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22q11.2 deletion syndrome is the most common genetic cause of velopharyngeal 

dysfunction. Studies examining 22q11.2 deletion syndrome have thus far primarily focused on 

variations in the bony framework. Limited information exists regarding the velopharyngeal 

muscle variations for this clinically challenging population. However, with advances in MRI, 

muscle and soft tissue imaging is possible. A series of experiments were thus designed to explore 

and validate the use of our research methodology on normal control participants and a single 

participant with 22q11.2 deletion syndrome, before initiating the study on a larger sample of 

children with 22q11.2 deletion syndrome. The overarching aims of this investigation were to 

examine craniofacial and velopharyngeal characteristics among children with 22q11.2 deletion 

syndrome and to determine whether craniofacial measures can predict velopharyngeal structure 

and muscle configurations in this population. This investigation represents the first large scale 

attempt to image children with 22q11.2 DS without sedation. 

The aim of Study I was to validate the use of a supine MRI scanner over an upright 

scanner to obtain data of interest. Study II was focused on the application of a child-friendly 

MRI protocol to ensure data collection on young pediatric participants without the use of 



sedation. The aim of Study III was to translate our child-friendly MRI scanning protocol to a 

clinical population and assess feasibility in a single participant with 22q11.2 deletion syndrome. 

Study IV assessed craniofacial and velopharyngeal characteristics among children with 22q11.2 

deletion syndrome using the imaging protocol detailed in studies one, two, and three.  

Results from this study suggest that children with 22q11.2 deletion syndrome have 

several craniofacial and velopharyngeal characteristics that are significantly different compared 

to children with normal velopharyngeal anatomy. This investigation describes a safe and 

effective method to obtain MRI data in a clinically complex population without the use of 

sedation. Individuals with 22q11.2 deletion syndrome present with unique velopharyngeal 

muscle variations that may contribute to the high rate of velopharyngeal dysfunction associated 

with this syndrome.   
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CHAPTER 1 

INTRODUCTION 

22q11.2 deletion syndrome (22q11.2 DS) is the most common genetic cause of 

velopharyngeal dysfunction and is the second most common multiple anomaly syndrome, with a 

population prevalence of 1:2000 people (Shprintzen, 2008). A comprehensive of the literature 

related to cranial base, platybasia, pharyngeal dimensions, cervical spine, oral cavity, velar, and 

speech characteristics in individuals with 22q11.2 DS syndrome will be reviewed in Chapter II.  

Studies examining 22q11.2 DS have thus far primarily focused on variations in the bony 

framework. With advances in MRI, muscle and soft tissue imaging is possible. Only one MRI 

investigation has been conducted to assess the internal musculature of the velopharyngeal 

mechanism in children with 22q11.2 DS (Park, Ahn, Jeong, & Baek, 2015). Limitations of this 

study include the inclusion of only two variables (muscle thickness and symmetry) and the use of 

a comparison cohort that included only children with submucous cleft palate.  

Limited information exists regarding the velopharyngeal muscle variations for this 

clinically challenging population. It is likely that these structural variations are evident and 

contribute to differences in functional aspects such as speech and resonance characteristics in 

these individuals. In order to understand these functional differences, variations or predisposing 

features of the structural characteristics must be examined further. Specifically, there are no data 

on how muscle form affects function in individuals with 22q11.2 DS. Magnetic resonance 

imaging studies in children are limited. There are no studies that have demonstrated the use of 

MRI in the 22q11.2 DS population without the use of sedation. Given the known risks associated 

with sedation (Halliday & Kelleher, 2013), the experiments below demonstrate a means to 

overcome this critical barrier.
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A series of experiments were thus designed to explore and validate the use of our 

research methodology on normal controls and a single subject with 22q11.2 DS, before initiating 

the study on a larger 22q11.2 DS population. The series of investigations are further described 

below in more detail: 

 

Study I: Does gravity influence the velopharyngeal structures in children during speech?  

Kollara, L., & Perry, J. L. (2014). Effects of gravity on the velopharyngeal structures in children 

using upright magnetic resonance imaging. Cleft Palate-Craniofacial Journal, 51(6), 669-676.  

Speech is typically produced in the upright position. Magnetic resonance imaging data 

are traditionally obtained in the supine position, yet information obtained from these studies is 

applied to an upright position activity such as speech. This study aimed to compare the 

velopharyngeal mechanism in the upright and supine positions in 12 children between 4- 8 years 

of age, during rest and sustained speech production. Specifically, we examined the hypothesis 

that gravity has an effect on velopharyngeal structures during rest and sustained speech 

production. Results indicated gravity had a non-significant effect on the velopharyngeal 

structures of interest and that supine imaging data could be translated to an upright activity such 

as speech. This study represents the first investigation of the influence of gravity on 

velopharyngeal structures among the child population. As a result of this study, we determined 

that velopharyngeal data obtained in the supine position, such as from MRI, could be used to 

relate to speech events that occur in the upright position. A child-friendly MRI scanning protocol 

was also created as part of Study I. This protocol demonstrated a 100% success rate for imaging 

children as young as four years, without the use of sedation. The child-friendly adaptations 
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included letting the participants listen to the sounds of the MRI scanner by listening to audio 

samples of MRI noise played on an iPad and encouraging them to watch the participant being 

imaged before them. The participants were allowed to explore the MRI machine before their 

exams and an adult (parent/investigator) was present in the scanning room for the entire duration 

of the scan. The investigator communicated with the participants throughout the exam and 

frequently inquired about their comfort level.  During the study, the participants listened to music 

through headphones to increase patient comfort and minimize distraction and were also given a 

panic button. Foam cushion were placed on either sides of the participants’ head within the head 

coil and the participants wrapped their hands around a pillow to minimize motion artifacts. This 

behavioral imaging protocol has since been adopted for other imaging studies.  

 

Study II: Does race and sex affect velopharyngeal and craniometric morphology in children?   

Kollara, L., Perry, J. L., & Hudson, S. (2016). Racial variations in velopharyngeal and 

craniometric morphology in children: An imaging study. Journal of Speech, Language, and 

Hearing Research, 59(1), 27-38.  

Race and sex has been found to have a significant effect on velar length and thickness in 

the adult population (Perry, Kuehn, Sutton, Gamage, & Fang, 2014). To investigate the 

possibility of these findings being present in the child population, 32 children with normal 

velopharyngeal anatomy across two racial groups including Black and White were imaged using 

MRI. The child-friendly MRI scanning protocol (Kollara & Perry, 2014) was successfully 

implemented for this study and enabled 100% success rate in collecting data for the variables of 

interest for a larger sample size (32 children). No significant sex effects were noted for the 

variables of interest. However, a significant racial difference was observed for velar thickness, 
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velar length, and velopharyngeal ratio. As a result of this study, we determined that future studies 

examining velar variables would need to be controlled for race. Additionally, we determined we 

do not need to control for sex for studies using the same variables and age range. Results also 

indicated the anterior cranial base angle to be the most common craniometric predictor for 

muscle prediction models. This served as a preliminary indicator of the potential in utilizing 

craniometric markers in assessing muscle physiology for clinical populations that present with 

abnormal cranial base angles such individuals with 22q11.2 DS.  

 

Study III: Is our non-sedated MRI protocol appropriate for individuals with 22q11.2 DS and 

what insights can be obtained?  

Kollara, L., Schenck, G. C., Perry, J. L., & Jaskolka, M. (2016). Examining A New Method to 

Studying Velopharyngeal Structures in A Child with 22q11.2 DS. Manuscript accepted with 

minor revisions for publication. 

To our knowledge, no studies to date have used MRI to scan children with 22q11.2 DS 

without the use of sedation. This investigation was conducted to determine the feasibility of our 

proposed MRI methods in a single subject of our targeted clinical population. This study was 

also used to examine qualitatively the muscle variations typical for this population and to provide 

further support for our study hypotheses. Magnetic resonance imaging data on the 

velopharyngeal structures of interest was successfully obtained for the participant using our 

child-friendly MRI protocol (Kollara & Perry, 2014). Preliminary findings revealed a small, U-

shaped levator muscle arrangement. The muscle appears thin compared to age- and sex-matched 

controls (Perry et al., 2014). The velum appeared thin and short and increased pharyngeal depth 

was also noted. It was thus determined that children with 22q11.2 DS could be imaged using 
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MRI without the use of sedation and that our research protocol could be tested on a larger subject 

group.  

 

Study IV: Do variations exist in craniofacial and velopharyngeal structures among children 

with 22q11.2 DS? 

Information about the internal velar musculature among individuals with 22q11.2 DS is 

limited. There are no published findings on the levator physiology for these individuals, in 

comparison to an age-matched normative cohort.  The purpose of this study is to investigate the 

structural characteristics of craniofacial and velopharyngeal anatomy among children with 

22q11.2 DS, in comparison to age-matched, non-syndromic children with normal velopharyngeal 

anatomy. We will apply our previously described child-friendly MRI protocol (Kollara & Perry, 

2014) to image children with 22q11.2 DS without the use of sedation. The following hypotheses 

were developed from the investigations detailed above: 

Hypothesis 1: Individuals with 22q11.2 DS will demonstrate an obtuse anterior cranial base 

angle, a short, thin velum and a thin, hypoplastic levator muscle compared to age-matched 

controls.  

Hypothesis 2: Craniometric variables related to velopharyngeal depth (cranial base and 

pharyngeal bony depth) will be correlated to muscle dysmorphology (thickness and length). 
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CHAPTER 2 

LITERATURE REVIEW 

 

History of 22q11.2 DS 

A syndrome is defined as the presentation of multiple anomalies in an individual wherein 

all of those anomalies have the same etiology (Shprintzen & Golding-Kushner, 2008). 

Microdeletion refers to a type of submicroscopic DNA rearrangement where there is deletion of 

DNA across more than one gene (Shprintzen & Golding-Kushner, 2008). 22q11.2 deletion 

syndrome (22q11.2 DS) is the most common genetic cause of velopharyngeal dysfunction and is 

the second most common multiple anomaly syndrome, with a population prevalence of 1:2000 

people (Shprintzen, 2008). The chromosome microdeletion occurs on the shorter branch of 

chromosome 22 at band q11.2, resulting in a genetic deficiency of approximately 40 genes 

(Shprintzen, 2008). This syndrome perhaps has the most expansive phenotype of any multiple 

anomaly syndromes with over 180 clinical features, where no presentation is the same 

(Shprintzen, 2008). Speech and language impairment, congenital heart issues, developmental 

delay, and psychiatric disorders occur in these individuals at much higher rates compared to the 

general population (Shprintzen & Golding-Kushner, 2008). 

 

General Overview of Characteristics 

The term velo-cardio-facial syndrome (VCFS) was first reported in a paper that described 

similar patterns of malformation in 12 individuals (Shprintzen et al., 1978). The observed 

features included palatal (velo for velum) and heart (cardio) anomalies, and a characteristic facial 

appearance (facial). In 1992, it was determined that VCFS was a microdeletion syndrome caused 
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by a deletion on chromosome 22. Severe hypernasality and congenital heart disease were the 

initial symptoms that called attention to 22q11.2 DS (Shprintzen & Golding-Kushner, 2008).  

To date, 190 distinct patterns of anomalies have been reported in individuals with 22q11.2 DS. 

These include craniofacial, ocular, ear, dental, neurologic, genitourinary, skeletal, vascular, 

muscle, glandular, heart, limb, internal organ, and genitourinary anomalies (Shprintzen & 

Golding-Kushner, 2008). The following craniofacial malformations are reported to occur in 

connection in 22q11.2 DS (Shprintzen & Golding-Kushner, 2008): 

1. Platybasia 

2. Palatal anomalies (overt cleft palate, submucous cleft palate, occult submucous cleft 

palate, deficient muscle, and asymmetric palate) 

3. Cleft lip 

4. Asymmetric pharynx  

5. Retrognathia  

6. Asymmetric crying facies (infancy) 

7. Functional facial asymmetry 

8. Structural facial asymmetry  

9. Straight facial profile  

10. Hypotonic facies 

11. Vertical maxillary excess 

12. Small primary teeth 

13. Enamel hypoplasia (primary dentition) 

14. Downturned oral commissures  

15. Microstomia  
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16. Microcephaly  

17. Small posterior cranial fossa  

 

A comprehensive literature review of only pertinent craniofacial and velopharyngeal 

anomalies will be included in this review. Specifically, this review will cover features including 

platybasia, cranial base, pharyngeal dimensions, cervical spine, oral cavity, velar, and speech 

characteristics among this population.  

Craniofacial Features  

Studies have investigated variations in cranial base length, cranial base angles, facial 

dimensions, facial orientation, maxilla, mandible, cervical spine, pharyngeal dimensions, and 

hard palate lengths in individuals with 22q11.2 DS.  

Platybasia  

Platybasia is described as an abnormal flattening of the skull base. The human cranium 

has a flexion along the skull base that differentiates its anterior and posterior aspects. The 

anterior portion supports the facial bones and the posterior portion contains the posterior part of 

the brain and the spinal cord. The angulation of the skull base is measured as the angle from the 

nasion to the sella turcica to the basion. This angle is typically 128° with a standard deviation of 

approximately 4° (Shprintzen & Golding-Kushner, 2008). An abnormal obtuse angulation of the 

skull base results in a condition called platybasia. A more acute angulation of the skull base 

results in kyphosis. Platybasia results in deepening of the velopharyngeal port which may result 

in velopharyngeal dysfunction (Arvystas & Shprintzen, 1984).  

Variable findings have been reported regarding the presence of platybasia in subjects 

with 22q11.2 DS. Studies have reported this subject group to have a confirmed diagnosis of 

platybasia utilizing diagnostic methods such as lateral cephalometry and magnetic resonance 
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imaging (MRI) (Arvystas & Shprintzen, 1984; Heliovaara & Hurmerinta, 2006; Ruotolo et al., 

2006). Other studies have indicated a trend toward platybasia, but not statistically significant, 

utilizing diagnostic methods such as lateral cephalometry and computed tomography (Dalben 

Gda, Richieri-Costa, & Taveira, 2010; Glander & Cisneros, 1992; Wang et al., 2009). Studies 

have also reported the non-existence of platybasia in these subjects (Veerapandiyan et al., 2011).  

 The relationship between cranial base angles and speech resonance in 24 individuals with 

22q11.2 DS was assessed utilizing retrospective chart reviews (Spruijt, Kon, & Mink van der 

Molen, 2014). Groups of patients with hypernasal speech were found to have a trend toward 

more obtuse cranial base angles. However, no significant relationship was determined between 

resonance ratings and cranial base angles. The clinical significance of platybasia is still 

unknown.  

The prevalence of platybasia in patients with 22q11.2 DS between three and 40 years of 

age, with congenital velopharyngeal insufficiency and no history of previous surgeries was 

examined using lateral cephalometric radiography (Nachmani et al., 2013). Out of the 366 

subjects, 79 were syndromic (n = 28 with 22q11.2 DS and Pierre-Robin; n = 22 with Treacher 

Collins and Stickler; n = 29 with miscellaneous). The control group consisted of 126 subjects 

with normal speech and no previous surgeries. Findings from this study revealed increased 

prevalence of platybasia in subjects with velopharyngeal insufficiency compared to other 

controls (28.7% versus 2.4%) and increased prevalence of platybasia in 22q11.2 DS than other 

syndromic groups (50% versus 27.3% (Pierre Robin). The prevalence of platybasia was also 

found to be significantly different for the five velopharyngeal insufficiency groups in this study, 

with the non-cleft cohort demonstrating the highest prevalence (40.3%), followed by occult 

submucous cleft palate (33.7%), submucous cleft palate (28.8%), cleft palate only (20.3%), and 
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cleft lip and palate (16.7%). The increased prevalence of platybasia in non-cleft subjects (40.3%) 

without 22q11.2 DS highlight the fact that platybasia may serve as a diagnostic skeletal marker 

to differentially diagnose patients with congenital velopharyngeal insufficiency with or without 

cleft palate (Nachmani et al., 2013). Platybasia could result in greater nasopharyngeal space, 

which may worsen symptoms of velopharyngeal dysfunction in instances of small mechanical 

deficit.  

Platybasia may adversely affect the relationship between the facial bones and the 

neurocranium which may result in abnormal configurations of the nasopharynx (Arvystas & 

Shprintzen, 1984; Nachmani et al., 2013). Velopharyngeal closure is accomplished through the 

synchronized movements of the velopharyngeal muscles, primarily the levator veli palatini 

(levator) muscle. Superior and posterior movements of the velum responsible for velopharyngeal 

closure require constriction of the levator muscle, the palatopharyngeus, and the superior 

pharyngeal constrictor muscle. This vector of muscles has its origins in the skull base and 

posterior pharynx and inserts into the palate. Abnormalities in these bony structures have a 

subsequent effect on muscle form and function, which may influence velopharyngeal 

dysfunction (Perry et al., 2014; Nachmani et al., 2013).  

Cranial Length  

Forty-one subjects with 22q11.2 DS were noted to have longer anterior cranial base 

length compared to age- and sex-matched controls (Heliovaara & Hurmerinta, 2006). The 

subjects were evaluated cephalometrically and 13 subjects had palatal clefts. These are 

contradictory to other findings (Wang et al., 2009), where these subjects were described to have 

decreased anterior cranial base lengths determined using three-dimensional computed 

tomography. Comparisons were made with 20 age- and sex-matched controls with cleft palate. 
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Posterior cranial base length (Dalben Gda et al., 2010; Heliovaara & Hurmerinta, 2006; Wang et 

al., 2009) and posterior cranial base angle are reportedly decreased in individuals with 22q11.2 

DS.  

The skull base anomalies in 22q11.2 DS alter the position of the facial bones. These 

variations are not represented as malformations of the facial bones. Rather, it affects the relative 

positions of the facial bones to one another. The midface and resulting facial profile are recessed 

in relation to the forehead and as such appear flat (Shprintzen & Golding-Kushner, 2008). A 

longer than normal lower third of the face is referred to as vertical maxillary excess. This feature 

is reported to be a common finding in individuals with 22q11.2 DS (Shprintzen & Golding-

Kushner, 2008). Compared to non-syndromic control subjects, subjects with 22q11.2 DS have 

been reported to have increased overall face length (Heliovaara & Hurmerinta, 2006), decreased 

overall face length (Wang et al., 2009), increased superior facial height (Wang et al., 2009),  and 

increased anterior facial height (Arvystas & Shprintzen, 1984). Other facial characteristics 

described for these subjects include increased facial convexity (Heliovaara & Hurmerinta, 2006) 

and malar flatness (Arvystas & Shprintzen, 1984). 

The posterior cranial fossa is the portion of the cranium that is posterior to the flexion of 

the skull base behind the sella turcica. Cerebellar hypoplasia and a smaller than normal 

cerebellar vermis are reported findings in individuals with 22q11.2 DS (Shprintzen & Golding-

Kushner, 2008). The incidence of craniosynostosis in the 22q11.2 DS population is higher than 

in the general population. The incidence of craniosynostosis in the general population is 1/2500. 

The incidence of craniosynostosis in the 22q11.2 DS group has been reported to be 2/370 

(McDonald-McGinn et al., 2005).  
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Cervical Spine  

Cervical abnormalities have been reported on subjects with 22q11.2 DS compared to 

non-syndromic control groups. Veerapandiyan et al. (2011) reported cervical data on 21 subjects 

with 22q11.2. Compared to normative data, it was found that 19 out of 21 subjects with 22q11.2 

DS presented with at least 1 cervical spine abnormality which included open posterior C1 arch, 

C2 swoosh (abnormal extension of lamina and posterior elements of axis superiorly), C2-C3 

fusion, thin/small C1 (Heliovaara & Hurmerinta, 2006), C1 anterior arch abnormality (e.g., 

absent anterior arch, non-united arch, hypoplastic arch, dysmorphic anterior arch), and 

dysmorphic dens (C2). Data on 21 children with 22q11.2 compared to non-syndromic control 

group with complete unilateral cleft lip/palate revealed decreased C1 (atlas) and C2 (axis) length 

and height in those with 22q11.2 DS (Wang et al., 2009). Cervical variations may aggravate 

velopharyngeal insufficiency in the 22q11.2 DS population based on the ratio of nasopharyngeal 

depth and velar length (Veerapandiyan et al., 2011). Upper cervical spine abnormalities have a 

higher prevalence in individuals with craniofacial syndromes and may contribute to increased 

osseous pharyngeal depth and subsequent velopharyngeal dysfunction.  

Oral Cavity 

Contradictory findings have been reported regarding hard palate length in subjects with 

22q11.2 DS, with studies indicating decreased hard palate length (Ruotolo et al., 2006; Wang et 

al., 2009) and an increased hard palate length (Heliovaara & Hurmerinta, 2006). Downturned 

oral commissures and microstomia are relatively common findings in the 22q11.2 DS 

population. Dalben Gda et al. (2010) assessed craniofacial morphology in 18 patients with 

22q11.2 DS and compared findings to age- and sex-matched controls with no morphofunctional 

alterations. The 22q11.2 DS subjects were found to have increased interincisal dental angle and 
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greater lingual inclination of mandibular incisors. Studies have reported subjects with 22q11.2 

DS to have increased maxillary length (Heliovaara & Hurmerinta, 2006), decreased posterior 

maxillary height (Dalben Gda et al., 2010), and retrognathia (Heliovaara & Hurmerinta, 2006). 

These subjects were found to have posteriorly diverged mandibles (Heliovaara & Hurmerinta, 

2006), steep mandibular plane angle (Arvystas & Shprintzen, 1984; Glander & Cisneros, 1992) 

and decreased gonial angle (Dalben Gda et al., 2010). 

 

Velopharyngeal Anatomy and Physiology in 22q11.2 DS 

Velopharyngeal structure abnormalities are observed in approximately 75% of 

individuals with 22q11.2 DS (Chegar, Tatum, Marrinan, & Shprintzen, 2006).  

Pharyngeal Anatomy 

Reduced adenoid tissue, tonsillar hypertrophy, and reduced movement of lateral 

pharyngeal walls have been observed in nasoendoscopic investigations in subjects with 22q11.2 

DS (Ysunza, Carmen Pamplona, & Santiago Morales, 2011). Heliovaara and Hurmerinta (2006) 

determined subjects with 22q11.2 DS had wide nasopharyngeal area (Veerapandiyan et al., 

2011), narrow hypopharyngeal area, delayed development and reduced length of hyoid bone, and 

larger hyoidal gaps (fusion of hyoidal cornu major and base) compared to age- and sex-matched 

controls using cephalometric analyses. Conversely, data on 18 Brazilian subjects with 22q11.2 

DS compared to age- and sex-matched control groups indicated subjects with 22q11.2 DS have 

no significant differences in depth of bony pharynx (distance between posterior nasal spine and 

basion), nasopharynx, and oropharynx (Dalben Gda et al., 2010). Due to lack of correlation 

between findings it is difficult to fully ascertain if velopharyngeal insufficiency can be attributed 

to larger pharyngeal dimensions as postulated by Arvystas and Shprintzen (1984). Studies have 
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attributed velopharyngeal insufficiency to pharyngeal functional etiology (e.g., pharyngeal 

hypotonia) rather than an anatomical etiology (Dalben Gda et al., 2010).  

An MRI study assessed five children with 22q11.2 DS and comparisons were made to a 

control group consisting of 123 children with no history of velopharyngeal dysfunction (Ruotolo 

et al., 2006). Subjects with 22q11.2 DS were found to have increased (but not statistically 

significant) osseous pharyngeal depth (distance between posterior nasal spine and anterior body 

of C1), increased osseous pharyngeal depth to velar length ratio, more obtuse angle of superior-

anterior quadrant, and increased velopharyngeal width (distance between lateral pharyngeal 

walls). The airway was found to be significantly more obtuse and voluminous.   

Although pharyngeal hypotonia has been described as one of the most common findings 

in 22q11.2 DS, the etiology and extent of this hypotonia is unknown. A study investigated the 

thickness and histologic and histochemical properties of the superior pharyngeal constrictor in 

subjects with 22q11.2 DS using MRI and biopsy specimens (Zim et al., 2003). The superior 

pharyngeal constrictor muscle thickness was found to be significantly less in 26 subjects with 

22q11.2 DS (2.03 mm) compared to age- and sex-matched controls without 22q11.2 DS 

(2.85mm). Histologic analyses on nine subjects (age range = 4-12 years) revealed subjects with 

22q11.2 DS to have a significantly greater proportion of type 1 fibers (slow contraction with high 

resistance to fatigue) with significantly smaller muscle fiber diameters in the superior pharyngeal 

constrictor muscle, compared to superior pharyngeal constrictor muscle of three adult cadavers 

(age range = 80-86 years). Limitations of this study include the wide age range (3-29 years) and 

the restricted control group (substantially older adult cadavers for histological analyses). The 

wide age range does not account for the effects of growth on the superior pharyngeal constrictor 

muscle.  
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  An investigation compared 49 syndromic subjects with Pierre-Robin sequence and 

Stickler syndrome (n = 20) and Pierre-Robin sequence with 22q11.2 DS (n = 29) with age- and 

sex-matched control group with Stickler and 22q11.2 DS with no Pierre-Robin sequence 

(Glander & Cisneros, 1992). Subjects in the 22q11.2 DS with Pierre-Robin group presented with 

increased airway width at nasopharyngeal level, increased width of oropharyngeal space (lower 

and middle), thinner posterior pharyngeal wall issue at nasopharyngeal level and upper 

oropharynx (Golding-Kushner, 1991), and increased lower pharyngeal height. 

Palatal Anomalies 

The most common forms of palatal abnormalities reported include submucous cleft palate 

(44%), occult submucous cleft palate (38%), and 18% present with overt cleft palate (Shprintzen, 

2008; Veerapandiyan et al., 2011). It is uncommon that individuals with 22q11.2 DS 

demonstrate the classic triad of submucous cleft palate (bifid uvula, zona pellucida, and notched 

hard palate). Most often a submucous cleft palate is detected in these individuals orally due to 

presence of a bifid uvula with or without the other associated symptoms (Shprintzen & Golding-

Kushner, 2008). In cases of occult submucous cleft palate, the anomalies of the velum are subtle. 

It may present as a gentle concavity, prominent midline depression, or a flat nasal surface of the 

velum.  

Few studies have investigated the characteristics of the velum in individuals with 22q11.2 

DS. A lateral cephalometry investigation (Veerapandiyan et al., 2011) reported subjects with 

22q11.2 DS to have decreased velar length, and an abnormal anterior location of velar dimple. In 

normal subjects, the velar dimple was located at 80% of length of velum during phonation; in 

subjects with 22q11.2 DS, the velar dimple was located at 57.3% of the length of the velum 

during phonation. The anterior location of the velar dimple may reflect a more anterior location 
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of the levator muscle and the more anterior the velar dimple is located, the more likely the 

functional stretch of the velum is decreased, thus likely resulting in velopharyngeal insufficiency. 

Conversely, an MRI study (Ruotolo et al., 2006) found no significant variations in velar length 

and thickness among this clinical population. During speech in individuals with normal 

velopharyngeal anatomy, the thickening of the velum is due to the presence of the musculus 

uvulae (Shprintzen & Golding-Kushner, 2008). As the musculus uvula contracts during speech, 

it thickens at its muscle belly because it is not firmly attached at its distal end. The musculus 

uvulae may be absent in 22q11.2 DS and hence there may be an absence of thickening of the 

velum during palatal movement. However, the presence or absence of the musculus uvulae in 

this clinical population has not been examined.  

Veerapandiyan et al. (2011) computed a need ratio in 22q11.2 DS subjects. The need 

ratio was computed by dividing nasopharyngeal depth by velar length. A value greater than 0.70 

for the need ratio indicated an unfavorable relationship between nasopharyngeal depth and velar 

length and may be indicative of placing the individual at risk for velopharyngeal insufficiency. 

Results indicated 88% of subjects with 22q11.2 DS to have abnormally large need ratios (> 

0.70). A significant difference in needs ratio was also observed for patients with and without C1 

anterior arch abnormalities.  

Two conference proceedings (Kuehn, 2003; Punjabi, Holshouser, D'Antonio, & Kuehn, 

2002) reported using static MRI to evaluate the levator muscle. The authors observed anterior 

position of the levator fibers relative to the hard palate and an overall thin and hypoplastic 

levator sling. However, both reports were not published and therefore little information is known 

about the subject demographics and sample sizes.  To date, only one research study has reported 

quantitative measures (i.e., thickness and symmetry) of the levator muscle in individuals with 
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22q11.2 DS (Park et al., 2015). However, limitations of the study include comparisons to 

individuals with submucous cleft palate. 

Asymmetry of the Palate and Pharynx in 22q11.2 DS 

Asymmetry in palatal and pharyngeal anatomy has been more recently reported. Chegar 

et al. (2006) assessed velar movement during speech in 121 subjects with 22q11.2 DS using 

endoscopy and videofluroscopy. Results indicated 67% of subjects to demonstrate asymmetric 

elevation of the velum. The velar midline was found to be displaced to one or the other side.  

In a recent investigation, the thickness and symmetry of the levator muscle was investigated in 

17 subjects with 22q11.2 DS using MRI (Park et al., 2015). All subjects were imaged under 

sedation. The comparison group consisted of nine subjects with submucous cleft palate without 

22q11.2 DS. Results indicated that for each point for levator thickness, the non-syndromic 

submucous cleft palate group demonstrated greater thickness than the 22q11.2 DS group. Also, 

the difference between the right and left sides of muscle thickness in 22q11.2 DS group was 

larger (0.25mm) compared to non-syndromic submucous cleft palate group (0.09mm). The left 

side was significantly thicker than the right in 22q11.2 DS subjects. 

Asymmetry has also been observed for pharyngeal structures, namely posterior 

pharyngeal and lateral pharyngeal wall movements in 76% subjects with 22q11.2 DS (Chegar et 

al., 2006). One side of the pharynx was found to have increased fullness over the other, with the 

right side manifesting more fullness than the left frequently. Individuals with 22q11.2 DS have 

reportedly minimal lateral pharyngeal wall movement. However, in instances where it is present, 

asymmetric lateral pharyngeal wall movement has been observed. 
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Speech Characteristics 

The characteristics of voice, resonance, and articulation are important parameters in 

describing speech. About 10% of individuals with 22q11.2 DS have anterior laryngeal webbing 

(Shprintzen & Golding-Kushner, 2011). An anterior laryngeal web would decrease the vibrating 

length of the vocal folds, resulting in a higher pitched voice. Thin vocal folds would have a 

similar effect as well. The most common speech characteristic associated with 22q11.2 DS is 

hypernasality. Hypernasality occurs when there is excessive nasal resonance during vowel 

production. Velopharyngeal insufficiency is the most common cause of hypernasality. 

Velopharyngeal insufficiency may be caused due to a structural or neurologic issue which 

adversely affects the closure of the velopharyngeal mechanism. Several factors may predispose 

an individual with 22q11.2 DS to velopharyngeal insufficiency, including platybasia, palatal 

anomalies, thin velar and pharyngeal tissues, abnormal palatal and pharyngeal fibers, and 

adenoid hypoplasia.  

An investigation of velopharyngeal closure timing variations in subjects with 22q11.2 DS 

(Baylis, Watson, & Moller, 2009) in comparison to non-syndromic cleft lip/palate group found 

that subjects with 22q11.2 DS presented with significantly increased duration for velopharyngeal 

closure (mean = 0.176 seconds) when compared to cleft lip/palate group (mean = 0.143 seconds). 

The subjects also presented with more severe hypernasality when compared to cleft lip/palate 

group and normal controls based on increased nasal airflow values during pressure flow 

assessment. It was noted that increased hypernasality was found even in the presence of a small 

velopharyngeal orifice size. A primary limitation of the study was a small sample size of the 

22q11.2 DS group (n = 5). Similarly, Ysunza et al. (2011)  reported these individuals to have 

hypernasal speech even in the absence of a palatal cleft. Additional speech characteristics 
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reported in subjects with 22q11.2 DS include articulation or phonological disorders, fast rate of 

speech, high pitch, and monotone (Kirschner & Baylis, 2014). The most common compensatory 

articulation error observed in these subjects is glottal stops (Kirschner & Baylis, 2014). 

 

Speech Surgery and Outcomes 

The goal of surgery is to eliminate velopharyngeal insufficiency and hypernasality and to 

create a normal valving system for speech and resonance. If hypernasality, nasal emission, and 

weak pressure persists in speech post-surgery, then the surgery has not achieved its goal. Surgery 

in 22q11.2 DS may be different due to the complex underlying morphological variations in this 

population as described in earlier sections. Surgical options for individuals with 22q11.2 DS may 

include Wardill push-back, Furlow palatoplasty, palatopharyngoplasty (using minimal levator 

incisions), pharyngeal flaps, and sphincter pharyngoplasties, and less common options including 

fat injections (Ysunza, Pamplona, Ortega, & Prado, 2008; Ysunza, Pamplona, Molina, & 

Hernandez, 2009). 

Ysunza et al. (2009) evaluated surgical effectiveness in 29 patients with 22q11.2 DS and 

velopharyngeal insufficiency that underwent sphincter pharyngoplasties and superior pharyngeal 

flaps. In the pharyngeal flap cohort (n = 20), 85% subjects presented with normal resonance or 

mild hypernasality after surgical intervention and 15% demonstrated moderate hypernasality. For 

the sphincter pharyngoplasty group, none of the subjects demonstrated normal resonance or mild 

hypernasality post-surgery. Sixty-six percent of these subjects demonstrated moderate 

hypernasality and 3% had severe hypernasality. In individuals with 22q11.2 DS, pharyngeal 

flaps appeared to result in better speech outcomes compared to sphincter pharyngoplasties. 
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The sphincter pharyngoplasty procedure in the management of velopharyngeal insufficiency in 

32 children with 22q11.2 DS has been investigated (Losken, Williams, Burstein, Malick, & 

Riski, 2006). Successful surgical outcomes were demonstrated in 78% of the 22q11.2 DS 

patients, with 22% requiring revisions. However, the revision rate in the 22q11.2 DS cohort was 

significantly higher (22%) compared to 218 non-22q11.2 DS patients with velopharyngeal 

insufficiency group (11%). Objective speech data obtained preoperatively showed subjects with 

22q11.2 DS to demonstrate significantly greater velopharyngeal incompetence as demonstrated 

by nasalance scores, pressure-flow measurements, and radiographic measurements. In 

individuals with 22q11.2 DS, the revision rates for sphincter pharyngoplasty were reported to be 

twice as high when compared to non-syndromic cleft palate cases (Witt, Cohen, Grames, & 

Marsh, 1999). 

Speech outcomes after surgical intervention for velopharyngeal insufficiency has been 

assessed in the 22q11.2 DS population (Milczuk, Smith, & Brockman, 2007). The study assessed 

parameters such as speech intelligibility, resonance, nasal air emissions, and overall severity of 

velopharyngeal insufficiency in 14 children with 22q11.2 DS. The comparison group included 15 

children with overt cleft palate who underwent surgery for velopharyngeal insufficiency. 

Sphincter pharyngoplasty, Furlow palatoplasty, or a combination of both was chosen as operative 

procedures determined based on pre-surgical endoscopic assessments. Similar improvements 

were observed for both groups except in the case of speech resonance, where results were 

consistently far worse compared to individuals with non-syndromic cleft palate. In a 

retrospective review of four individuals with 22q11.2 DS who underwent Furlow double-

opposing Z-palatoplasty for primary repair, it was reported that none demonstrated adequate 

velopharyngeal closure (D-Antonio, Davio, Zoller, Punjabi, & Hardesty, 2001). 
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A study reporting the results of palatal lengthening for velopharyngeal insufficiency in 

22q11.2 DS patients found a success rate of 84% (Widdershoven, Stubenitsky, Breugem, & 

MinkvanderMolen, 2008). The authors compared surgical correction outcomes for 

velopharyngeal insufficiency in 25 patients with 22q11.2 DS and 32 patients without 22q11.2 

DS. However, discrepancies were noted between nasal endoscopy results and improvements in 

speech. These results suggest mechanical improvements do not necessarily result in functional 

improvements (i.e., speech) in this challenging population. These findings also illustrate the 

complexity of speech disorders found in individuals with 22q11.2 DS.   

A recent study conducted a retrospective review of long-term, post-operative outcomes in 

132 patients with syndromic diagnoses who underwent primary modified Furlow palatoplasty 

(Basta et al., 2014). The two most common syndromes in the subject demographic included 

Stickler syndrome (n=32) and 22q11.2 DS (n=19). The 22q11.2 DS group demonstrated 

significantly poorer postoperative outcomes compared to other syndromes. Fifty percent of the 

22q11.2 DS cohort had borderline speech and none had competent speech. Subjects in the 

22q11.2 DS group presented with a three-fold higher need for secondary velopharyngeal 

insufficiency surgery. Certain studies have demonstrated fairly similar, good outcomes in 

patients with 22q11.2 DS and non-syndromic patients. However, persistent velopharyngeal 

dysfunction post-surgical intervention appears to be a common characteristic in this clinically 

complex population. 

 

MRI Investigations of the Velopharynx in 22q11.2 DS 

Magnetic resonance imaging is the only imaging modality that allows visualization of the 

internal musculature in vivo. Studies have examined the levator muscle in adults with normal 
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anatomy (Bae, Kuehn, Sutton, Conway, & Perry, 2011; Ettema, Kuehn, Perlman, & Alperin, 

2002; Perry, Kuehn, & Sutton, 2013; Perry, Kuehn, Sutton, Gamage, & Fang, 2014; Tian & 

Redett, 2009), adults with cleft palate anatomy (Ha, Kuehn, Cohen, & Alperin, 2007), children 

with normal and cleft palate anatomy (Kollara & Perry, 2014; Kollara et al., 2016; Tian et al., 

2010; Tian et al., 2010), and infants with normal and cleft palate anatomy (Kuehn, Ettema, 

Goldwasser, & Barkmeier, 2004; Perry, Kuehn, Sutton, Goldwasser, & Jerez, 2011).  

Studies have utilized MRI in investigating the velopharyngeal area in individuals with 

22q11.2 DS (Park et al., 2015; Ruotolo et al., 2006). The study by Ruotolo et al. (2006) included 

only five subjects across dissimilar periods of growth and the results were compared with an 

unpaired control group. In the investigation by Park et al. (2015), the control group consisted of 

subjects with submucous cleft palate. Both of these studies were carried out under sedation. Our 

preliminary investigations included in chapters three, four, and five (Kollara & Perry, 2014; 

Kollara et al., 2014; Kollara, Schenck, & Perry, 2016) demonstrate the feasibility of MRI 

without the use of sedation. 
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CHAPTER 3 

STUDY I 

Effects of Gravity on the Velopharyngeal Structures in Children Using Upright Magnetic 

Resonance Imaging1 

ABSTRACT 

 The influence of gravity on the velopharyngeal structures in children is unknown.  The 

purpose of this study is to compare the velopharyngeal mechanism in the upright and supine 

positions while at rest and during sustained speech production in children between 4 and 8 years 

old. A 0.6 Tesla open-type, multipositional magnetic resonance imaging scanner was used to 

image subjects in the upright and supine positions. The scanning protocol included a T2 fluid 

attenuation inversion recovery and an oblique coronal turbo spin echo scan with short scanning 

durations (7.9 seconds) to enable visualization of the velopharyngeal anatomy during rest and 

production of sustained /i/ and   /s/. The magnetic resonance imaging protocol used for this study 

enabled successful visualization of the velopharyngeal anatomy in the sagittal and oblique 

coronal planes at rest and during sustained phonation of /i/ and /s/. Positional differences 

demonstrated a small nonsignificant (p > .05) variation for velar measures (length, thickness, and 

height), retrovelar space, and levator veli palatini measures (length and angles of origin). Gravity 

had a negligible effect on velar length, velar thickness, velar height, retrovelar space, levator 

muscle length, and levator angles of origin. Supine imaging data can be translated to an upright 

activity such as speech. This is the first study to provide normative levator muscle lengths for 

                                                 
1 Kollara, L., & Perry, J. L. (2014). Effects of gravity on the velopharyngeal structures in children using upright 

magnetic resonance imaging. Cleft Palate-Craniofacial Journal, 51(6), 669-676.  
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children between 4 and 8 years old. Upright imaging may be a promising tool for difficult-to-test 

populations. 

INTRODUCTION 

Speech is a dynamic process typically produced in the upright position. The structures 

that constitute the velopharyngeal port play an important role in speech production, swallowing, 

and breathing. The velopharyngeal mechanism includes the velum, lateral pharyngeal walls, and 

posterior pharyngeal wall. Velopharyngeal closure is accomplished through the combined action 

of several velopharyngeal muscles, the most important being the bilateral levator veli palatini 

(levator) muscle. The levator, palatoglossus, and palatopharyngeus muscles are collectively 

responsible for determining the velopharyngeal positioning in the pharyngeal cavity (Moon and 

Canady, 1995). Structural characteristics alone cannot determine the functional status of the 

velopharyngeal mechanism (Tian et al., 2010b). Magnetic resonance imaging (MRI) data are 

traditionally obtained in the supine position but these data may be applied to an activity in the 

upright position, such as speech. Assessment of the velopharyngeal structures during speech in 

the upright position is important. Better understanding of gravitational effects on the 

velopharyngeal structures will allow better utilization of MRI data in speech analysis and 

modeling (Stone et al., 2007). 

Studies have examined the effect of gravity on swallowing and speech structures, 

including the respiratory apparatus, tongue, hyoid bone, pharyngeal areas, and velopharyngeal 

structures. Hoit (1994) observed that during speech breathing in the supine position, inspiration 

was dependent on the efforts of the diaphragm and expiration on the efforts of the rib cage. In 
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upright speech breathing, inspiration involves effects of the diaphragm and abdomen, but the 

latter predominates for expiration. 

The effects of body position on swallowing have been studied. Perry et al. (2012) noted 

variations in the initiation of the pharyngeal swallow and coordinated velar elevation during a 

liquid swallow (7 cc). In the supine position, the velum continues to elevate after initiation of the 

pharyngeal swallow. In the upright position, the velum comes to a fully elevated position at 

nearly the same time as the pharyngeal swallow is initiated. 

Buchaillard and Perrier (2009) found negligible differences in tongue shape and formant 

values between the upright and supine positions during production of French cardinal vowels. 

The absence of significant differences was attributed to the model having a fixed jaw position in 

both the upright and supine orientation. Badin et al. (2002) demonstrated increased backward 

displacement of the tongue for consonants and vowels in the supine position using MRI 

compared with the upright position on cineradiofilm images. The increased backward tongue 

displacement was attributed to tongue weight. Stone et al. (2007) observed acoustic spectra 

(formant frequencies) to be preserved despite varying tongue responses to gravity. Results 

indicated a significant subject effect. Stone et al. (2007) hypothesized a compensatory response 

of the tongue to gravity in which the tongue counteracts to body position to preserve the acoustic 

effect. 

Oropharyngeal structures appear to be affected by gravitational influences. 

Suttiprapaporn et al. (2008) studied gravity-induced changes in the oropharyngeal structures 

using computed tomography scans on clinically normal adult subjects. The soft palate, epiglottis, 

and entrance of the esophagus moved caudally with the positional change from supine to seated 
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upright and moved posteriorly when the position changed from an upright to a supine position. 

Kitamura et al. (2005) assessed the influence of body position on vowel articulation using an 

open-type MRI scanner. It was noted that in the supine position, the tongue was more retracted 

(particularly for back vowels), the lips were thinner, and the lower end of the uvula turned 

downward in the direction of gravity. 

Variations in velopharyngeal structures as a result of body position have been 

investigated. An electromyographic study was conducted on 19 adults to examine the effects of 

gravity on activation levels of the levator and palatoglossus muscles during speech (Moon and 

Canady, 1995). Less peak (muscle) activity was observed in the supine position (gravity working 

in the same direction) compared with the upright position. Peak intraoral pressure and peak 

palatoglossus electromyographic activity showed no significant differences between upright and 

supine positions. The peak levator electromyographic activity showed significant differences 

between both positions. Perry (2011b) reported the effect of gravity on velopharyngeal structures 

using open-type multiposition MRI on four adult women. The subjects were imaged at rest and 

during two speech tasks (/i/ and /s/) in upright and supine positions. Differences in velar height 

during /i/ production between the two positions were significant for all subjects. There were no 

significant differences in velar thickness. Greater levator muscle shortening was observed on 

images obtained at rest (2.8 mm). Minimal variations were observed between upright and supine 

positions for velar measures (length and thickness), pharyngeal measures (retrovelar and 

retrolingual), and levator muscle measures (length and angle of origin). The overall results 

demonstrated that the velopharyngeal structures were not affected by gravity during speech for 

this select population. 
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No upright MRI studies have examined the influence of positional changes in the 

velopharyngeal musculature in children. The purpose of this study was to compare 

velopharyngeal structures in the supine and upright positions during rest and sustained speech 

production in children (4–8 years old) with clinically normal anatomy. The study further 

demonstrates the feasibility of using upright MRI in evaluating the velopharyngeal 

characteristics of young children. 

METHOD 

Subjects 

In accordance with the institutional review board at East Carolina University, 12 healthy 

children (five boys and seven girls) between 4 and 8 years old (mean, 6.23 6 1.27) were recruited 

to participate in the study. The mean height was 41.67 inches (SD, 4.60 inches) and mean weight 

was 20.42 lb (SD, 4.19 lb). Of the 12 subjects, nine were black and three were white. Although 

racial differences have been shown to affect velar length and thickness and angle of origin for the 

levator muscle, the effects of race are not significant for the levator muscle (Perry et al., 2013). 

The selected age range (4–8 years) is the critical age for determining secondary surgical needs in 

cleft palate and for speech, language, and communication development. Subjects were recruited 

by flyers placed throughout the community. A coloring book was mailed to the prospective 

subject 2–3 weeks before the MRI exam. The coloring book allowed the subject to become 

familiar with the process of an MRI exam. An oral mechanism examination and oral to nasal 

resonance balance assessment was administered on all subjects by a speech language pathologist. 

All subjects were native English speakers and had no history of craniofacial anomalies, 

musculoskeletal dis- orders, swallowing disorders, sleep apnea, or neurologic disorders that 
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could potentially affect the regions of interest for the study. All subjects had a body mass index 

under 19 (mean, 18.63 6 3.01) to control for possible variations in the velopharyngeal area as a 

result of obesity. 

Magnetic Resonance Imaging 

MRI data were obtained using a 0.6 Tesla open-type multiposition MRI scanner (Fonar 

Corporation, Melville, NY) at Triangle Orthopaedic Associates, PA (Southpoint, Durham, NC). 

The scanner enabled multipositional imaging in the upright and supine positions. The subjects 

had to be positioned only once during the entire scanning session. The start position was 

alternated between subjects. The scanning bed allowed for a 908 rotation, which enabled each 

subject to be rotated the same exact degree. 

Numerous steps were taken to ensure the comfort of the child during the scan. Before 

starting the MRI exam, the child was introduced to the sounds of the MRI scanner by listening to 

audio samples of MRI noise played on an iPad. The recordings were the same noises that they 

could expect to hear during the MRI scan. The subjects were given a panic button and were 

frequently asked about their comfort level. An adult (parent or researcher) was in the scanning 

room during the entire scan. Children were encouraged to watch another child being imaged 

before them and were provided 5 minutes before their respective MRI scans to explore the MRI 

machine (e.g., walk around the scanner). A head device with soft sponges and pressure clamps 

was used to minimize head movement. The subjects had a soft sponge on their lap to wrap their 

hands around and a sponge in which to place their feet to minimize hand and foot movements, 

which can create motion artifacts for the head. Head movement was further reduced by allowing 

the subjects to watch cartoons on the television while the scan was in progress. This enabled 
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them to maintain a consistent forward gaze, minimizing any distractions. A speaker microphone 

between the control room and the scanning room enabled the examiner to communicate with the 

subject throughout the   exam. 

The imaging protocol was modeled after a similar, previously published study on adult 

women (Perry, 2011b); however, shorter length of time was used for each scan. This ensured 

standardization and comparability between results obtained in the adult (Perry, 2011b) and child 

population. The scanning protocol (Table A1) included a three-plane localizer, midsagittal T2 

fluid attenuation inversion recovery and an oblique coronal turbo spin echo scan. The plane that 

most clearly depicted the genu of the corpus callosum, hypophysis, and outline of the fourth 

ventricle was selected as the midsagittal plane. The levator   muscle region was obtained by 

drawing an oblique coronal line through the midsagittal image. The oblique coronal slice, which 

depicted the levator muscle sling in its full thickness from origin to insertion, was selected. The 

sagittal and oblique coronal scans were obtained while the subject was at rest and during 

sustained /i/ and /s/ production. The scans were conducted in both upright and supine positions. 
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Table A1. 

Scanning protocol (0.6 Tesla). TR = repetition time; TE = echo time  

 Perry 2011b (Adult females) Current study (Children) 

Sagittal T2-Fluid attenuation inversion recovery (FLAIR) 

TR; TE 7136.604ms; 92.5ms 987ms; 160ms 

Slice thickness 4.8mm 5mm 

Spacing 0.36mm 0mm 

No. of slices 1 3  

Length of scan 2min 7 sec 7.9 secs  

Oblique coronal turbo spin echo (TSE) 

TR; TE  3686.304ms; 22ms 987ms; 160ms 

Slice thickness 2.5mm 5mm 

Spacing 0.1mm .37mm 

No. of slices 6 3 

Length of scan 3min 9 sec 7.9secs 

 

Speech Tasks 

Subjects were instructed to produce /i/ and /s/ in the upright and supine positions. Both 

speech productions were practiced by the subject with the examiner before staring the MRI 

exam. Subjects were instructed to produce /s/ as ‘‘ssss’’ (single consonant) and not ‘‘eees’’ 

(vowel-consonant combination). Subjects maintained a sustained production for the duration of 

the sound (7.9 seconds in oblique coronal and in midsagittal). Subjects were instructed to inhale 

deeply before initiating the speech sound production. Speech sound productions were carefully 

monitored by the researcher in the scanning room to ensure that it was an accurate representation 

of the required sound and was sustained for the duration of the scan. 
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Regions of Interest 

A total of six measures were made from sagittal and oblique coronal images using Amira 

(version 5.4.5, Visage Imaging, Berlin, Germany) visualization soft- ware. Measurements were 

obtained in both upright and supine positions. Midsagittal measures (Table A2; Fig. A1) 

included velar length, velar thickness, velar height, and retrovelar space. Velar length was 

measured as a curvilinear line from the posterior nasal spine to the tip of the uvula. The distance 

between the velar   dimple to the velar knee was measured as the velar thickness. Velar height 

was measured as the vertical displacement of the velar knee from a reference line through the  

hard palate. The distance between the velar knee to posterior pharyngeal wall was measured as 

the retrovelar   space. 

Table A2. 

 Description of Measurements (Perry, 2011b) 

 

Measure Definition 

Velar length Distance of a curvilinear line starting at the posterior nasal spine, 

coursing through the middle of the cross sectioned velum, to the tip of 

the uvula. 

Velar thickness Distance from the velar knee to the velar dimple. 

Velar height Vertical distance of the velar knee from a reference line drawn directly 

through the hard palate to the posterior pharyngeal wall. 

Retrovelar space Distance from the velar knee to the posterior pharyngeal wall. 

Levator veli palatini 

muscle length 

Distance from the origin of the muscle at the base of the skull, through 

the middle of the muscle belly, and to the midline insertion at the 

velum. 

Angle of origin Angle created between a reference line connecting the two origins of 

the levator muscle and the line drawn to measure the levator muscle 

length. 
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Figure A1. Demonstration of the velar measures and retrovelar space in the midsagittal image 

plane. A = velar length, B = velar thickness, C = velar height 

 

The levator muscle length and angle of origin were measured on the oblique coronal 

images (Fig. 2). The levator length was calculated as the curvilinear distance from the origin at 

the base of the skull to the insertion in the middle of the velum. The total levator length was 

determined by adding the right and left levator lengths and calculating the average. A reference 

line was then drawn between the two origin points on the right and left muscle bundles. The 

angle formed between this reference line and the levator length at the point of its origin was 
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determined as the angle of origin. The measurement definitions and boundaries used were the 

same as those described for a similar study on adult women (Perry, 2011b) to ensure consistency 

in measurements in the adult and child populations. 

 

 

 

 

 

 

 

 

 

 

 

Figure A2. Measures taken on the oblique coronal image plane. The curvilinear white line 

courses through the levator muscle bundle.  The arrow points to the angle of origin, which is 

determined by using a reference line connecting the levator muscle origins on the right and left 

sides.   
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Statistical Methods 

Comparisons between the upright and supine positions for each measure were performed 

using a paired t test. The Bonferroni correction was used to minimize the effect of multiple 

comparisons and to control for type I error.  The significance thus calculated equaled 0.05/c 

(where c = number of comparisons), resulting in a .002 level of significance. 

The Pearson product moment correlation (p = 0.05) was used to establish interrater and 

intrarater reliability measures. Measurements were done on six randomly selected data sets by 

the primary and secondary raters 4 weeks after the first measures were obtained. Both raters 

made independent measures on a previous data set before starting data analysis. Clear definitions 

of the measurement boundaries were made and confirmed on practice data sets 5 weeks before 

starting data analysis. Both raters have prior experience in measuring the areas and structures in 

this study. The interrater and intra- rater reliability ranged from r = .97 to r = .99. 

RESULTS 

The MRI protocol used for this study was successful in visualizing the velopharyngeal 

structures of interest in the sagittal and oblique coronal planes. All subjects who agreed to 

participate successfully completed the imaging protocol. Clear images of the tongue, velum, and 

pharyngeal cavity were obtained. Changes in velar movement across different tasks (at rest and 

on phonation) were analyzed. The differences due to body position across the six measures are 

shown in Table A3. These measures indicate that changes in body position (from upright to 

supine) had a nonsignificant effect on differences in the velopharyngeal structures of interest in 

this study during rest and phonation tasks. 
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Table A3.  

Group means and differences across all six measures. All measures of length are in mm and the 

angle of origin is reported in degrees. For the difference values, plus (+) values indicate a 

greater value in the upright position and minus (-) values indicate a lesser value in the upright 

position. *α = 0.002 

 

Velar Measures   

The differences in velar length between upright and supine positions varied among 

individuals in the type of response to gravity. Five out of 12 subjects demonstrated an increase in 

length of the velum from the upright to supine position. The increase in length was consistent 

across rest, /i/, and /s/ tasks. The remaining 7 subjects demonstrated variations in their responses 

(increase or decrease) across positions and across the tasks. Group mean differences between 

Measures Rest /i/ /s/ p-value 

(Upright: 

Supine) (Upright

; Supine) 

Differ

ence 

(Upright; 

Supine) 

Differe

nce 

(Upright; 

Supine) 

Differ

ence 

Velar 

length 

26.92; 

27.44 

+ 0.52 24.87; 

25.46 

+ 0.59 24.09; 25.13 + 1.04 0.004 

Velar 

thickness 

7.97; 

7.86 

- 0.11 6.90; 6.73 - 0.17 6.63; 6.74 + 0.11 0.750 

Velar 

height 

4.60; 

4.50 

- 0.1 3.32; 3.10 - 0.22 2.49; 2.62 + 0.13 0.795 

Retrovelar 

space 

7.05; 

7.16 

+ 0.11 0.31; 0.23 - 0.04 0.00; 0.00  0.00 0.850 

Levator 

muscle 

length 

32.9; 

31.8 

- 1.1 29.53; 

29.32 

- 0.21 28.41; 28.86 + 0.45 0.226 

Angles of 

origin 

60.04; 

58.1 

-1.94 54.25; 

52.46 

-1.79 54.60; 54.63 + 0.03 0.065 
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upright and supine indicated a minimal increase in velar length for rest (+0.52), /i/ (+0.59), and 

/s/ (+1.04). These differences however, were not statistically significant at p = .004. 

The thickness of the velum between upright versus supine positions varied among 

individuals in the type of response to gravity. Only three out of 12 subjects demonstrated an 

increase in velar thickness from the upright to the supine position. Group mean differences 

between upright and supine were -0.11mm for rest, -0.17mm or /i/, and +0.11mm for /s/.  These 

differences, however were minimal and within 0.1 mm, demonstrating a non-statistically 

significant finding (p = .750).  

There were no consistent patterns or statistically significant differences in velar height 

between upright and supine position across rest, /i/, and /s/ (p = .795). The responses varied 

across subjects.  Group mean differences across upright and supine positions were -0.1 for rest, -

0.22 for /i/, and +0.13 for /s/.  

As expected for children with normal velopharyngeal mechanism, the retrovelar space 

was zero for 11 out of the 12 subjects during speech tasks. Seven subjects demonstrated a 

decrease in retrovelar space from the upright to the supine position at rest. Group mean 

differences between upright and supine positions were minimal for rest (+0.11), /i/ (-0.04), and 

/s/ (0.00) productions.  The differences across position for this variable were not statistically 

significant (p = .850).  

Levator Veli Palatini Muscle Measures 

For 11 of the 12 subjects, the levator muscle length minimally decreased (- 1.26mm) in 

length when moving from the upright to the supine position at rest.  During production of /s/, 8 

subjects demonstrated a minimal increase (+1.12mm) in levator muscle length in the supine 
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position. Group means indicate an average muscle shortening at rest (-1.1) and for /i/ production 

(-0.21). A minimal increase was observed for /s/ production (+0.45). The differences noted, 

however, were not significant (p = .226). 

Four subjects demonstrated a decrease in angles of origin from the upright to the supine 

position at rest and during production of /i/ and /s/.  Differences across subjects indicate that nine 

subjects had a decrease in angles of origin in the supine position for the production of /i/. The 

differences in angle between upright and supine positions were not significant (p = .065)  

Differences Across Condition  

 A one-way analysis of variance (ANOVA) was performed to compare the effects of the 

three treatments (rest, /i/, and /s/ production) on levator length and the angle of origin. The 

ANOVA results for the levator length were F2,35 = 10.1121; p = .0004 in the upright position and 

F2,35 = 4.0855; p = .026 in the supine position. The ANOVA results for the angle of origin were 

F2,35 = 5.8381; p = .0067 in the upright position and F2,35 = 3.8631; p = .0311 in the supine 

position. As expected, the changes across the three treatments were statistically significant at the 

.05 level of significance. 

The percentage of levator muscle contraction during production of /i/ and /s/ across 

upright and supine positions were calculated. For the production of /i/, the percentage of levator 

contraction was 10.3% in the upright position and 7.68% in the supine position. For /s/ 

production, the contraction was 13.7% in the upright position and 9.04% in the supine position. 

The percentage of contraction for both /i/ and /s/ productions were greater in the upright than in 

the supine position.  
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DISCUSSION 

Overall, the effect of gravity on the velopharyngeal structures in young children during 

rest and sustained speech production tasks demonstrates no significant differences (p < 0.002) 

from the upright to the supine position. The responses of the variables of interest were different 

across subjects. There is not enough evidence to validate the use for upright MRI over the 

traditional supine imaging methods to reduce effects of gravity on the structures that were 

investigated. Supine imaging can be used to relate to upright speech gestures in this targeted 

child population. This study protocol demonstrated 100% success rate in which all children who 

volunteered for the study, successfully completed the study. Similar studies using supine imaging 

only for children between 4 - 7 years of age showed an average success rate of ninety-six percent 

(Tian et al., 2010a; Tian et al., 2010b). While these differences are negligible, the behavioral and 

imaging protocol development for this study can be adopted for future imaging studies involving 

children.  

Velar Measures (Length, Thickness, and Height) 

The velum remained nearly the same in thickness and height for rest, /i/, and /s/ 

production during upright and supine position. There was a consistent increase in velar length at 

rest, /i/ and /s/ production between the two positions. While these findings are consistent with 

Perry (2011b), they are not consistent with findings of Ingman et al. (2004). Of the three measure 

of length, thickness, and height, velar length exhibited most differences between the upright and 

supine positions. The incidence of increase in velar height that one might assume in the supine 

position due to the effects of gravity was observed only in the production of /s/. This finding is 

consistent with that of Perry (2011b) for adult females. However, Perry (2011b) showed 

statistically significant difference in velar height between upright and supine position. The 
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findings in the present study related to velar height during /s/ were not statistically significant. 

This may be due to the greater sample size used in the present study (N = 12) compared to Perry 

(N = 4). The increase in velar length, thickness, and height during the production of /s/ could be 

attributed more to the sound production characteristic of /s/ rather than a significant response to 

gravity. The mean velar muscle length (mean, 26.01mm) and thickness (mean, 7.11mm) in the 

present study (in the supine position) were similar to those reported in studies of Chinese 

children (mean length, 25.52mm; mean thickness, 9.15mm during rest and sustained phonation 

(Tian et al., 2010a; Tian et al., 2010b).  Although studies by Tian et al. (2010a and 2010b) 

examined numerous speech tasks, the data in these papers were not reported separately for each 

phoneme. The phonemes used in these studies, /a/, /i/, /z/, /m/, /f/ (Tian et al., 2010a) and /a:/, 

/i:/, /ts/, /m/ (Tian et al., 2010b) for the sustained phonation speech tasks vary significantly in 

their place and manner of production.    

The distance between the velar knee to the posterior pharyngeal wall showed variable 

differences across subjects between the upright and supine positions. This finding is not 

consistent with that of Perry (2011b) for adult females, where all subjects showed narrowing of 

the retrovelar space in the supine position. These differences could be due to variations in the 

adenoid pad size in the velopharyngeal cavity that are common in children who are in this age 

range. One subject presented with a mild gap during phonation of /i/. Because all subjects were 

judged to have clinically normal resonance, it is possible that, unknown to the researcher, this 

subject took a breath during the scan.  

Levator Veli Palatini Muscle Measure 

The length of the levator muscle was found to be shorter in the upright versus the supine 

position only for production of /s/, although differences were not statistically significant. This 
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minimal effect of gravity on levator muscle length (shortening) was observed at rest position 

primarily instead of during speech production tasks. This is consistent with findings by Perry 

(2011b). The percentage of contraction for both /i/ and /s/ productions were greater in the upright 

than in the supine position. The smaller percentage of contraction demonstrated for /i/ and /s/ 

productions in the supine position could be due to the caudal displacement of the soft palate and 

epiglottis when moving from the upright to the supine position as described as Suttipraporn et al 

(2008). In a similar study (supine position only) on Chinese children, only the extravelar lengths 

were reported (Tian et al., 2010a). The present study is the first study to provide the complete 

levator muscle length measurement for children in this age group. The levator muscle length 

obtained in this study is lesser than that reported by Ettema et al. (2002) on adult male and 

female subjects (Table A4). Although Kuehn et al. (2004) analyzed the levator muscle in 

children using MRI, no quantitative data were reported. 
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Table A4. 

Comparison of group means for levator muscle morphology analyses between current study and 

similar studies using MRI 

 

 

 

 

 

 

 

 

 

 

 

 

The findings for angles of origin (Table A4) were similar to that observed on levator 

muscle length (Ettema et al., 2002; Perry, 2011b). There was a decrease in angles of origin for 

rest position and production of /i/ in the supine position. Although nonsignificant, decrease in the 

angle was observed only for /s/ production. The mean levator angles of origin (mean, 55.06) and 

the levator origin widths (mean, 45.30) were similar to those reported in a previous study (mean, 

52.23; mean, 55.0, respectively) on Chinese children (Tian et al., 2010b).  

Clinical Implications 

The findings of this study provide applications to clinical practice. No studies have 

 

 

Subject 

Demograp

hics 

 

 

N 

Populat

ion 

Age 

Race 

Current 

study 

12  

Children 

(4-7 years) 

Black and 

White 

Perry (2010) 

4 

Adult females  

(30-36 years) 

White 

Ettema et al. 

(2002) 

10 

Adults males & 

females 

(21-53 years) 

White 

Angle of origin (˚) 

Rest 60.04 58 63 

/i/ 54.25 48 53 

/s/ 5.60 44 52 

Levator muscle length (mm) 

Rest 32.9 44 45 

/i/ 29.53 37 40 

/s/ 28.41 36 37 

Muscle contraction (%) 

/i/ 10.3 17 15 

/s/ 13.7 21 18 
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examined the feasibility of using upright MRI imaging to assess the velopharyngeal area in 

young children. In cleft palate, the major muscle of interest is the levator. MRI enables direct 

visualization of the levator muscle. Traditional supine imaging has been associated with the 

feeling of claustrophobia. Younger children (under 4 years of age) have to be sedated. However, 

modifications to the imaging protocol such as acclimating the subject to the process involved 

(through audio samples, rehearsals, and consistent reinforcement) can achieve successful results. 

In the present study, children as young as four years of age were imaged without any sedation at 

rest and during speech tasks. Magnetic resonance imaging is a promising diagnostic tool for 

enabling pre-surgical decisions in young children (Perry et al., 2011; Kuehn et al., 2000). 

Limitations of the Study 

 Although the magnetic resonance images were obtained with good resolution, motion 

artifacts were present. In instances where motion artifacts might have affected the image clarity 

for analysis, the scans were repeated. This was more evident on the sustained phonation tasks 

than for the scans taken at rest. Noise was noticeable on the sagittal and oblique coronal images. 

However, the levator muscle sling and the velar muscle boundaries could still be identified. It is 

likely that the scan time needs to be reduced to less than 5 seconds to be applicable to younger 

(3-4 years) populations. There is a trade-off however between spatial and temporal resolution 

that must be addressed to provide a more useful clinical protocol. Poor image quality can lead to 

less clear anatomical boundaries, which may not be useful when there is just a small gap. 

Another limitation of the study is the unequal division of subjects on the basis of race. There are 

more black subjects when compared to white subjects. Perry et al. (2013) reported no racial 

differences for the levator muscle length and angle of origin.  

 



48 

 

CONCLUSION 

In cleft palate research, the primary population for secondary surgery is children. This is 

the first study to provide normative levator muscle lengths for children between 4-8 years of age. 

This study provides successful imaging of children in an upright magnetic resonance scanner. 

The modified child-friendly protocol utilized in this study enabled successful scanning of all 

enrolled subjects. The results from this study indicate that positional variations do not 

significantly affect the velopharyngeal structures and musculature. Overall, the effect of gravity 

on velar (length, thickness, and height) and levator (length and angle of origin) muscle measures 

were minimal. Data obtained on a supine imaging scanner can be applied to an upright activity 

such as speech. Further benefits of upright imaging should be investigated in the difficult-to-test 

population. 
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CHAPTER 4 

STUDY II 

Racial Variations in Velopharyngeal and Craniometric Morphology in Children: An Imaging 

Study2 

ABSTRACT  

The purpose of this study is to examine craniometric and velopharyngeal anatomy among 

young children (4-8 years of age) with normal anatomy across two racial groups including Black 

and White. Thirty-two healthy children (16 White and 16 Black) with normal velopharyngeal 

anatomy participated and successfully completed the MRI scans. Measurements included 11 

craniofacial and nine velopharyngeal measures. Two-way analysis of covariance (ANCOVA) 

was used to determine the effects of race and sex on velopharyngeal measures and all 

craniometric measures except head circumference. Head circumference was included as a 

covariate to control for overall cranial size. Sex did not have a significant effect on any of the 

craniometric measures. Significant racial differences were demonstrated for face height. A 

significant race effect was also observed for mean velar length, velar thickness, and 

velopharyngeal ratio. The present study provides separate craniofacial and velopharyngeal values 

for young Black and White children. Data from this study can be used to examine morphological 

variations with respect to race and sex. 

 

                                                 
2 Kollara, L., Perry, J. L., & Hudson, S. (2016). Racial variations in velopharyngeal and craniometric morphology in 

children: An imaging study. Journal of Speech, Language, and Hearing Research, 59(1), 27-38. 

http://jslhr.pubs.asha.org/article.aspx?articleid=2469135&resultClick=3  

 

http://jslhr.pubs.asha.org/article.aspx?articleid=2469135&resultClick=3
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INTRODUCTION 

The velopharyngeal mechanism is a muscular valve that includes the velum, lateral 

pharyngeal walls, and posterior pharyngeal wall. Velopharyngeal function is accomplished 

through the combined action of several muscles including the levator veli palatini (levator), 

superior pharyngeal constrictor, musculus uvulae, palatoglossus, and palatopharyngeus (Seaver 

& Kuehn, 1980). The levator muscle is the primary muscle responsible for velar retraction and 

elevation. The muscle originates from the base of the skull and courses in a medial, inferior, and 

anterior direction to the insert into the body of the velum (Huang, Lee, & Rajendran, 1998; 

Moon & Kuehn, 2004). Studies have examined the velopharyngeal muscles using dissection 

(Barsoumian, Kuehn, Moon, & Canady, 2009; Mehendale, 2004), histology (Kuehn & Kahane, 

1990), electromyography (Kuehn & Moon, 1994), and muscle biopsy during surgery (Lindman, 

Paulin, & Stål, 2001). However, these are invasive methods for assessing muscle tissue and 

function. Magnetic resonance imaging (MRI) has been demonstrated to be a useful tool for 

imaging the velopharyngeal structures because of its ability to visualize the muscles, in vivo 

(Ettema, Kuehn, Perlman, & Alperin, 2002). There are currently no other imaging techniques 

that allow for a three-dimensional view of the velopharyngeal muscles in vivo.  

Studies have demonstrated the use of MRI in assessing levator muscle characteristics in 

adults with normal velopharyngeal anatomy (Ettema et al., 2002; Bae et al., 2011; Perry et al., 

2013) as well as in adults with repaired cleft palate and hypernasal speech (Ha et al., 2007). Ha 

et al. (2007) reported that subjects with residual hypernasality demonstrated levator muscle 

dimensions that were different from levator muscle features in adults without cleft palate. Perry, 

Kuehn, Sutton, and Gamage (2014) hypothesized that velopharyngeal structures vary based on 

sex and race among the adult population with normal anatomy. Velopharyngeal anatomy and 
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craniometric dimensions were assessed using a large sample size (N=89) distributed across three 

adult populations (Black, White, and Asian). Palate height, linear cranial base, face height and 

width, and levator length were found to have significant sex differences, with males 

demonstrating larger values compared to females. Craniometric measures including face width, 

linear base values, cranial base angle, and velar measures (velar length and thickness) were 

found to vary significantly based on race. The differences in mean levator muscle measures 

among three adult racial groups were not statistically significant; however, significant sex 

differences were noted across velopharyngeal muscles after removing the effect of the 

individual’s head size. Race and sex were found to have a significant effect on velar length and 

thickness.  

Studies using MRI in child populations have been slower to evolve due to decreased 

imaging speeds and difficulties in controlling motion artifacts. As such, MRI studies of the 

velopharyngeal anatomy among children with normal anatomy have been limited to small 

sample sizes (Tian et al., 2010a; Tian et al., 2010b; Tian et al., 2010c; Kollara & Perry, 2014). 

These studies have included White, Black, and Chinese child participants. However, no 

statistical analyses were conducted to examine velopharyngeal variations among different racial 

groups despite the significant racial differences found among adult participants (Perry et al., 

2014). There is a dearth of research on the levator muscle variations among children from Black 

racial groups. No studies have addressed whether the race and sex differences reported by Perry 

et al. (2014) are consistent among the child population. 

Research examining the effects of race and cranial morphology on velopharyngeal 

anatomy in children has been limited due to less advanced and slower imaging methods. 

Additionally, methods have not evaluated a child-friendly protocol on a large child data set using 
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behavioral and environmental modifications to limit motion artifacts. Research related to the 

anthropometric characteristics of the velopharyngeal mechanism in young children is important 

in providing insights that can guide our understanding of anatomic variations, such as in cleft 

palate anatomy. Anatomical data of the velopharyngeal mechanism in children are also valuable 

because this is the primary age group for determining secondary surgical needs related to 

velopharyngeal dysfunction.  

Studies have emphasized the importance of understanding the racial and sex variations in 

the velopharyngeal anatomy (Chung & Kau, 1985; Chung, Runck, Bilben, & Kau, 1986, Perry et 

al., 2014). More specifically, studies have discussed the use of pre-surgical anatomy data to 

guide proper surgical treatment options among children born with cleft lip and palate (Inouye, 

Pelland, Lin, Borowitz, & Blemker, in press). Finite element modeling of the velopharyngeal 

mechanism has provided support for pre-surgical planning that is guided by patient pre-surgical 

anatomy. Inouye et al. (in press) used computational modeling to demonstrate how variations in 

surgical maneuvers used in primary cleft palate repair can influence the outcome for proper 

muscle function. Inouye et al. (in press) further demonstrated how variations in pre-surgical 

anatomy influence the muscle function outcomes using a single surgical technique in cleft palate 

repair. Farkas, Katic, and Forrest (2007) highlighted the need for separate norms across different 

racial groups to guide and tailor craniofacial surgery. The paucity of normative three-

dimensional data is a significant obstacle for surgical stimulation procedures (Altobelli et al., 

1993). Perry et al. (2014) proposed that the racial and sex variations in velopharyngeal anatomy 

found among adults may indicate that a patient’s race and sex be features that inform the surgical 

treatment decisions in cleft palate care. Investigations of race and sex variations, however, have 

been limited to adult populations.  
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The purpose of this study was to examine the craniometric and velopharyngeal anatomy 

among young children (4-8 years of age) with normal velopharyngeal anatomy across two racial 

groups including Black and White. This study aims to provide preliminary data to improve our 

understanding of the velopharynx and cranial anthropometry across two racial groups. Consistent 

with the comparable adult findings (Perry et al., 2014), it was hypothesized that race would have 

a significant effect on craniofacial and velar structures in children. Given that the cranium houses 

the internal musculature, the predictive ability of cranial features in determining orientation and 

morphology of the levator muscle was also assessed.  

METHOD 

Participants 

In accordance with the approved Institutional Review Board proposal, 32 healthy 

children (16 White and 16 Black) were recruited. The participant group consisted of equal male 

and female groups by race including eight White males, eight White females, eight Black males, 

and eight Black females. All participants self-reported the same ancestry (African American or 

European American) across three generations (i.e., both parents and all four grandparents having 

the same race). Self-report is considered the gold standard for racial classification (Kaufman & 

Cooper, 2001). Participants were between four and eight years of age (M = 6.06, SD = 1.4), with 

mean height 46.4 inches (SD = 5.0) and mean weight 51.7 pounds (SD = 15.6). Black 

participants were on average 12 months older and of greater height (5.2 inches) and weight 

(18.84 pounds) compared to White participants. However, mean body mass index (BMI) 

between White and Black participant groups differed by an index of less than 1.5. Height (p = 

.003), weight (p = .001), and BMI (p = .044) were found to be significantly different for Black 



56 

 

and White groups based on paired t-test results. For these reasons, analyses of covariance were   

used, as described below in statistical analyses.  

The typical age for determining secondary surgical requirements in a child with repaired 

cleft palate and residual hypernasality is between four and eight years of age. This is also an 

important period for speech, language, and communication development.  Nine years has been 

reported to be the onset time for significant growth in the thickness of mid-facial tissue in Black 

children (Williamson et al., 2002). Hence, children between four and eight years of age were 

selected to participate in the study. The demographics of the participants are presented in Table 

B1. 

 

Table B1. 

Subject demographics with mean and standard deviation in parentheses 

 

 No. of 

Subjects 

Mean 

Age 

years 

Mean weight 

pounds 

Mean 

Height 

inches 

Mean head 

circumference 

millimeters 

Mean Body 

Mass Index 

(BMI) 

Subjects n M (SD) M (SD) M (SD) M (SD) M (SD) 

White 

Males 

8 5.54 (1.1) 42.09 (5.3) 44.07(4.6) 521.25 (20.3) 15.28 (1.5) 

White 

Females 

8 5.55 (1.5) 43.25 (9.8) 43.04 (3.6) 504.48 (11.5) 15.96 (1.69) 

Black 

Males 

8 6.32 (1.6) 67.10 (18.9) 49.06 (5.9) 517.05 (30.1) 17.71 (2.61) 

Black 

Females 

8 6.80 (1.1) 58.32 (16.7) 49.06 (4.3) 499.38 (26.1) 16.81 (2.02) 
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Participants were recruited through flyers placed in the community. Participants’ parents 

reported no history of congenital syndromes, neurological disorders, craniofacial anomalies, 

musculoskeletal disorders, or swallowing disorders that could potentially affect the regions that 

were investigated for the study. No children had a history of tonsillectomy or adenoidectomy. 

The participants were all native English speakers. A speech language pathologist administered an 

oral mechanism examination on all participants to assess the structural integrity of the 

articulators and to ensure all participants had normal oral structures and function. In addition, a 

perceptual rating scale was used to evaluate nasality. All participants were formally rated by two 

speech language pathologists (first and second authors) with experience in resonance using a 4-

point scale (0 = normal resonance; 3 = severe hypernasality) and determined to have normal oral-

to-nasal balance as indicated by a score of 0 on the rating scale. A perceptual evaluation was also 

conducted to rule out articulation errors for the targeted speech sounds for the study.  

Pre-scan training 

All participants underwent training before starting the MRI exam. An established child-

friendly protocol was used to familiarize the participants with the scanning process (Kollara & 

Perry, 2014). In brief, all participants were given MRI coloring sheets specifically designed for 

children to introduce them to the MRI study process. Participants were given the opportunity to 

explore the MRI machine with their parent and the investigator a few minutes before their 

respective MRI scans. Participants were encouraged to watch the participant being imaged 

before their assigned study time. To eliminate coercion, all participants were given time (5-10 

minutes) to adapt to the new environment. The investigator proceeded with the study only if the 

participants were fully comfortable with the procedure. The parent was in the scanning room for 

the duration of the scan. The investigator communicated with the participants throughout the 
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exam via a speaker-microphone system between the scanning and control rooms. The 

participants were frequently asked about their comfort level and were given a panic button. To 

minimize distractions, participants were allowed to listen to music during the duration of the 

scan. Small foam cushions were placed in the head coil on either side of the participant’s head to 

minimize motion artifacts.  

Magnetic Resonance Imaging 

Participants were scanned using two different scanners with the same MRI protocol. All 

participants were imaged at rest in the supine position. Magnetic resonance images were 

acquired on 19 participants using a 1.5 Tesla Philips Intera scanner (Philips, Eindhoven, 

Netherlands. A high resolution, T1- weighted turbo-spin-echo (TSE) 3D anatomical scan called 

SENSE was utilized. The remaining 13 participants were imaged using a 3.0 Tesla General 

Electronics scanner. The protocol used for this scanner included a three-plane localizer, 

midsagittal T2-fluid attenuation inversion recovery (FLAIR), and coronal, oblique coronal, and 

axial Fast Spin Echo (FSE) sequences. Scanning sequence protocols were designed to display 

similar image in-plane resolution using the same matrix (256 X 256), slice thickness (1.5 mm), 

spacing (0 mm), and pulse sequences (TE = 17 ms; TR = 3000 ms). This enabled comparison 

between MRI data obtained across the two study sites. 

Image analyses 

The MRI images were transferred into Amira 4 Visualization Volume Modeling software 

(Visage Imaging GmbH, Berlin, Germany). Amira has native Digital Imaging and 

Communication in Medicine (DICOM) support program that enables preservation of original 

geometry of the data.  
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Eleven craniofacial measures were obtained from the MRI data in the midsagittal and 

coronal image planes. A description and demonstration of each measure is provided in Table B2 

and Figure B1. The craniofacial measures include head circumference, nasion to sella, sella to 

basion, basion to opisthion, nasion to basion, hard palate length, pharyngeal depth, nasion-sella-

basion (NSB) angle, sella-basion-opisthion (SBO) angle, face height, and face width. 
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Table B2. 

Description of the 11 craniometric measures 

Measure Definition 

Head Circumference 

 

The maximal diameter of the head, measured around the 

frontal forehead and occiput, just above the brow line. 

 

Nasion to sella Linear distance from nasion to sella 

Sella to basion Linear distance from sella to basion 

Basion to opisthion Linear distance from basion to opisthion 

Nasion to basion Linear distance from nasion to basion 

Hard palate length 

(ANS to PNS) 

 

Distance from the anterior nasal spine to the posterior nasal 

spine 

Pharyngeal depth 

(PNS to basion) 

 

Distance from the posterior nasal spine to the basion 

NSB angle Inner angle formed between two intersecting lines, one 

connecting the nasion to sella and the other connecting basion to 

sella 

 

SBO angle Inner angle formed between two intersecting lines, one 

connecting sella to basion and the other connecting opisthion to 

basion 

 

Face height Distance from nasion to menton 

Face Width  Distance between the most lateral portions of the zygomatic 

arches  

 

 



61 

 

 

 

Figure B1.  Craniometric measures obtained in the midsagittal plane. Where N = nasion, S = 

sella, B = basion, O = opisthion, NSB = nasion-sella-basion angle, SBO = sella-basion-opisthion 

angle, ANS = anterior nasal spine, PNS = posterior nasal spine, M = menton  

Nine velopharyngeal measures were obtained in the midsagittal and oblique coronal 

image planes. The oblique coronal plane that displays the levator muscle sling in its entirety was 

obtained by resampling the midsagittal image. These measures included levator muscle length, 

extravelar length, intravelar length, origin to origin, velar insertion, angles of origin, velar length, 
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velar thickness, and velopharyngeal ratio (ratio of velar length to pharyngeal depth). The 

measures are described in Table B3 and demonstrated in Figures B1 and B2. The measurement 

procedures have been described previously (Kollara & Perry, 2014). 

 

Table B3. 

Description of the nine velopharyngeal measures  

 

Measure Definition 

Levator length Distance from the origin of the muscle at the base of the skull, through 

the middle of the muscle belly, and to the midline insertion at the 

velum. 

 

Extravelar length Distance of the levator veli palatini muscle from its origin at the base 

of the skull to its insertion into the body of the velum. 

 

Intravelar length Distance of the levator veli palatini muscle that is within the body of 

the velum. 

 

Origin to origin Distance between the points of origin of the levator veli palatini 

muscle on the right and left sides. 

 

Velar insertion Distance between where the levator veli palatini muscle inserts into the 

body of the velum on the right and left sides. 

 

Angles of origin Angle created between a reference line connecting the two origins of 

the levator muscle and the line drawn to measure the levator muscle 

length. 

 

Velar length Distance of a curvilinear line starting at the posterior nasal spine, 

coursing through the middle of the cross sectioned velum, to the tip of 

the uvula. 

 

Velar thickness Distance from the velar knee to the velar dimple. 

VP ratio  Velar length/Pharyngeal depth  
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Figure B2. Oblique coronal image demonstrating levator muscle. AO = Angle of origin  

 

Statistical Analyses  

Statistical analyses were conducted on 32 participants to determine racial and gender 

variations among the 11 craniometric and nine velopharyngeal measures and to determine the 

associations between the variables. The assumption of normality was adequately met for all 

group combinations of race and gender, as assessed by formal tests (Shapiro-Wilk’s test) and 

graphical representation (Q-Q plots). Homogeneity of variance was reasonably met for all 
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combinations of race and gender as assessed by the Levene’s test of homogeneity of variance 

and graphical representation (scatterplot of residuals versus predicted values). A two-way 

analysis of covariance (ANCOVA) was conducted to determine the relationship between race 

and sex and the means of the velopharyngeal and craniometric measures.  

Statistical analysis revealed a significant correlation between head circumference and 

height (r = .437, p = .012) and weight (r = .49, p = .004). The correlation between height and 

weight was also noted to be significant and highly correlated (r = .88, p = .000). Because the 

variables of height, weight, and head circumference were correlated, it was determined that it 

would be redundant to use all three variables as covariates are they are all examining similar 

features related to overall size of the subject. During changes in body weight, head 

circumference remains as a valid and reliable measure regardless of the individual’s overall size. 

Therefore, only the measure of head circumference was included as a covariate. Additionally, 

this variable was used because it is the closest anatomic structure to the dependent variables that 

can be measured reliably and then used to remove the effect of differences in individual size 

between participants. We excluded individuals who were obese (having a body mass index over 

30) due to the known increased velar thickness due to fatty tissue around the velar body (Horner 

et al., 1989). In the present study, fat pads were not observed in non-obese individuals despite 

their variations in height and weight. To determine how well craniometric measures could 

predict velopharyngeal muscle measures, multiple regression analyses were conducted. Given 

that the cranium serves as the muscle attachment, the analysis aimed to determine which fixed 

and bony craniofacial markers could best predict the arrangement and orientation of the 

respective soft muscle velopharyngeal measures. The Bonferroni method was used to adjust the 

significance level in order to account for multiple comparisons.  The adjusted significance levels 
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used were the significance level (.05) divided by 20 for the analyses of covariance and by eight 

for the regression analyses since there were 20 analyses of covariances and eight regression 

analyses conducted. 

Intra-rater and inter-rater reliability measures were established using the Pearson product 

moment correlation (α = .05). Both primary and secondary authors had experience in 3D MRI 

data processing. Reliability measurements were performed by measuring all variables from 13 

randomly selected participants two months after the first measurements were obtained. Intra-rater 

and inter-rater reliability ranged from r = .70 to r = .97. Paired t-tests were conducted to 

determine intra-rater and inter-rater differences. There were no statistically significant 

differences (p > .05) between the first and second measures by the primary author. For intra-rater 

reliability, the mean differences for the measures ranged from .02 mm to 1mm. There were also 

no statistically significant differences (p > .05) between the measures from the two authors. The 

mean differences for the measures ranged from .05 mm to 1.2 mm across raters.   

RESULTS 

Magnetic resonance images were obtained on all participants with 100% success rate. 

Group estimated marginal means for craniometric and velopharyngeal measures (differentiated 

by race and gender) are reported in Tables B4 and B5. A two-way analysis of covariance 

(ANCOVA) was used to determine the effects of race and sex on velopharyngeal measures and 

all craniometric measures except head circumference (Tables B6 and B7).  
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Table B4. 

Estimated (adjusted for head circumference) marginal means and standard deviations (in 

parenthesis) for each craniometric measures. Values are noted in millimeters, with the exception 

of the angle measures (in degrees). 

 

Measures  

White  

Mean 

Black  

Mean 

Combined 

Mean 

Male Female Male Female Male Female 

Head 

circumference 

521.2 

(7.9) 

504.4 

(7.9) 

512.8 

(5.5) 

517.5 

(7.9) 

498.1 

(5.5) 

507.8 

(5.5) 

519.3 

(5.5) 

501.3 

(5.5) 

Nasion-sella 55.0 

(1.4) 

55.5 

(1.4) 

55.3 

(1.0) 

56.0 

(1.4) 

52.3 

(1.5) 

54.1 

(1.0) 

55.5 

(1.0) 

53.9 

(1.0) 

Sella-basion 32.8 

(0.7) 

32.8 

(0.7) 

32.8 

(0.5) 

35.0 

(0.7) 

35.1 

(0.8) 

35.1 

(0.5) 

33.9 

(0.5) 

34 

(0.5) 

Basion-

opisthion  

38.7 

(1.3) 

39.0 

(1.3) 

38.9 

(0.9) 

36.0 

(1.3) 

39.0 

(1.4) 

37.5 

(0.9) 

37.3 

(1.0) 

39.0 

(1.0) 

Nasion-basion 80.1 

(1.4) 

80.5 

(1.3) 

80.3 

(0.9) 

82.4 

(1.3) 

80.03 

(1.4) 

81.2 

(0.9) 

81.2 

(1.0) 

80.2 

(1.0) 

Hard palate 

length 

42.9 

(2.4) 

45.8 

(2.3) 

44.4 

(1.6) 

40.9 

(2.3) 

43.56 

(2.4) 

42.2 

(1.6) 

41.9 

(1.7) 

44.6 

(1.7) 

Pharyngeal 

depth 

39.2 

(1.4) 

39.5 

(1.3) 

39.3 

(0.9) 

44.6 

(1.3) 

41.9 

(1.4) 

43.3 

(0.9) 

41.9 

(1.0) 

40.7 

(1.0) 

NSB angle 130.9 

(2.7) 

129.8 

(2.6) 

130.3 

(1.8) 

131.6 

(2.6) 

132.2 

(2.7) 

131.9 

(1.8) 

131.3 

(1.9) 

131.0 

(1.9) 

SBO angle 224.3 

(3.0) 

222.4 

(2.9) 

223.3 

(2.0) 

222.5 

(2.9) 

228.0 

(3.0) 

225.3 

(2.0) 

223.4 

(2.1) 

225.2 

(2.1) 

Face height 86.1 

(1.9) 

88.8 

(1.9) 

87.5 

(1.3) 

97.4 

(1.9) 

96.3 

(1.9) 

96.9 

(1.3) 

91.8 

(1.4) 

92.6 

(1.4) 

Face width 110.4 

(2.3) 

115.5 

(2.2) 

112.9 

(1.6) 

113.8 

(2.2) 

109.2 

(2.3) 

111.5 

(1.6) 

112.1 

(1.6) 

112.4 

(1.6) 
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Table B5. 

Estimated (adjusted for head circumference) marginal means and standard deviations (in 

parenthesis) for each muscle measures. Values are noted in millimeters, except for the angle 

measure (in degrees). 

 

Measures  

White  

Mean 
Black  

Mean 
Combined 

Mean 

Male Female Male Female Male Female 

Levator length 33.6 

(0.9) 

32.9 

(0.8) 

33.2 

(0.6) 

 35.8 

(0.8) 

 34.2 

(0.9) 

 35.0 

(0.6) 

 34.7 

(0.6) 

 33.5 

(0.6) 

Extravelar 

length 

23.6 

(0.9) 

 24.2 

(0.9) 

 23.9 

(0.6) 

 25.9 

(0.9) 

 25.5 

(0.9) 

25.7 

(0.6) 

 24.8 

(0.6) 

 24.8 

(0.6) 

Intravelar 

length 

17.9 

(1.5) 

 17.4 

(1.5) 

 17.7 

(1.0) 

 19.9 

(1.5) 

 18.2 

(1.5) 

 19.0 

(1.0) 

 18.9 

(1.1) 

 17.8 

(1.1) 

Origin-origin 49.1 

(1.5) 

 46.7 

(1.4) 

 47.9 

(1.0) 

 50.5 

(1.4) 

 47.7 

(1.5) 

49.1 

(1.0) 

 49.8 

(1.0) 

 47.3 

(1.0) 

Velar insertion 

distance 

18.5 

(0.9) 

 16.3 

(0.9) 

 17.4 

(0.6) 

 18.4 

(0.9) 

 16.3 

(0.9) 

 17.4 

(0.6) 

 18.5 

(0.6) 

 16.3 

(0.6) 

Angle of origin 56.8 

(1.7) 

 57.8 

(1.6) 

 57.3 

(1.1) 

 55.4 

(1.6) 

 55.7 

(1.7) 

 55.5 

(1.1) 

 56.1 

(1.2) 

56.7 

(1.2) 

Velar length 21.8 

(1.6) 

 23.1 

(1.6) 

 22.4 

(1.1) 

 30.3 

(1.6) 

 31.7 

(1.6) 

 31.0 

(1.1) 

 26.0 

(1.1) 

 27.4 

(1.1) 

Velar thickness  6.1 

(0.3) 

 6.5 

(0.3) 

 6.3 

(0.2) 

 8.8 

(0.3) 

 8.8 

(0.3) 

 8.8 

(0.2) 

 7.4 

(0.2) 

 7.7 

(0.2) 

VP Ratio .58 

(.07) 

.57 

(.04) 

.57 

(.05) 

.68 

(.11) 

.73 

(.07) 

.70 

(.09) 

.63 

(.10) 

.65 

(.09) 
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Table B6. 

Results from the ANCOVA models, analyzing the effects of sex and race on craniometric 

measures. Except for head circumference, test statistics represent the effect after adjusting for 

head circumference. * p < .05/20 = .0025. The eta-squared value (in parentheses) demonstrates 

the effect size for the data. Statistically significant results shown in bold font. 

 

Measures Sex Race Interaction  

(Sex & Race) 

Head circumference F1,28  = 5.217 

p = 0.030 (.15) 

F1,28 = .408 

p = 0.528 (.01) 

F1,28 = .027 

p = 0.160 (.00) 

Nasion to sella F1,27 = 1.074 

p = 0.309 (.03) 

F1,27 = .621 

p = 0.437 (.02) 

F1,27 = 2.086 

p = 0.528 (.07) 

Sella to basion F1,27 = .001 

p = 0.970 (.00) 

F1,27 = 8.460 

p = 0.007 (.23) 

F1,27 = .007 

p = 0.936 (.00) 

Basion to opisthion  F1,27 = 1.304 

p = 0.263 (.04) 

F1,27 = 1.056 

p = 0.313 (.03) 

F1,27 = 1.031 

p = 0.319 (.03) 

Nasion to basion F1,27 = 0.456 

p = 0.505 (.01) 

F1,27 = .433 

p = 0.516 (.01) 

F1,27 = 1.105 

p = 0.303 (.03) 

Hard palate length F1,27 = 1.142 

p = 0.295 (.00) 

F1,27 = .836 

p = 0.369 (.22) 

F1,27 = .002 

p = 0.966 (.05) 

Pharyngeal depth  F1,27 = .647 

p = 0.428 (.02) 

F1,27 = 8.337 

p = 0.008 (.23) 

F1,27 = 1.255 

p = 0.272 (.04) 

NSB Angle F1,27 = .008 

p = 0.929 (.00) 

F1,27 = .348 

p = 0.560 (.01) 

F1,27 = 0.097 

p = 0.758 (.00) 

SBO Angle F1,27 = .311 

p = 0.582 (.01) 

F1,27 = .427 

p = 0.519 (.01) 

F1,27 = 1.591 

p = 0.218 (.05) 

Face height  F1,27 = .146 

p = 0.706 (.00) 

F1,27 = 23.993 

p < 0.0005* (.47) 

F1,27 = .956 

p = 0.337 (.03) 

Face width  F1,27 = .014 

p = 0.905 (.00) 

F1,27 = .386 

p = 0.540 (.01) 

F1,27 = 4.605 

p = 0.041 (.14) 
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Table B7. 

Results from the ANCOVA models, analyzing the effects of sex and race on muscle measures. 

Test statistics represent the effect after adjusting for head circumference. * p < .05/20 = .0025. 

The eta-squared value (in parentheses) demonstrates the effect size for the data. Statistically 

significant results shown in bold font. 

Measures Sex Race Interaction 

(Sex & Race) 

Levator length  F1,27 = 1.491 

p = 0.233 (.05) 

F1,27 = 3.996 

p = 0.056 (.12) 

F1,27 = .256 

p = 0.617 (.00) 

Extravelar length F1,27 = .002 

p = 0.963 (.00) 

F1,27 = 3.677 

p = 0.066 (.12) 

F1,27 = 0.267 

p = 0.610 (.01) 

Intravelar length F1,27 = .439 

p = 0.513 (.01) 

F1,27 = .792 

p = 0.381 (.02) 

F1,27 = 0.173 

p = 0.681 (.006) 

Velar insertion distance F1,27 = 4.873 

p = 0.036 (.15) 

F1,27 = .002 

p = 0.968 (.00) 

F1,27 = 0.006 

p = 0.938 (.00) 

Origin-origin F1,27 = 2.605 

p = 0.118 (.08) 

F1,27 = .699 

p = 0.411 (.02) 

F1,27 = 0.015 

p = 0.902 (.00) 

Angle of origin F1,27 = .119 

p = 0.733 (.00) 

F1,27 = 1.166 

p = 0.290 (.04) 

F1,27 = 0.039 

p = 0.846 (.00) 

Velar length F1,27 = .599 

p = 0.446 (.02) 

F1,27 = 28.386 

p < 0.0005* (.51) 

F1,27 = 0.003 

p = 0.960 (.00) 

Velar thickness  F1,27 = .375 

p = 0.545 (.01) 

F1,27 = 55.4 

p < 0.0005* (.67) 

F1,27 = 0.379 

p = 0.543 (.01) 

VP Ratio  F1,27 = 3.610 

p = 0.068 (.11) 

F1,27 = 26.580 

p < 0.0005* (.49) 

F1,27 = 1.156 

p = 0.292 (.041) 

 

 

Effects of Sex and Race on Craniometric Measures 

Except in the case of head circumference, subsequent sections of this paper report the 

effects after removing the effects of the covariate of cranial size (Tables B6 and B7). Sex did not 

have a significant effect on any of the craniometric measures at the adjusted significance level of 

.0025 (Table B6). A significant racial effect was evident only for face height (F(1,27) = 23.99, p < 

.0005). Black participants had a significantly greater mean value for face height (p < .0025; 11% 
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increase) compared to White participants, as determined by the estimated marginal means. A 

small to moderate effect size (.47) was observed for face height. 

Effects of Sex and Race on Velopharyngeal Measures 

Sex did not have a significant effect on any of the velopharyngeal measures at the 

adjusted significance level of .0025 (Table B7). The extravelar segment of the levator muscle 

was found to be the same in males and females (M = 24.8mm) after removing the effect of head 

circumference. The levator muscle measures did not demonstrate a statistically significant effect 

for race (p > .0025). However, significant (p < .0005) racial differences were observed for mean 

velar length (F (1,27) = 28.3, p < .0005) and thickness (F (1,27) = 55.4, p < .0005). Black participants 

demonstrated a significantly longer (38% longer) and thicker (40% larger) velum compared to 

White participants after adjusting for head circumference. There were no significant interaction 

effects of sex and race on the muscle measures. There was a significant racial effect for 

velopharyngeal ratio (p < .0005), with Black participants demonstrating a larger ratio than White 

participants. Analyses showed a moderate to large effect size for velar length (.51) and thickness 

(.67). A small to moderate effect size was noted for velopharyngeal ratio (.49).  

Craniometric and Muscle Prediction Models 

Multiple linear regression models were used to determine whether craniometric measures 

could predict the levator muscle and velar configurations and shapes (Table D8). It was 

hypothesized that cranial features could predict levator muscle morphology and orientation given 

that the cranial base serves as the point of attachment of the levator muscle. Because some of the 

craniometric measures are strongly correlated, backward selection was used to obtain reduced 

regression models with fewer predictors. Four of the eight resulting models had significant 

predictive power (at adjusted significance level of p < .00625). These muscle measures include 
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velar length (R2 = .802), velar thickness (R2 = .571), levator length (R2 = .527), and extravelar 

length (R2 = .382). The three predictor model (hard palate length, PNS to basion, and NSB angle) 

model was able to account for 80.2% of the variability in the length of the velum, representing a 

strong model. The predictive model for extravelar length (hard palate length) could only account 

for 38.2% of the variability for this muscle measure, indicating a weak model. Hard palate length 

appeared to be the most common significant craniometric predictor, being present in two muscle 

prediction models which included extravelar length and velar length. 
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Table B8. 

 

Results from the multiple linear regression analyses. R2 value represents the proportion of 

variation in the dependent variable accounted for by the regression model. The regression 

equation represents the predictive model. * p < .05/8 = .00625. IV = independent variable. 

Coding for race: 0 = White, 1 =Black. Statistically significant results shown in bold font. 

 

Dependent 

variable 

Regression Equation R2 Predictors with 

abbreviation in 

parenthesis 

p-value 

for IV 

Levator 

Length 
�̂� = -104.455 

+.076(HC)+1.825(NS)+1.557(SB

)-1.810(NB)+.711(NSB) 

.527 

 

Head circumference 

(HC) 
.004 * 

Nasion to sella (NS) .002 * 

Sella to basion (SB) .003 * 

Nasion to basion (NB) .004 * 

NSB angle (NSB) .002 * 

Extravelar 

Length 
�̂� = -9.696+.043(HC)+.368(HP) .382 

 

Head circumference 

(HC) 

.025 

Hard palate length (HP) .003 * 

Origin-

Origin 
�̂� = -99.821+ .109(HC)+ 

2.196(NS)-

2.439(NB)+.460(HP)+.774(NSB) 

.484 

 

 

Head circumference 

(HC) 

.009 

Nasion to sella (NS) .019 

Nasion to basion (NB) .017 

Hard palate length (HP) .028 

NSB angle (NSB) .031 

Velar 

Insertion 
�̂� = -

42.246+1.468(NS)+1.310(SB)-

1.552(NB)+.459(NSB) 

.248 

 

Nasion to sella (NS) .014 

Sella to basion (SB) .017 

Nasion to basion (NB) .016 

NSB angle (NSB) .035 

Velar 

Length 
�̂� = -4.151+ 

.535(HP)+.814(PNS)-

.174(NSB)+3.716(race) 

.827 

 

Hard palate length (HP) .002 * 

PNS to basion (PNSB) .000 * 

NSB angle (NSB) .009 

Race  .005 * 

Velar 

Thickness 
�̂� = 3.869+2.208(race) .741 

 

Race  .000 * 

 

 

Multiple regression analyses were re-run for those muscle measures that demonstrated a 

statistically significant difference for race (based on ANCOVA results). The final regression 
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models are demonstrated in Table B8. These muscle measures included velar length and velar 

thickness. Race was included as a predictor in the regression models for both velar length and 

velar thickness. In the case of velar length, the R2 increased to .827 and the nasion to basion 

predictor was replaced by race. Significant differences were observed in the regression model for 

velar thickness. With race included as an independent variable with the craniometric predictors, 

the regression model revealed that race was the only significant predictor for velar thickness (p < 

.0005). The R2 value increased from .571 to .741. Thus, the regression model with just race as the 

predictor explains 74.1% of the variability in velar thickness. 

Qualitative Differences 

Magnetic resonance images demonstrating velopharyngeal anatomy in the midsagittal 

image plane are demonstrated in Figure B3. The top three images represent MRI data on Black 

participants and the bottom three images represent White participants. The most significant 

qualitative differences are a longer and thicker velum for the Black participants compared to the 

White participants. This finding is consistent with the quantitative findings from the present 

study. Consistent with the quantitative findings, no qualitative differences were observed for 

images in the oblique coronal image plane. All participants displayed a cohesive levator muscle 

sling with no separation of the levator muscle bundles from the velar midline (Figure B4).  
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Figure B3. Magnetic resonance images demonstrating qualitative differences in velar length and 

thickness across different racial groups in the midsagittal plane. Top row (left –right): 

7years/male; 6years/female; 5years/male. Bottom row (left-right): 7years/female; 4years/female; 

5years/male 
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Figure B4. Magnetic resonance images demonstrating cohesive levator muscle sling in the 

oblique coronal plane.  
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DISCUSSION 

The purpose of this study was to assess craniometric and velopharyngeal anatomy in 

young Back and White children using MRI. Magnetic resonance images were successfully 

obtained on all 32 children using a child-friendly scanning protocol with 100% success rate. 

Vannest et al. (2014) investigated the feasibility of successful completion of MRI scans in 158 

children between the ages of 2.5 and 18 years without the use of sedation as part of a large-scale 

neuroimaging research protocol. Two scan sessions were assessed per subject. The success rates 

for each session were 0.739 and 0.847 for children aged 2.5 to 6 years. The success rates were 

higher (over 0.900 for both subjects) for children 7 years and older. Results from the present 

study demonstrate the feasibility and application of our MRI methodology in providing 

qualitative and quantitative data on craniometric and velopharyngeal structures in young children 

as young as four years, without the use of sedation.  

Magnetic resonance imaging studies in children present with difficulties such as motion 

artifacts and behavioral constraints. As such, there is limited literature on craniometric and 

velopharyngeal structures among children across different racial groups without the use of 

sedation. Sedation adds significant cost as well as additional risks such as negative effects to 

anesthesia or sedation medication and suppression of normal breathing (Halliday and Kelleher, 

2013). The use of a laryngeal airway mask during sedation may also distort the positioning of oral 

structures and the velum at rest, which would be disadvantageous for any studies aimed at 

assessing velopharyngeal structural differences.  

Magnetic resonance imaging studies of the velopharyngeal anatomy for this population 

has been limited to small sample sizes (Tian et al., 2010a; Tian et al., 2010b; Tian et al., 2010c; 

Kollara & Perry, 2014). The present study improves on current literature by adding to the 
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craniofacial database on children, especially providing insight into the underrepresented Black 

child population. To our knowledge, this is the first study to demonstrate craniometric and 

velopharyngeal differences as a function of race in Black children between four and eight years 

of age. 

Findings from the present study demonstrate that craniometric measures did not vary 

significantly based on sex and that only one craniometric predictor (face height) varied 

significantly based on race. Studies have indicated that sexual dimorphism in children is evident 

closer to 14 years of age for most skeletal cranial structures (Ursi, Trotman, McNamara, & 

Behrents, 1993). Consistent with previous reports, there were no differences based on sex for the 

measures of sella to basion and NSB angle across participants (Lewis & Roche, 1977; Ursi et al., 

1993). Significant sexual dimorphism for the measure of nasion to sella was not observed as 

reported by Ursi et al. (1993). Anthropometric measures in the horizontal dimension such as 

facial width have been reported to differ significantly between older adult Black and White 

females, with Black females demonstrating greater facial width compared to White females 

(Porter & Olsen, 2001). No such significant race effects in the horizontal dimension were 

indicated in our data for the younger child population. The discrepant findings between children 

and adults regarding face width may be due to the effects of pubertal changes on craniofacial 

characteristics. 

Findings in the younger population in the present study are not consistent with variations 

reported in the adult population (Perry et al., 2014). The cranial measures of nasion to sella 

(Japanese < Black < White), sella to basion (Black < White < Japanese), NSB angle 

(White/Japanese < Black), and face width (White < Japanese/Black) were found to vary 

significantly in adults based on race (Perry et al., 2014). In the present study, it was found that 
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only facial height differed across the racial groups of Black and White. It has been established 

that there is a strong pubertal effect for cranial measures (Roche & Lewis, 1974; Ursi et al., 

1993). It is likely that data in the present study demonstrate a pre-pubertal effect of growth on 

skeletal and soft tissue measures in which differences seen in adults are not consistent with those 

among the pre-pubertal child population. Further studies should investigate the effects of sex and 

race differences as a function of pre- and post-pubertal growth changes. Contradictory findings 

on craniometric and velopharyngeal anatomy in adult and child populations further highlight the 

need for longitudinal data across the life-span on relevant craniometric and velopharyngeal 

measurements.  

A consistent trend was observed for the measures of sella to basion, pharyngeal depth and 

anterior cranial base angle (NSB angle), with Black participants having larger values for all three 

measures, thus contributing to a larger pharyngeal dimension. Black participants also 

demonstrated significantly greater face height values. In a similar study on adults (Perry et al., 

2014), it was hypothesized that although Black participants showed greater anterior to posterior 

distances, the increased length and thickness of the velum would counteract any differences in 

the velopharyngeal port dimensions. The authors, however, did not report objective measures 

regarding the velopharyngeal port ratio. Similarly, in the present study, it was thought that the 

increased length and thickness demonstrated by these participants would counteract any effects 

of race on the dimensions of the velopharyngeal port, as measured by the velopharyngeal ratio. 

However, a statistically significant racial effect was observed for this measure, which could be 

due to the pre-pubertal growth effects on the skeletal and pharyngeal morphology. 

Anthropometric studies have suggested that anatomic variations may predispose certain 

racial groups to clefting (Chung & Kau, 1985). Chung and Kau (1985) hypothesized that clefting 
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may be related to these morphological cranial variations, which in turn could be related to 

inherent craniofacial variations based on race. Current research aims to identify the relationship 

of genetics to cleft markers (Lidral & Moreno, 2005; Vieira et al., 2015). However, to our 

knowledge, no studies have investigated gene association related to clefting, across different 

racial groups. 

Velopharyngeal measures are consistent with data reported by previous studies (Kollara 

& Perry, 2014). Kollara and Perry (2014) reported data on similar velopharyngeal measures 

(velar length, velar thickness, levator length, and angles of origin), however, data were not 

separated by race or sex. In a similar study on adults (Perry et al., 2014), it was found that adult 

males demonstrated significantly longer extravelar and intravelar muscle segments compared to 

females. However, in the present study it was noted that males and females presented with the 

same extravelar length in this age group (M = 24.8mm), after removing the effects of cranial 

size. As such, there were no significant effects of sex on any of the velopharyngeal measures 

among the young child population. The effects of growth on the levator muscle measures 

warrants further investigation. Consistent with reported findings in adult participants (Perry et 

al., 2014), Black participants were observed to have a significantly longer and thicker velum in 

comparison to White participants. Future studies investigating similar velar variables may thus 

need to control for race but not sex.  

The levator muscle origin is bound by craniofacial structures and we anticipated that 

variations in skeletal craniofacial structures may affect the positioning of the levator muscle. As 

such, it was hypothesized that regression models could predict soft muscle measures from hard 

tissue (craniometric) structures. Predictive models with high R2 values were however only 

present for velar length and thickness. There are no significant predictive models for the levator 
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muscle measures.  Hard palate length was observed to be the more common craniometric 

predictor, as it was present in two muscle prediction models - extravelar length and velar length.  

The multiple linear regression analyses demonstrated in the present study may serve as a 

preliminary indicator of the potential utility of craniometric markers in assessing muscle 

morphology in clinical populations. It may be particularly relevant in clinically challenging 

populations such as in individuals with 22q11.2 deletion syndrome, where abnormal craniofacial 

and velopharyngeal characteristics are exhibited, but the relationship or effect that one may have 

on the other is not well understood. For example, studies have documented variations in hard 

palate length, cranial base angle, and velar length among this clinical population (Arvystas & 

Shprintzen, 1984; Heliovaara & Hurmerinta 2006; Ruotolo et al., 2006). Punjabi, Holshouser, 

D’Antonio, and Kuehn (2002) observed individuals with 22q11.2 deletion syndrome to have an 

abnormal levator muscle characterized as being thin and hypoplastic. However, no studies have 

determined if the abnormal levator muscle variables are correlated to abnormal cranial base 

values or if a shorter hard palate could result in a shorter velum. Further studies should 

investigate how prediction models can be incorporated into modeling and analysis of the 

biomechanics of the velopharyngeal port. 

It has been established that understanding normal anatomy is necessary in evaluating and 

determining dysmorphic anatomy (Perry, Kuehn, & Sutton, 2013). As such there is a need for 

continued research regarding the anatomy and function of the velopharyngeal mechanism. 

Recent work on computational modeling (Inouye et al., in press) has discussed the potential of 

using normal anatomical data to systematically investigate in vivo function of the velopharyngeal 

mechanism. The computational model in that study was built using MRI data from previously 

reported investigations and was used to determine how surgical parameters could be altered 
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using patient pre-surgical anatomy. Data from this study may add to the normative 

velopharyngeal and craniofacial database for children.  

Limitations of present study 

Limitations of the present study include a small sample size and the inclusion of only two 

racial groups (Black and White). Height and weight were not included as covariates (in addition 

to head circumference) due to the small sample size and the correlation among variables of 

height, weight, and head circumference. Horner et al. (1989) demonstrated obesity (BMI greater 

than 30) is associated with fatty tissue around the velum. Adult control participants who were not 

obese, yet showed variations in weight, did not display differences in velar thickness. No 

participants in the present study were classified as obese. However, studies have not 

demonstrated whether weight or height is correlated to any velar or pharyngeal measures among 

the child population. Another limitation of the study is the lack of muscle activity data during 

speech tasks. A limitation of these anatomical structural data is the lack of functional variations 

of the velopharyngeal musculature. Our laboratory is currently investigating the functional 

variations among child populations using dynamic MRI.  

CONCLUSION 

The MRI imaging methodology detailed in this study describes an effective means to 

assess craniofacial and velopharyngeal characteristics in young children without the use of 

sedation. Future investigations may adopt the behavioral protocol outlined in this study across 

larger study groups and for clinically challenging populations such as children with 22q11.2 

deletion syndrome. The present study provides separate craniofacial and velopharyngeal values 

for young Black and White children. Although there was no significant race effect on the levator 

muscle, significant racial variations were noted for velar length and thickness.  The paucity of 
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normative three-dimensional data is an obstacle for surgical stimulation procedures (Altobelli et 

al., 1993). Data from this study will add to the growing database of craniometric and 

velopharyngeal measurements for use in three-dimensional reconstruction and modeling, and can 

be used to examine morphological variations with respect to race and sex.  
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CHAPTER 5 

STUDY III 

Examining A New Method to Studying Velopharyngeal Structures in A Child with 22q11.2 DS3 

ABSTRACT 

To date, no studies have imaged the velopharynx in children with 22q11.2 deletion 

syndrome (22q11.2 DS) without the use of sedation. Dysmorphology in velopharyngeal 

structures has been shown to have significant negative implications on speech among these 

individuals. This single case study was designed to assess the feasibility of a child-friendly MRI 

scanning protocol in this clinically challenging population and to determine the utility of this 

MRI protocol for future work in this area. One 6-year-old White female diagnosed with 22q11.2 

DS was imaged using a child-friendly, non-sedated MRI protocol. Quantitative and qualitative 

measures of the velopharyngeal area and associated structures were evaluated and comparisons 

were made to age-matched control subjects with normal velopharyngeal anatomy. Magnetic 

resonance imaging data were successfully obtained using the child-friendly scanning protocol in 

the subject in the present study. Quantitative and qualitative differences of the levator muscle 

and associated velopharyngeal structures were noted. Using these MRI and structural analyses 

methods, insights related to muscle morphology can be obtained and considered as part of the 

research and clinical examination of children with 22q11.2 DS. The imaging protocol described 

in this study presents an effective means to counteract difficulties in imaging young children. 

                                                 
3 Kollara, L., Schenck, G. C., Perry, J. L., & Jaskolka, M. (2016). Examining A New Method to Studying 

Velopharyngeal Structures in A Child with 22q11.2 DS. Manuscript accepted with minor revisions for publication in 

the Journal of Speech, Language, and Hearing Research. 
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INTRODUCTION 

Approximately 75% of individuals with 22q11.2 deletion syndrome (22q11.2 DS) 

demonstrate structural velopharyngeal abnormalities (Chegar, Tatum, Marrinan, & Shprintzen, 

2006). The most common forms of palatal abnormalities reported are submucous cleft palate 

(44%), occult submucous cleft palate (38%), and overt cleft palate (18%) (Shprintzen, 2008; 

Veerapandiyan et al., 2011). Limited studies have investigated the characteristics of the velum 

and velar muscles in individuals with 22q11.2 DS. In a lateral cephalometry investigation, 

(Veerapandiyan et al., 2011) reported subjects with 22q11.2 DS to have decreased velar length, 

and an abnormal anterior location of velar dimple (normal anatomy = 80% of length of velum 

during phonation; 22q11.2 DS = 57.3%). Conversely, (Ruotolo et al., 2006) found no significant 

variations in velar length and thickness. These studies, however, have primarily used two 

dimensional assessment methods that cannot provide a view of velopharyngeal muscles. 

Additionally, radiation exposure during cephalometry limits the repeatability for use in the 

pediatric population.   

Magnetic resonance imaging (MRI) offers a significant benefit to understanding the 

complex velopharyngeal system because it is the only imaging modality that enables 

visualization of the internal musculature in vivo. The levator veli palatini (levator) muscle has 

been described as being thin and hypoplastic at rest in individuals with 22q11.2 DS (Punjabi, 

Holshouser, D'Antonio, & Kuehn, 2002). However, these findings have not been published and 

there are no quantitative data on the morphologic differences that exist in the levator muscle for 

this population when compared to individuals with normal velopharyngeal anatomy. Although 

morphological variations have been suggested in individuals with 22q11.2 DS, the exact nature 

and extent of this dysmorphology is still unknown. (Park, Ahn, Jeong, & Baek, 2015) presented a 
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quantitative analysis of the levator muscle thickness and symmetry in 17 children with 22q11.2 

DS. The authors compared findings among the study group to measures from children with 

submucous cleft palate, thus limiting the applicability of the results. Additionally, the study 

investigated only two variables (i.e., levator thickness and levator symmetry) and the MRI 

methods included the use of sedation. Sedation and the use of a laryngeal airway mask often 

distorts the positioning of the velum and oropharyngeal structures at rest. Obvious limitations of 

sedation further limit the use of MRI with sedation for research and clinical methods. Thus, a 

non-sedated imaging protocol that enables visualization of the velopharyngeal port and 

musculature without distorting the oral and pharyngeal structures is beneficial for advancing our 

knowledge and understanding of the muscle morphology and implications on speech outcomes 

among children with 22q11.2 DS. 

Behavioral constraints and motion artifacts are two core issues that limit the utility of 

MRI studies in the pediatric population, particularly for use in complex clinical cases such as in 

individuals with 22q11.2 DS. The utility of imaging protocols in children with normal 

velopharyngeal anatomy and children with cleft palate without craniofacial disorders syndromes 

has been described (Kollara & Perry, 2014; Kollara, Perry, & Hudson, 2016; Tian, Yin et al., 

2010; Tian, Li et al., 2010). However, no studies have attempted to translate a similar protocol 

across clinically complex cases such as children with 22q11.2 DS. Specific aversions, including 

those related to natural environment (e.g., loud noises and claustrophobia) are increasingly more 

common in children with 22q11.2 DS compared to children without such diagnosed syndromes 

(Antshel et al., 2006) which further limits the utility of MRI. These individuals also present with 

an increased risk of many psychiatric issues such as anxiety disorders, psychosis, mood 
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disorders, and attention deficit hyperactivity disorder (Tang et al., 2014). As such, traditionally, 

MRI data have been obtained in this population only with the use of sedation.  

Sedation, as commonly used during MRI, can be associated with adverse effects 

including a limited time window to complete the scan while under anesthesia, suppression of 

normal breathing, and additional medication side effects (Halliday & Kelleher, 2013). 

Additionally, as previously stated, the use of a laryngeal airway mask could distort the 

oropharyngeal areas of interest. To our knowledge, no studies to date have utilized MRI without 

sedation in young children with 22q11.2 DS to examine velopharyngeal muscle morphology and 

associated structures. The purpose of this study was to assess the feasibility of a child-friendly 

MRI scanning protocol to visualize the velopharyngeal musculature in a young child diagnosed 

with 22q11.2 DS, without the use of sedation. Additionally, results from this case study provide 

preliminary quantitative data of velopharyngeal structures and muscles in a young child with 

22q11.2 DS in comparison to an age matched non-cleft control group.  

METHOD 

Participant  

In accordance with the Institutional Review Board at East Carolina University 

(Greenville, NC), one 6-year-old White female diagnosed with 22q11.2 DS was recruited to 

participate in the study. The patient was initially referred to the Department of Communication 

Sciences and Disorders at East Carolina University for concerns related to articulation and 

resonance. The patient presented with a complicated surgical history, including multiple pressure 

equalization tubes, tonsillectomy and adenoidectomy completed at 3 years of age, and additional 

surgical procedures completed at a later age to remove residual regrowth of adenoidal tissue. 



91 

 

Adenoidectomy was reportedly done to alleviate recurrent respiratory infections. At the time of 

the referral, the patient was receiving speech therapy through her local school district for her 

articulation disorder. However, her speech-language pathologist had concerns related to 

resonance and minimal progress noted in speech therapy. Based on a comprehensive evaluation 

of articulation and resonance evaluation at our clinic, it was determined that the patient presented 

with compensatory articulation errors (i.e., primarily glottal stops), severe hypernasality (i.e., 

rating of 3 on a 4-point scale where 0=normal, 1=mild, 2=moderate, and 3=severe), and 

consistent audible nasal air emission. Results of the evaluation are provided below: 

Orofacial examination  

An orofacial examination revealed multiple characteristic features of 22q11.2 DS 

including a thin upper lip, bulbous nasal tip, protuberant ears, narrow palpebral fissures, and a 

straight facial profile. An oral mechanism exam revealed an intact palate with no signs of a 

submucous cleft palate (no bifid uvula, bony notch on posterior margin of hard palate, or zona 

pellucida). During sustained phonation of the vowel /ɑ/, velar elevation appeared minimal.  

Perceptual articulation and resonance assessments 

The patient demonstrated severe hypernasality across all speech tasks. Audible nasal air 

emission and facial/nasal grimacing during production of multiple pressure consonants were 

noted. The patient presented with cleft-specific compensatory articulation errors including glottal 

stops, mid-dorsum palatal stops, pharyngeal fricatives, and a posterior nasal fricative. Speech 

intelligibility was considerably affected based on the severity of velopharyngeal dysfunction and 

compensatory articulation errors. 
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Aerodynamic pressure flow 

The PERCI SARS pressure flow system (Microtronics, Chapel Hill, NC) was utilized to 

calculate mean velopharyngeal orifice size area in centimeters squared during the production of 

the single, bi-syllabic word “hamper”. The patient presented with a mean velopharyngeal orifice 

size area of 0.10 cm2, representing borderline-inadequate closure based on values defining 

adequate versus inadequate closure for oral consonants. 

MRI Behavioral Training  

To avoid negative side effects related to sedation, the MRI examination was performed 

without sedation using an established child-friendly behavioral protocol (Kollara & Perry, 2014; 

Kollara et al., 2016). The first step in the behavioral protocol was to familiarize the patient with 

the scanning process. The patient explored the MRI machine and scanning room with the parent 

before the exam. The MRI scanning experience was described to the child as a feeling of being 

in a spaceship to lessen the fear of participating in a medical exam. There was no coercion, and 

the investigator proceeded with the study only after determining that the patient was comfortable 

with the scanning process. The parent was in the scanning room for the entire duration of the 

scan. The investigator communicated with the patient throughout the exam via a speaker-

microphone system between the scanning and control rooms. The patient was frequently asked 

about her comfort level and given a panic button. The patient listened to music through 

headphones during the MRI study to minimize distraction and to increase patient comfort. Small 

foam cushions were placed in the head coil on either side of the patient’s head and the patient 

had her hand wrapped around a pillow to minimize motion artifacts. 
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Imaging protocol  

The patient was scanned in the supine position. Magnetic resonance images were 

acquired using a 1.5 Tesla Philips Intera scanner and a high resolution, T1- weighted turbo-spin-

echo (TSE) 3D anatomical scan utilizing SENSE (Sensitivity Encoding) technology. The total 

time in the MRI magnet for the scan session was approximately 20 minutes. Anatomical scans 

were obtained in the sagittal and oblique coronal image planes at rest. The MRI images were 

transferred into Amira 5 Visualization Volume Modeling software (Visage Imaging GmbH, 

Berlin, Germany). Amira has a native Digital Imaging and Communication in Medicine 

(DICOM) support program that enables preservation of original geometry of the data.  

The quantitative measures included levator muscle length, origin to origin distance, 

levator muscle angle origin, velar length, velar thickness, and the posterior nasal spine (PNS) to 

posterior pharyngeal wall distance (PPW). The measures were chosen based on comparable 

studies in literature (Kollara et al., 2016; Perry, Kollara, Kuehn, Sutton, & Fang, 2016; Ruotolo 

et al., 2006; Veerapandiyan et al., 2011). The measures are described in detail in Kollara et al. 

(2016) and (Perry et al., 2016). In brief, the levator muscle length refers of the length of the 

levator muscle measured from its origin at the base of the skull to its insertion into the velum. 

Origin to origin is measured as the distance between the points of origin of the levator muscle on 

the right and left sides. Levator muscle angle origin is the angle at which the levator muscle 

descends from the base of the skull. The length of the velum is measured from the PNS to the tip 

of the uvula and its thickness is the distance from the velar knee to the velar dimple. 
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RESULTS AND DISCUSSION 

Magnetic resonance imaging data were successfully obtained using the child-friendly 

scanning protocol in the young participant with 22q11.2DS. Behavioral imaging protocols have 

been found to be effective in non-syndromic children and children with cleft palate (Kollara & 

Perry, 2014). Results from this study indicate that this protocol can be translated to a population 

with known psychiatric issues such as anxiety disorders and psychosis. A non-sedated imaging 

protocol has advantages such as minimizing significant medical costs and eliminating risks such 

as adverse effects to sedation medication. Studies have expressed concerns that anesthesia may 

have a negative effect on neurologic development and function (Loepke & Soriano, 2008; Sun, 

2010). As such, the applications of a non-sedated imaging protocol as described in this case 

report may be advantageous across various clinical settings.  

Using this described MRI protocol, the levator muscle was visualized in the oblique 

coronal image plane and multiple image planes provide additional views of the velopharyngeal 

portal and musculature. These are insights that cannot be obtained using traditional imaging 

methods commonly used in this clinical population, such as nasopharyngoscopy and 

cephalometry. Qualitatively, the levator appeared as a small U-shaped muscle arrangement with 

no suspected attachment of a segment of the levator fibers to the posterior margin of the hard 

palate (Figure C1).  
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Figure C1. Side-by-side comparison of the levator muscle in the oblique coronal image plane. 

The patient (left image) demonstrates a thinner, U-shaped levator muscle compared to an age- 

and sex-matched control (right image). 

 

However, the muscle appeared thin and reduced in overall size (length) compared to an 

age- and sex-matched control on the oblique coronal image (Kollara et al., 2016; Perry et al., 

2016). Quantitative data obtained in the oblique-coronal and midsagittal image planes were 

compared to an age-matched normative cohort reported by Perry et al. (2016) (Table C1).  
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Table C1.  

Velopharyngeal measures in comparison to an age matched cohort. Mean for all velopharyngeal 

variables represented in mm with the exception of angle of origin degree (represented in 

degrees) 

Measures Patient’s 

values 

6 year old cohort (Perry et al., 

2015) 

Levator muscle length 23.20 35.0 (4.7) 

Origin to origin 27.89 56.0 (4.8) 

Levator muscle angle of origin 80.4 55.8 (4.2) 

Velar length 16.5 27.0 (3.3) 

Velar thickness  5.3 7.4 (1.4) 

PNS to PPW  25.1 19.1 (4.8) 

 

Quantitative analyses revealed the levator muscle to be substantially shorter (23.20 mm) 

in the patient with 22q11.2 DS compared to the normative data (M = 35.0, SD = 4.7). A 

decreased distance between levator muscle origins (27.89 mm) at the cranial base was also noted 

(mean for control group = 56.0 mm). It was of interest to note that the angle at which the levator 

muscle descends from the skull base was closer to 90 degrees rather than the typical acute angle 

value seen in control subjects (M = 55.8, SD = 4.2). This observation may be due to cranial base 

variations that are commonly reported in the 22q11.2 DS population (Arvystas & Shprintzen, 

1984; Ruotolo et al., 2006). 

Additional velopharyngeal measures were analyzed in the midsagittal image plane 

(Figure C2). Consistent with findings reported in previous investigations (Veerapandiyan et al., 

2011), the velum was shorter (16.5 mm) and thinner (5.3 mm) in the patient with 22q11.2 DS 

compared to the normative cohort group. These findings are not consistent with reports by 

(Ruotolo et al., 2006), where no significant variations in velar length and thickness were noted 
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for 5 children across dissimilar periods of growth (2.9-7.9 years) with 22q11.2 DS. The PNS to 

PPW distance was greater (25.1 mm) in the study subject with 22q11.2 DS compared to the 

normative cohort (M = 19.1, SD = 4.8), suggesting a larger pharyngeal depth. 

 

 

Figure C2. Side-by-side comparison of velopharyngeal structures in the sagittal image plane. 

The patient (left image) demonstrates a short, thin velum compared to an age- and sex-matched 

control (right image). 

 

Limitations of this investigation include the lack of statistical comparisons to a normative 

cohort and a limited sample size. Future studies should assess the feasibility of this protocol 

across a larger group of children with 22q11.2 DS and across other clinically challenging 

populations. Using this described MRI and structural analysis methods described in this report 

provide a qualitative and quantitative approach to investigating muscle dysmorphology among a 

challenging clinical population. It is likely that muscle variations among this group may explain 
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the clinical speech findings and inform the surgical outcomes among this particular clinical 

population. The behavioral protocol outlined above can also be used to obtain functional data 

across speech tasks to assess the integrity of the velopharyngeal musculature and the 

velopharyngeal port characteristics during speech production. Given the increased risk of 

psychiatric morbidity in these patients, a behaviorally friendly protocol is beneficial in the area 

of MRI assessment for this population.  

CONCLUSION 

This innovative clinical report describes a safe and effective method to obtain MRI data 

in a clinically challenging population without the use of sedation. Preliminary results from this 

investigation indicate that individuals with 22q11.2 DS may present with unique velopharyngeal 

variations, particularly related to muscle dysmorphology. Future studies may adopt the 

behavioral and clinical protocol outlined in this investigation across larger study samples.  
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CHAPTER 6 

STUDY IV 

Variations in Craniofacial and Velopharyngeal Structures among Children with 22q11.2 Deletion 

Syndrome 

INTRODUCTION     

22q11.2 deletion syndrome (22q11.2 DS) also known as velocardiofacial syndrome, is 

the most common genetic cause of velopharyngeal dysfunction (Shprintzen, 2008). 

Velopharyngeal dysfunction may be caused due to structural or neurologic issues which 

adversely affects the closure of the velopharyngeal mechanism. Several factors have been 

hypothesized to predispose an individual with 22q11.2 DS to velopharyngeal dysfunction, 

including platybasia (abnormal obtuse angulation of the skull base), palatal anomalies, thin velar 

and pharyngeal tissues, abnormal palatal and pharyngeal fibers, and adenoid hypoplasia. 

Variable findings have been reported related to the bony facial and cranial structures in 

individuals with 22q11.2 DS (Arvystas & Shprintzen, 1984; Dalben Gda, Richieri-Costa, & 

Taveira, 2010; Heliovaara & Hurmerinta, 2006; Ruotolo et al., 2006; Shprintzen & Golding-

Kushner, 2008). Shprintzen (2008) reported individuals with 22q11.2 DS to have a flattened 

skull base resulting in a greater pharyngeal depth. Other reports have found no significant 

differences in the depth of the bony pharynx, nasopharynx, or oropharynx (Dalben Gda et al., 

2010; Ruotolo et al., 2006). Numerous studies have demonstrated a more obtuse cranial base 

angle in individuals with 22q11.2 DS compared to normative control groups (Arvystas & 

Shprintzen, 1984; Heliovaara & Hurmerinta, 2006; Ruotolo et al., 2006) while other studies 

found no such variation (Dalben Gda et al., 2010; Glander & Cisneros, 1992; Veerapandiyan et 
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al., 2011). Cervical abnormalities including cervical vertebrae 1 (C1) anterior arch absence or 

hypoplasia, shorter cervical height (C1 to C2) and length measures have been reported to be 

present among individuals with 22q11.2 DS (Veerapandiyan et al., 2011) 

Velopharyngeal structural abnormalities are observed in approximately 75% of 

individuals with 22q11.2 DS (Chegar, Tatum, Marrinan, & Shprintzen, 2006). Ruotolo et al. 

(2006) observed a greater velopharyngeal width (distance between lateral pharyngeal walls), 

increased osseous pharyngeal depth (poster nasal spine to C1), and increased ratio of osseous 

pharyngeal depth to velar length among children with 22q11.2 DS compared to non-syndromic 

aged-matched control participants. Additional findings include reduced adenoid tissue in the 

nasopharyngeal cavity, tonsillar hypertrophy, and reduced movement of the lateral pharyngeal 

walls (Ysunza, Carmen Pamplona, & Santiago Morales, 2011). Veerapandiyan et al. (2011) 

reported velar findings including a short and thin velum, however, Ruotolo et al. (2006) did not 

observe such variations. 

Heliovaara and Hurmerinta (2006) observed individuals with 22q11.2 DS to have a wide 

nasopharyngeal area (Veerapandiyan et al., 2011), narrow hypopharyngeal area, delayed 

development and reduced length of hyoid bone, and larger hyoidal gaps (fusion of hyoidal cornu 

major and base) compared to age- and sex-matched controls using cephalometric analyses. 

Conversely, data on 18 Brazilian individuals with 22q11.2 DS compared to age- and sex-

matched control groups indicated individuals with 22q11.2 DS have no significant differences in 

depth of the bony pharynx (distance between posterior nasal spine and basion), nasopharynx, and 

oropharynx (Dalben Gda et al., 2010). Due to lack of correlation between findings, it is difficult 

to fully ascertain if velopharyngeal insufficiency can be attributed to larger pharyngeal 

dimensions as postulated by Arvystas and Shprintzen (1984). 
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Little is known about the internal velar musculature among individuals with 22q11.2 DS. 

Conference proceedings (Kuehn, 2003; Punjabi, Holshouser, D'Antonio, & Kuehn, 2002) have 

suggested the possibility of hypoplasia of the levator veli palatini (levator) muscle and anteriorly 

attached levator muscle fibers. The levator muscle is the primary muscle responsible for velar 

elevation, aiding in velopharyngeal closure. However, these findings have not been published. A 

recent investigation on the thickness and symmetry of the levator muscle in individuals with 

22q11.2 DS revealed these individuals have thin and asymmetrical levator muscle bundles (Park, 

Ahn, Jeong, & Baek, 2015). However, findings among individuals with 22q11.2 DS were 

compared to a non-syndromic submucous cleft palate group and not a normative age-matched 

non-cleft cohort. This study also did not examine additional velopharyngeal and muscle features 

nor provide a description of how these features relate to levels of resonance disorder. Lastly, 

Park et al. (2015) used sedation which is known to have adverse side effects such as a limited 

time window to complete the scan while under anesthesia, suppression of normal breathing, and 

additional medication side effects (Halliday & Kelleher, 2013). Although not stated, the use of a 

laryngeal mask airway commonly used with sedation, distorts the oral and pharyngeal spaces and 

can produce variations in velar measures (Perry, Kuehn, Sutton, Goldwasser, & Jerez, 2011). No 

published studies to date have utilized MRI to image this clinically challenging group, 22q11.2 

DS, without the use of sedation.  

Surgical options for velopharyngeal dysfunction in individuals with 22q11.2 DS may 

include Wardill push-back, Furlow palatoplasty, palatopharyngoplasty (using minimal levator 

veli palatini incisions), pharyngeal flaps, and sphincter pharyngoplasties, and less common 

options including fat injections (Ysunza, Pamplona, Ortega, & Prado, 2008; Ysunza, Pamplona, 

Molina, & Hernandez, 2009). Pharyngeal flap techniques have shown to be less effective in 
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individuals in 22q11.2 DS when compared to non-syndromic cleft palate groups (Losken, 

Williams, Burstein, Malick, & Riski, 2006). In individuals with 22q11.2 DS, the revision rates 

for sphincter pharyngoplasty were reported to be twice as high when compared to non-syndromic 

cleft palate cases (Witt, Cohen, Grames, & Marsh, 1999). In a retrospective review of four 

individuals with 22q11.2 DS who underwent Furlow double-opposing Z-palatoplasty for primary 

repair, it was reported that none demonstrated adequate velopharyngeal closure (D-Antonio, 

Davio, Zoller, Punjabi, & Hardesty, 2001). Milczuk, Smith, and Brockman (2007) observed 

speech improvements following surgery for velopharyngeal dysfunction, however, results were 

consistently far worse compared to individuals with non-syndromic cleft palate. This discordance 

in outcomes highlights the significant need for research related to the morphological variations 

that exist for this population.  

The cranium serves as the point of attachment for the levator muscle. Certain 

craniometric measures may have an influence on velopharyngeal parameters due to close 

anatomic proximity to the velopharyngeal port. Perry, Kuehn, Sutton, Gamage, and Fang (2016) 

and Kollara, Perry, and Hudson (2016) hypothesized that craniofacial markers may predict 

velopharyngeal structures and muscles in adults and children with normal velopharyngeal 

anatomy. A limitation of commonly used imaging modalities such as nasopharyngoscopy, multi-

view videofluoroscopy and computed tomography include a limited viewpoint to visualize a 

three-dimensional velopharyngeal port. No studies to date have examined the interaction of 

craniometric variables relative to the velopharyngeal mechanism in children with 22q11.2 DS. 

The aims of this study were: 1) to examine craniofacial and velopharyngeal characteristics 

among children with 22q11.2 DS in comparison to a non-syndromic cohort using a non-sedated 

MRI scanning protocol (Kollara et al., 2016) and 2) to determine whether craniometric measures 
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can predict velopharyngeal structure and muscle configurations in children with 22q11.2 DS and 

in an age and sex-matched comparative cohort group of children with normal velopharyngeal 

anatomy. 

METHOD 

Participants 

In accordance with the approved Institutional Review Board proposals at East Carolina 

University and Nationwide Children’s Hospital, a total of 30 participants completed the study. 

The 22q11.2 DS group consisted of 15 children (six males; nine females) diagnosed with a 

22q11.2 deletion as confirmed by fluorescence in situ hybridization analysis or microarray. The 

mean age for this groups was 8.04 years (SD = 2.7). Exclusion criteria for the participants with 

22q11.2 DS included evidence of an overt cleft palate or history of cleft palate surgery that could 

potentially affect the regions that were investigated for the study. These participants also did not 

have any other genetic diagnoses and were no less than six months post adenoidectomy or 

tonsillectomy. The control group consisted of 15 children (six males; nine females) with normal 

velopharyngeal anatomy. The mean age for this group was 7.53 years (SD = 2.1).  These control 

participants had no reported history of congenital syndromes or craniofacial anomalies. 

In a child with repaired cleft palate and residual hypernasality, the typical age for 

determining secondary surgical requirements is between four and eight years of age. This is also 

an important period for speech, language, and communication development. In children with 

22q11.2 DS, surgical decisions for velopharyngeal dysfunction are often delayed due to 

associated medical issues or significant speech-language delays. This investigation also 

represents the first large scale attempt to image children with 22q11.2 DS without sedation. For 

these reasons, children between four and 12 years of age were recruited for this study and age 
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effects were controlled in the statistical analyses. All participants were native English speakers. 

The control group was sex matched to the 22q11.2 DS group to control for the effects of sex on 

the variables. Resonance was rated for all participants on a 4-point scale (0 = normal resonance, 

1 = mild hypernasality, 2 = moderate hypernasality, 3 = severe hypernasality) by two trained 

speech language pathologists. All participants in the control group demonstrated normal 

resonance (rated as a 0 on the 4-point scale).  Out of the 15 participants in the 22q11.2 DS group, 

five participants had normal resonance, seven participants had mild hypernasality, one 

participant had moderate hypernasality, and two participants had severe hypernasality. 

The MRI procedures were systematically conducted as described below: 

Behavioral Adaptations 

First, it was determined if an MRI exam would be feasible with the participant using the 

MRI simulator. The MRI simulator is a smaller mockup of the MRI scanner. The scanner bed 

can move in and out of the tunnel so participants can lay in it and experience what it would be 

like to be in the MRI scanner. The simulator makes the noises made by the MRI scanner. A small 

motion tracking device goes around the participant’s head and lets the researchers know how 

much the participant is moving. Each of the participants were in the scanner for 3-5 minutes and 

the researchers determined whether or not the participant could tolerate the noises while holding 

still. Once it was determined that the child could undergo the MRI exam, the actual MRI exam 

was initiated. The MRI simulator procedure was conducted in collaboration with the child life 

specialists team at Nationwide Children’s Hospital. Child life specialists are pediatric health care 

professionals that help children and families cope with the challenges of hospitalization and 

prepare for medical procedures. The utilization of child life interventions may decrease the 

number of pediatric MRI patients who require sedation (Durand, Young, Nagy, Tekes, & 
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Huisman, 2015). In the present study, the use of child life interventions was an additional benefit 

to children with 22q11.2 DS who appeared to have a propensity to anxiety as evidenced in the 

mock scanner.  

There was no use of sedation for any of these MRI exams. We utilized a child-friendly 

MRI protocol (Kollara & Perry, 2014; Kollara, Schenck, Perry, & Jaskolka, 2016; Kollara et al., 

2016) which outlines steps to prevent potential pitfalls associated with MRI. In brief, numerous 

steps were taken to ensure comfort of the participants throughout the exam. All participants were 

acclimated to the MRI exam by having them watch a video of a child undergoing a non-sedated 

MRI exam. Participants were also encouraged to explore the MRI scanner (e.g., walking around, 

practice being wheeled in and out of the scanner). All participants had a foam pad in their lap to 

wrap their hands around and a foam wedge to place their feet during the scan to minimize 

artifacts related to motion. An adult (family or researcher) was in the scanning room with the 

participant during the duration of the MRI scan. Participants watched a movie that they picked 

out and communicated with the researcher through headphones and a speaker microphone during 

the scanning process.  

MRI Study 

Preliminary studies have demonstrated the validity and reliability of using MRI protocols 

in young children with normal anatomy (Kollara et al., 2016; Perry, Kuehn, Sutton, & Fang, 

2016; Tian, Yin, et al., 2010; Tian, Li, et al., 2010). No significant differences have been 

reported regarding the position (upright versus supine) in which MRI data are collected (Kollara 

& Perry, 2014; Perry, 2011). A Velcro-fastened elastic strap was positioned above the level of 

the glabella and fastened to the head coil to minimize motion artifacts during the scan. 



108 

 

Behavioral modifications were in place to ensure accurate data collection. Measures were 

obtained while the participant was at rest during nasal breathing.  

Participants were imaged across three MRI sites using MRI sequences with comparable 

imaging parameters. MRI site one used a Siemens 3 Tesla Trio system (Erlangen, Germany) and 

a 3D turbo-spin-echo (TSE) sequence called Sampling Perfection with Application optimized 

Contrasts using different flip angle Evolution (SPACE) with repetition time of 2,500 ms, echo 

time of 268 ms, echo train length of 171, 0 mm spacing, and .8 mm slice thickness. MRI site two 

used a Siemens 3 Tesla Skyra system (Erlangen, Germany) and a similar 3D turbo-spin-echo 

(TSE) sequence called SPACE with repetition time of 2,500 ms, echo time of 266 ms, 0 mm 

spacing, and .8 mm slice thickness. MRI site three utilized a 3 Tesla General Electric scanner and 

used a T2-fluid attenuation inversion recovery (FLAIR; same specifications as the TSE), and 

coronal and oblique coronal Fast Spin Echo (FSE) sequences. 

Image Analyses  

All MRI images were transferred into Amira 6 Visualization Volume Modeling software 

(Visage Imaging GmbH, Berlin, Germany) after data collection. Amira has a native Digital 

Imaging and Communication in Medicine (DICOM) support program. The DICOM support 

system enables preservation of original geometry of the data. 

Eight craniofacial measures were selected based on their proximity to the velopharyngeal 

port, relationship to velopharyngeal musculature, and comparative studies in the literature. The 

measures include: nasion-to- sella, sella-to-basion, basion-to-opisthion, nasion-to-basion, ANS-

to-PNS, NSB angle, SBO angle, and face height. The measures are described in Table D1 and 

demonstrated in Figure D1. 
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Table D1.  

Description of craniofacial and velopharyngeal measures  

Measure Description 

Nasion - sella Linear distance from nasion to sella 

Sella - basion Linear distance from sella to basion 

Basion - opisthion  Linear distance from basion to opisthion 

Nasion - basion Linear distance from nasion to basion 

ANS - PNS Distance from the anterior nasal spine to the posterior nasal spine 

NSB angle  Inner angle formed between two intersecting lines, one connecting the nasion to sella 

and the other connecting basion to sella 

SBO angle  Inner angle formed between two intersecting lines, one connecting sella to basion 

and the other connecting opisthion to basion 

Face height  Distance from nasion to menton 

Velar length  Length of the velum from the posterior nasal spine to the tip of the uvula 

 

Effective velar length  Distance from the PNS to the middle of the levator sling where it inserts into the 

body of the velum  

Velar thickness Distance from the velar knee to the velar dimple 

Pharyngeal depth Distance from the posterior nasal spine (PNS) to the posterior pharyngeal wall(PPW) 

along the palatal plane 

Velar knee-PPW Distance from the velar knee to the posterior pharyngeal wall 

PP to C1 Distance from the anterior tubercle of the first cervical vertebrae to the palatal plane 

reference line, measured parallel to the pharyngeal wall  

VP depth at C1 Depth of the velopharyngeal port measured at the level of the first cervical vertebrae  

Adenoid thickness Determined by measuring the nasopharyngeal margin of the adenoid tissue to the 

intersection of two reference lines – horizontal line through palatal plane and vertical 

line along the posterior pharyngeal wall  

Sagittal angle  Angle created by drawing a line along the anterior boundaries of vertebrae three and 

four and a line coursing along the sagittal plane of the levator muscle. This angle 

represents the steepness of the levator muscle as it converges toward the velum from 

the muscle origin. 

VP ratio Velar length/Pharyngeal depth 

SPC thickness The average of the thickness of the superior pharyngeal constrictor muscle measured 

at three points – the level of the first cervical vertebra, the midpoint of the second 

cervical vertebra, and the inferior aspect of the second cervical vertebra 

Levator length  Length of the levator muscle from its origin at the base of the skull to its insertion at 

the velum 

Levator thickness The thickness of the levator muscle measured on the lateral one-fourth point, 

midpoint, and medial one-fourth point  

Origin to origin Distance between the right and left points of origin of the levator muscle 

Velar insertion 

distance 

Distance between where the levator muscle inserts into the body of the velum on the 

right and left sides  

Levator angles of 

origin 

Angle created between a reference line connecting the two origins of the levator 

muscle and the line drawn to measure the levator muscle length. 

Nasovelar surface  Thickness of the area between the nasal surface of the velum and the intravelar fibers 
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Figure D1. Craniofacial measures  

Seventeen velopharyngeal measures were obtained from the MRI data in the midsagittal 

and oblique coronal image planes. The measures are described in Table D1 and demonstrated in 

Figure D2. The measures were selected based on comparable studies in the literature. The 

measures obtained in the midsagittal image plane include: velar length, effective velar length, 

velar thickness, pharyngeal depth, velar knee-posterior pharyngeal wall (PPW), palatal plane 
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(PP) to C1 (first cervical vertebrae), velopharyngeal depth at C1, adenoid thickness, sagittal 

angle, velopharyngeal ratio (ratio of velar length to pharyngeal depth), and superior pharyngeal 

constrictor (SPC) thickness.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D2. Velopharyngeal measures demonstrated in the midsagittal image plane  
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The measures obtained in the oblique-coronal image plane include: levator length, levator 

thickness, origin-to-origin, velar insertion distance, levator angle of origin, and nasovelar 

surface. The oblique coronal image plane is visualized by resampling the midsagittal image. It 

displays the levator muscle in it’s entirely from its origin at the cranial base to its insertion into 

the body of the velum. These measures are demonstrated in Figure D3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D3. Levator and velopharyngeal measures demonstrated in the oblique coronal image 

plane  
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Statistical Analyses 

 All statistical analyses were conducted in IBM SPSS Version 22 (IBM Corporation, 

Armonk, NY). For aim one, analysis of covariance (ANCOVA) was used to compare differences 

between the experimental (22q11.2 DS) and control (children with normal anatomy) groups for 

the variables of interest. Both age and weight were included as covariates for all of the analyses 

to control for the effects of dissimilar ages and body size. The assumptions of normality were 

adequately met for all measures as assessed by formal tests (Shapiro-Wilks’s test) and graphical 

representation (Q-Q plots). Homogeneity of variance was reasonably met as assessed by 

Levene’s test of homogeneity of variance. A p-value of < .05 was considered to be statistically 

significant. For aim two, given that the cranium houses the velopharyngeal port and serves as the 

point of attachment for the levator muscle, multiple linear regression models were used to assess 

whether craniometric measures could predict velar and levator muscle configurations. The 

velopharyngeal measures were the dependent variables (DV) and the craniofacial measures were 

the independent variables (IV). 

Inter-rater reliability and intra-rater measures were established using the Pearson product 

moment correlation (α = .05). Both primary and secondary raters had at least five years of 

experience in 3D MRI data processing. Reliability measurements were performed by measuring 

all variables from 12 randomly selected participants three months after the first measurements 

were obtained. Intra-rater and inter-rater reliability ranged from r = .70 to r = .94. Paired t-tests 

were conducted to determine inter-rater and intra-rater differences. There were no statistically 

significant differences (p > .05) between the first and second measures by the primary and 

secondary raters.  
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RESULTS 

Magnetic resonance images were successfully obtained on all 30 participants. Group 

means for craniofacial measures are reported in Table D2 and group means for velopharyngeal 

measures are reported in Tables D3. 

 

Table D2.  

Means and standard deviations for craniofacial variables for the 22q group and normative 

control group.  

Note. Values are noted in millimeters 

 

Variables 22q11.2 DS group Control group 

Nasion - sella 58.1(5.2) 60.0 (3.4) 

Sella - basion 32.5 (4.3) 36.5 (2.4) 

Basion - opisthion  37.4 (4.1) 37.1 (3.5) 

Nasion - basion 83.6 (7.1) 86.9 (5.2) 

ANS - PNS 47.4 (4.5) 48.5 (4.7) 

NSB angle  134.0 (8.1) 126.9 (5.3) 

SBO angle  218.7 (11.6) 223.7 (8.0) 

Face height  95.0 (10.9) 90.3 (6.1) 
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Table D3. 

 Means and standard deviations for velopharyngeal structures and muscles for the 22q group 

and normative control group 

Note. Values are noted in millimeters, except for the angle measure (in degrees). VP = 

velopharyngeal  

Variables 22q11.2 DS group Control group 

Velar length  25.4 (4.3) 26.4 (3.0) 

Effective velar length  10.8 (1.6) 10.9 (2.0) 

Velar thickness 6.5 (1.0) 8.0 (1.2) 

Pharyngeal depth 21.9 (4.5) 18.2 (3.94) 

Velar knee-PPW 10.1 (3.57) 9.6 (2.40) 

PP to C1 -3.1 (5.94) -5.2 (3.98) 

VP depth at C1 10.3 (3.62) 9.2 (2.60) 

Adenoid thickness 3.6 (2.6) 3.9 (2.2) 

Sagittal angle  57.2 (11.49) 55.8 (8.81) 

VP ratio 1.19 (.24) 1.50 (.31) 

SPC thickness 2.2 (.32) 2.2 (.31) 

Levator length  32.7 (3.26) 35.6 (4.3) 

Levator thickness 1.5 (.40) 1.8 (.38) 

Origin to origin 40.9 (3.6) 47.6 (3.8) 

Velar insertion distance 21.6 (3.49) 21.2 (1.00) 

Levator angle of origin 66.4 (5.6) 58.9 (4.3) 

Nasovelar surface  3.3 (1.44) 3.7 (1.48) 

 

AIM 1: Craniofacial and velopharyngeal variations  

Nasion-to-sella and nasion-to-basion were found to be significantly different in children 

with 22q11.2 DS compared to the non-syndromic cohort (Table D4). The distance from nasion-

to-sella (58.1 mm in 22q11.2 DS versus 60.0 mm in controls, p = .037) and nasion-to-basion 

(83.6 mm in 22q11.2 DS versus 86.9 mm in controls, p = .012) was significantly shorter in the 

22q11.2 DS group compared to the control group. The sella-to-basion measure was highly 

significantly shorter (32.5 mm in 22q11.2 DS versus 36.5 mm in controls, p < .0005) in children 
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with 22q11.2 DS compared to the control group. The NSB (anterior cranial base) angle was 

found to significantly more obtuse (134 degrees in 22q11.2 DS versus 126.9 degrees in controls, 

p = .011) in the 22q11.2 DS group compared to the control group (Table 4). 

 

Table D4.  

Results from the ANCOVA models, analyzing the differences in craniofacial structures among 

the 22q group and normative control group. Covariates = age, weight. The eta-squared value (in 

parentheses) demonstrates the effect size for the data. Significance level determined at *p < .05. 

Statistically significant results shown in bold font. 

 

Variable p-value (with both covariates included) 

Nasion - sella F1,26 = 4.815 

p = .037 (.156) 

Sella - basion F1,26 = 22.144 

p < .0005 (.460) 

Basion - opisthion  F1,26 = 0.000 

p = .991 (.000) 

Nasion - basion F1,26 = 7.246 

p = .012 (.218) 

ANS - PNS F1,26 = 2.215 

p = .149 (.079) 

NSB angle  F1,26 = 7.488 

p = .011 (.224) 

SBO angle  F1,26 = 1.727 

p = .200 (.062) 

Face height  F1,26 = 2.038 

p = .165 (.073) 
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Velar thickness was highly significant demonstrating differences in children with 

22q11.2 DS compared to the control group (6.5 mm in 22q11.2 DS versus 8.0 mm in controls, p 

< .0005) (Table D5). Children with 22q11.2 DS demonstrated a velum that was significantly 

thinner (23% thinner) compared to children with normal velopharyngeal anatomy. Statistically 

significant differences were also noted for pharyngeal depth (21.9 mm in 22q11.2 DS versus 

18.2 mm in controls, p = .007) and velopharyngeal ratio (1.1 in 22q11.2 DS versus 1.5 in 

controls, p = .004). The 22q11.2 DS group had a significantly larger (20% larger) pharyngeal 

depth compared to the control group.  
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Table D5.  

Results from the ANCOVA models, analyzing the differences in velopharyngeal structures and 

muscles among the 22q group and normative control group. Covariates include both age and 

weight. The et-squared value (in parentheses) demonstrates the effect size for the data. 

Significance level determined at *p < .05. Statistically significant results shown in bold font. 

Variable p-value (with both covariates included) 

Velar length  F1,26 = 1.22 

p = .278 (.045) 

Effective velar length  F1,26 = 0.067 

p = .797 (.003) 

Velar thickness  F1,26 = 17.431 

p < .0005 (.401) 

Pharyngeal depth F1,26 = 8.490 

p = .007 (.246) 

Velar knee-PPW F1,26 = .365 

p = .551 (.014) 

PP to C1 F1,26 = 0.793 

p = .381 (.030) 

VP depth at C1 F1,26 = 1.063 

p = .312 (.039) 

Adenoid thickness F1,26 = .034 

p = .855 (.001) 

Sagittal angle  F1,26 = .222 

p = .641 (.008) 

VP ratio F1,26 = 10.035 

p = .004 (.278) 

SPC thickness F1,26 = 0.012 

p = .915 (.000) 

Levator length  F1,26 = 4.839 

p = .037 (.157) 

Levator thickness F1,26 = 5.681 

p = .025 (.179) 

Origin to origin F1,26 = 25.144 

p < .0005 (.492) 

Velar insertion distance F1,26 = 0.802 

p = .723 (.005) 

Levator angle of origin F1,26 = 14.492 

p = .001 (.358) 

Nasovelar surface  F1,26 = 1.435 

p = .242 (.052) 



119 

 

 

The length and thickness of the levator muscle was found to be significantly different in 

children with 22q11.2 DS compared to the control group (Table D5). The levator length was 

significantly shorter (32.7 mm in 22q11.2 DS versus 35.6 mm in controls, p = .037; 8% shorter) 

in children with 22q11.2 DS compared to children with normal velopharyngeal anatomy. The 

levator muscle was significantly thinner in children with 22q11.2 DS (1.5 mm in 22q11.2 DS 

versus 1.8 mm in controls, p = .025; 20% thinner) compared to the control group. The levator 

origin-to-origin distance was found to be significantly different for the 22q11.2 DS group 

compared to the control group (40.9 mm in 22q11.2 DS versus 47.6 mm in controls, p < .0005). 

The origin-to-origin distance was 16% smaller among the 22q11.2 DS group compared to the 

control group. The levator angles of origin were also found to be different between the groups. 

The 22q11.2 DS group demonstrated a larger (66.4 degrees in 22q11.2 DS versus 58.9 degrees in 

controls, p = .001; 12% larger) levator angle in comparison to the control group. 

Qualitatively, a distinctive trend for structural variations across the four resonance 

categories was not evident for the 22q11.2 DS group. The anterior cranial base angle was 

abnormally larger (platybasia) or smaller (kyphosis) in the three participants with moderate to 

severe hypernasality. Velar thickness was also reduced for these three participants compared to 

the control group. There were two participants in the 22q11.2 DS group that had C1 placement 

above the level of the palatal plane. There was no apparent pattern in velopharyngeal muscle 

measures across the 22q11.2 DS group. For example, there were participants in both mild and 

severe resonance categories that exhibited a few similar features, but a clear pattern of 

velopharyngeal muscle dysmorphology across the three progressive abnormal resonance groups 

(mild, moderate, severe) was not evident.  
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AIM II: Prediction models  

Multiple linear regression models were utilized to predict whether craniofacial structures 

could predict velopharyngeal and levator muscle configurations. Separate regression analyses 

were conducted for the 22q11.2 DS group and the control group. Age and weight were included 

as covariates. A backwards selection was used to obtain reduced regression models with fewer 

predictors as some of the craniofacial measures were strongly correlated.  

For the control group, out of the 18 velopharyngeal measures, 12 measures demonstrated 

significant prediction models with craniofacial markers. The measures with significant prediction 

models for the control group are demonstrated in Table D6. Superior pharyngeal constrictor 

thickness had a strong prediction model (R-square= 97.5%) for this group with predictors such as 

weight, nasion-to-sella, sella-to-basion, ANS-to-PNS, and SBO angle. The prediction model for 

levator thickness could only account for 36.6% of the variability for this muscle measure, 

indicating a weak model. For the 22q11.2 DS group, out of the 18 velopharyngeal measures, 12 

measures demonstrated significant prediction models with craniofacial markers. The measures 

with significant prediction models for the 22q11.2 DS group are demonstrated in Table D7. 

Pharyngeal depth had a strong prediction model (R-square= 87.9%) for this group with 

predictors such as NSB angle, SBO angle, and face height. The prediction model for levator 

length could only account for 33.8% of the variability for this muscle measure, indicating a weak 

model. 
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Table D6.  

Results from the multiple linear regression analysis for the control group 

Velopharyngeal measure 

(DV) 

R-square ANOVA (p-

values) 

Craniofacial predictor (IV) p-

value 

for IV 

Velar length  71.4 .025 ANS-PNS .008 

   NSB angle  .012 

   Face height  .035 

Velar thickness 79.4 .006 B-O .014 

   NSB angle  .028 

   Face height  .039 

Pharyngeal depth 87.6 .000 N-S .025 

   ANS-PNS .002 

   Face height  .049 

PP-C1 97.1 .003 N-S .03 

   S-B .022 

   N-B .039 

   ANS-PNS .032 

   SBO angle  .024 

   Face height .011 

VP depth at C1 93 .000 N-S .001 

   B-O .013 

   NSB angle  .011 

   SBO angle  .001 

   Face height .004 

VP ratio 91.7 .000 NSB angle  .003 

   Face height  .000 

SPC thickness 97.5 .000 N-S .000 

   S-B .009 

   ANS-PNS .002 

   SBO angle  .000 

Levator length  79.8 .002 B-O .005 

   ANS-PNS .005 

   NSB angle  .009 

   SBO angle  .007 

Levator thickness 36.6 .017 Face height  .017 

Origin-origin 68.5 .014 B-O .013 

   ANS-PNS .046 

   NSB .012 

   SBO .033 

Velar insertion distance  41.1 .010 N-B .010 

Nasovelar surface  93.2 .000 S-B .000 

   B-O .010 

   SBO .000 
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Table D7.  

Results from the multiple linear regression analysis for the 22q11.2 DS group  

 

 

 

 

Velopharyngeal measure 

(DV) 

R-square ANOVA 

(p-values) 

Craniofacial predictor 

(IV) 

p-value 

for IV 

Velar length  70.2 .003 Sella-basion .006 

   Basion-opisthion .005 

Effective velar length  79.8 .018 S-B .028 

   N-B .027 

   ANS-PNS .003 

   NSB angle .038 

Velar thickness 85.2 .006 N-S .029 

   S-B .014 

   N-B .022 

   NSB angle  .006 

Pharyngeal depth 87.9 .001 NSB angle  .001 

   SBO angle .008 

   Face height  .000 

PP-C1 71.3 .003 N-S .002 

Adenoid thickness  62.2 .003 N-S .019 

VP ratio 45.2 .006 NSB angle  .006 

Levator length  33.8 .023 S-B .023 

Origin-origin 64.4 .024 S-B .005 

   B-O .040 

   NSB angle  .015 

Velar insertion distance  42.8 .035 N-S .021 

   N-B .011 

Levator angle of origin  47.1 .022 B-O .036 

   N-B .013 

Nasovelar surface  83.3 .025 N-S .020 

   S-B .045 

   B-O .034 

   N-B .024 

   NSB angle .013 

   SBO angle .047 
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DISCUSSION 

The first aim of this study was to examine variations in craniofacial and velopharyngeal 

structures and muscles among children with 22q11.2 DS in comparison to a non-syndromic 

cohort with normal velopharyngeal anatomy. MRI data were successfully obtained for both 

groups of participants. No studies to date have utilized MRI without sedation in young children 

with 22q11.2 DS to examine velopharyngeal muscle morphology and associated structures. MRI 

offers excellent delineation between hard and soft tissue structures and is the only imaging 

modality that allows visualization of the internal velopharyngeal musculature in vivo. Commonly 

used clinical methods for assessing the velopharyngeal mechanism include nasopharyngoscopy 

and multiview videofluoroscopy. These imaging methods have limitations such as invasiveness, 

distorted depth cues, and the use of ionizing radiation. Additionally, the imaging viewpoints are 

limited for these two modalities.  

MRI is noninvasive, easily repeatable, and enables multiple views of underlying 

musculature (Perry et al., 2016). However, commonly in pediatric MRI, sedation and the use of a 

laryngeal airway mask often distorts the positioning of the velum and oropharyngeal structures at 

rest. Specific aversions, such as those related to the natural environment (e.g., loud noises and 

claustrophobia) are also increasingly more common in children with 22q11.2 DS compared to 

children without such diagnosed syndromes (Antshel et al., 2006). As such, a non-sedated 

imaging protocol as detailed in this study could prove advantageous in advancing the knowledge 

base related to the anatomic structural and morphologic differences among children with 22q11.2 

DS.  
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Craniofacial Observations 

Findings from the present study demonstrate that the length from nasion-to-sella, sella-to-

basion, and nasion-to-basion was significantly shorter in children with 22q11.2 DS compared to 

non-syndromic children. Wang et al. (2009) investigated craniofacial phenotype variations in 

children with 22q11.2 DS and children with cleft palate using computed tomography. The results 

were consistent with findings from the present study where the children with 22q11.2 DS 

demonstrated shorter nasion-to-sella and sella-to-basion lengths. Dalben Gda et al. (2010) also 

reported individuals with 22q11.2 DS to have a shorter sella-to-basion length. In a cephalometric 

study on 41 children with 22q11.2 DS (Heliovaara & Hurmerinta, 2006), it was found that 

children with 22q11.2 DS had a shorter posterior cranial base length (sella-to-basion); however, 

the anterior cranial base length (nasion-to-sella) was found to be longer for this group compared 

to age and sex matched controls. Consistent with previous studies (Dalben Gda et al., 2010), the 

nasion-to-basion distance was found to be significantly shorter in children with 22q11.2 DS 

compared to the control group. The shorter lengths for the nasion-to-sella, sella-to-basion, and 

nasion-to-basion all lead to an anterior compartment that may be smaller in the 22q11.2 DS 

population. Future studies should investigate the effects that these craniofacial variations could 

have on the development on the velopharyngeal port and its dimensions.  

Conflicting findings have been reported regarding hard palate length in individuals with 

22q11.2 DS. Studies have indicated individuals with 22q11.2 DS to have a decreased hard palate 

length (Ruotolo et al., 2006; Wang et al., 2009) as well as an increased hard palate length 

(Heliovaara & Hurmerinta, 2006). Different racial groups were assessed across these studies and 

as such the discrepancy in findings may be due to the effects of race on bony craniofacial 

structures. Dalben Gda et al. (2010) assessed craniofacial morphology in 18 individuals with 
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22q11.2 DS and compared findings to age- and sex-matched controls with no morphofunctional 

alterations. Our findings are consistent with those reported in this study (Dalben Gda et al., 

2010), with individuals with 22q11.2 DS not demonstrating a statically significant difference in 

the length of the hard palate.   

Skull base anomalies in 22q11.2 DS may affect the relative positions of the facial bones 

to one another. The midface and resulting facial profile are recessed in relation to the forehead 

and as such appear flat (Shprintzen & Golding-Kushner, 2008). Vertical maxillary excess is 

referred to as a longer than normal lower third of the face. This is a commonly reported 

characteristic in individuals with 22q11.2 DS (Shprintzen & Golding-Kushner, 2008). Compared 

to non-syndromic control participants, individuals with 22q11.2 DS have been reported to have 

increased overall face length (Heliovaara & Hurmerinta, 2006), decreased overall face length 

(Wang et al., 2009), increased superior facial height (Wang et al., 2009), and increased anterior 

facial height (Arvystas & Shprintzen, 1984). Findings in the present study revealed children with 

22q11.2 DS to have a longer, but not significantly different facial height compared to children 

with normal velopharyngeal anatomy.  

The human cranium has a flexion along the skull base that differentiates its anterior and 

posterior aspects. The anterior portion supports the facial bones and the posterior portion 

contains the posterior part of the brain and the spinal cord. The angulation of the skull base is 

measured as the angle from the nasion to the sella turcica to the basion. This angle is typically 

128 degrees with a standard deviation of approximately 4 degrees (Shprintzen & Golding-

Kushner, 2008). Arvystas and Shprintzen (1984) hypothesized that platybasia results in 

deepening of the velopharyngeal port which may result in velopharyngeal dysfunction. 

Discordant findings have been reported regarding the presence of platybasia in individuals with 
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22q11.2 DS. Studies have reported children with 22q11.2 DS to have a confirmed diagnosis of 

platybasia utilizing diagnostic methods such as lateral cephalometry and MRI (Arvystas & 

Shprintzen, 1984; Heliovaara & Hurmerinta, 2006; Ruotolo et al., 2006). Other studies have 

indicated a trend toward platybasia, but not statistically significant, utilizing diagnostic methods 

such as lateral cephalometry and computed tomography (Dalben Gda et al., 2010; Glander & 

Cisneros, 1992; Wang et al., 2009). Studies have also reported the non-existence of platybasia in 

these individuals (Veerapandiyan et al., 2011). Consistent with reports by (Arvystas & 

Shprintzen, 1984; Heliovaara & Hurmerinta, 2006; Ruotolo et al., 2006), findings in the present 

study indicated that children with 22q11.2 DS demonstrate a significantly larger anterior cranial 

base angle, resulting in platybasia. Spruijt, Kon, and Mink van der Molen et al. (2014) assessed 

the relationship between cranial base angles and speech resonance in 24 individuals with 22q11.2 

DS using retrospective chart reviews. It was determined that groups of individuals with 

hypernasal speech have a trend toward more obtuse cranial base angles. However, no significant 

relationship was determined between resonance ratings and cranial base angles. As such, the 

clinical significance of platybasia is still uncertain. 

Velopharyngeal Observations 

Findings from the present study demonstrate that velar thickness, pharyngeal depth, and 

velopharyngeal ratio are significantly different in children with 22q11.2 DS compared to non-

syndromic children with normal velopharyngeal anatomy. A lateral cephalometry investigation 

on 26 individuals demonstrated individuals with 22q11.2 DS to have decreased velar length and 

an abnormal anterior location of the velar dimple (Veerapandiyan et al., 2011). Conversely, an 

MRI study on five individuals in 22q11.2 DS found no significant variations in velar length and 

thickness among this clinical population in comparison to 123 individuals without 22q11.2 DS 



127 

 

(Ruotolo et al., 2006). Findings in the present study indicate children with 22q11.2 DS have a 

significantly thinner velum compared to the control group, using age and weight as covariates to 

remove the effects of growth and body size. It is unknown if a thin velum could cause increased 

transpalatal transmission of sound and lead to an increased perception of hypernasality in 

individuals with 22q11.2 DS. No significant difference was noted for velar length in the present 

study. In individuals with normal velopharyngeal anatomy, velar bulging during a speech task is 

due to the presence of the musculus uvulae (Shprintzen & Golding-Kushner, 2008). When the 

musculus uvula contracts during speech activity, it creates a velar bulge at its muscle belly 

because it is not firmly attached at its distal end. The musculus uvulae can be observed in vivo 

using MRI (Perry, Kuehn, Sutton, Gamage, & Fang, 2016). In the current study, the nasovelar 

surface was measured as the thickness of the area between the nasal surface of the velum and the 

intravelar fibers. It was anticipated that this measure would be thinner and sparse in children with 

22q11.2 DS, which may have an effect on the velum to PPW contact. However, no significant 

difference was noted. It is unknown if the reduced velar thickness is due the absence of the 

musculus uvulae for the 22q11.2 DS population. In the present study, the presence of the 

musculus uvulae fibers were inconsistent across participants. Although image resolution was 

optimal (0.8 mm), it is possible that the fibers were present and hypoplastic and not visible using 

the current imaging parameters. Diffusion tensor imaging (DTI) may be beneficial to examine 

the muscle fibers in the velar midline.  

Velopharyngeal closure is dependent on the morphology of the velopharyngeal port in 

addition to the neuromuscular function of the velum and associated musculature. Findings from 

the present study indicate that children with 22q11.2 DS have a significantly larger pharyngeal 

depth compared to children with normal velopharyngeal anatomy. These findings are consistent 
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with cephalometric (Heliovaara & Hurmerinta, 2006; Veerapandiyan et al., 2011) and MRI 

(Ruotolo et al., 2006) studies that have reported individuals with 22q11.2 DS to have a wide 

nasopharyngeal area, increased (but not statistically significant) osseous pharyngeal depth 

(distance between posterior nasal spine and anterior body of C1), increased osseous pharyngeal 

depth to velar length ratio, more obtuse angle of superior-anterior quadrant, and increased 

velopharyngeal width (distance between lateral pharyngeal walls). Ruotolo et al. (2006) also 

found the airway to be significantly more obtuse and voluminous in the 22q11.2 DS group. 

Nasoendoscopic investigations in individuals with 22q11.2 DS revealed these individuals to have 

reduced adenoid tissue, tonsillar hypertrophy, and reduced movement of lateral pharyngeal walls 

(Ysunza et al., 2011). These findings are inconsistent with findings on 18 Brazilian participants 

with 22q11.2 DS compared to age- and sex-matched control groups where individuals with 

22q11.2 DS were found to have no significant differences in depth of bony pharynx (distance 

between posterior nasal spine and basion), nasopharynx, and oropharynx (Dalben Gda et al., 

2010). Other velopharyngeal portal measures such the velar knee to PPW distance and the 

velopharyngeal depth at C1 were found to not significantly differ between the two groups for this 

study. The potential role of the adenoid pad in preserving velopharyngeal closure and normal 

resonance even in children with 22q11.2 DS with abnormal craniofacial features warrants further 

investigation. Additional data analyses are in progress to determine the relationship between 

volumetric and linear correlates of the velopharynx and its effects on velopharyngeal port 

mechanics in the 22q11.2 DS population.  

The C1 is an important, palpable intraoperative landmark often used to determine 

placement during surgical treatment of velopharyngeal dysfunction. Studies have reported 

cervical abnormalities in the 22q11.2 DS population compared to non-syndromic controls 
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groups. It has been reported that individuals with 22q11.2 DS demonstrate a thin/small C1 

compared to normative control groups (Heliovaara & Hurmerinta, 2006). The location of the 

palatal plane on the PPW is the point of contact of the velum on the PPW for velopharyngeal 

closure for oral sound production. It was hypothesized that due to the reported presence of C1 

abnormalities in the 22q11.2 DS population, the C1 to palatal plane distance would differ 

between the 22q11.2 DS group and the control group. However, statistically significant 

differences were not noted for this measure. This is the first study to report on the palatal plane 

to C1 distance in children with 22q11.2 DS. Given the hypoplasticity of the velopharynx in 

individuals with 22q11.2 DS, future studies should utilize imaging data during speech tasks to 

determine if the level of closure of the velum against the PPW is at a different level for this 

clinical population compared to the norm.  

Velopharyngeal Muscle Observations 

The thickness and histologic and histochemical properties of the superior pharyngeal 

constrictor have been analyzed in individuals with 22q11.2 DS using MRI and biopsy specimens. 

Zim et al. (2003) noted that the superior pharyngeal constrictor muscle thickness was found to be 

significantly less in 26 individuals with 22q11.2 DS (2.03 mm) compared to age- and sex-

matched controls without 22q11.2 DS (2.85 mm). Findings in the present study indicated 

comparable values (22q 11.2 DS group = 2.2 mm, control group = 2.2 mm); however, no 

significant differences were found between the two groups. Zim et al. (2003) study included a 

wide age range of participants (3-29 years) which may not account for the effects of growth on 

the superior pharyngeal constrictor muscle. It may be that pharyngeal hypotonia is more evident 

at a later time in the lifespan, after going through pubertal growth. Additionally, the measure 

noted as the point of the inferior aspect of the second cervical vertebrae was instead the midpoint 
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of the second cervical vertebrae. Future studies should investigate the etiology and extent of 

pharyngeal hypotonia in the 22q11.2 DS population. A thin and hypoplastic superior pharyngeal 

constrictor muscle could lead to an increased velopharyngeal portal depth. The overall diameter 

of the port would be larger and the formation of a strong and complete seal of the velum against 

the pharyngeal wall which is necessary for the normal speech resonance would be harder to 

achieve. An inefficient velopharyngeal closure mechanism will enable resonating sound to 

escape into the nasopharynx.  

In an MRI investigation of the levator muscle in children with 22q11.2 DS, the mean 

levator muscle thickness was found to be significantly thinner in 22q11.2 DS individuals 

compared to the non-syndromic submucous cleft palate individuals (Park et al., 2015). Findings 

in the current study demonstrate the levator muscle to be significantly thinner in children with 

22q11.2 DS compared to non-syndromic children with normal velopharyngeal anatomy. This 

finding is consistent with unpublished conference reports of the levator sling being thin and 

hypoplastic in individuals with 22q11.2 DS (Kuehn, 2003; Punjabi et al., 2002). The present 

study is the first study to report that the length of the levator muscle is significantly shorter in the 

22q11.2 DS population compared to children with normal velopharyngeal anatomy. There is not 

enough data to determine if levator dysmorphology is a direct cause of velopharyngeal 

dysfunction for these participants. Future studies should assess the relationship between 

velopharyngeal muscle dysmorphology and its effects on perceptual speech characteristics. 

The levator origin-to-origin distance was found to be significantly less in children with 

22q11.2 DS compared to those with normal velopharyngeal anatomy. This may be due to the 

long and narrow facial profile that is a common characteristic for individuals with 22q11.2 DS.  

The angle at which the levator muscle descends from the base of the skull was significantly 
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larger in the 22q11.2 DS group compared to those with normal velopharyngeal anatomy. This 

could be due to the shorter distance between levator muscle origins in the 22q11.2 DS 

population. Greater angle of origins would indicate a more lateral insertion into the velar body. 

Given that the velopharyngeal muscles that are responsible for velopharyngeal closure have its 

origins in the cranial base and posterior pharynx, abnormalities in these bony craniofacial 

structures may have a subsequent effect on muscle form and function (Kollara et al., 2016; 

Nachmani et al., 2013). The functional alterations that these anatomic variations could have on 

overall levator muscle configuration and movement remain unknown. Modeling studies could 

help demonstrate how shorter a muscle origin distance and an increased angle of descent could 

alter levator muscle contraction and configuration. The interaction of craniometric variables 

relative to the velopharyngeal mechanism warrants investigation for this clinically complex 

population. A limitation of the present study is the focus on the levator muscle, however data 

pertinent to the lateral pharyngeal wall and posterior pharyngeal wall may also prove to have a 

significant relationship to velopharyngeal dysfunction findings in this population. Qualitatively, 

cranial and muscle dysmorphology features across and within different resonance categories was 

found to be variable among the 22q11.2 DS group. In the present study, it is of interest to note 

that many significant craniofacial and velopharyngeal variations were evident in a group that 

predominantly consisted of individuals with minimal to no symptoms of velopharyngeal 

dysfunction. Future investigations should quantitatively assess logistical categories of perceptual 

severity that may be correlated to muscle dysmorphology features.  

Relationship between Craniometric and Velopharyngeal Variables 

The second aim of this study was to determine whether craniometric measures could 

predict velopharyngeal structure and muscle configurations in children with 22q11.2 DS and in 
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children with normal velopharyngeal anatomy. Studies have hypothesized that abnormalities in 

bony craniofacial structures may have a subsequent effect on muscle form and function, which 

may influence velopharyngeal dysfunction (Kollara et al., 2016; Nachmani et al., 2013; Perry et 

al., 2016). However, previous studies did not assess the predictive ability that one could have on 

the other in children with 22q11.2 DS, thus limiting the comparison of the present results with 

those of other authors. In the present study, the two velopharyngeal measures that did not have 

significant craniofacial prediction models across the 22q11.2 Ds group and control group are 

velar knee-to -PPW and sagittal angle. Twelve prediction models were significant for both 

22q11.2 DS and control groups, with a different set of predictors for each of them, which made 

comparison across groups difficult. For the control group, the most common craniofacial 

predictor was face height, as it was present in six prediction models. The least common predictor 

was nasion-to-basion. For the 22q11.2 DS group, the most common predictors were NSB angle 

and sella-to-basion, as they were present in six prediction models. The least common craniofacial 

predictors were hard palate length and facial height. Computational modeling studies could 

incorporate prediction models and asses how craniofacial and velopharyngeal anatomical 

parameters affect one another and how they could conjointly affect the biomechanics of the 

velopharyngeal port. 

Dysmorphology in velopharyngeal structures has been shown to have significant negative 

implications on speech among individuals with 22q11.2 DS (Baylis, Munson, & Moller, 2008; 

Kirschner, 2005; Ysunza et al., 2011). It has been noted that individuals with 22q11.2 DS display 

severe hypernasality in the presence of a small velopharyngeal gap, demonstrating an 

incompetent velopharyngeal system cannot exclusively explain the cause of hypernasal speech 

(Baylis, Watson, & Moller, 2009). A limitation of the present study is the lack of velar and 
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levator muscle activity data during speech tasks. Future studies should aim to investigate 

velopharyngeal structural and functional variations and its relationship to perceptual speech 

correlates in children with 22q11.2 DS.  

The goal of speech surgery is to eliminate velopharyngeal insufficiency and hypernasality 

and to create a normal valving system for speech and resonance. Surgery for velopharyngeal 

dysfunction in the 22q11.2 DS population may be challenging due to the complex underlying 

morphological variations in this population. Individuals with 22q11.2 DS demonstrate a 

significantly higher need for secondary surgery for velopharyngeal dysfunction (Basta et al., 

2014; D-Antonio et al., 2001; Losken et al., 2006; Witt et al., 1999) compared to non-22q11.2 

DS cohorts. These individuals also demonstrate poorer speech outcomes (Milczuk, Smith, & 

Brockman, 2007) compared to those without 22q11.2 DS. Results from the present study 

highlight the many velopharyngeal and levator variations that exist for individuals with 22q11.2 

DS. There is a need for continued research regarding the morphological variations and functional 

dynamics that characterize the velopharynx and associated structures for this population. 

Computational modeling studies using patient specific data of the linear and volumetric features 

of the velopharynx could ultimately help tailor surgical needs in children with 22q11.2 DS.  

FUTURE DIRECTIONS 

The results of this study demonstrate the successful utilization of MRI in obtaining 3D 

imaging data of craniofacial and velopharyngeal structures in children as young as four years 

with 22q11.2 DS, without the use of sedation. This study offers the foundation for multiple 

opportunities to further research focused to better understand variations between individuals with 

22q11.2 DS, in comparison to cleft palate groups, other syndromic populations, and those with 

normal velopharyngeal anatomy. Further research is needed to investigate the effects of surgery 
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on the velopharyngeal port in individuals with 22q11.2 DS. More research should be focused on 

the functional variations of the velopharyngeal musculature and portal during speech activity in 

individuals with 22q11.2 DS. Computational modeling studies that can help demonstrate the 

synergistic effects of disordered anatomy on the velopharyngeal port could also be of utility. 

Future studies should assess the relationship between perceptual severity and anatomical 

features. Volumetric investigations of the nasopharyngeal port and cerebellum and its effects of 

linear measures such cranial base angles could shed insight regarding the dimensions of the 

velopharynx and vocal tract in individuals with 22q11.2 DS.  

CONCLUSION 

In summary, children with 22q11.2 DS have several craniofacial and velopharyngeal 

characteristics that are significantly different compared to children with normal velopharyngeal 

anatomy. Children with 22q11.2 DS demonstrate multiple anatomic variations that may 

contribute to velopharyngeal dysfunction by altering the natural characteristics of the 

velopharyngeal port and its associated structures. The MRI methodology detailed in this study 

provides an effective and efficient means to evaluate the velopharynx and levator muscle in the 

pediatric 22q11.2 DS population. The discordant findings that have been reported in the 

literature may be related to the genetic variability of the syndrome. However, it also highlights 

the importance of the need for patient-specific intervention in this unique and complex 

population. There are multiple anatomic parameters and its variations to consider when deciding 

surgical intervention for velopharyngeal dysfunction in the 22q11.2 DS population. Future 

studies should have a larger sample of participants with 22q11.2 DS with equal number of 

participants per each resonance category.  
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CHAPTER 7 

GENERAL CONCLUSION 

Limited information exists regarding the velopharyngeal muscle characteristics for 

children with 22q11.2 DS. No studies to date have utilized MRI without sedation in young 

children with 22q11.2 DS to examine velopharyngeal muscle morphology and associated 

structures. The overarching aims of this investigation were to examine craniofacial and 

velopharyngeal features among children with 22q11.2 DS and to determine whether craniofacial 

measures could predict velopharyngeal structure and muscle configurations in this population. A 

series of experiments were designed to explore and validate the use of our research methodology 

on normal control participants and a single participant with 22q11.2 DS, before initiating the 

study on a larger sample of children with 22q11.2 DS.  

Study I validated the use of a supine MRI scanner over an upright scanner to obtain data 

of interest. Gravity was found to have a non-significant effect on the velopharyngeal structures 

of interest. This study was also instrumental in the development of a child-friendly MRI 

scanning protocol.  

Study II was focused on the application of the child-friendly MRI protocol to ensure data 

collection on the child participants without the use of sedation. The effects that race and sex may 

have on the variables of interest were also investigated. No significant sex effects were noted for 

the craniometric and velopharyngeal variables of interest. Significant racial difference were 

noted for velar thickness, velar length, and velopharyngeal ratio. The child-friendly MRI 

scanning protocol from Study I was successfully implemented with 100% success rate on 32 
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children. Hard palate length was found to be the most common craniometric predictor for the 

velopharyngeal muscle prediction models.  

Study III confirmed feasibility of our non-sedated MRI protocol in a single participant 

with 22q11.2 DS (the targeted clinical population). Preliminary data regarding velopharyngeal 

muscle variations for this population were also reported. The participant with 22q11.2 DS was 

found to have a short, U- shaped levator muscle arrangement in the oblique coronal image plane. 

In the mid sagittal image plane, the velum was found to be short and thin and an increased 

pharyngeal depth was also noted.   

Study IV (final dissertation study) assessed variations in craniofacial and velopharyngeal 

structures in a larger sample of children with 22q11.2 DS using a supine MRI scanner and by 

utilizing our established child-friendly MRI protocol. This study represents the first large scale 

attempt to image children with 22q11.2 DS without sedation. Children with 22q11.2 DS were 

found to have several craniofacial and velopharyngeal characteristics that are significantly 

different compared to children with normal velopharyngeal anatomy. This is the first study to 

report that the length of the levator muscle is significantly shorter in the 22q11.2 DS population 

and the first to assess the predictive ability of bony craniofacial structures on muscle form and 

function in children with 22q11.2 DS. This study offers the foundation for multiple opportunities 

to further research focused to better understand variations between individuals with 22q11.2 DS, 

in comparison to cleft palate groups, other syndromic populations, and those with normal 

velopharyngeal anatomy.
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