine whether

post-mortem sampling itself influenced assembly quality. Given the relatively high quality

(RINs) of the white-throated sparrow RNA, however, it is more likely that the reduced

quality of the assembly is a result of it being generated from a smaller dataset.

For white-throated sparrow we were able to find predicted transcripts with significant

BLAST hits to 15,805 zebra finch genes (89% of Ensembl annotated zebra finch genes),

whereas for song sparrow we found 16,846 (94%) and Gambel’s white-crowned sparrow

16,646 (93%). Therefore, in terms of unique BLAST hits, the song sparrow and Gambel’s

white-crowned assemblies were also better than that of the white-throated sparrows. All

three assemblies, however, cover a large proportion of known genes and represent an

improvement of over recent 454-based bird transcriptomes (e.g., violet-eared waxbill,

11,084 genes, Balakrishnan et al., 2013).

We evaluated and compared the general composition of genes present in each of the new

assemblies by performing a Gene Ontology (GO) analysis, using the GO annotation of the

complete zebra finch genome as the point of reference for the statistical tests of enrichment

(Table 3). All three datasets shared a number of similarities, including significant

enrichment for eight GO categories (“cytoplasm”, “intracellular’, “mitochondrion”,

“nucleic acid binding”, “nucleolus”, “protein binding”, “protein phosphorylation” and

“transferase activity”) and under-representation of six categories (“cytokine activity”,

“DNA integration”, “extracellular region”, “hormone activity”, “immune response” and

MCH Class I protein complex”). The under-represented categories may in part reflect the

well-described pattern of limited immune activity, or “immune privilege” in the brain

(Galea, Bechmann & Perry, 2007). As in previous studies of avian brain gene expression,

however, we did see some evidence of expression of the MHC Class I gene itself (Ekblom et

al., 2010; Balakrishnan et al., 2013).

Interestingly, genes annotated with the GO term “olfactory receptor activity” are well

represented in all three assemblies (where observed/expected were 165/150 in white-

throated sparrows, 165/156 in song sparrow, and 165/158 in Gambel’s white-crowned

sparrow, out of a total of 168 annotated genes). This was notable as a previous 454-based

whole brain transcriptome of another songbird did not detect any olfactory receptor
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Table 3 Functional description of transcriptome assemblies. Gene Ontology categories significantly
(A) over- and (B) under-represented in song (SOSP), white-crowned (WCSP) and white-throated
(WTSP) sparrows (observed/expected, FDR adjusted Fisher’s exact test, p < 0.05).

GO Category SOSP WCSP WTSP

A

cytoplasm 1810/1739 1793/1718 1751/1650

intracellular 1629/1575 1632/1555 1577/1494

mitochondrion 790/753 788/744 781/715

nucleic acid binding 935/903 935/892 900/857

nucleolus 244/231 243/229 241/220

protein binding 5298/5218 5258/5154 5037/4951

protein phosphorylation 558/539 558/532 542/511

transferase activity, transferring
phosphorous containing groups

538/519 538/513 522/493

B

cytokine activity 43/58 40/58 37/55

DNA integration 8/13 7/13 4/12

extracellular region 263/320 264/316 238/303

hormone activity 31/43 32/43 26/41

immune response 68/88 61/87 57/84

MHC Class I protein complex 3/8 2/7 2/7

genes at all (Balakrishnan et al., 2013). The detection of such genes here suggests that the

increased sequencing depth provided by the Illumina platform has aided in this regard.

Despite the generally tissue-restricted distribution of olfactory receptor expression, we

were able to pick up these genes in all of our tissue samples irrespective of the brain region

targeted. High depth RNA-sequencing data including those presented here will therefore

be useful for annotating these diverse olfactory receptor transcripts.

Thirteen other GO terms were significantly under-represented only in the white-

throated sparrow assembly (Table 4). These categories were relatively well-represented

in the other two sparrow assemblies (Table 4) and included “visual function”, “G-protein

coupled receptor activity”, and “neurotransmitter transport”. The white-throated sparrow

assembly differs from the others in several factors that could contribute to this difference

in gene composition, including tissue of origin (whole brain, versus auditory forebrain

or hypothalamus), physiological condition (spring migration, versus breeding season or

captive/wintering) and post-mortem tissue collection.

Transcriptome coverage of zebra finch gene models
We performed further analysis of read distribution and the relative abundance of different

transcripts in each of the source tissues, by mapping RNAseq reads back to the zebra finch

genome reference. For comparison we also included previously published RNAseq read

data from the zebra finch auditory forebrain (Balakrishnan et al., 2013). White-throated

sparrow reads mapped at a lower rate (average = 83% of reads mapped) than reads from

Gambel’s white-crowned sparrow (90%), song sparrow (94%) and zebra finch (93%).
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Table 4 Functional differences between post-mortem and fresh tissues. GO terms underrepresented in
post-mortem white-throated sparrow samples (observed/expected, adjusted p < 0.01), but not in song
sparrow and white-crowned sparrow (adjusted p > 0.05).

GO category WTSP WCSP SOSP

photoreceptor activity 3/12 10/13 9/13

protein-chromophore linkage 3/12 10/13 9/13

visual perception 7/18 16/19 15/19

response to stimulus 7/17 14/18 13/18

G-protein coupled receptor activity 345/381 391/397 389/402

G-protein coupled purinergic
nucleotide receptor activity

11/21 18/22 18/23

G-protein coupled purinergic
nucleotide receptor signaling pathway

11/21 18/22 18/23

transporter activity 136/157 153/164 157/166

receptor activity 497/532 552/554 551/561

G-protein coupled receptor signaling pathway 463/496 513/517 514/523

integral to membrane 1564/1617 1683/1687 1692/1704

neurotransmitter transport 16/24 23/25 21/25

Among the reads that did map to the genome, however, all of the species were similar in

showing a large proportion of reads (53.2 +/− 3.6%) mapping outside of currently defined

zebra finch genes, suggesting extensive transcription outside of known genes.

Based on this read mapping we were able to assess coverage of annotated genes. This was

important given our post-mortem sampling of white-throated sparrows. In highly degraded

samples we would expect to see a strong 3′ bias in gene coverage. RNA quality as measured

by RIN was only slightly lower in white-throated sparrow samples and thus, we found that

3′ bias was similar across all of our samples (Fig. 2). This finding further suggests that RNA

degradation may not be the primary factor associated with the lower assembly quality in

the white-throated sparrow assembly.

Cheviron, Carling & Brumfield (2011) documented the time course of RNA degradation

post-mortem, and also suggest that such samples can provide a useful source of RNA, even

though such specimens are often overlooked. Similarly, a recent RNA-sequencing study of

pinnipeds successfully used post-mortem samples (Hoffman et al., 2013). Although clearly

not an ideal strategy for studies aimed at quantifying gene expression, the use of recently

killed samples is viable strategy for initial transcriptome description, and in our study gave

access to a large portion of the transcriptome. This approach could be particularly useful

for rare species where collection of fresh specimens is impossible.

Impacts of ancestry, tissue of origin, and library preparation on
expression profile
We used clustering analysis to compare the broad structure of gene expression in

the different samples, recognizing that the samples differed in multiple dimensions

(i.e., species, sex, brain region, physiological condition, collection method, sequencing

method). If species or sex were the dominant factors driving the differences in gene
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Figure 2 Coverage of zebra finch gene models by RNA-seq reads. Gene model coverage across all
genes based on mapping of reads to the zebra finch genome. Samples collected post-mortem from
white-throated sparrow show a similar gene coverage profile to freshly collected samples. Zebra finch
data included fewer total reads, explaining the lower depth across genes.

Figure 3 Alternative expectations for expression profile clustering. Alternative expectations if (A)
phylogeny or sex (B) sequencing platform or library preparation protocols or (C) tissue of origin, were
the dominant factor underlying expression clustering. Only tissue of origin unites zebra finch and song
sparrow samples together as observed in the clustering analysis (Fig. 4).

expression patterns, one would expect to see a clustering pattern with zebra finch as the

most divergent profile (Fig. 3A). Similarly, if the sequencing facility and platform were

dominant technical factors one would expect to see either the zebra finch or the white

crowned-sparrow as most divergent (Fig. 3B). However, the zebra finch samples clustered

closely with the song sparrow samples taken from the same brain region (auditory
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Figure 4 Clustering of expression profiles from four songbird species. (A) Hierarchical clustering and
(B) Principal components analysis of expression profiles for six white-throated sparrow (WTSP), three
song sparrow (SOSP), three zebra finch (ZF) and one white-crowned sparrow libraries. Libraries derived
from auditory lobule (AL) tissue cluster (SOSP and ZF) to the exclusion of the others. White-throated
sparrow samples, taken from whole brain (rather than forebrain as the other samples are) show divergent
and variable profiles. Zebra Finch (ZF) samples collected in captivity and generated from pools of 10
individuals, show much reduced sample variability.
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forebrain), with the white throated sparrow samples from the whole brain clustering

together as most divergent, and the Gambel’s white-crowned sparrow samples from

hypothalamus in between (Figs. 3C and Fig. 4). This echoes previous findings that brain

region is a major determinant of gene expression pattern in songbirds (Replogle et al., 2008;

Drnevich et al., 2012). Both euclidean distance-based clustering and PCA also highlight the

fact that zebra finches, which were sacrificed in captivity and sequenced in pools of ten,

had much reduced variance in expression profile relative to our non-pooled, field-collected

white-throated sparrow and song sparrow samples (Fig. 4).

CONCLUSION
Transcriptome assemblies are a valuable resource, particularly for species without reference

genomes, providing access to a large proportion of the coding and noncoding expressed

genome. For taxa with genomes, or with genomes in progress, transcriptome data provides

empirical (as opposed to model based) information on transcript structures including

alternative isoforms that are not well-annotated in most species. We have presented here

neuro-transcriptomic data for three important model species for the study of social

behavior and neurobiology building on a growing body of such data (e.g., Balakrishnan

et al., 2013; Ekblom et al., 2014; MacManes & Lacey, 2012; Moghadam et al., 2013).
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