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ABSTRACT 

Phytoplankton form the base of most aquatic food webs, and their biomass and the 

composition of their communities directly impact upper trophic levels. Phytoplankton 

chlorophyll a concentrations in aquatic environments have been long used to estimate 

phytoplankton biomass, and the concentrations of accessory chlorophylls and carotenoids 

used to diagnose the taxa composing the phytoplankton community of an area. In this 

study, the photopigments present in water samples collected at eleven sites from October 

to December 2016 along the Tar-Pamlico River estuary were measured using high 

performance liquid chromatography (HPLC).  From the concentrations of these pigments, 

phytoplankton biomass and community composition was estimated along the spatial 

gradient of the freshwater end of the Tar-Pamlico River estuary to the mouth of the Tar-

Pamlico River.  Chlorophyll a concentrations were found to be significantly lower in 

upstream stations than downstream stations.  Concentrations of accessory pigments 

varied between stations and dates sampled, but no consistent trends were observed over 

time or space.  Changes in pigment concentrations were compared to environmental 

characteristics such as water temperature, salinity, and dissolved nutrient content to 

determine the magnitude of their influence on the phytoplankton community.  No strong 

correlations were observed between any combination of these factors and pigment 

concentrations of samples.
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INTRODUCTION 

Phytoplankton function as the primary producers for aquatic food webs, directly 

and indirectly influencing the energy and biomass available in aquatic systems.  

However, the way and the extent to which phytoplankton production affects the food web 

are dependent on the phytoplankton community structure (Cloern 2001).  Certain 

phytoplankton taxa are preferentially grazed on by zooplankton, suspension feeders, and 

deposit feeders, while the ungrazed phytoplankton taxa provides an input of energy for 

the aquatic microbial community (Baird and Ulanowicz 1989).  

The structure of phytoplankton communities has far broader impacts than simple 

trophic interactions, though.  Phytoplankton photosynthesis is partially responsible for the 

dissolved oxygen concentration in the water, which is required for fish and invertebrate 

survival (Los and Wisjman 2007).  Under particular environmental conditions, several 

taxa of phytoplankton reproduce at a rate much faster than the consumption by their 

grazers, causing blooms.  Microbial respiration from the decomposition of ungrazed 

phytoplankton blooms can cause anoxic bottom waters, choking out benthic communities 

(Cloern 2001; Kemp et al. 2005).  The increase in turbidity caused by phytoplankton 

blooms on the water surface can also limit seagrasses access to light, eventually killing 

them (Greening and Janicki 2006).  Additionally, certain phytoplankton taxa produce 

toxins that under high cell concentrations, like blooms, are responsible for fish kills 

(Glibert et al. 2005).  The number of phytoplankton blooms and subsequent anoxic 

conditions has increased lately worldwide and are responsible for more than 245,000 

square kilometers of coastal waters being effectively devoid of life, affecting more than 

400 aquatic systems (Diaz and Rosenburg 2008).   
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A diverse, changing phytoplankton community structure seems counterintuitive, 

according to ecological theory.  Phytoplankton have an apparently simple habitat 

consisting of little physical structure, and only two nutrients, nitrogen and phosphorus, 

usually limit their growth (Ryther et al. 1971).  How then can the structure of a 

phytoplankton community be so variable?  The answer lies in the complex physical 

processes that create a dynamic, rather than simple, habitat and drive the availability of 

resources for phytoplankton (Hutchinson 1961).  Spatially and temporally variable 

environmental conditions such as salinity, temperature, flow rates, and nutrient and light 

availability all directly affect phytoplankton community structure (Harding 1994).  In 

estuaries, the interfaces between rivers and the ocean, strong gradients are present in all 

of these environmental factors (Harding 1994).  Their interaction result in variable 

conditions for phytoplankton growth both spatially and temporally across estuaries 

(Harding 1994). 

Phytoplankton growth is primarily limited by nitrogen in marine systems and 

phosphorus in freshwater systems, but estuaries represent an unique environment where 

these two systems meet (Ryther et al. 1971).  In the Chesapeake Bay, the largest estuary 

in the United States, nutrient limitation varies seasonally, with phosphorus often limiting 

growth in the spring, and nitrogen during the summer (Malone et al. 1996).  In contrast, 

estuaries in North Carolina are typically nitrogen limited, with phosphorus occasionally 

co-limiting phytoplankton growth (Mallin 1994). 

The overall availability of both of these nutrients is dictated by the flow rate and 

discharge to the estuary, as riverine discharge is the primary input of nutrients into 

estuarine systems (Hall et al. 2013).  However, increased river flow simultaneously 
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provides nutrients to the phytoplankton community while flushing phytoplankton cells to 

the sea (Hall et al. 2013).  Consequently, maximum estuarine phytoplankton biomass has 

been found at moderate discharge rates, and the flushing time of estuaries have been 

shown to be an indicator of phytoplankton community composition, as different rates of 

flushing give certain taxa advantages over others (Hall et al. 2013).  The rainfall 

responsible for estuarine discharge rates is associated with a variety of other factors that 

can also cause changes to the phytoplankton community structure, though, such as wind 

mixing of the water column, cloud cover, and wind and wave driven resuspension of 

benthic sediments (Cloern and Dufford 2005).  These factors complicate the relationship 

between the phytoplankton community and estuarine discharge, making it nearly 

impossible to predict the phytoplankton community structure based on any sole variable.  

It is important that the effect of discharge rates on the phytoplankton community be 

understood, though, as predictions of increased storm frequency and subsequently 

increased discharge are a part of climate change (Goldenberg et al. 2001; Webster et al. 

2005). 

Since taxa of phytoplankton respond differently to these conditions of nutrient 

availability, light availability, temperature, salinity, estuarine discharge, etc., the 

environment plays a huge role in phytoplankton community structure.  Increased nutrient 

availability leads to increased phytoplankton biomass, which has subsequently been 

linked to alterations to phytoplankton community structure, species evenness, and species 

richness (Pickney et al. 1999; Tsirtsis and Karydis 1998).  

 Differing growth rates and abilities to take up nutrients results in certain taxa 

such as fast-growing, negatively buoyant diatoms flourishing in nutritious, well-mixed 
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waters; and slower-growing, motile dinoflagellates thriving when nutrients are less 

concentrated and the water column more stratified (Smayda 1997).  Salinity also impacts 

the structure of phytoplankton communities, with some species being more tolerant than 

others to highly saline waters (Quinlan and Philips 2007). 

The environmental conditions across North Carolina’s estuaries lend themselves 

to certain pervasive trends in their phytoplankton communities.  Diatoms tend to 

dominate North Carolina’s sounds, and up into the saline portion of its river estuaries 

(Mallin 1994).  Studies in the New River Estuary have found them to reach peak 

abundance in the spring and summer, rarely reaching the biomass of a full bloom 

(Pickney et al. 1998).  Dinoflagellates and cryptomonads most frequently bloom in the 

late winter to early spring, primarily following high-preciptation winters that enhance 

nitrogen loading to the estuaries (Mallin 1994; Pickney et al. 1999).  Dinoflagellates may 

also bloom in the fall when calm, sunny periods lead to stratification of the water column 

(Hall et al. 2008). 

Human development along watersheds is vastly changing the composition and 

function of estuarine phytoplankton communities, though (Vitousek et al. 1997).  Over 

half of the human population lives in the coastal zone, and our impact on estuarine 

systems is increasing as watersheds become more and more developed (Vitousek et al. 

1997).  The concentrations of estuarine nitrogen and phosphorus responsible for seasonal 

changes in phytoplankton communities are 6-50 and 18-180 times greater, respectively, 

than they were before human development (Conley 2000).  The combustion of fossil 

fuels, runoff of agricultural and commercial fertilizers, and industry waste all contribute 

to anthropogenic nutrient loading of estuaries (Galloway 2008).  This nutrient loading led 
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to a dramatic increase in phytoplankton biomass and harmful algal bloom frequency in 

the Mid-Atlantic from 1999 to 2007; an increase that is predicted to continue to worsen 

(Bricker et al. 2008). Land clearing around estuaries also impacts the phytoplankton 

community by changing the estuarine discharge rates that are so intimately linked to the 

phytoplankton community’s structure (Cooper and Brush 1993).  Analysis of sediments 

in the Chesapeake Bay showed a drastic increase in anoxic conditions, eutrophication, 

and sedimentation rates following the initial land clearing by European settlers (Cooper 

and Brush 1993). 

The phytoplankton community’s sensitivity to environmental conditions, as well 

as the effects it has on aquatic systems, make the community’s structure and overall 

abundance a good indicator of a system’s health (Paerl et al. 2010).  The National 

Oceanic and Atmospheric Administration and the U.S. Clean Water Act currently list 

phytoplankton community assessment as an indicator of ecosystems changes in estuaries 

(Garmendia et al. 2013; Bricker et al. 2008).  However, to use the phytoplankton 

community as an indicator of environmental change, baseline conditions must be 

established for how an average phytoplankton community is structured (Domingues et al. 

2008).  Establishing this baseline of community structure is an urgent task, as intense, 

rapid development of watersheds are quickly making it more difficult to gather accurate 

reference conditions (Domingues et al. 2008).  

Traditionally, light microscopy has been used to assess phytoplankton 

communities.  This technique is time consuming, though and accurate description of 

certain phytoplankton taxa requires significant experience (Pan et al. 2011).  A quicker, 

easier method is necessary to monitor a community rapidly changing in response to 
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anthropogenic nutrient inputs and altered river flows.  Analysis of photopigments has 

become the standard method for quickly assessing the phytoplankton community 

(Pickney et al. 1998).  Like terrestrial plants, nearly all phytoplankton use Chlorophyll a 

(Chl a) to capture the sun’s energy, therefore concentrations of Chl a can be used to 

estimate phytoplankton biomass (Behrenfield and Falowski 1997).  Additionally, 

phytoplankton use a variety of accessory photopigments to capture wavelengths of light 

outside of the range of Chl a (Gieskies and Kraay 1986).  Many of these accessory 

pigments are particular to specific taxa, and consequently certain photopigments are 

diagnostic of the functional groups that compose a phytoplankton community (Pickney et 

al. 1998; Mackey et al. 1996). 

Phytoplankton pigments can be measured in a variety of ways.  For example, 

satellite remote sensing of ocean color can be used to study large-scale spatial 

distributions in Chl a concentrations, and consequently variations in phytoplankton 

biomass (McClain 2009).  Satellites technology is limited by its ability to distinguish 

between individual accessory photopigments, though, and thus ocean color alone is not 

descriptive of the structure of phytoplankton communities (McClain 2009).  A better 

assessment of the structure of phytoplankton communities can be done using the 

chemical technique high-performance liquid chromatography (HPLC) (Gieskies and 

Kraay 1986).  HPLC can be used to separate, identify, and quantify the concentrations of 

pigments present in water samples (Mackety et al. 1996; Pickney et al. 1998). 

The goal of the study was to use HPLC to quantify the spatial and temporal 

variability in phytoplankton biomass (as a measure of Chl a) and community composition 

(as a measure of other pigments) in North Carolina’s Tar-Pamlico River estuary over the 
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fall of 2015, and attempt to relate environmental conditions these factors’ variability.  In 

doing this, we addressed the following questions: 1) Does the phytoplankton community 

vary spatially across the Tar-Pamlico River estuary?  2) Does the community vary 

temporally across the fall season?  3) What phytoplankton taxa are primarily responsible 

for this variability? 4) What, if any, environmental conditions seem to be driving this 

variability?  Similar studies in North Carolina’s New and Neuse River estuaries have 

found phytoplankton biomass to be largely related to nutrient loading, and community 

structure dependent on other factors, specifically temperature and river flow (Hall et al. 

2013; Peirls et al. 2012). 
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MATERIALS AND METHODS 

Study Site 

Originating from the fourth largest drainage area in North Carolina, the Tar-

Pamlico River drains a 15923 km2 river basin, a mixture of agriculture (29%), wetlands 

(23%) and forested areas (27%) (Keith 2014; NCDWQ 2014).  The river terminates at the 

2685 km2 Tar-Pamlico River estuary, which flows into the second largest estuarine 

system in the United States, the Pamlico Sound  (NCDWQ 2014; NCDENR 1991).  In 

1989, frequent algal bloom-related fish kills caused the Tar-Pamlico River Basin to be 

declared a Nutrient Sensitive Water (NSW), resulting in the implementation of a nutrient 

management strategy to reduce the total nitrogen in the system by 30%, and maintain 

total phosphorus concentrations at a baseline level (NCDWQ 2014).  Organic nitrogen 

input continues to rise in the likely nitrogen limited estuary, though, resulting in large 

areas of the estuary frequently exceeding the state’s 40 µg L-1 chl a concentration limit 

for NSWs (Piehler et al. 2004; Keith 2014).  Runoff from agriculture, confined animal 

feeding operations (CAFOs), and highly erodible soils are the likely sources of this 

excess nitrogen input (Keith 2014).  The Tar-Pamlico estuary also has a history of major 

hurricanes and tropical storms increasing the nitrogen and phosphorus loads in the 

system, due to the flooding and increased runoff associated with these events (Paerl et al. 

2001).   

Environmental Conditions 

Sampling was conducted at eleven sites ranging from freshwater to mesohaline in 

the Tar-Pamilco River estuary on October 12th, October 29th, November 15th, and 

December 13th, 2015 (Figure 1).  Vertical profiles of salinity, temperature, and dissolved 

oxygen were measured at each station using a YSI Pro2030 
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DO/Conductivity/Temperature meter (YSI, Yellow Springs, OH).  Surface water 

collected from each station was analyzed for nutrient content.  Dissolved Kjeldahl 

nitrogen (DKN), nitrate (NO3
-+ NO2

-, referred to as NO3), ammonium (NH4
+), and 

orthophosphate (PO4
3-) concentrations were determined colorometrically using a 

SmartChem 200 discreet analyzer (Westco Scientific Instruments Inc. 2008).  Total 

dissolved phosphate (TDP) concentrations were determined chemically by persulfate 

digestion (Ameel et al. 1993). Due to inclement weather, sites 1 and 1A were not sampled 

on October 12th or December 13th.  Due to physical constraints, temperature and salinity 

were not measured at site S.B.  Also, due to equipment malfunction only nutrient data 

was collected on December 13th. 
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 Figure 1. Map of study site on the Tar-Pamlico estuary. Sampling was conducted at 
eleven sites (labeled by pins) ranging from freshwater to mesohaline on October 12th, 
October 29th, November 15th, and December 13th, 2015. 
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Sample Collection and Photopigment Extraction 

Sampling was conducted at eleven sites ranging from freshwater to mesohaline in 

the Tar-Pamilco River on October 12th, October 29th, November 15th, and December 

13th, 2015 (Figure 1).  Surface water was collected at each of these stations for pigment 

analysis.  Due to inclement weather, sites 1 and 1A were not sampled on October 12th or 

December 13th, and due to time constraints site S.B. was not sampled on October 29th.  

To prevent photopigment degradation, water samples were stored in dark bottles, on ice 

during transport to the laboratory.  Aliquots of water (200-450 mL) from each station 

were filtered onto Whatman GF/F glass fiber filters under vacuum in reduced light 

conditions, and immediately frozen at -20° C.  Within 48 hours, these filters were then 

transferred to -80° C.  Frozen filters were sonicated in 100% HPLC grade acetone (3 

mL), pigments extracted in -20° C for 20-24 hours, and centrifuged.  The supernatant 

containing the extracted photopigments was filtered into amber glass autosampler vials, 

which reduced light degradation of pigments during transport to the HPLC system. 

Phytoplankton Photopigment Analysis 

200 µL of pigment extracted from each sample was injected into the Shimadzu 

HPLC system (HPLC; system controller model CBM-20A; solvent delivery module LC-

20AB) coupled with a UV/Vis photodiode array (PDA) spectrophotometric detector 

(PDA; Shimadzu model SPD-M20A; 200-800 nm; deuterium and tungsten lamps), using 

a non-linear 2-solvent gradient adapted from Van Heukelem et al. (1994).  This non-

linear, binary gradient was composed of Solvent A [80% methanol:20% ammonium 

acetate] and Solvent B [80% methanol:20% acetone].  The following series of C18 

reverse-phase columns, adapted from Pickney et al., were used to separate the pigment 

extract into individual pigments: one Varian Dynamax Microsorb guard column (0.46 x 
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1.5cm; 3µm packing), followed by one monomeric reverse-phase C18 column (Varian 

Microsorb-MV; 0.46 x 10cm; 3µm packing, 100 Angstoms), followed by two polymeric 

reverse-phase C18 columns (Vydac 201TP5; 0.46 x 25cm, 5 µm packing) (1999).  

Separated pigments were passed though the PDA, and the absorbance of the extract from 

380-700 nm was measured. 

Shimadzu’s EZStart software was used to collect and analyze HPLC data.  

Pigments were identified by retention times of peaks in the column, shape and signature 

of absorbance spectra, and visual matching of unknown peaks to those of known 

standards.  Known quantities of pure pigment standards (peridinin, fucoxanthin, 

alloxanthin, chlorophyll b, chlorophyll a, and pheophytin a) were processed by HPLC to 

obtain these pigments’ response factors.  These response factors were multiplied by the 

peak area of each pigment’s chromatogram to obtain the concentration of each pigment in 

the water sample (in µg L-1). 

Data Analysis 

Concentrations of pigments across stations were plotted for each month, and the 

resulting line graphs visually interpreted to determine when each pigment was most 

abundant.  The total pigment composition was also plotted across stations for each 

month, with each accessory pigment represented as its concentration’s percentage of the 

chlorophyll a concentration.  These graphs were visually interpreted to determine how the 

phytoplankton community changed across stations. 

All statistical tests were performed using PRIMER 6 & PERMANOVA+ 

software.  A Bray-Curtis dissimilarity matrix was used to generate the dissimilarities 

between photopigment compositions of samples.  These dissimilarities between samples 

were ranked, and these rankings used in multi-dimensional scaling (MDS) analysis.  
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Cluster analysis was used to determine the levels of similarity and dissimilarity present in 

the MDS.  An analysis of similarities (ANOSIM) was used to determine the strength and 

significance of differences in pigment concentrations between stations and between dates.  

To determine which pigment(s) had the greatest contribution to these differences, 

similarity percentage (SIMPER) analysis was used.  A BIOENV test was then used to 

determine which, if any, environmental conditions correlated to the similarities observed 

between stations’ pigment concentrations. 

Pigment extrapolation to algal taxa 

Observed pigments were matched with the algal taxa they represent based on 

previous work on phytoplankton photopigments (Table 1).  Chlorophyll a is found in 

nearly all photosynthetic algae, and is thus representative of phytoplankton biomass.  

Pheophytin a does not correspond with a particular algal taxa, but rather is a product of 

the degradation of chlorophyll a, and is representative of decomposing phytoplankton  

and phytoplankton detritus (Jeffrey et al. 2005).  Pigment concentrations were not 

extrapolated to represent exact abundances of particular phytoplankton taxa, but were 

rather used to suggest the presence of these taxa when discussing results. 
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Table 1. Phytoplankton taxa represented by pigments measured (Adapted from Paerl et 
al. 2003; Jeffery et al. 2005).  Filled squares indicate the pigment is used by the taxa. 
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RESULTS 

Spatial Distribution of Pigments 

Descriptive Analysis 

Chlorophyll a concentrations were lowest at the most upstream stations, S.B. and 

12, ranging from 0.27-1.29 µg L-1  at these two sites. On October 29, November 15, and 

December 13, chlorophyll a concentrations sharply rose moving downstream from 

stations S.B. and 12, peaking at stations 10 (Nov 15, 11.47 µg L-1 ), 8 (Oct 29, 16.72 µg 

L-1 ), and 7S (Dec 13, 16.74 µg L-1 )  (Figure 2).  Following this peak, chlorophyll a 

concentrations sharply decreased at the next station downstream, then gradually increased 

until site 1A, when concentrations began to decrease again (Figure 2).  On October 12, 

which had the lowest chlorophyll a concentrations of any date sampled, the 

concentrations gradually increased moving upstream to downstream. 

No peridinin was found in any water samples.  The concentrations of other 

accessory pigments varied between stations.  No consistent trends were seen in any 

pigment’s concentrations between stations, except a decline in all pigments at sites 12 

and S.B. (Figure 2). The highest fucoxanthin concentrations occurred at stations 3 and 5 

on Nov 15 (2.50, 1.95 µg L-1 ).  The highest alloxanthin concentration occurred at station 

7S on Dec 13 (2.16 µg L-1 ).  The highest zeaxanthin concentrations occurred at stations 

8 and 10 on Oct 29 (2.38, 1.85 µg L-1 ).  Chlorphyll b’s highest concentrations occurred 

at stations 7 and 8 on Dec 13 (1.21, 1.34 µg L-1 )  Pheophytin a concentrations were 

highly variable (Figure 2).  No pheophytin a was found in any samples taken on Dec 13.  

The highest concentrations of pheophytin a were at stations 8 and 10 on Oct 29 (0.99, 

1.04 µg L-1 ) 
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Figure 3 shows changes across stations in the concentrations of each accessory 

pigment in relationship to chlorophyll a concentrations.  The photopigment ‘community’ 

changed significantly between sites, but no trends were consistent across the months 

sampled.  Fucoxanthin, alloxanthin, and zeaxanthin were usually the most abundant 

accessory pigments at each station (Figure 3).  Which pigment was the most abundant 

varied greatly between stations, however none of these variations were consistent across 

the months sampled.  Pheophytin a was the most abundant pigment at stations 10, 12 and 

S.B. on November 15, and chlorophyll b was the most abundant at stations 7 and 8 on 

December 13 (Figure 3). 
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Figure 2. Changes in pigment concentrations across stations.  Colored lines 
indicate sampling dates; labels on graphs indicate pigments shown.  No consistent 
trends were seen in any pigment’s concentrations between stations, except a 
decline in all pigments at sites 12 and S.B.  Stations 1 and 1A were not sampled on 
October 12th or December 13th, and station S.B. was not sampled on October 29th.  

 

Legend: 
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Figure 3. Changes in pigment compositions across stations.  Pigments are shown as their 
percentage of the chlorophyll a concentration at each station.  Colored lines indicate pigments; 
labels on graphs indicate dates sampled.  Stations 1 and 1A were not sampled on October 12th or 
December 13th, and station S.B. was not sampled on October 29th.  The photopigment ‘community’ 
changed significantly between sites, but no trends were consistent across the months sampled.   
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Statistical Analysis 

Multi-dimensional scaling (MDS) of the dissimilarities between pigment samples 

showed certain clusters of sites did appear more and less similar then others.  

Specifically, most samples collected at stations 1-7S (downstream stations) showed 60% 

similarity to one another, and most samples collected at stations 12 and S.B. (upstream 

stations) showed 60% similarity to one another.  There was an 80% dissimilarity between 

these two groups (Figure 4).   

An analysis of similarities (ANOSIM) of the pigment compositions of the stations 

determined strong, significant differences were present between the pigment composition 

of station 12 and the pigment compositions of stations 3, 5, 6, 7, and 8 (R-values 1, 0.99, 

0.938, 0.958, 0.781; p=0.029) (Table 2).  Strong, nearly significant differences were also 

seen between the pigment composition of station 12 and those of stations 1 and 1A (R-

values 0.964, 1; p=0.067); and that of station S.B. and those of stations 3, 5, 6, 7, and 8 

(R-values 1, 1, 1, 1, 0.857; p=0.067) (Table 2).  Strong differences were seen between the 

pigment compositions of station S.B. and stations 1 and 1A, but these differences were 

insignificant, likely due to a small samples size at these stations (Table 2).  No strong 

differences (R>0.75) were seen between any other stations. 

SIMPER analysis determined differences in chlorophyll a concentrations 

accounted for 73-82% of the dissimilarities between the pigment compositions of station 

12 and stations 3, 5, 6, 7, and 8 (Table 3).  A visual representation of these differences 

can be seen in Figure 5.  Station S.B. also had noticeably lower chlorophyll a 

concentrations than stations 1-8 (Figure 5). 
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Figure 4. Multi-dimensional scaling (MDS) of pigment data, labeled by station number.  A 
Bray-Curtis dissimilarity matrix was used to compare photopigment compositions of 
samples.  From this, the similarities between samples were ranked, and these rankings used 
in the above MDS analysis.  In MDS, the stress value represents how well the analysis fits 
the data. The above chart is a sound representation of the similarity and dissimilarity 
between samples (stress<0.1). Samples are labeled by the station they were collected from.  
Solid, dashed, and dotted lines cluster samples by levels of similarity.   
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Table 2. Analysis of similarities (ANOSIM) of pigment concentrations between stations.  
R-statistic ranging from 1 to -1 indicates dissimilarity between samples.  Values 
approaching 1 indicate strong dissimilarity between samples.  Negative R-statistic 
indicates dissimilarities in pigments within stations are greater than the dissimilarity 
between stations.  P-values indicate level of significance.  Stations highlighted in yellow 
have strong, significant differences between photopigment compositions (R>0.75, 
p<0.05).  Stations highlighted in orange have strong, nearly significant differences 
between photopigment compositions (R>0.75, p>0.05).   
 
Stations R-Stat  % Sig. p-value 

 
Stations R-Stat  % Sig. p-value 

3, 5 -0.115 74.3 0.743 7, 8 0.021 34.3 0.343 
3, 6 -0.063 74.3 0.743 7, 10 0.167 14.3 0.143 
3, 7 0.25 8.6 0.086 7, 12 0.958 2.9 0.029 
3, 7S 0.177 8.6 0.086 7, S.B. 1 6.7 0.067 
3, 8 0.354 14.3 0.143 7, 1 -0.357 100 1 
3, 10 0.125 22.9 0.229 7, 1A 0.286 20 0.2 
3, 12 1 2.9 0.029 7S, 8 -0.104 71.4 0.714 
3, S.B. 1 6.7 0.067 7S, 10 -0.24 94.3 0.943 
3, 1 0.214 40 0.4 7S, 12 0.219 11.4 0.114 
3, 1A -0.25 93.3 0.933 7S, S.B. 0.036 46.7 0.467 
5, 6 -0.167 94.3 0.943 7S, 1 -0.321 100 1 
5, 7 -0.042 57.1 0.571 7S, 1A -0.214 80 0.8 
5, 7S 0.063 34.3 0.343 8, 10 -0.073 68.6 0.686 
5, 8 0.271 11.4 0.114 8, 12 0.781 2.9 0.029 
5, 10 0.104 20 0.2 8, S.B. 0.857 6.7 0.067 
5, 12 0.99 2.9 0.029 8, 1 -0.25 86.7 0.867 
5, S.B. 1 6.7 0.067 8, 1A 0.036 40 0.4 
5, 1 -0.25 86.7 0.867 10, 12 0.302 14.3 0.143 
5, 1A -0.25 93.3 0.933 10, S.B. 0.107 40 0.4 
6, 7 0.01 42.9 0.429 10, 1 -0.286 86.7 0.867 
6, 7S -0.042 48.6 0.486 10, 1A -0.321 100 1 
6, 8 -0.052 42.9 0.429 12, S.B. -0.286 80 0.8 
6, 10 -0.104 77.1 0.771 12, 1 0.964 6.7 0.067 
6, 12 0.938 2.9 0.029 12, 1A 1 6.7 0.067 
6, S.B. 1 6.7 0.067 S.B., 1 1 33.3 0.333 
6, 1 -0.357 93.3 0.933 S.B., 1A 1 33.3 0.333 
6, 1A -0.25 86.7 0.867 1, 1A 0.25 33.3 0.333 
7, 7S 0.063 25.7 0.257     
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Table 3. Similarity percentage (SIMPER) analysis of stations with significantly different 
pigment compositions (Table 2). Chlorophyll a (Chl a) concentrations contributed the 
most to the differences in pigment compositions between these stations (73-82%). 
 
Stations 3  &  12 

     Average dissimilarity = 88.91 
    

 
 Group 3 Group 12                                

Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.% 
Chl a 10.25 0.64 69.55 10.89 78.22 78.22 
Fuco 1.09 0.05 6.58 1.72 7.4 85.63 
Allo 0.6 0.02 4.37 3.46 4.91 90.54 

       Stations 5  &  12 
     Average dissimilarity = 86.63 

    
 

 Group 5 Group 12                                
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.% 
Chl a 8.11 0.64 63.42 8.36 73.21 73.21 
Fuco 1.02 0.05 7.75 2.73 8.95 82.16 
Allo 0.81 0.02 7.25 2.72 8.37 90.53 

       Stations 6  &  12 
     Average dissimilarity = 83.04 

    
 

 Group 6 Group 12                                
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.% 
Chl a 7.23 0.64 61.05 5.17 73.51 73.51 
Zea 0.6 0.01 6.83 1.72 8.22 81.74 
Allo 0.64 0.02 5.02 1.59 6.04 87.78 
Fuco 0.46 0.05 3.99 1.23 4.81 92.59 

       Stations 7  &  12 
     Average dissimilarity = 82.56 

    
 

 Group 7 Group 12                                
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.% 
Chl a 6.38 0.64 67.65 6.22 81.93 81.93 
Zea 0.5 0.01 4.64 1.08 5.62 87.56 
Chl b 0.39 0.01 3.45 0.88 4.17 91.73 

       Stations 8  &  12 
     Average dissimilarity = 78.66 

    
 

 Group 8 Group 12                                
Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.% 
Chl a 7.04 0.64 61.66 4.87 78.39 78.39 
Zea 0.83 0.01 5.71 1.2 7.26 85.65 
Chl b 0.4 0.01 4.89 0.85 6.22 91.87 
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Figure 5. Chlorophyll a concentrations across stations with strong differences between 
pigment compositions.  Bar color indicates date samples were taken.  Stations S.B. and station 
12 had noticeably lower chlorophyll a concentrations than stations 1-8. 
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Temporal Distribution of Pigments 

Descriptive Analysis 

Chlorophyll a concentrations were relatively stable across October 29, November 

15, and December 13 (avg. 7.51, 7.90, 6.47 µg L-1 ).  October 12, had much lower 

chlorophyll a concentrations than the three later dates (avg. 3.68 µg L-1 ) (Figure 6b).  

Fucoxanthin and zeaxanthin concentrations were higher on October 29 and 

November 15 than October 12 and December 13 (Fucoxanthin: avg. 0.70,0.74 vs. 

0.27,0.10 µg L-1 ; Zeaxanthin: avg. 0.76,0.53 vs. 0.16,0.39 µg L-1 ) (Figure 6a, 6b).  

Fucoxanthin was absent from stations 12 and S.B. on October 12, and from stations 7-

S.B. on December 13th.  Zeaxanthin was absent from stations 7, 7S, and 12 on October 

12; station 12 on October 29; and stations 10-S.B. on December 13.  

Alloxanthin and chlorophyll b concentrations generally increased across the dates 

sampled, from averages of 0.29 and 0.11 µg L-1 , respectively, on October 12, to 

averages of 0.63 and 0.42 µg L-1  on December 13 (Figure 6a, 6b).  Alloxanthin was 

absent from stations 7 and 12 on October 12, station S.B. on November 15, and stations 

8-S.B. on December 13.  Chlorophyll b was absent from stations 7, 7S, and 12 on 

October 12; stations 6, 7S, and 12 on October 29; and stations 10-S.B. on December 13. 

Pheophytin a was only consistently observed across stations on November 15, 

though it did peak at stations 3, 6, and 10 on October 12 and stations 5, 8, and 10 on 

October 29.  December 13 was the only date where no pheophytin a was observed. 
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Statistical Analysis 

Sample collection dates did not appear to be related to clusters formed by MDS of 

the dissimilarities between pigment samples (Figure 7).  ANOSIM analysis of pigment 

samples by date showed no differences between the pigment compositions of any dates 

(R<0.1) (Table 4).  
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Figure 6a. Changes in pigment compositions between sampling dates.  Bar colors 
represents sample stations. Fucoxanthin and zeaxanthin concentrations were highest on 
October 29 and November 15 (0.70, 0.74 µg L-1 ).  Alloxanthin concentrations generally 
increased across dates sampled. 
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Figure 6b. Changes in pigment compositions between sampling dates.  Bar colors 
represents sample stations. Chlorophyll b concentrations generally increased across dates 
sampled.  Chlorophyll a concentrations were relatively stable across October 29, 
November 15, and December 13. October 12 had much lower chlorophyll a 
concentrations.  Pheophytin a was only consistently observed across stations on November 
15, and was not found on December 13. 
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Figure 7. Multi-dimensional scaling (MDS) of pigment data, labeled by date sampled.  A 
Bray-Curtis dissimilarity matrix was used to compare photopigment compositions of 
samples.  From this, the similarities between samples were ranked, and these rankings 
used in the above MDS analysis.  In MDS, the stress value represents how well the 
analysis fits the data. The above chart is a sound representation of the similarity and 
dissimilarity between samples (stress<0.1). Samples are labeled by the dates they were 
collected.  Solid, dashed, and dotted lines cluster samples by levels of similarity.   
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Table 4. Analysis of similarities (ANOSIM) of pigment concentrations between dates.  
R-statistic ranging from 1 to -1 indicates dissimilarity between samples.  Values 
approaching 1 indicate strong dissimilarity between samples.  Negative R-statistic 
indicates dissimilarities in pigments within stations are greater than the dissimilarity 
between stations.  P-values indicate level of significance.  No strong, nor significant 
differences were observed between any dates sampled. 
 

Sample Dates R-Stat % Sig. p-value 
10/12/2015, 10/29/2015 0.068 14.8 0.148 
10/12/2015, 11/15/2015 0.064 11.9 0.119 
10/12/2015, 12/13/2015 0.064 16.9 0.169 
10/29/2015, 11/15/2015 -0.045 78.3 0.783 
10/29/2015, 12/13/2015 -0.003 36.9 0.369 
11/15/2015, 12/13/2015 0.008 33.7 0.337 
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Environmental Condition Changes 

Descriptive Analysis  

Nutrient concentrations differed between stations.  Nitrate, orthophosphate, and 

total dissolved phosphate concentrations generally decreased moving downstream, 

whereas trends in ammonia and dissolved Kjedahl nitrogen concentrations differed from 

month to month (Table 5).  Ammonia, orthophosphate, and total dissolved phosphate 

concentrations were especially high at station six on October 12, November 15, and 

December 13. 

Surface water temperature and dissolved oxygen remained mostly steady moving 

downstream.  Surface water was considerably cooler on November 15 (15.6 C) than it 

was on October 12 (19.9 C) or October 29.(19.3 C) (Figure 8).  The salinity of surface 

water generally increased moving downstream, and was highest on October 29 (Figure 

8). 

On October 29, November 15, and December 13, temperature, salinity, and 

dissolved oxygen generally differed little across the water column.  On October 12, 

however, water temperature and salinity increased with depth, indicating there was likely 

a salt wedge in the estuary (Figure 9). This difference between surface and bottom waters 

was especially great upstream of station three, with the exception of the shallowest 

station, station six (depth: 1.5m).  Hypoxic bottom waters (D.O.< 3.0ppm) were also 

present upstream of station seven (Figure 9).  
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Table 5. Nutrient concentrations of water samples.  Higher concentrations of nutrients 
are represented by darker colors.  Nutrients concentrations varied between sites and 
months, with few consistent trends.  Nitrate (NO3+NO2) and total dissolved phosphate  
(TDP) concentrations generally decreased moving downstream.  TDP and orthophosphate 
(PO4) concentrations were especially high at station six. 
  NH4 (µM) 

 
PO4 (µM) 

S.B. 2.940 3.009 0.969 2.100 
 

1.286 2.054 1.076 1.006 
12 6.048 8.431 2.093 3.239 

 
1.153 0.516 1.230 0.908 

10 14.224 2.639 4.247 2.589 
 

1.310 0.436 1.355 0.971 
8 8.887 3.294 3.115 1.487 

 
1.412 0.443 1.069 0.918 

7 8.146 5.392 2.735 0.851 
 

1.317 0.464 1.090 0.859 
7S 11.177 2.014 2.618 0.851 

 
1.317 0.702 0.859 0.540 

6 12.743 8.578 32.401 8.525 
 

2.866 0.979 11.038 7.498 
5 9.673 6.117 0.851 0.851 

 
1.163 0.750 0.358 0.337 

3 4.513 1.544 0.851 0.851 
 

0.996 0.365 0.372 0.302 
1A   4.883 1.501   

 
  0.412 0.365   

1   3.742 1.027   
 

  0.344 0.418   
  Oct 12 Oct 29 Nov 15 Dec 13   Oct 12 Oct 29 Nov 15 Dec 13 
  NO3+NO2 (µM) 

 
TPD (µM) 

S.B. 23.949 69.132 11.198 40.143 
 

2.983 3.889 3.285 2.878 
12 14.823 24.552 12.765 31.300 

 
2.541 2.077 3.347 2.694 

10 9.516 2.194 14.305 27.475 
 

2.152 1.171 3.254 2.348 
8 11.789 0.396 11.919 31.609 

 
2.414 1.156 2.018 2.317 

7 8.600 0.002 9.763 25.603 
 

2.114 1.051 1.694 2.402 
7S 8.833 0.400 13.936 17.912 

 
2.002 1.455 1.555 1.094 

6 10.103 0.615 17.176 19.864 
 

3.313 1.658 10.499 7.915 
5 7.394 0.089 3.117 13.846 

 
1.837 1.366 0.883 1.287 

3 5.984 0.002 2.095 4.497 
 

1.650 0.931 1.006 0.771 
1A   0.255 1.448   

 
  0.999 0.976   

1   0.002 0.006   
 

  0.916 0.960   
  Oct 12 Oct 29 Nov 15 Dec 13   Oct 12 Oct 29 Nov 15 Dec 13 
  DKN (µM) 

     S.B. 43.691 20.547 56.788 29.635 
     12 56.961 62.321 56.216 33.496 
     10 68.763 82.436 56.089 31.008 
     8 63.433 81.814 34.263 30.193 
     7 58.566 90.612 27.249 33.797 
     7S 72.135 82.382 40.938 33.539 
     6 80.429 92.453 65.815 41.669 
     5 82.767 94.024 26.189 32.317 
     3 82.332 89.205 58.144 39.545 
     1A   102.308 78.508   
     1   100.359 60.835   
       Oct 12 Oct 29 Nov 15 Dec 13 
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Figure 8.  Changes in surface water temperature, salinity, and dissolved 
oxygen (D.O.) across stations and dates sampled.  Colored lines represent 
months sampled.  Temperature remained steady across stations, but decreased 
between months sampled.  Salinity increased moving downstream, and was 
highest on October 29.  D.O. remained steady across stations and dates 
sampled. 

Legend: 
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Figure 9.  Changes in surface (blue bar) and bottom (red bar) water temperature, 
salinity, and dissolved oxygen (D.O.) across stations on October 12.  Temperature and 
salinity differences between surface and bottom water indicates stratification of the 
water column, and likely a salt wedge in the estuary.  This was not observed at station 
six, which was the shallowest station (1.5m).  Hypoxic bottom waters were also present 
further upstream in the estuary.  

Legend: 
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Statistical Relationship to Pigment Changes 

BIOENV analysis showed no strong correlation between the pigment 

compositions of samples and the chemical or physical water quality of the stations they 

were sampled from (Tables 6 & 7).  Because temperature, salinity, and dissolved oxygen 

were not measured on December 13, these factors were analyzed separately from water 

nutrients, which were collected across all dates and stations except S.B.  Of the nutrients 

measured for, total dissolved phosphate had the strongest relationship with pigment 

concentrations, but the correlation between these factors was weak (pw=0.224).  Overall a 

combination of depth, bottom temperature, difference in surface and bottom temperature, 

and surface dissolved oxygen had the strongest correlation with pigment concentrations, 

though this correlation was also relatively weak (pw=0.293).  Because these correlations 

were weak, they were not tested for statistical significance. 
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Table 6. BIOENV analysis of the relationship between the pigment compositions of 
samples and the water chemistry of the stations where they were sampled.  Factors 
analyzed are shown.  Total dissolved phosphorus (TDP) had the highest correlation to 
pigment concentrations  (pw=0.224).  All correlations observed were relatively weak 
(pw<0.225). 
 

BIOENV Results, Spearman correlation   
# Variables Variables Spearman Correlation (pw) 

 
Variables 

1 5 0.224 
 

1 NH4 
2 4,5 0.213 

 
2 NO3+NO2 

1 2 0.190 
 

3 DKN 
2 2,5 0.186 

 
4 PO4 

2 2,4 0.182 
 

5 TDP 
3 2,4,5 0.180 

  3 1,2,5 0.157 
  2 1,2 0.156 
  4 1,2,4,5 0.156 
  3 1,2,4 0.154 
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Table 7.  BIOENV analysis of the relationship between the pigment compositions of 
samples and the physical water quality of the stations where they were sampled.  Factors 
analyzed are shown.  A combination of station depth, bottom temperature, difference in 
temperature, and surface dissolved oxygen (D.O.) had the highest correlation to pigment 
concentrations (pw=0.293).  All correlations observed were relatively weak (pw<0.3). 
 
BIOENV Results, Spearman correlation   
# 
Variables Variables Spearman Correlation (pw) 

 
Variables 

4 1,3,4,8 0.293 
 

1 Depth 
3 1,3,8 0.287 

 
2 Surface temp 

4 1,2,4,8 0.285 
 

3 Bottom temp 
3 1,2,8 0.279 

 
4 Temp difference 

5 1,2,3,4,8 0.266 
 

5 Surface salinity 
5 1,3,4,8,10 0.265 

 
6 Bottom salinity 

3 2,4,8 0.263 
 

7 Salinity difference 
4 1,2,3,8 0.262 

 
8 Surface D.O. 

2 8,9 0.262 
 

9 Bottom D.O. 
4 1,3,8,10 0.262   10 D.O. Difference 
 



 43 

DISCUSSION 

The goal of this study was to use quantify the spatial and temporal variability in 

phytoplankton biomass (as a measure of Chl a) and community composition (as a 

measure of other pigments) in North Carolina’s Tar-Pamlico River estuary over the fall 

of 2015 using HPLC.   I also attempted to relate environmental conditions these factors’ 

variability.  

Our results indicate that there is spatial variation in the concentrations of 

photopigments, specifically chlorophyll a.  A decrease in phytoplankton biomass at the 

most upstream stations, S.B. and 12, was consistently observed across the four dates 

sampled.  Phytoplankton biomass also peaked at a different mid-estuary station on each 

sampling date, indicating a local chlorophyll maximum may occur between stations 7S 

and 10.  Often times, areas of estuaries consistently have high levels of chlorophyll a, and 

studies have found such areas to exist in the nearby Neuse River Estuary (Kimmel et al. 

2015).  

The concentrations of accessory pigments varied greatly across stations, but no 

changes in concentrations occurred consistently across the sample dates.  The most 

notable result was a complete lack of peridinin in water samples, indicating either 

complete absence or extremely low abundances of dinoflagellates in the estuary on the 

dates sampled.  Dinoflagellates tend to bloom in the late winter or early spring, so it is 

not completely surprising that they were not seen (Mallin 1994; Pickney et al. 1999).  

Fucoxanthin, alloxanthin, and zeaxanthin were the most abundant accessory pigments 

overall, but which was the most abundant at a particular station varied greatly.  This 

suggests that crysophytes, cryptomonads, cyanobacteria, diatoms, prymnesiophytes, and 

raphidophytes were the most abundant phytoplankton across samples, but the actual 
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abundance of these taxa were impossible to quantify from the data collected.  All 

pigments were completely absent from at least one sample over the study, evidencing that 

the success of phytoplankton taxa is patchy across the estuary. 

Temporal variation in the phytoplankton community was also observed, though it 

was also largely random.  The average phytoplankton biomass across stations was similar 

on the last three dates sampled, but was considerably lower on October 12.  This is 

possibly due to the weather, as it was raining on this day and phytoplankton may have 

been lower in the water column.   

Though pigment concentrations at individual sites varied greatly from month to 

month, the average concentrations of pigments across the estuary may evidence that 

particular taxa of phytoplankton were more abundant at certain times of the study.  

Fucoxanthin and zeaxanthin concentrations were highest on October 29 and November 

15, indicating that chrysophtyes, cyanobacteria, diatoms, prymnesiophytes, and 

radiophytes may have been more successful on these dates.  Alloxanthin and chlorophyll 

b concentrations increased across the dates sampled, indicating that chlorophytes, 

cryptophytes, and prasinophytes may be more successful in the estuary in the late winter.  

No statistical differences were seen in pigment concentrations across dates, though, so 

this is just speculation.  Diatoms, which dominate the phytoplankton community in many 

of North Carolina’s sounds and estuaries, peak in abundance in the spring and summer, 

so a repeat of this study from March-August would likely show a large increase in 

fucoxanthin (Mallin 1994; Pickney et al. 1998).  Interestingly, December 13 was the only 

sampling date where no pheophytin a was observed.  As mentioned, phytoplankton 

biomass on this date was similar to that on October 29 and November 15, but absence of 



 45 

pheophytin a indicates that very little of this biomass was degrading.  This could possibly 

be due to an increase in zooplankton grazing or a decrease in the flushing time of the 

estuary on December 13, both of which would result in phytoplankton biomass being 

removed from the estuary before it could degrade.  Further experimentation would be 

needed to substantiate these hypotheses. 

Though trends were apparent in physical and chemical water quality across 

stations and dates sampled, no combination of the factors measured showed a strong 

correlation to differences in pigment concentrations between samples.  Because of 

instrument malfunction on December 13, water salinity, temperature, and dissolved 

oxygen concentrations had to be analyzed separately from nutrient concentrations, 

though.  As a result, certain combinations of environmental factors could not be tested.   

Future studies should also sample the pigment concentrations of both surface and 

bottom waters.  Though YSI measurements evidenced the water column was well-mixed 

on the last three dates sampled, on October 12 a definite halocline was present.  A salt 

wedge seemed to extend from stations 5 to S.B. that stratified the water column, and it is 

likely that the phytoplankton communities differed above and below this salt wedge.  In 

addition to being more saline, bottom waters were hypoxic at the four most upstream 

stations on October 12.  Hypoxic bottom waters are frequently associated with microbial 

decomposition of algal blooms, therefore it is possible a bloom occurred at some point 

prior to the first sampling. 

Overall, this study provides only a snapshot, or rather four snapshots, of the 

phytoplankton community in the Tar-Pamlico River estuary.  Phytoplankton can grow 

rapidly in response to changing environmental conditions, and it is possible that the 
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sampling regime of this study missed changes in the phytoplankton community.  To paint 

a more detailed picture of community changes, more intensive sampling is recommended 

for future studies.  The stations sampled were also irregularly spaced along both the 

length and width of the estuary.  To more accurately determine how the phytoplankton 

community changes spatially across the estuary, future sampling stations should be 

selected more systematically.  Lastly, river flow and estuarine discharge were not 

measured in this experiment.  Prior studies in nearby estuaries have shown phytoplankton 

biomass and community structure to be largely dependent on these factors, as they are 

responsible for nutrient loading into estuaries and flushing of phytoplankton from 

estuaries (Hall et al. 2013; Peirls et al. 2012).  In the future, these factors should be 

measured, and their relation to the Tar-Pamlico River estuary phytoplankton community 

assessed. 
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