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The Tertiary Upper Castle Hayne Aquifer (UCHA) is one of the most productive aquifers 

in North Carolina’s Coastal Plain; however, localized zones containing high, dissolved-iron 

concentrations (>0.3 mg/L) are present near the recharge area. Iron-rich groundwater is an 

expensive water quality and infrastructure problem affecting water suppliers in eastern North 

Carolina but the evolution of high-iron zones in the UCHA is poorly understood. This study 

integrates geochemistry, mineralogy, sedimentology, and geochemical groundwater modeling to 

identify likely sources and sinks of dissolved iron near Washington, NC.  

Two adjacent sediment cores were collected from the Yorktown and surficial aquifers, 

which overlie the UCHA at the core site in western Beaufort County. Orangish-brown sediments, 

extracted between 3.7 and 6.1 meters below the land surface (m BLS), have the highest iron 

concentrations measured in the core sediments (ranging from 2.2 to 9.0 wt. %). Several 

additional anomalies occur within this depth range including the highest increase in pH (from 4.9 

to 8.1), the largest increase in cation-exchange capacity (from 2.3 to 124.6 meq/100 cm
3
), and 

the highest mud content (87.1 wt. %). X-ray diffraction, optical microscopy, and scanning 

electron microscopy indicate that amphiboles, ilmenite, glauconite, iron-oxyhydroxides, and 

pyrite are important iron-bearing minerals in the coastal plain overburden.  



Three hydrogeochemical zones, distinguished by variations in sediment composition, 

depth, and inferred biogeochemical and hydrologic processes, are identified in the sediments 

overlying the UCHA. The Iron Depletion Zone, extending from the ground surface to 

approximately 3.8 m BLS, may be characterized by progressive depletion of iron-bearing 

constituents over time. The Iron Pigmentation Zone (IPZ), extending from the basal portion of 

the IDZ to approximately 6.4 m BLS, likely transitions from oxidizing conditions to reducing 

conditions, resulting in iron-oxyhydroxide precipitation in the upper IPZ and the reduction of 

ferric iron to ferrous iron in the lower IPZ. High-dissolved-iron concentrations in the UCHA are 

most likely derived from conditions that are similar to those of the lower IPZ, where in the 

presence of organic matter, microbially catalyzed reduction of abundant iron-oxyhydroxides 

results in the production of dissolved-ferrous iron. Geochemical groundwater modeling confirms 

that microbially catalyzed reduction of iron-oxyhydroxides via organic-matter oxidation yields 

the highest, dissolved-iron concentrations in slightly acidic, surficial-aquifer water. Below 6.4 m 

BLS, evidence suggests that the dominant electron-accepting process in the Iron Sulfide Zone is 

microbially catalyzed sulfate reduction, resulting in the attenuation of dissolved-iron 

concentrations via the formation of iron-sulfide minerals.   

Iron-oxyhydroxide reduction, proximal to the upper contact of the UCHA, may be 

essential to the development of high-iron groundwater along the western edge of the UCHA 

recharge area. Geochemical modeling indicates that cation-exchange reactions between ferrous 

iron and glauconite may substantially deplete dissolved iron after groundwater enters the UCHA. 

Future studies integrating contemporaneous investigation of groundwater geochemistry, 

sediment composition, and redox-related microorganisms are necessary to better elucidate the 

formation of high-iron zones in the UCHA.
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Ac: Exchangeable acidity 
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1.0 Introduction 

Groundwater withdrawals from coastal plain aquifers have greatly increased over the last 

30 years in eastern North Carolina (NC). Population growth, in conjunction with industry and 

farming, is driving higher demand for groundwater resources. Overpumping of Cretaceous 

aquifers in North Carolina’s Coastal Plain (NCCP) has caused regional water-level decline, 

aquifer dewatering, and saltwater intrusions (Campbell and Coes, 2010). As a result, municipal 

water suppliers are becoming more dependent on the higher yielding, Tertiary, Upper Castle 

Hayne Aquifer to accommodate accelerating groundwater consumption (Fine and Kuniansky, 

2014). The Upper Castle Hayne Aquifer is one of the most productive and most extensively 

developed aquifers in NCCP; however, localized zones containing high, dissolved-iron 

concentrations are present near the recharge area (Figure 1; Sutton and Woods, 1995; Woods et 

al., 2000).  

Excessive iron (Fe) concentration in coastal plain groundwater is a common and 

expensive water-quality problem faced by municipal water suppliers. Although Fe in drinking 

water may not be harmful to human health, Fe concentrations exceeding the secondary drinking-

water standard (0.3 mg/L) adversely affect aesthetic properties of drinking water (USEPA, 

2012). High-dissolved Fe may stain exposed chattels and fixtures, induce unpleasant tastes and 

odors, and damage various components in the water distribution system. Additionally, Fe-rich 

groundwater frequently contains microorganisms that elevate dissolved-Fe concentrations and 

diminish the specific capacity of wells (Brown et al., 1999; Chapelle, 2001; Houben, 2003).  

The evolution of these high-Fe zones in the Upper Castle Hayne Aquifer is poorly 

understood. This study evaluates likely relationships among mineralogical, chemical, and 

hydrological components to elucidate multifaceted mechanisms that are involved in the 
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formation and distribution of high-Fe zones in the Upper Castle Hayne Aquifer. Specifically, this 

investigation integrates mineral geochemistry, mineralogy, sedimentology, and geochemical 

groundwater modeling techniques to identify potential sources and sinks of dissolved Fe near 

Washington, NC (Figures 1 – 3). 
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Figure 1: Regional Fe concentrations in the UCHA (modified after Woods et al., 2000) and the 

major physiographic provinces of North Carolina. Iron concentrations of ≥0.3 mg/L exceed 

secondary drinking-water regulations (USEPA, 2012). The yellow area denotes the approximate 

location of recharge to the CHAS as determined by DeWiest (1969), Otte (1986), and Giese et al. 

(1997). 
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Figure 2: Location of the study area in eastern North Carolina. The line of section corresponds to the hydrogeologic 

cross-section shown in Figure 4. 
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Figure 3: 1992 observed potentiometric surface map of the UCHA (modified after Reynolds and Spruill, 1995 

and Consolvo, 1998). The core site (black star) and modeled well locations (blue squares) are located near 

Washington, NC. 
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1.2 Geologic and Hydrogeologic Framework 

North Carolina’s Coastal Plain covers approximately 65,000 km
2
 and extends eastward 

from the fall line to the Atlantic Ocean (Figures 1 – 2) (Giese et al., 1987). The coastal plain in 

NC consists of a wedge-shaped sequence of Cretaceous to Quaternary age sediments that dip and 

thicken toward the southeast. The sediments unconformably overlie Paleozoic basement rocks, 

which consist of igneous and metamorphic rocks (Lautier, 2009). In western Beaufort County, 

the sediments are approximately 365 m thick, consisting of locally discontinuous layers and 

lenses composed of variable proportions of limestone with marine fossils, gravel, sand, silt, and 

clay (Giese et al., 1987; Lautier, 2009). The sedimentary deposits have been divided into 

geologic units according to their stratigraphic, lithologic, and fossil characteristics. Listed from 

oldest to youngest, the principal formations underlying the study area are: the Cretaceous, 

Beaufort, Lower Castle Hayne, Upper Castle Hayne, Pungo River, Yorktown, and surficial units 

(Table 1 and Figure 4; Giese et al., 1987; Winner and Coble, 1996; Lautier, 2009). Figure 4 

shows the formations underlying the study area along a west-east transect (A – A’) through the 

investigated area (Figure 2). Although a recent analysis of NCCP hydrostratigraphy combines 

the Pungo River aquifer with the Castle Hayne Aquifer (Campbell and Coes, 2010), these 

Tertiary aquifers are treated as separate hydrostratigraphic units in Table 1 and Figure 4.  

The highest yielding and most productive aquifer in NCCP is the Castle Hayne Aquifer 

System (CHAS). The CHAS ranges in thickness from 9 m or less in western Beaufort County to 

over 330 m in the east (Giese et al., 1987; Lautier, 2009), where it extends beneath the Atlantic 

Ocean. The aquifer underlies the majority of NCCP, extending approximately 320 km from the 

middle of the southern border of Brunswick County to near the western border of Gates County 
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at the North Carolina-Virginia boundary. The western extent of the CHAS is located along 

eastern Pitt County and northwestern Beaufort County.  

The CHAS includes the Oligocene Belgrade and River Bend Formations, the Eocene 

Upper Castle Hayne Limestone, the Eocene to Paleocene Lower Castle Hayne Limestone, and 

the Paleocene Beaufort Formation (Gamus, 1972; Lloyd and Daniel, 1988; Winner and Coble, 

1996; Lautier, 2009). Transmissivity values of the CHAS generally increase toward the east 

(Trapp and Horn, 1997; Campbell and Coes, 2010). The CHAS is a limestone, consisting mostly 

of calcite, quartz sand, and glauconite with minor proportions of apatite, dolomite, feldspar, 

hematite, iron sulfides, and aluminosilicates (e.g. feldspars and zeolites). The dominant clay 

mineral is glauconite that typically occurs as well-rounded peloids. The abundance of glauconite 

is highest along the basal portion of the aquifer, and decreases in abundance from southwest to 

northeast. The average Fe content of glauconite decreases from southwest to northeast (Mehlhop 

et al., 2005).  

Gamus (1972) subdivided the CHAS into three hydrogeologic units; Upper Castle Hayne 

Aquifer (UCHA), Lower Castle Hayne Aquifer (LCHA), and the Beaufort Aquifer. The Beaufort 

Aquifer is largely comprised of glauconitic sand and sandy limestone strata (Lautier, 2009). In 

the northern coastal plain, the UCHA is predominantly composed of moldic carbonates, 

principally calcite and some dolomite, while the LCHA is composed of calcareous sands 

interbedded with limestones (Gamus, 1972). Amsbaugh (1996) characterized the UCHA in the 

central coastal plain as a quartz-rich (40 – 60%), fossiliferous limestone, with minor glauconitic 

and phosphatic sand, whereas the LCHA is composed of a quartz-rich (20 – 60%), fossiliferous 

limestone, with minor glauconitic and phosphatic sand and lime mud. In western Beaufort 
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County, the UCHA consists of alternating layers of glauconite-rich sand and sandy, fossiliferous 

limestone (Johnson, 1992).  

The UCHA, LCHA, and Beaufort subdivisions have hydraulic conductivity values of 

around 40 – 60, 1.5 – 6, and 0.6 – 2.4 m/d, respectively (Table 1; Reynolds and Spruill, 1995). 

The CHAS is underlain by the Cretaceous Peedee hydrogeologic unit, which is approximately 

210 m thick and consists of fine -to coarse-grained, glauconitic and fossiliferous sands, and dark-

gray micaceous clays (Lautier, 2009).  

The Pliocene Yorktown and Quaternary hydrogeologic units overlie the CHAS. The 

Yorktown is largely composed of fine -to medium-grained shelly, clayey, bluish-gray sand with 

alternating beds of bluish-gray clay (Lautier, 2009). The undifferentiated Quaternary unit is the 

shallowest hydrogeologic unit and comprises the unconfined or “water table” aquifer. It is the 

first unit to receive recharge via infiltrating rainwater, which flows through the vadose zone to 

the water table. This unit is principally composed of Pleistocene -to Recent-age sand, silt, shells, 

and thin clay layers but it may also contain sands of the Yorktown Formation where the 

confining unit is situated at a lower position in the stratigraphic section (Lautier, 2009). 

Henceforth, the undifferentiated unit between the Yorktown and the ground surface is referred to 

as the surficial unit. 

Generally, groundwater from the CHAS flows in a southeasterly direction and discharges 

into streams and the Atlantic Ocean (Sherwani, 1980; Lyke and Treece, 1988); however, 

groundwater withdrawals and leaky aquitards “can alter the natural flow direction of ground 

water, both horizontally and vertically” (Lyke and Treece, 1988, p. 472). For example, a large, 

phosphate-mining operation directs proximal groundwater flow toward Aurora, NC (Figure 3). 
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The majority of direct recharge to the CHAS occurs via rainfall in western portions of the 

study area where the CHAS is exposed or is overlain by highly permeable sandy sediments 

(Figure 1). Direct recharge largely occurs in swamps (called pocosins) that contain acidic, 

organic-rich, and nutrient-deficient sandy sediments (Reynolds and Spruill, 1995; Richardson, 

2003). In the central coastal plain, average total rainfall is approximately 130 cm/yr and about 

2.5 cm/yr or less percolates through the surficial aquifer to recharge the deeper aquifers (Lautier, 

2009). DeWiest (1969) estimated that the area of direct recharge encompasses about 750 km
2 

and 

roughly coincides with the subcrop pattern for the CHAS. 

The confining units of the CHAS are composed of locally discontinuous clay and silt 

beds (Lautier, 2009; Campbell and Coes, 2010). As a result, leakance is a substantial component 

of recharge in certain areas of NCCP; the contribution of recharge derived from leakance 

generally increases from east to west across the study area (Figure 3; Warner, 1993; Consolvo, 

1998; Campbell and Coes, 2010). In certain areas of NCCP, groundwater flows upward from the 

underlying Beaufort and Cretaceous aquifers to the Lower Castle Hayne Aquifer (Giese et al., 

1997; Lautier, 2009). Although the confining units between the UCHA and LCHA are 

discontinuous, the lower hydraulic conductivity of the LCHA substantially inhibits water leaking 

upward into the UCHA from the underlying units (Mehlhop et al., 2005; Fine and Kuniansky, 

2014). 
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Table 1: Stratigraphic and hydrogeologic subdivisions (modified from Gamus, 1972; Lloyd and Daniel; 1988; Reynolds 

and Spruill, 1995; Winner and Coble, 1996; Consolvo, 1998). 
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Figure 4: Hydrogeologic cross-section of NCCP (modified from Consolvo, 1998). 



12 

 

1.3 Iron Geochemistry 

Under oxidizing and circumneutral conditions, iron generally exists in the relatively 

insoluble Fe(III) oxidation state (Fe
3+

). In coastal plain recharge zones (areas in which head 

decreases with increasing depth), near-surface sediments commonly contain abundant iron-

oxyhydroxide minerals and grain coatings, which are believed to be important sources of high-

dissolved iron in groundwater (e.g. Chapelle and Lovley, 1992; Penny et al., 2003; Park et al., 

2006). Under circumneutral pH and reducing conditions, Fe typically occurs in the highly mobile 

Fe(II) oxidation state (Fe
2+

) (Johnson and Beard, 2006). Ferrous iron is the dominant species in 

natural groundwater systems that contain little to no dissolved oxygen (O2). Dissolution, 

precipitation, and cation-exchange reactions are the principal mechanisms by which Fe-bearing 

minerals and aqueous Fe species interact in the aquifer (Park et al., 2006; Lin et al., 2012; Stucki 

et al., 2012).  

Basic concepts of cation exchange are illustrated in Figure 5. Cation-exchange reactions 

generally involve the transfer of cations between solid aquifer materials and the groundwater. 

These reactions can remove large quantities of Fe from groundwater (Faure, 1998; Park et al., 

2006). Grains that have large surface areas (grain size <2 µm), such as clays generally have a 

greater capacity to exchange dissolved Fe than coarser sediments (grain size >2 µm). Where the 

aquifer matrix includes abundant clay and organic matter, the exchange capacity of the aquifer is 

generally high (Breeuwsma et al., 1986). Therefore, variations in clay content and organic 

carbon may be important controls on Fe concentrations in the UCHA and in overlying aquifers. 
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Figure 5: Illustration of cation exchange in a glauconitic aquifer. Each Fe
2+

 ion in an aqueous solution can exchange with two K
+
 

ions or one Mg
2+

 ion on a clay-mineral surface (left) such as glauconite, resulting in lower Fe
2+

 concentration and increased K
+
 and 

Mg
2+

 concentrations in solution (right). 
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1.4 Iron Biogeochemistry 

Both abiotic and microbially mediated reactions can readily oxidize or reduce Fe species 

in aquifers, depending on physicochemical conditions. Although many redox processes were 

previously assumed to occur entirely by abiotic reactions (e.g. Zehnder and Stumm, 1988), 

numerous studies demonstrate that abiotic and microbially mediated reactions involving Fe are 

inseparable under natural conditions (e.g. Lovely and Goodwin, 1988; Chapelle and Lovely, 

1992, Nealson and Saffarini, 1994; Stucki et al., 2012; Ionescu et al., 2015; Melton et al., 2014). 

Most Fe-related reactions in sediments are mediated or influenced by microorganisms, which are 

ubiquitous in most aquifers. Some exceptions include Fe
2+

 oxidation under highly alkaline 

conditions, hydrolysis of Fe
3+

 during the formation of iron-oxyhydroxides, and Fe reactions 

involving ion exchange (Stucki et al., 2012). 

Diverse microorganisms are known to derive metabolic energy by Fe-redox reactions. 

Biotic Fe oxidation is carried out by microaerophiles (e.g. Gallionella spp., Leptothrix spp., 

Mariprofundus spp., and Sideroxydabs spp.) and nitrate-reducing bacteria (e.g. Acidovirax spp. 

and Thiobacillus denitrificans) that utilize oxygen and nitrate, respectively to oxidize Fe
2+

 to 

Fe
3+

 (Melton et al., 2014). Iron-oxidizing microorganisms can be problematic for municipal 

water suppliers because they produce aggregates of weakly soluble, Fe-oxide compounds 

(typically ferrihydrite or lepidocrocite) that can clog well systems (Table 2: Houben, 2003; 

Stucki et al., 2012;  Melton et al., 2014). Microbially mediated, Fe reduction involves the 

oxidation of organic compounds, hydrogen, or ammonium and the simultaneous reduction of 

Fe
3+

, which releases dissolved Fe
2+

 and frequently results in high-Fe groundwater. Common Fe-

reducing microbes in aquifer systems include Geobacter spp., Shewanella spp., Albidoferax 

ferrireducens, and Geothrix spp (Melton et al., 2014).  
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Coastal plain aquifers frequently develop a series of localized biogeochemical zones 

where the reduction of electron acceptors typically proceeds from highest to lowest energy yield 

along aquifer-flow paths (Figure 6; Chapelle and Lovley, 1992; Stumm and Morgan, 1996; 

Brown et al., 1999; McMahon and Chapelle, 2008).  As water percolates through Fe-rich and 

organic-rich sediments in the recharge zone, microbial processes such as fermentation and 

aerobic respiration consume dissolved O2 as organic matter is broken down to more reactive 

compounds that can readily transfer electrons to available electron accepters via redox reactions 

(Park et al., 2006). Near the surface, the dominant redox processes affecting groundwater 

chemistry commonly involve abiotic and microbially catalyzed oxidation of organic matter and 

simultaneous reduction of dissolved O2. Subsequently, microbial activity and increasing isolation 

from the atmosphere deplete dissolved O2 downgradient from the recharge zone. As the 

groundwater approaches anoxia, other available electron acceptors oxidize organic matter 

(Brown et al., 1999). In order of favorability, other naturally occurring oxidizers in groundwater 

include nitrate (NO3
-
), manganese(IV) (Mn

4+
), Fe

3+
, sulfate (SO4

2-
), and carbon dioxide (CO2) 

(McMahon and Chapelle, 2008). Although the rate of abiotic reduction of these species by 

organic matter is generally very slow, microorganisms can significantly increase the rate of 

redox reactions, especially those involving the reduction of Fe
3+

 (Stucki et al., 2012).  
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Figure 6: Relative concentrations of redox-related constituents in groundwater with increasing distance from the 

recharge zone (modified from Wiedemeier, 1999). Note that the concentrations are associated with the typical 

sequence of terminal electron-accepting processes in an aquifer. 
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1.5 Formation and Characteristics of Common Iron-Oxyhydroxides 

Typical characteristics and necessary conditions of formation for common iron-

oxyhydroxide minerals are summarized in Table 2. The weathering of Fe-bearing minerals 

releases either Fe
2+

 or Fe
3+

 from mineral surfaces. In near-surface, oxygenated environments, 

Fe
2+

-containing minerals such as ilmenite, amphiboles, and pyroxenes are unstable (Curtis, 

1976). Dissolved Fe
2+ 

may migrate elsewhere in the sediment column as a complexed species or 

remain in its reduced form in an oxygen-deficient environment. In the presence of O2, the Fe
2+ 

may oxidize rapidly to Fe
3+

: 

4Fe
2+

(aq) + O2(g) + 4H
+

(aq)  4Fe
3+

(aq) + 2H2O(l) 

The time required for about 90% of uncomplexed Fe
2+

 to oxidize
 
can range from about 30 

seconds at pH 8 to several weeks at pH 6 (Vance, 1994). After Fe
3+ 

is released by mineral 

dissolution or Fe
2+

 oxidation in saturated sediments, most of the dissolved Fe
3+

 undergoes 

hydrolysis and precipitates as an amorphous, iron-oxyhydroxide compound represented by 

Fe(OH)3: 

4Fe
3+

(aq) + 12H2O(l)  4Fe(OH)3(s) + 12H
+

(aq) 

Over time, the atomic arrangement of the iron-oxyhydroxide becomes increasingly ordered, 

resulting in progressive mineralization. During the mineralization process, the surface area and 

solubility of ferric hydroxide decrease while the degree of crystallization increases, resulting in 

the formation of an iron-oxyhydroxide crystallite over time (Vance, 1994). The size of individual 

iron-oxyhydroxide crystals usually ranges between 10 and 100 nm. As a result of their extremely 

small size, iron-oxyhydroxides can comprise the majority of a sediment’s total surface area, even 

at proportions of only a few percent (Stucki et al., 2012). 
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In decreasing order of solubility and increasing order of crystallinity, common iron-

oxyhydroxide minerals include ferrihydrite ([Fe
+3

]2O3•xH2O), lepidocrocite (γ-Fe
3+

O[OH]), 

hematite (Fe
3+

2O3), and goethite (α-Fe
3+

O[OH]), which are reddish brown, bright orange, bright 

red, and yellowish brown to dark-orangish brown, respectively (Vance, 1994; Montes-Hernandez 

et al., 2011). Under oxic and circumneutral conditions, iron-oxyhydroxide minerals are weakly 

soluble. For example, the solubility of ferrihydrite is around 0.6 µg/L, which is 3 or 4 orders of 

magnitude greater than that of goethite, depending on crystallinity variations (Vance, 1994; 

Stucki et al., 2012). 

Once formed, three principal processes can result in the dissolution of iron-

oxyhydroxides under natural conditions. In increasing order of effectiveness, these dissolution 

processes include protonation, complexation, and reduction by organic-matter oxidation. 

Protonation of goethite, for example, releases soluble Fe
3+ 

(Stucki et al., 2012): 

α-Fe
3+

O(OH)(s) + 3H
+

(aq)  Fe
3+

(aq) + 2H2O(l) 

However, this process is not expected to be a significant dissolution process at the study area 

because protonation is ineffective under slightly acidic conditions. In the presence of organic 

compounds (e.g. humic acid, fulvic acid, and tannic acid), complexation can dissolve iron-

oxyhydroxides to produce soluble Fe
3+

-organic complexes: 

α-Fe
3+

O(OH)(s) + 3HL(aq)  Fe
3+

L3(aq) + 2H2O(l) 

where L in the above reaction represents organic ligands (L) (Stucki et al., 2012). Ligands are 

atoms or molecules that have unshared valence electrons that temporarily bind to a central-metal 

atom through coordinate-covalent bonding (Faure, 1998). Both Fe
2+

 and Fe
3+

 can form 

complexes but the major abiotic process resulting in significant dissolution of Fe
3+

 in most 

circumneutral groundwaters is for it to complex with organic ligands. Iron complexes can 
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increase the mobility of Fe because they usually react more slowly during redox reactions 

(Stucki et al., 2012).  

Although complexation may enhance the dissolution of iron-oxyhydroxides, microbially 

mediated Fe
3+

 reduction is a much more significant dissolution process in most aquifers. In low-

oxygen groundwater, respiring microorganisms catalyze Fe
3+

 reduction by organic-matter 

oxidation (represented by CH2O), resulting in the relatively rapid release of soluble Fe
2+

 (Stucki 

et al., 2012): 

4α-Fe
3+

O(OH)(s) + CH2O(aq) + 8H
+

(aq)  4Fe
2+

(aq) + CO2(g) + 7H2O(l) 

Goethite is the most frequently occurring iron-oxyhydroxide. It is predominantly formed 

in temperate regions via precipitation in oxic groundwater or by aging of ferrihydrite over time. 

Hematite is the second most common iron-oxyhydroxide. Ferrihydrite is a necessary precursor 

for the formation of hematite which typically occurs in warm climates such as the tropics and 

subtropics. Hematite development is dependent on the alteration of ferrihydrite where the 

abundance of organic matter is low or nonexistent. Lepidocrocite is derived from the oxidation 

of Fe
2+

 and is frequently associated with goethite in non-calcareous sediments. Ferrihydrite is a 

common iron-oxyhydroxide, consisting of a poorly ordered to amorphous structure. It forms in 

organic-rich sediments where Fe
2+

 is rapidly oxidized (Stucki et al., 2012). In well-crystallized 

samples, common morphologies for iron-oxyhydroxides are needles or lathes for goethite, 

rhombohedra or hexagonal plates for hematite, needles, lathes, or elongated plates for 

lepidocrocite, and spheres for ferrihydrite (Cornell and Schwertmann, 2003; Stucki et al., 2012). 
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Table 2: Formation and characteristics of common iron-oxyhydroxide minerals in sediments (Vance, 1994; Montes-Hernandez et al., 

2011; Stucki et al., 2012). 

Mineral Name Ferrihydrite Goethite Hematite Lepidocrocite 

Formula (Fe
+3

)2O3•XH2O α-Fe
3+

O(OH) Fe
3+

2O3 γ-Fe
3+

O(OH) 

Crystal System Hexagonal Orthorhombic Trigonal Orthorhombic 

Usual Crystal 

Shape 
Spheres Needles, Laths 

Hexagonal Plates, 

Rhombohedra 
Laths, Needles 

Color Reddish Brown Yellowish Brown Bright Red Bright Orange 

Occurrence and 

Formation 

Rapid oxidation in 

humic environments 

Most frequently 

occurring Fe-oxide in 

soils and forms 

wherever weathering 

takes place 

High soil temperature, 

well-drained soils, 

high Fe-release rate 

from rocks 

Mostly anaerobic, 

non-calcareous 

systems 

Soils Wet soils 
All soils with Fe 

release 

Aerobic soils of the 

tropics and subtropics 

Saturated soils 

under reducing 

conditions in 

temperate regions 

Additional 

Characteristics 

 Typically indicates 

recent formation or 

that conditions are not 

favorable for crystal 

growth 

Most frequently 

occurring iron-

oxyhydroxide in soil 

Formation only occurs 

via ferrihydrite 

alteration where little 

organic matter is 

present 

Forms from slow 

oxidation of Fe
2+
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1.6  Previous Work 

The geochemistry of UCHA water is largely controlled by the dissolution of aquifer 

materials, groundwater leakage from overlying aquifers and surface waters, groundwater mixing 

along the saltwater/freshwater interface, and exchange with aquifer minerals (Sutton and Woods, 

1995; Woods et al., 2000). According to Giese et al. (1997), CHAS water is hard (120 – 180 

mg/L) to very hard (>180 mg/L). Hardness is attributed to the release of calcium (Ca
2+

) and 

magnesium (Mg
2+

) ions during the dissolution of limestone and dolomite (Wilder et al., 1978). 

The hardness is lower near recharge areas and increases with residence time in the aquifer (Giese 

et al., 1987). In the western portion of NCCP, carbonate dissolution enriches groundwater with 

Ca
2+

 and bicarbonate (HCO3
-
). In the eastern coastal plain, groundwater mixing near heavily 

pumped regions increases the alkali metal and chloride content in the UCHA (Sutton and Woods, 

1995). Ion-exchange reactions are prevalent throughout NCCP but the associated geochemical 

processes are complex and spatially variable (Woods et al., 2000). CHAS water has a median 

dissolved-solids concentration of 300 mg/L and a median pH of 7.3 (Lloyd and Daniel, 1988). 

UCHA pH values near Washington, NC are circumneutral, ranging from 6.9 to 7.3 (Sutton and 

Woods, 1995; Woods et al., 2000).    

Sulfide (S
2-

) concentrations are typically very low; those in western portions of the 

UCHA were generally lower than in eastern wells. The mean S
2-

 concentration in LCHA waters 

is generally higher than in the UCHA waters. High S
2-

 concentrations can be indicative of 

bacterial reduction of SO4
2-

; however, S
2- 

is probably removed rapidly from solution via the 

reaction with Fe
2+

 to produce Fe sulfides (Woods et al., 2000).     

 High dissolved-Fe concentrations characterize the UCHA. Regionally, Fe concentrations 

are highest in the east and decrease downgradient (Figure 1). They drop sharply near 
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Washington, NC but fall more gradually between Jacksonville and New Bern (Woods et al., 

2000). Consolvo (1998) indicates that dissolved Fe near Washington decreases downgradient by 

>6 mg/L in less than 5.2 km. Groundwater from wells in Onslow County has a median Fe 

concentration of 1.1 mg/L (Amsbaugh, 1996). Fe concentrations frequently exceed the North 

Carolina Maximum Contaminant Level of 0.3 mg/L (Giese et al., 1987).  

Johnson (1992) evaluated water quality parameters for groundwater samples collected 

from a shallow well 2.7 – 3.7 m below the land surface (m BLS), an intermediate well 5.3 – 6.9 

m BLS and two deep wells 15.2 – 24.4 m BLS at the Tranters Creek core site (Table 3 and 

Figure 3). The shallow well likely tapped the surficial aquifer, the screen at the intermediate well 

may have traversed both the surficial and the Yorktown aquifers, and the deep wells were 

screened in the UCHA. The manganese (Mn) concentration in the shallow well was 0.14 mg/L, 

which exceeded the recommended concentration limit (RCL) of 0.05 mg/L for secondary 

contaminants. Both the shallow and intermediate wells were acidic with pH values of 5.0 and 

6.3, respectively. pH values, measured at the deep wells, were 7.8 and 7.9, which is within the 

RCL range of 6.5 to 8.5. All of the wells sampled exceeded the RCL for dissolved Fe (Johnson, 

1992).  

Although few studies have examined dissolved Fe in the UCHA, some ideas have been 

presented to explain why Fe concentrations peak near the recharge zone and rapidly decrease 

from west to east. Wilder et al. (1978) believed that Fe concentrations are highest near the 

recharge zone because Fe entering the aquifer has not had enough time to precipitate. Woods et 

al. (2000) proposed several additional hypotheses regarding Fe trends in the UCHA:  



23 

 

1) high-Fe concentrations along the western portion of the CHAS likely originate from 

acidic recharge waters reducing iron-oxyhydroxide compounds that are present in 

surficial sediments where microorganisms reduce Fe
3+

 to Fe
2+

 in anaerobic environments, 

2) leaky confining beds may supply oxygen to the groundwater and cause dissolved Fe to 

precipitate in certain areas of the NCCP, 

3) cation-exchange reactions may quickly deplete ferrous Fe as other cations (sodium, Mg
2+

, 

and Ca
2+

) are released into solution,   

4) groundwater reactions with aquifer carbonates raise pH and precipitate Fe, and  

5) the composition and thickness of the overlying units through which recharge waters 

percolate may control Fe concentrations in groundwater.  
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Table 3: Water quality data for secondary drinking water regulations measured by Johnson 

(1992) at the Tranters Creek core site. 

Constituent
1
 

Shallow 

Well
2
 

Intermediate 

Well
3
 

Deep 

Well 

1
4
 

Deep 

Well 

2
4
 

RCL 

Total 

Dissolved 

Solids 

50 94 530 450 500 

Chloride 5 2 92 68 250 

Sulfate 8 9 20 14 250 

Nitrate 0.01 0.01 0.01 <.1 10 

Iron 2.3 13 1.2 0.68 0.3 

Manganese <0.025 0.14 <0.025 0.03 0.05 

Copper <0.01 <0.01 <0.01 <0.01 1 

Zinc <0.01 0.039 0.015 <0.01 5 

Boron ND
5
 ND

5
 ND

5
 ND

5
 1 

Sulfide ND
5
 <0.1 <0.1 <0.1 6 

pH 5 6.3 7.9 7.8 6.5 – 8.5 

1. Water quality data (concentrations are in mg/L) for secondary 

drinking-water regulations (Johnson, 1992) 

2. Depth range is 2.7 – 3.7 m BLS 

3. Depth range is 5.3 – 6.7 m BLS 

4. Depth range is 15.2 – 24.4 m BLS 

5. ND: Not detected 
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1.7 Hypothesis and Objectives 

1.7.1 Hypothesis 

  Localized, Fe-rich groundwater zones reflect a variety of geochemical and hydrogeologic 

processes along CHAS flow paths. High-Fe concentrations measured in the UCHA are likely 

derived from overlying aquifers where the oxidation of dissolved organic carbon and concurrent, 

microbially catalyzed reduction of iron-oxyhydroxide compounds enriches the UCHA recharge 

water with dissolved-Fe
2+

. Once the iron-enriched-recharge water enters the UCHA, dissolved 

Fe likely interacts with glauconite in the UCHA via cation-exchange reactions, resulting in the 

rapid depletion of dissolved Fe over a relatively short distance along the UCHA flow path. 

1.7.2 Objectives 

 The primary objective of this investigation is to elucidate the origin and geochemical 

evolution of high-ferrous-iron zones in the UCHA by examining the mineralogical, geochemical, 

and sedimentological characteristics of sediment cores acquired in western Beaufort County. 

This objective was addressed through a specific set of subobjectives that included the 

determination of the: 

1. major Fe-bearing minerals in the sediments overlying the UCHA, 

2. potential of the identified Fe-containing minerals to yield high dissolved-Fe 

concentrations, 

3. effect of variations in sediment geochemistry and sedimentological composition on 

the precipitation, retention, and dissolution of iron-oxyhydroxide compounds, and 

4. capacity of cation-exchange to explain the rapid, downgradient depletion of dissolved 

Fe in the UCHA near Washington, NC.



 

 

2.0 Study Area 

Beaufort County is situated in the inner coastal plain of North Carolina and is included 

within the Central Coastal Plain Capacity Use Area, which includes Beaufort, Carteret, Craven, 

Duplin, Edgecombe, Green, Jones, Lenoir, Martin, Onslow, Pamlico, Pitt, Washington, Wayne, 

and Wilson counties. A capacity use area is a region where the use of water resources exceeds, or 

threatens to surpass, the replenishment rate of the resource in a manner that necessitates water 

use regulation. Within this area, a state permit is required to withdraw more than 380 m
3
/day 

from groundwater or surface water resources (NCDENR, 2008).     

 Two Geoprobe cores were collected at a field area near the western end of the CHAS 

recharge zone in western Beaufort County (Figures 1 – 3). The field area is located about 1.6 km 

south of U.S. Highway 264, around 8 km northwest of Washington, NC, and adjacent to Tranters 

Creek. Tranters Creek encompasses the site to the west (~46 m), to the south (365 m), and to the 

east (440 m). A small tributary of Tranters Creek is located about 285 m to the north of the core 

site (Figure 7). Elevations across the field area range from less than 1.5 m above mean sea level 

along the creek to over 7.6 m northeast of the core site. The location of the study area was 

selected due to the site’s proximity to the western extent of the CHAS recharge boundary where 

previous investigators have reported the presence of high-dissolved-Fe zones (Wilder et al., 

1978; Sutton and Woods, 1995; Brown, 1999; Woods et al., 2000,). In addition, the Tranters 

Creek field area was chosen because Johnson (1992) provided the following information: 

1. the depth of the upper contact of the UCHA is shallow enough to permit the collection of 

core samples near the UCHA contact using East Carolina University’s truck-mounted, 

Geoprobe-coring equipment; 
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2. essential hydrologic information such as groundwater-flow patterns and aquifer 

characteristics; 

3. and his investigation included groundwater chemistry data for selected depths in the 

UCHA and in the overlying aquifers.  

 According to Johnson (1992)’s one-year investigation, the depth of the free water table 

surface ranges from about 0.9 to 2.2 m BLS but is generally less than 1.5 m BLS in the area 

encompassing the core site. Tranters creek and the small tributary north of the core site (Figure 

7) are likely recharge boundaries (aquifer boundaries that contribute water to the aquifer) or 

discharge areas (an area in which hydraulic head increases with increasing depth) for the 

underlying aquifers. A hydraulic connection exists between the UCHA, surficial aquifer, and 

Tranters Creek. Under static conditions, groundwater in the aforementioned aquifers discharges 

into Tranters Creek; however, when the water-level elevation in Tranters Creek is higher than the 

elevation of the water table in the surficial aquifer, water in Tranters Creek likely recharges the 

surficial aquifer. The principal direction of groundwater flow in the UCHA and surficial aquifer 

is to the south and southwest, respectively. Groundwater also travels vertically from the UCHA 

to the surficial aquifer via a semi-pervious layer, which has a vertical hydraulic conductivity of 

3.6 x 10
-3

 m/day (Johnson, 1992).
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Figure 7: Map showing the location of the core site relative to Tranters Creek and the small tributary to 

the north of the core site, which are potential recharge boundaries or discharge areas to the underlying 

aquifers (Johnson, 1992). 



 

 

3.0 Procedures 

 Two spatially adjacent (a 0.6 m separation between the core locations), sediment cores 

were collected in the Tranters Creek field area. Subsamples from the first sediment core (TC14) 

were subjected to grain size, X-ray fluorescence, and loss on ignition analyses. Sediment samples 

from the second core (TC14C) were sent to the Sediment Testing Division of the North Carolina 

Department of Agriculture (NCAG) in Raleigh to compare with X-ray fluorescence results for 

selected nutrients and, to determine changes in sediment-water pH, cation-exchange capacity, 

exchangeable acidity, base saturation, and humic matter. The remaining portions of TC14C 

samples were magnetically separated and subsequently evaluated using X-ray diffraction, optical 

microscopy, and scanning electron microscopy/energy-dispersive X-ray spectroscopy. The 

analytical results from the sediment cores were used to identify minerals and possible sources of 

Fe in sediments overlying the UCHA. Finally, a geochemical modeling program (PHREEQC) 

was used to investigate potential sources of dissolved Fe in sediments overlying the UCHA and 

to determine if cation exchange is a plausible hypothesis explaining the rapid depletion of 

dissolved Fe in the UCHA. The methodologies are explained in the following subsections and 

detailed protocols are included in Appendix B.   

3.1 Core Acquisition and Processing 

On May 28 and July 9, 2014, a truck-mounted, direct push, hydraulic-sampling unit 

(Geoprobe) was used to acquire two sediment cores. Each core consisted of nine 1.2 m sections 

and included sediments from the ground surface to around 11 m BLS. A plastic cylinder, 

approximately 5 cm diameter and 1.2 m long, was placed in a 1.2 m-long, steel-core barrel and 

pneumatically hammered into the subsurface. Following insertion, the core-barrel assembly was 

extracted from the ground and the plastic tube containing the sediment sample was removed. The 
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sediment-sample tube was immediately capped with plastic endcaps, sealed with duct tape, and 

labeled with the core name and depth interval. Deeper samples were collected by attaching 1.2 

m-long, outer-steel tubes to the core barrel assembly. Light-weight center rods were installed 

from the top of the uppermost outer tube to the bottom of the core barrel to prevent sediment 

from entering the plastic sample tube while hammering through previously cored depth intervals. 

After reaching the deepest part of the preceding core section, the inner rod was removed, 

permitting collection of the subjacent depth interval. Sediment cores were acquired at 1.2 m 

intervals until the drilling apparatus was not able to penetrate further into the ground. After the 

field work was completed, the Geoprobe cores were placed vertically (shallowest end facing 

upward) in a walk-in refrigerator until they were processed at the Department of Geological 

Sciences at East Carolina University. 

 The plastic sample tube was cut lengthwise for each 1.2 m core section to expose the 

collected sediment. Subsequently, the core sections were photographed, logged for lithologic 

variations, and contiguously subsampled from the top of the retained sediment to the bottom of 

each core section. Stratigraphically adjacent sediment samples from TC14 were cut to 

thicknesses ranging from 2 – 4 cm (Appendix A). The thicknesses of the TC14 subsamples were 

determined based on compositional heterogeneity (e.g. grain size, color, moisture content, and 

lithology). Prior to processing the TC14 core samples, the initial wet weights of grain-size 

samples were recorded. Subsequently, the TC14 samples were desiccated in a laboratory oven at 

40°C for at least 36 hours. After the dry weights of the grain-size samples were measured, 

moisture-content variations were determined and the remaining TC14 samples were sealed in 

plastic sample bags until they were processed further for grain-size, X-ray fluorescence, and loss 

on ignition analyses. 
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  Sediment samples from TC14C were cut to thicknesses ranging from 12.6 – 36.6 cm 

(Appendix A), placed into sealable plastic containers, stirred with plastic utensils, and partially 

dried in an oven at 40°C for around 4.5 days. The samples were then gently disaggregated with a 

ceramic mortar and pestle, stirred with a plastic spoon to improve homogeneity, and a cardboard 

sample box (provided by NCAG) was filled with individual sediment samples (the volume of 

each sample was approximately one pint). The sample boxes were subsequently sealed and 

shipped for analysis by NCAG. The remaining portions of 27 TC14C samples (2 samples did not 

have leftover sediment) were completely desiccated in a laboratory at 40°C for at least 36 hours, 

weighed, and stored in sealed plastic containers until they were processed further for magnetic 

susceptibility, X-ray diffraction, optical microscopy, and scanning electron microscopy/energy-

dispersive X-ray spectroscopy analyses. 

 Appendix A presents subsample data for cores TC14 and TC14C. The subsamples were 

cut at two specified points within each core section. The lengths, measured downward from the 

top of the core section to the endpoints of the subsample, are referred to the upper and lower 

subsample depths. Subsample identifiers in this manuscript include the name of the core, the 

depth range of each core section in feet and the sample number, which indicates relative depth 

along the core. For example, TC14: 4 – 8’ #5 indicates that the subsample was the fifth 

shallowest subsample collected from the TC14 core section representing 4 – 8 ft BLS (1.2 – 2.4 

m BLS). The sampling resolution was much higher for TC14 than TC14C because NCAG’s 

laboratory required approximately one pint of each sediment sample to conduct their analyses 

while the amount of material needed for grain-size, X-ray fluorescence, and loss on ignition 

analyses was much less. 
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 Depth calculations were applied to account for variations in core recovery (Figure 8 and 

Appendix A). The following calculations operate under the assumption that the recovered 

samples are representative of the undisturbed sediments that are present at corresponding 1.2 m 

depth intervals beneath the land surface: 

1. Adjusted subsample depth (m) = mean of the upper and lower subsample depths (m) – 

length void space (m)  

2. Conversion factor = 1.219 (m) ÷ length recovered (m) 

3. Calculated depth (m) = [conversion factor × adjusted sample depth (m)] + shallowest 

possible depth BLS for the core section (m). 
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Figure 8: Illustration of core components used in depth calculations that were applied to account for variations in core recovery. 

Subsample depths were measured downward from the top of the core section to each of the subsample’s endpoints. Mean subsample 

depth (M) is the average of the upper subsample depth (U) and the lower subsample depth (L). Adjusted subsample depth = M – 

length void space (V). The conversion factor = (length recovered (R) + V) ÷ R. Calculated depth BLS = [conversion factor × 

adjusted subsample depth (m)] + shallowest possible depth for the core (S). The length of the core tube = R + V.  
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3.2 Grain-Size Analysis and Hydraulic Conductivity 

 Wet and dry sieving techniques were used to determine grain-size variations. Fifty-eight 

grain-size samples from TC14 were each soaked overnight in a 300-mL beaker containing 

ultrapure water and sodium hexametaphosphate (NaPO3)6 to deflocculate mud particles. The 

sediment samples were then washed by hand over a 4 Φ (63 µm) stainless-steel sieve to remove 

the mud portion from each sample. The retained sediment was dried in an oven at 40°C for at 

least 36 hours and weighed to determine the amount of mud that was lost during the wet-sieve 

procedure. Subsequently, the samples were dry sieved for 15 minutes in a nested column of 

sieves (½ Φ intervals) using a Ro-Tap sieve shaker to obtain fractions of sediment grains ranging 

from <4 Φ to >-2 Φ (<63 µm to >4000 µm), representing size fractions ranging from mud to 

very fine gravel (i.e. granule). After each fraction was weighed, grain-size parameters such as 

textural group, median grain size, sorting (determined from the standard deviation of the grain-

size sample), and grain-size percentages were calculated using the statistical software program, 

GRADISTAT 4.0 (Blott and Pye, 2001). The grain-size procedure followed is presented in 

Appendix B. 

 Hydraulic conductivity (K) is a measure of a fluid’s capacity to flow through pore spaces 

in sediment and varies according to physical properties of the permeating fluid (e.g. viscosity and 

density) and the physical attributes of the sediment (e.g. particle size, shape, sorting, and 

porosity) (Heath, 1983). Using grain-size statistics calculated via GRADISTAT 4.0, K was 

estimated according to the technique proposed by Hazen (1892): 

K (cm/s) = C(D10)
2
 

where C is a constant ranging from 0.4 to 1.2 depending on grain size and particle-size 

distribution of the sediment, typically assumed to be 1.0 and D10 is the grain-size diameter at 
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which finer material is equal to 10% of the total sediment weight and 90% are coarser, also 

referred to as the effective size (mm) (Freeze and Cherry, 1979). Although this is one of the most 

common methods to quickly estimate K from grain-size data, the calculation is based only on 

one size fraction (D10) and is best suited for clean sands ranging from 0.1 to 3.0 mm (Holtz et al., 

2011). Hydraulic conductivity estimated from grain-size data commonly results in higher values 

than those derived from direct measurements; however, general trends in grain-size-estimated K 

are typically similar to trends in field-measured hydraulic conductivity (Eggleston and 

Rojstaczer, 2001). 

3.3 X-ray Fluorescence 

 Fifty-four, pressed-powder pellets were prepared for XRF analysis. Following 

desiccation, sediment samples from Geoprobe core TC14 were ground to approximately 63 µm 

using a ceramic mortar and pestle. A tungsten-carbide-ball mill was then used to reduce the 

particle size of the samples to a very fine powder (ten minutes each). For each XRF sample, six 

grams of sediment, 1.2 grams of binder (PelletBlend Powder – PB100), and 5 acrylic balls were 

placed inside a plastic mixing chamber (see Appendix G for precise pellet data). The sample was 

then homogenized using a Spex Mill sample shaker for 10 minutes. The homogenized sediment 

sample (80%) and binder (20%) were compressed (40 – 45 psi) with a hydraulic press for at least 

4 minutes to make pressed-powder pellets (40 mm in diameter), which were stored in a 

desiccator to remove moisture. A detailed procedure for making XRF pellets is explained in 

Appendix B.  

 In August 2014, an Axios (PANalytical) wavelength-dispersive XRF spectrometer was 

used to determine the total elemental compositions (expressed as either a percentage of dry 

sediment weight (wt. %) or in parts per million (ppm or mg/kg) of dry sediment weight) of 54 
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pressed-powdered pellets. Twenty-one reference samples (Govindaraju, 1994; Appendix G) were 

selected to generate calibration curves for 14 elements including aluminum (Al), sulfur (S), Fe, 

potassium (K), magnesium (Mg), manganese (Mn), sodium (Na), phosphorous (P), silicon (Si), 

titanium (Ti), calcium (Ca), fluorine (F), chlorine (Cl), and strontium (Sr). These elements were 

selected because they comprise common coastal plain minerals including quartz, feldspars, 

marine fossils, heavy minerals, amphiboles, pyroxenes, and many others. A monitor sample was 

analyzed on a weekly basis to correct for long-term drift of the instrument.  

Precision of the XRF spectrometer was determined by the coefficient of variation (CV 

%), which can be used to compare the standard deviation and the mean for a set of analyses: 

CV % = (standard deviation ÷ mean) × 100 

Percent error (% Error) was calculated to determine accuracy of the XRF spectrometer 

according to the following equation: 

% Error = [(experimental mean – accepted value) ÷ accepted value] × 100 

where the experimental mean is the average concentration of an element comprising a reference 

sample and the accepted value was acquired from 3
rd

 party laboratories or publications (e.g. 

Govindaraju, 1994). Concentration units are expressed either as a weight percentage of dry 

sediment or in parts per million (ppm or mg/kg) of dry sediment weight. A positive % Error 

value indicates that the experimental mean is higher than the accepted value. A negative % Error 

value indicates that the experimental mean is lower than the accepted value. 

 Some elements could not be evaluated due to detection limits. The sensitivity of East 

Carolina University’s XRF spectrometer is not sufficient for precise and accurate measurements 

of elements that are lighter than Na because X-ray-induced fluorescence is typically too low for 

elements with low atomic numbers (<11). During the study period, the gas flow proportional 
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detector was the only functioning detector. Only elements lighter than Zn were well suited for 

our XRF analyses because the flow counter largely measures long-wavelength X-rays (>0.15 

nm), which are emitted as secondary radiation by lighter elements during fluorescence (Van 

Loon and Barefoot, 2013). 

 Approximately one year following the completion of the initial XRF analyses, two 

standards and five pellet samples were subjected to replicate analyses to determine the accuracy 

and precision of the instrument and to test the reproducibility of the original XRF data 

(Appendix G). Microsoft Excel was used to calculate basic statistics (e.g. mean, median, 

standard deviation, R
2
, and 95% confidence level), construct bivariate plots, and perform linear 

regression analyses. R
2
 values range from 0 to 1 with an R

2
 value of zero indicating a total 

absence of linear correlation between the data and the calculated line of perfect fit and, a R
2
 

value of one representing a perfectly linear correlation among the data.  

 Percent deviation (% Deviation) was calculated for the five pellet samples to determine 

the degree to which the newly acquired replicate data compares to the originally measured 

concentration. The equation for % Deviation is as follows:  

% Deviation = ((experimental mean – original value) ÷ original value) × 100 

where the experimental mean is the average elemental concentration determined in 2015 via 

replicate XRF analyses for five pellet samples and the original value is the XRF-determined 

concentration that was measured in 2014 (i.e. only one XRF analysis per pellet sample was 

completed). Concentration units are expressed either as a weight percentage of dry sediment or 

in ppm (mg/kg) of dry sediment weight. Positive % Deviations indicate that the experimental 

mean is higher than the original value and negative values denote that the experimental mean is 

lower than the original value.  
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 The average of absolute-percent deviations (AAPD) was calculated for each element to 

determine how well the XRF spectrometer was capable of reproducing the initial 2014 

concentrations. AAPD was calculated in the following manner: 

1. The absolute value of % Deviations was computed for each element. 

2. The mean of the resulting absolute-percent deviations for each element was 

calculated for the five XRF pellet samples. 

3.4 Loss on Ignition 

 Loss on ignition (LOI) is a time-efficient and cost-effective technique to approximate 

variations in organic-matter content. The approach generally requires that a small quantity of a 

desiccated-sediment sample be precisely weighed, combusted in a muffle furnace, and precisely 

weighed again. The assumption is that the weight that is lost during combustion should closely 

approximate the weight of organic matter that initially comprised the sample (i.e. combustion 

only removes organic matter). However, the results of LOI analyses performed on lithologically 

diverse sediments may not be suitable for quantitative estimation of organic matter because, in 

addition to organic-matter removal, additional combustion-related losses can be derived from 

structural water from clay minerals and volatile salts, and from CO2 from carbonates. 

Nevertheless, studies have shown that LOI is a suitable proxy for the qualitative discernment of 

general trends in organic-matter content (Ball, 1964; Bengtsson and Enell, 1986; Dankers and 

Laane, 1983; Sutherland, 1998; Santisteban et al., 2004).  

 Variations in organic-carbon content were qualitatively assessed by proxy from LOI 

measurements. Nineteen bulk-sediment samples (2 – 4 cm intervals) were chosen from TC14 for 

LOI analysis based on lithological contrasts and XRF-determined variations in Fe content. 

However, the selected sample density is not sufficient for high-resolution LOI characterization 
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and, because only one trial was conducted for this investigation, the reproducibility of LOI 

values cannot be evaluated for these data.   

 Dried sediment (1.2 grams) was weighed, placed into a porcelain crucible, and 

combusted in a muffle furnace for 4 hours at 550°C. The samples were then cooled to room 

temperature inside a desiccator and the final weight was determined to calculate percent LOI (% 

LOI) (Bengtsson and Enell, 1986; Heiri et al., 2001): 

% LOI = [(initial weight (g) – final weight (g))] ÷ initial weight (g)] × 100 

where the initial weight is the dry sediment weight of the sample prior to combustion in the 

muffle furnace and the final weight is the dry sediment weight of the sample following 

combustion in the muffle furnace. A procedure detailing the LOI procedure is included in 

Appendix B.    

3.5 Sediment Testing by NCAG  

 Twenty-nine samples (~1 pint each) from Geoprobe core TC14C were delivered to 

NCAG to determine the extractable amounts of phosphorus (Pe), potassium (Ke), calcium (Cae), 

magnesium (Mge), sodium (Nae), manganese (Mne), sulfur (Se), zinc (Zne), and copper (Cue) in 

desiccated sediment samples and, to evaluate changes in sediment-water pH, cation exchange 

capacity (CEC), base saturation (BS %), exchangeable acidity (AC), weight per volume (W/V), 

and percent humic matter (HM %). CEC values are indicative of the nutrient-retention capacity 

of a sediment and are calculated via the summation of Cae, Mge, Ke, and Ac. NCAG does not 

include Nae in CEC calculations because sodium concentrations are usually low in NC soils. 

Base saturation is the percentage of the CEC that is occupied by Cae, Mge, and Ke. AC denotes 

the portion of CEC that contains hydrogen (H
+
) and aluminum (Al

3+
) ions. Weight to volume 

ratios can be used for sediment classification. Percent humic matter is a measurement of the 
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chemically active fractions of organic matter (humic and fulvic acid) in sediment (Hardy et al., 

2012). NCAG analyzes on a volumetric basis and uses procedures described in Mehlich (1984a) 

and Mehlich (1984b) to measure sediment nutrients (via photometry) after applying the 

following extractant to the sediment samples: 

0.2N CH3COOH + 0.25N NH4NO3 + 0.013N HNO3 + 0.015N NH4F + 0.001M EDTA 

where acetic acid (CH3COOH) buffers the solution to pH 2.5 to prevent the precipitation of Ca, 

ammonium nitrate (NH4NO3) extracts cations such as Ca
2+

, Mg
2+

, Na
+
, and K

+
, nitric acid 

(HNO3) extracts a portion of Ca phosphates, ammonium fluoride (NH4F) extracts Fe and Al 

phosphates, and ethylenediaminetetraacetic acid (EDTA) chelates micronutrients. The Mehlich-

Buffer Acidity Procedure (Mehlich and Bowling, 1975) was conducted to measure AC of the 

sediment solution. This technique relates pH changes of a buffered reagent to corresponding 

changes in AC. The buffered reagent is composed of sodium glycerophosphate 

(C3H5(OH)2PO4 Na2 • 2.5H2O), ammonium chloride (NH4Cl), barium chloride (BaCl2 • 2H2O), 

glacial acetic acid (CH3COOH), and triethanolamine (TEA), which act as a buffering agent, a 

displacement reagent of AC, a supplementary displacement agent of AC and a preservative, a 

buffer within the pH range of 3.8 to 5.2, and a supplementary agent with CH3COOH to extend 

the range of the buffer from 3.5 to 5.2, respectively. Finally, NCAG follows a photometric 

procedure described by Mehlich (1984b) to measure the extractable humic substances in 

sediment samples and to quantify HM % (Hardy et al., 2012). 

3.6 Magnetic Separation 

 Sediment samples from TC14C were subjected to a series of magnetic separations. These 

procedures reduced the amount of quartz and calcite grains to facilitate mineral identification via 

X-ray diffraction, optical microscopy, and scanning electron microscopy/energy-dispersive X-
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ray spectroscopy. Prior to processing, a 2 M acetic acid solution (CH3COOH) was buffered to a 

pH of 4 with Na acetate (CH3COONa), and a 6.6% Na-hexametaphosphate (NaPO3)6 solution 

were filtered through a 1.2 µm Whatman microfiber filter and a 0.2 µm Millipore membrane 

filter via a vacuum filtration apparatus (Hounslow and Maher, 1999).  

 A total of 23 sediment samples were split into two groups based on Cae concentrations 

from NCAG; 10 samples consisting of less than 8,000 mg/dm
3
 (low carbonates) and 13 samples 

with greater than 8,000 mg/dm
3
 (high carbonates). High carbonate samples were treated with 

buffered acetic acid to dissolve the carbonate because it may cement the grains, adversely affect 

extraction efficiency, and magnetic grains may be attached to the carbonate (Hounslow and 

Maher, 1999). After the overlying liquid became clear (at least 24 hours), a pipette was used to 

remove as much of the acetic acid solution as possible without disturbing the sediment at the 

bottom of the glass beaker.  

 The subsequent methodologies for the carbonate and non-carbonate samples were 

identical. Five-hundred mLs of ultrapure water and 20 mL of the (NaPO3)6 solution were added 

to the samples inside a beaker, stirred with plastic spoons, and soaked overnight to disaggregate 

the sediments. Sediment samples were then washed by hand with ultrapure water over a 4 Φ (63 

µm) sieve placed on top of a beaker, thus separating out the mud-sized grains. Subsequently, the 

two size fractions of each sample were transferred to labeled weigh boats and dried in an oven at 

40°C. To facilitate magnetic separation, sediment samples were dry sieved using 1.25 Φ, 2.25 Φ, 

3.25 Φ, and 4 Φ stainless-steel apertures, therefore fractionating each sediment sample into the 

following grain-size categories: >425 µm, 0.212 µm, 106 µm, 63µm, and <63 µm. Grain-size 

portions that were >425 µm and <63µm were not used for magnetic separations to avoid 

clogging the instrument. 
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 A hand magnet and a Frantz Isodynamic Magnetic Separator were used to concentrate the 

mineral particles in each sample according to their magnetic susceptibilities. In this report, grains 

are considered to be magnetically susceptible if they were separated from a sediment sample via 

a hand magnet or by applying an electric current to the magnetic coil of the Frantz separator 

during the magnetic separation procedure (Appendix B). Prior to using the electromagnetic 

separator, ferromagnetic minerals such as magnetite and pyrrhotite were removed from the 

sample with a hand magnet to avoid blocking the chute. The side slope and forward slope of the 

Frantz were set to 20° and 25°, respectively. After setting the magnetic coil to 0.2 amperes 

(amps) to induce a magnetic field, sediment retained from the 2.25 Φ, 3.25 Φ, and 4 Φ sieves 

were successively poured (smallest to largest grain size) into the funnel at the top of the 

separator. Subsequently, the sediment flowed down a vibrating chute toward the lower end of the 

chute where the particles bifurcated into two streams: one consisting of grains of higher magnetic 

susceptibility than that of the corresponding amperage setting of the magnetic coil, and the other 

consisting of grains of lower susceptibility. After the three grain-size fractions were separated, 

the minerals that were susceptible at the 0.2 amps setting were combined with those attracted via 

the hand magnet, weighed, and sealed in a plastic sample bag.  

 Four additional magnetic separations were then conducted using the remaining non-

susceptible portion from the three size fractions (2.25 Φ, 3.25 Φ, and 4 Φ sieves). The magnetic 

coil was set to 0.4 amps, 0.8 amps, 1.2 amps, and for the maximum amperage setting (~1.8 

amps) for each subsequent magnetic separation. After the magnetic separations were completed, 

minerals that were susceptible below 0.8 amps were combined with those attracted via the hand 

magnet (collectively comprising the highly susceptible fractions), weighed, and sealed in a 

plastic sample bag. Grains that were susceptible at amperage settings exceeding 0.8 amps were 
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combined to form the poorly susceptible fractions. The remaining, non-susceptible portions were 

stored in separate plastic bags according to grain size. 

3.7 X-ray Diffraction 

 Powder X-ray diffraction (XRD) analyses were conducted on a total of 98 magnetically 

separated, sediment samples from TC14C to determine the mineralogy of sediments overlying 

the UCHA. Mineral identification via XRD is tentative because in these sediment samples, peak 

intensities for the minerals of interest are generally very low compared to the dominant calcite 

and quartz peaks. Each sample was ground to a fine powder with a ceramic mortar and pestle and 

subsequently X-rayed from 3 2ϴ to 73° 2ϴ. A procedure explaining sample preparation and 

XRD analysis is provided in Appendix B. 

3.8 Polished-Thin Sections 

 Twenty-one magnetically separated sediment samples were sent to Burnham 

Petrographics, LLC to prepare seven polished-thin sections. Stratigraphically adjacent samples 

were combined and mounted atop a 27 x 46 mm glass slide. Loose sediment grains were 

embedded in epoxy (Petropoxy 154), mounted to one of four assigned quadrants (A, B, C, and 

D), and polished to thickness of 30 µm. Each quadrant consists of one of the following: mud 

(<63 µm), non-susceptible grains (Frantz settings: 0 – 1.75 amps, 20° side slope, 25° forward 

slope), susceptible grains (Frantz settings: 0 – 1.75 amps, 20° side slope, 25° forward slope), 

highly susceptible grains (Frantz settings: 0 – 0.8 amps, 20° side slope, 25° forward slope), and 

poorly susceptible grains (Frantz settings: >0.8 amps, 20° side slope, 25° forward slope). 

Polished-thin sections were subsequently analyzed via reflected and transmitted light microscopy 

and via scanning electron microscopy/energy dispersive X-ray spectroscopy to ascertain 



44 

 

mineralogical and semi-quantitative geochemical variations. Quadrant-specific data for the 

polished-thin sections are presented in Appendix E. 

3.9 Energy Dispersive X-ray Analysis 

 Seven polished-thin sections were analyzed using an Oxford Instruments INCA X-act 

EDX system installed to a FEI Quanta 200 Mark 1 Environmental SEM to facilitate the 

identification of minerals and iron-oxyhydroxide aggregates. INCA, a data reduction program 

(Oxford Instrument’s Microanalysis Suite Issue 18d + SP2, INCA Suite version 4.15), was used 

to determine the elemental compositions of sediment constituents. Quantitative peak 

optimization was performed at least every two hours using a copper standard to maximize the 

software’s ability to identify peaks and convert peak heights to weight-percents. Each sample 

was analyzed at 0 – 20 KeV for 50 seconds of Live Time. These parameters are selected because 

they yielded the best analyses of known standards similar in structure and chemistry to the 

unknown minerals.  

 INCA’s point identification (Point & ID) and elemental mapping features were used to 

determine the chemistry of unknown minerals, aggregates, and coatings. Point & ID acquires a 

spectrum at a specified point on a sample. The elemental-mapping approach involves the 

concurrent detection of all possible elements for each pixel over a specified area. The software 

compiled X-ray data over a three-frame period at a 512 resolution to generate qualitative element 

maps, which show the distribution of elements over an area of interest (Oxford Instruments, 

2006).  

3.10 Mineralogical Analysis  

 Multiple techniques were used to estimate mineral-abundance variations. The percent 

area various minerals occupied was approximated by examining polished-thin sections and loose 
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sediment grains with an optical microscope and the SEM. Optical properties including 

birefringence, relief, fracture, cleavage, color, pleochroism, twinning, and diaphaneity (i.e. 

transparency) were used, in conjunction with XRD and EDX data, to identify the dominant 

minerals that comprise the cores at various depth intervals. After the dominant minerals were 

identified, the relative abundance of each mineral was semi-quantitatively determined by visual 

estimation. More quantitative methods such as point-count analyses were not performed due to 

time constraints.  

3.11 Geochemical Modeling with PHREEQC 

 The computer program PHREEQC (Version 2, Parkhurst and Appelo, 1999) is one of the 

most widely utilized programs for modeling chemical reactions and transport processes in low-

temperature aqueous systems. The program uses thermodynamic constants to simulate 

equilibrium reactions including, precipitation and dissolution, oxidation and reduction, 

speciation, and solution saturation. The thermodynamic constants are derived from numerous 

field and laboratory investigations and are adjusted to reflect applicable abiotic and biotic 

processes (David Parkhurst, pers. comm., 2015). The default database chosen for modeling was 

the Lawrence Livermore National Laboratory database (llnl.dat, Johnson et al., 2000). However, 

supplementary minerals and associated equilibrium constants (log K) of additional minerals of 

interest have been added (Table 4). 

 For minerals of interest not included in llnl.dat, a series of calculations were applied to 

calculate log K values for their dissolution reactions. The calculations use empirically 

determined values that define the energy content of species that are involved in the reaction. The 

energy content of each reaction species is called the “Gibbs Free Energy of Formation” (ΔGf
O
) 

and is determined by measuring the amount of heat energy that is released or consumed during 
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the formation reaction of the species. An equation describing the change of the Gibbs Free 

Energy of Reaction (ΔGR) at a given temperature and 1 atm pressure can be written as follows: 

ΔGR = ΔGf
O
 (products) - ΔGf

O
 (reactants) 

The equilibrium constant of a reaction is related to ΔGR by the following relationship: 

ΔGR = - R × T × ln Keq 

where R is the gas constant (0.001987 kcal/deg-mol), T is the temperature in degrees kelvin 

(298.15 at 25°C), and ln K is equal to the product of log K and 2.3025. A simplified equation 

relating log K to ΔGR at 25°C and 1 atm pressure can be written as follows: 

ΔGR = -1.364 × log K 

where ΔGR is in units of kcals/mol (Faure, 1998). 

 For example, the following is a reaction describing the dissolution of almandine: 

Fe3Al2Si3O12(s) +12H
+

(aq)  2Al
3+

(aq) + 3Fe
2+

(aq) + 3SiO2(aq) + 6H2O(l) 

Table 5 presents ΔGf
O
 values for species that are involved in the dissolution of almandine. Note 

that a value for H
+

(aq) is not provided in Table 5 because, by convention, ΔGf
O
 of H

+
(aq) is zero. 

The sum of reactants and the sum of the products is calculated as follows: 

ΔGf
O
 (reactants) = (1 almandine × -1187.8) + (1 H

+
(aq) × 0) = -1187.8 kcal/mol 

ΔGf
O
 (products) = (2 Al

3+
(aq) × -115.609) + (3 Fe

2+
(aq) × -21.87) + (3 SiO2(aq) × -199.19) + 6 

H2O(l) × -56.687) = -1234.52 kcal/mol 

The difference between the products and reactants is -46.72 kcal/mol, which is equivalent to ΔGR 

for this reaction. Finally, the value of log K for the dissolution of almandine can be determined 

by dividing -46.72 kcal/mol by -1.364, resulting in a log K value of 34.25. 
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Table 4: Formulas and equilibrium constants for modeled Fe-bearing minerals. Thermodynamic 

data were used to calculate log K for minerals that are referenced with multiple sources. Log K 

values were obtained directly for minerals with only one source. 

Mineral Formula log K 

Actinolite
2,4,5

 Ca2Fe5
2+

Si8O22(OH)2  50.22 

Almandine
2,4,5,6

 Fe3
2+

Al2Si3O12 34.25 

Epidote
1
 Ca2Fe

3+
Al2Si3O12OH 32.93 

Ferrihydrite
1
  Fe

3+
(OH)3    5.66 

Ferropargasite
2,3,5,6

 NaCa2Fe4
2+

Al3Si6O22(OH)2 80.89 

Glauconite
2,5,6,9

 K0.489Na0.045Mg0.281Al1.387Fe1.069
3+

Fe0.114
2+

Si3.327O10(OH)2 0.73 

Goethite
1
 Fe

3+
OOH 0.53 

Goethite_2
8
 Fe

3+
OOH -0.02 

Hedenbergite
1
  CaFe

2+
(SiO3)2  19.61 

Hematite
1
 Fe2

3+
O3 0.11 

Ilmenite
1
 Fe

2+
TiO3 0.91 

Lepidocrocite
8
 Fe

3+
OOH 1.39 

Pyrite
1
 Fe

2+
S2 -24.66 

Schorl
2,5,6,7

 NaFe3
2+

Al6Si6O18(BO3)3(OH)4 39.03 

Staurolite
2,4,5,6

 Fe
2+

2Al9Si4O23(OH) 82.97 

1. Johnson et al. (2000)                  

2. Weast et al. (1986) 

3. Murphy and Helgeson (1987) 

4. Karpov et al. (1971) 

5. Oelkers et al. (1995) 

6. Shock et al. (1997) 

7. Van Hinsberg and Schumacher (2007) 

8. Lindsay (1979) 

9. Fu (2014) 
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Table 5: ΔGf
O
 values for species involved in the dissolution of almandine. 

Species 
ΔGf

O 

(kcal/mol) 
Source 

Almandine -1187.80 Karpov et al. (1971) 

Al
3+

 -115.61 Shock et al. (1997) 

Fe
2+

 -21.87 Oelkers et al. (1995) 

SiO2 -199.19 Oelkers et al. (1995) 

H2O (l) -56.69 Weast et al. (1986) 
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3.11.1 Input Data in PHREEQC 

 In PHREEQC, keywords (in all capital letters) are used to organize keyword data blocks 

(See input files in Appendix L). Data blocks begin with a keyword and are followed by 

associated data in subjacent lines. The program uses database files to read keywords and data at 

the beginning of the simulation to define solution chemistry, mineral and gas phases, as well as 

various reactions including ion exchange and redox. Simulations in PHREEQC are a set of 

calculations defined by keyword data blocks and are finalized for the data block using the 

“END” command (Parkhurst and Appelo, 1999). Input data used for modeling generally includes 

temperature (temp), pH (the negative log of hydrogen ion activity), species concentrations, one 

or more mineral phases (EQUILIBRIUM_PHASES), alkalinity (as HCO3
-
) and pe (the negative 

log of electron activity), related to field-measured Eh by the following equation: 

pe = Eh/(2.3RTF-1) 

where R is the gas constant, T is Temperature, and F is Faraday’s constant. Field Eh values, 

measured by Sutton and Woods (1995) and Brown (1999), were adjusted to account for the AgCl 

reference potential by adding 222 mV to the original Eh measurement. 

3.11.2 Output Data in PHREEQC 

 The “SELECTED_OUTPUT” keyword data block is used to facilitate data compilation 

and analysis for completed simulations by generating a file that is compatible with data 

management programs such as Microsoft Excel or Sigma Plot (Parkhurst and Appelo, 1999). 

Output data of interest for this investigation largely include species concentrations, pH, pe, and 

saturation indices of mineral phases. The saturation index of a mineral is defined as follows: 

saturation index = log (IAP/KT) 



50 

 

where IAP is the ion activity product of the dissolved components in the solution, and KT is the 

solubility product of the solid or gaseous phase at the specified temperature. The saturation index 

indicates if the solution is undersaturated, oversaturated, or at equilibrium with a particular solid. 

A negative value denotes that the solution is undersaturated while a saturation index exceeding 

zero means that the system is oversaturated. Finally, if the saturation index equals zero, the 

solution is at equilibrium with the solid. Saturation indices can be used to predict whether a 

mineral is likely to dissolve or precipitate in a particular solution.  

3.11.3 Model Setup 

 Using simplified aquifer compositions (Tables 6 – 7 and Appendix K), a series of 

preliminary batch simulations and a one-dimensional, transport model were developed to assess 

the impact of dissolution, precipitation, and cation-exchange on dissolved-Fe concentrations. The 

models are largely based on geochemical and hydrological data that were acquired during 

previous investigations of the UCHA and the surficial aquifer. The wells were constructed 

several kilometers to the east of the Tranters Creek core site (Figure 3) where the UCHA is 

relatively well confined (Consolvo, 1998). Although the data used to setup the simulations are 

largely derived from preceding studies, the modeling results provide important insights involving 

the origin and fate of high-Fe zones in the UCHA. The models are described in detail in the 

subsections below and a cross-section illustrating the conceptual design for this study is provided 

in Figure 9.  
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Figure 9: Cross-section from near Tranters Creek, NC illustrating conceptual design for thesis 

project (not drawn to scale). Two Geoprobe cores were acquired about 8 km west of Washington, 

NC during this investigation. Preceding investigators measured groundwater chemistry at existing 

wells near Washington, NC. The existing wells provide data for Fe concentrations in the surficial 

aquifer (not illustrated) and in the UCHA. The numbers in the green area represent an eastward 

decline in observed Fe concentrations (mg/L) in the UCHA. The brown layer depicts decreasing 

confinement of the UCHA from east to west. A map showing the well locations and the core site is 

presented in Figure 3. 

West     East 

Overlying Aquifers 

Confining Unit 
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3.11.3.1 Simple Dissolution Simulations 

 Simple dissolution simulations in this study are batch reactions involving the dissolution 

of individual Fe-bearing minerals in two different aqueous solutions. The selected solutes 

represent some common Fe-bearing minerals that may comprise aquifers in NCCP (Table 4). 

Ten moles of each Fe-bearing mineral (this seemingly large amount ensures that the mineral 

cannot completely dissolve prior to achieving thermodynamic equilibrium) are added to a 

hypothetical beaker containing 1 L of either “Pure Water” or “Surficial Groundwater.” These 

simulations can be used to estimate the maximum Fe concentration that may result via 

dissolution of the mineral to determine if that mineral is a likely source of high-Fe concentrations 

observed in the UCHA. To account for possible iron-oxyhydroxide supersaturation, goethite is 

allowed to precipitate in each simulation. The only elements in “Pure Water” are hydrogen and 

oxygen (no dissolved O2 is present) and the default conditions for pressure, temperature, pH, and 

pe are one standard atmosphere, 25°C, 7, and 4, respectively.  

 Three separate dissolution simulations were conducted for each mineral using the “Pure 

Water” solution but at different pH values (5, 7, and 9, respectively) to encompass pH variations 

in natural groundwater environments. The chemistry of the “Surficial Groundwater” was 

determined by Whitley (2003) for the surficial aquifer measured at the FE well (Tables 6 – 7 and 

Figure 3). Total dissolved-Fe concentrations were evaluated to infer the potential of individual 

Fe-bearing minerals to produce high-Fe concentrations (>0.3 mg/L) in groundwater via simple 

dissolution reactions. 

3.11.3.2 Pyrite Oxidation Simulations 

 Using PHREEQC, pyrite was titrated with dissolved oxygen O2 (g) to simulate pyrite 

oxidation in a near-surface-aquifer environment. The pyrite-oxidation simulations are batch 



53 

 

reactions in which 10 moles of pyrite are equilibrated with 1 L of either the “pure water” or 

“surficial groundwater” solution. Once the pyrite and groundwater solution reach equilibrium, O2 

(g) was added in one hundred increments (0.08 mg/L each). The dissolved-Fe concentration was 

recorded after the added O2 is consumed and equilibrium is established for each increment of the 

simulation. Groundwater equilibrated with the atmosphere contains approximately 8 mg/L O2. 

Therefore, the maximum dissolved-Fe concentration that may result via pyrite oxidation in a 

similar surficial groundwater can be estimated at the end of the titration if Fe-bearing minerals 

do not precipitate from solution. 

3.11.3.3 Goethite Reduction in Surficial Groundwater 

 Goethite was titrated with CH2O to simulate the microbially mediated reduction of iron-

oxyhydroxides by dissolved-organic matter (DOC). In this simulation, 10 moles of goethite are 

equilibrated with 1 L of the “surficial groundwater” solution. According to Spruill et al. (1997), 

DOC concentrations in shallow NCCP aquifers are commonly less than 5 mg/L. Therefore, a 

series of titrations adding up to a total of 5 mg/L DOC were conducted to evaluate the potential 

of iron-oxyhydroxide reduction to produce dissolved-Fe concentrations exceeding 0.3 mg/L.  

3.11.3.4 Reactive-Transport Modeling of the UCHA 

 Using existing chemical and hydraulic data for the UCHA, a one-dimensional, reactive-

transport model was developed to determine the impact of cation-exchange on dissolved-Fe 

concentrations that may occur along a hypothetical 12 km flow path in the UCHA. In 

PHREEQC, one-dimensional transport along an aquifer-flow path is represented by a column 

consisting of a sequence of cells (Figure 10). Each cell represents a mass of aquifer particles in 

contact with the groundwater. The solution in each cell flows toward the adjacent, cell with a 
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higher number. The program uses a finite-difference algorithm for calculations involving 

advective and dispersive transport of solutes (Parkhurst and Appelo, 1999). 

 The simulated flow path in this investigation consists of 6 individual cells that are each 2 

km in length. The reactive-transport model simulates possible geochemical changes that occur as 

UCHA groundwater flows toward the south and southeast near Washington, NC (Figure 3). The 

first cell (Cell 0; Solution 0) is dimensionless and represents the recharging solution based on the 

groundwater chemistry determined by Brown (1999) at well T15 (Tables 6 – 7). The second cell 

(Cell 1; Solution 1) represents the equilibration of the recharge solution with calcite, which 

dominates the mineralogy of the UCHA limestone and produces “Solution 1.”  Cells 2 – 6 

(solutions 2 – 6) contain a low-Fe groundwater (geochemical data from Brown (1999)), which 

represents the farthest, downgradient water chemistry sampled in the Washington Well field at 

the Far East well (FE). 

 Warner (1993) conducted aquifer tests at eight test wells to determine aquifer 

characteristics of the UCHA near Washington, NC. Using her average value for hydraulic 

conductivity for these wells (31.8 m/d), 20% porosity (Richard Spruill, pers. comm. 2016), and 

the hydraulic gradient estimated by Consolvo (1998) for the study area (0.0007 m/m), the 

resulting groundwater velocity is approximately 0.11 m/day when calculated as follows: 

V = [K × (dh/dl)] ÷ n 

where V is groundwater velocity, K is hydraulic conductivity (flow rate of water through a cross-

sectional area under a unit of hydraulic gradient), n is porosity (ratio of void spaces to the total 

volume of the aquifer), dh is the difference in head elevation, dl is the length over which dh 

occurs, dh/dl is the hydraulic gradient. Based on these parameters, the time necessary for the 

UCHA groundwater to travel 12 km is approximately 300 years. 
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Table 6: Solution data used for geochemical modeling in PHREEQC. 

Modeled 

Groundwater
1
 

Well 

ID
2
 

Aquifer Temperature pH pe
3
 O2  

Alkalinity 

as HCO3
-
  

Cl
-
  SO4

2- 
 Na

+
  

Pure Water NA
3
 NA

3
 25 7.00 4.00 NA

4
 NA

4
 NA

4
 NA

4
 NA

4
 

Surficial 

Water 
FE Surficial 23 5.30 6.44 0.28 24 13.21 17.87 8.96 

UCHA 

Recharge 

Water 

T15 UCHA 17 6.90 3.92 0.00 344 12.30 0.00 14.07 

UCHA 

Downgradient 

Water 

FE UCHA 18 7.41 2.97 0.00 305 0.73 1.53 8.83 

1. The "Pure Water" solution is the default solution used in PHREEQC. The "Surficial Water and the 

"UCHA Downgradient Water" were measured at the FE well by Whitley (2003) and Brown (1999), 

respectively. Sutton and Woods (1995) determined the composition of the "UCHA Recharge Water" at 

T15. Temperatures and concentrations are given in units of °C and mg/L, respectively 

2. The locations of modeled wells are shown in Figure 3 

3. Except for the "Pure Water" solution, pe values reflect the addition of 0.222 V to their measured Eh 

values (V) to account for the stable potential of the AgCl reference electrode. The resulting Eh value was 

then multiplied by 16.9 to calculate redox potential in pe units 

4. NA: Not applicable to the "Pure Water" solution 
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Table 7: Solution data used for geochemical modeling in PHREEQC (continued). 

Modeled 

Groundwater 
K

+
  Ca

2+
  SiO2  F

-
  Mg

2+
  S

2-
  NO2

-
  NO3

2-
  NH4

+
  PO4

2-
  Fe

2+
  

Pure Water NA
2
 NA

2
 NA

2
 NA

2
 NA

2
 NA

2
 NA

2
 NA

2
 NA

2
 NA

2
 NA

2
 

Surficial Water 3.61 3.15 13.70 0.09 4.31 0.00 0.04 0.97 0.03 0.13 0.07 

UCHA 

Recharge 

Water 

26.35 70.98 34.19 0.22 8.57 0.01 0.002 0.003 0.48 0.63 16.40 

UCHA 

Downgradient 

Water 

5.18 65.80 29.05 0.36 13.21 0.20 0.003 0.002 1.21 0.01 0.01 

1. The "Pure Water" solution is the default solution used in PHREEQC. The "Surficial Water and 

the "UCHA Downgradient Water" were measured at the FE well by Whitley (2003) and Brown 

(1999), respectively. Sutton and Woods (1995) determined the composition of the "UCHA 

Recharge Water" at T15 (See Figure 3 for well locations). Concentrations are given in units of 

mg/L 

2. NA: Not applicable to the "Pure Water" solution 
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Figure 10: Illustration of the one-dimensional flow path in PHREEQC. 
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3.11.4 Calibration of the Reactive-Transport Model 

 Model calibration is the process of changing the values for certain input parameters 

within a reasonable range to improve the correlation between the modeled output data and the 

measured geochemical data. Geochemical data acquired by Warner (1993), Sutton and Woods 

(1995), and Brown (1999) for the seven UCHA wells are presented in Table 8. The distance for 

each well is referenced to well T15 because it represents the farthest, upgradient well for which 

geochemical data are available. Because the UCHA is not homogenous and isotropic, local 

variations in groundwater-flow velocity can result in regional-scale mixing of dissolved 

constituents. Dispersivity was estimated by trial and error during model calibration to account for 

the effects of heterogeneous transport of solutes. 

 Based on point-count data from Mehlhop et al. (2005) and Johnson (1992), glauconite 

may be an important contributor to CEC in the UCHA. Mehlhop et al. (2005) determined the 

mineralogy of CHAS samples at six wells located throughout the NCCP. Based on these 

investigations, peloids, composed of either glauconite or phosphate, comprise between 0.3% and 

18% of the CHAS limestone. At the core site, Johnson (1992) found that glauconite comprises 

approximately 11.2% of the UCHA. Since detailed mineralogical data are lacking for the UCHA 

near Washington, NC and because the CEC values of glauconite may range from 5 to 39 

meq/100g (Thompson and Hower, 1975), the CEC of the UCHA (XUCHA) was estimated via trial 

and error during calibration of the reactive-transport model. 

3.11.5 Conservative-Transport Model 

 A conservative-transport model was developed to determine the degree to which 

hydrologic processes may affect groundwater composition along a simulated flow path of the 

UCHA. Geochemical reactions such as dissolution, precipitation, and cation-exchange reactions 
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are excluded in the conservative model. Changes in solution chemistry can therefore be solely 

attributed to progressive mixing of the recharge and downgradient solutions (T15 and FE wells, 

respectively) that occurs during transport as a result of advection and hydrodynamic dispersion 

(includes molecular diffusion and mechanical dispersion). Results from the conservative-

transport model were compared with the reactive-transport-model results to evaluate the impact 

of cation exchange on groundwater chemistry.
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Table 8: Geochemical and transmissivity data for the seven UCHA wells near Washington, NC. 

Well 

ID
1
 

Distance
2
 pH 

Alkalinity 

as HCO3
-
 

Na
+
 K

+
 Mg

2+
 Ca

2+
 Fe

2+
 Transmissivity

3
 Source for Geochemical Data 

T15 0 6.9 344 14 26 9 71 16.4 ND
4
 Brown (1999) 

CF 5.31 7.6 262 11 ND
4
 4.2 57 7.5 1050 Warner (1993) 

W2 6.52 7.34 249 10 1 3 63 2.89 1282 Sutton and Woods (1995) 

W4 7.77 7.2 273 9 2.1 4 65 1.13 1366 Sutton and Woods (1995) 

W7 8.71 7.1 272 9.6 ND
4
 5.5 78 1.3 1895 Warner (1993) 

W3 9.61 7.3 273 7 1 5 62 1.2 1849 Sutton and Woods (1995) 

FE 10.69 7.41 305 8.83 5.18 13 66 0.01 2295 Brown (1999) 

1. Measured data for wells near Washington, NC (see Figure 3 for well locations). Concentrations are presented in mg/L units  

2. Distance from T15 in km 

3. Transmissivity values (m
2
/d) from Warner (1993) 

4. ND: No Data available 

 



 

 

4.0 Results 

4.1 Sediment Descriptions 

The 11 m Geoprobe cores are composed of unconsolidated sedimentary material, ranging 

in grain size from mud to gravel. Depth-related variations in sediment composition are described 

below and photographs of representative sediments for each 1.2 m interval are displayed with 

corresponding sediment descriptions in Table 9. The results of grain-size analyses are presented 

in Figure 11 and Appendix C. 

Core samples representing the upper 6 m of the cores are composed of fine -to coarse-

grained sands with thin gray, orange, and brown mud layers (<0.3 m thick). The sands consist of 

moderately well-sorted grains and increase in grain size and permeability to a depth of 4 m BLS. 

This sequence is underlain by a mud-rich (>18%) and less permeable (grain-size-estimated K <2 

m/d) zone that extends to approximately 6 m BLS. According to Johnson (1992), the surface of 

the water table at the core site ranges from approximately 0.9 m BLS and 2.2 m BLS but the 

water table is typically less than 1.5 m BLS (Figure 11). 

Sediment samples taken from the upper meter BLS are dark brown and contain abundant 

organic matter (e.g. bark, grass, roots, leaves, and charcoal). Between one meter and 4 m BLS, 

the sediments transition from light tan to a strong, orangish-brown color. A distinct zone where 

the sediment reaches its darkest, orangish-brown color occurs just beneath a mud-rich layer 

(>85% mud) located at approximately 4.1 m BLS. With increasing depth, the sands then fade 

from an orangish-brown color to a blueish-gray hue by around 6.4 m BLS. Shell fossils (e.g. 

gastropods and bivalves) initially become visible by around 4.9 m BLS and generally increase in 

abundance until 7.3 m BLS; however, their occurrences are highly variable below this depth. A 

4.6 m sequence largely consisting of blueish gray, moderately well-sorted to very poorly sorted, 
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very fine -to coarse sands occurs below 6.4 m BLS. The median grain size generally decreases 

with depth and below 9.6 m BLS, the proportion of mud-sized grains largely increases with 

depth.  
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Figure 11: Variations in grain size and grain-size estimated permeability with depth. The blue area denotes typical depth ranges of 

the water-table surface and the dashed line indicates the mean depth of the water table (Johnson, 1992). 
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Table 9: Photographs of representative sediment intervals and sediment 

descriptions. Note that these images do not fully account for changes in 

composition and color. 
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4.2 Mineralogy 

 Based on the XRD data, almandine, amphiboles, chlorite, epidote, glauconite, ilmenite, 

iron-oxyhydroxides, magnetite, pyrite, pyroxenes, siderite, staurolite, and tourmaline are 

potentially significant, Fe-bearing minerals (Figure 12). Almandine, amphiboles, feldspar, 

ilmenite, pyroxenes, and quartz were detected in each depth interval that was evaluated. Chlorite 

peaks were not recognized between 4.3 – 6.7 m BLS or below 8.8 m BLS. Iron-oxyhydroxides 

and pyrite peaks were only recognized below 3.4 and 4.9 m BLS, respectively. Apatite, calcite, 

dolomite, and glauconite were detected below approximately 4 m BLS. Epidote, rutile staurolite, 

and tourmaline were identified in the majority of the 1.2-m-long-core sections. The XRD data 

suggest that magnetite may not be present in the majority of core samples. Absence on the XRD 

pattern does not necessarily indicate total absence in the sample due to XRD detection 

limitations. Generalized formulas and information pertaining to the origins and sources of XRD-

detected minerals are shown in Tables 10 – 11.  

XRD and microscopy (Figures 12 – 13, Tables 12 – 13) analyses reveal that from the 

ground surface to approximately 4.1 m BLS, the sediment grains larger than 63 µm are largely 

composed of quartz (~90%) and feldspar (~10%). In decreasing order of abundance, the 

dominant trace minerals for this depth interval include ilmenite, amphiboles, pyroxenes, 

staurolite, and almandine. These five Fe-bearing minerals collectively constitute less than 2% of 

the total weight of grain-size fractions ranging from sand to gravel. The mud-sized portions for 

this depth range from around 2% to 13% of the total sample weight and are generally composed 

of quartz, feldspar, and phyllosilicate minerals (possibly illite, kaolinite, and/or muscovite). 

 Sand-size samples acquired from 4.1 m to about 6.5 m BLS are predominantly quartz 

(~30 – 80%), feldspars (~3 – 11%), apatite in the form of phosphate-rich peloids (~6 – 11%), and 
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shell fragments (~2 - 48%). Iron-bearing minerals collectively comprise about 4% of sand-sized 

grains. In decreasing order of abundance, the dominant trace minerals for this interval are 

glauconite, iron-oxyhydroxide, ilmenite, almandine, staurolite, amphiboles, and pyroxenes. The 

mud-sized fractions range from nearly 10% to almost 90% of the total sample weight and their 

compositions are predominantly quartz, feldspar, and phyllosilicate minerals.  

Common iron-oxyhydroxide morphologies (Table 2) were not observed via microscopy 

and thus, could not be used for identification. XRD peaks indicate that the bulk of Fe-rich 

aggregates and grain coatings (Ags/Cs) are most likely comprised of goethite; however, other 

iron-oxyhydroxides such as ferrihydrite cannot be ruled out because iron-oxyhydroxides are 

commonly amorphous to poorly crystalline and because they are extremely small (particle size is 

frequently <20 nm). Reliable identification of iron-oxyhydroxides via XRD analysis is limited to 

“well crystalline large particles greater than about 30 nm in length” (Cook et al., 1999, p. 60). 

The formation of lepidocrocite is possible in non-calcareous sediments above approximately 4.9 

m BLS but it is less likely to develop below this depth because CO2 released via carbonate 

dissolution suppresses lepidocrocite formation (Stucki et al., 2012). 

Below 6.5 m BLS, sand-sized sediments are principally quartz (~40 – 80%), shell fossils 

(~5 – 40% including dolomite), feldspars (~4 – 9%), and apatite peloids (~5 – 9%). In decreasing 

order of abundance, the dominant trace minerals include ilmenite, glauconite, amphiboles, and 

pyroxenes. Optical microscopy and SEM/EDX microscopy indicate that calcite-cemented grains 

and Fe-coated dolomite grains are among the sand-sized constituents but only trace amounts of 

Fe-rich Ags/Cs were observed below 6.5 m BLS. The mud fractions in this interval range from 

approximately 3% to nearly 50% of the total sample weight and are generally composed of 

quartz, calcite, feldspar, pyrite, and phyllosilicate minerals.
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Figure 12: XRD-detected minerals by depth. The blue area denotes typical depth ranges of the 

water-table surface and the dashed line indicates the mean depth of the water table (Johnson, 

1992). 
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Figure 13: Occurrence and relative abundance of minerals that were both detected by XRD 

and confirmed via microscopy. Note that mineral abundances are relative to each individual 

mineral. Ranges in the depth of the water table are shown in Figure 12. 



69 

 

Table 10: Generalized mineral formulas of XRD-detected minerals. 

Mineral  Formula 

Almandine Fe3
+2

Al2Si3O12 

Amphibole 
(Na,K)0-1(Na,Ca,Mn,Fe

2+
,Mg)2(Mg, Fe

2+
, 

Mn,Al,Fe
3+

,Ti,)5(Si,Al,Ti)8O22(OH,F,Cl)2 

Apatite Ca5(PO4,CO3)3(F,Cl,OH) 

Calcite/Aragonite CaCO3 

Chlorite (Mg,Fe
2+

)6AlSi3O10(OH)8 

Dolomite CaMg(CO3)2 

Epidote Ca2Fe
+3

Al2Si3O12OH 

Feldspar KAlSi3O8 - NaAlSi3O8 - CaAl2Si2O8 

Glauconite (K,Na)(Fe
3+

,Al, Mg)2(SiAl)4O10(OH)2 

Ilmenite Fe
+2

TiO3 

Iron-

Oxyhydroxide 

Anhydrous: FeO(OH)                                                  

Hydrated: FeO(OH)·nH2O 

Magnetite Fe
2+

Fe
3+

2O4 

Pyrite Fe
+2

S2 

Pyroxene (Ca,Na,Fe
+2

,Mg,Mn)(Cr,Al,Fe
3+

,Mg,Mn,Ti,Fe
+2

)(Si,Al)2O6 

Quartz SiO2 

Rutile TiO2 

Siderite Fe
2+

CO3 

Staurolite Fe
2+

2Al9Si4O23(OH) 

Tourmaline (Na,Ca)(Mg,Li,Al,Fe
2+

)3Al6(BO3)3Si6O18(OH4) 
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Table 11: Origins, sources, and important characteristics of XRD-detected minerals. 

Mineral Origin/Source/Characteristics Mineral Composition/Source/Characteristics 

Almandine 
Detrital; Piedmont crystalline 

rocks 

Iron-

Oxyhydroxide 
Authigenic; in situ oxidation of Fe

2+
 

Amphibole 
Detrital; Piedmont crystalline 

rocks 
Magnetite Detrital; Piedmont crystalline rocks 

Apatite 

Non-detrital; fecal pellets from 

benthic marine organisms; 

often includes small grains of 

pyrite 

Pyrite Authigenic; in situ reduction of SO4
2-

 

Calcite/Aragonite 

Non-detrital; shells of marine 

organisms; often includes small 

grains of pyrite  

Pyroxene Detrital; Piedmont crystalline rocks 

Chlorite 
Detrital; Piedmont crystalline 

rocks 
Quartz Detrital; Piedmont crystalline rocks 

Dolomite 
Non-detrital; diagenesis in 

carbonaceous marine sediments 
Rutile Detrital; Piedmont crystalline rocks 

Epidote 
Detrital; Piedmont crystalline 

rocks 
Siderite 

Non-detrital, diagenesis in marine 

sediments 

Feldspar 
Detrital; Piedmont crystalline 

rocks 
Staurolite Detrital; Piedmont crystalline rocks 

Glauconite 

Non-detrital; diagenesis in 

marine sediments; often 

includes small grains of pyrite 

and other minerals; important 

for cation exchange capacity 

Tourmaline Detrital; Piedmont crystalline rocks 

Ilmenite 
Detrital; Piedmont crystalline 

rocks 
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Table 12: Abundances of dominant, non-Fe-bearing minerals estimated in polished-thin sections. 

Depth Range  Apatite Feldspar Quartz Shells 

(m BLS) % % % % 

0.6 - 1.0 
 

8 91 
 

1.3 - 1.8 
 

10 88 
 

4.1 - 5.1 6 11 78 2 

5.1 - 5.9 11 3 31 48 

5.9 - 6.5 5 3 57 32 

6.5 - 7.5 5 4 72 16 

8.7 - 9.5 5 9 79 4 

8.7 - 10.8 9 7 44 38 
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Table 13: Abundances of dominant, Fe-bearing minerals estimated in polished-thin sections. 

Depth Range  Almandine Amphibole Glauconite Ilmenite 
Iron-

Oxyhydro. 
Pyrite Pyroxene Staurolite Tourmaline 

(m BLS) % % % % % % % % % 

0.6 - 1.0 0.03 0.28   0.58     0.11 0.09 0.05 

1.3 - 1.8 0.08 0.35 
 

0.74 
  

0.17 0.17 0.05 

4.1 - 5.1 0.22 0.20 0.67 0.63 0.38 0.001 0.18 0.25 0.01 

5.1 - 5.9 0.69 0.34 1.51 1.11 1.73 0.02 0.23 0.46 0.03 

5.9 - 6.5 0.30 0.44 0.85 0.38 0.90 0.06 0.29 0.40 0.02 

6.5 - 7.5 0.44 0.29 0.91 0.44 
 

0.07 0.42 0.23 0.01 

8.7 - 9.5 0.11 0.26 0.27 1.61 
 

0.003 0.23 0.12 0.18 

8.7 - 10.8 0.02 0.37 0.95 0.37 
 

0.13 0.17 0.04 0.24 
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4.3 Magnetic Separation Results 

 Using a Frantz Isodynamic Magnetic Separator, samples of sediments from the study area 

were separated into fractions at settings ranging from 0 amps up through 1.8 amps. Magnetic 

grains were isolated from less magnetic grains via hand magnet and by changing the current of 

the Frantz Isodynamic Magnetic Separator. Hereafter, “highly susceptible” and “poorly 

susceptible” grains refer to grains that were magnetically separated at settings of ≤0.8 amps 

(including the grains that were attracted to the hand magnet) and ≥0.8 amps, respectively. 

“Magnetically susceptible” grains include both the highly susceptible and poorly susceptible 

weight fractions while the remaining portion of the sediment sample was not susceptible via the 

magnetic separation technique (Appendix B). Although this procedure concentrated most Fe-

bearing mineral grains for easier identification, it did not completely separate quartz grains with 

Fe-oxide coatings from those lacking Fe-oxide coatings. Quartz with such coatings was 

recognized as a potential source of Fe to local groundwater (e.g. Chapelle and Lovley, 1992; 

Penny et al., 2003; Park et al., 2006). 

Samples TC14C: 8 – 12’ #6 and TC14C: 24 – 28’ #21 were not magnetically separated 

due to time constraints and because sediment-Fe concentrations for comparable TC14 samples 

(samples from an adjacent core that were acquired at similar depth ranges) are relatively low. 

Also, after packaging the requisite sample volume for sediment testing via NCAG, the remaining 

portions of TC14C: 0 – 4’ #1 and TC14C: 20 – 24’ #15 were insufficient for magnetic 

separation. However, XRF analyses of analogous TC14 samples indicate that the depth range 

represented by TC14C: 20 – 24’ #15 is likely located in the basal portion of the high-Fe zone 

(see XRF results). Samples TC14: 20 – 24’ #s 4 – 6 and the remaining portion of XRF sample 

TC14: 20 – 24’ #7 were amalgamated to constitute sample TC14C: 20 – 24’ #15. Henceforth, the 
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designation, “TC14C: 20 – 24’ #15”, will collectively refer to the samples TC14: 20 – 24’ #s 4 – 

7. The mean of calculated depths (6.2 m BLS) from samples TC14: 20 – 24’ #s 4 – 7 is assigned 

to TC14C: 20 – 24’ #15 to account for disparities in recovery between TC14 and TC14C core 

samples. 

 The weight percentages of magnetically susceptible grains in the sediment samples range 

from about 0.7 to 14.9% (Figure 14). The recovery of magnetically susceptible grains was <2% 

for sediment samples acquired from the upper 4 m BLS. The highest concentrations (>6.7%) of 

magnetically susceptible grains occur at depths ranging from 5.1 to 6.5 m BLS. Intermediate 

percentages (>2.3 and <6.7%) of magnetically susceptible grains were recovered below 6.5 m 

BLS. The majority of magnetically susceptible grains were extracted from the 4 Φ and 3.25 Φ 

grain-size fractions; however, this was not quantified because the weights of susceptible grains 

were collectively determined from three size fractions (screen openings of 2.25 Φ, 3.25 Φ, and 4 

Φ). Magnetic separation data are presented in Appendix D. 
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Figure 14: Weight percentages of magnetically susceptible grains with depth. The sum of 

highly susceptible (≤0.8 amps) and poorly susceptible (>0.8 amps) weight fractions 

collectively comprise the “total susceptible” fraction (0 – 1.8 amps). The blue area denotes 

typical depth ranges of the water-table surface and the dashed line indicates the mean depth 

of the water table (Johnson, 1992). 
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4.4 Sediment Geochemistry 

4.4.1 Statistical Analysis of XRF Results 

Two Certified Reference Materials (MRG-1 and NCS DC 71302, Govindaraju, 1994) 

were subjected to replicate analyses to determine the precision and accuracy of the XRF 

analyses. Although MRG-1 and NCS DC 71302 were prepared from igneous rocks (gabbro and 

diorite, respectively), the standards were selected because their collective compositions include 

accepted values for Al, S, Fe, K, Mg, Mn, Na, P, Si, Ti, Ca, F, Cl, and Sr, which were believed to 

be sufficient to characterize the general chemical composition of the sediment samples. MRG-1 

and NCS DC 71302 were analyzed by XRF 14 and 15 times, respectively and statistical 

techniques were applied to evaluate the results. The accepted compositions for the reference 

samples, XRF data, and detailed statistical data are presented in Appendix G.   

 Statistical analysis of the reference samples reveals that the XRF spectrometer is 

generally capable of precise measurements but the accuracy was highly variable (Tables 14 – 

15). With the exception of F, the coefficients of variation (CV %) for all elements were less than 

10 wt. % (typically less than 0.8 wt. %). CV % values for Cl and F were 6.2 wt. % and 10.0 – 

43.2 wt. %, respectively. Percent error values were less than ± 21 wt. % for elements comprising 

at least 0.7 wt. % of the reference sample. Elements in standards containing less than this amount 

frequently had large % Errors.  

 The relatively poor precision and/or accuracy for some elements (Cl, Sr, F, Mn) may be 

attributed to low concentration. The XRF data indicate that MRG-1 contains approximately 262 

ppm Cl; however, the published composition for MRG-1 does not include a value for Cl. The 

poor quality of the Sr measurements may be due to fact that the flow detector is not well suited 

for measuring elements heavier than Zn (Aruna et al., 2014). Overall, measurements for NCS DC 
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71302 were more accurate than MRG-1, however, these discrepancies could not be explained. 

Based on these data, Fe concentrations may be underestimated by more than 20%. 

 In 2015, replicate XRF analyses were performed on five pellet samples from TC14 

(TC14: 0 – 4’ #9, TC14: 12 – 16’ #26, TC14: 12 – 16’ #35, TC14: 16 – 20’ #7, and TC14: 32 – 

36’ #17) to determine the reproducibility of geochemical data acquired in 2014 (Appendix G). 

These samples were selected because their compositions are generally representative of the 

various sediment types from differing depth intervals. The number of additional XRF analyses 

performed on each pellet sample ranged from 9 to 18 (mean 13) due to pellet breakage by the 

spectrometer’s sample changer.  

 The results of statistical analyses for the 5 XRF pellet samples confirm that the XRF 

spectrometer is capable of precise and reproducible measurements of most elemental 

constituents. With the exceptions of F and Cl, the coefficients of variation for elements 

comprising the XRF pellet samples was <5.5 wt. %. Overall, the statistical data for the five pellet 

samples show that the original concentrations are highly reproducible. The average of absolute-

percent deviations (AAPD) for 9 out of 14 elements is less than ± 7.1 wt. % and the AAPD for 

50% of the species is less than ± 3.0 wt. % (Table 16). In addition, Fe values were highly 

reproducible with an AAPD of 1.8 wt. %. Examination of the plots displaying the 2015 mean 

concentrations vs the original 2014 concentrations reveals that a very strong linear correlation 

exists for all of the species (R
2
 ranges from 0.92 – 1.0) if the mean Na concentrations are omitted 

for TC14: 12-16’ #26 (R
2
 is 0.25 if Na values TC14: 12-16’ #26 are included) (Appendix G). 

Therefore, the statistical data for the pellet samples indicate that Na, Mg, and Cl concentrations 

may not be reliable. These species appear to have relatively low concentrations in these samples, 

which, in addition to detection limitations, may explain the inconsistent Na, Mg, and Cl values.
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Table 14: Statistics for reference standard MRG-1. 

Standard
1
 Element

2
 

Accepted 

Value 
Mean

3
 Median

3
 

Confidence Level
3
  

(95%) 

Standard 

Deviation
3
 

Precision
4 

(CV %) 
Error

5
 

Accuracy
6
  

(% Error) 

MRG-1 

(n = 14) 

F 0.03 0.06 0.07 0.02 0.03 43.22 0.04 159.43 

Na 0.43 0.38 0.39 0.02 0.03 8.46 -0.05 -11.63 

Mg 8.13 7.56 7.56 0.02 0.03 0.36 -0.57 -7.03 

Al 4.50 3.82 3.86 0.04 0.07 1.94 -0.68 -15.06 

Si 18.38 21.42 21.45 0.05 0.08 0.37 3.04 16.54 

P 0.03 0.03 0.03 1.18E-04 2.05E-04 0.64 0.01 22.86 

S 0.06 0.06 0.06 2.10E-04 3.63E-04 0.59 0.00 1.90 

Cl 
 

261.58 260.96 1.46 2.53 NC
7
 NC

7
 NC

7
 

K 0.15 0.17 0.17 3.10E-04 5.36E-04 0.32 0.02 11.35 

Ca 10.56 11.46 11.45 0.03 0.04 0.39 0.91 8.58 

Ti 2.21 2.14 2.14 3.82E-03 0.01 0.31 -0.08 -3.40 

Mn 0.13 0.11 0.11 5.22E-04 9.04E-04 0.79 -0.02 -13.03 

Fe 12.48 9.93 9.92 0.04 0.06 0.65 -2.56 -20.49 

Sr 260 169 169 0.85 1.46 0.86 -90.15 -34.67 

1. The number (n) of replicate XRF analyses performed is indicated below the label of the standard 

2. Concentrations are expressed as weight percents except for Cl and Sr, which are in units of ppm (mg/kg) 

3. Calculated using Microsoft Excel 

4. Precision was determined via the coefficient of variation (CV %). CV % = (standard deviation ÷ mean) × 100 

5. Error = mean value - accepted value 

6. Accuracy was determined via percent error. % Error = [(mean - accepted value) ÷ accepted value] x 100 

7. NC: Not calculated. An accepted value for this element was not reported by the laboratory 
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Table 15: Statistics for reference standard NCS DC 71302. 

Standard
1
 Element

2
 

Accepted 

Value 
Mean

3
 Median

3
 

Confidence Level
3
 

(95%) 

Standard 

Deviation
3
 

Precision
4 

(CV %) 
Error

5
 

Accuracy
6
 

(% Error) 

NCS DC 71302 

(n = 15) 

F 0.11 0.08 0.08 4.38E-03 0.01 10.03 -0.03 -29.64 

Na 1.85 1.77 1.78 0.01 0.02 1.13 -0.08 -4.19 

Mg 0.51 0.57 0.57 3.55E-03 0.01 1.13 0.06 12.13 

Al 8.52 8.72 8.66 0.10 0.17 2.00 0.20 2.32 

Si 29.48 28.97 28.96 0.07 0.13 0.44 -0.50 -1.71 

P 0.16 0.14 0.14 3.47E-04 6.27E-04 0.46 -0.02 -13.96 

S 0.02 0.03 0.03 7.25E-04 1.31E-03 5.24 0.002 8.70 

Cl 160.00 217.50 214.32 7.50 13.54 6.23 57.50 35.94 

K 4.29 4.43 4.43 4.09E-03 0.01 0.17 0.14 3.24 

Ca 1.77 1.81 1.81 1.67E-03 3.02E-03 0.17 0.04 2.33 

Ti 0.48 0.47 0.47 1.49E-03 2.70E-03 0.57 -0.01 -1.99 

Mn 0.69 0.07 0.07 3.19E-04 5.76E-04 0.80 -0.62 -89.61 

Fe 3.30 3.09 3.10 0.01 0.02 0.64 -0.21 -6.35 

Sr 318 355 355 1.50 2.71 0.76 37.35 11.75 

1. The number (n) of replicate XRF analyses performed is indicated below the label of the standard 

2. Concentrations are expressed as weight percents except for Cl and Sr, which are in units of ppm (mg/kg) 

3. Calculated using Microsoft Excel 

4. Precision was determined via the coefficient of variation (CV %). CV % = (standard deviation ÷ mean) × 100 

5. Error = mean value - accepted value 

6. Accuracy was determined via percent error. % Error = [(mean - accepted value) ÷ accepted value] x 100 
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Table 16: Average of absolute-percent deviations of elements comprising the XRF pellet 

samples. 

  

Element
1
 AAPD

2
 

  

  

F 18.64 

  

  

Na 38.81 

  

  

Mg 33.24 

  

  

Al 7.07 

  

  

Si 4.44 

  

  

P 2.99 

  

  

S 24.95 

  

  

Cl
2
 1090.33 

  

  

K 2.70 

  

  

Ca 2.85 

  

  

Ti 1.14 

  

  

Mn 2.18 

  

  

Fe 1.78 

  

  

Sr 0.97 

  1. The average of absolute-percent deviations (AAPD) was 

calculated for each element that comprised the XRF pellet 

samples to determine how well the XRF spectrometer was 

capable of reproducing the initial 2014 concentrations. 

Concentrations are expressed as weight percents except for 

Cl and Sr, which are presented in ppm units 

2. Average absolute deviation was calculated as follows: 1. 

the absolute value of % Deviations was computed for each 

element shown in Appendix G6. 2. The mean of the resulting 

absolute-percent deviations for each element was computed 

for the five XRF pellet samples 

3. Only 2 concentrations for Cl were used to calculate AAPD 

because Cl was not initially detected in 3 XRF pellet samples 



81 

 

4.4.2 XRF Results 

 Some XRF data were either discarded or the mean concentrations, calculated from more 

recent (2015) XRF analyses, were used to replace potentially invalid data (Table 17). In the latter 

case, original (2014) constituent concentrations were replaced to eliminate possible errors 

resulting from detector overloading or imprecise detection (where the sum of constituent 

concentrations is ≤80%). The following subsection presents the XRF results for core TC14. XRF 

data are presented in Appendix G. 

 Changes in major and minor elemental concentrations are shown with respect to core 

depths in Figures 15 and 16, respectively. The XRF data reveal that Si is consistently at its 

highest concentrations between 0 and 3.6 m BLS. Most of the other constituents reach their 

lowest values in this depth range. There is a strong negative correlation between Si and Ca below 

4.9 m BLS. Ti and Na are relatively high above 2.4 m BLS. Si concentrations generally decrease 

from the surface to approximately 5.8 m BLS. Fe is consistently at its highest concentrations 

from 3.7 to 6.1 m BLS. The highest values for Mg, Al, and K occur from 3.7 to 4.9 m BLS where 

Ti is also relatively high. F, P, and Mn attain their highest concentrations from 4.9 to 6.1 m BLS. 

A strong positive correlation between Fe and Mn occurs below 4.7 m BLS. From around 5.5 – 

7.3 m BLS, Ca and Sr consistently show their highest concentrations. Cl has a major spike at 

approximately 8.2 m BLS but its concentration remains relatively low (generally below 120 

ppm) elsewhere in the core. The highest concentration of Ti occurs at around 8.8 m BLS. S and 

Na concentrations are highest from 9.8 to 10.1 m BLS.
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Table 17: A table illustrating potentially problematic XRF data and the corrective action taken. 

If available, the mean of replicate 2015 XRF analyses (data not used to complete statistics due to 

an insufficient number of replicate analyses because of pellet breakage) was used to replace 

some data. If supplementary data were not available for a potentially problematic analysis, the 

data for that analysis were not reported.         

Sample ID Date Measured Problem Action Taken 

TC14: 8-12' 

#8 
8/19/14 

Detector 

Overload 

Replaced with the mean of 2015 

trials 

TC14: 8-12' 

#13 
8/19/14 

Sum of 

Concentrations 

30.47% 

Replaced with the mean of 2015 

trials 

TC14: 12-16' 

#3 
8/19/14 

Sum of 

Concentrations 

43.94% 

Discarded 

TC14: 12-16' 

#9 
8/19/14 

Detector 

Overload 
Discarded 

TC14: 12-16' 

#21 

8/19/2014  

8/19/2014  

Sample 

Analyzed 

Twice 

Mean of original 2014 trials 

reported 

TC14: 12-16' 

#35 
9/17/15 

Sum of 

Concentrations 

72.85% 

Discarded 

TC14: 16-20' 

#12 
8/19/14 

Detector 

Overload 
Discarded 

TC14: 20-24' 

#7 
8/19/14 

Detector 

Overload 

Replaced with the mean of 2015 

trials 

TC14: 20-24' 

#7 
9/17/15 

Detector 

Overload 
Discarded 

TC14: 24-28' 

#12 
8/20/14 

Detector 

Overload 
Discarded 
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Figure 15: XRF-determined changes in major elemental concentrations with depth in TC14. The blue area denotes typical depth 

ranges of the water-table surface and the dashed line indicates the mean depth of the water table (Johnson, 1992). 
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Figure 16: XRF-determined changes in minor elemental concentrations with depth in TC14. The blue area denotes typical depth 

ranges of the water-table surface and the dashed line indicates the mean depth of the water table (Johnson, 1992). 
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4.4.3 LOI Results 

 Nineteen sediment samples from TC14 were subjected to LOI analysis to estimate 

variations in organic-matter content. Qualitative estimations for % LOI range from 0.0181 to 

0.7273 wt. % (Figure 17). LOI values are consistently high from 4.9 to 7.3 m BLS. LOI has a 

major peak between approximately 9.1 and 10.1 m BLS. LOI data are presented in Appendix H. 

4.4.4 NCAG Sediment-Test Results 

 The Soil Testing Division of the North Carolina Department of Agriculture determined 

additional and supplementary geochemical data for 29 TC14C (an adjacent sister core of TC14) 

sediments samples. This subsection summarizes the results of their analyses. NCAG data are 

presented in Appendix I.   

 Humic matter percent by volume (HM %) measures the amount of humic and fulvic acids 

(chemically active constituents of organic-matter) in a sediment, representing the portion of 

sediment organic matter that is soluble in a dilute, sodium hydroxide solution (Hardy et al., 

2012). HM % generally decreases with increasing depth, ranging from 0.66 to 0.04 vol. % 

(Figure 17). HM decreases rapidly from 0.66 vol. % near the surface to 0.09 vol. % by 1 m BLS. 

Subsequently, HM % remains at 0.09 vol. % until around 4.1 m BLS. HM then falls to the lowest 

measured value of 0.04 vol. % at 4.4 m BLS and, does not change with increasing depth. 

 Sediment-water pH is a measure of hydrogen-ion activity in the sediment solution (Hardy 

et al., 2012). pH values range from 4.9 to 8.1 (Figure 17). Sediment samples acquired above 4.9 

m BLS are acidic (<5.8) but pH increases sharply to circumneutral/slightly basic (~7.5 – 8.1) by 

5.3 m BLS. The largest increase in pH values (4.9 to 8.1) occurs in the depth range of 3.8 to 5.5 

m BLS. 
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 Cation exchange capacity (CEC) is a relative measure of the ability of a sediment to hold 

exchangeable cations (Hardy et al., 2012). CEC, expressed as milliequivalents per 100 cubic 

centimeters (meq/100 cm
3
), ranges from 1.1 to 129.1 meq/100 cm

3
 (Figure 17). The lowest CEC 

values consistently occur from the surface to approximately 3.8 m BLS. CEC is very high (>88 

meq/100 cm
3
) from around 4.9 to 7.6 m BLS and below 9.1 m BLS. The largest increase in CEC 

(from 2.3 to 124.5 meq/100cm
3
) occurs between 3.8 to 5.5 m BLS. 

 Exchangeable acidity (AC) constitutes the portion of CEC that is retained by H
+
 and Al

3+
 

ions (Hardy et al., 2012). AC ranges from 0 to 2.6 meq/100cm
3
 (Figure 17). AC is relatively 

constant (0.6 – 1 meq/100cm
3
) from the surface to about 4.0 m BLS, peaks at approximately 

4.1m BLS, and rapidly diminishes to 0 by 4.7 m BLS. AC does not increase above 0 

meq/100cm
3
 below 4.7 m BLS. 

 Base saturation (BS %) represents the percentage of CEC that is occupied by basic 

cations such as Ca
2+

, Mg
2+

, and K
+
 (Hardy et al., 2012). BS % ranges from 43 to 100% and is 

variable (mean 64%) above 4.7 m BLS (Figure 17). The values begin increasing steadily at 3.4 m 

BLS, finally reaching a plateau of 100% at 5.1 m BLS. 

 Concentration changes for extractable elements are shown with respect to core depths in 

Figures 18 – 19. The lowest concentrations for most elements occur between 0 and 3.7 m BLS. 

Zne, Cue, and Pe consistently show their highest concentrations between 3.7 and 4.9 m BLS. The 

highest concentrations of Nae and Mne occur from 4.9 – 6.1 m BLS, where Cae is also very high. 

The largest increase in Cae (from 1,874 to 23,939 mg/dm
3
) and Nae (from 23 to 301 mg/dm

3
) 

occur along a depth range of 4.7 to 5.1 m BLS. Mge, Ke, Cae, and Se are consistently at their 

highest concentrations between 9.8 – 11.0 m BLS. 
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Figure 17: Changes in % LOI, HM %, W/V, Sediment-water pH, BS %, AC, and CEC with depth. % LOI and the NCAG-

determined parameters are for TC14 and TC14C, respectively. The blue area denotes typical depth ranges of the water-table surface 

and the dashed line indicates the mean depth of the water table (Johnson, 1992). 
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Figure 18: NCAG-determined changes in major elemental concentrations with depth in TC14C. The blue area 

denotes typical depth ranges of the water-table surface and the dashed line indicates the mean depth of the water table 

(Johnson, 1992). 



89 

 

Figure 19: NCAG-determined changes in minor elemental concentrations with depth in TC14C. The blue area denotes typical 

depth ranges of the water-table surface and the dashed line indicates the mean depth of the water table (Johnson, 1992). 
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4.4.5 Comparison of XRF and NCAG Results 

 Mean elemental concentrations for nine, 1.2 m depth intervals were calculated to 

compare the XRF results with the NCAG results via regression analysis and by comparison of 

concentration profiles. Na, Mg, K, Ca, P, S, and Mn are XRF-determined, total elemental 

concentrations (i.e. total wt. % concentrations of elements that comprise the TC14 sediment 

samples). Nae, Mge, Ke, Cae, Pe, and Se are NCAG-determined, extractable-elemental 

concentrations (i.e. the concentrations (mg/dm
3
) represent how much of the element was 

liberated from the TC14C sediment samples via the Mehlich-3 extractant). An example 

comparing the results of comparable XRF and NCAG analyses is presented in Figure 20. The 

results for the remaining species are presented in Appendix J.  

 The results of regression analyses reveal a slight correlation for Mg (R
2 

= 0.68) and 

strong correlations for Ca, S, and Mn, which had R
2
 values of 0.89, 0.96, and 0.93, respectively. 

Moreover, side by side comparison of concentration profiles for these elements indicates that 

total concentration of an element is an important control on Mge, Cae, Se, and Mne 

concentrations.  

 Comparison of XRF and NCAG-determined-concentration profiles and linear regression 

plots indicate a lack of correlation for Na (R
2
 = 0.01), K (R

2
 = 0.02), and P (R

2
 = 0.04). In 

addition to detection limitations, discrepancies between the extractable and total-elemental 

concentrations may be variables controlling element extractability such as the chemistry, 

crystallinity, and surface area of the minerals containing the elements of interest, as well as, the 

physical and chemical properties of the other constituents that are present in the sample (Stucki 

et al., 2012; Wuenscher et al., 2015).
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Figure 20: Comparison of NCAG and XRF results for sodium. The left plot is a regression analysis of mean Nae concentrations 

(measured by NCAG) and mean Na concentrations (measured by XRF). The graphs on the right are concentration profiles for 

extractable sodium (Nae) and total sodium (Na). 
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4.5 SEM/EDX Results 

4.5.1 Statistical Analysis of Mineral Standards 

 An Oxford Instruments INCA X-act EDX system attached to a FEI Quanta 200 Mark 1 

Environmental SEM was used to collect SEM and EDX data. The EDX data were processed 

using the INCA analysis software. Mineral standards analyzed to determine precision and 

accuracy of the system were albite, almandine, apatite, benitoite, biotite, chlorite, diopside, 

hematite, kaersutite, magnetite, marcasite, pyrope, rutile, and sanidine (Table 18 and Appendix 

F). These standards were analyzed an average of about ten times each between 0 – 20 KeV for 

30 seconds of live time at a working distance of 11.486 mm.  

 Analyses of standards indicate that reliable detection of a particular element requires that 

its concentration in the sample must typically exceed 0.4 wt. %. Because the detector does not 

analyze for hydrogen and has a limited capacity to measure light elements (atomic number <11), 

the accepted values for hydrogen, carbon, and fluorine are normalized to 0 wt. % for mineral 

standards containing these elements to improve comparison of EDX analyses to the accepted 

values of hydrous mineral standards (e.g. apatite, biotite, chlorite, and kaersutite). Moreover, due 

to detection-related limitations, O2 concentrations were estimated for each standard analysis by 

calculating the difference between 100% and the sum of elemental concentrations (atomic 

numbers >10). This technique significantly impacts the iron-oxyhydroxide analyses because their 

water content typically varies from about 5 – 30 wt. % (Harvey and Linton, 1981; Dzombak and 

Morel, 1990; Jambor and Dutrizac, 1998). For elements that were below detectable limits in 

more than 25% of evaluated EDX spectra for an individual mineral specimen, ½ of the lowest 

detected concentration for the element was used for calculations instead of reporting a zero value 

(Nehls and Akland, 1973). 
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 In silicate minerals, the EDX system tends to overestimate Si by 1 – 9 wt. %, especially 

in biotite, while in another phyllosilicate, chlorite, it was overestimated by almost 23%. It 

generally underestimates the other common cations (Al and Ca by 1 – 6 wt. % and Fe by 1 – 8 

wt. %), especially Na, which is underestimated by an average of 7 wt. % (particularly in 

feldspars). Magnesium is underestimated in some silicates and overestimated in others by 1 – 5 

wt. %. When present in amounts greater than 1 wt. %, the accuracy of K analyses in feldspars 

was excellent, but in biotite this element was overestimated by almost 5 wt. %. Analyses of 

hydrous inosilicates and phyllosilicates tend to be less accurate than those for silicates not 

containing any hydroxide (OH
-
). Phosphorous and S in non-silicate minerals were overestimated 

by 5.7 and 3.7 wt. %, respectively. Many elements constituting small proportions (<0.19 wt. %) 

of standards showed large errors (>50 wt. %). 

 The Fe-bearing standards (standards comprised of >1 wt. % Fe) include almandine, 

biotite, chlorite, hematite, kaersutite, magnetite, marcasite, and pyrope. In general, the precision 

of sheet-silicate analyses for Fe was low (the coefficient of variation (CV) for Fe in chlorite and 

biotite was about 3.6 wt. % and 5.9 wt. %, respectively) while measurements of Fe in the Fe 

oxides (hematite and magnetite) were very precise (CV <0.3 wt. %). However, analyses of Fe 

oxides resulted in the least accurate measurements for Fe (% Error between 7.4 – 10.7 wt. % Fe). 

Long-term storage of the standards may have resulted in the oxidation of Fe
2+

 and subsequent 

formation of iron-oxyhydroxides on the surfaces of the standards.
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Table 18: Generalized mineral formulas of EDX reference samples. 

Reference 

Sample 
Mineral Formula 

Albite NaAlSi3O8 

Almandine Fe
2+

3Al2Si3O12 

Apatite Ca5(PO4)3(OH) 

Benitoite BaTiSi3O9 

Biotite K(Mg,Fe
2+

)3AlSi3O10(OH)2 

Chlorite Mg6AlSi3O10(OH)8 

Diopside CaMgSi2O6 

Hematite Fe
3+

2O3 

Kaersutite NaCa2(Mg,Fe
+2

)4TiSi6Al2O22(OH)2 

Magnetite Fe
2+

Fe
3+

2O4 

Marcasite Fe
2+

S2 

Pyrope Mg3Al2Si3O12 

Rutile TiO2 

Sanidine KAlSi3O8 
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4.5.2 Chemistry of Fe-Rich Aggregates and Grain Coatings  

 The results of microscopy and elemental-mapping of 4 polished-thin sections (PTS:9-12, 

PTS:13-14, PTS:15-16, PTS: 26-28) indicate the presence of abundant Fe-rich grain aggregates 

and grain coatings (Ags/Cs). Optical microscopy reveals that the Ags/Cs are dark brown to 

opaque in plane-polarized light and typically occupy the edges spaces around quartz, feldspar, 

and dolomite grains and shell fragments (Figure 21A). Most Ags/Cs appear as distinctive bright-

white blobs on SEM photomicrographs and contrast well with Fe-deficient minerals (Figure 

21C), which are usually darker gray. The areal extent of individual aggregates is highly variable 

but the thicknesses of grain coatings are more consistent, ranging from about 10 to 30 µm 

(Figure 22). Collectively, Ags/Cs comprise about 15 – 20% of magnetically susceptible grains (0 

– 1.8 amps), found at depths between 4.1 – 6.5 m BLS. The results of XRD analyses reveal that 

the Ags/Cs are likely composed of one or more iron-oxyhydroxides. 

 A total of 124 EDX spectra were acquired from magnetically susceptible Ags/Cs to semi-

quantitatively determine their elemental compositions. Since Ags/Cs tend to encapsulate a 

variety of minerals, spectral data for 24 EDX analyses were omitted from statistical evaluation. 

Data chosen for exclusion were those consisting of >15 wt. % of one or more elemental 

constituents (excluding Fe and O2) and those containing <30 wt. % Fe. For elements that were 

below detectable limits in more than 25% of evaluated EDX spectra, ½ of the lowest detected 

concentration for the element was used for calculations instead of reporting a zero value (Nehls 

and Akland, 1973). Data and statistics for EDX spectra measured from magnetically susceptible 

Ags/Cs are presented in Appendix F. 
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 Although the compositions of natural of iron-oxyhydroxides are highly variable due to 

their capacity to scavenge a variety of chemical species (e.g. phosphate, arsenate, Si, and Ca), the 

Fe content of iron-oxyhydroxides is typically >50 wt. % (Harvey and Linton, 1981; Dzombak 

and Morel, 1990; Jambor and Dutrizac, 1998). Analysis of 100 spectra reveals that the elemental 

composition of Ags/Cs is dominated by Fe (mean 53 wt. %) and oxygen (mean 30 wt. %) with 

minor proportions of Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, and Mn (Table 19 and Appendix F). 

Iron-oxyhydroxides are likely the most important sources of Fe above 6.4 m BLS because their 

occurrence appears to correspond with high-Fe concentrations in core samples. 
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Figure 21: Photomicrographs showing ilmenite (Iln) and iron-oxyhydroxide-aggregates (FeOx) 

around quartz grains (Qtz). A. Photomicrograph in plane-polarized light. B. Photomicrograph in 

reflected light. C. SEM image. D. Elemental map overlaying the SEM image in C. Note that 

blue, green, and red indicate the occurrence of Ti, Si, and Fe, respectively. 
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Figure 22: Photomicrographs showing an Fe-rich coating (FeOx) around dolomite (D) and 

authigenic pyrite (Py) on glauconite (G), ilmenite (Iln), and dolomite. A. Photomicrograph in 

plane-polarized-light. B. Photomicrograph in cross-polarized light. C. Photomicrograph in 

reflected light. D. Elemental map showing areas containing Fe (red), Ca (blue), and S (green). 
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Table 19: EDX statistics of Fe-rich Ags/Cs. 

Fe-rich Ags/Cs
1
 Na Mg Al Si P S Cl K Ca Ti Mn Fe O 

Mean
2
 0.18 0.35 1.00 8.60 1.66 0.08 0.39 0.24 2.82 0.42 0.78 53.30 30.19 

Median 0.17 0.19 0.78 8.89 1.23 0.04 0.35 0.22 2.00 0.20 0.57 53.46 30.14 

Standard Deviation
2
 0.11 0.54 0.69 3.04 2.14 0.11 0.20 0.18 2.23 0.67 0.72 5.90 2.42 

Sample Variance
2
 0.01 0.29 0.47 9.22 4.58 0.01 0.04 0.03 4.98 0.44 0.52 34.83 5.86 

Minimum 0.01 0.01 0.24 2.12 0.30 0.00 0.04 0.01 0.38 0.01 0.00 36.44 25.20 

Maximum 0.51 3.85 4.17 20.60 13.46 0.68 1.34 0.99 10.40 3.47 2.93 68.61 37.84 

Count
3
 100 100 100 100 100 100 100 100 100 100 100 100 100 

Confidence Level (95.0%)
2
 0.02 0.11 0.14 0.60 0.42 0.02 0.04 0.04 0.44 0.13 0.14 1.17 0.48 

25th Percentile
2
 0.10 0.13 0.50 7.00 0.90 0.00 0.27 0.09 1.47 0.10 0.31 50.66 28.46 

75th Percentile
2
 0.24 0.28 1.38 10.42 1.75 0.09 0.46 0.33 3.22 0.38 0.99 56.78 31.34 

1/2 Minimum Value
4
 0.01 0.01 0.12 1.06 0.15 0.00 0.02 0.01 0.19 0.01 0.00 18.22 12.60 

1. EDX analysis of 100 Fe-rich Ags/Cs. All concentrations are presented as weight percents 

2. Calculated via Microsoft Excel 

3. Number of spectra evaluated to compute statistics 

4. One half of the minimum-detected value was used to replace concentrations of elements that were not detected in some 

specimens. Only elements that were detected in at least 25% of specimens were evaluated via statistical analysis 
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4.5.3 Mineral Chemistry 

 EDX spectra (268) were evaluated from magnetically susceptible fractions (0 – 1.8 amps) 

to facilitate mineral identification via microscopy. The number of spectra acquired from each 

polished-thin section (each polished-thin section was comprised of samples representing a 

specific core interval) for a given mineral specimen was highly variable (ranged from 3 to 62) 

but the compositions of most minerals were not determined for all depth intervals. In addition, 

mineral compositions are normalized to zero wt. % of elements that are lighter than O2 because 

the EDX system does not reliably measure light elements. These data may provide insight for 

interpretations relating mineral chemistry and abundance to general trends in sediment 

chemistry; however, further acquisitions and analyses of EDX spectra are recommended to better 

substantiate the mineral chemistries that are discussed in the following subsection and shown in 

Table 20 and Appendix F. 

 EDX analysis reveals that 18 mineral grains are principally composed of Si (mean 42.0 

wt. %) and O (mean 55.4 wt. %), indicating that these grains are quartz (SiO2). The EDX system 

also detected small amounts of Fe, Ti, Al, and Ca in spectra obtained from these grains. 

Microscopy and XRD data indicate that quartz is the dominant constituent in the majority of core 

samples and quartz abundance appears to be the major control on Si concentrations. 

 Based on microscopy and EDX data, six calcite or aragonite (CaCO3) grains were largely 

composed of Ca (mean 33.2 wt. %), Fe (mean 3.5 wt. %), and Si (1.2 wt. %). Other constituents 

included Cl, Na, Mg, and Al. Calcareous shell fossils are likely the major contributors to 

sediment-Ca concentrations below 4.9 m BLS. Although Sr was not detected via EDX analysis, 

shell fossils are probably the most important Sr-containing constituents in the Tranters Creek 

sediments because Sr commonly substitutes for Ca in marine fossils (Iledgpeth and Ladd, 1957). 
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  Alkali feldspar and plagioclase feldspar were identified from 6 and 4 spectra, 

respectively. Alkali-feldspar specimens were principally comprised of Si (mean 28.7 wt. %), K 

(mean 11.7 wt. %), Al (mean 8.9 wt. %), and O (mean 50.5 wt. %) with lesser amounts of Na. 

Plagioclase-feldspar minerals were composed of Si (mean 26.8 wt. %), Al (mean 12.4 wt. %), Na 

(mean 5.2 wt. %), and Ca (mean 3.8 wt. %). Optical microscopy indicates that alkali feldspars 

were generally much more abundant than plagioclase feldspars. Alkali feldspars are likely the 

most important contributors to high sediment-K concentrations above 4.9 m BLS and plagioclase 

feldspars may be important sources of Na in the sediments below 4.9 m BLS.  

 Analysis of 15 EDX spectra suggests that the peloids are apatite. The peloids are 

principally composed of Ca (mean 34.1 wt. %), P (mean 14.8 wt. %), F (mean 2.7 wt. %), Fe 

(mean 2.4 wt. %), S (mean 1.5 wt. %), Si (mean 1.3 wt. %) and O (mean 42.4 wt. %) but smaller 

amounts of Na, Mg, Al, Cl, K, and Ti were also detected. High peloidal abundance corresponds 

to high concentrations of F in the sediment, which indicates that the peloids are largely carbonate 

fluorapatite (Ca5(PO4,CO3)3F). 

 Twenty-seven mineral specimens had compositions that are consistent with ilmenite 

(FeTiO3). These grains were comprised of Ti (mean 31.7 wt. %), Fe (mean 26.8 wt. %), and O 

(mean 38.6 wt. %). Ilmenite was generally the most abundant Fe-bearing mineral in the cores. 

Moreover, ilmenite is likely the major source of Ti and may be an important contributor to Mn 

concentrations in the sediment. 

 EDX analyses of 27 glauconite ((K,Na)(Fe
3+

,Al,Mg)2(SiAl)4O10(OH)2) grains reveal that 

these grains are composed of Si (mean 22.5 wt. %), Fe (mean 18.2 wt. % ), K (mean 4.6 wt. %), 

Al (mean 3.3 wt. %), Mg (mean 2.2 wt. %), and O (mean 47.1 wt. %). Glauconite was typically 
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the most abundant Fe-bearing mineral below 4.9 m BLS and may be a significant source of Mg 

in the sediments. 

 The principal elements comprising amphiboles (62 spectra) and pyroxenes (24 spectra) 

were identical. On average, both the amphiboles and pyroxenes were composed of similar 

amounts of Si (about 19 wt. %), Fe (between 9 and 10 wt. %), Al (between 7 and 8 wt. %), Mg 

(between 5 and 6 wt. %), and Ti (about 2 wt. %). Mean Ca concentrations were higher in 

pyroxenes (10.7 wt. %) than in amphiboles (5.8 wt. %). Correlations of sediment chemistry and 

amphibole and pyroxene abundances were not identified, possibly due to their low abundances in 

the Tranters Creek sediments.   

 Forty-six spectra of staurolite (Fe
2+

2Al9Si4O23(OH)) grains were obtained. The results 

indicate that the grains were composed of Al (mean 24.0 wt. %), Si (mean 12.6 wt. %), Fe (mean 

10.1 wt. %), Ti (mean 1.5 wt. %), Mg (mean 1.0 wt. %), and O (mean 50.9 wt. %). The estimated 

abundance of staurolite was always less than 0.5 wt. % of total dried sediment weight and as a 

result, staurolite abundance does not seem to have contributed to any substantial changes in 

sediment chemistry. 

 Analysis of 7 tourmaline ((Na,Ca)(Mg,Li,Al,Fe
2+

)3Al6(BO3)3Si6O18(OH4)) specimens 

indicates that tourmaline grains are composed of Si (mean 17.0 wt. %), Al (mean 16.1 wt. %), Fe 

(7.0 mean wt. %), Mg (mean 3.4 wt. %), Ti (1.6 mean wt. %), Na (mean 1.5 wt. %), and Ca 

(mean 1.2 wt. %). Tourmaline was the second least-abundant mineral detected in the Tranters 

Creek sediments and thus, it is not likely to be a significant source of the above-listed elements.   

Because pyrite (FeS2) was easily identifiable via optical microscopy using reflected light, 

only 3 EDX spectra were evaluated. The pyrite is composed of S (mean 51.3 wt. %), Fe (mean 

43.7 wt. %), Si (mean 2.4 wt. %), Ca (mean 2.0 wt. %). Although pyrite was commonly the least 
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abundant Fe-bearing mineral detected in the sediment cores, pyrite may be the most significant 

source of S below 6 m BLS. 
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Table 20: Mean chemical compositions of minerals. 

Mineral
1
 O F  Na Mg Al Si P S Cl K Ca Ti Mn Fe n

2
 

Quartz 55.4 
   

0.5 42.0 
    

0.2 0.7 
 

1.4 18 

Calcite 61.1 
 

0.4 0.3 0.2 1.2 
  

0.4 
 

33.2 
  

3.5 5 

Alk. 

Feldspar 
50.5 

 
0.4 

 
8.9 28.7 

   
11.7 

    
6 

Plag. 

Feldspar 
52.3 

 
5.2 

 
12.4 26.8 

    
3.8 

   
4 

Apatite 42.4 2.7 0.7 0.3 0.4 1.3 14.9 1.5 0.1 
 

34.1 0.5 
 

2.4 15 

Ilmenite 38.6 
  

0.4 0.5 1.1 
  

0.1 
 

0.4 31.7 1.0 26.8 27 

Glauconite 47.1 
  

2.2 3.3 22.5 0.3 
 

0.2 4.6 0.9 0.9 
 

18.1 27 

Amphibole 48.2 
 

1.1 5.7 7.3 18.9 
   

0.8 5.8 2.5 
 

9.9 62 

Almandine 43.8 
  

2.0 10.0 17.1 
    

2.2 1.3 3.0 20.8 24 

Pyroxene 46.8 
 

0.3 5.3 8.1 19.2 
    

10.7 1.9 0.1 9.0 24 

Staurolite 50.9 
  

1.0 24.0 12.6 
     

1.5 
 

10.1 46 

Tourmaline 52.5 

 

1.5 3.4 16.1 17.0 

    

1.2 1.6 

 

7.0 7.0 

Pyrite       0.2   2.4   51.3   0.4 2.0     43.7 3.0 

1. Elemental concentrations presented as weight percents. Mineral compositions are normalized to 

exclude elements lighter than oxygen 

2. The number of EDX spectra that were evaluated to determine mineral composition  

 



 

 

5.0 Discussion 

 Previous studies (Johnson, 1992; Winner and Coble, 1996; Lautier, 2009) and the results 

of this research indicate that sediments comprising the Geoprobe cores extracted near 

Washington, NC are part of the Quaternary surficial unit and the Pliocene Yorktown Formation. 

The surficial unit extends to a depth of approximately 6 m BLS and corresponds with the 

unconfined, surficial aquifer. The surficial aquifer is largely composed of highly permeable 

quartz sands but a less permeable layer consisting of muddy sand occurs below 4 m BLS. 

Although the boundary separating the surficial unit and the Yorktown Formation is transitional, 

bluish-gray sediments with abundant marine-related constituents (shell fragments, peloids, and 

glauconite) denote that the depth of the Yorktown Formation ranges from around 6 m BLS to the 

maximum depth of core penetration (about 11 m BLS). A stratigraphic section illustrating the 

inferred positions of the unnamed surficial unit and the Yorktown Formation in the cores is 

presented in Figure 23. Note that the color changes displayed in Figure 23 are relatively sharp; 

however, the color changes are transitional along each core interval. 

5.1 Transformation of Iron in Sediments Overlying the UCHA 

 Numerous studies (e.g. Chapelle and Lovley, 1992; Amsbaugh, 1996; Brown et al., 1999; 

Woods et al., 2000; Penny et al., 2003; Park et al., 2006; McMahon and Chapelle, 2008) and 

evidence from this investigation suggest that the origin of high-dissolved-Fe concentrations in 

coastal plain aquifers largely involves the reductive dissolution of iron-oxyhydroxide minerals. 

Distinct hydrogeochemical zones, distinguished by variations in sediment composition, inferred 

biogeochemical and hydrologic processes, and the degree of atmospheric isolation, are identified 

in sediments overlying the UCHA in western Beaufort County. These hydrogeochemical zones 

are discussed in the following subsections and important core data that were used to infer the 
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proposed zones are presented in Figures 23 – 25 and Table 21. In order of occurrence from the 

land surface to the maximum depth of core penetration, the zones are as follows: 

 Iron Depletion Zone, 0 – 3.8 m BLS 

 Iron Pigmentation Zone, 3.8 – 6.4 m BLS 

 Iron Sulfide Zone, 6.4 – 11.0 m BLS 
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Figure 23: Stratigraphic section [modified after Johnson (1992)], sediment photographs and inferred 

hydrogeochemical zones at the Tranters Creek core site. Note that the photograph between 3.7 and 4.9 m BLS 

is located near the bottom of the section, where Fe concentrations are high and the sediment reaches its darkest, 

orangish brown color. 
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Figure 24: Photographs and bivariate plots showing depth-related variations in sediment color and composition (Fe, S, pyrite 

abundance, % LOI, and HM %). These data, in conjunction with those shown in Figure 25 and Table 21, were used to infer three 

distinct hydrogeochemical zones. The blue area denotes typical depth ranges of the water-table surface and the dashed line 

indicates the mean depth of the water table (Johnson, 1992). 
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Figure 25: Photographs and bivariate plots showing depth-related variations in sediment color and composition (mud content, 

grain-size-estimated permeability, Ca, and CEC). These data, in conjunction with those shown in Figure 23 and Table 21, were 

used to infer three distinct hydrogeochemical zones. The blue area denotes typical depth ranges of the water-table surface and the 

dashed line indicates the mean depth of the water table (Johnson, 1992). 
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Table 21: Mean abundances (estimated from polished-thin sections via optical microscopy) of 

dominant minerals comprising the Iron Depletion Zone, Iron Pigmentation Zone, and the Iron 

Sulfide Zone.   

Hydrogeochemical Zone 

Iron 

Depletion 

Zone 

Iron 

Pigmentation 

Zone 

Iron 

Sulfide 

Zone 

Depth Range (m BLS)  0 - 3.8 3.8 - 6.4 6.4 - 11.0 

Non-Fe-

Bearing 

Mineral 

Apatite   7 6 

Feldspar 9 6 6 

Quartz 90 55 65 

Shells   27 19 

Fe-

Bearing 

Mineral 

Almandine 0.1 0.4 0.2 

Amphibole 0.3 0.3 0.3 

Glauconite   1.0 0.7 

Ilmenite 0.7 0.7 0.8 

Iron-

Oxyhydroxide 
  1.0   

Pyrite   0.02 0.07 

Pyroxene 0.1 0.2 0.3 

Staurolite 0.1 0.4 0.1 

Tourmaline 0.05 0.02 0.14 
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5.1.1 Iron Depletion Zone 

 The Iron Depletion Zone (IDZ) extends from the ground surface to approximately 3.8 m 

BLS. This zone is largely comprised of highly permeable quartz (~90 %) and K-rich feldspar 

(~9%) grains with trace amounts of Fe-bearing minerals (Table 21). Weakly soluble Fe-bearing 

minerals such as ilmenite, amphiboles, and pyroxenes are typically the principal sources of Fe in 

near-surface, coastal plain sediments such as the IDZ (e.g. Postma and Brockenhuus-Schack, 

1987; Stucki et al., 2012). Microscopic analyses show that ilmenite (~0.7 %) is consistently the 

most dominant Fe-bearing mineral; however, lesser amounts of amphiboles (~0.3 %), pyroxenes 

(~0.1 %), staurolite (~0.1 %), almandine (~0.1 %), and tourmaline (~0.05 %) are also present. 

Fe-bearing minerals constitute less than 1.6 % of the IDZ constituents and as a result, Fe 

concentrations are consistently low in the sediment (Figure 24). The dominant minerals are 

resistant to weathering and the sediments are generally mature (i.e. well-sorted and well-rounded 

grains), suggesting that they were transported over a long distance prior to deposition (e.g. 

transported from the Piedmont to NCCP) Therefore, mechanical weathering prior to sediment 

deposition and in-situ chemical weathering over geologic time may explain the low abundance of 

Fe-bearing constituents in the IDZ. 

 Sediments comprising the IDZ consistently have low values for sediment-water pH 

(Figure 25) and low concentrations of Cae, Mge,
 
Nae, and Ke. According to data collected 

approximately 50 km west-northwest of the study area, rainfall is typically acidic (USGS, 2016).  

Low sediment-water pH values and low concentrations of Cae, Mge,
 
Nae, and Ke may be 

attributed to the percolation of acidic rainfall, which leaches these elements from the IDZ over 

time and diminishes the capacity of the sediments to buffer infiltrating acidic precipitation 

(Hardy et al., 2012).  
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 Under oxic and slightly acidic conditions, the transport of weathering-liberated-Fe 

species is severely inhibited by the low solubility of Fe
3+

 and the tendency of Fe
3+

 to form iron-

oxyhydroxides, which may attach to negatively charged mineral surfaces such as quartz, 

feldspar, and clay minerals (Ryan and Gschwend, 1992; Penn et al., 2001). However, iron-

oxyhydroxides are not observed in the IDZ (Table 21), suggesting that the mobility of dissolved 

and colloidal Fe compounds likely exceeds the rate of iron-oxyhydroxide accretion. Geochemical 

conditions in the IDZ are probably favorable for the slow, downgradient migration of Fe species 

because: 

1. groundwater (Figure 25) in the IDZ is acidic and likely oxidizing, resulting in 

slow and progressive weathering of Fe-bearing minerals,  

2. weathering of Fe-bearing minerals results in the formation of mobile species such 

as Fe complexes and colloidal iron-oxyhydroxides, which tend to remain in 

suspension in permeable sediments (Ryan and Gschwend, 1992) and, 

3. low CEC values (Figure 25) indicate that the sediments have a low capacity to 

retain Fe cations once they are liberated via the weathering of iron-bearing 

minerals. 

5.1.2 Iron Pigmentation Zone 

 The Iron Pigmentation Zone (IPZ) extends from the basal portion of the IDZ to 

approximately 6.4 m BLS. Relative to the IDZ and the subjacent Iron Sulfide Zone, the IPZ 

sediments are the least permeable (Figure 25) and have the highest mean mud content (27.5 wt. 

%; Figure 23). The IPZ sediments have a mean CEC of about 76 meq/100 cm
3
, which is an order 

of magnitude greater than in the IDZ sediments. Approximately 96% of the IPZ sediments are 

comprised of quartz (~55 %), shell fossils (~27 %), apatite (~7 %), and feldspar (~6 %). Iron-



113 

 

bearing minerals make up the remaining 4% of IPZ sediments (Table 21). In decreasing order of 

estimated abundance, the principal Fe-bearing minerals include glauconite (~1.0 %), one or more 

iron-oxyhydroxides (the principal mineral is probably goethite, ~1.0 %), ilmenite (~0.7 %), 

almandine (~0.4 %), staurolite (~0.4 %), amphiboles (~0.3 %), pyroxenes (~0.2 %), tourmaline 

(~0.02 %), and pyrite (~0.02%). 

 Although crystal morphology can frequently be used to identify well-crystallized iron-

oxyhydroxides (Table 2), such morphologies were not observed via SEM, which may suggest 

that crystallization was recent or inhibited by the presence of interfering compounds in solution 

such as organic matter, phosphate, and silica (Stucki et al., 2012). XRD patterns indicate that 

goethite likely comprises the bulk of the crystalline, iron-oxyhydroxides in the IPZ. However, 

additional iron-oxyhydroxides may be present because poorly ordered varieties such as 

amorphous ferrihydrite are difficult to identify via XRD analyses (Cook et al., 1999). 

 Studies of sediment cores reveal that high Fe concentrations in the IPZ correspond with 

the occurrence of abundant, iron-oxyhydroxides in the form of authigenic Ags/Cs (Figure 24 and 

Table 21). These Fe-bearing minerals and compounds are mainly concentrated in two, 

stratigraphically adjacent intervals that are characterized by color changes that occur along a 2.6-

m-core interval below the IDZ. Between 4 and 5 m BLS, a relatively high proportion of mud-

sized grains (mean 34 wt. %) in the upper IPZ coincides with a general increase in sediment-Fe 

concentrations (2 to 9 wt. % Fe). With increasing depth, sediment colors along this interval 

change from light tan to yellowish brown and then, to dark orangish brown. Sediment colors in 

the lower IPZ progressively change from dark orangish brown near 5 m BLS to a bluish-gray 

color by approximately 6.4 m BLS. In contrast to the upper IPZ, the lower IPZ, on average, 

contains less mud (mean 24 wt. %) and Fe (2 to 7 wt. % Fe), which generally decrease with 
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increasing depth. Qualitatively, yellow, orange, and brown pigmentations correspond to high 

iron-oxyhydroxide abundances and indicate oxic conditions. The bluish-gray sediments that 

occur below 6.4 m BLS denote persistent anoxic conditions (Daniels et al., 1961).  

5.1.2.1 Iron-Oxyhydroxide Accumulation in the IPZ   

 Geochemical profiles showing Fe concentrations and Fe/Al ratios suggest that Fe is 

associated with clay minerals in the upper meter of the IPZ (Figure 26). It is well established that 

Al is a good proxy for clay content because Al is a principal element comprising 

aluminosilicates, it is abundant in most sediments, it behaves conservatively under normal 

conditions (i.e. Al is largely not affected by diagenetic processes and redox reactions, and 

anthropogenic inputs of Al are typically insignificant (Din, 1992; Herut and Sandler, 2006; Ho et 

al., 2012). Because of these properties, Al is commonly used to normalize for granulometric 

(grain size) and mineralogical variations (e.g. Bertine and Goldberg, 1977; Herut and Sandler, 

2006). Since the Fe exhibits a strong linear relationship with Al in the upper meter of the IPZ 

(mean Fe/Al ratio = 0.7 and R
2
 = 0.8), Fe concentrations may denote the presence of one or more 

Fe-bearing clay minerals (e.g. illite).  

 Alternatively, electrostatic attraction between the surfaces of clay grains and iron-

oxyhydroxides may have enriched the clay fraction with Fe. Increases in organic matter 

(suggested by increasing % LOI) and mud content likely contributed to higher CEC (Figures 24 

– 25). Under acidic conditions, the surfaces of iron-oxyhydroxides are positively charged while 

the surfaces of quartz, feldspar, organic matter, and clay minerals typically carry a negative 

charge (Ryan and Gschwend, 1992; Stucki et al., 2012). Previous studies have shown that 

electrostatic attraction can result in the aggradation of iron-oxyhydroxides in oxic sediments 

(Ryan and Gschwend, 1992; Stucki et al., 2012). Moreover, high mud content and low 
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permeability may facilitate electrostatic interactions between the IPZ sediments and suspended 

iron-oxyhydroxide colloids in groundwater by increasing the reactive-surface area and 

decreasing the groundwater-flow velocity, respectively. Therefore, as colloidal iron-

oxyhydroxides are translocated from the IDZ to mud-rich layers of the IPZ, iron-oxyhydroxides 

may aggregate in pore spaces or attach to negatively charged mineral surfaces in the IPZ, 

resulting in higher Fe concentrations. 

 Like Al, studies frequently normalize geochemical results to Fe; however, Fe does not 

behave conservatively in most aquifers because it is redox sensitive (Herut and Sandler, 2006; 

Lopez et al., 2006; Ho et al., 2012). The Fe/Al ratios are consistently high (mean 3.5) and 

variable between approximately 4.7 m BLS and 6.4 m BLS, suggesting that redox reactions 

involving authigenic iron-oxyhydroxides are the most important factors controlling Fe 

concentrations in the IPZ.  

 Important contributors to iron-oxyhydroxide precipitation in the IPZ likely include pH 

increases and the presence of dissolved O2. Data from Johnson (1992) indicate that groundwater 

pH increases from 5 to 6.3 between approximately 3.2 and 6.1 m BLS (Table 3). Similarly, mean 

sediment-water pH increases from 5.2 in the IDZ to 6.6 in the IPZ (Figure 25). These pH 

increases may be attributed to the dissolution of calcareous shell fossils. A reaction representing 

the dissolution of CaCO3 can be written as: 

CaCO3(s) + 2H
+

(aq)  Ca
2+

(aq) + CO2(g) + H2O(l) 

In this reaction, calcium carbonate reacts with two hydrogen ions, thereby increasing 

groundwater pH. An Eh-pH stability diagram for the common Fe species indicates that an 

increase in groundwater pH increases the likelihood that dissolved Fe
 
will precipitate in the form 

of iron-oxyhydroxides if changes in redox potential are negligible (Figure 27). In addition, 
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aquifer carbonates can react with dissolved Fe under oxidizing conditions to precipitate iron-

oxyhydroxides (Clarke et al., 1985): 

2Fe
3+

(aq) + 3CaCO3(s) + 3H2O(l)  2Fe(OH)3(s) + 3Ca
2+

(aq) + 3CO2(g) 

4Fe
2+

(aq) + O2(g) + 4CaCO3(s) + 2H2O(l)  4FeOOH(s) + 4Ca
2+

(aq) + 4CO2(g) 

Therefore, the shell fossils and concomitant increases in Fe, Ca, and sediment-water pH (Figures 

24 – 25 and Table 21) indicate that carbonate reactions may enhance the formation of iron-

oxyhydroxides in the IPZ. 

 Upward movement of dissolved-Fe
2+

 from deeper groundwater may contribute to 

increased iron-oxyhydroxide abundance in the IPZ. Along the oxic-anoxic transition zone in a 

sediment column, both oxidation and reduction of Fe can result in the formation and dissolution 

of iron-oxyhydroxides, respectively (Figure 28B). The redox potential of aquifers typically 

decreases as the groundwater becomes increasingly isolated from the atmosphere due to the 

depletion of dissolved O2 by microbes and redox reactions (Stumm and Morgan, 1996). If 

increasing depth is assumed to result in decreasing oxygen concentrations, groundwater in the 

lower IPZ is more reducing and likely contains more dissolved Fe
2+

 than the upper IPZ.  

 Diffusion (the transport of a solute from a zone of higher concentration to an area of 

lower concentration) and advection (transport of a solute that occurs as a result of groundwater 

flow) are possible mechanisms by which Fe
2+

-enriched groundwater may travel from deeper 

depths to shallower depths. According to Johnson (1992), the study area is a discharge zone (an 

area typified by an increasing vertical-head gradient), which suggests that upward advection is 

also possible (see Temporal Hydrologic Considerations). In both cases, the upward transport of 

Fe
2+

 can result in the oxidation-induced precipitation of iron-oxyhydroxides.  
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 It is not clear whether the development of iron-oxyhydroxides in the IPZ occurred 

recently or thousands of years ago, when eustatic sea level and the water table were much lower 

(see Temporal Hydrologic Considerations). Laboratory experiments indicate that under ideal 

conditions, reductive dissolution can deplete the majority of ferrihydrite (goethite takes longer) 

in a sediment over a period ranging from weeks to months; however, the reduction rates for iron-

oxyhydroxides can be affected by numerous factors including groundwater chemistry, presence 

and type of bacteria, and the crystallinity and surface area of the iron-oxyhydroxides (Rabenhorst 

et al., 2008; Li et al., 2012; Stucki et al., 2012). 

5.1.2.2 Iron-Oxyhydroxide Depletion in the IPZ 

 Numerous studies (e.g. Chapelle and Lovley, 1992; Amsbaugh, 1996; Brown et al., 1999; 

Woods et al., 2000; Penny et al., 2003; Park et al., 2006; McMahon and Chapelle, 2008) and 

evidence from this investigation support the hypothesis that the origin of high-dissolved-Fe 

concentrations in coastal plain aquifers largely involves reductive dissolution of iron-

oxyhydroxide minerals. Microbially catalyzed reduction of iron-oxyhydroxides and concurrent 

oxidation of organic matter result in the depletion of Fe in sediments and can result in high-

dissolved-Fe concentrations in low-O2 groundwater. Although iron-oxyhydroxides only 

comprise about 1% of the IPZ sediments, they likely comprise a substantial portion of the 

sediments’ reactive surface area and they are usually much more soluble than detrital-Fe 

minerals under reducing and circumneutral conditions (Stucki et al., 2012).  

 Within a groundwater-pH range between 5 and 8, dissolved-Fe concentrations exceeding 

0.3 mg/L are usually indicative of microbially catalyzed reduction of iron-oxyhydroxides under 

suboxic to anoxic conditions (Hem and Cropper, 1960; Chapelle and Lovley, 1992; Chapelle et 

al., 2001; McMahon and Chapelle, 2008). Existing water-quality data for the lower IPZ indicate 
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that the groundwater contains little SO4
2-

 and has a dissolved-Fe concentration of 13 mg/L 

(Johnson, 1992). In addition, relatively high organic matter (inferred by elevated LOI % values) 

and, depletions in Fe and iron-oxyhydroxide abundances typify the lower IPZ. These data 

collectively suggest that Fe reduction is a dominant process in the lower IPZ and that the rate of 

iron-oxyhydroxide reduction consistently exceeds the rate of iron-oxyhydroxide formation and 

retention. Therefore, the origin of high-dissolved-Fe concentrations in the western portion of the 

UCHA recharge area likely corresponds to the proximal development of aquifer environments 

that are similar to the lower IPZ where such environments are hydraulically connected to the 

UCHA. 

5.1.3 Iron-Sulfide Zone 

 The Iron-Sulfide Zone (ISZ) is recognized below 6.4 m BLS where mean sediment-S 

concentrations are S = 0.5 wt. % and Se = 427 mg/dm
3
. In the ISZ, quartz (~65 %), shell fossils 

(~19 %), apatite (~6 %), and feldspar (~6 %) comprise over 97% of the sediments while iron-

bearing minerals make up less than 3% of the minerals (Table 21). In descending order of 

estimated abundance, the dominant iron-bearing minerals are ilmenite (~0.8 %), glauconite (~0.7 

%), amphiboles (~0.3 %), pyroxenes (~0.3%), almandine (~0.2 %), tourmaline (~0.1 %), 

staurolite (~0.1 %), and pyrite (~0.07 %). Pyrite only occurs in trace amounts and is most 

abundant below 9 m BLS and its abundance generally corresponds with variations in sediment-

sulfur concentrations below 5 m BLS (Figure 24). 

 Microscopy reveals that pyrite is largely present as framboids or within the pore spaces 

of shell fragments, glauconite grains, and apatite peloids. Pyrite formation occurs via bacterially 

mediated reactions that involve the oxidation of organic matter and simultaneous reduction of 
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dissolved sulfate under anoxic conditions (in groundwater or localized in a fecal pellet), 

producing hydrogen sulfide (H2S) and bicarbonate (HCO3
-
): 

SO4
2-

(aq) + 2CH2O(aq)  H2S(g) + 2HCO3
-
(aq) 

Following sulfate reduction, dissolved Fe
2+

 and H2S can react to precipitate a metastable 

monosulfide-Fe mineral (Fe
2+

S) such as mackinawite: 

Fe
2+

(aq)
 
+ HS

-
(aq)  Fe

2+
S(s) + H

+
(aq) 

 Subsequently, Fe
2+

S may react with H2S to form pyrite (Wilkin and Barnes, 1996; Schoonen, 

2004; Park et al., 2006): 

Fe
2+

S(s) + H2S(g)  2H
+

(aq) + Fe
2+

S2(S) 

 Although this investigation did not evaluate groundwater geochemistry, dissolved-Fe 

concentrations in the ISZ may decrease with depth due to the lack of iron-oxyhydroxide 

reduction, Fe
2+

 oxidation and subsequent precipitation via carbonate reactions, and the formation 

of Fe-sulfide minerals (Berner, 1969; Chapelle and Lovley, 1992). Studies of suboxic, aquatic 

sediments indicate that sulfate reduction largely occurs after the majority of iron-oxyhydroxides 

are depleted from sediments (Froelich et al., 1979; Reeburgh, 1983; Chapelle and Lovely, 1992). 

The lack of iron-oxyhydroxides and occurrence of pyrite suggest that groundwater conditions 

were probably favorable for sulfate reduction in the ISZ. 

 The reduction of iron-oxyhydroxides in the overlying IPZ may provide the requisite Fe
2+

 

to form iron sulfides in the ISZ. Conversely, if groundwater from adjacent layers contains 

dissolved O2, pyrite oxidation can produce dissolved Fe
2+

 (Moses and Herman, 1991). Under 

circumneutral conditions, a reaction illustrating pyrite oxidation by the reduction of dissolved O2 

can be written as follows: 

Fe
2+

S2(s) + 7/2O2(g) + H2O(l)  Fe
2+

(aq) + 2SO4
2-

(aq) + 2H
+

(aq) 
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The contribution of pyrite weathering to the formation of high-dissolved-Fe zones in the UCHA 

recharge area may be negated because Fe
2+

 can rapidly oxidize to form iron-oxyhydroxides (e.g. 

goethite) under oxic conditions: 

Fe
2+

S2(s) + 5/2H2O(l) + 15/4O2(g)  α-Fe
3+

O(OH) (s) + 4H
+

(aq) + 2SO4
2-

(aq) 

 Figure 28 summarizes the inferred migration and evolution of Fe in coastal plain 

sediments that overlie the UCHA in western Beaufort County. Evaluation of the sediment cores 

reveals that the mobility and oxidation state of Fe are affected by variations in sediment 

composition, hydrogeochemical processes, and the degree to which the sediments are isolated 

from the atmosphere. Weathering of Fe-bearing minerals under acidic and oxic conditions in the 

IDZ may result in the production of highly mobile Fe species that are likely transferred 

downgradient to the subjacent IPZ over time (Figure 28A).  

 As colloidal iron-oxyhydroxides enter the less permeable and mud-rich layer of the IPZ, 

low-groundwater velocity and electrostatic attraction between positively charged colloids and 

negatively charged mineral surfaces contribute to the accumulation of iron-oxyhydroxides in the 

form of Fe-rich Ags/Cs (Figure 28B). As a result of the increasing abundance of iron-

oxyhydroxides, IPZ sediments develop yellow, orange, and brown colors and high Fe 

concentrations. With increasing depth, dissolved O2 becomes depleted and conditions become 

increasingly favorable for the microbially catalyzed reduction of iron-oxyhydroxides via organic 

matter oxidation. Consequently, iron-oxyhydroxides and Fe concentrations become depleted with 

increasing distance along the flow path while dissolved Fe
2+

 concentrations progressively 

increase. Dissolved Fe, native to the IPZ or derived from a subjacent zone, may travel upward 

via diffusion (or advection in a discharge area) to the upper IPZ where dissolved O2 is present, 

resulting in the oxidation of Fe
2+

 to Fe
3+

 and subsequent precipitation of iron-oxyhydroxides via 
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hydrolysis or by carbonate reactions with dissolved Fe
2+

 and Fe
3+

. Alternatively, dissolved Fe 

may be transported downgradient by advection from the lower IPZ to the ISZ, where the 

formation of sulfide minerals may result in decreasing dissolved-Fe
2+

 concentrations (Figure 

28C).  

 High-dissolved-Fe concentrations in the UCHA likely originate in an environment similar 

to the lower IPZ where Fe-reducing conditions develop near the upper contact of the UCHA in 

the western portion of the recharge area. The formation of high-dissolved-Fe concentrations in 

the UCHA may be dependent on a relatively short flow-path distance between the lower IPZ and 

the upper contact of the UCHA because processes such as Fe-sulfide precipitation and cation 

exchange (cation exchange is discussed in the modeling subsections) may result in Fe
2+

 depletion 

below the IPZ. 

 



122 

 

Figure 26: Geochemical profiles illustrating variations in Fe concentrations (wt. %) and Fe/Al 

ratios with respect to depth and inferred hydrogeochemical zones. The brown area between the 

dashed lines indicates the Fe is associated with Al (and clay minerals by proxy) in the IPZ. 
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Figure 27: Eh-pH stability diagram of aqueous Fe species (shown in shades of blue) 

and common Fe-bearing minerals (shown in red, green, yellow, and orange) (modified 

after Garrels and Christ, 1965). 
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Figure 28: A conceptual diagram representing the inferred transformation and transfer of Fe 

species with increasing relative depth in sediments that overlie the UCHA. Note that the graph 

on the right side of the figure shows relative changes in solid-phase-ferric iron (in red) and 

dissolved Fe
2+ 

(in blue) that are expected to occur with increasing depth. The illustrated trend in 

ferric-Fe concentrations corresponds with sediment-Fe concentrations shown in Figure 24. The 

trend in dissolved Fe
2+

 is based on inferred biogeochemical processes (e.g. oxidation and 

reduction of Fe) that may occur with increasing depth. A. Depicts the formation of mobile-Fe 

species (colloids and organic complexes) via the weathering of Fe-bearing minerals in the 

permeable sediments of the IDZ. B. Illustrates the transformation of Fe
3+

 and Fe
2+

 along the 

oxic-anoxic transition zone in the IPZ (modified from Stumm and Morgan, 1996). C. Shows that 

the formation of sulfide minerals is a possible sink for dissolved Fe
2+

 in the ISZ. Finally, most of 

the remaining Fe
2+

 would likely become incorporated in the UCHA (Figure 28D). 
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5.3 Temporal Hydrologic Considerations 

 During the height of the Last Glacial Maximum (ca. 26,500 – 19,000 year ago), eustatic 

sea level was approximately 130 m lower than it is today (Clark et al., 2009). Presumably, the 

water-table surface was proportionally lower and the vadose zone was likely much thicker at the 

core site. As a result, O2-enriched groundwater reached greater depths because dissolution of 

atmospheric O2 in groundwater occurred lower in the sediment column. Moreover, studies 

indicate that DOC concentrations frequently decrease as the depth of the water table decreases 

(Pabich, et al., 2007; McMahon and Chapelle, 2008), which would diminish the rate of O2 

reduction, resulting in slower attenuation of dissolved-O2 concentrations along the flow path. 

This information suggests that the reduction of iron-oxyhydroxides probably occurred at deeper 

depths during the Last Glacial Maximum.  

 More recent variations in the elevation of the water-table surface may also affect the 

depths at which redox-related processes occur at the core site. Based on existing water-table data, 

the IDZ sediments are subjected to cyclic wetting and drying above 2.2 m BLS (Figures 24 – 25; 

Johnson, 1992). Periodic droughts and floods likely result in larger fluctuations in the water table 

but these data are not available for the study area. When the depth of the water table decreases in 

a recharge zone (e.g. flooding events), O2 reduction occurs at shallower depths, possibly 

resulting in an upward shift in the sequence of electron-accepting processes while the opposite 

happens when the elevation of the water table is lower.  

 Johnson (1992) indicates that the underlying aquifers and Tranters Creek are 

hydraulically connected to each other and that the aquifers usually discharge into Tranters Creek. 

Although the water chemistry of Tranters Creek was not evaluated, the creek water is probably 

enriched in dissolved O2. Depending on the stage of Tranters Creek and the elevation of the 
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water table, low-O2 groundwater from the UCHA and Yorktown aquifer may flow toward the 

surface and into Tranters Creek or high-O2 water from Tranters Creek may recharge the 

underlying aquifers. Based on hydrograph data from Johnson (1992), the latter case does not 

occur frequently over a one-year period, especially in the UCHA (Figure 29). When the creek 

stage is periodically higher than the elevation of the water table, surface water from Tranters 

Creek recharges the surficial aquifer and likely results in a downward shift in the sequence of 

electron-accepting processes; however, the impact of temporal hydrologic variations on redox 

conditions cannot be adequately discerned without sufficient water chemistry data.  

 The groundwater-flow regime proposed by Johnson (1992) for the core site may not fully 

conform to the sequence of Fe-transformation processes described in the preceding subsections 

and illustrated in Figure 28 due to the hydrologic complexity that exists at the field site. 

Groundwater typically flows laterally toward Tranters Creek and vertically toward the surface in 

the lower aquifers (Johnson, 1992) while groundwater in the surficial aquifer may involve 

upward flow at deeper depths and downward percolation near the surface. As a result, 

groundwater at the core site does not contribute to the development of high-Fe zones in the 

UCHA. Future investigators that wish study potential sources of Fe entering the UCHA should 

consider choosing a study area where the groundwater consistently recharges the underlying 

aquifers along relatively simple and stable flow paths to minimize extraneous hydrologic 

variables. 
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Figure 29: Hydrograph showing water-level elevations in the UCHA, surficial aquifer, and Tranters Creek between 

August 1987 and January 1988 (data from Johnson, 1992). Elevations are referenced to meters above or below mean 

creek level. 
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5.4 Insights from Modeling 

5.4.1 Simple Dissolution 

 The results of the simple-dissolution simulations are presented in Table 22. Simulated 

dissolution of Fe-bearing minerals in “Pure Water” and “Surficial Water” in PHREEQC shows 

that minerals containing Fe
2+

 release more total-dissolved Fe than those containing only Fe
3+

 and 

dissolved-Fe concentrations generally decrease with increasing pH. Relative to the simulations 

using “Pure Water,” dissolution of pyrite, Fe
2+

-containing amphiboles, and almandine in the 

“Surficial Water” solution resulted in very high dissolved-Fe concentrations. 

 The modeling results indicate that pyrite, Fe
2+

-containing amphiboles, and almandine, 

may be important contributors to high-dissolved-Fe concentrations entering the UCHA. The 

simple-dissolution simulations represent a situation in which a single Fe-bearing mineral is in 

contact with the water solution for a sufficient period of time that permits the establishment of 

equilibrium. At equilibrium, the largest amount of the mineral that can hypothetically dissolve in 

1 liter of the solution at the specified conditions has occurred and the concentration of 

dissolution-liberated Fe has likely attained it highest value if a portion of the liberated-Fe species 

did not precipitate from the solution. However, the sediment layers that overlie the UCHA are 

generally composed of highly permeable sands, suggesting that groundwater residence in these 

layers is probably short. Weathering of Fe-containing silicate minerals (e.g. garnets and 

staurolite) can result in the formation of authigenic surface coatings (e.g. gibbsite, iron-

oxyhydroxides, and kaolinite) that greatly reduce the rate at which these minerals dissolve under 

oxidizing conditions (Velbel, 1993). Since the half-lives of most primary Fe-bearing minerals 

ranges from about 100,000 to over a million years (Holland and Turekian, 2010), the time in 
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which Fe-bearing minerals are in contact with a specified volume of groundwater may be too 

brief to permit substantial dissolution of Fe-bearing minerals at the core site. 

 Except for microbially mediated reduction of iron-oxyhydroxides, which can result in 

high-Fe groundwater long before equilibrium conditions are established, the dissolution of most 

Fe-bearing minerals under slightly acidic to circumneutral conditions rarely results in 

development of high-Fe groundwater because the reaction rates are usually very slow and in the 

presence of O2, dissolution-liberated Fe may result in iron-oxyhydroxide precipitation (Stucki et 

al., 2012). Therefore, dissolution of detrital Fe-bearing minerals is not likely to result in 

excessive-Fe concentration (>0.3 mg/L) in the aquifers overlying the UCHA.
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Table 22: Results of modeling the dissolution of individual Fe-bearing minerals in “Pure Water” 

at pH 5, 7, and 9 and the “Surficial Water” at pH 5.3. 

Oxidation 

State 
Mineral

1
 

"Pure Water" 
"Surficial 

Water" 

pH 5 pH 7 pH 9 pH 5.3 

Ferric 

Epidote 2.5E-07 2.8E-07 3.1E-07 3.35E-07 

Hematite 1.4E-06 7.4E-08 7.6E-08 9.1E-07 

Ferrihydrite 3.8E-06 2.3E-07 2.3E-07 2.4E-06 

Lepidocrocite 4.4E-06 2.3E-07 2.4E-07 2.4E-06 

Goethite 4.4E-06 2.3E-07 2.4E-07 2.4E-06 

Goethite 2 4.4E-06 2.3E-07 2.4E-07 2.4E-06 

Ferric and 

Ferrous 
Glauconite 0.03 0.01 1.09E-02 2.4E-06 

Ferrous 

Pyrite 0.01 1.5E-03 1.6E-03 1.77 

Hedenbergite 0.03 0.03 0.03 8.8E-03 

Staurolite 0.11 0.03 0.09 1.7E-06 

Schorl 0.20 0.10 0.07 4.6E-06 

Ilmenite 0.24 0.01 1.8E-04 0.03 

Actinolite 0.27 0.14 0.08 11.94 

Ferropargasite 0.33 0.19 0.11 6.12 

Almandine 0.42 0.13 0.06 12.04 

1. Ten moles of each Fe-bearing mineral were added to 1 L of solution during the dissolution 

simulations. Total Fe concentrations are reported in units of mg/L 
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5.4.2 Pyrite Oxidation 

 The results of the pyrite-oxidation simulations are illustrated in Figures 30 – 33 and Table 

23. Pyrite oxidation by O2 (g) can result in high-Fe concentrations. As O2 (g) is added to the 

groundwater solution, pH decreases as dissolved-Fe and dissolved-SO4
2-

 concentrations increase: 

Fe
2+

S2(s) + 7/2O2(g) + H2O(l)  Fe
2+

(aq) + 2SO4
2-

(aq) + 2H
+

(aq) 

 The simulations suggest that the secondary drinking water standard (0.3 mg/L Fe) may be 

exceeded if as little as 0.3 mg/L O2 (g) reacts with pyrite. If a low-Fe groundwater contains 

approximately 8 mg/L O2 (g) under acidic to circumneutral conditions, oxidative dissolution of 

about 20 mg/L pyrite can release between 8 and 10 mg/L Fe at equilibrium if no other minerals 

are present. 

 Mineralogical evaluation of the core samples reveals that pyrite commonly occurs in 

association with calcareous shell fragments at the base of the IPZ. Therefore, additional 

PHREEQC simulations incorporating calcite dissolution with pyrite oxidation were conducted to 

determine how these simultaneous reactions may affect dissolved-Fe concentration in simplified 

groundwater solutions.  

 After adding 8 mg/L O2 (g) to the calcite and pyrite-equilibrated, “Pure Water” solution, 

about 28 mg/L pyrite dissolved but the highest dissolved-Fe concentration was only 0.01 mg/L. 

The majority of the Fe that dissolved in the “Pure Water” solution during pyrite oxidation 

precipitated as goethite. During the initial reaction, pH spikes from 7 to nearly 10 as calcite and 

pyrite dissolve, resulting in the precipitation of goethite and a lower dissolved-Fe concentration 

relative to the “Pure Water” simulation that excluded calcite dissolution. 

 Incorporation of calcite dissolution with pyrite oxidation in the “Surficial Water” solution 

increased the maximum dissolved-Fe concentration by approximately 20% at the end of the 
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“Surficial Water” simulation. Calcite dissolution increases the oxidative dissolution of pyrite. 

Consequently, goethite remained undersaturated throughout the titration, resulting in 

progressively higher Fe concentrations. Although the pyrite-oxidation simulations suggest that 

pyrite oxidation can result in high-Fe concentrations, pyrite only occurs in trace amounts at the 

core site. Further study is needed to determine if pyrite oxidation leads to the development of 

high-Fe groundwater in UCHA recharge area. 
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Figure 30: Simulation of pyrite titrated with oxygen in the “Pure Water” solution. 
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Figure 31: Simulation involving pyrite titration with oxygen and simultaneous calcite dissolution in the “Pure Water” solution.  
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Figure 32: Simulation of pyrite titrated with oxygen in the “Surficial” solution. 
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Figure 33: Simulation involving pyrite titration with oxygen and simultaneous calcite dissolution in the “Surficial Water” 

solution. 
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Table 23: Results of the pyrite titration with O2 in the “Pure Water” and “Surficial Water” 

simulations. 

Solution
1
 

Initial 

O2 

Initial 

Fe 

Final 

Fe 

Pyrite 

Dissolved 

Goethite 

Precipitated 

Pure Water 0 0 7.98 17.14 0 

Pure Water with Calcite 0 0 0.01 28.40 21.01 

Surficial Water 0.28 0.07 9.68 20.65 0 

Surficial Water with Calcite 0.28 0.07 11.68 24.94 0 

1. Concentrations are in units of mg/L 
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5.4.3 Goethite Titration with DOC 

 Simulation of goethite titrated with dissolved organic carbon (DOC) in PHREEQC 

reveals that goethite reduction can result in elevated Fe concentrations (Figures 34 – 35 and 

Table 24). After O2 (g) and NO3
-
 in the “Surficial Water” are depleted by the oxidation of DOC, 

DOC begins to reduce goethite, resulting in progressively higher dissolved-Fe concentrations as 

DOC (represented by CH2O(aq) in the following reaction) is added to the solution: 

4Fe
3+

O(OH)(s) + CH2O(aq) + 8H
+

(aq)  4Fe
2+

(aq) + CO2(g) + 7H2O(l) 

Sulfate reduction via DOC oxidation occurs simultaneously with goethite reduction to produce 

very small amounts of S
2-

 (in the form of H2S); however, Fe reduction remains the primary 

electron-accepting process until iron-oxyhydroxides are depleted. As a result of incremental 

production of H2S and Fe
2+

, pyrite becomes supersaturated and about 0.4 mg/L pyrite 

precipitates by the end of the titration. The modeling results suggest that 5 mg/L DOC has the 

capacity to dissolve just over 100 mg/L goethite in the “Surficial Water,” resulting in a 

maximum dissolved-Fe concentration of over 65 mg/L, which is more than 20 times greater than 

the secondary drinking water standard. 

 Evaluation of the core samples indicates that iron-oxyhydroxides occur in both non-

calcareous and calcareous sediments. To account for interactions with aquifer carbonates, an 

additional titration simulation was conducted to determine how calcite dissolution may impact Fe 

concentrations during goethite reduction by DOC.   

 The modeling results demonstrate that calcite dissolution can mitigate reductive 

dissolution of goethite. The addition of calcite dissolution to the goethite titration model resulted 

in circumneutral conditions, which reduced the reactivity of goethite. As a result, the 
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incorporation of calcite dissolution in the goethite-titration simulation reduced the maximum 

dissolved-Fe concentration from 65.8 to 11.2 mg/L in the “Surficial Water” solution.  

 For both titration simulations (one that includes calcite dissolution and one that excludes 

calcite dissolution), the secondary drinking water standard for dissolved Fe is exceeded after 1.2 

mg/L DOC reduces around 1.3 mg/L goethite. Future investigations involving the origin of 

elevated Fe concentrations should include organic matter and DOC to better determine how 

much DOC may be necessary to produce excessive-Fe concentration in the Fe-reducing zone of 

an aquifer. These simulations collectively suggest that reductive dissolution of goethite by DOC 

is most likely to result in excessive-Fe concentration where the groundwater pH is acidic and the 

abundance of carbonates is low or nonexistent.



140 

 

Figure 34: Simulations of goethite titrated with DOC in the “Surficial Water” solution. 
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Figure 35: Simulations involving goethite titration with DOC and simultaneous calcite dissolution in the “Surficial Water” 

solution. 
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Table 24: Results of goethite titration with DOC for the “Surficial Water” simulations. 

Solution 
Initial 

Fe 

Final 

Fe 

Goethite 

Dissolved 

Pyrite 

Precipitated 

Surficial Water 0.07 65.79 104.85 0.36 

Surficial Water with Calcite 0.07 11.19   17.70 0.00 

1. Concentrations are in units of mg/L 
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5.4.4 Calibrated Transport Models 

 Satisfactory reproduction of the observed Fe-concentration trends that occur with 

increasing distance from T15 was achieved using values of 800 m and 0.115 eq/L for dispersivity 

and CEC, respectively (Figure 36). According to Appelo and Postma (1993), dispersivity is 

commonly around 10% of the traveled distance. Based on their approach, a dispersivity of 800 m 

is about 25% smaller than predicted relative to the distance between T15 and FE (about 10.7 

km). Therefore, the composition of the UCHA between T15 and FE may be more homogenous 

and isotropic than other aquifers, which would result in less mixing during advective transport. 

However, available hydrologic and geochemical data are not sufficient to reliably predict 

dispersivity at larger scales. 

Using glauconite as the major cation exchanger, XUCHA (CEC of the UCHA) can be 

estimated using the following calculation: 

XUCHA (eq/L) = Glauconite Abundance (%) × CEC of Glauconite (meq/g) × 1000 (g/kg) 

× Density of Aquifer Material (kg/L) × ([Total Volume – Porosity] ÷ Porosity) × 0.001 eq/meq 

 Assuming a CEC of 20 meq/100g for glauconite (Kogel et al., 2006), a bulk density of 

2.7 kg/L for the UCHA, and a porosity of 20% (Dr. Spruill, pers. comm. 2016), about 5% 

glauconite is necessary to produce the model-estimated exchange capacity (0.115 eq/L pore 

water). This estimated abundance for glauconite is within the range reported by Mehlhop et al. 

(2005). Figure 37 shows that relatively small changes in glauconite abundance can have a 

substantial impact on dissolved-Fe concentrations via cation-exchange reactions. Further 

evaluation of the mineralogy may be necessary to evaluate the impact of localized changes in 

CEC on dissolved-Fe concentrations in the UCHA.
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Figure 36: Measured and simulated dissolved-Fe concentrations graphed with increasing distance from 

Well T15 near Washington, NC. Model-estimated values for dispersivity and CEC in the UCHA were 800 

m and 0.115 eq/L, respectively. Using the model-estimated CEC value in the UCHA and 20 meq/100g for 

glauconite, the estimated average abundance of glauconite is about 5% along the flow path. Transmissivity 

values are from Warner (1993). 
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Figure 37: Impact of glauconite-abundance variations on dissolved-Fe concentrations along a simulated flow 

path in the UCHA. Note that these results assume that glauconite is the major cation exchanger and has a 

CEC of 20 meq/100g. 
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5.4.4.1 Conservative-Transport Modeling 

 The conservative model simulates conservative transport beginning at T15 and ending 

around 12 km downgradient at the FE well. The results of conservative-transport modeling 

reveal that transport-related mixing may only account for slight decreases in dissolved-Fe 

concentrations (<3 mg/L) between the T15 and FE wells (Figure 38). Therefore, physical 

processes such as advection and dispersion may be relatively insignificant mechanisms by which 

dissolved-Fe is depleted from groundwater in the UCHA. 
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Figure 38: Results of the conservative-transport simulation. Note that Ca and alkalinity have been reduced to 1/8 and 1/10, 

respectively to improve visualization of species that are less concentrated. 



148 

 

5.4.4.2 Reactive-Transport Modeling 

 Geochemical processes including cation exchange and calcite dissolution are 

incorporated in the reactive-transport simulation (Figure 39). Mineral precipitation was not 

included in the reactive-transport model because minerals such as iron-oxyhydroxides, siderite, 

and pyrite are not significant constituents comprising the UCHA. Moreover, the purpose of the 

reactive-transport model is to determine if cation exchange is a plausible explanation for the 

rapid depletion of dissolved-Fe over a relatively short distance in the UCHA.  

 Comparison of results for the reactive and conservative models reveals that pH and 

alkalinity are higher in the reactive simulation than the conservative simulation. These increases 

can largely be explained by calcite dissolution. Figures 38 and 39 also show that cation-exchange 

reactions may affect Na
+
, K

+
, Mg

2+
, and Fe

2+
 concentrations in the UCHA. These differences can 

only be explained by cation exchange because the transport models were not setup to include 

other processes that are capable of affecting the concentrations of these constituents. 

 Although the reactive-transport simulation demonstrates that cation-exchange reactions 

can remove substantial amounts of dissolved Fe over a relatively short distance in the UCHA, 

deviations between simulated and measured Fe concentrations suggest that other factors may 

affect dissolved-Fe concentrations (Figure 36). For example, transmissivity (defined as the rate 

of groundwater flow under a unit of hydraulic gradient through a unit width of aquifer thickness) 

variations may correspond with changes in groundwater-residence time and reservoir size (e.g. 

hydraulic conductivity may be inversely related to residence time and aquifer thickness is 

directly related to reservoir size). Aquifer tests conducted by Warner (1993) and Consolvo 

(1998) reveal that the transmissivity of the UCHA generally increases from west to east near 

Washington, NC. As a result, eastward increases in transmissivity may augment the 
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downgradient depletion of dissolved-Fe concentration in the UCHA where the thickening of the 

UCHA may result in the dilution of the upgradient groundwater by a low-Fe groundwater. In 

addition to transmissivity variations, relatively small changes in XUCHA along the UCHA flow 

path can result in substantial changes in dissolved-Fe concentration (Figure 37). Other variables 

including leakage into the UCHA from adjacent aquifers and the possibility that the wells are not 

located precisely along the same flow path of the UCHA may also result in deviations between 

simulated and measured-Fe concentrations. More robust hydrogeochemical models incorporating 

detailed investigation of regional differences in hydrology, mineralogy, sediment composition, 

and groundwater chemistry are needed to determine which processes are most responsible for the 

rapid depletion of dissolved Fe in the UCHA near Washington, NC. 
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Figure 39: Results of the reactive-transport simulation. Note that Ca and alkalinity have been reduced to 1/8 and 1/10, 

respectively to improve visualization of species that are less concentrated. 



 

 

6.0 Conclusions 

This investigation examines the origin and geochemical evolution of high-Fe
2+

 zones in 

the UCHA. It was hypothesized that high-Fe concentrations near the UCHA recharge area are 

derived from microbially catalyzed reduction of iron-oxyhydroxide compounds in the overlying 

sediment layers. Subsequently, cation exchange was proposed as a mechanism that could result 

in the rapid depletion of dissolved Fe over a relatively short distance in the UCHA. The 

mineralogy, sedimentology, and geochemistry of overlying aquifer materials were studied in 

detail to identify major Fe-bearing minerals that comprise the overburden near Washington, NC. 

Preliminary geochemical models were developed to evaluate the potential of common Fe-bearing 

minerals to yield high dissolved-Fe concentration via dissolution and redox reactions. In 

addition, the effects of carbonate reactions, permeability, and variations in sediment 

geochemistry and sedimentological composition on Fe mobility are inferred from batch 

simulations and core data. Finally, a one-dimensional reactive-transport model was developed to 

evaluate the potential of cation exchange to deplete high-dissolved-Fe concentrations along a 

simulated flow path of the UCHA.  

Based on core data acquired during this investigation and various geochemical and 

hydrogeologic data from previous studies (e.g. Johnson, 1992; Warner 1993; Sutton and Woods, 

1995, Winner and Coble, 1996; Brown, 1999; Woods et al., 2000; Lautier, 2009), the following 

conclusions were made: 

1. Three hydrogeochemical zones are identified in the 11 m Geoprobe cores to highlight 

potentially significant attributes and Fe-related processes in the sediments overlying 

the UCHA. These zones, distinguished by variations in sediment composition, depth, 

and inferred biogeochemical and hydrologic processes, include the Iron Depletion 
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Zone (IDZ), Iron Pigmentation Zone (IPZ), and the Iron Sulfide Zone (ISZ).The major 

processes affecting Fe concentrations in these zones likely include the dissolution and 

precipitation of Fe-bearing minerals, variations in permeability and CEC, reduction of 

iron-oxyhydroxides, and carbonate reactions. 

2. Fe-bearing minerals comprise less than 2% of the mineralogical constituents in the 

IDZ. Ilmenite is the dominant Fe-bearing mineral in the IDZ but lesser amounts of 

amphiboles, pyroxenes, staurolite, almandine, and tourmaline are also present. Relative 

to the IPZ and ISZ, the IDZ sediments have the highest mean permeability, the lowest 

mean mud content, the lowest mean CEC, and the lowest mean Fe concentration. 

3. Sediments comprising the IDZ have low Ca, Mg, K, and Na concentrations and low 

CEC values, indicating that the IDZ sediments have a low capacity to buffer 

infiltrating acidic precipitation and that these sediments are susceptible to leaching by 

the infiltration of acidic precipitation. 

4. Groundwater flowing through the IDZ is acidic and likely oxidizing because the 

sediments are near the ground surface. Under these conditions, Fe-bearing minerals are 

only slightly soluble. Fe complexes and colloidal, iron-oxyhydroxides, formed by the 

weathering of Fe-bearing minerals, tend to remain suspended in groundwater and are 

required to transport any significant amounts of Fe below the water table. Slow, in-situ 

chemical weathering may partially explain the low abundances of Fe-bearing minerals 

in the IDZ. 

5. Simulated dissolution of individual Fe-bearing minerals indicates that Fe
2+

-containing 

minerals are less stable than Fe
3+

-containing minerals under near-surface aquifer 
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conditions. In general, the initial pH of the groundwater solution is inversely related to 

total-dissolved-Fe concentrations at equilibrium.  

6. The simple-dissolution simulations also indicate that dissolution-liberated Fe may 

result in iron-oxyhydroxide precipitation. Simple dissolution of Fe
2+

-containing 

minerals in the overburden would likely result in low-Fe concentrations due to short 

groundwater-residence times, low abundances of Fe-containing minerals, and possible 

iron-oxyhydroxide precipitation in the oxic zone (above ~6.4 m BLS). 

7. Fe-bearing minerals make up approximately 4% of sediments in the IPZ. In decreasing 

order of estimated abundance, the principal Fe-bearing minerals include glauconite, 

one or more iron-oxyhydroxides (the principal mineral is probably goethite), ilmenite, 

almandine, staurolite, amphiboles, pyroxenes, tourmaline, and pyrite. Relative to the 

IDZ and ISZ, the IPZ sediments have the lowest mean permeability, the highest mean 

mud content (27.5 wt. %), and the highest mean Fe concentration (5.0 wt. %). The IPZ 

sediments have a mean CEC of about 75.8 meq/100 cm
3
, which is an order of 

magnitude greater than the IDZ sediments.    

8. The IPZ consists of two, stratigraphically adjacent intervals that are typified by high 

sediment-Fe concentrations and transitional color changes that occur along a 2.6 m 

core interval below the IDZ. Between 3.8 and 5 m BLS, sediment colors in the upper 

IPZ change from light tan to yellowish brown and then, to dark orangish brown. This 

interval contains a high proportion of mud-sized grains and coincides with a general 

increase in sediment-Fe concentrations. Sediment colors in the lower IPZ change from 

dark orangish brown near 5 m BLS to a bluish gray color by approximately 6.4 m BLS. 
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The lower IPZ contains less mud than the upper IPZ and sediment-Fe concentrations 

generally decrease with increasing depth. 

9. High Fe concentrations correlate well with yellow, brown, and orange pigmentations 

and with large increases in pH, CEC, and mud content in the upper IPZ. Qualitatively, 

yellow, orange, and brown colors correspond with high iron-oxyhydroxide 

abundances, in the form of Fe-rich Ags/Cs.    

10. Sedimentological and geochemical evidence indicates that iron-oxyhydroxides 

precipitated and became concentrated in the IPZ. As a result of electrostatic attraction, 

iron-oxyhydroxides tend to form aggregates as they attach to the surfaces of negatively 

charged grains. The relatively high mud content and low permeability of IPZ 

sediments may facilitate electrostatic interactions between sediments and suspended 

iron-oxyhydroxide colloids due to the high surface area of mud-size grains and 

diminished groundwater-flow velocity. Carbonate reactions likely result in the 

precipitation of iron-oxyhydroxides in the IPZ and increasing groundwater pH. 

11. Evidence suggests that the IPZ transitions from oxidizing conditions to reducing 

conditions. As a result, both iron-oxyhydroxide precipitation and iron-oxyhydroxide 

reduction may occur in the upper and lower IPZ, respectively. Dissolved-Fe 

concentrations may therefore increase with increasing depth in the IPZ. High-

dissolved-Fe concentrations in the UCHA are most likely derived from conditions that 

are similar to the lower IPZ, where microbially catalyzed reduction of abundant iron-

oxyhydroxides results in the production of dissolved Fe
2+

. 

12. The goethite-titration simulations show that goethite reduction by organic-matter 

oxidation can result in very high-dissolved-Fe concentrations. After Fe-reducing 
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conditions are established, iron-oxyhydroxide (represented as goethite in PHREEQC 

simulations) reduction can rapidly result in progressively higher dissolved-Fe 

concentration if sufficient DOC is present. The simulations show that the secondary 

drinking water standard for dissolved Fe is exceeded if 1.2 mg/L DOC reduces around 

1.3 mg/L goethite. The goethite-titration simulations also reveal that reductive 

dissolution of goethite by DOC is most likely to result in excessive-Fe concentration 

where the abundance of carbonates is low or nonexistent and the groundwater pH is 

acidic. 

13. The ISZ occurs below 6.4 m BLS where the abundance of pyrite and mean sediment-

sulfur concentrations (ST = 0.5 wt. % and Se = 427 mg/dm
3
) are relatively high. Iron-

bearing minerals make up less than 3% of the minerals in the ISZ. In descending order 

of estimated abundance, the dominant Fe-bearing minerals are ilmenite, glauconite, 

amphiboles, pyroxenes, almandine, tourmaline, staurolite, and pyrite. Mean 

permeability and mean mud content are approximately 7.6 m/d and 13.9 wt. %, 

respectively.   

14. The lack of iron-oxyhydroxides and occurrence of pyrite suggest that groundwater 

conditions were probably favorable for microbially mediated sulfate reduction in the 

ISZ. The reduction of iron-oxyhydroxides in the IPZ may provide the requisite Fe
2+

 to 

form Fe sulfides in the ISZ; however, the low abundance of pyrite in the ISZ suggests 

that the formation of Fe-sulfides may be an insignificant sink of dissolved Fe
2+

 in the 

sediments overlying the UCHA.    

15. The results of the pyrite-oxidation simulations suggest that reactions involving pyrite 

and dissolved O2 can result in high-Fe concentrations. If a low-Fe groundwater is 
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nearly saturated with O2 (g) under acidic to circumneutral conditions, dissolution of 

about 20 mg/L pyrite may result in Fe concentrations ranging from about 8 to 10 mg/L. 

However, further investigation is needed to determine if pyrite weathering is an 

important process leading to the formation of high-Fe zones in the UCHA recharge 

area. 

16. The results of reactive-transport modeling show that cation-exchange reactions can 

substantially deplete dissolved-Fe concentrations along a simulated 12 km flow path in 

the UCHA. The simulation suggests that about 5% glauconite can successfully 

reproduce observed Fe concentrations in groundwater near Washington, NC. 

Transmissivity variations, leakage from adjacent aquifers, differences between the 

simulated and actual flow paths, and changes in XUCHA may explain the minor 

deviations between the simulated and measured Fe concentrations. 
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Appendix A: Core Subsample Data 

Appendix A1: TC14 Data 

TC14 

Core 

Section 

Void 

Space 

(m) 

Length 

Recovered 

(m) 

Sample 

# 

Lower 

Subsample 

Depth (m) 

Upper 

Subsample 

Depth (m) 

Mean 

Subsample 

depth (m) 

Adjusted 

Subsample 

Depth (m) 

Calculated 

Depth 

BLS 

(m) 

Analysis Performed 

or Extra Sample? 

TC14: 

0-4' 
0.45 0.71 

1 0.45 0.47 0.46 0.01 0.02 Extra 

2 0.47 0.49 0.48 0.03 0.05 Extra 

3 0.49 0.51 0.50 0.05 0.09 Extra 

4 0.51 0.53 0.52 0.07 0.12 Extra 

5 0.53 0.55 0.54 0.09 0.15 Grain Size 

6 0.55 0.57 0.56 0.11 0.19 Extra  

7 0.57 0.59 0.58 0.13 0.22 Extra  

8 0.59 0.61 0.60 0.15 0.26 Extra  

9 0.61 0.64 0.63 0.18 0.30 XRF 

10 0.64 0.67 0.66 0.21 0.35 Grain Size 

11 0.67 0.70 0.69 0.24 0.40 Extra  

12 0.70 0.73 0.72 0.27 0.46 Extra  

13 0.73 0.76 0.75 0.30 0.51 Extra  

14 0.76 0.79 0.78 0.33 0.56 Extra  

15 0.79 0.81 0.80 0.35 0.60 Grain Size 

16 0.81 0.83 0.82 0.37 0.64 Extra  

17 0.83 0.85 0.84 0.39 0.67 Extra  

18 0.85 0.87 0.86 0.41 0.70 Extra  

19 0.87 0.89 0.88 0.43 0.74 XRF 

20 0.89 0.91 0.90 0.45 0.77 Grain Size 
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TC14 

Core 

Section 

Void 

Space 

(m) 

Length 

Recovered 

(m) 

Sample 

# 

Lower 

Subsample 

Depth (m) 

Upper 

Subsample 

Depth (m) 

Mean 

Subsample 

Depth (m) 

Adjusted 

Subsample 

Depth (m) 

Calculated 

Depth 

BLS 

(m) 

Analysis Performed 

or Extra Sample? 

TC14: 

0-4' 
0.45 0.71 

21 0.91 0.93 0.92 0.47 0.81 Extra  

22 0.93 0.95 0.94 0.49 0.84 Extra  

23 0.95 0.97 0.96 0.51 0.88 LOI 

24 0.97 0.99 0.98 0.53 0.91 XRF 

25 0.99 1.01 1.00 0.55 0.94 Grain Size 

26 1.01 1.03 1.02 0.57 0.98 Extra  

27 1.03 1.05 1.04 0.59 1.01 Extra  

28 1.05 1.07 1.06 0.61 1.05 Extra  

29 1.07 1.09 1.08 0.63 1.08 XRF 

30 1.09 1.11 1.10 0.65 1.12 Grain Size 

31 1.11 1.13 1.12 0.67 1.15 Extra  

32 1.13 1.16 1.15 0.70 1.19 Extra  

TC14: 

4-8' 
0.51 0.65 

1 0.51 0.53 0.52 0.01 1.24 Extra 

2 0.53 0.55 0.54 0.03 1.28 XRF 

3 0.55 0.57 0.56 0.05 1.31 Grain Size 

4 0.57 0.59 0.58 0.07 1.35 Extra 

5 0.59 0.61 0.60 0.09 1.39 Extra 

6 0.61 0.63 0.62 0.11 1.43 Extra 

7 0.63 0.65 0.64 0.13 1.46 XRF 

8 0.65 0.67 0.66 0.15 1.50 Grain Size 

9 0.67 0.69 0.68 0.17 1.54 Extra 

10 0.69 0.71 0.70 0.19 1.58 Extra 

11 0.71 0.73 0.72 0.21 1.61 Extra 

12 0.73 0.75 0.74 0.23 1.65 XRF 
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TC14 

Core 

Section 

Void 

Space 

(m) 

Length 

Recovered 

(m) 

Sample 

# 

Lower 

Subsample 

Depth (m) 

Upper 

Subsample 

Depth (m) 

Mean 

Subsample 

Depth (m) 

Adjusted 

Subsample 

Depth (m) 

Calculated 

Depth 

BLS 

(m) 

Analysis Performed 

or Extra Sample? 

TC14: 

4-8' 
0.51 0.65 

13 0.75 0.77 0.76 0.25 1.69 Grain Size 

14 0.77 0.79 0.78 0.27 1.73 Extra 

15 0.79 0.81 0.80 0.29 1.76 Extra 

16 0.81 0.83 0.82 0.31 1.80 LOI 

17 0.83 0.85 0.84 0.33 1.84 XRF 

18 0.85 0.87 0.86 0.35 1.88 Grain Size 

19 0.87 0.89 0.88 0.37 1.91 Extra 

20 0.89 0.91 0.90 0.39 1.95 Extra 

21 0.91 0.93 0.92 0.41 1.99 Extra 

22 0.93 0.95 0.94 0.43 2.03 Extra 

23 0.95 0.97 0.96 0.45 2.06 Grain Size 

24 0.97 0.99 0.98 0.47 2.10 Extra 

25 0.99 1.01 1.00 0.49 2.14 Extra 

26 1.01 1.03 1.02 0.51 2.18 Extra 

27 1.03 1.05 1.04 0.53 2.21 XRF 

28 1.05 1.07 1.06 0.55 2.25 Grain Size 

29 1.07 1.09 1.08 0.57 2.29 Extra 

30 1.09 1.11 1.10 0.59 2.33 Extra 

31 1.11 1.13 1.12 0.61 2.36 XRF 

32 1.13 1.15 1.14 0.63 2.40 Extra 

TC14: 

8-12' 
0.62 0.54 

1 0.62 0.65 0.64 0.02 2.47 Extra 

2 0.65 0.68 0.67 0.05 2.54 Extra 

3 0.68 0.71 0.70 0.08 2.61 XRF 
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TC14 

Core 

Section 

Void 

Space 

(m) 

Length 

Recovered 

(m) 

Sample 

# 

Lower 

Subsample 

Depth (m) 

Upper 

Subsample 

Depth (m) 

Mean 

Subsample 

Depth (m) 

Adjusted 

Subsample 

Depth (m) 

Calculated 

Depth 

BLS 

(m) 

Analysis Performed 

or Extra Sample? 

TC14: 

8-12' 
0.62 0.54 

4 0.71 0.74 0.73 0.11 2.68 Grain Size 

5 0.74 0.77 0.76 0.14 2.74 Extra 

6 0.77 0.80 0.79 0.17 2.81 Extra 

7 0.80 0.83 0.82 0.20 2.88 Extra 

8 0.83 0.86 0.85 0.23 2.95 XRF 

9 0.86 0.89 0.88 0.26 3.01 Grain Size 

10 0.89 0.92 0.91 0.29 3.08 Extra 

11 0.92 0.95 0.94 0.32 3.15 Extra 

12 0.95 0.98 0.97 0.35 3.22 Extra 

13 0.98 1.01 1.00 0.38 3.29 XRF 

14 1.01 1.04 1.03 0.41 3.35 Grain Size 

15 1.04 1.07 1.06 0.44 3.42 Extra 

16 1.07 1.10 1.09 0.47 3.49 Extra 

17 1.10 1.13 1.12 0.50 3.56 XRF 

18 1.13 1.16 1.15 0.53 3.62 LOI 

TC14: 

12-16' 
0.35 0.81 

1 0.35 0.38 0.37 0.02 3.68 Extra  

2 0.38 0.41 0.40 0.05 3.73 Extra 

3 0.41 0.44 0.43 0.08 3.77 Extra 

4 0.44 0.47 0.46 0.11 3.82 Grain Size 

5 0.47 0.50 0.49 0.14 3.86 Extra 

6 0.50 0.53 0.52 0.17 3.91 Extra 

7 0.53 0.56 0.55 0.20 3.95 LOI 

8 0.56 0.58 0.57 0.22 3.99 Grain Size 
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TC14 

Core 

Section 

Void 

Space 

(m) 

Length 

Recovered 

(m) 

Sample 

# 

Lower 

Subsample 

Depth (m) 

Upper 

Subsample 

Depth (m) 

Mean 

Subsample 

Depth (m) 

Adjusted 

Subsample 

Depth (m) 

Calculated 

Depth 

BLS 

(m) 

Analysis Performed 

or Extra Sample? 

TC14: 

12-16' 
0.35 0.81 

9 0.58 0.61 0.60 0.25 4.03 XRF 

10 0.61 0.63 0.62 0.27 4.06 LOI 

11 0.63 0.65 0.64 0.29 4.09 XRF 

12 0.65 0.67 0.66 0.31 4.12 Grain Size 

13 0.67 0.69 0.68 0.33 4.15 Extra 

14 0.69 0.71 0.70 0.35 4.18 Extra 

15 0.71 0.73 0.72 0.37 4.21 LOI 

16 0.73 0.75 0.74 0.39 4.24 XRF 

17 0.75 0.77 0.76 0.41 4.27 Grain Size 

18 0.77 0.79 0.78 0.43 4.30 Extra 

19 0.79 0.81 0.80 0.45 4.33 Extra 

20 0.81 0.83 0.82 0.47 4.37 Extra 

21 0.83 0.85 0.84 0.49 4.40 XRF 

22 0.85 0.87 0.86 0.51 4.43 Grain Size 

23 0.87 0.89 0.88 0.53 4.46 Extra 

24 0.89 0.91 0.90 0.55 4.49 Extra 

25 0.91 0.93 0.92 0.57 4.52 Extra 

26 0.93 0.95 0.94 0.59 4.55 XRF 

27 0.95 0.97 0.96 0.61 4.58 Grain Size 

28 0.97 0.99 0.98 0.63 4.61 Extra 

29 0.99 1.01 1.00 0.65 4.64 Extra 

30 1.01 1.03 1.02 0.67 4.67 Extra 

31 1.03 1.05 1.04 0.69 4.70 XRF 
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TC14 

Core 

Section 

Void 

Space 

(m) 

Length 

Recovered 

(m) 

Sample 

# 

Lower 

Subsample 

Depth (m) 

Upper 

Subsample 

Depth (m) 

Mean 

Subsample 

Depth (m) 

Adjusted 

Subsample 

Depth (m) 

Calculated 

Depth 

BLS 

(m) 

Analysis Performed 

or Extra Sample? 

TC14: 

12-16' 
0.35 0.81 

32 1.05 1.07 1.06 0.71 4.73 Grain Size 

33 1.07 1.09 1.08 0.73 4.76 Extra 

34 1.09 1.11 1.10 0.75 4.79 LOI 

35 1.11 1.13 1.12 0.77 4.82 XRF 

36 1.13 1.16 1.15 0.80 4.85 Grain Size 

TC14: 

16-20' 
0.3 0.86 

1 0.30 0.32 0.31 0.01 4.89 LOI 

2 0.32 0.34 0.33 0.03 4.92 XRF 

3 0.34 0.36 0.35 0.05 4.95 Grain Size 

4 0.36 0.38 0.37 0.07 4.98 Extra 

5 0.38 0.40 0.39 0.09 5.00 Extra 

6 0.40 0.42 0.41 0.11 5.03 Extra 

7 0.42 0.44 0.43 0.13 5.06 XRF 

8 0.44 0.46 0.45 0.15 5.09 Grain Size 

9 0.46 0.48 0.47 0.17 5.12 Extra 

10 0.48 0.50 0.49 0.19 5.15 Extra 

11 0.50 0.52 0.51 0.21 5.17 LOI 

12 0.52 0.54 0.53 0.23 5.20 XRF 

13 0.54 0.56 0.55 0.25 5.23 Grain Size 

14 0.56 0.58 0.57 0.27 5.26 Extra 

15 0.58 0.60 0.59 0.29 5.29 Extra 

16 0.60 0.62 0.61 0.31 5.32 LOI 

17 0.62 0.64 0.63 0.33 5.34 XRF 

18 0.64 0.66 0.65 0.35 5.37 Grain Size 
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TC14 

Core 

Section 

Void 

Space 

(m) 

Length 

Recovered 

(m) 

Sample 

# 

Lower 

Subsample 

Depth (m) 

Upper 

Subsample 

Depth (m) 

Mean 

Subsample 

Depth (m) 

Adjusted 

Subsample 

Depth (m) 

Calculated 

Depth 

BLS 

(m) 

Analysis Performed 

or Extra Sample? 

TC14: 

16-20' 
0.3 0.86 

19 0.66 0.68 0.67 0.37 5.40 Extra 

20 0.68 0.70 0.69 0.39 5.43 Extra 

21 0.70 0.72 0.71 0.41 5.46 Extra 

22 0.72 0.74 0.73 0.43 5.49 Extra 

23 0.74 0.76 0.75 0.45 5.51 Grain Size 

24 0.76 0.78 0.77 0.47 5.54 Extra 

25 0.78 0.80 0.79 0.49 5.57 Extra 

26 0.80 0.82 0.81 0.51 5.60 Extra 

27 0.82 0.84 0.83 0.53 5.63 XRF 

28 0.84 0.86 0.85 0.55 5.66 Grain Size 

29 0.86 0.88 0.87 0.57 5.68 Extra 

30 0.88 0.90 0.89 0.59 5.71 Extra 

31 0.90 0.92 0.91 0.61 5.74 Extra 

32 0.92 0.94 0.93 0.63 5.77 XRF 

33 0.94 0.96 0.95 0.65 5.80 Grain Size 

34 0.96 0.98 0.97 0.67 5.83 Extra 

35 0.98 1.00 0.99 0.69 5.85 Extra 

36 1.00 1.02 1.01 0.71 5.88 Extra 

37 1.02 1.04 1.03 0.73 5.91 XRF 

38 1.04 1.06 1.05 0.75 5.94 Grain Size 

39 1.06 1.08 1.07 0.77 5.97 Extra 

40 1.08 1.10 1.09 0.79 6.00 Extra 

41 1.10 1.12 1.11 0.81 6.03 Extra 
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TC14 

Core 

Section 

Void 

Space 

(m) 

Length 

Recovered 

(m) 

Sample 

# 

Lower 

Subsample 

Depth (m) 

Upper 

Subsample 

Depth (m) 

Mean 

Subsample 

Depth (m) 

Adjusted 

Subsample 

Depth (m) 

Calculated 

Depth 

BLS 

(m) 

Analysis Performed 

or Extra Sample? 

TC14: 

16-20' 
0.3 0.86 

42 1.12 1.14 1.13 0.83 6.05 XRF 

43 1.14 1.16 1.15 0.85 6.08 Grain Size 

TC14: 

20-24' 
0.13 1.03 

1 0.13 0.15 0.14 0.01 6.11 LOI 

2 0.15 0.17 0.16 0.03 6.13 XRF 

3 0.17 0.19 0.18 0.05 6.16 Grain Size 

4 0.19 0.21 0.20 0.07 6.18 TC14C #15 

5 0.21 0.23 0.22 0.09 6.20 TC14C #15 

6 0.23 0.25 0.24 0.11 6.23 TC14C #15 

7 0.25 0.27 0.26 0.13 6.25 XRF and TC14C #15 

8 0.27 0.29 0.28 0.15 6.27 Grain Size 

9 0.29 0.31 0.30 0.17 6.30 Extra 

10 0.31 0.33 0.32 0.19 6.32 Extra 

11 0.33 0.35 0.34 0.21 6.34 Extra 

12 0.35 0.37 0.36 0.23 6.37 Extra 

13 0.37 0.39 0.38 0.25 6.39 Grain Size 

14 0.39 0.41 0.40 0.27 6.42 Extra 

15 0.41 0.43 0.42 0.29 6.44 Extra 

16 0.47 0.51 0.49 0.36 6.52 Extra 

17 0.51 0.55 0.53 0.40 6.57 XRF 

18 0.55 0.59 0.57 0.44 6.62 Grain Size 

19 0.59 0.63 0.61 0.48 6.66 Extra 

20 0.63 0.66 0.65 0.52 6.71 Extra 

21 0.66 0.93 0.80 0.67 6.88 Extra 
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TC14 

Core 

Section 

Void 

Space 

(m) 

Length 

Recovered 

(m) 

Sample 

# 

Lower 

Subsample 

Depth (m) 

Upper 

Subsample 

Depth (m) 

Mean 

Subsample 

Depth (m) 

Adjusted 

Subsample 

Depth (m) 

Calculated 

Depth 

BLS 

(m) 

Analysis Performed 

or Extra Sample? 

TC14: 

20-24' 
0.13 1.03 

22 0.93 0.96 0.95 0.82 7.06 Extra 

23 0.96 0.98 0.97 0.84 7.09 XRF 

24 0.98 1.00 0.99 0.86 7.11 Grain Size 

25 4.00 1.02 2.51 2.38 8.91 Extra 

26 1.02 1.04 1.03 0.90 7.16 Extra 

27 1.04 1.06 1.05 0.92 7.18 LOI 

28 1.06 1.08 1.07 0.94 7.21 XRF 

29 1.08 1.10 1.09 0.96 7.23 Grain Size 

30 1.10 1.12 1.11 0.98 7.26 Extra 

31 1.12 1.14 1.13 1.00 7.28 Extra 

32 1.14 1.16 1.15 1.02 7.30 XRF 

TC14: 

24-28' 
0.04 1.12 

1 0.04 0.06 0.05 0.01 7.33 Extra 

2 0.06 0.08 0.07 0.03 7.35 XRF 

3 0.08 0.10 0.09 0.05 7.37 Grain Size 

4 0.10 0.12 0.11 0.07 7.39 Extra 

5 0.12 0.14 0.13 0.09 7.41 Extra 

6 0.14 0.16 0.15 0.11 7.43 Extra 

7 0.16 0.18 0.17 0.13 7.46 XRF 

8 0.18 0.20 0.19 0.15 7.48 Grain Size 

9 0.20 0.22 0.21 0.17 7.50 Extra 

10 0.22 0.24 0.23 0.19 7.52 Extra 

11 0.24 0.26 0.25 0.21 7.54 Extra 

12 0.26 0.28 0.27 0.23 7.57 Extra 
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TC14 

Core 

Section 

Void 

Space 

(m) 

Length 

Recovered 

(m) 

Sample 

# 

Lower 

Subsample 

Depth (m) 

Upper 

Subsample 

Depth (m) 

Mean 

Subsample 

Depth (m) 

Adjusted 

Subsample 

Depth (m) 

Calculated 

Depth 

BLS 

(m) 

Analysis Performed 

or Extra Sample? 

TC14: 

24-28' 
0.04 1.12 

13 0.28 0.30 0.29 0.25 7.59 Grain Size 

14 0.30 0.32 0.31 0.27 7.61 Extra 

15 0.32 0.34 0.33 0.29 7.63 Extra 

16 0.34 0.36 0.35 0.31 7.65 Extra 

17 0.36 0.38 0.37 0.33 7.67 XRF 

18 0.38 0.40 0.39 0.35 7.70 Grain Size 

19 0.40 0.42 0.41 0.37 7.72 Extra 

20 0.42 0.44 0.43 0.39 7.74 Extra 

21 0.44 0.46 0.45 0.41 7.76 Extra 

22 0.46 0.48 0.47 0.43 7.78 XRF 

23 0.48 0.50 0.49 0.45 7.81 Grain Size 

24 0.50 0.52 0.51 0.47 7.83 Extra 

25 0.52 0.54 0.53 0.49 7.85 Extra 

26 0.54 0.56 0.55 0.51 7.87 Extra 

27 0.56 0.58 0.57 0.53 7.89 Extra 

28 0.58 0.60 0.59 0.55 7.91 Grain Size 

29 0.60 0.62 0.61 0.57 7.94 Extra 

30 0.62 0.64 0.63 0.59 7.96 Extra 

31 0.64 0.66 0.65 0.61 7.98 Extra 

32 0.66 0.68 0.67 0.63 8.00 XRF 

33 0.68 0.70 0.69 0.65 8.02 Grain Size 

34 0.70 0.72 0.71 0.67 8.04 Extra 

35 0.72 0.74 0.73 0.69 8.07 Extra 
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TC14 

Core 

Section 

Void 

Space 

(m) 

Length 

Recovered 

(m) 

Sample 

# 

Lower 

Subsample 

Depth (m) 

Upper 

Subsample 

Depth (m) 

Mean 

Subsample 

Depth (m) 

Adjusted 

Subsample 

Depth (m) 

Calculated 

Depth 

BLS 

(m) 

Analysis Performed 

or Extra Sample? 

TC14: 

24-28' 
0.04 1.12 

36 0.74 0.76 0.75 0.71 8.09 Extra 

37 0.76 0.78 0.77 0.73 8.11 XRF 

38 0.78 0.82 0.80 0.76 8.14 Grain Size 

39 0.82 0.86 0.84 0.80 8.19 Extra 

40 0.86 0.90 0.88 0.84 8.23 Extra 

41 0.90 0.94 0.92 0.88 8.27 LOI 

42 0.94 0.98 0.96 0.92 8.32 XRF 

43 0.98 1.02 1.00 0.96 8.36 Grain Size 

44 1.02 1.06 1.04 1.00 8.40 Extra 

45 1.06 1.10 1.08 1.04 8.45 Extra 

46 1.10 1.14 1.12 1.08 8.49 XRF 

47 1.14 1.16 1.15 1.11 8.52 LOI 

TC14: 

28-32' 
0.22 0.94 

1 0.22 0.26 0.24 0.02 8.56 Extra 

2 0.26 0.30 0.28 0.06 8.61 XRF 

3 0.30 0.34 0.32 0.10 8.66 Grain Size 

4 0.34 0.38 0.36 0.14 8.72 Extra 

5 0.38 0.42 0.40 0.18 8.77 Extra 

6 0.42 0.46 0.44 0.22 8.82 LOI 

7 0.46 0.50 0.48 0.26 8.87 XRF 

8 0.50 0.54 0.52 0.30 8.92 Grain Size 

9 0.54 0.58 0.56 0.34 8.98 Extra 

10 0.58 0.62 0.60 0.38 9.03 Extra 

11 0.62 0.66 0.64 0.42 9.08 LOI 
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TC14 

Core 

Section 

Void 

Space 

(m) 

Length 

Recovered 

(m) 

Sample 

# 

Lower 

Subsample 

Depth (m) 

Upper 

Subsample 

Depth (m) 

Mean 

Subsample 

Depth (m) 

Adjusted 

Subsample 

Depth (m) 

Calculated 

Depth 

BLS 

(m) 

Analysis Performed 

or Extra Sample? 

TC14: 

28-32' 
0.22 0.94 

12 0.66 0.70 0.68 0.46 9.13 XRF 

13 0.70 0.74 0.72 0.50 9.18 Grain Size 

14 0.74 0.78 0.76 0.54 9.23 Extra 

15 0.78 0.82 0.80 0.58 9.29 Extra 

16 0.82 0.86 0.84 0.62 9.34 Extra 

17 0.86 0.90 0.88 0.66 9.39 XRF 

18 0.90 0.94 0.92 0.70 9.44 Grain Size 

19 0.94 0.98 0.96 0.74 9.49 Extra 

20 0.98 1.02 1.00 0.78 9.55 Extra 

21 1.02 1.06 1.04 0.82 9.60 Extra 

22 1.06 1.10 1.08 0.86 9.65 XRF 

23 1.10 1.14 1.12 0.90 9.70 Grain Size 

24 1.14 1.18 1.16 0.94 9.75 Extra 

TC14: 

32-36' 
0.07 1.09 

1 0.07 0.10 0.09 0.02 9.77 Extra 

2 0.10 0.13 0.12 0.05 9.80 XRF 

3 0.13 0.16 0.15 0.08 9.84 Grain Size 

4 0.16 0.19 0.18 0.11 9.87 Extra 

5 0.19 0.21 0.20 0.13 9.90 Extra 

6 0.21 0.24 0.23 0.16 9.93 LOI 

7 0.24 0.27 0.26 0.19 9.96 XRF 

8 0.27 0.30 0.29 0.22 9.99 Grain Size 

9 0.30 0.33 0.32 0.25 10.03 Extra 

10 0.33 0.36 0.35 0.28 10.06 Extra 



179 

 

TC14 

Core 

Section 

Void 

Space 

(m) 

Length 

Recovered 

(m) 

Sample 

# 

Lower 

Subsample 

Depth (m) 

Upper 

Subsample 

Depth (m) 

Mean 

Subsample 

Depth (m) 

Adjusted 

Subsample 

Depth (m) 

Calculated 

Depth 

BLS 

(m) 

Analysis Performed 

or Extra Sample? 

TC14: 

32-36' 
0.07 1.09 

11 0.36 0.39 0.38 0.31 10.09 Extra 

12 0.39 0.42 0.41 0.34 10.13 XRF 

13 0.42 0.45 0.44 0.37 10.16 Grain Size 

14 0.45 0.48 0.47 0.40 10.20 Extra 

15 0.48 0.51 0.50 0.43 10.23 Extra 

16 0.51 0.54 0.53 0.46 10.26 LOI 

17 0.54 0.57 0.56 0.49 10.30 XRF 

18 0.57 0.60 0.59 0.52 10.33 Grain Size 

19 0.60 0.64 0.62 0.55 10.37 Extra 

20 0.64 0.68 0.66 0.59 10.41 Extra 

21 0.68 0.72 0.70 0.63 10.46 Extra 

22 0.72 0.76 0.74 0.67 10.50 Extra 

23 0.76 0.80 0.78 0.71 10.55 Grain Size 

24 0.80 0.84 0.82 0.75 10.59 Extra 

25 0.84 0.88 0.86 0.79 10.64 Extra 

26 0.88 0.92 0.90 0.83 10.68 Extra 

27 0.92 0.96 0.94 0.87 10.73 XRF 

28 0.96 1.00 0.98 0.91 10.77 Grain Size 

29 1.00 1.04 1.02 0.95 10.82 Extra 

30 1.04 1.08 1.06 0.99 10.86 XRF 

31 1.08 1.12 1.10 1.03 10.91 Grain Size 

32 1.12 1.16 1.14 1.07 10.95 LOI 



 

 

Appendix A2: TC14C Data 

 

TC14C 

Core 

Section 

Void 

Space 

(m) 

Length 

Recovered 

(m) 

Sample 

# 

Lower 

Subsample 

Depth (m) 

Upper 

Subsample 

Depth (m) 

Mean 

Subsample 

Depth (m) 

Adjusted 

Subsample 

Depth (m) 

Calculated 

Depth BLS 

(m) 

Extra 

Sample? 

TC14C: 

0-4' 
0.40 0.76 

1 0.40 0.66 0.53 0.13 0.20 
No 

Extra 

2 0.66 0.91 0.78 0.38 0.61 Extra 

3 0.91 1.16 1.03 0.63 1.01 Extra 

TC14C: 

4-8' 
0.60 0.56 

4 0.70 0.83 0.77 0.06 1.36 Extra 

5 0.83 1.16 0.99 0.29 1.86 Extra 

TC14C: 

8-12' 
0.60 0.56 

6 0.60 0.88 0.74 0.14 2.74 Extra 

7 0.88 1.16 1.02 0.42 3.35 Extra 

TC14C: 

12-16' 
0.29 0.87 

8 0.29 0.51 0.40 0.11 3.81 Extra 

9 0.51 0.72 0.61 0.32 4.11 Extra 

10 0.72 0.94 0.83 0.54 4.41 Extra 

11 0.94 1.16 1.05 0.76 4.72 Extra 

TC14C: 

16-20' 
0.36 0.81 

12 0.36 0.61 0.48 0.13 5.07 Extra 

13 0.61 0.88 0.74 0.39 5.47 Extra 

14 0.88 1.16 1.02 0.67 5.89 Extra 

TC14C: 

20-24' 
0.12 1.05 

15 0.12 0.37 0.24 0.13 6.24 
No 

Extra 

16 0.37 0.62 0.49 0.38 6.53 Extra 

17 0.62 0.87 0.74 0.63 6.83 Extra 

18 0.87 1.16 1.01 0.90 7.14 Extra 

TC14C: 

24-28' 
0.17 0.99 

19 0.17 0.42 0.29 0.12 7.47 Extra 

20 0.42 0.66 0.54 0.37 7.77 Extra 

21 0.66 0.91 0.78 0.61 8.07 Extra 

22 0.91 1.16 1.03 0.86 8.38 Extra 
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TC14C 

Core 

Section 

Void 

Space 

(m) 

Length 

Recovered 

(m) 

Sample 

# 

Lower 

Subsample 

Depth (m) 

Upper 

Subsample 

Depth (m) 

Mean 

Subsample 

Depth (m) 

Adjusted 

Subsample 

Depth (m) 

Calculated 

Depth BLS 

(m) 

Extra 

Sample? 

TC14C: 

28-32' 
0.47 0.69 

23 0.47 0.70 0.58 0.11 8.74 Extra 

24 0.70 0.93 0.81 0.34 9.14 Extra 

25 0.93 1.16 1.04 0.57 9.55 Extra 

TC14C: 

32-36' 
0.09 1.07 

26 0.09 0.26 0.17 0.08 9.85 Extra 

27 0.26 0.62 0.44 0.35 10.15 Extra 

28 0.62 0.89 0.76 0.67 10.51 Extra 

29 0.89 1.16 1.02 0.93 10.82 Extra 

 

 

 



 

 

Appendix B: Descriptions of Analytical Procedures 

Appendix B1: Grain-Size Analysis of Sediment Samples 

1. Immediately after subsampling, place wet subsample on pre-weight, plastic weight boat. 

2. Weigh the subsample and determine the initial wet weight of the subsample by 

subtracting the weight of the weigh boat. 

3. Record the data and all relevant notes in laboratory notebook. 

4. Repeat Steps 1 – 3 for the subsamples for today’s batch. 

5. Place weighed subsamples in a laboratory oven to dry at 40°C for at least 24 hours. 

6. Weigh the subsamples again and record the new weight. 

7. Place the subsamples in the laboratory oven to at 40°C for another 12 hours. 

8. Weigh the subsamples again and record the new weight. 

9. If the new weight is lower than the weight recorded in step 6, repeat steps 7 and 8 until no 

further weight loss occurs between weighing and drying cycles. 

10. Once the subsamples are completely dry and the final dry weights are recorded, calculate 

the amount of moisture lost by subtracting the initial wet weights by the final dry 

weights. 

11. Soak the sediment samples overnight in a 5% sodium hexametaphosphate (Calgon) 

solution to deflocculate mud particles. 

12. Place a clean, stainless-steel 4 Φ sieve over a clean glass beaker and wash with ultrapure 

water to remove the mud portion from each sediment sample. 

13. Carefully pour the sand and gravel-sized portion from the sieve into a pre-weighed plastic 

weigh boat. Using a clean plastic squirt bottle, rinse the sieve with ultrapure water to 

ensure that all of the sediment is transferred to the weigh boat. 

14. Carefully pour the mud portion from the glass beaker into a pre-weighed plastic weigh 

boat. Using a clean plastic squirt bottle, rinse the glass beaker with ultrapure water to 

ensure that all of the mud is transferred to the weigh boat. 

15. Repeat the drying procedure that is explained in steps 4 – 8. 

16. Once the subsamples are completely dry and the final dry weights are recorded, calculate 

the amount of mud lost by subtracting the final dry weight from the initial dry weight. 

Seal the mud portion in a plastic bag and store for later use, if needed. 

17. Prepare clean sieves for RoTap analysis. Sieves should consist of ½ Φ intervals, 

beginning with -2 Φ on the top of the stack and 4 Φ at the bottom of the stack, with a 

collection pan placed below the 4 Φ sieve to collect mud-sized grains. 

18. Carefully pour the dried mud and sand-sized samples into the -2 Φ sieve and close the 

nest of sieves with the lid. 

19. Place the nest of sieves into the RoTap machine and run the machine for 15 minutes. 

20. Remove the nest of sieves from the RoTap machine, carefully remove each sieve, and 

transfer the sediment from each sieve to individual, pre-weighed weigh boats. 
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21. Record the weight for each size fraction and seal in a plastic bag in case it is needed in 

the future. 

22. After all of the grain-size data are recorded, input the grain size data into GRADISTAT 

4.0 (Blott and Pye, 2001) to calculate grain-size statistics 

 



 

 

Appendix B2: XRF Pellet Preparation 

I. Sample Disintegration 

A. Wear laboratory gloves to avoid contamination. 

B. Use a ceramic mortar and pestle to grind at least 7 g of dried sediment sample to a fine 

powder (approximately 63 µm). 

C. Transfer ground sediment to the stainless steel chamber for the tungsten-carbide-ball mill 

using stainless steel spatula. 

D. Carefully place two tungsten balls into the chamber using tweezers. Do not allow the 

balls to drop to avoid spilling the sample. 

E. Place the lid on top of the chamber and hand tighten the lid to seal the chamber. 

F. Place the chamber into the ball mill shaker and tightly secure the chamber to ensure that 

the chamber does not slip out during agitation. 

G. Close the lid to the ball mill shaker and agitate the sample for ten minutes. 

H. Transfer the ground sample to a labeled sample bag and seal the bag to prevent 

contamination. 

I. Thoroughly wash all instruments and ball mill components with liquid dish detergent, 

pipette brushes, and tap water. Then, thoroughly rinse the materials with Ultrapure water. 

J. Make sure that all materials are completely dry before continuing to another sample.     

II. Pellet Preparation Procedure 

A. Wear laboratory gloves to avoid contamination. 

B. Place a clean plastic weigh boat onto a laboratory scale and tare the weight of the weigh 

boat. 

C. Precisely weigh 6.0000 g ± 0.0010 g of ground sediment sample. 

D. Use a stainless steel spatula and small paint brush to transfer the weighed sediment to a 

plastic mixing chamber. Try to transfer as much of the sample as possible from the weigh 

boat to the mixing chamber. 

E. Place another clean weigh boat onto a laboratory scale and tare the weight of the weigh 

boat. 

F. Precisely weigh 1.2000 g ± 0.0010 g of binder (PelletBlend Powder – PB100). 

G. Use a stainless steel spatula and small paint brush to transfer the weighed pellet binder to 

a plastic mixing chamber. Try to transfer as much of the binder as possible from the 

weigh boat to the mixing chamber. 

H. Carefully place 5 acrylic balls into the chamber using tweezers. Do not allow the balls to 

drop to avoid spilling the sample 

I. Seal the lid to the mixing chamber. 

J. Clean the brush using an air compressor to blow air through the bristles. 

K. Place the mixing chamber into the ball mill shaker and tightly secure the chamber to 

ensure that the chamber does not slip out during agitation. Be careful not to over tighten 

because the plastic mixing chambers can crack. 

L.  Close the lid to the ball mill shaker and agitate the sample for ten minutes to homogenize 

the samples. 

M. Place a stainless steel pellet into the cylindrical void of a stainless steel dicet. 

N. Use tweezers to center one sheet of pellet film on top of the stainless steel pellet. 
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O. Use a clean stainless steel spatula and a small brush paint brush to carefully transfer the 

homogenized sediment and binder mixture (80% ground sediment and 20% binder) into 

the cylindrical void of the dicet. 

P. Level the top of the sediment and binder mixture using a stainless steel spatula.  

Q. Use tweezers to center one sheet of pellet film on top of the mixture. 

R. Place another stainless steel pellet on top of the pellet film and use a Kimwipe to remove 

any powder than may be clinging to the inner cylinder of the dicet. 

S. Slowly insert a stainless steel plunger on top of the stainless steel pellet and transfer the 

dicet to a hydraulic press. 

T. Form the pellet by pressing the mixture at 40 – 45 psi for at least four minutes using the 

hydraulic press. 

U. After at least four minutes has elapsed, slowly release the pressure by loosening the 

pressure release valve. 

V. Carefully, remove the pellet from the dicet and transfer the pellet into a plastic XRF 

pellet container. 

W. Store the container with the pellet into a desiccator to remove moisture.  

X. Thoroughly wash all instruments and components with liquid dish detergent, pipette 

brushes, and tap water. Then, thoroughly rinse the materials with Ultrapure water. 

Y. Clean the brush using an air compressor to blow air through the bristles. 

Z.  Make sure that all materials are completely dry before continuing to another sample. 

 



 

 

Appendix B3: Loss on Ignition Analysis 

 (Modified from Bengtsson and Enell, 1986; Heiri et al., 2001) 

1. Take a sediment sample and place its contents in a labeled weigh boat. 

2. Place the samples, already in the weigh boats, into the drying oven at a temp of about 

105°C and leave them there overnight to evaporate all of the water out of the samples.   

3. After the samples have been dried, use a mortar and pestle to grind each sample up until 

there are no sediments clumping together.  

4. Homogenize the dry sediment with a glass stir rod and place the samples into a desiccator 

to remove hydroscopic moisture. 

5. Place the crucibles them on an oven pan and into the furnace at a temperature of 550°C 

for an hour to make sure that it is completely dry and free of contaminants that can 

interfere with later readings.  Use tongs to move and manipulate crucibles both when hot 

(to prevent burns) and cold (to prevent contamination).  Wear protective gloves and 

remove jewelry to prevent burns. 

6. Cool the crucibles to room temperature in a desiccator 

7. Weigh the dried, cooled, empty and labeled crucibles and record the weights to an 

accuracy of +/- 0.1 mg. 

8. Transfer approximately 1.2 g of sample to the crucible and immediately record the weight 

of the sample and crucible. Record the weights as Wi (initial weight). 

9. Place the sample-containing crucibles on an oven pan and place the oven pan. Then, 

place the oven pan into the furnace at a temperature of 550°C for four hours. 

10. After the four hours have elapsed, leave the samples in the furnace to allow them to 

cool.  Once the oven reaches 100°C, remove the samples from the furnace and place them 

into the desiccator to cool without gaining any moisture. 

11. Once the crucibles with ignited samples have cooled to room temperature, weigh the 

samples and crucibles together.  Record the weights as Wf (final weight). 

12. Discard these samples once recording of this final weight is complete. 

13. Use the following equation to calculate the percent Loss on Ignition (LOI) and record the 

data: 

% LOI = [(Wi – Wf) ÷ Wi] × 100% 

 



 

 

Appendix B4: Magnetic Separation Procedure 

I. Grain-Size Separation 

A. Prepare clean, stainless-steel sieves for RoTap analysis. Sieves should consist of 1.25 Φ, 

2.25 Φ, 3.25 Φ, 4 Φ, beginning with 1.25 Φ on the top of the stack and 4 Φ at the bottom 

of the stack, with a collection pan placed below the 4 Φ sieve to collect mud-sized grains. 

B. Carefully pour the sediment samples into the 1.25 Φ sieve and close the nest of sieves 

with the lid. 

C. Place the nest of sieves into the RoTap machine and run the machine for 15 minutes. 

D. Remove the nest of sieves from the RoTap machine, carefully remove each sieve, and 

transfer the sediment from each sieve to individual, pre-weighed weigh boats. 

E. Record the weight for each size fraction and seal in individual plastic bags. 

  II. Magnetic Separation using Frantz Isodynamic Magnetic Separator 

A. Materials Needed 

 

 

 

 

 

 

 

 

A = Weigh Boats B = Sample Bags C = Sediment Splitters D = Printer Paper (or paper plates) 

E = Paint Brush F = Sample-Collection Pans G = Scale H Hand Magnet (not shown) 
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      B.  Components of the Frantz Isodynamic Separator 

 

A = Chutes B = Sediment Funnel C = Slide Vibrator D = Side Slope Angle 

 E = Side-Slope-Adjuster Wheel F = Amp Meter G = Slide-Vibrator-Adjustment Knob 

 H = Slide-Vibrator-Power Switch 

 

 

 

 

 

 

 

 

 

 

 

E = Side-Slope-Adjuster Wheel I = Hi/Low Power Switch 

 J = Magnetic-Coil-Amperage-Adjuster Knob K = Power Switch for Magnetic Coil 
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Forward-Slope-Angle Adjustment Knob  

(Located in the back of the Frantz Magnetic Separator) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A = Nonmagnetic Sediment Chute B = Magnetic Sediment Chute 

 

      C. Setup and Sample Preparation 

1. Carefully pour >4 Φ and <1.25 Φ size fractions into a pre-weighed weigh boat. Note 

that mud and >1.25Φ will not be magnetically separated to avoid clogging the 

separator. 

2. Measure and record the total weight of each size fraction.  
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3. Use a hand magnet to remove highly magnetic minerals such as magnetite or 

pyrrhotite. 

4. Place an empty weigh boat on the scale and use the tare function to eliminate the 

weight of the empty weigh boat. Then, add the hand magnet portion to the weigh 

boat. 

5. Set the Side Slope Angle to ~20° and the forward slope to ~25°. 

6.  Place a sample-collection pan beneath the nonmagnetic and magnetic, respectively. 

7. Arrange printer paper on top of the metal base of the separator as shown below to 

collect sediment that may spill during separations. 

 

 
8. Turn on the Power Switch for the Magnetic Coil and make sure that the Hi/Low 

Power Switch is flipped in the upper position (These switches are located on the right 

hand side of the Frantz). 

9. Rotate the black Magnetic Coil Amperage Adjuster Knob in a clockwise direction to 

set the separator to 0.2 amps. 

10. Turn on the Slide Vibrator by flipping the switch (on the front of the Frantz) to the 

upper position and by rotating the Slide Vibrator Adjustment Knob in a clockwise 

direction. 

11. Carefully pour the sediment sample into the Sediment Funnel until the funnel is no 

more than ¾ full to avoid sample spillage.  

12. Use the Slide-Vibrator-Adjustment Knob to find the setting that results in the most 

efficient flow of the material that does not result in obvious sample spillage (A few 

practice runs could be useful to improve technique). 

13. After each grain size fraction has been separated using the 0.2 amp setting, slowly 

rotate the Magnetic-Coil-Amperage-Adjuster Knob in a counterclockwise direction 

until the Amperage reading is zero, turn off the Slide-Vibrator-Power Switch, and use 

the paint brush to clean the chutes. 

14. Add sediment collected from the Magnetic Sediment Chute to the weigh boat 

(containing the portion that was attracted by the hand magnet), record the weight, and 

place into a labeled sample bag. 

15. Repeat Steps 9 – 14 for 0.4 amps, 0.8 amps, 1.2 amps, and the maximum amperage 

setting to complete the magnetic separations for the sample. 
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      D. Clean Up between Samples 

1. Set the forward slope to 90° and the side slope to 0° 

2. Turn on the slide vibrator for ~30 seconds or until sediment stops coming out of the 

Frantz. 

3. Reset the Side Slope Angle to ~20° and the forward slope to ~25° and continue with 

the separation procedure.  

 

 



 

 

Appendix B5: XRD Analysis 

(Procedure by Dr. Terri Woods, Department of Geological Sciences at East Carolina 

University)  

I. Sample Preparation  

A. Materials needed for preparation of basic powder sample 

 
B. Use the stainless steel ring that looks like a squashed top hat with a hole in the middle. 

C. Put it in the packing platform/sample prep mount with the “top” of the hat on the top 

side of the ring. 

D. Push the button on the side of the platform so the ring drops down. 

E. Clean all equipment before powdering your sample, which includes the mortar and 

pestle.  Fill the ring with powdered sample. 

 
F. Pack sample down with the stainless steel cylinder alternately turning and pressing. 
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1. Be careful when lifting the table because the central solid ring can fall out an 

break things on the counter. 

G. Clean and smooth top surface of packed sample with razor blade and clean off “brim” 

with brush 

 
H. Clamp on the common bottom plate, making sure the pins are parallel to the sample 

prep table and click gently into place. If you push too sharply the sample will fall out. 

 
I. Pick up the entire “two-ring” assembly and turn it over pressing the release button to free the 

prepared sample. It may help to tilt the table sideways at about 45
o
 to keep sample from falling 

out of the ring. 
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II. Loading 

A. Using both hands very slowly and carefully open instrument doors.  Never open the 

door with the sample in your hand.  Be very delicate with the leaded glass doors and 

move the doors independently and carefully so as to not make any clunking sounds.  If 

the doors will not open, it is because the shutter is open. 

 
B. Place sample holder in top slot of sample rack and close the doors. 

 
III. Entering computer program and setting machine parameters       

NO THUMB DRIVES ALLOWED UNLESS REFORMATTED! 

A. Wake up the computer by moving the mouse or pressing ENTER. (May take tens of 

seconds to wake up.) 

1. Click on Jim Watson 

B. Click on X’pert Data Collector which runs the instrument 

C. Log in to computer using your assigned credentials 

D. Choose Instrument from the upper toolbar 

1. Choose Connect and a dialog box appears 

a. Highlight ecu ecu 12/9/2008 15:01  user-1 then Hit OK 
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b. Hit OK in the dialogue box that appears 

c. You’ll see the spinning sample changer and the message “Positioning 

the Instrument” 

2. DoubleClick Instrument Settings  

a. DoubleClick to set the current to 25 mA and tension to 40kV 

b. Make sure Generator and Status are on by clicking to put a “√” in the 

Generator box 

c. Hit OK or Apply then OK 

3. Usually the program will automatically continue, but sometimes you may need 

to DoubleClick “There is no sample loaded” 

a. In dialog box select “Load from magazine position 1” 1 is the top 

position 

b. Hit OK, watch it move 

1) You’ll see the spinning sample loader icon on the computer screen and the 

message “Loading Sample” 

E. Machine may automatically load sample or you should 

1. DoubleClick “Movement not moving” 

a. Under Movement choose spinning 

b. Under Revolution time choose 16 

c. Hit OK 

IV. Running sample 

A. Choose Measure from the upper toolbar 

1. DoubleClick Program 

2. In the “Open Program” dialog box that appears, select Mauger’s method “3-73 

2 scans” and click OK. 

a. Every 10
o 
of

 
2θ take about 1 minute 

b. If you want to change to another method to do slow scans of specific 2θ 

regions, go to File and New Program. 

3. Put in sample name & ID, and Prepared by info 

a. MAKE SURE TO WRITE DOWN THE SCAN # AND MAKE IT 

PART OF THE SAMPLE ID 

4. Hit OK 

B. Machine will now run pattern and you’ll hear a click when the X-rays come on and the 

doors lock. 

C. To expand to double screens, click the Restore button at the very top right corner then 

extend the right side of the program screen to fill the monitor so you get a good view of 

the evolving pattern. 

V. Instrument Shutdown 

A. Close window showing finished pattern 

1. Program automatically saves your finished pattern 

B. Return to X’Pert Data Collector and set Current back to 15 mA and Tension back 

down to 30K. Hit OK 

C. Exit X’pert Data Collector by choosing File and Exit. 

D. In “Close Data Collector” dialogue box, choose (highlight) “Close control window 

and shut down the data collector” and hit OK. 
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VI. Pattern Treatment 

A. DoubleClick X’Pert Highscore Plus  

1. Choose File and select the “Mauger single scans”. 

2. Choose Open 

3. DoubleClick on file name of sample just run 

4. The completed pattern will appear on the screen, 2
nd

 scan will be in a different 

color 

B. Choose Treatment from top toolbar 

1. Choose Merge Scans 

a. Choose Simple Sum (Avg) 

2. In box hit Sum, then Replace. (Print the pattern if you want using the printer 

icon) 

3. Go back to Treatment, Choose Determine Background 

a. Hit Subtract in box, then Replace 

b. Print the merged pattern if you want 

4. Go back to Treatment, Choose Search Peaks 

a. Choose Search peaks 

b. Choose Accept 

c. Vertical Dashed lines indicate peaks 

d.  KαII may mask a real peak & has lower energy than αI. KαII peaks 

kick in at 35˚ 2Θ.  (αI / αII = 0.5). As 2Θ increases, the separation between 

αI and αII increases. Kβ is knocked out by Nickel filter. If there’s a 

shoulder to the left of a peak, that’s another peak, not a Kα 

C. The sample pattern on the screen will now be modified by the addition of small “v” 

symbols and vertical dashes above each peak. On the right, facing page click on the Peak 

List to get the information on all these peaks. 

1. Different color lines will appear on the pattern 

a. Red equals the actual pattern you just ran 

b. Blue equals the simulated Kα1 pattern for the identified mineral  

D. The dashes with “v” symbols indicate peaks which have not been associated with a 

mineral 

E. Clean up the pattern by removing anomalous peaks (ones that are just a slight high in 

the background) and adding lines for peaks not indicated by vertical lines. 

1. Click on the pattern itself to stretch a box around peaks you wish to magnify 

and study.   

a. Small, unknown peaks at high 2θ values may just be peaks from an 

already-identified mineral. Such high 2θ peaks may not have been on the 

XRD data card from which reference peaks for each mineral were loaded 

into the computer. 

2. Make sure Peak List is on the screen to your right by clicking on Peak List on 

the right  

3. To add peaks go to Treatment; then Insert Peak.  Align the green line where 

you want to add the peak and click.  Doubleclick outside the pattern to exit or go 

back to Treatment and re-click Insert Peak. 

4. To delete a peak just put the mouse on the “v” symbol over the desired peak 

making sure it is the one highlighted in the Peak List.  
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a. Then hit the delete key. 

5. After pulling up Peak List to delete peaks hit Pattern List to return to search 

results. 

VII. Pattern Analysis 

A. Choose Analysis, then Search & Match, then Execute Search & Match 

1. Hit Search in the dialog box 

2. Hit OK 

B. Dashes with “v” symbols indicate peaks which have not been associated with a 

mineral. On the right screen (facing page) scroll down the mineral list looking for likely 

minerals that could account for the unidentified peaks. 

1. If you want details of one of these potential minerals in the bottom list just 

doubleclick on the mineral name. If it is a mineral you will be dealing with 

frequently, record the number of its Reference Pattern so you can find it easily the 

next time. 

2. Drag potential minerals from the list up into the Peak List of identified 

minerals. 

3. If the reference pattern stops early at say 50˚ 2Θ, then it won’t accept peaks 

above the limit of the reference pattern. 

4. Bragg’s Equation: nλ = 2dsinΘ 

a. increasing 2Θ = low d-spacing 

C. You can also retrieve Reference Patterns to compare with your unknown. 

1. Click Reference Pattern on top toolbar, choose Retrieve a pattern, and then 

choose Text Search  

a. Type in the name of the mineral of interest and hit Load. These minerals 

will be added to your Peak List. 

b. You can also choose Reference Code if you know the number for the 

mineral. 

c. After retrieving patterns by reference code you can get a new view on 

the upper half of the left monitor by hitting “Analyze” under spectrum to 

see the pattern again. 

D. Hit Analyze again and you’ll see which peaks are now accounted for 

E. If you want to see a list of 2θ and I for a mineral doubleclick on the mineral name in 

your Peak List. 

F. You can usually delete minerals from the Peak List if they have “UNK” in the column. 

G. Write down the Reference Codes for any minerals that may show up in your samples 

and delete most of the listings for a mineral just keeping a single representative one for 

reference. 

VII. Saving data and analysis 

A. Choose File, then Save As and name the analysis file for the sample you just ran (keep 

the scan # the machine gave your sample 

1. Hit Save 

B. Generate a Printable Report of the data and analysis by choosing Create Word Report 

under the “Reports” tab at top. 

1. Choose Fancy or Default depending on how much detail you want. 

2. The first page of the report will appear on the screen. It may be hidden by 

another window so reduce other windows until you see your report. 
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C. Print report in Word if desired. Hit OK 

D. Computer saves all raw data and analysis files 

E. Make sure you shut down the instrument in X’Pert Data Collector 

F. Data Viewer shows both scans and graph without the background. Use for quick and 

dirty look at the data.  

 



 

 

Appendix C: Results of Grain-Size Analyses 

Appendix C1: Grain-Size Data 

Sample ID
1
 

Wet 

Wt. 

Dry 

Wt. 
-2 Φ -1.5 Φ -1 Φ -0.5 Φ 0 Φ 0.5 Φ 

 0-4' #5 37.43 35.29 0.00 0.00 0.00 0.05 0.03 0.14 

 0-4' #10 58.48 53.31 0.00 0.00 0.01 0.04 0.02 0.13 

 0-4' #15 & 20 89.58 80.62 0.00 0.00 0.00 0.01 0.03 0.16 

 0-4' #25 & 30 103.39 83.70 0.00 0.00 0.00 0.04 0.04 0.18 

 4-8' #3 35.32 28.72 0.00 0.00 0.00 0.00 0.00 0.01 

 4-8' #8 57.35 47.32 0.00 0.00 0.00 0.00 0.02 0.02 

 4-8' #13 44.82 36.44 0.00 0.00 0.00 0.00 0.02 0.03 

 4-8' #18 47.16 39.50 0.00 0.00 0.00 0.00 0.01 0.06 

 4-8' #23 56.35 47.47 0.00 0.00 0.00 0.00 0.01 0.03 

 4-8' #28 38.17 32.25 0.00 0.00 0.00 0.00 0.00 0.02 

 8-12' #4 83.99 69.49 0.00 0.00 0.00 0.09 0.14 1.36 

 8-12' #9 81.10 67.73 0.00 0.00 0.02 0.13 0.14 1.63 

 8-12' #14 71.65 60.19 0.00 0.00 0.16 1.66 1.34 5.58 

 12-16' #4 74.86 63.14 0.00 0.00 0.12 0.56 5.90 3.25 

 12-16' #8 72.34 60.82 0.00 0.04 0.14 3.06 2.87 11.64 

 12-16' #12 38.16 20.58 0.00 0.00 0.00 0.03 0.03 0.20 

 12-16' #17 54.80 40.48 0.00 0.00 0.07 0.44 0.14 0.52 

 12-16' #22 40.23 27.68 0.12 0.08 0.14 0.34 0.16 0.53 

 12-16' #27 & 32 104.23 76.69 0.13 0.22 1.26 0.81 3.99 7.03 

 12-16' #36 42.90 32.08 1.30 0.68 0.87 3.23 2.11 6.44 

 16-20' #3 16.50 11.45 0.72 0.10 0.13 0.16 0.32 0.45 

 16-20' #8 26.17 16.51 0.53 0.10 0.44 0.26 0.32 0.69 

 16-20' #13 & 18 80.71 60.64 2.24 1.21 2.61 5.45 1.98 6.11 

1. Retained weights (g) for grain-size analyses of TC14 sediment samples 
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Sample ID
1
 1 Φ 1.5 Φ 2 Φ 2.5 Φ 3 Φ 3.5 Φ 4 Φ Pan 

 0-4' #5 0.31 1.45 6.27 10.41 6.62 4.12 1.94 0.18 

 0-4' #10 0.41 2.02 8.96 15.46 9.78 6.54 3.34 0.19 

 0-4' #15 & 20 0.56 2.99 14.34 25.06 13.73 8.79 4.65 0.24 

 0-4' #25 & 30 0.42 2.53 15.01 28.50 15.18 10.16 5.74 0.44 

 4-8' #3 0.04 0.34 3.19 8.59 0.88 10.93 1.87 0.05 

 4-8' #8 0.07 0.47 3.09 12.38 12.92 8.91 4.02 0.22 

 4-8' #13 0.16 1.08 5.54 12.78 8.23 4.04 1.76 0.06 

 4-8' #18 0.55 4.75 13.44 10.47 4.33 2.38 1.15 0.05 

 4-8' #23 0.18 1.42 10.12 16.01 7.45 5.32 2.79 0.14 

 4-8' #28 0.11 1.08 6.60 12.03 5.81 3.24 1.35 0.04 

 8-12' #4 5.96 20.98 28.14 8.69 1.72 0.55 0.19 0.02 

 8-12' #9 6.26 17.96 27.57 9.29 1.78 0.69 0.28 0.03 

 8-12' #14 8.38 15.52 18.35 5.91 0.86 0.30 0.13 0.00 

 12-16' #4 9.77 11.46 12.47 11.18 4.54 0.58 0.13 0.01 

 12-16' #8 15.24 14.77 6.51 1.04 0.17 0.17 0.14 0.00 

 12-16' #12 0.22 0.27 0.16 0.08 0.13 0.63 0.93 0.06 

 12-16' #17 0.84 2.44 6.10 5.06 3.97 5.75 3.38 0.23 

 12-16' #22 0.97 2.33 4.37 3.37 1.85 1.99 1.32 0.05 

 12-16' #27 & 32 8.89 12.67 12.11 6.78 3.00 1.52 0.35 0.27 

 12-16' #36 4.35 1.57 1.04 1.56 1.80 0.92 0.35 0.05 

 16-20' #3 0.53 0.48 1.04 1.52 1.02 1.64 0.44 0.02 

 16-20' #8 0.96 1.65 1.34 0.99 0.60 1.51 0.39 0.02 

 16-20' #13 & 18 7.14 7.85 4.20 2.82 2.59 1.85 0.81 0.05 

1. Retained weights (g) for grain-size analyses of TC14 sediment samples 
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Sample ID
1
 

Wet 

Wt. 

Dry 

Wt. 
-2 Φ -1.5 Φ -1 Φ -0.5 Φ 0 Φ 0.5 Φ 

 16-20' #23 & 28 74.37 55.61 0.71 0.69 1.59 2.11 3.19 7.13 

 16-20' #33 & 38 95.65 73.86 7.83 3.45 4.08 8.08 2.39 9.52 

 16-20' #43 67.67 49.27 3.31 1.65 1.48 1.67 1.60 3.25 

 20-24' #3 & 8 ND
2
 103.85 7.38 5.80 6.88 13.47 4.52 10.49 

 20-24' #13 & 18 ND
2
 164.02 34.41 7.34 7.27 11.53 3.46 10.12 

 20-24' #24 & 29 ND
2
 91.12 15.60 3.76 2.87 5.14 1.58 5.63 

 24-28' #3 & 8 117.55 100.86 4.40 4.73 5.53 6.25 4.24 5.33 

 24-28' #13 79.87 69.37 0.61 0.67 2.12 4.59 1.65 5.33 

 24-28' #18 & 23 119.10 102.28 4.93 17.37 4.92 4.34 3.64 4.58 

 24-28' #28 & 33 122.97 104.19 2.79 1.11 1.48 2.70 0.71 1.79 

 24-28' #38 118.61 98.41 0.00 0.21 0.16 0.15 0.22 0.29 

 24-28' #43 100.22 85.32 0.05 0.17 0.06 0.16 0.09 0.23 

 28-32' #3 93.95 86.51 0.00 0.02 0.06 0.25 0.15 0.62 

 28-32' #8 89.71 77.95 1.46 0.10 0.16 0.41 0.21 0.78 

 28-32' #13 98.42 81.04 2.04 1.03 1.65 3.15 0.79 2.00 

 28-32' #18 121.67 99.58 15.43 2.55 1.67 2.11 0.52 1.51 

 28-32' #23 92.15 78.92 19.82 2.61 3.11 5.41 1.33 3.47 

 32-36' #3 86.22 73.24 8.65 3.77 3.62 4.68 1.41 3.78 

 32-36' #8 85.90 66.05 0.24 0.55 0.60 0.62 0.61 1.08 

 32-36' #13 68.41 57.42 6.56 1.82 2.03 2.63 0.84 2.35 

 32-36' #18 80.73 64.72 0.14 0.16 0.25 0.24 0.37 0.54 

 32-36' #23 & 28 223.25 182.55 0.79 0.28 0.45 0.87 0.23 0.86 

 32-36' #31 98.24 82.50 0.13 0.00 0.10 0.23 0.29 0.44 

1. Retained weights (g) for grain-size analyses of TC14 sediment samples 

2. ND: No data 
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Sample ID
1
 1 Φ 1.5 Φ 2 Φ 2.5 Φ 3 Φ 3.5 Φ 4 Φ Pan 

 16-20' #23 & 28 9.10 8.99 4.02 1.69 0.32 2.21 0.59 0.02 

 16-20' #33 & 38 9.48 3.57 2.06 2.00 1.27 0.56 0.01 0.08 

 16-20' #43 6.85 9.49 2.92 1.01 0.32 1.60 0.51 0.08 

 20-24' #3 & 8 11.03 13.20 9.50 4.55 3.11 2.12 1.21 0.26 

 20-24' #13 & 18 13.87 22.18 16.15 6.73 5.56 4.90 2.67 0.30 

 20-24' #24 & 29 10.98 21.81 12.84 3.43 1.19 1.02 0.56 0.05 

 24-28' #3 & 8 4.49 5.31 5.61 10.88 22.07 11.08 2.57 0.11 

 24-28' #13 7.87 9.86 5.95 8.21 12.03 5.89 1.55 0.03 

 24-28' #18 & 23 4.88 6.30 7.25 14.31 11.16 8.72 1.03 0.17 

 24-28' #28 & 33 2.03 3.42 16.84 45.30 16.10 3.71 0.82 0.05 

 24-28' #38 0.38 0.67 4.29 48.20 10.75 27.93 1.11 0.04 

 24-28' #43 0.30 0.47 2.19 32.65 33.25 9.49 2.20 0.03 

 28-32' #3 1.02 1.66 2.40 26.87 39.20 8.39 1.56 0.05 

 28-32' #8 1.17 1.71 2.09 24.13 33.64 7.16 1.18 0.03 

 28-32' #13 1.87 2.12 2.11 22.14 31.26 7.15 1.31 0.06 

 28-32' #18 1.88 2.42 3.20 26.77 30.37 5.72 1.35 0.11 

 28-32' #23 3.50 3.62 3.95 11.79 8.11 3.50 1.19 0.09 

 32-36' #3 4.97 7.04 5.77 5.65 3.04 2.15 2.78 0.09 

 32-36' #8 1.00 3.41 4.53 5.77 0.90 8.07 4.75 0.27 

 32-36' #13 3.51 5.21 4.96 6.93 5.18 1.55 1.15 0.05 

 32-36' #18 2.63 11.71 2.48 2.61 17.91 2.52 0.11 0.11 

 32-36' #23 & 28 2.10 4.02 7.90 41.57 37.86 13.39 7.18 0.45 

 32-36' #31 2.45 3.10 4.37 13.68 9.48 15.04 3.53 0.25 

1. Retained weights (g) for grain-size analyses of TC14 sediment samples 



 

 

Appendix C2: Grain-Size Percentages and Error 

Sample ID
1
 

Very 

Coarse 

Sand
2
 

Coarse 

Sand
2
 

Medium 

Sand
2
 

Fine 

Sand
2
 

Very 

Fine 

Sand
2
 

Gravel
2
 Sand

2
 Mud

2
 Error

3
 

Median 

Grain 

Size
4
 

Depth
5
 

 0-4' #5 0.21 1.29 21.83 48.17 17.14 0.00 88.64 11.36 0.17 185.70 0.15 

 0-4' #10 0.11 1.02 20.71 47.63 18.65 0.01 88.12 11.87 -0.62 182.10 0.35 

 0-4' #15 & 20 0.06 0.90 21.55 48.22 16.71 0.00 87.44 12.56 -0.22 187.10 0.69 

 0-4' #25 & 30 0.09 0.72 20.97 52.20 19.00 0.00 92.98 7.02 -0.02 190.40 1.03 

 4-8' #3 0.00 0.19 12.31 33.03 44.68 0.00 90.21 9.79 -0.22 120.30 1.31 

 4-8' #8 0.04 0.18 7.54 53.57 27.37 0.00 88.70 11.30 -0.20 145.40 1.50 

 4-8' #13 0.04 0.51 18.16 57.63 15.90 0.00 92.24 7.76 0.07 186.50 1.69 

 4-8' #18 0.03 1.52 44.85 36.51 8.69 0.00 91.59 8.41 2.67 234.80 1.88 

 4-8' #23 0.03 0.44 24.39 49.60 17.14 0.00 91.60 8.40 -0.38 195.90 2.06 

 4-8' #28 0.00 0.38 23.75 55.23 14.21 0.00 93.57 6.43 0.18 199.00 2.25 

 8-12' #4 0.34 10.54 70.71 14.98 1.07 0.00 97.64 2.36 -0.05 328.60 2.68 

 8-12' #9 0.39 11.68 67.41 16.40 1.43 0.02 97.31 2.67 -0.30 322.10 3.01 

 8-12' #14 4.97 23.21 56.31 11.25 0.72 0.26 96.47 3.27 -0.07 375.60 3.35 

 12-16' #4 10.26 20.67 37.99 24.95 1.13 0.19 95.00 4.81 -0.21 350.70 3.82 

 12-16' #8 9.72 44.10 34.92 1.99 0.50 0.30 91.22 8.49 0.20 529.70 3.99 

 12-16' #12 0.25 2.00 2.06 1.02 7.54 0.00 12.86 87.14 0.47 46.57 4.12 

 12-16' #17 1.44 3.38 21.21 22.44 22.67 0.17 71.13 28.70 -0.52 121.10 4.27 

 12-16' #22 1.80 5.45 24.34 18.96 12.02 1.24 62.56 36.19 -0.57 137.70 4.43 

1. Grain-size percentages, sieve error, and median grain size for TC14 grain-size samples 

2. Grain-size percentages are expressed as weight percents 

3. Weight percent sieve error  

Sieve error = [(initial dry weight (g) –  total weight retained (g)] ÷ initial dry weight (g)) × 100 

4. Median grain size in microns 

5. Depth in meters below the land surface 
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Sample ID
1
 

Very 

Coarse 

Sand
2
 

Coarse 

Sand
2
 

Medium 

Sand
2
 

Fine 

Sand
2
 

Very 

Fine 

Sand
2
 

Gravel
2
 Sand

2
 Mud

2
 Error

3
 

Median 

Grain 

Size
4
 

Depth
5
 

 12-16' #27 & 32 5.83 19.36 30.13 11.89 2.27 1.95 69.49 28.56 7.24 297.30 4.65 

 12-16' #36 16.66 33.66 8.15 10.48 3.96 8.88 72.91 18.20 -0.08 634.20 4.85 

 16-20' #3 3.96 8.23 12.63 21.22 17.34 7.99 63.38 28.63 4.66 148.60 4.95 

 16-20' #8 3.48 9.93 17.99 9.58 11.43 6.43 52.41 41.16 0.62 113.80 5.09 

 16-20' #23 & 28 9.54 29.19 23.40 3.60 5.04 5.38 70.78 23.84 -0.05 441.40 5.59 

 16-20' #33 & 38 15.68 28.46 8.43 4.90 0.86 23.01 58.32 18.67 -9.63 761.90 5.87 

 16-20' #43 6.65 20.53 25.23 2.71 4.28 13.11 59.40 27.48 -0.17 420.90 6.08 

 20-24' #3 & 8 17.37 20.79 21.92 7.40 3.22 19.38 70.70 9.92 -0.31 640.80 6.21 

 20-24' #13 & 18 9.16 14.67 23.44 7.51 4.63 29.97 59.41 10.62 -0.29 585.10 6.50 

 20-24' #24 & 29 7.35 18.18 37.93 5.06 1.73 24.34 70.25 5.42 0.23 499.00 7.17 

 24-28' #3 & 8 10.40 9.74 10.83 32.68 13.54 14.54 77.19 8.27 -0.03 218.10 7.42 

 24-28' #13 9.01 19.04 22.81 29.19 10.73 4.89 90.77 4.33 -0.07 316.20 7.59 

 24-28' #18 & 23 7.82 9.28 13.27 24.96 9.55 26.67 64.88 8.45 -0.22 353.90 7.75 

 24-28' #28 & 33 3.29 3.68 19.54 59.22 4.37 5.19 90.11 4.71 -0.49 217.90 7.97 

 24-28' #38 0.37 0.68 5.04 59.99 29.55 0.38 95.63 3.99 -0.15 186.80 8.14 

 24-28' #43 0.29 0.62 3.13 77.35 13.72 0.33 95.10 4.57 -0.14 168.10 8.36 

 28-32' #3 0.46 1.89 4.70 76.49 11.51 0.09 95.06 4.85 -0.15 163.80 8.66 

 28-32' #8 0.80 2.50 4.88 74.11 10.69 2.20 92.98 4.83 0.00 167.30 8.92 

 28-32' #13 4.86 4.77 5.23 65.90 10.43 5.81 91.19 3.00 0.00 176.60 9.18 

 28-32' #18 2.64 3.41 5.65 57.44 7.11 19.75 76.25 4.00 -0.11 199.30 9.44 

1. Grain-size percentages, sieve error, and median grain size for TC14 grain-size samples 

2. Grain-size percentages are expressed as weight percents 

3. Weight percent sieve error 

Sieve error = [(initial dry weight (g) -  total weight retained (g)) ÷ initial dry weight (g)] × 100 

4. Median grain size in microns 

5. Depth in meters below the land surface 
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Sample ID
1
 

Very 

Coarse 

Sand
2
 

Coarse 

Sand
2
 

Medium 

Sand
2
 

Fine 

Sand
2
 

Very 

Fine 

Sand
2
 

Gravel
2
 Sand

2
 Mud

2
 Error

3
 

Median 

Grain 

Size
4
 

Depth
5
 

 28-32' #23 8.55 8.84 9.59 25.22 5.94 32.37 58.14 9.49 -0.05 491.00 9.70 

 32-36' #3 8.61 12.36 18.08 12.27 6.96 22.65 58.28 19.07 -3.31 401.30 9.84 

 32-36' #8 1.97 3.33 12.72 10.70 20.55 2.22 49.26 48.51 -5.56 67.54 9.99 

 32-36' #13 6.34 10.67 18.54 22.08 4.93 18.96 62.57 18.47 -4.47 45.51 10.16 

 32-36' #18 0.97 5.01 22.43 32.41 4.15 0.87 64.97 34.16 -2.21 38.15 10.33 

 32-36' #23 & 28 0.62 1.67 6.75 44.99 11.65 0.86 65.69 33.45 -3.29 38.32 10.66 

 32-36' #31 0.66 3.64 9.39 29.12 23.35 0.29 66.16 33.55 -3.62 38.30 10.91 

1. Grain-size percentages, sieve error, and median grain size for TC14 grain-size samples 

2. Grain-size percentages are expressed as weight percents 

3. Weight percent sieve error.  

Sieve error = [(initial dry weight (g) -  total weight retained (g)) ÷ initial dry weight (g)] × 100 

4. Median grain size in microns 

5. Depth in meters below the land surface 



 

 

Appendix C3: Grain-Size Statistics and Hydraulic Conductivity 

Sample ID
1
 Textural Group Mean Type 

Modal 

Distribution 
Skewness Sorting

2
 D10

3
 K

4
 Depth

5
 

0-4' #5 Muddy Sand Fine Sand Bimodal Very Fine Skewed 0.92 0.06 2.89 0.15 

0-4' #10 
Slightly Gravelly Muddy 

Sand 
Fine Sand Unimodal Very Fine Skewed 0.92 0.06 2.74 0.35 

0-4' #15&20 Muddy Sand Fine Sand Bimodal Very Fine Skewed 0.94 0.05 2.57 0.69 

0-4' #25&30 Sand Fine Sand Unimodal Very Fine Skewed 0.81 0.07 4.67 1.03 

4-8' #3 Sand Fine Sand Bimodal Coarse Skewed 0.79 0.06 3.51 1.31 

4-8' #8 Muddy Sand Fine Sand Unimodal Fine Skewed 0.81 0.06 2.91 1.50 

4-8' #13 Sand Fine Sand Unimodal Very Fine Skewed 0.78 0.07 4.77 1.69 

4-8' #18 Sand Fine Sand Unimodal Very Fine Skewed 0.88 0.08 5.12 1.88 

4-8' #23 Sand Fine Sand Unimodal Very Fine Skewed 0.84 0.07 4.16 2.06 

4-8' #28 Sand Fine Sand Unimodal Very Fine Skewed 0.76 0.09 6.30 2.25 

8-12' #4 Sand 
Medium 

Sand 
Unimodal Symmetrical 0.56 0.20 34.73 2.68 

8-12' #9 Slightly Gravelly Sand 
Medium 

Sand 
Unimodal Coarse Skewed 0.61 0.19 32.72 3.01 

8-12' #14 Slightly Gravelly Sand 
Medium 

Sand 
Unimodal Symmetrical 0.77 0.21 38.03 3.35 

12-16' #4 Slightly Gravelly Sand 
Medium 

Sand 
Bimodal Fine Skewed 1.05 0.15 20.36 3.82 

12-16' #8 Slightly Gravelly Sand Coarse Sand Trimodal Coarse Skewed 1.15 0.21 37.24 3.99 

12-16' #12 Sandy Mud Mud Unimodal Symmetrical 0.54 0.03 0.98 4.12 

1. Grain-size statistics and hydraulic conductivity for TC14 grain-size samples 

2. D10: Sorting in Φ units 

3. The grain size (mm) that is 10% finer by weigh; also called the effective grain size 

4. K: Grain-size-estimated values of hydraulic conductivity in meters per day: K (m/day) = 864 × (D10)
2
 

5. Depth in meters below the land surface 
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Sample ID
1
 Textural Group Mean Type 

Modal 

Distribution 
Skewness Sorting

2
 D10

3
 K

4
 Depth

5
 

12-16' #17 
Slightly Gravelly Muddy 

Sand 
Very Fine Sand Trimodal Symmetrical 1.28 0.04 1.36 4.27 

12-16' #22 
Slightly Gravelly Muddy 

Sand 
Fine Sand Trimodal Fine Skewed 1.44 0.04 1.23 4.43 

12-16' #27&32 
Slightly Gravelly Muddy 

Sand 
Fine Sand Bimodal Fine Skewed 1.77 0.04 1.36 4.65 

12-16' #36 Gravelly Muddy Sand Medium Sand Polymodal Very Fine Skewed 2.17 0.05 1.81 4.85 

16-20' #3 Gravelly Muddy Sand Fine Sand Polymodal Coarse Skewed 2.03 0.04 1.36 4.95 

16-20' #8 Gravelly Muddy Sand Fine Sand Polymodal 
Very Coarse 

Skewed 
1.92 0.04 1.17 5.09 

16-20' #13&18 Gravelly Muddy Sand Medium Sand Polymodal Fine Skewed 2.21 0.04 1.55 5.30 

16-20' #23&28 Gravelly Muddy Sand Medium Sand Trimodal Very Fine Skewed 1.96 0.04 1.51 5.59 

16-20' #33&38 Gravelly Muddy Sand Coarse Sand Polymodal Fine Skewed 2.49 0.05 1.77 5.87 

16-20' #43 Gravelly Muddy Sand Medium Sand Polymodal Fine Skewed 2.30 0.04 1.39 6.08 

20-24' #3&8 Gravelly Muddy Sand Coarse Sand Polymodal Symmetrical 1.94 0.06 3.60 6.21 

20-24' #13&18 Gravelly Muddy Sand Coarse Sand Polymodal Symmetrical 2.30 0.06 3.16 6.50 

20-24' #24&29 Gravelly Sand Coarse Sand Trimodal 
Very Coarse 

Skewed 
1.95 0.21 36.74 7.17 

24-28' #3&8 Gravelly Sand Medium Sand Polymodal 
Very Coarse 

Skewed 
1.99 0.08 5.57 7.42 

24-28' #13 Slightly Gravelly Sand Medium Sand Trimodal Symmetrical 1.44 0.10 9.13 7.59 

  1. Grain-size statistics and hydraulic conductivity for TC14 grain-size samples 

  2. D10: Sorting in Φ units 

  3. The grain size (mm) that is 10% finer by weigh; also called the effective grain size 

  4. K: Grain-size-estimated values of hydraulic conductivity in meters per day: K (m/day) = 864 × (D10)
2
 

  5. Depth in meters below the land surface 
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Sample ID
1
 Textural Group Mean Type 

Modal 

Distribution 
Skewness Sorting

2
 D10

3
 K

4
 Depth

5
 

24-28' #18&23 Gravelly Muddy Sand Coarse Sand Trimodal Coarse Skewed 2.16 0.09 7.29 7.75 

24-28' #28&33 Gravelly Sand Fine Sand Unimodal Coarse Skewed 1.05 0.13 14.09 7.97 

24-28' #38 Slightly Gravelly Sand Fine Sand Bimodal Very Fine Skewed 0.56 0.10 7.83 8.14 

24-28' #43 Slightly Gravelly Sand Fine Sand Unimodal Fine Skewed 0.53 0.10 8.28 8.36 

28-32' #3 Slightly Gravelly Sand Fine Sand Unimodal Symmetrical 0.58 0.10 8.78 8.66 

28-32' #13 Gravelly Sand Fine Sand Unimodal 
Very Coarse 

Skewed 
1.17 0.11 10.45 9.18 

28-32' #18 Gravelly Sand 
Medium 

Sand 
Bimodal 

Very Coarse 

Skewed 
2.10 0.12 11.91 9.44 

28-32' #23 Muddy Sandy Gravel Coarse Sand Polymodal Coarse Skewed 2.33 0.07 4.36 9.70 

32-36' #3 Gravelly Muddy Sand 
Medium 

Sand 
Polymodal Symmetrical 2.51 0.04 1.75 9.84 

32-36' #8 
Slightly Gravelly Muddy 

Sand 

Very Fine 

Sand 
Trimodal 

Very Coarse 

Skewed 
1.45 0.04 1.11 9.99 

32-36' #13 Gravelly Muddy Sand 
Medium 

Sand 
Polymodal Coarse Skewed 2.44 0.05 1.79 10.16 

32-36' #18 
Slightly Gravelly Muddy 

Sand 
Fine Sand Trimodal Symmetrical 1.44 0.04 1.26 10.33 

32-36' #23&28 
Slightly Gravelly Muddy 

Sand 

Very Fine 

Sand 
Bimodal Fine Skewed 1.12 0.04 1.27 10.66 

32-36' #31 
Slightly Gravelly Muddy 

Sand 

Very Fine 

Sand 
Trimodal Symmetrical 1.19 0.04 1.27 10.91 

1. Grain-size statistics and hydraulic conductivity for TC14 grain-size samples 

2. D10: Sorting in Φ units 

3. The grain size (in mm) that is 10% finer by weigh; also called the effective grain size 

4. K: Grain-size-estimated values of hydraulic conductivity in meters per day: K (m/day) = 864 × (D10)
2
 

5. Depth in meters below the land surface 



 

 

Appendix D: Results of Magnetic Separations 

Appendix D1: Grain-Size Data Used in Magnetic Separations 

Sample ID
1
 Dry Weight 1.25 Φ 2.25Φ 3.25Φ  4Φ      Pan Depth

2
 

0-4' #1 ND
3
 ND

3
 ND

3
 ND

3
 ND

3
 ND

3
 ND

3
 

0-4' #2 118.73 2.17 45.02 47.02 13.55 10.43 0.61 

0-4' #3 268.25 2.71 99.16 93.55 28.69 37.05 1.01 

4-8' #4 244.9 2.16 75.46 118.49 30.09 17.92 1.36 

4-8' #5 291.37 6.42 143.93 104.03 21.28 14.40 1.86 

8-12' #6 286.51 62.94 185.24 28.19 2.22 6.17 2.74 

8-12' #7 299.86 95.99 181.05 11.68 0.87 8.84 3.35 

12-16' #8 224.14 122.32 83.40 5.85 1.02 10.15 3.81 

12-16' #9 78.30 3.78 0.00 0.00 12.55 59.13 4.11 

12-16' #10 100.6 11.50 27.35 16.39 4.21 40.90 4.41 

12-16' #11 199.10 99.68 28.18 23.56 4.58 39.28 4.72 

16-20' #12 167.98 65.20 24.67 14.69 2.01 44.90 5.07 

16-20' #13 216.38 98.00 20.72 11.00 2.04 82.69 5.47 

16-20' #14 234.07 166.64 23.73 4.47 0.90 20.19 5.89 

20-24' #15
4
  127.52 93.91 23.58 7.61 1.87 0.52 6.24 

20-24' #16 255.67 159.24 30.83 17.25 6.53 22.15 6.53 

20-24' #17 252.69 125.23 39.78 25.90 6.14 31.48 6.83 

20-24' #18 333.26 202.61 78.73 15.30 3.04 10.51 7.14 

24-28' #19 275.66 57.78 51.63 106.01 10.06 20.62 7.47 

24-28' #20 234.99 75.24 0.00 0.00 130.32 10.09 7.77 

24-28' #21 187.83 14.24 54.93 100.99 5.61 11.05 8.07 

24-28' #22 240.99 12.68 64.03 147.17 8.17 7.92 8.38 

28-32' #23 155.08 8.02 0.00 0.00 119.69 7.02 8.74 

28-32' #24 127.24 45.84 0.00 0.00 63.39 8.67 9.14 

28-32' #25 32.01 18.01 0.00 0.00 9.50 1.06 9.55 

32-36' #26 60.27 13.11 0.00 0.00 27.57 14.18 9.85 

32-36' #27 429.28 123.78 48.72 109.73 14.05 82.97 10.15 

32-36' #28 220.46 25.80 27.27 83.33 6.05 59.10 10.51 

32-36' #29 151.14 4.17 0.00 0.00 103.76 33.63 10.82 

1. Total dry sample weights (g) and retained weights (g) for TC14C  fractions 

2. Depth in meters below the land surface 

3. ND: No data 

4. Samples TC14:20-24 #'s 4-7 were combined to approximate the composition of 

TC14C:20-24 #15 due to insufficient amount of leftover sample  



 

 

Appendix D2: Magnetic Separation Data 

Sample ID
1
 Non-Sus.

2
 Highly Sus.

2
 Poorly Sus.

2
 

Total 

Magnetics
2
 

Depth
3
 

0-4' #1 ND
4
 ND

4
 ND

4
 ND

4
 ND

4
 

0-4' #2 98.71 0.80 0.49 1.29 0.61 

0-4' #3 98.85 1.01 0.13 1.15 1.01 

4-8' #4 98.35 1.28 0.37 1.65 1.36 

4-8' #5 98.23 1.34 0.43 1.77 1.86 

8-12' #6 ND
4
 ND

4
 ND

4
 ND

4
 2.74 

8-12' #7 99.33 0.57 0.10 0.67 3.35 

12-16' #8 99.11 0.72 0.17 0.89 3.81 

12-16' #9 96.90 2.30 0.80 3.10 4.11 

12-16' #10 96.68 2.73 0.58 3.32 4.41 

12-16' #11 96.00 3.05 0.95 4.00 4.72 

16-20' #12 92.14 4.76 3.09 7.86 5.07 

16-20' #13 85.12 9.85 5.03 14.88 5.47 

16-20' #14 90.24 5.33 4.43 9.76 5.89 

20-24' #15
3
  90.69 5.56 3.75 9.31 6.24 

20-24' #16 93.28 3.83 2.89 6.72 6.53 

20-24' #17 95.49 2.71 1.80 4.51 6.83 

20-24' #18 95.04 2.69 2.27 4.96 7.14 

24-28' #19 96.40 2.66 0.93 3.60 7.47 

24-28' #20 96.22 3.07 0.71 3.78 7.77 

24-28' #21 ND
4
 ND

4
 ND

4
 ND

4
 8.07 

24-28' #22 97.74 1.81 0.45 2.26 8.38 

28-32' #23 96.23 3.11 0.66 3.77 8.74 

28-32' #24 96.39 2.68 0.94 3.61 9.14 

28-32' #25 95.20 3.93 0.87 4.80 9.55 

32-36' #26 94.16 4.48 1.36 5.84 9.85 

32-36' #27 96.47 2.82 0.70 3.53 10.15 

32-36' #28 97.46 2.29 0.25 2.54 10.51 

32-36' #29 95.91 3.55 0.54 4.09 10.82 

1. Magnetic separation data for TC14C subsamples. All values are expressed as weight 

percents 

2. Non-susceptible (Non-Sus.), highly susceptible (Highly Sus.)(isolated at ≤0.8amps), poorly 

susceptible (Poorly Sus.)(isolated at >0.8amps), and total magnetic fractions. Total magnetics 

equals the sum of highly and poorly susceptible grains 

3. Depth in meters below the land surface 

4. ND: No Data 



 

 

 

Appendix E: Polished-Thin-Section Data 

Polished- 

Thin 

Section 

ID
1
 

Grain-Size  

Range  

Magnetic 

Susceptibility         

Sample 

ID
2
 

Sample 

Weight
3
 

Quadrant
4
 

Mean 

Sample 

Depth
5
 

PTS: 

2-5 

Sand  

(>4Φ - <1.25 Φ)  

NS
6
  0 - 4'  #2 1.28 A 

1.2 

NS
6
  0 - 4'  #3 1.08 A 

Sand  

(>4Φ - <1.25 Φ)  

NS
6
  4 - 8'  #4 2.72 B 

NS
6
  4 - 8'  #5 2.37 B 

Sand  

(>4Φ - <1.25 Φ)  

S
7
  0 - 4'  #2 1.02 C 

S
7
  0 - 4'  #3 1.53 C 

Sand 

 (>4Φ - <1.25 Φ)  

S
7
  4 - 8'  #4 1.96 D 

S
7
  4 - 8'  #5 1.75 D 

1. Each polished-thin section was prepared using multiple samples from TC14C 

2. Samples are from TC14C 

3. Weight of fractions (g) from TC14 sediment samples that were combined for each 

quadrant of the polished-thin section 

4. Each polished-thin section includes 4 quadrants (A, B, C, and D) that are comprised of 

magnetically separated fractions 

5. Mean depth (m BLS) of all TC14 sediment samples that comprise each polished-thin 

section 

6. NS: Non-susceptible using hand magnet or Frantz Isodynamic Magnetic Separator  

7. S: Susceptible using hand magnet or Frantz Isodynamic Separator 
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Polished-

Thin 

Section 

ID
1
 

Grain-Size 

Range  

Magnetic 

Susceptibility         
Sample ID

2
 

Sample 

Weight
3
 

Quadrant
4
 

Mean 

Sample 

Depth
5
 

PTS: 

9-12 

Mud  

(<4 Φ) 

NP
6
  12 - 16' #9 1.98 A 

4.6 

NP
6
  12 - 16' #10 2.08 A 

NP
6
  12 - 16' #11 2.09 A 

NP
6
  16 - 20' #12 2.03 A 

Sand 

(>4Φ - <1.25 Φ)  

NS
7
  12 - 16' #9 1.66 B 

NS
7
  12 - 16' #10 1.66 B 

NS
7
  12 - 16' #11 1.68 B 

NS
7
  16 - 20' #12 1.67 B 

Sand 

(>4Φ - <1.25 Φ)  

HS
8
  12 - 16' #9 0.19 C 

HS
8
  12 - 16' #10 0.89 C 

HS
8
  12 - 16' #11 0.93 C 

HS
8
  16 - 20' #12 1.01 C 

Sand 

(>4Φ - <1.25 Φ)  

PS
9
  12 - 16' #9 0.06 D 

PS
9
  12 - 16' #10 0.15 D 

PS
9
  12 - 16' #11 0.32 D 

PS
9
  16 - 20' #12 1.10 D 

1. Each polished-thin section was prepared using multiple samples from TC14C 

2. Samples are from TC14C 

3. Weight of fractions (g) from TC14 sediment samples that were combined for each 

quadrant of the polished-thin section 

4. Each polished-thin section includes 4 quadrants (A, B, C, and D) that are comprised of 

magnetically separated fractions 

5. Mean depth (m BLS) of all TC14 sediment samples that comprise each polished-thin 

section 

6. NP: Not processed to prevent clogging of the instrument 

7. NS: Non-susceptible using hand magnet or Frantz Isodynamic Magnetic Separator.   

8. HS: Highly susceptible; magnetically susceptible by hand magnet or by setting the 

magnetic separator to ≤0.8 amps 

9. PS: Poorly susceptible; magnetically susceptible only by setting the magnetic separator to 

>0.8 amps 
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Polished- 

Thin 

Section 

ID
1
 

Grain-Size 

Range  

Magnetic 

Susceptibility         
Sample ID

2
 

Sample 

Weight
3
 

Quadrant
4
 

Mean 

Sample 

Depth
5
 

PTS: 

13-14 

Mud 

(<4 Φ) 

NP
6
  16 - 20' #13 4.06 A 

5.5 

NP
6
  16 - 20' #14 4.11 A 

Sand 

(>4Φ - <1.25 Φ)  

NP
6
  16 - 20' #13 3.11 B 

NS
7
  16 - 20' #14 3.05 B 

Sand 

(>4Φ - <1.25 Φ)  

HS
8
  16 - 20' #13 0.97 C 

HS
8
  16 - 20' #14 0.77 C 

Sand 

(>4Φ - <1.25 Φ)  

PS
9
  16 - 20' #13 1.32 D 

PS
9
  16 - 20' #14 0.92 D 

1. Each polished-thin section was prepared using multiple samples from TC14C 

2. Samples are from TC14C 

3. Weight of fractions (g) from TC14 sediment samples that were combined for each 

quadrant of the polished-thin section 

4. Each polished-thin section includes 4 quadrants (A, B, C, and D) that are comprised of 

magnetically separated fractions 

5. Mean depth (m BLS) of all TC14 sediment samples that comprise each polished-thin 

section 

6. NP: Not processed to prevent clogging of the instrument 

7. NS: Non-susceptible using hand magnet or Frantz Isodynamic Magnetic Separator.   

8. HS: Highly susceptible; magnetically susceptible by hand magnet or by setting the 

magnetic separator to ≤0.8 amps 

9. PS: Poorly susceptible; magnetically susceptible only by setting the magnetic separator to 

>0.8 amps 
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Polished-

Thin 

Section 

ID
1
 

Grain-Size 

Range  

Magnetic 

Susceptibility         
Sample ID

2
 

Sample 

Weight
3
 

Quadrant
4
 

Mean 

Sample 

Depth
5
 

PTS: 

15-16 

Mud 

(<4 Φ) 

NP
6
  20 - 24' #15 5.00 A 

6.2 

NP
6
  20 - 24' #16 4.95 A 

Sand 

(>4Φ - <1.25 Φ)  

NS
7
  20 - 24' #15 4.35 B 

NS
7
  20 - 24' #16 4.30 B 

Sand 

(>4Φ - <1.25 Φ)  

HS
8
  20 - 24' #15 1.91 C 

HS
8
  20 - 24' #16 1.49 C 

Sand 

(>4Φ - <1.25 Φ)  

PS
9
  20 - 24' #15 1.71 D 

PS
9
  20 - 24' #16 1.04 D 

1. Each polished-thin section was prepared using multiple samples from TC14C 

2. Samples are from TC14C 

3. Weight of fractions (g) from TC14 sediment samples that were combined for each 

quadrant of the polished-thin section 

4. Each polished-thin section includes 4 quadrants (A, B, C, and D) that are comprised of 

magnetically separated fractions 

5. Mean depth (m BLS) of all TC14 sediment samples that comprise each polished-thin 

section 

6. NP: Not processed to prevent clogging of the instrument 

7. NS: Non-susceptible using hand magnet or Frantz Isodynamic Magnetic Separator.   

8. HS: Highly susceptible; magnetically susceptible by hand magnet or by setting the 

magnetic separator to ≤0.8 amps 

9. PS: Poorly susceptible; magnetically susceptible only by setting the magnetic separator to 

>0.8 amps 
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Polished-

Thin 

Section 

ID
1
 

Grain-Size 

Range  

Magnetic 

Susceptibility         
Sample ID

2
 

Sample 

Weight
3
 

Quadrant
4
 

Mean 

Sample 

Depth
5
 

PTS: 

17-19 

Mud 

(<4 Φ) 

NP
6
  20 - 24' #17 2.02 A 

7.0 

NP
6
  20 - 24' #18 2.06 A 

NP
6
  24 - 28' #19 2.08 A 

Sand 

(>4Φ - <1.25 Φ)  

NS
7
  20 - 24' #17 3.16 B 

NS
7
  20 - 24' #18 3.12 B 

NS
7
  24 - 28' #19 3.10 B 

Sand 

(>4Φ - <1.25 Φ)  

HS
8
  20 - 24' #17 1.17 C 

HS
8
  20 - 24' #18 1.24 C 

HS
8
  24 - 28' #19 1.29 C 

Sand 

(>4Φ - <1.25 Φ)  

PS
9
  20 - 24' #17 0.99 D 

PS
9
  20 - 24' #18 1.70 D 

PS
9
  24 - 28' #19 0.67 D 

1. Each polished-thin section was prepared using multiple samples from TC14C 

2. Samples are from TC14C 

3. Weight of fractions (g) from TC14 sediment samples that were combined for each 

quadrant of the polished-thin section 

4. Each polished-thin section includes 4 quadrants (A, B, C, and D) that are comprised of 

magnetically separated fractions 

5. Mean depth (m BLS) of all TC14 sediment samples that comprise each polished-thin 

section 

6. NP: Not processed to prevent clogging of the instrument 

7. NS: Non-susceptible using hand magnet or Frantz Isodynamic Magnetic Separator.   

8. HS: Highly susceptible; magnetically susceptible by hand magnet or by setting the 

magnetic separator to ≤0.8 amps 

9. PS: Poorly susceptible; magnetically susceptible only by setting the magnetic separator to 

>0.8 amps 
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Polished- 

Thin 

Section 

ID
1
 

Grain-Size 

Range  

Magnetic 

Susceptibility         
Sample ID

2
 

Sample 

Weight
3
 

Quadrant
4
 

Mean 

Sample 

Depth
5
 

PTS: 

23-25 

Mud 

(<4 Φ) 

NP
6
  28 - 32' #23 1.00 A 

9.1 

NP
6
  28 - 32' #24 1.01 A 

NP
6
  28 - 32' #25 0.96 A 

Sand 

(>4Φ - <1.25 Φ)  

NS
7
  28 - 32' #23 3.76 B 

NS
7
  28 - 32' #24 3.77 B 

NS
7
  28 - 32' #25 3.77 B 

Sand 

(>4Φ - <1.25 Φ)  

HS
8
  28 - 32' #23 2.00 C 

HS
8
  28 - 32' #24 1.70 C 

HS
8
  28 - 32' #25 0.17 C 

Sand 

(>4Φ - <1.25 Φ)  

PS
9
  28 - 32' #23 0.26 D 

PS
9
  28 - 32' #24 0.59 D 

PS
9
  28 - 32' #25 0.89 D 

1. Each polished-thin section was prepared using multiple samples from TC14C 

2. Samples are from TC14C 

3. Weight of fractions (g) from TC14 sediment samples that were combined for each 

quadrant of the polished-thin section 

4. Each polished-thin section includes 4 quadrants (A, B, C, and D) that are comprised of 

magnetically separated fractions 

5. Mean depth (m BLS) of all TC14 sediment samples that comprise each polished-thin 

section 

6. NP: Not processed to prevent clogging of the instrument 

7. NS: Non-susceptible using hand magnet or Frantz Isodynamic Magnetic Separator.   

8. HS: Highly susceptible; magnetically susceptible by hand magnet or by setting the 

magnetic separator to ≤0.8 amps 

9. PS: Poorly susceptible; magnetically susceptible only by setting the magnetic separator to 

>0.8 amps 
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Polished- 

Thin 

Section 

ID
1
 

Grain-Size 

Range  

Magnetic 

Susceptibility         
Sample ID

2
 

Sample 

Weight
3
 

Quadrant
4
 

Mean 

Sample 

Depth
5
 

PTS: 

26-28 

Mud 

(<4 Φ) 

NP
6
  32 - 36' #26 2.01 A 

9.8 

NP
6
  32 - 36' #27 2.03 A 

NP
6
  32 - 36' #28 2.04 A 

Sand 

(>4Φ - <1.25 Φ)  

NS
7
  32 - 36' #26 6.24 B 

NS
7
  32 - 36' #27 6.20 B 

NS
7
  32 - 36' #28 6.24 B 

Sand 

(>4Φ - <1.25 Φ)  

HS
8
  32 - 36' #26 0.90 C 

HS
8
  32 - 36' #27 1.45 C 

HS
8
  32 - 36' #28 0.91 C 

Sand 

(>4Φ - <1.25 Φ)  

PS
9
  32 - 36' #26 0.21 D 

PS
9
  32 - 36' #27 0.64 D 

PS
9
  32 - 36' #28 0.40 D 

1. Each polished-thin section was prepared using multiple samples from TC14C 

2. Samples are from TC14C 

3. Weight of fractions (g) from TC14 sediment samples that were combined for each 

quadrant of the polished-thin section 

4. Each polished-thin section includes 4 quadrants (A, B, C, and D) that are comprised of 

magnetically separated fractions 

5. Mean depth (m BLS) of all TC14 sediment samples that comprise each polished-thin 

section 

6. NP: Not processed to prevent clogging of the instrument 

7. NS: Non-susceptible using hand magnet or Frantz Isodynamic Magnetic Separator.   

8. HS: Highly susceptible; magnetically susceptible by hand magnet or by setting the 

magnetic separator to ≤0.8 amps 

9. PS: Poorly susceptible; magnetically susceptible only by setting the magnetic separator to 

>0.8 amps 

 

 



 

 

Appendix F: EDX Data 

Appendix F1: Composition and Statistics of Mineral Standards 

Reference 

Mineral 
Element 

Accepted 

Value
1
 

Value 

Normalized 

w/o H, C, 

and F
2
 

Mean
3
 

Confidence 

Level 

(95%) 

Standard 

Deviation
4
 

CV %
5
 

% 

Error
6
 

Normalized 

Error
7
 

Albite 

(n = 9) 

Na 8.60 
 

7.75 0.05 0.07 0.90 -9.88 
 

Al 10.34 
 

9.74 0.07 0.09 0.92 -5.80 
 

Si 32.03 
 

33.20 0.07 0.09 0.27 3.65 
 

K 0.18 
 

0.07 0.04 0.05 71.43 -61.11 
 

Ca 0.09 
 

0.03 0.02 0.02 66.67 -66.67 
 

O 48.76   49.21 0.03 0.03 0.06 0.92   

Almandine 

(n = 11) 

Mg 6.45 
 

5.93 0.09 0.13 2.19 -8.06 
 

Al 11.67 
 

11.24 0.10 0.14 1.25 -3.68 
 

Si 18.32 
 

19.26 0.08 0.11 0.57 5.13 
 

Ca 3.00 
 

2.95 0.01 0.02 0.68 -1.67 
 

Mn 0.46 
 

0.44 0.04 0.06 13.64 -4.35 
 

Fe 18.09 
 

17.90 0.16 0.23 1.28 -1.05 
 

O 42.01   42.28 0.06 0.09 0.21 0.64   

1. Values given in weight percent element 

2. Accepted values are normalized to dry weight by recalculating total weight % excluding H, C, and F 

3. Mean of n analyses of each standard 

4. Standard deviation of n standard analyses 

5. CV %: Coefficient of Variation = (standard deviation ÷ mean) × 100 

6. % Error: Percent Error = [(mean - accepted value) ÷ accepted value] x 100 

7. Normalized Error for apatite, biotite, chlorite, and kaersutite calculated using the normalized accepted value 
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Reference 

Mineral 
Element 

Accepted 

Value
1
 

Value 

Normalized 

w/o H, C, 

and F
2
 

Mean
3
 

Confidence 

Level 

(95%) 

Standard 

Deviation
4
 

CV %
5
 

% 

Error
6
 

Normalized 

Error
7
 

Apatite 

(n = 10) 

H 0.20 NA
8
 NA

8
 NA

8
 NA

8
 NA

8
 NA

8
 NA

8
 

P 18.50 18.54 19.59 0.10 0.14 0.71 5.89 5.68 

Ca 39.89 39.97 39.38 0.16 0.23 0.58 -1.28 -1.48 

O 41.41 41.49 41.03 0.06 0.09 0.22 -0.92 -1.12 

Benitoite 

(n = 11) 

Si 20.38 
 

20.70 0.07 0.10 0.48 1.57 
 

Ti 11.58 
 

11.26 0.27 0.40 3.55 -2.76 
 

Ba 33.21 
 

33.08 0.42 0.62 1.87 -0.39 
 

O 34.82   34.96 0.14 0.21 0.60 0.40   

1. Values given in weight percent element 

2. Accepted values are normalized to dry weight by recalculating total weight % excluding H, C, and F 

3. Mean of n analyses of each standard 

4. Standard deviation of n standard analyses 

5. CV %: Coefficient of Variation = (standard deviation ÷ mean) × 100 

6. % Error: Percent Error = [(mean - accepted value) ÷ accepted value] x 100 

7. Normalized Error for apatite, biotite, chlorite, and kaersutite calculated using the normalized accepted value 

8. NA: Not analyzed 
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Reference 

Mineral 
Element 

Accepted 

Value
1
 

Value 

Normalized 

w/o H, C, 

and F
2
 

Mean
3
 

Confidence 

Level 

(95%) 

Standard 

Deviation
4
 

CV %
5
 

% 

Error
6
 

Normalized 

Error
7
 

Biotite 

(n = 10) 

H 0.46 NA
8
 NA

8
 NA

8
 NA

8
 NA

8
 NA

8
 NA

8
 

Mg 11.77 11.82 11.97 0.24 0.34 2.84 1.70 1.24 

Al 8.01 8.05 7.97 0.08 0.12 1.51 -0.50 -0.95 

Si 18.10 18.18 19.75 0.14 0.20 1.01 9.12 8.62 

K 8.23 8.27 8.66 0.29 0.41 4.73 5.22 4.75 

Ca 0.07 0.07 0.28 0.10 0.14 50.00 300.00 298.20 

Ti 1.06 1.06 0.98 0.04 0.06 6.12 -7.55 -7.96 

Mn 0.03 0.03 0.06 0.04 0.05 83.33 100.00 99.10 

Fe 8.33 8.37 8.01 0.33 0.47 5.87 -3.84 -4.27 

O 43.95 44.15 42.31 0.18 0.25 0.59 -3.73 -4.16 

1. Values given in weight percent element 

2. Accepted values are normalized to dry weight by recalculating total weight % excluding H, C, and F 

3. Mean of n analyses of each standard 

4. Standard deviation of n standard analyses 

5. CV %: Coefficient of Variation = (standard deviation ÷ mean) × 100 

6. % Error: Percent Error = [(mean - accepted value) ÷ accepted value] x 100 

7. Normalized Error for apatite, biotite, chlorite, and kaersutite calculated using the normalized accepted value 

8. NA: Not analyzed 
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Reference 

Mineral 
Element 

Accepted 

Value
1
 

Value 

Normalized 

w/o H, C, 

and F
2
 

Mean
3
 

Confidence 

Level 

(95%) 

Standard 

Deviation
4
 

CV %
5
 

% 

Error
6
 

Normalized 

Error
7
 

Chlorite 

(n = 11) 

H 1.54 NA
8
 NA

8
 NA

8
 NA

8
 NA

8
 NA

8
 NA

8
 

C 0.02 NA
8
 NA

8
 NA

8
 NA

8
 NA

8
 NA

8
 NA

8
 

F 0.02 NA
8
 NA

8
 NA

8
 NA

8
 NA

8
 NA

8
 NA

8
 

Mg 20.21 20.45 21.42 0.18 0.27 1.26 5.99 4.73 

Al 9.57 9.69 11.18 0.08 0.12 1.07 16.82 15.43 

Si 14.04 14.21 17.45 0.13 0.20 1.15 24.29 22.81 

Ca 0.02 0.02 NC
10

 NC
10

 NC
10

 NC
10

 NC
10

 NC
10

 

Cr 0.67 0.68 1.29 0.07 0.10 7.75 92.54 90.25 

Fe 2.57 2.60 2.81 0.07 0.10 3.56 9.34 8.04 

Ni 0.19 0.19 0.24 0.08 0.12 50.00 26.32 24.81 

O 51.54 52.16 45.61 0.30 0.44 0.96 -11.51 -12.56 

1. Values given in weight percent element 

2. Accepted values are normalized to dry weight by recalculating total weight % excluding H, C, and F 

3. Mean of n analyses of each standard 

4. Standard deviation of n standard analyses 

5. CV %: Coefficient of Variation = (standard deviation ÷ mean) × 100 

6. % Error: Percent Error = [(mean - accepted value) ÷ accepted value] x 100 

7. Normalized Error for apatite, biotite, chlorite, and kaersutite calculated using the normalized accepted value 

8. NA: Not analyzed 

9. NC: Not calculated because the element was not detected in more than 25% of analyses.  
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Reference 

Mineral 
Element 

Accepted 

Value
1
 

Value 

Normalized 

w/o H, C, 

and F
2
 

Mean
3
 

Confidence 

Level 

(95%) 

Standard 

Deviation
4
 

CV %
5
 

% 

Error
6
 

Normalized 

Error
7
 

Diopside 

(n = 11) 

Mg 11.23 
 

10.71 0.12 0.19 1.77 -4.63 
 

Al 0.05 
 

0.05 0.03 0.05 100.00 0.00 
 

Si 25.88 
 

26.53 0.07 0.11 0.41 2.51 
 

Ca 18.39 
 

18.00 0.12 0.18 1.00 -2.12 
 

Ti 0.05 
 

0.06 0.03 0.05 83.33 20.00 
 

Mn 0.04 
 

0.04 0.02 0.02 50.00 0.00 
 

Fe 0.04 
 

0.05 0.03 0.05 100.00 25.00 
 

O 44.30   44.56 0.03 0.04 0.09 0.59   

Hematite 

(n = 6) 

Mg 0.03 
 

0.13 0.08 0.08 61.54 333.33 
 

Al 0.10 
 

0.11 0.07 0.07 63.64 10.00 
 

V 0.04 
 

0.05 0.07 0.06 120.00 25.00 
 

Fe 69.86 
 

77.35 0.18 0.17 0.22 10.72 
 

O 30.06   23.37 0.06 0.06 0.26 -22.26   

1. Values given in weight percent element 

2. Accepted values are normalized to dry weight by recalculating total weight % excluding H, C, and F 

3. Mean of n analyses of each standard 

4. Standard deviation of n standard analyses. 

5. CV: Coefficient of Variation = (standard deviation ÷ mean) × 100 

6. % Error: Percent error = [(mean - accepted value) ÷ accepted value] x 100 

7. Normalized error for apatite, biotite, chlorite, and kaersutite calculated using the normalized accepted value 
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Reference 

Mineral 
Element 

Accepted 

Value
1
 

Value 

Normalized 

w/o H, C, 

and F
2
 

Mean
3
 

Confidence 

Level 

(95%) 

Standard 

Deviation
4
 

CV %
5
 

% 

Error
6
 

Normalized 

Error
7
 

Kaersutite 

(n = 11) 

H 0.22 NA
8
 NA

8
 NA

8
 NA

8
 NA

8
 NA

8
 NA

8
 

Na 1.81 1.82 1.77 0.04 0.05 2.82 -2.21 -2.81 

Mg 7.57 7.62 7.57 0.11 0.17 2.25 0.00 -0.61 

Al 6.54 6.58 6.65 0.09 0.14 2.11 1.68 1.06 

Si 18.74 18.86 20.05 0.08 0.12 0.60 6.99 6.34 

K 0.97 0.98 0.89 0.02 0.04 4.49 -8.25 -8.81 

Ca 8.26 8.31 8.24 0.09 0.13 1.58 -0.24 -0.85 

Ti 3.02 3.04 3.27 0.08 0.12 3.67 8.28 7.62 

Mn 0.14 0.14 0.10 0.04 0.06 60.00 -28.57 -29.01 

Fe 9.51 9.57 8.87 0.13 0.20 2.25 -6.73 -7.30 

O 42.83 43.09 42.58 0.04 0.07 0.16 -0.58 -1.19 

1. Values given in weight percent element 

2. Accepted values are normalized to dry weight by recalculating total weight % excluding H, C, and F 

3. Mean of n analyses of each standard 

4. Standard deviation of n standard analyses. 

5. CV: Coefficient of Variation = (standard deviation ÷ mean) × 100 

6. % Error: Percent error = [(mean - accepted value) ÷ accepted value] x 100 

7. Normalized error for apatite, biotite, chlorite, and kaersutite calculated using the normalized accepted value 

8. NA: Not analyzed 
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Reference 

Mineral 
Element 

Accepted 

Value
1
 

Value 

Normalized 

w/o H, C, 

and F
2
 

Mean
3
 

Confidence 

Level 

(95%) 

Standard 

Deviation
4
 

CV %
5
 

% 

Error
6
 

Normalized 

Error
7
 

Magnetite 

(n = 8) 

Cr 0.14 
 

0.20 0.02 0.03 15.00 42.86 
 

Fe 72.19 
 

77.52 0.05 0.06 0.08 7.38 
 

O 26.67   22.28 0.05 0.06 0.27 -16.46   

Marcasite 

(n = 11) 

S 53.46 
 

55.11 0.79 1.18 2.14 3.09 
 

Fe 46.54   44.89 0.79 1.18 2.63 -3.55   

Pyrope 

(n = 11) 

Mg 11.52 
 

11.85 0.06 0.09 0.76 2.86 
 

Al 11.65 
 

11.05 0.10 0.16 1.45 -5.15 
 

Si 20.15 
 

20.48 0.09 0.13 0.63 1.64 
 

Ca 3.62 
 

3.39 0.04 0.06 1.77 -6.35 
 

Cr 1.52 
 

1.77 0.05 0.08 4.52 16.45 
 

Mn 0.25 
 

0.29 0.04 0.05 17.24 16.00 
 

Fe 6.35 
 

6.19 0.08 0.12 1.94 -2.52 
 

O 44.94   44.99 0.04 0.06 0.13 0.11   

1. Values given in weight percent element 

2. Accepted values are normalized to dry weight by recalculating total weight % excluding H, C, and F 

3. Mean of n analyses of each standard 

4. Standard deviation of n standard analyses. 

5. CV: Coefficient of Variation = (standard deviation ÷ mean) × 100 

6. % Error: Percent error = [(mean - accepted value) ÷ accepted value] x 100 

7. Normalized error for apatite, biotite, chlorite, and kaersutite calculated using the normalized accepted value 
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Reference 

Mineral 
Element 

Accepted 

Value
1
 

Value 

Normalized 

w/o H, C, 

and F
2
 

Mean
3
 

Confidence 

Level 

(95%) 

Standard 

Deviation
4
 

CV %
5
 

% 

Error
6
 

Normalized 

Error
7
 

Rutile 

(n = 11) 

Ti 59.10 
 

59.29 0.16 0.24 0.40 0.32 
 

V 0.38 
 

0.24 0.16 0.24 100.00 -36.84 
 

Fe 0.66 
 

0.53 0.09 0.13 24.53 -19.70 
 

O 39.86   39.94 0.03 0.04 0.10 0.20   

Sanidine 

(n = 11) 

Na 2.23 
 

2.03 0.07 0.11 5.42 -8.97 
 

Al 9.93 
 

9.31 0.07 0.10 1.07 -6.24 
 

Si 30.23 
 

30.93 0.08 0.12 0.39 2.32 
 

K 10.05 
 

10.08 0.09 0.13 1.29 0.30 
 

Fe 0.14 
 

0.21 0.03 0.04 19.05 50.00 
 

Ba 0.98 
 

0.98 0.11 0.17 17.35 0.00 
 

O 46.28   46.46 0.04 0.05 0.11 0.39   

1. Values given in weight percent element 

2. Accepted values are normalized to dry weight by recalculating total weight % excluding H, C, and F 

3. Mean of n analyses of each standard 

4. Standard deviation of n standard analyses. 

5. CV: Coefficient of Variation = (standard deviation ÷ mean) × 100 

6. % Error: Percent error = [(mean - accepted value) ÷ accepted value] x 100 

7. Normalized error for apatite, biotite, chlorite, and kaersutite calculated using the normalized accepted value 



 

 

 

Appendix F2: Replicate-EDX-Analysis Data of Reference Standards 

Albite
1
 Na Al Si K Ca O 

Trial 1 7.86 9.79 33.06 0.11 0.04 49.14 

Trial 2 7.67 9.58 33.37 0.12 0.04 49.23 

Trial 3 7.68 9.84 33.09 0.15 0.07 49.18 

Trial 4 7.71 9.74 33.24 0.07 0.00 49.23 

Trial 5 7.84 9.64 33.23 0.03 0.06 49.20 

Trial 6 7.69 9.77 33.20 0.07 0.05 49.22 

Trial 7 7.75 9.84 33.16 0.00 0.01 49.24 

Trial 8 7.73 9.68 33.28 0.08 0.01 49.23 

Trial 9 7.78 9.75 33.18 0.04 0.03 49.21 

1. Replicate EDX analyses of albite. All 

concentrations are presented as weight percents 

 

 

Almandine
1
 Mg Al Si Ca Mn Fe O 

Trial 1 6.04 11.02 19.29 2.94 0.51 17.96 42.22 

Trial 2 5.70 10.95 19.36 2.95 0.56 18.32 42.15 

Trial 3 6.19 11.19 18.96 2.97 0.42 18.14 42.13 

Trial 4 5.99 11.40 19.29 2.94 0.36 17.63 42.39 

Trial 5 5.86 11.22 19.22 2.95 0.42 18.12 42.22 

Trial 6 5.99 11.34 19.30 2.93 0.43 17.63 42.37 

Trial 7 5.83 11.22 19.31 2.99 0.40 17.99 42.27 

Trial 8 5.90 11.34 19.23 2.96 0.37 17.90 42.30 

Trial 9 5.90 11.28 19.41 2.95 0.46 17.62 42.39 

Trial 10 5.84 11.36 19.26 2.92 0.43 17.88 42.31 

Trial 11 5.95 11.29 19.24 2.98 0.50 17.75 42.29 

1. Replicate EDX analyses of almandine. All concentrations 

are presented as weight percents 
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Apatite
1
 P Ca  O 

Trial 1 19.84 38.99 41.18 

Trial 2 19.33 39.82 40.85 

Trial 3 19.74 39.15 41.12 

Trial 4 19.64 39.31 41.05 

Trial 5 19.66 39.28 41.06 

Trial 6 19.60 39.37 41.03 

Trial 7 19.54 39.48 40.99 

Trial 8 19.48 39.57 40.95 

Trial 9 19.56 39.44 41.00 

Trial 10 19.54 39.44 41.02 

1. Replicate EDX analyses of 

apatite. All concentrations are 

presented as weight percents 

 

 

Benitoite
1
 Si Ti Ba O 

Trial 1 20.69 10.98 33.52 34.81 

Trial 2 20.43 11.28 33.57 34.72 

Trial 3 20.68 11.35 32.98 34.99 

Trial 4 20.70 11.30 33.01 34.98 

Trial 5 20.71 11.39 32.87 35.03 

Trial 6 20.80 10.97 33.32 34.91 

Trial 7 20.66 11.00 33.55 34.79 

Trial 8 20.73 10.97 33.46 34.84 

Trial 9 20.77 10.74 33.71 34.77 

Trial 10 20.74 11.91 32.05 35.31 

Trial 11 20.76 11.99 31.88 35.37 

1. Replicate EDX analyses of benitoite. 

All concentrations are presented as 

weight percents 

 

 

 



228 

 

 

 

 

Biotite
1
 Mg Al Si K Ca Ti Mn Fe O 

Trial 1 12.02 7.85 19.69 8.65 0.29 1.00 0.00 8.26 42.24 

Trial 2 11.67 8.15 19.71 8.89 0.29 0.94 0.05 8.05 42.25 

Trial 3 11.91 7.96 19.81 8.88 0.12 1.05 0.09 7.85 42.33 

Trial 4 11.96 7.92 19.78 8.80 0.20 1.01 0.10 7.91 42.31 

Trial 5 12.13 7.95 19.95 8.22 0.45 1.00 0.16 7.62 42.54 

Trial 6 12.24 8.07 19.82 8.08 0.45 0.93 0.01 7.85 42.53 

Trial 7 12.33 8.06 19.87 8.18 0.43 0.87 0.07 7.62 42.56 

Trial 8 11.17 8.10 19.24 9.38 0.06 1.07 0.07 9.23 41.70 

Trial 9 12.17 7.86 19.74 8.53 0.37 1.02 0.02 7.95 42.34 

Trial 10 12.10 7.80 19.88 8.97 0.16 0.95 0.02 7.80 42.33 

1. Replicate EDX analyses of biotite. All concentrations are presented 

as weight percents 

 

 

Chlorite
1
 Mg Al Si Ca Cr Fe Ni O 

Trial 1 21.07 11.21 17.63 0.02 1.36 2.70 0.52 45.49 

Trial 2 21.58 10.99 17.71 0.10 1.25 2.92 0.36 45.09 

Trial 3 20.87 11.27 16.99 ND
2
 1.49 2.61 0.29 46.49 

Trial 4 21.37 10.96 17.39 ND
2
 1.28 2.70 0.20 46.09 

Trial 5 21.53 11.16 17.40 ND
2
 1.18 2.83 0.21 45.70 

Trial 6 21.56 11.24 17.56 0.04 1.31 2.91 0.11 45.27 

Trial 7 21.59 11.21 17.45 0.07 1.27 2.92 0.21 45.28 

Trial 8 21.56 11.07 17.40 ND
2
 1.33 2.85 0.10 45.68 

Trial 9 21.81 11.32 17.48 0.01 1.34 2.81 0.24 44.99 

Trial 10 21.23 11.24 17.33 ND
2
 1.09 2.82 0.26 46.03 

Trial 11 21.47 11.29 17.66 0.06 1.26 2.82 0.11 45.32 

1. Replicate EDX analyses of chlorite. All concentrations are 

presented as weight percents 

2. ND: Not detected 
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Diopside
1
 Mg Al Si Ca Ti Mn Fe O 

Trial 1 10.64 0.01 26.46 18.27 0.01 0.07 0.08 44.47 

Trial 2 10.60 0.16 26.54 17.85 0.13 0.05 0.08 44.60 

Trial 3 10.39 0.04 26.49 18.37 0.13 0.08 0.00 44.50 

Trial 4 10.65 0.06 26.64 18.01 0.02 0.02 0.05 44.57 

Trial 5 10.75 0.04 26.60 17.90 0.05 0.05 0.00 44.61 

Trial 6 10.71 0.06 26.56 17.95 0.06 0.06 0.00 44.59 

Trial 7 10.71 0.03 26.60 18.01 0.03 0.01 0.03 44.59 

Trial 8 10.63 0.08 26.52 17.97 0.09 0.05 0.10 44.56 

Trial 9 11.16 0.07 26.25 17.72 0.10 0.03 0.15 44.51 

Trial 10 10.78 0.01 26.54 18.02 0.02 0.01 0.07 44.55 

Trial 11 10.77 0.01 26.63 17.87 0.01 0.05 0.05 44.60 

1. Replicate EDX analyses of diopside. All concentrations are 

presented as weight percents 

 

 

Hematite
1
 Mg Al V Fe O 

Trial 1 0.13 0.07 0.02 77.44 22.35 

Trial 2 0.27 0.23 0.00 77.05 22.45 

Trial 3 0.08 0.11 0.15 77.26 22.40 

Trial 4 0.05 0.09 0.10 77.40 22.36 

Trial 5 0.10 0.13 0.01 77.40 22.36 

Trial 6 0.14 0.03 0.01 77.54 22.28 

1. Replicate EDX analyses of hematite. All 

concentrations are presented as weight 

percents 
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Kaersutite
1
 Na Mg Al Si K Ca Ti Mn Fe O 

Trial 1 1.74 7.69 6.61 20.08 0.89 8.45 3.17 0.02 8.78 42.58 

Trial 2 1.75 7.72 6.61 19.95 0.87 8.19 3.24 0.11 9.02 42.54 

Trial 3 1.90 7.40 6.55 20.05 0.95 8.40 3.50 0.04 8.64 42.57 

Trial 4 1.76 7.31 6.93 20.22 0.84 8.12 3.29 0.17 8.61 42.75 

Trial 5 1.74 7.32 6.82 20.12 0.94 8.00 3.33 0.19 8.90 42.63 

Trial 6 1.73 7.71 6.76 19.96 0.87 8.25 3.25 0.05 8.82 42.61 

Trial 7 1.72 7.74 6.64 19.95 0.91 8.27 3.34 0.06 8.80 42.58 

Trial 8 1.83 7.66 6.64 19.89 0.87 8.26 3.32 0.10 8.93 42.52 

Trial 9 1.74 7.66 6.62 20.01 0.85 8.31 3.31 0.11 8.80 42.59 

Trial 10 1.79 7.45 6.40 20.28 0.90 8.11 3.04 0.20 9.33 42.51 

Trial 11 1.73 7.65 6.59 20.08 0.90 8.29 3.20 0.07 8.95 42.56 

1. Replicate EDX analyses of Kaersutite. All concentrations are presented as 

weight percents 

 

 

Magnetite
1
 Cr Fe O 

Trial 1 0.23 77.47 22.30 

Trial 2 0.22 77.48 22.30 

Trial 3 0.24 77.46 22.30 

Trial 4 0.16 77.55 22.29 

Trial 5 0.18 77.53 22.29 

Trial 6 0.18 77.53 22.29 

Trial 7 0.19 77.52 22.29 

Trial 8 0.20 77.66 22.14 

1. Replicate EDX analyses of 

magnetite. All concentrations are 

presented as weight percents 
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Marcasite
1
 S Fe 

Trial 1 54.43 45.57 

Trial 2 53.97 46.03 

Trial 3 54.42 45.58 

Trial 4 56.87 43.13 

Trial 5 56.71 43.29 

Trial 6 55.60 44.40 

Trial 7 54.88 45.12 

Trial 8 54.73 45.27 

Trial 9 55.49 44.51 

Trial 10 52.99 47.01 

Trial 11 56.06 43.94 

1. Replicate EDX 

analyses of marcasite. All 

concentrations are 

presented as weight 

percents 

 

 

Pyrope
1
 Mg Al Si Ca Cr Mn Fe O 

Trial 1 11.84 10.70 20.64 3.52 1.80 0.16 6.39 44.94 

Trial 2 11.77 11.15 20.30 3.38 1.91 0.30 6.27 44.91 

Trial 3 11.99 11.02 20.35 3.31 1.87 0.31 6.20 44.94 

Trial 4 11.92 11.12 20.45 3.34 1.73 0.27 6.18 45.01 

Trial 5 11.90 10.91 20.58 3.40 1.80 0.33 6.06 45.01 

Trial 6 11.76 11.10 20.61 3.35 1.75 0.29 6.06 45.07 

Trial 7 11.86 11.03 20.52 3.38 1.69 0.32 6.20 44.99 

Trial 8 11.94 10.97 20.42 3.37 1.83 0.27 6.24 44.95 

Trial 9 11.84 11.23 20.28 3.44 1.74 0.34 6.18 44.94 

Trial 10 11.65 11.26 20.62 3.41 1.71 0.25 5.98 45.12 

Trial 11 11.87 11.03 20.46 3.39 1.65 0.34 6.30 44.96 

1. Replicate EDX analyses of pyrope. All concentrations are 

presented as weight percents 
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Rutile
1
 Ti V Fe O 

Trial 1 59.16 0.11 0.88 39.86 

Trial 2 59.50 0.07 0.50 39.94 

Trial 3 59.59 0.03 0.47 39.91 

Trial 4 59.38 0.15 0.54 39.94 

Trial 5 59.23 0.29 0.53 39.95 

Trial 6 59.32 0.27 0.44 39.97 

Trial 7 59.40 0.10 0.57 39.93 

Trial 8 59.47 0.11 0.48 39.95 

Trial 9 59.41 0.10 0.57 39.93 

Trial 10 58.91 0.73 0.33 40.02 

Trial 11 58.85 0.64 0.53 39.98 

1. Replicate EDX analyses of rutile. 

All concentrations are presented as 

weight percents 

 

 

Sanidine Na Al Si K Fe Ba O 

Trial 1 2.05 9.21 31.08 10.31 0.14 0.68 46.53 

Trial 2 2.11 9.09 31.16 10.10 0.27 0.71 46.55 

Trial 3 1.78 9.28 30.95 10.26 0.23 1.05 46.44 

Trial 4 2.02 9.36 30.85 9.98 0.24 1.14 46.42 

Trial 5 2.03 9.45 30.86 9.90 0.16 1.12 46.48 

Trial 6 2.13 9.36 30.89 9.95 0.17 1.03 46.47 

Trial 7 2.07 9.24 30.95 10.07 0.16 1.07 46.44 

Trial 8 2.12 9.40 30.81 10.01 0.26 0.95 46.44 

Trial 9 2.11 9.36 30.76 10.13 0.21 1.07 46.36 

Trial 10 1.91 9.39 30.94 10.16 0.24 0.84 46.51 

Trial 11 1.95 9.26 30.99 9.97 0.21 1.16 46.46 

1. Replicate EDX analyses of sanidine. All concentrations 

are presented as weight percents 

 

 



 

 

Appendix F3: Eliminated EDX Spectra from Statistical Evaluation of Iron-oxyhydroxide 

Aggregates and Coatings 

Polished- 

Thin Section Id
1
 

Spectrum Na Mg Al Si P S 

PTS:9-12 1 0.22 0.22 1.03 5.85 15.01 0.02 

PTS:9-12 2 0.10 0.12 0.72 6.43 15.06 0.02 

PTS:9-12 3 0.19 0.21 0.71 5.25 15.44 0.16 

PTS:9-12 4 0.19 0.20 0.49 5.97 14.99 0.19 

PTS:9-12 5 0.06 0.14 1.40 5.23 14.53 0.08 

PTS:9-12 6 0.02 0.25 1.23 5.94 14.81 ND
2
 

PTS:9-12 7 0.01 0.50 2.64 9.59 12.14 0.10 

PTS:9-12 8 0.09 0.21 2.01 6.71 10.68 0.03 

PTS:9-12 9 ND
2
 0.13 0.63 5.65 9.49 0.14 

PTS:9-12 10 0.39 0.18 2.66 9.12 2.82 11.14 

PTS:9-12 11 0.43 0.12 3.57 7.10 3.14 10.95 

PTS:9-12 12 0.01 0.15 0.80 20.60 1.35 0.02 

1. Elemental concentrations (weight percent) of iron-oxyhydroxide 

aggregates and coatings for eliminated spectra. These spectra were 

eliminated from statistical evaluation because they consist of >15 wt. % 

of one or more elemental constituents (excluding iron and oxygen) 

and/or these spectra contain <30 wt. % Fe 

2. ND: Not detected 
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Polished- 

Thin Section Id
1
 

Spectrum Cl K Ca Ti Mn Fe O 

PTS:9-12 1 0.87 0.16 33.32 0.20 0.09 1.81 41.21 

PTS:9-12 2 0.25 0.03 33.35 0.29 0.09 1.91 41.64 

PTS:9-12 3 0.17 0.03 34.07 0.10 0.28 2.06 41.33 

PTS:9-12 4 0.19 0.10 33.08 0.26 0.28 2.75 41.33 

PTS:9-12 5 0.49 0.41 32.64 1.06 0.12 2.94 40.90 

PTS:9-12 6 0.34 0.35 32.07 0.07 0.13 3.66 41.15 

PTS:9-12 7 0.63 0.62 26.05 1.52 0.07 4.01 42.13 

PTS:9-12 8 0.39 0.61 22.12 0.12 0.24 18.84 37.95 

PTS:9-12 9 0.38 0.10 25.99 ND
2
 0.58 20.84 36.08 

PTS:9-12 10 0.32 4.49 1.42 0.51 ND
2
 24.73 42.23 

PTS:9-12 11 0.39 4.85 1.84 0.56 ND
2
 25.68 41.39 

PTS:9-12 12 0.25 0.18 1.93 0.35 0.31 36.44 37.62 

1. Elemental concentrations (weight percent) of iron-oxyhydroxide aggregates 

and coatings for eliminated spectra. These spectra were eliminated from 

statistical evaluation because they consist of >15 wt. % of one or more 

elemental constituents (excluding iron and oxygen) and/or these spectra 

contain <30 wt. % Fe 

2. ND: Not detected 
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Polished- 

Thin Section Id
1
 

Spectrum Na Mg Al Si P S 

PTS:9-12 13 0.02 0.20 0.38 18.23 0.88 0.05 

PTS:13-14 14 0.52 0.19 0.78 4.86 15.43 0.26 

PTS:13-14 15 0.38 0.28 0.93 5.54 13.08 0.22 

PTS:13-14 16 0.15 0.70 4.40 14.63 0.45 ND
2
 

PTS:13-14 17 0.04 0.56 4.73 15.31 0.40 ND
2
 

PTS:13-14 18 0.17 0.64 4.86 20.41 0.49 0.08 

PTS:13-14 19 0.18 0.42 1.75 9.58 8.90 0.07 

PTS:13-14 20 0.15 1.02 8.02 21.38 0.53 0.11 

PTS:15-16 21 0.05 0.38 0.57 2.99 0.21 0.06 

PTS:15-16 22 ND
2
 0.74 5.11 17.74 1.02 0.02 

PTS:15-16 23 0.25 0.42 6.18 15.58 0.77 0.07 

PTS:26-28 24 ND
2
 11.69 0.44 2.45 0.03 0.37 

1. Elemental concentrations (weight percent) of iron-oxyhydroxide 

aggregates and coatings for eliminated spectra. These spectra were 

eliminated from statistical evaluation because they consist of >15 wt. % 

of one or more elemental constituents (excluding iron and oxygen) 

and/or these spectra contain <30 wt. % Fe 

2. ND: Not detected 
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Polished- 

Thin Section Id
1
 

Spectrum Cl K Ca Ti Mn Fe O 

PTS:9-12 13 0.28 0.05 0.93 0.29 0.38 42.91 35.42 

PTS:13-14 14 0.23 0.09 33.76 0.03 0.30 2.42 41.14 

PTS:13-14 15 0.35 0.12 28.47 ND
2
 0.30 11.01 39.31 

PTS:13-14 16 0.56 1.03 2.99 1.04 27.56 11.41 35.07 

PTS:13-14 17 0.48 1.19 2.72 0.87 25.94 12.24 35.52 

PTS:13-14 18 0.75 1.24 2.33 0.79 15.72 13.56 38.98 

PTS:13-14 19 0.88 0.41 17.61 0.38 0.22 21.56 38.03 

PTS:13-14 20 0.64 2.17 1.69 0.65 0.25 22.31 41.08 

PTS:15-16 21 0.14 0.23 0.43 29.67 0.61 31.03 33.64 

PTS:15-16 22 0.39 0.53 2.39 0.23 0.42 33.77 37.62 

PTS:15-16 23 0.39 2.55 1.21 0.26 0.99 35.08 36.23 

PTS:26-28 24 0.30 0.42 23.75 1.95 0.87 27.31 30.42 

1. Elemental concentrations (weight percent) of iron-oxyhydroxide aggregates 

and coatings for eliminated spectra. These spectra were eliminated from 

statistical evaluation because they consist of >15 wt. % of one or more elemental 

constituents (excluding iron and oxygen) and/or these spectra contain <30 wt. % 

Fe 

2. ND: Not detected 

 



 

 

Appendix F4: Elemental Concentrations Measured from Iron-oxyhydroxide Aggregates 

and Coatings 

Polished- 

Thin Section Id
1
 

Spectrum Na Mg Al Si P S 

PTS:9-12 1 0.10 0.42 1.45 9.03 5.10 ND
2
 

PTS:9-12 2 0.35 0.11 1.87 7.06 12.67 ND
2
 

PTS:9-12 3 0.42 0.09 1.38 6.70 13.26 0.02 

PTS:9-12 4 0.34 0.18 0.75 5.08 13.46 ND
2
 

PTS:9-12 5 0.31 0.28 2.09 11.96 1.82 0.16 

PTS:9-12 6 0.14 0.27 4.17 11.20 2.21 0.16 

PTS:9-12 7 0.40 0.54 3.85 12.67 0.55 0.04 

PTS:9-12 8 0.30 0.33 1.59 11.42 1.80 ND
2
 

PTS:9-12 9 0.09 0.15 0.60 11.61 2.10 0.05 

PTS:9-12 10 0.20 0.38 1.93 10.59 1.61 0.11 

PTS:9-12 11 0.09 0.08 1.19 8.44 2.21 ND
2
 

PTS:9-12 12 0.21 0.09 0.92 9.14 2.58 0.10 

PTS:9-12 13 0.15 0.14 0.63 11.13 1.66 ND
2
 

PTS:9-12 14 0.12 0.10 0.49 11.57 0.95 ND
2
 

PTS:9-12 15 0.06 0.19 0.87 10.42 0.99 0.04 

PTS:9-12 16 0.19 0.10 0.47 10.54 0.85 0.08 

PTS:9-12 17 ND
2
 0.12 0.50 10.49 0.79 0.00 

PTS:9-12 18 ND
2
 ND

2
 0.51 7.64 2.12 0.03 

PTS:9-12 19 0.24 0.20 1.75 6.00 1.93 0.03 

PTS:9-12 20 0.07 0.25 1.09 6.75 0.96 0.05 

1. Elemental concentrations (weight percent) of iron-oxyhydroxide aggregates and 

coatings for evaluated spectra 

2. ND: Not detected 
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Polished- 

Thin Section 

Id
1
 

Spectrum Cl K Ca Ti Mn Fe O 

PTS:9-12 1 0.67 0.29 10.40 0.46 0.31 37.86 33.92 

PTS:9-12 2 0.17 0.48 0.86 0.21 0.12 38.28 37.84 

PTS:9-12 3 0.37 0.36 0.96 0.18 ND
2
 38.46 37.81 

PTS:9-12 4 0.50 0.26 1.07 0.29 0.00 41.43 36.62 

PTS:9-12 5 0.54 0.48 3.06 0.29 0.98 44.99 33.04 

PTS:9-12 6 0.47 0.41 1.67 0.19 ND
2
 45.42 33.68 

PTS:9-12 7 0.26 0.79 1.12 0.18 0.24 46.22 33.15 

PTS:9-12 8 1.18 0.54 2.83 0.24 0.18 47.48 32.12 

PTS:9-12 9 0.36 0.18 3.60 0.09 0.65 48.29 32.23 

PTS:9-12 10 0.34 0.38 2.17 0.22 0.53 49.74 31.83 

PTS:9-12 11 1.34 0.20 3.89 0.42 0.90 50.91 30.33 

PTS:9-12 12 0.28 0.16 3.88 0.14 0.01 51.30 31.20 

PTS:9-12 13 0.30 0.06 2.09 0.38 0.30 51.64 31.52 

PTS:9-12 14 0.27 0.09 0.89 0.41 0.59 53.43 31.08 

PTS:9-12 15 0.33 0.19 1.49 0.16 0.67 54.07 30.54 

PTS:9-12 16 0.14 0.05 1.11 0.35 0.40 55.31 30.42 

PTS:9-12 17 0.29 ND
2
 1.26 0.33 0.44 55.52 30.26 

PTS:9-12 18 0.11 0.04 2.73 0.04 0.21 57.08 29.48 

PTS:9-12 19 0.63 0.17 1.07 0.17 ND
2
 59.16 28.66 

PTS:9-12 20 0.44 0.25 1.74 0.26 0.47 59.42 28.24 

1. Elemental concentrations (weight percent) of iron-oxyhydroxide aggregates and coatings 

for evaluated spectra 

2. ND: Not detected. 
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Polished- 

Thin Section Id
1
 

Spectrum Na Mg Al Si P S 

PTS:9-12 21 0.05 0.23 0.89 6.51 1.50 0.01 

PTS:9-12 22 0.11 0.13 0.65 6.45 1.58 ND
2
 

PTS:9-12 23 0.15 ND
2
 0.50 7.56 0.35 0.05 

PTS:9-12 24 0.15 0.07 0.81 3.49 2.84 0.03 

PTS:13-14 25 0.20 0.34 1.89 10.40 2.90 ND
2
 

PTS:13-14 26 0.15 0.21 1.29 13.71 1.93 ND
2
 

PTS:13-14 27 0.27 0.19 1.24 11.10 2.72 0.06 

PTS:13-14 28 0.28 0.26 1.21 8.37 2.21 0.05 

PTS:13-14 29 0.08 0.01 0.31 11.55 1.79 0.05 

PTS:13-14 30 0.05 0.32 2.51 8.10 2.03 0.04 

PTS:13-14 31 0.03 0.13 0.40 10.22 0.82 ND
2
 

PTS:13-14 32 0.51 0.01 0.75 10.17 1.29 ND
2
 

PTS:13-14 33 0.33 0.16 1.63 9.21 1.29 ND
2
 

PTS:13-14 34 ND
2
 0.24 0.70 10.15 1.47 ND

2
 

PTS:13-14 35 0.35 0.16 0.85 9.34 1.12 0.02 

PTS:13-14 36 0.04 0.09 0.71 7.30 1.80 ND
2
 

PTS:13-14 37 0.20 0.09 0.49 8.49 1.90 0.01 

PTS:13-14 38 0.17 0.04 0.55 8.93 1.17 0.03 

PTS:13-14 39 0.14 0.11 0.78 8.77 1.18 ND
2
 

PTS:13-14 40 0.08 0.10 0.56 5.58 1.07 0.07 

1. Elemental concentrations (weight percent) of iron-oxyhydroxide aggregates and 

coatings for evaluated spectra.  

2. ND: Not detected 
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Polished- 

Thin Section Id
1
 

Spectrum Cl K Ca Ti Mn Fe O 

PTS:9-12 21 0.30 0.25 1.93 0.09 0.16 59.74 28.36 

PTS:9-12 22 0.20 0.20 2.00 0.08 0.17 60.16 28.27 

PTS:9-12 23 0.32 0.16 0.38 0.17 0.26 62.28 27.84 

PTS:9-12 24 0.21 0.22 1.72 0.12 0.12 62.87 27.37 

PTS:13-14 25 0.41 0.49 5.21 0.09 0.70 44.59 32.78 

PTS:13-14 26 0.50 0.22 2.87 0.10 0.04 45.30 33.69 

PTS:13-14 27 0.29 0.32 4.88 0.03 0.37 45.74 32.80 

PTS:13-14 28 0.48 0.25 4.04 1.21 1.78 49.02 30.84 

PTS:13-14 29 0.28 0.11 3.08 ND
2
 0.28 50.73 31.72 

PTS:13-14 30 0.25 0.63 3.41 0.14 0.11 51.66 30.77 

PTS:13-14 31 0.23 0.04 1.54 2.90 0.44 52.40 30.85 

PTS:13-14 32 0.35 ND
2
 2.06 0.21 0.68 53.41 30.56 

PTS:13-14 33 0.34 0.53 1.99 0.31 0.37 53.48 30.37 

PTS:13-14 34 0.87 0.13 1.93 0.09 0.25 53.65 30.53 

PTS:13-14 35 0.54 0.21 1.72 0.46 0.50 54.74 29.97 

PTS:13-14 36 0.82 0.13 3.27 0.29 1.24 55.27 29.06 

PTS:13-14 37 0.28 0.08 2.85 0.05 0.17 55.53 29.85 

PTS:13-14 38 0.37 0.02 1.93 0.19 1.42 55.62 29.56 

PTS:13-14 39 0.31 0.05 1.85 0.06 1.29 55.93 29.52 

PTS:13-14 40 0.43 ND
2
 3.50 0.13 2.88 58.17 27.43 

1. Elemental concentrations (weight percent) of iron-oxyhydroxide aggregates and coatings 

for evaluated spectra 

2. ND: Not detected. 
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Polished- 

Thin Section Id
1
 

Spectrum Na Mg Al Si P S 

PTS:13-14 41 0.05 0.18 0.45 7.94 0.91 ND
2
 

PTS:13-14 42 0.17 0.14 0.36 6.74 1.06 0.06 

PTS:13-14 43 0.26 0.26 0.35 7.03 1.46 0.05 

PTS:13-14 44 ND
2
 0.04 0.26 7.38 1.04 0.19 

PTS:13-14 45 0.15 0.11 0.73 6.59 0.96 ND
2
 

PTS:13-14 46 0.29 0.05 0.34 3.22 0.37 0.28 

PTS:15-16 47 0.14 0.66 2.62 9.39 0.42 0.11 

PTS:15-16 48 0.23 1.29 2.65 10.42 0.30 0.09 

PTS:15-16 49 0.14 0.27 1.49 10.07 1.96 0.06 

PTS:15-16 50 0.19 0.16 0.44 8.01 1.82 0.04 

PTS:15-16 51 0.08 0.28 1.52 12.24 1.35 0.02 

PTS:15-16 52 0.12 0.03 0.38 12.85 1.29 0.04 

PTS:15-16 53 0.19 0.34 1.98 10.73 1.30 0.04 

PTS:15-16 54 0.42 0.31 1.42 10.62 1.40 ND
2
 

PTS:15-16 55 0.10 0.25 1.57 11.08 1.21 0.08 

PTS:15-16 56 0.05 0.25 1.61 11.03 1.13 ND
2
 

PTS:15-16 57 0.40 0.10 0.26 7.45 1.88 0.05 

PTS:15-16 58 0.14 0.12 0.60 10.32 1.85 0.07 

PTS:15-16 59 0.12 0.22 0.42 11.61 1.51 ND
2
 

PTS:15-16 60 0.25 0.25 1.14 10.25 1.21 0.03 

1. Elemental concentrations (weight percent) of iron-oxyhydroxide aggregates and 

coatings for evaluated spectra.  

2. ND: Not detected 
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Polished- 

Thin Section Id
1
 

Spectrum Cl K Ca Ti Mn Fe O 

PTS:13-14 41 0.26 0.03 1.19 0.68 1.14 58.42 28.76 

PTS:13-14 42 0.46 0.07 2.01 0.02 2.33 58.64 27.93 

PTS:13-14 43 0.31 ND
2
 1.81 0.32 0.74 58.86 28.56 

PTS:13-14 44 0.28 ND
2
 1.56 0.17 0.10 60.57 28.41 

PTS:13-14 45 0.25 0.04 1.80 0.14 0.36 60.96 27.91 

PTS:13-14 46 0.23 0.10 0.86 0.12 0.32 68.61 25.20 

PTS:15-16 47 0.26 0.61 0.96 11.21 0.30 39.66 33.66 

PTS:15-16 48 0.47 0.51 5.56 0.13 1.17 45.67 31.51 

PTS:15-16 49 0.66 0.37 3.19 0.03 2.93 47.38 31.44 

PTS:15-16 50 0.47 0.15 9.73 0.05 1.03 47.85 30.05 

PTS:15-16 51 0.58 0.49 2.11 0.09 0.36 48.59 32.30 

PTS:15-16 52 0.42 ND
2
 1.76 0.22 0.87 49.88 32.15 

PTS:15-16 53 0.45 0.47 1.99 0.38 0.29 50.23 31.62 

PTS:15-16 54 0.44 0.58 2.26 0.19 0.79 50.26 31.30 

PTS:15-16 55 0.34 0.22 1.91 0.24 0.86 50.55 31.60 

PTS:15-16 56 0.29 0.46 2.14 0.27 0.63 50.70 31.46 

PTS:15-16 57 0.60 0.04 7.12 0.03 1.72 50.97 29.39 

PTS:15-16 58 0.35 0.23 3.21 0.32 0.41 51.13 31.23 

PTS:15-16 59 0.35 0.11 2.24 ND
2
 0.42 51.48 31.52 

PTS:15-16 60 0.25 0.07 2.43 0.23 1.34 51.67 30.88 

1. Elemental concentrations (weight percent) of iron-oxyhydroxide aggregates and coatings 

for evaluated spectra 

2. ND: Not detected. 

 

  



243 

 

Polished- 

Thin Section Id
1
 

Spectrum Na Mg Al Si P S 

PTS:15-16 61 0.21 0.21 1.38 10.46 1.15 0.05 

PTS:15-16 62 0.28 0.31 0.77 9.46 1.73 0.08 

PTS:15-16 63 0.19 0.21 1.01 10.10 1.52 0.01 

PTS:15-16 64 0.20 0.15 0.44 9.95 1.66 0.12 

PTS:15-16 65 0.24 0.18 0.93 10.00 1.52 ND
2
 

PTS:15-16 66 0.02 0.19 1.43 10.42 0.88 0.08 

PTS:15-16 67 0.30 0.33 0.91 9.47 1.24 0.06 

PTS:15-16 68 0.14 0.36 1.74 9.80 1.14 0.16 

PTS:15-16 69 0.34 0.18 0.81 9.61 1.37 0.01 

PTS:15-16 70 0.17 0.18 0.88 9.50 1.18 0.05 

PTS:15-16 71 0.26 0.17 0.48 9.21 1.58 ND
2
 

PTS:15-16 72 0.06 0.18 0.79 8.93 1.28 ND
2
 

PTS:15-16 73 0.04 0.23 1.16 9.41 0.98 0.10 

PTS:15-16 74 0.22 0.20 1.41 8.84 0.97 0.01 

PTS:15-16 75 0.17 0.02 0.39 8.69 1.42 0.01 

PTS:15-16 76 0.12 0.23 0.75 7.80 1.18 0.04 

PTS:15-16 77 0.22 0.31 1.02 8.20 1.03 0.05 

PTS:15-16 78 0.13 0.23 0.56 8.22 1.45 ND
2
 

PTS:15-16 79 0.17 0.17 1.07 8.61 0.74 0.04 

PTS:15-16 80 0.27 0.18 1.25 7.39 0.80 0.03 

1. Elemental concentrations (weight percent) of iron-oxyhydroxide aggregates and 

coatings for evaluated spectra.  

2. ND: Not detected 
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Polished- 

Thin Section Id
1
 

Spectrum Cl K Ca Ti Mn Fe O 

PTS:15-16 61 0.32 0.11 1.71 0.11 1.24 52.08 30.97 

PTS:15-16 62 0.66 0.31 2.41 0.18 1.13 52.14 30.53 

PTS:15-16 63 0.45 0.25 2.01 0.09 1.02 52.33 30.80 

PTS:15-16 64 0.33 0.07 3.26 ND
2
 0.66 52.42 30.74 

PTS:15-16 65 0.67 0.23 2.18 0.29 0.48 52.60 30.70 

PTS:15-16 66 0.28 0.23 1.67 0.25 0.61 53.13 30.81 

PTS:15-16 67 0.79 0.44 1.66 0.38 0.90 53.33 30.17 

PTS:15-16 68 0.37 0.40 1.23 0.15 0.34 53.41 30.77 

PTS:15-16 69 0.47 0.06 1.50 0.23 0.75 54.40 30.26 

PTS:15-16 70 0.46 0.25 1.78 0.18 0.65 54.62 30.10 

PTS:15-16 71 0.38 0.06 2.47 ND
2
 0.62 54.73 30.03 

PTS:15-16 72 0.45 0.22 2.18 0.15 1.21 54.83 29.73 

PTS:15-16 73 0.26 0.37 1.12 0.74 0.42 54.97 30.21 

PTS:15-16 74 0.42 0.21 1.59 0.82 0.41 54.98 29.90 

PTS:15-16 75 0.59 0.12 1.77 0.42 0.73 56.19 29.48 

PTS:15-16 76 0.27 0.06 2.70 0.42 0.80 56.51 29.13 

PTS:15-16 77 0.42 0.24 2.01 0.08 0.59 56.59 29.23 

PTS:15-16 78 0.28 0.20 2.09 0.34 0.42 56.68 29.40 

PTS:15-16 79 0.36 0.25 1.37 0.13 0.20 57.66 29.22 

PTS:15-16 80 0.18 0.27 0.93 0.15 0.46 59.57 28.53 

1. Elemental concentrations (weight percent) of iron-oxyhydroxide aggregates and coatings 

for evaluated spectra 

2. ND: Not detected. 
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Polished- 

Thin Section Id
1
 

Spectrum Na Mg Al Si P S 

PTS:15-16 81 0.29 0.07 0.58 7.59 0.92 0.17 

PTS:15-16 82 0.23 0.13 0.55 7.55 0.74 ND
2
 

PTS:15-16 83 0.15 0.22 0.82 7.09 0.95 ND
2
 

PTS:15-16 84 0.11 0.23 0.78 6.92 0.85 0.01 

PTS:15-16 85 0.16 0.46 0.49 4.23 0.77 0.20 

PTS:15-16 86 0.33 0.18 0.40 4.70 0.75 0.26 

PTS:15-16 87 ND
2
 0.16 0.47 5.75 0.78 0.16 

PTS:26-28 88 0.23 3.85 0.66 3.01 0.38 0.29 

PTS:26-28 89 0.20 0.84 2.00 6.31 0.34 0.29 

PTS:26-28 90 0.12 1.66 0.93 3.76 1.27 0.20 

PTS:26-28 91 0.46 1.32 0.71 3.07 0.36 0.50 

PTS:26-28 92 0.03 1.38 1.72 3.70 0.43 0.32 

PTS:26-28 93 0.13 1.88 0.60 2.22 0.43 0.22 

PTS:26-28 94 0.32 0.93 0.24 9.38 1.35 0.68 

PTS:26-28 95 0.24 1.68 0.43 2.14 0.30 0.29 

PTS:26-28 96 0.15 1.77 0.61 2.12 0.45 0.28 

PTS:26-28 97 0.19 1.63 1.51 2.85 0.49 0.22 

PTS:26-28 98 0.26 0.27 0.67 9.83 0.73 0.05 

PTS:26-28 99 ND
2
 0.23 0.60 7.17 0.96 0.09 

PTS:26-28 100 0.24 0.16 0.48 6.66 0.91 0.19 

1. Elemental concentrations (weight percent) of iron-oxyhydroxide aggregates and 

coatings for evaluated spectra.  

2. ND: Not detected 
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Polished- 

Thin Section Id
1
 

Spectrum Cl K Ca Ti Mn Fe O 

PTS:15-16 81 0.04 0.07 1.37 0.08 0.57 59.64 28.62 

PTS:15-16 82 0.24 0.09 1.37 0.21 0.47 60.14 28.28 

PTS:15-16 83 0.12 0.16 0.96 0.04 0.62 60.63 28.23 

PTS:15-16 84 0.24 0.27 0.86 0.13 0.57 61.02 28.01 

PTS:15-16 85 0.25 0.13 4.23 ND
2
 0.71 61.84 26.54 

PTS:15-16 86 0.27 0.13 3.68 ND
2
 0.66 61.92 26.73 

PTS:15-16 87 0.22 0.06 0.99 0.06 0.41 63.75 27.17 

PTS:26-28 88 0.40 0.54 10.17 1.22 2.40 49.44 27.41 

PTS:26-28 89 0.49 0.99 5.78 0.90 2.13 50.95 28.79 

PTS:26-28 90 0.39 0.41 7.90 1.52 2.18 51.75 27.91 

PTS:26-28 91 0.37 0.38 7.01 3.47 2.68 52.33 27.34 

PTS:26-28 92 0.49 0.50 7.22 1.57 2.49 52.61 27.53 

PTS:26-28 93 0.30 0.22 8.40 2.96 2.34 53.63 26.66 

PTS:26-28 94 0.48 0.30 1.06 0.79 ND
2
 53.70 30.77 

PTS:26-28 95 0.36 0.34 7.76 3.15 2.32 54.57 26.42 

PTS:26-28 96 0.47 0.21 8.11 2.45 1.90 55.06 26.42 

PTS:26-28 97 0.37 0.27 7.54 0.55 2.57 55.15 26.67 

PTS:26-28 98 0.21 0.28 1.26 0.65 0.28 55.46 30.05 

PTS:26-28 99 0.22 0.31 1.40 0.71 0.65 59.18 28.47 

PTS:26-28 100 0.16 0.31 1.19 0.48 0.47 60.71 28.05 

1. Elemental concentrations (weight percent) of iron-oxyhydroxide aggregates and coatings 

for evaluated spectra 

2. ND: Not detected. 

 



 

 

Appendix F5: Mineral Chemistry Data 

Polished-Thin 

Section ID
1
 

Mineral O Na Al Si K 

PTS:2-5 
Alkali 

Feldspar 
50.38 ND

2
 8.89 28.88 11.85 

PTS:2-5 
Alkali 

Feldspar 
48.65 ND

2
 9.12 29.63 12.60 

PTS:2-5 
Alkali 

Feldspar 
50.33 ND

2
 8.95 28.71 12.01 

PTS:2-5 
Alkali 

Feldspar 
50.33 0.67 8.78 28.96 11.25 

PTS:15-16 
Alkali 

Feldspar 
55.21 0.36 8.04 25.95 10.44 

PTS:26-28 
Alkali 

Feldspar 
48.08 0.57 9.42 30.06 11.87 

1. Concentrations (weight percent) of elements comprising alkali 

feldspar 

2. ND: Not detected 
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Polished-Thin 

Section ID
1
 

Mineral O Mg Al Si Ca Ti Mn Fe 

PTS:9-12 Almandine 44.47 2.07 9.98 17.53 1.01 ND
2
 2.12 22.82 

PTS:9-12 Almandine 44.55 1.52 10.22 16.83 0.71 ND
2
 6.00 20.17 

PTS:9-12 Almandine 45.03 0.77 9.46 16.92 4.54 ND
2
 8.59 14.69 

PTS:9-12 Almandine 44.68 1.21 9.91 17.34 0.87 ND
2
 2.48 23.51 

PTS:13-14 Almandine 45.07 1.16 9.37 17.08 3.87 ND
2
 0.83 22.63 

PTS:13-14 Almandine 44.80 1.48 9.82 16.81 0.00 ND
2
 3.40 23.68 

PTS:13-14 Almandine 44.61 0.66 9.42 16.98 1.23 ND
2
 11.96 15.13 

PTS:17-19 Almandine 40.46 1.50 10.78 18.34 2.05 1.08 4.60 21.20 

PTS:17-19 Almandine 40.50 2.32 10.96 18.03 0.90 1.24 3.08 22.96 

PTS:17-19 Almandine 40.61 2.37 10.76 18.30 1.64 0.96 2.59 22.77 

PTS:17-19 Almandine 41.68 4.31 10.94 19.22 2.19 0.33 0.94 20.40 

PTS:17-19 Almandine 41.18 3.90 10.91 18.53 0.87 1.06 0.78 22.78 

PTS:17-19 Almandine 40.27 1.01 10.33 17.98 4.35 1.90 1.55 22.61 

PTS:17-19 Almandine 40.83 2.23 10.54 18.50 4.58 1.04 1.04 21.24 

PTS:23-25 Almandine 44.75 1.14 9.42 16.03 4.30 2.19 0.72 21.46 

PTS:23-25 Almandine 44.93 0.58 9.60 16.02 2.69 1.87 7.23 17.08 

PTS:23-25 Almandine 45.05 1.46 9.43 15.91 0.58 1.78 1.86 23.94 

PTS:23-25 Almandine 45.74 4.13 9.71 16.22 3.41 2.71 0.54 17.53 

PTS:23-25 Almandine 47.83 5.45 9.51 15.84 0.86 2.51 ND
2
 18.01 

PTS:23-25 Almandine 46.13 4.20 9.74 16.47 1.17 2.42 1.07 18.79 

PTS:23-25 Almandine 44.94 1.65 9.40 16.29 4.22 2.60 0.56 20.35 

PTS:23-25 Almandine 44.72 0.76 9.44 16.45 3.98 1.77 0.74 22.14 

PTS:23-25 Almandine 44.45 0.73 9.89 15.76 0.82 1.81 4.13 22.40 

PTS:23-25 Almandine 44.82 1.60 9.40 16.05 1.04 2.01 4.45 20.62 

1. Concentrations (weight percent) of elements comprising almandine 

2. ND: Not detected 



249 

 

Polished-Thin 

Section ID
1
 

Mineral O Na Mg Al Si Cl K Ca Ti Fe 

PTS:2-5 Amphibole 51.37 ND
2
 1.67 5.95 19.60 ND

2
 3.65 ND

2
 2.76 15.00 

PTS:2-5 Amphibole 52.46 ND
2
 1.47 7.81 20.38 ND

2
 2.65 ND

2
 1.91 13.32 

PTS:2-5 Amphibole 49.00 0.80 6.86 4.47 19.90 ND
2
 0.72 6.83 2.26 9.16 

PTS:2-5 Amphibole 47.46 0.75 5.14 5.48 18.50 ND
2
 0.70 6.78 2.76 12.42 

PTS:2-5 Amphibole 48.81 1.28 7.15 6.49 18.64 ND
2
 0.53 6.53 2.53 8.03 

PTS:2-5 Amphibole 49.69 ND
2
 9.92 1.12 22.92 ND

2
 ND

2
 7.08 3.38 5.90 

PTS:2-5 Amphibole 49.47 0.68 9.29 3.38 22.77 ND
2
 ND

2
 7.22 1.63 5.56 

PTS:2-5 Amphibole 49.18 0.91 9.69 2.56 23.85 ND
2
 ND

2
 6.92 1.17 5.73 

PTS:2-5 Amphibole 54.72 1.26 3.65 15.81 17.26 ND
2
 ND

2
 0.52 1.71 5.07 

PTS:2-5 Amphibole 49.23 0.54 9.79 2.51 22.23 ND
2
 ND

2
 6.96 2.77 5.97 

PTS:9-12 Amphibole 48.38 0.91 6.37 5.63 19.68 ND
2
 0.88 7.19 0.55 10.41 

PTS:9-12 Amphibole 48.00 0.94 5.79 5.22 18.62 ND
2
 1.14 6.94 1.54 11.80 

PTS:17-19 Amphibole 42.97 1.37 7.01 7.00 21.34 0.19 0.28 7.72 1.45 10.67 

PTS:23-25 Amphibole 47.96 1.12 5.30 5.45 17.68 ND
2
 1.23 6.35 2.81 12.09 

PTS:23-25 Amphibole 47.39 1.03 5.49 5.60 17.84 ND
2
 1.19 6.64 3.13 11.69 

PTS:23-25 Amphibole 46.03 1.13 5.40 4.41 18.37 0.91 1.17 6.74 3.55 12.29 

PTS:23-25 Amphibole 48.55 1.03 5.76 5.23 17.37 ND
2
 1.09 6.42 3.49 11.05 

1. Concentrations (weight percent) of elements comprising amphiboles     

2. ND: Not detected 
          



250 

 

Polished-Thin 

Section ID
1
 

Mineral O Na Mg Al Si Cl K Ca Ti Fe 

PTS:23-25 Amphibole 47.92 1.04 5.46 5.08 17.90 ND
2
 1.08 6.46 2.93 12.14 

PTS:23-25 Amphibole 45.30 1.09 5.42 4.45 17.53 ND
2
 1.08 6.70 4.38 14.05 

PTS:23-25 Amphibole 46.40 1.02 3.40 5.27 17.57 ND
2
 1.07 6.66 2.44 16.16 

PTS:23-25 Amphibole 47.50 1.26 5.53 5.86 17.87 ND
2
 1.05 6.78 2.53 11.61 

PTS:23-25 Amphibole 47.80 1.30 5.91 4.48 17.75 ND
2
 0.96 6.12 3.31 12.37 

PTS:23-25 Amphibole 47.51 1.06 5.85 5.04 17.84 ND
2
 0.95 6.60 3.12 12.03 

PTS:23-25 Amphibole 47.63 0.89 5.31 5.52 18.29 ND
2
 0.90 6.82 2.46 12.17 

PTS:23-25 Amphibole 47.81 0.98 5.90 4.61 18.13 ND
2
 0.80 6.77 3.07 11.94 

PTS:23-25 Amphibole 47.90 0.91 5.63 4.78 18.22 ND
2
 0.80 6.76 2.74 12.27 

PTS:23-25 Amphibole 46.81 1.15 5.90 3.92 18.10 0.55 0.77 6.40 3.69 12.71 

PTS:23-25 Amphibole 47.51 1.38 6.26 6.01 17.35 ND
2
 0.76 6.48 4.10 10.15 

PTS:23-25 Amphibole 48.07 1.32 6.72 5.46 18.20 ND
2
 0.76 6.76 2.64 10.07 

PTS:23-25 Amphibole 47.65 0.99 4.57 5.79 17.51 ND
2
 0.76 6.73 2.72 13.29 

PTS:23-25 Amphibole 48.35 1.18 6.57 5.60 18.06 ND
2
 0.72 6.34 3.46 9.71 

PTS:23-25 Amphibole 47.67 0.92 4.60 5.65 17.56 ND
2
 0.68 6.70 2.57 13.64 

PTS:23-25 Amphibole 47.15 1.48 5.21 6.23 17.67 0.88 0.67 6.11 2.46 12.14 

PTS:23-25 Amphibole 47.61 1.77 5.46 5.87 16.58 0.51 0.66 6.11 3.90 11.52 

PTS:23-25 Amphibole 47.32 1.23 3.55 6.61 17.29 ND
2
 0.59 6.55 2.67 14.18 

1. Concentrations (weight percent) of elements comprising amphiboles     

2. ND: Not detected 
          



251 

 

Polished-Thin  

Section ID
1
 

Mineral O Na Mg Al Si Cl K Ca Ti Fe 

PTS:23-25 Amphibole 47.79 1.10 4.18 6.02 16.91 ND
2
 0.50 6.49 3.32 13.69 

PTS:23-25 Amphibole 46.28 0.79 5.59 15.95 19.87 0.22 0.16 5.29 1.60 4.25 

PTS:23-25 Amphibole 47.00 ND
2
 0.25 10.73 16.33 0.14 ND

2
 13.38 2.41 9.75 

PTS:23-25 Amphibole 48.05 1.13 5.43 6.51 18.29 ND
2
 ND

2
 6.59 2.51 11.49 

PTS:23-25 Amphibole 48.49 1.15 7.22 6.39 18.56 ND
2
 ND

2
 6.38 2.60 9.22 

PTS:23-25 Amphibole 48.21 0.64 7.99 4.23 20.42 ND
2
 ND

2
 7.29 2.22 9.00 

PTS:23-25 Amphibole 47.75 0.93 6.47 5.02 19.17 ND
2
 ND

2
 6.53 2.60 11.52 

PTS:23-25 Amphibole 47.21 0.71 6.43 5.11 19.84 ND
2
 ND

2
 7.12 2.98 10.60 

PTS:23-25 Amphibole 47.87 1.67 6.40 5.72 18.64 ND
2
 ND

2
 5.82 2.51 11.36 

PTS:23-25 Amphibole 45.71 0.97 6.46 4.56 20.22 ND
2
 ND

2
 7.33 3.54 11.21 

PTS:23-25 Amphibole 48.50 0.97 5.86 6.45 17.88 ND
2
 ND

2
 6.58 2.97 10.80 

PTS:23-25 Amphibole 49.12 1.22 8.80 3.83 20.48 ND
2
 ND

2
 6.29 2.23 8.04 

PTS:23-25 Amphibole 49.71 1.15 6.42 4.94 18.61 ND
2
 ND

2
 6.39 2.27 10.51 

PTS:23-25 Amphibole 48.86 1.24 5.82 6.14 18.62 ND
2
 ND

2
 6.72 2.23 10.38 

PTS:23-25 Amphibole 48.61 0.73 8.10 3.20 20.85 ND
2
 ND

2
 6.87 2.45 9.20 

PTS:23-25 Amphibole 48.15 1.08 5.96 5.57 19.10 ND
2
 ND

2
 6.56 2.29 11.28 

PTS:23-25 Amphibole 49.09 1.32 8.25 4.79 19.65 ND
2
 ND

2
 6.16 2.69 8.05 

PTS:23-25 Amphibole 47.59 1.17 6.24 5.45 18.82 ND
2
 ND

2
 6.50 3.03 11.21 

1. Concentrations (weight percent) of elements comprising amphiboles     

2. ND: Not detected 
          



252 

 

Polished-Thin 

Section ID
1
 

Mineral O Na Mg Al Si Cl K Ca Ti Fe 

PTS:23-25 Amphibole 54.95 1.62 2.76 13.90 15.19 ND
2
 ND

2
 ND

2
 2.90 8.69 

PTS:26-28 Amphibole 47.24 1.27 8.16 15.45 19.86 0.20 0.16 5.28 0.43 1.95 

PTS:26-28 Amphibole 46.88 1.69 4.33 19.34 19.62 0.34 0.14 2.58 0.57 4.50 

PTS:26-28 Amphibole 47.16 1.46 5.28 18.84 19.34 0.36 ND
2
 3.56 0.99 3.03 

PTS:26-28 Amphibole 46.59 1.87 4.20 18.21 19.40 0.21 ND
2
 3.25 0.97 5.28 

PTS:26-28 Amphibole 46.10 2.04 4.48 17.23 20.08 0.36 ND
2
 1.63 1.39 6.68 

PTS:26-28 Amphibole 47.38 1.55 5.41 18.99 20.05 0.29 ND
2
 2.75 0.60 2.98 

1. Concentrations (weight percent) of elements comprising amphiboles     

2. ND: Not detected. 
          



253 

 

Polished-Thin 

Section ID
1
 

Spectrum O F Na Mg Al Si P S Cl Ca Ti Fe 

PTS:9-12 Apatite 45.76 3.59 0.54 ND
2
 ND

2
 0.60 14.21 0.91 ND

2
 32.58 ND

2
 1.81 

PTS:13-14 Apatite 45.69 ND
2
 0.57 ND

2
 ND

2
 0.82 14.67 2.66 ND

2
 31.91 ND

2
 3.69 

PTS:13-14 Apatite 48.13 ND
2
 0.75 ND

2
 ND

2
 ND

2
 14.72 0.93 ND

2
 33.34 ND

2
 2.14 

PTS:13-14 Apatite 48.89 ND
2
 0.68 ND

2
 ND

2
 2.72 13.56 0.89 ND

2
 30.67 ND

2
 2.60 

PTS:17-19 Apatite 40.73 ND
2
 0.74 ND

2
 0.87 2.22 14.88 1.28 0.21 33.91 1.87 3.29 

PTS:17-19 Apatite 40.83 ND
2
 0.53 0.31 0.81 1.25 16.23 0.85 ND

2
 36.15 0.83 2.23 

PTS:23-25 Apatite 46.30 ND
2
 0.71 ND

2
 ND

2
 0.75 13.70 1.89 ND

2
 30.59 2.38 3.68 

PTS:23-25 Apatite 40.99 ND
2
 0.78 0.45 0.93 2.07 15.40 1.09 0.16 36.51 0.25 1.36 

PTS:23-25 Apatite 41.19 ND
2
 0.76 0.49 1.00 2.19 15.25 1.33 0.17 34.43 0.91 2.27 

PTS:23-25 Apatite 42.10 ND
2
 0.62 0.43 0.68 0.71 14.34 4.15 ND

2
 31.21 ND

2
 5.76 

PTS:23-25 Apatite 38.82 4.75 0.72 0.29 0.19 0.84 15.63 1.12 0.16 36.14 0.15 1.19 

PTS:23-25 Apatite 39.04 4.15 0.72 0.29 0.25 0.98 14.98 1.73 0.17 36.03 ND
2
 1.67 

PTS:26-28 Apatite 39.38 3.73 0.54 0.50 0.27 1.27 15.33 1.22 0.18 36.09 ND
2
 1.49 

PTS:26-28 Apatite 38.96 4.39 0.69 0.36 0.28 0.60 15.43 1.28 0.18 36.82 0.16 0.84 

PTS:26-28 Apatite 39.68 3.94 0.66 0.36 0.57 1.82 14.64 1.73 0.21 34.91 0.16 1.32 

1. Concentrations (weight percent) of elements comprising apatite 

2. ND: Not detected 



254 

 

Polished-Thin 

Section ID
1 Mineral O Na Mg Al Si Cl Ca Fe 

PTS:9-12 Calcite 60.11 0.33 ND
2
 0.37 1.26 0.52 33.65 3.77 

PTS:13-14 Calcite 58.53 0.40 0.42 ND
2
 0.98 ND

2
 34.81 4.86 

PTS:13-14 Calcite 57.42 0.45 ND
2
 0.26 1.43 0.42 35.48 4.54 

PTS:13-14 Calcite 61.74 0.47 ND
2
 ND

2
 1.28 0.62 32.19 3.70 

PTS:26-28 Calcite 67.76 ND
2
 0.48 0.19 0.93 0.18 29.98 0.46 

1. Concentrations (weight percent) of elements comprising calcite 

2. ND: Not detected 
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Polished-Thin 

Section ID
1 Mineral O Mg Al Si P Cl K Ca Ti Fe 

PTS:9-12 Glauconite 50.64 2.41 5.43 20.97 ND
2
 ND

2
 4.70 ND

2
 2.76 13.09 

PTS:9-12 Glauconite 49.65 2.22 3.48 21.96 ND
2
 ND

2
 4.81 0.58 ND

2
 17.30 

PTS:9-12 Glauconite 51.54 1.94 4.34 21.81 ND
2
 ND

2
 3.31 0.70 0.67 15.69 

PTS:9-12 Glauconite 48.75 2.78 2.83 22.42 1.24 ND
2
 6.26 2.24 ND

2
 13.47 

PTS:9-12 Glauconite 46.96 2.08 2.50 21.95 ND
2
 ND

2
 5.03 0.47 ND

2
 21.01 

PTS:9-12 Glauconite 51.74 1.76 5.36 20.13 0.98 ND
2
 2.04 1.12 0.74 16.13 

PTS:9-12 Glauconite 49.65 2.61 3.40 22.61 ND
2
 ND

2
 6.29 0.83 ND

2
 14.61 

PTS:9-12 Glauconite 49.66 2.11 2.13 22.10 ND
2
 ND

2
 5.07 0.46 ND

2
 18.47 

PTS:9-12 Glauconite 50.31 1.93 4.39 20.88 1.43 ND
2
 2.79 0.68 ND

2
 17.59 

PTS:9-12 Glauconite 50.14 1.91 4.02 22.08 0.75 ND
2
 3.36 0.76 ND

2
 16.98 

PTS:9-12 Glauconite 48.11 1.86 2.85 18.83 0.72 ND
2
 4.01 ND

2
 ND

2
 23.63 

PTS:13-14 Glauconite 50.05 2.10 4.08 23.41 ND
2
 ND

2
 3.31 1.10 ND

2
 15.95 

PTS:13-14 Glauconite 48.66 2.77 1.53 23.28 ND
2
 ND

2
 6.47 ND

2
 ND

2
 17.29 

PTS:13-14 Glauconite 48.06 1.59 2.71 22.06 ND
2
 ND

2
 3.66 1.15 ND

2
 20.77 

PTS:13-14 Glauconite 47.78 2.00 1.79 22.15 ND
2
 ND

2
 5.06 0.77 ND

2
 20.44 

PTS:17-19 Glauconite 41.12 2.65 3.19 24.34 ND
2
 0.40 5.59 0.68 1.37 20.65 

PTS:17-19 Glauconite 41.60 2.57 2.95 24.24 ND
2
 0.34 5.31 0.75 1.15 21.09 

PTS:17-19 Glauconite 42.66 2.15 3.44 25.47 0.63 0.39 3.78 1.98 1.70 17.79 

PTS:17-19 Glauconite 41.05 2.14 2.13 22.58 0.25 0.24 5.57 0.92 2.09 23.02 

1. Concentrations (weight percent) of elements comprising glauconite 

2. ND: Not detected 
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Polished-Thin 

Section ID
1 Mineral O Mg Al Si P Cl K Ca Ti Fe 

PTS:17-19 Glauconite 45.83 1.71 1.85 18.99 0.18 0.26 4.34 1.04 1.53 24.28 

PTS:17-19 Glauconite 42.58 2.28 4.85 26.11 ND
2
 0.72 3.89 1.22 1.28 17.08 

PTS:17-19 Glauconite 40.54 2.48 2.84 24.29 ND
2
 0.30 6.15 0.57 1.75 21.07 

PTS:17-19 Glauconite 42.80 2.35 5.24 25.61 0.37 0.78 3.61 1.52 1.35 16.38 

PTS:23-25 Glauconite 49.64 2.04 2.42 20.66 ND
2
 ND

2
 3.86 0.73 2.09 18.55 

PTS:23-25 Glauconite 49.85 1.94 3.52 21.17 ND
2
 ND

2
 5.42 0.51 2.11 15.48 

PTS:23-25 Glauconite 50.33 2.19 3.22 21.19 ND
2
 ND

2
 5.06 0.51 1.30 16.20 

PTS:26-28 Glauconite 41.96 3.58 2.83 25.03 0.61 0.34 6.52 2.87 0.25 16.00 

1. Concentrations (weight percent) of elements comprising glauconite 

2. ND: Not detected 
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Polished-Thin 

Section ID
1 Mineral O Mg Al Si Cl Ca Ti Mn Fe 

PTS:2-5 Ilmenite 38.37 0.38 ND
2
 ND

2
 ND

2
 ND

2
 29.97 1.34 29.94 

PTS:2-5 Ilmenite 42.47 ND
2
 ND

2
 ND

2
 ND

2
 ND

2
 29.96 2.21 25.36 

PTS:2-5 Ilmenite 39.44 0.54 ND
2
 ND

2
 ND

2
 ND

2
 30.37 0.22 29.43 

PTS:2-5 Ilmenite 37.68 0.33 ND
2
 ND

2
 ND

2
 ND

2
 29.19 0.68 32.12 

PTS:2-5 Ilmenite 41.91 ND
2
 ND

2
 ND

2
 ND

2
 ND

2
 33.78 0.38 23.92 

PTS:2-5 Ilmenite 38.54 ND
2
 ND

2
 ND

2
 ND

2
 ND

2
 30.16 3.27 28.02 

PTS:2-5 Ilmenite 42.12 0.69 ND
2
 ND

2
 ND

2
 ND

2
 28.24 0.76 28.20 

PTS:2-5 Ilmenite 43.57 ND
2
 ND

2
 ND

2
 ND

2
 ND

2
 31.98 0.70 23.74 

PTS:2-5 Ilmenite 46.08 0.60 ND
2
 ND

2
 ND

2
 ND

2
 34.33 2.69 16.30 

PTS:9-12 Ilmenite 40.26 ND
2
 ND

2
 ND

2
 ND

2
 ND

2
 26.75 0.63 32.36 

PTS:13-14 Ilmenite 39.24 ND
2
 ND

2
 ND

2
 ND

2
 ND

2
 27.54 1.09 32.13 

PTS:17-19 Ilmenite 33.87 1.20 1.51 2.78 0.13 0.32 29.29 0.78 30.11 

PTS:17-19 Ilmenite 33.48 0.38 1.13 2.53 0.21 0.33 29.98 0.42 31.53 

PTS:17-19 Ilmenite 35.92 0.34 0.90 1.85 0.25 0.48 39.58 0.35 20.33 

PTS:17-19 Ilmenite 36.29 0.22 1.21 1.43 ND
2
 0.41 41.09 1.04 18.30 

PTS:17-19 Ilmenite 32.85 0.23 1.56 1.49 0.12 0.21 29.65 0.56 33.34 

PTS:17-19 Ilmenite 33.25 0.22 0.58 1.45 0.14 0.46 31.86 2.24 29.79 

PTS:17-19 Ilmenite 32.76 0.67 1.35 2.37 ND
2
 0.50 27.05 2.07 33.22 

PTS:17-19 Ilmenite 34.71 0.22 0.74 1.30 0.17 0.33 37.67 1.22 23.65 

PTS:23-25 Ilmenite 47.19 0.36 ND
2
 ND

2
 ND

2
 ND

2
 37.19 0.31 14.94 

PTS:23-25 Ilmenite 40.20 0.30 ND
2
 ND

2
 ND

2
 ND

2
 33.44 1.05 25.01 

PTS:23-25 Ilmenite 37.25 1.05 ND
2
 ND

2
 ND

2
 ND

2
 28.89 0.52 32.30 

PTS:23-25 Ilmenite 39.47 0.65 ND
2
 ND

2
 ND

2
 ND

2
 27.65 ND

2
 32.23 

PTS:23-25 Ilmenite 42.73 0.33 ND
2
 ND

2
 ND

2
 ND

2
 25.17 0.97 30.80 

PTS:23-25 Ilmenite 41.67 0.29 ND
2
 ND

2
 ND

2
 ND

2
 32.60 0.65 24.78 

PTS:26-28 Ilmenite 35.67 0.23 0.30 1.67 0.19 2.54 38.34 0.97 20.08 

PTS:26-28 Ilmenite 35.59 0.41 0.48 2.53 0.16 2.89 34.26 0.32 23.34 

1. Concentrations (weight percent) of elements comprising ilmenite 

2. ND: Not detected 
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Polished-Thin 

Section ID
1
 

Mineral O Na Al Si Ca 

PTS:23-25 
Plagioclase 

Feldspar 
51.68 5.73 13.15 29.43 ND

2
 

PTS:23-25 
Plagioclase 

Feldspar 
52.36 4.87 12.51 25.48 4.79 

PTS:23-25 
Plagioclase 

Feldspar 
52.66 5.14 11.89 26.19 4.13 

PTS:23-25 
Plagioclase 

Feldspar 
52.42 5.24 11.92 26.22 4.21 

1. Concentrations (weight percent) of elements comprising plagioclase 

feldspar 

2. ND: Not detected 
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Polished-

Thin 

Section ID
1
 

Mineral Mg Si S K Ca Fe 

PTS:26-28 Pyrite 0.25 3.05 49.30 0.50 1.77 45.13 

PTS:26-28 Pyrite 0.26 1.57 53.21 0.30 1.97 42.70 

PTS:26-28 Pyrite 0.25 2.56 51.44 0.45 2.14 43.16 

1. Concentrations (weight percent) of elements comprising 

pyrite 
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Polished-Thin 

Section ID
1
 

Mineral O Na Mg Al Si Ca Ti Mn Fe 

PTS:2-5 Pyroxene 50.10 ND
2
 11.36 1.34 24.16 6.77 1.70 ND

2
 4.57 

PTS:2-5 Pyroxene 48.09 ND
2
 ND

2
 11.11 16.27 13.45 2.40 ND

2
 8.67 

PTS:2-5 Pyroxene 48.98 ND
2
 10.43 0.85 24.61 7.65 1.93 ND

2
 5.55 

PTS:17-19 Pyroxene 46.57 ND
2
 14.92 1.83 23.75 0.77 0.21 ND

2
 11.95 

PTS:17-19 Pyroxene 42.46 ND
2
 ND

2
 12.51 19.00 15.39 1.29 0.30 9.05 

PTS:17-19 Pyroxene 43.91 ND
2
 13.33 0.97 24.38 0.82 1.27 0.13 15.19 

PTS:17-19 Pyroxene 42.25 1.12 5.49 6.88 19.70 8.04 2.02 0.29 14.21 

PTS:17-19 Pyroxene 43.45 0.74 8.63 3.71 23.61 8.04 1.61 0.30 9.91 

PTS:17-19 Pyroxene 42.01 ND
2
 ND

2
 12.07 18.43 15.32 1.80 0.20 10.16 

PTS:17-19 Pyroxene 44.17 0.80 8.77 1.72 23.12 14.92 1.93 0.08 4.49 

PTS:17-19 Pyroxene 42.50 ND
2
 ND

2
 12.00 19.17 14.90 1.18 ND

2
 10.26 

PTS:23-25 Pyroxene 44.14 0.97 8.92 1.39 24.51 14.33 0.29 0.14 5.31 

PTS:23-25 Pyroxene 47.67 ND
2
 ND

2
 8.79 15.82 13.25 1.90 ND

2
 12.56 

PTS:23-25 Pyroxene 48.42 ND
2
 ND

2
 13.08 16.61 13.74 2.26 ND

2
 5.89 

PTS:23-25 Pyroxene 47.96 ND
2
 ND

2
 11.02 15.93 13.51 2.36 ND

2
 9.21 

PTS:23-25 Pyroxene 48.29 ND
2
 ND

2
 11.33 16.09 13.25 2.46 ND

2
 8.58 

PTS:23-25 Pyroxene 48.07 ND
2
 ND

2
 11.13 15.87 13.37 2.51 ND

2
 9.06 

PTS:23-25 Pyroxene 48.04 ND
2
 ND

2
 9.53 15.99 13.21 2.09 ND

2
 11.14 

PTS:23-25 Pyroxene 48.06 ND
2
 ND

2
 11.10 16.22 13.47 2.21 ND

2
 8.94 

PTS:23-25 Pyroxene 48.10 ND
2
 ND

2
 11.39 16.61 13.54 1.95 ND

2
 8.40 

PTS:23-25 Pyroxene 47.55 ND
2
 ND

2
 12.92 16.23 13.67 2.86 ND

2
 6.78 

PTS:23-25 Pyroxene 49.35 0.23 ND
2
 12.00 16.40 13.24 1.78 ND

2
 6.99 

PTS:23-25 Pyroxene 48.80 ND
2
 11.49 0.85 23.51 2.17 1.99 ND

2
 11.19 

1. Concentrations (weight percent) of elements comprising pyroxenes 

2. ND: Not detected 
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Polished-

Thin 

Section ID
1
 

Mineral O Mg Al Si Ti Fe 

PTS:2-5 Staurolite 50.79 0.91 23.68 11.77 2.59 10.26 

PTS:2-5 Staurolite 50.75 0.91 23.07 13.31 1.68 10.28 

PTS:2-5 Staurolite 51.78 1.16 24.28 12.86 1.34 8.58 

PTS:2-5 Staurolite 50.85 0.75 23.54 12.13 2.86 9.87 

PTS:2-5 Staurolite 50.73 0.83 22.89 12.23 2.65 10.67 

PTS:2-5 Staurolite 51.59 1.25 22.93 11.72 3.30 9.21 

PTS:2-5 Staurolite 51.29 1.03 23.41 11.87 2.65 9.75 

PTS:2-5 Staurolite 50.82 1.13 24.26 13.11 1.14 9.54 

PTS:2-5 Staurolite 51.30 0.86 24.07 13.27 1.24 9.26 

PTS:2-5 Staurolite 51.11 1.18 22.42 14.12 1.88 9.30 

PTS:2-5 Staurolite 54.97 ND
2
 15.88 14.98 3.54 10.63 

PTS:2-5 Staurolite 51.00 0.99 22.27 14.27 2.54 8.92 

PTS:9-12 Staurolite 50.16 0.98 24.24 12.64 0.76 11.22 

PTS:9-12 Staurolite 50.31 0.95 24.76 13.19 0.45 10.34 

PTS:9-12 Staurolite 50.56 1.35 24.67 13.46 ND
2
 9.97 

PTS:9-12 Staurolite 50.04 1.09 25.56 13.01 ND
2
 10.30 

PTS:9-12 Staurolite 50.35 1.07 24.41 12.79 0.51 10.87 

PTS:9-12 Staurolite 50.78 0.91 25.02 12.84 ND
2
 10.44 

PTS:9-12 Staurolite 50.16 0.66 25.21 12.32 0.63 11.02 

PTS:9-12 Staurolite 50.71 0.81 25.05 12.86 0.48 10.09 

PTS:9-12 Staurolite 50.79 0.86 24.40 12.89 0.84 10.22 

PTS:13-14 Staurolite 50.62 0.97 24.22 12.37 ND
2
 11.82 

PTS:13-14 Staurolite 50.60 1.29 24.34 13.98 ND
2
 9.79 

PTS:13-14 Staurolite 50.75 1.31 24.97 13.09 ND
2
 9.88 

PTS:15-16 Staurolite 50.42 0.98 24.51 13.01 ND
2
 11.08 

PTS:15-16 Staurolite 50.90 1.03 25.66 13.15 ND
2
 9.27 

PTS:23-25 Staurolite 50.69 0.99 23.91 12.79 1.89 9.73 

PTS:23-25 Staurolite 50.78 0.91 24.95 12.76 0.59 10.01 

PTS:23-25 Staurolite 50.44 0.89 25.51 12.36 ND
2
 10.80 

PTS:23-25 Staurolite 49.89 0.70 25.28 12.41 0.60 11.11 

PTS:23-25 Staurolite 50.51 0.88 25.28 12.62 ND
2
 10.71 

1. Concentrations (weight percent) of elements comprising staurolite 

2. ND: Not detected 
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Polished-

Thin 

Section ID
1
 

Mineral O Mg Al Si Ti Fe 

PTS:23-25 Staurolite 51.53 0.55 24.66 12.48 1.80 8.98 

PTS:23-25 Staurolite 51.56 0.62 25.15 12.46 1.42 8.79 

PTS:23-25 Staurolite 51.22 1.11 23.47 12.64 1.87 9.69 

PTS:23-25 Staurolite 51.30 1.00 24.34 12.73 1.71 8.92 

PTS:23-25 Staurolite 50.36 1.43 23.15 11.93 2.41 10.72 

PTS:23-25 Staurolite 51.47 1.11 23.40 11.30 2.73 9.99 

PTS:23-25 Staurolite 51.42 1.14 24.00 12.07 2.28 9.09 

PTS:23-25 Staurolite 51.09 0.80 23.71 11.69 2.45 10.25 

PTS:23-25 Staurolite 51.64 0.64 23.67 11.64 2.79 9.62 

PTS:23-25 Staurolite 50.82 1.23 23.25 11.86 2.37 10.47 

PTS:23-25 Staurolite 50.17 0.94 23.30 11.39 2.93 11.28 

PTS:23-25 Staurolite 50.90 1.00 23.50 11.27 2.72 10.61 

PTS:23-25 Staurolite 50.54 0.88 24.17 12.65 1.24 10.52 

PTS:23-25 Staurolite 51.89 0.55 25.17 12.39 1.67 8.33 

PTS:23-25 Staurolite 50.26 1.15 23.64 11.14 3.49 10.33 

1. Concentrations (weight percent) of elements comprising staurolite 
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Polished-Thin 

Section ID
1
 

Mineral O Na Mg Al Si Ca Ti Fe 

PTS:2-5 Tourmaline 52.77 1.72 ND
2
 14.39 15.74 ND

2
 2.31 13.07 

PTS:2-5 Tourmaline 54.93 1.33 3.57 16.34 17.03 0.76 ND
2
 6.04 

PTS:23-25 Tourmaline 54.67 1.33 3.66 14.73 15.54 0.85 2.01 7.21 

PTS:23-25 Tourmaline 54.68 1.41 3.31 14.34 15.44 1.13 2.46 7.23 

PTS:23-25 Tourmaline 55.43 1.46 3.10 15.02 15.05 0.52 2.69 6.73 

PTS:26-28 Tourmaline 47.39 1.74 4.38 19.01 19.90 2.46 0.65 4.47 

PTS:26-28 Tourmaline 47.29 1.74 4.39 19.03 20.01 2.50 0.58 4.45 

1. Concentrations (weight percent) of elements comprising tourmaline 

2. ND: Not detected. 



 

 

Appendix F6: Statistics of Evaluated Minerals 

Alkali 

Feldspar
1
 

O Na Al Si K 

Mean
2
 50.49 0.36 8.87 28.70 11.67 

Median
2
 50.33 0.27 8.92 28.92 11.86 

Standard 

Deviation
2
 2.51 0.22 0.46 1.44 0.74 

Sample 

Variance
2
 6.31 0.05 0.21 2.08 0.55 

Minimum 48.08 0.18 8.04 25.95 10.44 

Maximum 55.21 0.67 9.42 30.06 12.60 

Count
3
 6 6 6 6 6 

Confidence 

Level 

(95.0%)
2
 2.64 0.23 0.48 1.51 0.78 

1/2 Minimum 

Value
4
 

24.04 0.18 0.09 12.97 5.22 

1. EDX analysis of 6 alkali feldspar grains. All 

concentrations are presented as weight percents. 

2. Calculated via Microsoft Excel 

3. Number of spectra evaluated to compute 

statistics 

4. One half of the minimum-detected value was 

used to replace concentrations of elements that 

were not detected in some specimens. Only 

elements that were detected in at least 25% of 

specimens were evaluated for statistics 
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Almandine
1
 O Mg Al Si Ca Ti Mn Fe 

Mean
2
 43.84 2.01 9.96 17.06 2.16 1.27 2.98 20.79 

Median
2
 44.70 1.51 9.78 16.88 1.44 1.16 1.99 21.35 

Standard 

Deviation
2
 

2.13 1.37 0.57 1.02 1.55 0.92 2.95 2.64 

Sample 

Variance
2
 

4.53 1.88 0.33 1.04 2.42 0.84 8.71 6.97 

Minimum 40.27 0.58 9.37 15.76 0.00 0.33 0.54 14.69 

Maximum 47.83 5.45 10.96 19.22 4.58 2.71 11.96 23.94 

Count
3
 24 24 24 24 24 24 24 24 

Confidence 

Level 

(95.0%)
2
 

0.90 0.58 0.24 0.43 0.66 0.39 1.25 1.12 

1/2 

Minimum 

Value
4
 20.14 0.29 4.68 7.88 0.00 0.17 0.27 7.35 

1. EDX analysis of 24 almandine grains. All concentrations are 

presented as weight percents 

2. Calculated via Microsoft Excel 

3. Number of spectra evaluated to compute statistics 

4. One half of the minimum-detected value was used to replace 

concentrations of elements that were not detected in some specimens 

Only elements that were detected in at least 25% of specimens were 

evaluated for statistics 
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Amphiboles
1
 O Na Mg Al Si K Ca Ti Fe 

Mean
2
 48.17 1.06 5.65 7.28 18.94 0.77 5.80 2.47 9.86 

Median
2
 47.84 1.09 5.78 5.60 18.61 0.52 6.54 2.55 10.73 

Standard 

Deviation
2
 

1.89 0.39 2.08 4.61 1.64 1.35 2.32 0.88 3.29 

Sample 

Variance
2
 

3.57 0.16 4.31 21.26 2.69 1.82 5.40 0.77 10.85 

Minimum 42.97 0.54 0.25 1.12 15.19 0.14 0.52 0.43 1.95 

Maximum 54.95 2.04 9.92 19.34 23.85 7.59 13.38 4.38 16.16 

Count
3
 62 62 62 62 62 62 62 62 62 

Confidence 

Level (95.0%)
2
 

0.48 0.10 0.53 1.17 0.42 0.34 0.59 0.22 0.84 

1/2 Minimum 

Value
4
 

21.49 0.27 0.13 0.28 7.59 0.07 0.26 0.21 0.97 

1. EDX analysis of 62 amphibole grains. All concentrations are presented as 

weight percents 

2. Calculated via Microsoft Excel 

3. Number of spectra evaluated to compute statistics 

4. One half of the minimum-detected value was used to replace concentrations of 

elements that were not detected in some specimens. Only elements that were 

detected in at least 25% of specimens were evaluated for statistics 
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Apatite
1
 O F Na Mg Al Si P S Cl Ca Ti Fe 

Mean
2
 42.43 2.71 0.67 0.29 0.42 1.28 14.86 1.54 0.13 34.08 0.48 2.35 

Median
2
 40.99 1.80 0.69 0.29 0.27 0.98 14.88 1.28 0.16 34.43 0.15 2.14 

Standard 

Deviation
2
 

3.52 1.19 0.09 0.14 0.35 0.74 0.72 0.87 0.05 2.24 0.73 1.29 

Sample 

Variance
2
 

12.38 1.42 0.01 0.02 0.12 0.55 0.52 0.76 0.00 5.01 0.53 1.67 

Minimum 38.82 1.80 0.53 0.30 0.10 0.30 13.56 0.85 0.16 30.59 0.16 0.84 

Maximum 48.89 4.75 0.78 0.50 1.00 2.72 16.23 4.15 0.21 36.82 2.38 5.76 

Count
3
 15 15 15 15 15 15 15 15 15 15 15 15 

Confidence 

Level 

(95.0%)
2
 

1.95 0.66 0.05 0.08 0.19 0.41 0.40 0.48 0.03 1.24 0.40 0.72 

1/2 

Minimum 

Value
4
 

19.41 1.80 0.27 0.15 0.05 0.15 6.78 0.42 0.08 15.30 0.08 0.42 

1. EDX analysis of 15 apatite grains. All concentrations are presented as weight percents 

2. Calculated via Microsoft Excel 

3. Number of spectra evaluated to compute statistics 

4. One half of the minimum-detected value was used to replace concentrations of elements that 

were not detected in some specimens. Only elements that were detected in at least 25% of 

specimens were evaluated for statistics 
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Calcite
1
 O Na Mg Al Si Cl Ca Fe 

Mean
2
 61.11 0.36 0.31 0.20 1.18 0.37 33.22 3.47 

Median
2
 60.11 0.40 0.21 0.19 1.26 0.42 33.65 3.77 

Standard 

Deviation
2
 

4.06 0.12 0.13 0.12 0.21 0.22 2.20 1.75 

Sample 

Variance
2
 

16.48 0.01 0.02 0.01 0.04 0.05 4.84 3.07 

Minimum 57.42 0.33 0.42 0.19 0.93 0.18 29.98 0.46 

Maximum 67.76 0.47 0.48 0.37 1.43 0.62 35.48 4.86 

Count
3
 5 5 5 5 5 5 5 5 

Confidence 

Level 

(95.0%)
2
 

5.04 0.15 0.17 0.14 0.26 0.28 2.73 2.18 

1/2 

Minimum 

Value
4
 

28.71 0.17 0.21 0.10 0.47 0.09 14.99 0.23 

1. EDX analysis of 5 calcite grains. All concentrations are 

presented as weight percents 

2. Calculated via Microsoft Excel 

3. Number of spectra evaluated to compute statistics 

4. One half of the minimum-detected value was used to replace 

concentrations of elements that were not detected in some 

specimens. Only elements that were detected in at least 25% of 

specimens were evaluated for statistics 
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Glauconite
1
 O Mg Al Si P Cl K Ca Ti Fe 

Mean
2
 47.10 2.23 3.31 22.46 0.32 0.22 4.64 0.92 0.88 18.15 

Median
2
 48.66 2.14 3.19 22.10 0.09 0.12 4.81 0.75 0.67 17.30 

Standard 

Deviation
2
 

3.75 0.42 1.10 1.90 0.39 0.18 1.21 0.62 0.83 3.00 

Sample 

Variance
2
 

14.08 0.17 1.21 3.61 0.15 0.03 1.46 0.38 0.69 8.98 

Minimum 40.54 1.59 1.53 18.83 0.18 0.24 2.04 0.46 0.25 13.09 

Maximum 51.74 3.58 5.43 26.11 1.43 0.78 6.52 2.87 2.76 24.28 

Count
3
 27 27 27 27 27 27 27 27 27 27 

Confidence 

Level (95.0%)
2
 

1.48 0.17 0.44 0.75 0.15 0.07 0.48 0.24 0.33 1.19 

1/2 Minimum 

Value
4
 

20.27 0.80 0.77 9.41 0.09 0.12 1.02 0.23 0.13 6.55 

1. EDX analysis of 27 glauconite grains. All concentrations are presented as weight 

percents 

2. Calculated via Microsoft Excel 

3. Number of spectra evaluated to compute statistics 

4. One half of the minimum-detected value was used to replace concentrations of 

elements that were not detected in some specimens. Only elements that were detected 

in at least 25% of specimens were evaluated for statistics  
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Ilmenite
1
 O Mg Al Si Cl Ca Ti Mn Fe 

Mean
2
 38.58 0.38 0.46 1.13 0.09 0.38 31.67 1.02 26.84 

Median
2
 38.54 0.33 0.15 0.65 0.06 0.11 30.16 0.76 28.20 

Standard 

Deviation
2
 

4.04 0.28 0.48 0.71 0.06 0.68 4.14 0.80 5.45 

Sample 

Variance
2
 

16.36 0.08 0.23 0.51 0.00 0.47 17.15 0.65 29.69 

Minimum 32.72 0.19 0.30 1.30 0.12 0.21 25.17 0.22 14.94 

Maximum 47.19 1.20 1.56 2.78 0.25 2.86 40.96 3.27 33.33 

Count
3
 27 27 27 27 27 27 27 27 27 

Confidence 

Level (95.0%)
2
 

1.60 0.11 0.19 0.28 0.02 0.27 1.64 0.32 2.16 

1/2 Minimum 

Value
4
 

16.36 0.10 0.15 0.65 0.06 0.11 12.585 0.11 7.47 

1. EDX analysis of 27 ilmenite grains. All concentrations are presented as weight 

percents 

2. Calculated via Microsoft Excel 

3. Number of spectra evaluated to compute statistics 

4. One half of the minimum-detected value was used to replace concentrations of 

elements that were not detected in some specimens. Only elements that were detected in 

at least 25% of specimens were evaluated for statistics 
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Plagioclase 

Feldspar
1
 

O Na Al Si Ca 

Mean
2
 52.28 5.24 12.37 26.83 3.80 

Median
2
 52.39 5.19 12.21 26.20 4.17 

Standard 

Deviation
2
 

0.42 0.36 0.60 1.77 1.19 

Sample 

Variance
2
 

0.17 0.13 0.36 3.13 1.42 

Minimum 51.68 4.87 11.89 25.48 4.14 

Maximum 52.66 5.73 13.15 29.43 4.79 

Count
3
 4.00 4.00 4.00 4.00 4.00 

Confidence 

Level 

(95.0%)
2
 

0.66 0.57 0.95 2.82 1.89 

1/2 

Minimum 

Value
4
 

25.84 2.43 5.94 12.74 2.07 

1. EDX analysis of 4 plagioclase feldspar 

grains. All concentrations are presented as 

weight percents 

2. Calculated via Microsoft Excel 

3. Number of spectra evaluated to compute 

statistics 

4. One half of the minimum-detected value was 

used to replace concentrations of elements that 

were not detected in some specimens. Only 

elements that were detected in at least 25% of 

specimens were evaluated for statistics 
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Pyrite
1
 Mg Si S K Ca Fe 

Mean
2
 0.25 2.40 51.31 0.41 1.96 43.66 

Median
2
 0.25 2.56 51.44 0.45 1.97 43.16 

Standard 

Deviation
2
 

0.00 0.75 1.96 0.11 0.18 1.29 

Sample 

Variance
2
 

0.00 0.57 3.83 0.01 0.03 1.66 

Minimum 0.25 1.57 49.30 0.30 1.77 42.70 

Maximum 0.26 3.05 53.21 0.50 2.14 45.13 

Count
3
 3 3 3 3 3 3 

Confidence 

Level (95.0%)
2
 

0.01 1.87 4.86 0.26 0.46 3.20 

1/2 Minimum 

Value
4
 

0.12 0.79 24.65 0.15 0.88 21.35 

1. EDX analysis of 3 pyrite grains. All concentrations are 

presented as weight percents 

2. Calculated via Microsoft Excel 

3. Number of spectra evaluated to compute statistics 

4. One half of the minimum-detected value was used to 

replace concentrations of elements that were not detected 

in some specimens. Only elements that were detected in 

at least 25% of specimens were evaluated for statistics 
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Pyroxenes
1
 O Na Mg Al Si Ca Ti Mn Fe 

Mean
2
 46.82 0.30 5.26 8.08 19.21 10.73 1.86 0.09 8.97 

Median
2
 48.00 0.12 2.05 11.06 17.52 13.31 1.94 0.04 8.99 

Standard 

Deviation
2
 

3.07 0.38 4.39 4.94 3.62 5.03 0.65 0.09 2.86 

Sample 

Variance
2
 

9.45 0.15 19.30 24.36 13.11 25.29 0.42 0.01 8.18 

Minimum 42.01 0.23 4.10 0.85 15.08 0.72 0.21 0.08 4.49 

Maximum 54.62 1.39 14.92 14.40 24.61 15.39 2.86 0.30 15.19 

Count
3
 24 24 24 24 24 24 24 24 24 

Confidence 

Level (95.0%)
2
 

1.30 0.16 1.86 2.08 1.53 2.12 0.27 0.04 1.21 

1/2 Minimum 

Value
4
 

21.01 0.12 2.05 0.43 7.54 0.36 0.11 0.04 2.25 

1. EDX analysis of 24 pyroxene grains. All concentrations are presented as weight 

percents 

2. Calculated via Microsoft Excel 

3. Number of spectra evaluated to compute statistics 

4. One half of the minimum-detected value was used to replace concentrations of 

elements that were not detected in some specimens. Only elements that were 

detected in at least 25% of specimens were evaluated for statistic  
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Staurolite
1
 O Mg Al Si Ti Fe 

Mean
2
 50.93 0.96 23.98 12.60 1.53 10.06 

Median
2
 50.79 0.98 24.23 12.64 1.55 10.15 

Standard 

Deviation
2
 

0.78 0.23 1.49 0.80 1.07 0.79 

Sample 

Variance
2
 

0.61 0.05 2.22 0.64 1.15 0.62 

Minimum 49.89 0.55 15.88 11.14 0.45 8.33 

Maximum 54.97 1.43 25.66 14.98 3.54 11.82 

Count
3
 46 46 46 46 46 46 

Confidence 

Level (95.0%)
2
 

0.23 0.07 0.44 0.24 0.32 0.23 

1/2 Minimum 

Value
4
 

24.95 0.28 7.94 5.57 0.23 4.17 

1. EDX analysis of 46 staurolite grains. All concentrations 

are presented as weight percents 

2. Calculated via Microsoft Excel 

3. Number of spectra evaluated to compute statistics 

4. One half of the minimum-detected value was used to 

replace concentrations of elements that were not detected in 

some specimens. Only elements that were detected in at 

least 25% of specimens were evaluated for statistics  
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Tourmaline
1
 O Na Mg Al Si Ca Ti Fe 

Mean
2
 52.45 1.53 3.42 16.12 16.96 1.21 1.57 7.03 

Median
2
 54.67 1.46 3.57 15.02 15.74 0.85 2.01 6.73 

Standard 

Deviation
2
 

3.59 0.19 0.96 2.09 2.14 0.91 1.02 2.91 

Sample 

Variance
2
 

12.88 0.04 0.92 4.37 4.57 0.83 1.04 8.48 

Minimum 47.29 1.33 3.10 14.34 15.05 0.52 0.58 4.45 

Maximum 55.43 1.74 4.39 19.03 20.01 2.50 2.69 13.07 

Count
3
 7 7 7 7 7 7 7 7 

Confidence 

Level 

(95.0%)
2
 

3.32 0.18 0.89 1.93 1.98 0.84 0.94 2.69 

1/2 

Minimum 

Value
4
 

23.65 0.66 1.55 7.17 7.53 0.26 0.29 2.22 

1. EDX analysis of 7 tourmaline grains. All concentrations are 

presented as weight percents 

2. Calculated via Microsoft Excel 

3. Number of spectra evaluated to compute statistics 

4. One half of the minimum-detected value was used to replace 

concentrations of elements that were not detected in some specimens. 

Only elements that were detected in at least 25% of specimens were 

evaluated for statistics 

 



 

 

Appendix G: XRF Data 

Appendix G1: Pellet Data and Descriptions of Reference Samples 

Standard Id
1
 

Standard 

Description 

Sediment 

Weight
2
 

Binder 

Weight
2
 

Source/Distributor 

02BR73 Andesite  12 15 
Dr. Eric Horsman, 

ECU 

1646a 
Estuarine 

sediment  
6.001 6.602 NIST

3
 

2586 
Soil with lead 

from paint 
6.001 6.902 NIST

3
 

2702 

Inorganics in 

marine 

sediment 

6.001 6.601 NIST
3
 

2704 River sediment 6.001 6.601 NIST
3
 

98a NBS Plastic clay 6.001 6.6 NIST
3
 

AGV-2 Andesite 12 15 USGS
3
 

GSP-2 Granodiorite 12 15 USGS
3
 

MAG-1 
Marine 

sediment 
6 6.6 USGS

3
 

MRG-1 Gabbro 9.396 11.388 CCRMP
3
 

NCS DC 

71302 
 Diorite 12 15 BSCI 

NIM-D NIM-D 11.561 14.287 MINTEK
3
 

NIM-L Lujavrite 12.421 14.979 MINTEK
3
 

NIM-N Norite 12.653 14.993 MINTEK
3
 

NIM-P Pyroxenite 13.151 16.03 MINTEK
3
 

NIM-S Syenite 8.812 10.571 MINTEK
3
 

NIM_G Granite 9.068 10.917 MINTEK
3
 

SCo-1 Cody Shale 6.005 7.201 USGS
3
 

Skd-1 Quartz Diorite  12 15 
Russia Standard         

(6103-9) 

SY-2 Syenite 12.845 15.193 CCRMP
3
 

SY-3 Syenite 11.802 14.56 CCRMP
3
 

1. Reference XRF pellets were selected from the Department of Geological Sciences' 

repository at East Carolina University 

2. Weight in grams 

3. Govindaraju (1994) 



 

 

Appendix G2: Accepted Values of XRF Reference Samples 

Standard Id
1
 Al S Fe K Mg Mn Na P Si Ti Ca F Cl Sr 

02BR73 8.92 0.04 3.02 1.75 0.78 0.10 2.82 0.07 29.48 0.25 2.90 
  

1181 

1646a 2.30 0.35 2.01 0.86 0.34 0.02 0.60 0.03 40.00 0.46 0.52 
  

68 

2586 6.65 
 

5.16 0.98 1.71 0.10 0.38 0.10 29.15 0.61 2.22 
  

84 

2702 8.41 1.50 7.91 2.05 0.99 0.18 0.55 0.16 30.26 0.88 0.34 
  

120 

2704 6.11 0.40 4.11 2.00 1.20 0.06 0.45 0.10 29.08 0.46 2.60 
  

130 

98a NBS 17.56 
  

0.86 0.25 
 

0.05 0.05 22.85 0.97 0.22 
  

330 

AGV-2 8.95 
 

4.68 2.39 1.08 0.06 2.53 0.21 27.72 0.63 3.72 0.04 
 

658 

GSP-2 7.89 
 

3.43 4.47 0.58 0.02 1.68 0.13 31.13 0.40 1.50 0.30 
 

240 

MAG-1 8.68 0.39 4.82 2.95 1.81 0.08 2.31 0.07 23.54 0.45 0.98 0.08 31000 150 

MRG-1 4.50 0.06 12.48 0.15 8.13 0.13 0.43 0.03 18.38 2.21 10.56 0.03 
 

260 

NCS DC 

71302 
8.52 0.02 3.30 4.29 0.51 0.69 1.85 0.16 29.48 0.48 1.77 0.11 160 318 

NIM-D 0.16 
 

11.87 0.01 26.24 0.17 0.02 0.00 18.21 0.01 0.20 0.42 400 3 

NIM-L 7.22 0.07 7.02 4.57 0.17 0.60 5.05 0.03 24.49 0.29 2.30 0.44 
 

4600 

NIM-N 8.73 
 

6.37 0.21 4.52 0.14 1.48 0.01 24.61 0.12 8.22 
  

260 

NIM-P 2.21 
 

8.84 0.07 15.27 0.17 0.22 0.01 23.89 0.12 1.90 
  

32 

NIM-S 9.18 
 

1.01 12.74 0.28 0.01 0.26 0.05 29.74 0.03 0.49 0.01 
 

62 

NIM_G 6.39 
 

1.43 4.14 0.04 0.02 2.03 0.00 35.39 0.05 0.56 0.42 
 

10 

SCo-1 7.25 0.06 3.59 2.30 1.64 0.04 0.54 0.09 29.36 0.38 1.87 0.08 51 170 

Skd-1 8.76 
 

2.95 2.47 1.84 0.07 2.15 0.07 28.26 0.52 3.46 0.07 110 410 

SY-2 6.41 0.01 4.41 3.72 1.63 0.25 2.62 0.19 28.09 0.08 5.70 0.51 
 

285 

SY-3 6.25 0.05 4.49 3.49 1.61 0.25 2.50 0.24 27.90 0.09 5.90 0.66   306 

1. Elemental concentrations are presented as weight percents except for Cl and Sr, which are in ppm 



 

 

Appendix G3: Sediment and Binder Weights of TC14 Pellet Samples 

Sample ID 
Sediment 

Weight
1
 

Binder 

Weight
1
 

Final 

Weight
1
 

Depth
2
 

 0-4' #9 6.0005 1.2001 7.2006 0.3 

 0-4' #19 6.0006 1.2007 7.2013 0.7 

 0-4' #24 6.0007 1.2005 7.2012 0.9 

0-4' #29 6.0001 1.2007 7.2008 1.1 

 4-8' #2 6.0007 1.2007 7.2014 1.3 

 4-8' #7 6.0007 1.2003 7.2010 1.5 

 4-8' #12 6.0003 1.2003 7.2006 1.7 

 4-8' #17 6.0008 1.2004 7.2012 1.8 

 4-8' #22 6.0004 1.2008 7.2012 2.0 

 4-8' #27 6.0002 1.2002 7.2004 2.2 

 4-8' #31 6.0004 1.2002 7.2006 2.4 

 8-12' #3 6.0004 1.2004 7.2008 2.6 

 8-12' #8 6.0002 1.2001 7.2003 2.9 

 8-12' #13 6.0003 1.2008 7.2011 3.3 

 8-12' #17 6.0007 1.2007 7.2014 3.6 

 12-16' #11 6.0006 1.2005 7.2011 4.1 

 12-16' #16 6.0007 1.2005 7.2012 4.2 

 12-16' #21 6.0004 1.2003 7.2007 4.4 

 12-16' #26 6.0008 1.2004 7.2012 4.5 

 12-16' #31 6.0002 1.2007 7.2009 4.7 

 12-16' #35 6.0004 1.2007 7.2011 4.8 

 16-20' #2 6.0002 1.2003 7.2005 4.9 

 16-20' #7 6.0007 1.2004 7.2011 5.1 

 16-20' #17 6.0008 1.2002 7.2010 5.2 

 16-20' #27 6.0005 1.2003 7.2008 5.3 

 16-20' #32 6.0006 1.2001 7.2007 5.6 

 16-20' #37 6.0005 1.2003 7.2008 5.8 

 16-20' #42 6.0005 1.2000 7.2005 5.9 

 20-24' #2 6.0008 1.2008 7.2016 6.1 

 20-24' #7 6.0007 1.2008 7.2015 6.1 

 20-24' #12 6.0008 1.2007 7.2015 6.2 

 20-24' #17 6.0006 1.2001 7.2007 6.6 

 20-24' #23 6.0008 1.2007 7.2015 7.1 

1. Weights are presented in grams 

2. Depth is expressed in meters below the land surface 
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Sample ID 
Sediment 

Weight
1
 

Binder 

Weight
1
 

Final 

Weight
1
 

Depth
2
 

 20-24' #28 6.0009 1.2001 7.2010 7.2 

 20-24' #32 6.0007 1.2003 7.2010 7.3 

 24-28' #7 6.0006 1.2004 7.2010 7.5 

 24-28' #17 6.0002 1.2006 7.2008 7.7 

 24-28' #22 6.0008 1.2009 7.2017 7.8 

 24-28' #32 6.0007 1.2001 7.2008 8.0 

 24-28' #37 6.0003 1.2006 7.2009 8.1 

 24-28' #42 6.0003 1.2000 7.2003 8.3 

 24-28' #46 6.0004 1.2001 7.2005 8.5 

 28-32' #2 6.0003 1.2001 7.2004 8.6 

 28-32' #7 6.0007 1.2001 7.2008 8.9 

 28-32' #12 6.0008 1.2003 7.2011 9.1 

 28-32' #17 6.0006 1.2005 7.2011 9.4 

 28-32' #22 6.0006 1.2007 7.2013 9.6 

 32-36' #2 6.0006 1.2000 7.2006 10.0 

 32-36' #7 6.0004 1.2004 7.2008 10.1 

32-36' #12 6.0008 1.2004 7.2012 10.3 

 32-36' #17 6.0008 1.2005 7.2013 10.5 

 32-36' #27 6.0004 1.2003 7.2007 10.7 

 32-36' #30 6.0007 1.2006 7.2013 10.9 

1. Weights are presented in grams 

2. Depth is expressed in meters below the land surface 

 

 



 

 

Appendix G4: Total Elemental Concentrations of TC14 Pellet Samples 

Sample ID
1
 

Sum of 

Concentrations Al S Fe K Mg Mn Depth
2
 

 0-4' #9 100.93 1.91 0.02 0.42 0.87 0.04 0.01 0.3 

 0-4' #19 100.71 2.53 0.01 0.48 1.02 0.06 0.01 0.7 

 0-4' #24 101.42 2.40 0.00 0.47 1.00 0.06 0.01 0.9 

0-4' #29 101.00 2.20 0.01 0.43 1.05 0.05 0.01 1.1 

 4-8' #2 102.41 2.11 0.00 0.42 1.06 0.05 0.01 1.3 

 4-8' #7 101.99 2.29 0.01 0.48 1.13 0.06 0.01 1.5 

 4-8' #12 101.38 2.14 0.00 0.60 1.02 0.05 0.01 1.7 

 4-8' #17 99.73 2.54 0.00 0.68 0.94 0.10 0.01 1.8 

 4-8' #22 80.05 1.08 ND
3
 0.31 0.33 ND

3
 0.01 2.0 

 4-8' #27 101.71 2.05 ND
3
 0.47 0.74 ND

3
 0.01 2.2 

 4-8' #31 91.28 3.18 0.00 0.60 0.84 0.02 0.01 2.4 

 8-12' #3 82.78 1.36 ND
3
 0.29 0.46 ND

3
 0.00 2.6 

 8-12' #8 83.47 1.53 0.01 0.31 0.95 0.04 0.00 2.9 

 8-12' #13 82.15 1.92 0.00 0.45 0.99 0.05 0.00 3.3 

 8-12' #17 80.30 1.25 0.00 0.55 0.74 ND
3
 0.00 3.6 

 12-16' #11 96.22 8.46 0.01 7.73 2.19 1.01 0.03 4.1 

 12-16' #16 99.62 5.66 0.07 2.22 1.71 0.59 0.02 4.2 

 12-16' #21 97.11 5.22 0.06 3.99 1.46 0.33 0.02 4.4 

 12-16' #26 95.91 5.76 0.04 4.57 1.38 0.73 0.03 4.5 

 12-16' #31 92.34 2.39 0.00 3.48 0.59 0.08 0.06 4.7 

 12-16' #35 90.44 2.66 0.02 7.68 0.60 0.15 0.11 4.8 

 16-20' #2 91.39 2.18 0.03 8.25 0.77 0.13 0.17 4.9 

 16-20' #7 90.04 2.67 0.16 5.62 0.61 0.15 0.10 5.1 

 16-20' #17 95.56 1.94 0.21 6.37 0.60 0.15 0.12 5.2 

 16-20' #27 97.15 1.73 0.14 3.08 0.46 0.14 0.07 5.3 

 16-20' #32 92.70 0.88 0.13 4.90 0.35 0.08 0.11 5.6 

 16-20' #37 95.23 0.54 0.14 2.65 0.23 0.06 0.07 5.8 

 16-20' #42 90.79 0.94 0.10 4.68 0.30 0.08 0.10 5.9 

1. Initial 2014 XRF elemental concentrations (wt. %) 

2. Depth is expressed in meters below the land surface 

3. ND: Not Detected 
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Sample ID
1
 Na P Si Ti Ca F Cl Sr 

 0-4' #9 0.18 0.01 44.20 0.38 0.07 0.01 ND
2
 64 

 0-4' #19 0.22 0.01 43.39 0.38 0.07 0.01 ND
2
 68 

 0-4' #24 0.06 0.01 44.00 0.37 0.07 0.00 ND
2
 68 

0-4' #29 0.23 0.01 43.80 0.41 0.08 0.01 ND
2
 72 

 4-8' #2 0.23 0.01 44.59 0.37 0.07 0.01 ND
2
 69 

 4-8' #7 0.25 0.01 44.08 0.42 0.08 0.01 ND
2
 78 

 4-8' #12 0.21 0.01 43.89 0.50 0.07 0.01 ND
2
 69 

 4-8' #17 0.16 0.02 42.88 0.37 0.05 0.02 ND
2
 58 

 4-8' #22 0.03 ND
2
 35.80 0.35 ND

2
 0.00 ND

2
 51 

 4-8' #27 0.03 0.01 44.59 0.52 0.02 0.00 ND
2
 68 

 4-8' #31 0.03 0.01 38.56 0.49 0.03 0.00 ND
2
 62 

 8-12' #3 0.04 0.00 36.89 0.17 ND
2
 0.01 ND

2
 52 

 8-12' #8 0.09 0.02 36.70 0.22 0.02 0.01 ND
2
 43 

 8-12' #13 0.09 0.02 35.59 0.17 0.01 0.01 ND
2
 45 

 8-12' #17 0.03 0.00 35.58 0.12 0.00 ND
2
 ND

2
 47 

 12-16' #11 0.20 0.08 29.80 0.58 0.40 0.15 ND
2
 101 

 12-16' #16 0.13 0.08 37.89 0.51 0.40 0.08 ND
2
 148 

 12-16' #21 0.17 0.20 36.27 0.48 0.33 0.11 ND
2
 112 

 12-16' #26 0.08 0.27 34.64 0.45 0.35 0.09 ND
2
 84 

 12-16' #31 0.07 0.20 37.92 0.22 0.18 0.10 ND
2
 56 

 12-16' #35 0.07 0.88 32.60 0.19 1.35 0.32 ND
2
 70 

 16-20' #2 0.11 2.39 24.67 0.18 11.46 0.47 ND
2
 293 

 16-20' #7 0.12 4.92 22.58 0.14 14.46 0.76 1 363 

 16-20' #17 0.10 5.00 25.38 0.16 10.96 0.82 ND
2
 302 

 16-20' #27 0.10 4.73 28.65 0.09 11.26 0.67 ND
2
 328 

 16-20' #32 0.13 2.65 20.23 0.07 24.15 0.36 21 549 

 16-20' #37 0.15 1.72 17.17 0.04 34.94 0.21 95 809 

 16-20' #42 0.11 1.59 21.93 0.06 22.26 0.22 34 565 

1. Initial 2014 XRF elemental concentrations presented as weight 

percents except for Cl and Sr, which are in ppm 

2. ND: Not Detected 
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Sample ID
1
 

Sum of 

Concentrations 
Al S Fe K Mg Mn Depth

2
 

 20-24' #2 91.51 0.80 0.24 3.55 0.36 0.03 0.09 6.1 

 20-24' #7 90.04 0.76 0.24 3.77 0.35 0.16 0.10 6.1 

 20-24' #12 89.98 1.11 0.29 2.17 0.47 0.07 0.04 6.2 

 20-24' #17 90.77 2.28 1.00 1.17 0.80 0.14 0.01 6.6 

 20-24' #28 91.53 0.58 0.45 0.49 0.30 0.04 0.01 7.2 

 20-24' #32 91.94 0.85 0.47 0.62 0.38 0.09 0.01 7.3 

 24-28 #2 88.42 0.82 0.41 0.50 0.43 0.04 0.01 7.3 

 24-28' #7 90.13 1.41 0.32 0.78 0.64 0.07 0.01 7.5 

 24-28' #17 92.90 1.64 0.48 0.95 0.69 0.06 0.01 7.7 

 24-28' #22 92.31 1.43 0.45 0.76 0.56 0.04 0.01 7.8 

 24-28' #32 91.85 1.00 0.33 0.77 0.43 0.04 0.01 8.0 

 24-28' #37 94.09 1.75 0.29 0.94 0.65 0.03 0.01 8.1 

 24-28' #42 80.24 1.45 0.22 0.72 0.69 0.04 0.01 8.3 

 24-28' #46 90.68 1.53 0.12 0.52 0.78 0.02 0.00 8.5 

 28-32' #2 91.85 1.68 0.17 0.78 0.74 0.08 0.01 8.6 

 28-32' #7 92.57 4.71 0.54 2.29 1.29 0.03 0.02 8.9 

 28-32' #12 87.16 1.61 0.29 0.86 0.72 0.03 0.01 9.1 

 28-32' #17 84.61 0.99 0.39 0.75 0.56 0.04 0.01 9.4 

 28-32' #22 85.82 1.03 0.27 0.61 0.52 0.02 0.01 9.6 

 32-36' #2 94.38 2.06 1.15 1.33 0.78 0.32 0.01 10.0 

 32-36' #7 96.14 2.29 0.92 2.13 0.88 0.56 0.04 10.1 

32-36' #12 97.36 1.78 0.77 1.97 0.76 0.51 0.04 10.3 

 32-36' #17 96.17 1.74 0.89 2.02 0.80 0.57 0.04 10.5 

 32-36' #27 93.55 1.10 0.67 1.27 0.72 0.56 0.03 10.7 

 32-36' #30 93.38 1.25 0.68 1.44 0.81 0.58 0.02 10.9 

1. Initial 2014 XRF elemental concentrations (wt. %) 

2. Depth is expressed in meters below the land surface 
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Sample ID
1
 Na P Si Ti Ca F Cl Sr 

 20-24' #2 0.05 0.94 21.56 0.07 25.65 0.15 53 660 

 20-24' #7 0.20 1.06 17.71 0.07 29.82 0.12 111 654 

 20-24' #12 0.12 0.74 18.60 0.10 30.02 0.14 72 739 

 20-24' #17 0.10 0.68 22.94 0.17 22.55 0.03 46 726 

 20-24' #28 0.12 1.57 22.25 0.10 26.50 0.19 107 785 

 20-24' #32 0.10 1.45 23.27 0.17 24.74 0.21 120 745 

 24-28 #2 0.09 0.82 24.00 0.13 22.50 0.06 77 698 

 24-28' #7 0.05 0.37 24.85 0.22 21.97 ND
2
 67 722 

 24-28' #17 0.11 0.36 24.62 0.33 23.38 0.13 89 739 

 24-28' #22 0.09 0.43 25.47 0.18 22.35 0.19 63 699 

 24-28' #32 0.07 0.30 33.36 0.38 10.87 0.01 13 397 

 24-28' #37 0.08 0.19 38.91 0.40 2.72 0.11 ND
2
 166 

 24-28' #42 0.06 0.11 33.28 0.42 2.21 0.05 422 137 

 24-28' #46 0.06 0.13 38.70 0.13 1.79 0.10 21 147 

 28-32' #2 0.08 0.13 38.28 0.37 2.48 0.05 ND
2
 163 

 28-32' #7 0.04 0.12 32.00 0.63 6.20 ND
2
 ND

2
 277 

 28-32' #12 0.04 0.20 32.74 0.47 7.37 0.08 6 293 

 28-32' #17 0.05 0.34 25.44 0.53 17.55 ND
2
 46 494 

 28-32' #22 0.06 0.16 22.86 0.19 23.21 ND
2
 94 652 

 32-36' #2 0.30 1.03 22.10 0.14 25.40 0.11 115 803 

 32-36' #7 0.20 1.21 26.93 0.17 17.77 0.20 42 377 

32-36' #12 0.23 2.15 27.76 0.14 16.83 0.30 20 563 

 32-36' #17 0.17 1.37 28.61 0.19 15.89 0.22 21 368 

 32-36' #27 0.10 0.40 22.88 0.16 26.39 0.08 25 278 

 32-36' #30 0.12 0.19 27.07 0.26 19.62 0.07 9 284 

1. Initial 2014 XRF elemental concentrations presented as weight 

percents except for Cl and Sr, which are in ppm 

2. ND: Not Detected 



 

 

Appendix G5: Results of Replicate XRF Analyses 

MRG-1
1
 Al S Fe K Mg Mn Na P Si Ti Ca F Cl Sr 

Accepted 

Value 
4.50 0.06 12.48 0.15 8.13 0.13 0.43 0.03 18.38 2.21 10.56 0.03 

 
260 

Trial 1 3.71 0.06 9.98 0.17 7.56 0.12 0.39 0.03 21.30 2.14 11.43 0.07 261 172 

Trial 2 3.71 0.06 9.99 0.17 7.56 0.12 0.39 0.03 21.29 2.14 11.43 0.07 265 171 

Trial 3 3.72 0.06 9.99 0.17 7.57 0.12 0.39 0.03 21.31 2.14 11.45 0.08 259 171 

Trial 4 3.88 0.06 9.98 0.17 7.56 0.12 0.39 0.03 21.47 2.14 11.46 0.07 260 169 

Trial 5 3.87 0.06 10.00 0.17 7.56 0.12 0.38 0.03 21.46 2.14 11.46 0.07 259 172 

Trial 6 3.87 0.06 10.00 0.17 7.55 0.12 0.38 0.03 21.48 2.14 11.47 0.07 263 171 

Trial 7 3.84 0.06 9.84 0.17 7.54 0.11 0.29 0.03 21.43 2.13 11.42 0.05 260 169 

Trial 8 3.83 0.06 9.84 0.17 7.53 0.11 0.42 0.03 21.42 2.13 11.43 0.03 264 169 

Trial 9 3.84 0.06 9.86 0.17 7.55 0.11 0.34 0.03 21.44 2.13 11.43 0.03 262 166 

Trial 10 3.72 0.06 9.82 0.17 7.53 0.11 0.39 0.03 21.32 2.13 11.41 0.04 261 168 

Trial 11 3.88 0.06 9.92 0.17 7.62 0.11 0.39 0.03 21.49 2.14 11.52 0.05 258 170 

Trial 12 3.88 0.06 9.91 0.17 7.62 0.11 0.35 0.03 21.50 2.15 11.51 0.14 266 169 

Trial 13 3.89 0.06 9.92 0.17 7.58 0.11 0.39 0.03 21.48 2.14 11.54 0.08 260 170 

Trial 14 3.89 0.06 9.89 0.17 7.57 0.11 0.39 0.03 21.50 2.14 11.53 0.07 262 170 

1.2015 replicate analyses of reference sample MRG-1 (gabbro). Elemental concentrations are presented as 

weight percents except for Cl and Sr, which are in ppm 
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NCS DC 

71302
1
 

Al S Fe K Mg Mn Na P Si Ti Ca F Cl Sr 

Accepted 

Value 
8.52 0.02 3.30 4.29 0.51 0.69 1.85 0.16 29.48 0.48 1.77 0.11 160 318 

Trial 1 8.59 0.02 3.11 4.42 0.57 0.07 1.79 0.13 28.90 0.47 1.80 0.08 212 358 

Trial 2 8.58 0.02 3.10 4.42 0.57 0.07 1.78 0.13 28.88 0.47 1.80 0.08 219 355 

Trial 3 8.56 0.03 3.10 4.42 0.57 0.07 1.78 0.14 28.84 0.47 1.80 0.07 219 357 

Trial 4 8.70 0.03 3.11 4.44 0.57 0.07 1.79 0.14 28.99 0.47 1.81 0.08 212 357 

Trial 5 8.70 0.02 3.12 4.43 0.57 0.07 1.78 0.14 28.97 0.47 1.81 0.07 217 361 

Trial 6 8.70 0.02 3.11 4.43 0.57 0.07 1.78 0.14 28.96 0.47 1.81 0.08 214 356 

Trial 7 8.66 0.03 3.10 4.44 0.57 0.07 1.78 0.14 28.98 0.47 1.81 0.08 211 358 

Trial 8 8.65 0.03 3.10 4.43 0.57 0.07 1.78 0.14 28.97 0.47 1.81 0.07 217 357 

Trial 9 8.65 0.03 3.10 4.43 0.57 0.07 1.77 0.13 28.92 0.47 1.81 0.08 219 355 

Trial 10 8.56 0.03 3.06 4.43 0.56 0.07 1.74 0.13 28.85 0.47 1.80 0.09 211 353 

Trial 11 8.67 0.03 3.06 4.44 0.55 0.07 1.75 0.14 28.92 0.47 1.81 0.09 202 351 

Trial 12 8.63 0.02 3.06 4.43 0.56 0.07 1.75 0.13 28.87 0.47 1.81 0.08 209 353 

Trial 13 8.98 0.02 3.06 4.43 0.56 0.07 1.73 0.13 29.05 0.47 1.80 0.10 205 352 

Trial 14 9.08 0.03 3.10 4.44 0.57 0.07 1.76 0.14 29.28 0.48 1.81 0.07 246 355 

Trial 15 9.05 0.03 3.10 4.44 0.57 0.07 1.75 0.14 29.22 0.48 1.81 0.08 251 352 

1.2015 replicate analyses of reference sample NCS DC 71302. Elemental concentrations are 

presented as weight percents except for Cl and Sr, which are in ppm  
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TC14      

0-4' #9
1
 

Al S Fe K Mg Mn Na P Si Ti Ca F Cl Sr 

Original 

Value 
1.91 0.02 0.42 0.87 0.04 0.01 0.18 0.01 44.20 0.38 0.07 0.01 ND

2
 64 

Trial 1 1.79 0.01 0.42 0.86 0.04 0.01 0.18 0.02 41.55 0.37 0.07 0.01 21 65 

Trial 2 1.79 0.01 0.42 0.86 0.04 0.01 0.18 0.02 41.51 0.37 0.07 0.01 28 64 

Trial 3 1.79 0.01 0.42 0.86 0.04 0.01 0.18 0.02 41.44 0.37 0.07 0.01 27 63 

Trial 4 1.83 0.01 0.42 0.86 0.04 0.01 0.18 0.02 41.86 0.37 0.07 0.00 18 63 

Trial 5 1.84 0.01 0.42 0.86 0.04 0.01 0.18 0.02 41.78 0.37 0.07 0.01 23 63 

Trial 6 1.83 0.01 0.42 0.86 0.04 0.01 0.18 0.02 41.80 0.37 0.07 0.01 25 63 

Trial 7 1.82 0.01 0.42 0.87 0.04 0.01 0.18 0.02 41.68 0.37 0.07 0.01 21 64 

Trial 8 1.82 0.01 0.42 0.87 0.04 0.01 0.18 0.02 41.73 0.37 0.07 0.01 23 65 

Trial 9 1.82 0.01 0.42 0.86 0.04 0.01 0.18 0.02 41.66 0.37 0.07 0.01 21 64 

Trial 10 1.79 0.01 0.42 0.87 0.04 0.01 0.19 0.02 41.52 0.37 0.07 0.01 25 65 

Trial 11 1.83 0.01 0.42 0.87 0.04 0.01 0.18 0.02 41.72 0.37 0.07 0.01 20 63 

Trial 12 1.82 0.01 0.42 0.87 0.04 0.01 0.18 0.02 41.73 0.37 0.07 0.01 17 63 

Trial 13 1.89 0.02 0.42 0.87 0.04 0.01 0.15 0.02 42.00 0.37 0.07 0.05 14 65 

Trial 14 1.90 0.02 0.42 0.87 0.04 0.01 0.17 0.02 42.15 0.37 0.07 0.01 7 65 

1.2015 replicate analyses of pellet sample TC14: 0-4' #9. Elemental concentrations are presented as 

weight percents except for Cl and Sr, which are in ppm 

2. ND: Not detected 
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TC14  

12-16' #26
1
 

Al S Fe K Mg Mn Na P Si Ti Ca F Cl Sr 

Original Value 5.76 0.04 4.57 1.38 0.73 0.03 0.08 0.27 34.64 0.45 0.35 0.09 ND
2
 84 

Trial 1 5.13 0.01 4.46 1.33 0.74 0.03 0.16 0.27 32.86 0.45 0.34 0.10 ND
2
 85 

Trial 2 5.13 0.01 4.45 1.32 0.74 0.03 0.17 0.27 32.82 0.45 0.34 0.10 ND
2
 84 

Trial 3 5.12 0.01 4.44 1.32 0.74 0.03 0.17 0.27 32.76 0.45 0.34 0.10 ND
2
 83 

Trial 4 5.24 0.01 4.47 1.33 0.74 0.03 0.17 0.27 32.99 0.45 0.35 0.10 ND
2
 82 

Trial 5 5.23 0.01 4.46 1.33 0.74 0.03 0.17 0.27 32.92 0.45 0.34 0.10 ND
2
 84 

Trial 6 5.23 0.01 4.45 1.33 0.73 0.03 0.17 0.27 32.82 0.45 0.34 0.10 ND
2
 85 

Trial 7 5.45 0.01 4.40 1.33 0.74 0.03 0.18 0.27 33.11 0.45 0.35 0.11 ND
2
 84 

Trial 8 5.40 0.01 4.39 1.33 0.71 0.03 0.18 0.27 32.99 0.45 0.34 0.10 ND
2
 83 

Trial 9 5.32 0.01 4.38 1.33 0.73 0.03 0.17 0.27 32.80 0.44 0.34 0.10 ND
2
 81 

1.2015 replicate analyses of pellet sample TC14: 0-4' #9. Elemental concentrations are presented as weight 

percents except for Cl and Sr, which are in ppm  

2. Not detected 
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TC14 

12-16' #35
1
 

Al S Fe K Mg Mn Na P Si Ti Ca F Cl Sr 

Original Value 2.66 0.02 7.68 0.60 0.15 0.11 0.07 0.88 32.60 0.19 1.35 0.32 ND
2
 70 

Trial 1 2.34 0.03 7.61 0.57 0.24 0.11 0.10 0.84 31.06 0.19 1.31 0.25 21 69 

Trial 2 2.34 0.03 7.61 0.58 0.24 0.11 0.10 0.84 31.01 0.19 1.31 0.25 24 70 

Trial 3 2.33 0.03 7.60 0.57 0.24 0.11 0.10 0.84 30.99 0.19 1.31 0.24 17 70 

Trial 4 2.43 0.03 7.64 0.58 0.24 0.11 0.10 0.84 31.27 0.19 1.31 0.24 26 71 

Trial 5 2.44 0.03 7.63 0.57 0.24 0.11 0.10 0.84 31.27 0.19 1.31 0.25 18 72 

Trial 6 2.44 0.03 7.64 0.58 0.24 0.11 0.10 0.84 31.21 0.19 1.31 0.24 17 71 

Trial 7 2.39 0.03 7.63 0.58 0.24 0.11 0.10 0.84 31.19 0.19 1.32 0.25 14 70 

Trial 8 2.40 0.03 7.64 0.58 0.24 0.11 0.10 0.84 31.12 0.19 1.32 0.24 14 70 

Trial 9 2.40 0.03 7.65 0.58 0.24 0.11 0.10 0.84 31.02 0.19 1.32 0.24 13 71 

Trial 10 2.33 0.03 7.52 0.58 0.24 0.11 0.11 0.84 30.86 0.19 1.32 0.24 2 69 

Trial 11 2.40 0.03 7.54 0.58 0.24 0.11 0.10 0.84 30.97 0.19 1.32 0.24 ND
2
 70 

Trial 12 2.40 0.03 7.53 0.58 0.24 0.11 0.10 0.84 30.87 0.19 1.31 0.24 ND
2
 71 

Trial 13 2.55 0.02 7.56 0.58 0.24 0.11 0.11 0.86 31.28 0.19 1.32 0.26 ND
2
 69 

Trial 14 2.53 0.02 7.59 0.59 0.24 0.11 0.10 0.86 31.21 0.19 1.32 0.24 ND
2
 71 

1.2015 replicate analyses of pellet sample TC14: 12-16' #35. Elemental concentrations are presented as 

weight percents except for Cl and Sr, which are in ppm 
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TC14 

16-20' #7 Al S Fe K Mg Mn Na P Si Ti Ca F Cl Sr 

Original Value 2.67 0.16 5.62 0.61 0.15 0.10 0.12 4.92 22.58 0.14 14.46 0.76 1 363 

Trial 1 2.38 0.18 5.54 0.59 0.28 0.10 0.14 4.82 21.77 0.14 14.05 0.70 25 368 

Trial 2 2.37 0.18 5.53 0.59 0.28 0.10 0.14 4.83 21.76 0.14 14.04 0.71 24 365 

Trial 3 2.37 0.18 5.52 0.59 0.28 0.10 0.14 4.80 21.72 0.14 14.04 0.70 29 365 

Trial 4 2.53 0.18 5.56 0.59 0.28 0.10 0.14 4.84 21.95 0.14 14.12 0.71 25 368 

Trial 5 2.54 0.18 5.55 0.59 0.28 0.10 0.14 4.84 21.94 0.14 14.10 0.70 25 367 

Trial 6 2.54 0.18 5.54 0.59 0.28 0.10 0.14 4.82 21.90 0.14 14.09 0.68 22 367 

Trial 7 2.49 0.18 5.55 0.60 0.28 0.10 0.14 4.86 21.87 0.14 14.16 0.70 18 367 

Trial 8 2.48 0.18 5.54 0.59 0.28 0.10 0.14 4.84 21.81 0.14 14.14 0.71 16 366 

Trial 9 2.47 0.18 5.54 0.59 0.27 0.10 0.14 4.82 21.73 0.14 14.11 0.71 15 369 

1.2015 replicate analyses of pellet sample TC14: 16-20' #7. Elemental concentrations are presented as 

weight percents except for Cl and Sr, which are in ppm 
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TC14  

32-36' #17 
Al S Fe K Mg Mn Na P Si Ti Ca F Cl Sr 

Original Value 1.74 0.89 2.02 0.80 0.57 0.04 0.17 1.37 28.61 0.19 15.89 0.22 21 368 

Trial 1 1.58 0.87 1.98 0.78 0.58 0.04 0.15 1.33 27.41 0.19 15.58 0.19 67 365 

Trial 2 1.59 0.87 1.98 0.78 0.58 0.04 0.15 1.33 27.38 0.19 15.57 0.20 63 364 

Trial 3 1.58 0.87 1.97 0.78 0.58 0.04 0.15 1.33 27.37 0.19 15.53 0.20 61 363 

Trial 4 1.69 0.87 1.98 0.79 0.58 0.04 0.15 1.33 27.72 0.19 15.58 0.20 64 364 

Trial 5 1.69 0.87 1.98 0.78 0.58 0.04 0.15 1.33 27.70 0.19 15.57 0.20 61 363 

Trial 6 1.69 0.87 1.97 0.78 0.58 0.04 0.15 1.33 27.66 0.19 15.57 0.20 68 365 

Trial 7 1.66 0.87 1.97 0.79 0.58 0.04 0.16 1.33 27.65 0.19 15.60 0.20 68 360 

Trial 8 1.67 0.87 1.96 0.78 0.58 0.04 0.15 1.34 27.65 0.19 15.59 0.20 60 362 

Trial 9 1.67 0.87 1.95 0.78 0.57 0.03 0.15 1.34 27.64 0.19 15.58 0.21 62 359 

Trial 10 1.59 0.87 1.95 0.79 0.57 0.03 0.16 1.33 27.40 0.19 15.60 0.21 66 361 

Trial 11 1.68 0.87 1.96 0.79 0.57 0.04 0.16 1.34 27.69 0.19 15.65 0.21 61 360 

Trial 12 1.68 0.87 1.96 0.79 0.57 0.04 0.14 1.34 27.66 0.19 15.64 0.20 60 360 

Trial 13 1.70 0.87 1.95 0.79 0.58 0.04 0.15 1.34 27.68 0.19 15.62 0.17 53 361 

Trial 14 1.65 0.87 1.95 0.79 0.58 0.04 0.15 1.34 27.56 0.19 15.62 0.20 51 360 

Trial 15 1.69 0.87 1.95 0.79 0.57 0.04 0.15 1.34 27.63 0.19 15.67 0.20 42 360 

Trial 16 1.65 0.88 1.97 0.79 0.57 0.04 0.15 1.33 27.52 0.19 15.66 0.19 41 361 

Trial 17 1.69 0.88 1.95 0.79 0.57 0.03 0.15 1.35 27.55 0.19 15.62 0.19 37 360 

Trial 18 1.70 0.89 1.95 0.79 0.58 0.03 0.15 1.35 27.64 0.19 15.75 0.19 23 363 

1.2015 replicate analyses of pellet sample TC14: 32-36' #17. Elemental concentrations are presented as 

weight percents except for Cl and Sr, which are in ppm 



 

 

Appendix G6: Statistics of XRF Pellet Samples 

Sample
1
 Element

2
 

Initial 

Value
3
 

Mean
4
 Median 

Confidence Level 

(95%) 

Standard 

Deviation 

Precision
5
 

(CV %) 
Deviation

6
 % Deviation

7
 

TC14: 0-4' #9 

(n = 14) 

F 0.01 0.01 0.01 5.85E-03 1.01E-02 96.53 0.00 31.25 

Na 0.18 0.18 0.18 4.95E-03 8.57E-03 4.86 0.00 -2.45 

Mg 0.04 0.04 0.04 8.59E-04 1.49E-03 3.45 0.01 21.43 

Al 1.91 1.83 1.82 0.02 0.03 1.83 -0.09 -4.67 

Si 44.20 41.72 41.72 0.11 0.20 0.47 -2.48 -5.61 

P 0.01 0.02 0.02 1.46E-04 2.53E-04 1.62 0.00 5.25 

S 0.02 0.01 0.01 2.74E-04 4.75E-04 3.37 0.00 -17.23 

Cl NC
8
 NC

8
 NC

8
 NC

8
 NC

8
 NC

8
 NC

8
 NC

8
 

K 0.87 0.86 0.86 1.04E-03 1.80E-03 0.21 0.00 -0.51 

Ca 0.07 0.07 0.07 5.23E-04 9.05E-04 1.25 0.00 4.42 

Ti 0.38 0.37 0.37 4.44E-04 7.70E-04 0.21 -0.01 -2.31 

Mn 0.01 0.01 0.01 1.90E-04 3.30E-04 2.88 0.00 5.61 

Fe 0.42 0.42 0.42 1.97E-03 3.42E-03 0.81 0.00 0.73 

Sr 64.39 64.01 64.01 0.49 0.84 1.31 -0.38 -0.59 

1. Pellet samples evaluated once in 2014 and multiple times in 2015. The number (n) of replicate XRF analyses 

2. Concentrations are expressed as weight percents except for Cl and Sr, which are in ppm 

3. The initial concentration measured in 2014 

4. Mean concentration for replicate analyses conducted in 2015 

5. Precision of the 2015 analyses was determined via CV %. CV % = (standard deviation ÷ mean) × 100 

6. Deviation = mean value - initial value 

7. Reproducibility of 2014 values was determined via % Deviation. % Deviation = [(mean - initial value) ÷ initial value] x 100 

8. NC: Not calculated. This element was not detected in 2014 
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Sample
1
 Element

2
 

Initial 

Value
3
 

Mean
4
 Median 

Confidence Level 

(95%) 

Standard 

Deviation 

Precision
5
 

(CV %) 
Deviation

6
 

% 

Deviation
7
 

TC14:12-16' 

#26 

(n = 9) 

F 0.09 0.10 0.10 2.89E-03 3.76E-03 3.72 0.02 18.69 

Na 0.08 0.17 0.17 4.98E-03 6.47E-03 3.81 0.09 125.42 

Mg 0.73 0.73 0.74 7.84E-03 0.01 1.39 0.01 0.93 

Al 5.76 5.25 5.23 0.09 0.12 2.29 -0.51 -8.86 

Si 34.64 32.90 32.86 0.09 0.11 0.35 -1.74 -5.03 

P 0.27 0.27 0.27 1.05E-03 1.36E-03 0.51 -0.01 -1.99 

S 0.04 0.01 0.01 3.39E-04 4.41E-04 4.31 -0.03 -76.77 

Cl NC
8
 NC

8
 NC

8
 NC

8
 NC

8
 NC

8
 NC

8
 NC

8
 

K 1.38 1.33 1.33 3.08E-03 4.01E-03 0.30 -0.05 -3.90 

Ca 0.35 0.34 0.34 7.49E-04 9.75E-04 0.28 -0.01 -3.00 

Ti 0.45 0.45 0.45 5.38E-04 6.99E-04 0.16 0.00 -0.81 

Mn 0.03 0.03 0.03 2.98E-04 3.87E-04 1.33 0.00 -0.88 

Fe 4.57 4.43 4.45 0.03 0.03 0.78 -0.14 -3.04 

Sr 84.09 83.42 83.85 0.89 1.15 1.38 -0.67 -0.80 

1. Pellet samples evaluated once in 2014 and multiple times in 2015. The number (n) of replicate XRF analyses 

2. Concentrations are expressed as weight percents except for Cl and Sr, which are in ppm 

3. The initial concentration measured in 2014 

4. Mean concentration for replicate analyses conducted in 2015 

5. Precision of the 2015 analyses was determined via CV %. CV % = (standard deviation ÷ mean) × 100 

6. Deviation = mean value - initial value 

7. Reproducibility of 2014 values was determined via % Deviation. % Deviation = [(mean - initial value) ÷ initial value] x 100 

8. NC: Not calculated. This element was not detected in 2014 
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Sample
1
 Element

2
 

Initial 

Value
3
 

Mean
4
 Median 

Confidence Level 

(95%) 

Standard 

Deviation 

Precision
5
 

(CV %) 
Deviation

6
 

% 

Deviation
7
 

TC14: 12-16' 

#35 

(n = 14) 

F 0.32 0.24 0.24 3.96E-05 6.30E-03 2.59 -0.08 -24.66 

Na 0.07 0.10 0.10 3.77E-06 1.51E-03 1.45 0.03 42.44 

Mg 0.15 0.24 0.24 2.10E-06 1.12E-03 0.46 0.09 57.67 

Al 2.66 2.41 2.40 8.47E-03 0.07 2.78 -0.25 -9.45 

Si 32.60 31.10 31.09 0.05 0.15 0.47 -1.51 -4.63 

P 0.88 0.84 0.84 1.48E-04 8.04E-03 0.95 -0.03 -3.74 

S 0.02 0.03 0.03 2.15E-06 1.47E-03 5.44 0.00 17.39 

Cl NC
8
 NC

8
 NC

8
 NC

8
 NC

8
 NC

8
 NC

8
 NC

8
 

K 0.60 0.58 0.58 1.26E-05 3.24E-03 0.56 -0.02 -3.76 

Ca 1.35 1.32 1.31 3.27E-05 4.83E-03 0.37 -0.03 -2.54 

Ti 0.19 0.19 0.19 1.07E-06 8.01E-04 0.43 0.00 0.21 

Mn 0.11 0.11 0.11 5.32E-07 6.42E-04 0.60 0.00 -1.37 

Fe 7.68 7.60 7.61 2.55E-03 0.04 0.59 -0.08 -1.01 

Sr 70 70 70.41 0.79 0.89 1.26 0.53 0.76 

1. Pellet samples evaluated once in 2014 and multiple times in 2015. The number (n) of replicate XRF analyses 

2. Concentrations are expressed as weight percents except for Cl and Sr, which are in ppm 

3. The initial concentration measured in 2014 

4. Mean concentration for replicate analyses conducted in 2015 

5. Precision of the 2015 analyses was determined via CV %. CV % = (standard deviation ÷ mean) × 100 

6. Deviation = mean value - initial value 

7. Reproducibility of 2014 values was determined via % Deviation. % Deviation = [(mean - initial value) ÷ initial value] x 100 

8. NC: Not calculated. This element was not detected in 2014 
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Sample
1
 Element

2
 

Initial 

Value
3
 

Mean
4
 Median 

Confidence Level 

(95%) 

Standard 

Deviation 

Precision
5
 

(CV %) 
Deviation

6
 

% 

Deviation
7
 

TC14: 16-20' 

#7 

(n = 9) 

F 0.76 0.70 0.70 6.43E-03 8.37E-03 1.19 -0.06 -7.63 

Na 0.12 0.14 0.14 1.78E-03 2.32E-03 1.65 0.02 12.83 

Mg 0.15 0.28 0.28 1.03E-03 1.34E-03 0.48 0.13 85.17 

Al 2.67 2.46 2.48 0.06 0.07 2.93 -0.20 -7.67 

Si 22.58 21.83 21.81 0.07 0.09 0.41 -0.76 -3.36 

P 4.92 4.83 4.83 0.01 0.02 0.39 -0.09 -1.76 

S 0.16 0.18 0.18 6.66E-04 8.66E-04 0.48 0.02 11.25 

Cl 1.05 22.05 24.11 3.80 4.94 22.43 21.00 2009.74 

K 0.61 0.59 0.59 1.57E-03 2.04E-03 0.34 -0.02 -3.05 

Ca 14.46 14.10 14.10 0.03 0.04 0.32 -0.36 -2.51 

Ti 0.14 0.14 0.14 3.26E-04 4.24E-04 0.30 0.00 0.58 

Mn 0.10 0.10 0.10 3.14E-04 4.08E-04 0.39 0.00 0.42 

Fe 5.62 5.54 5.54 8.19E-03 0.01 0.19 -0.07 -1.33 

Sr 363.21 366.86 367.02 0.99 1.28 0.35 3.66 1.01 

1. Pellet samples evaluated once in 2014 and multiple times in 2015. The number (n) of replicate XRF analyses 

2. Concentrations are expressed as weight percents except for Cl and Sr, which are in ppm 

3. The initial concentration measured in 2014 

4. Mean concentration for replicate analyses conducted in 2015 

5. Precision of the 2015 analyses was determined via CV %. CV % = (standard deviation ÷ mean) × 100 

6. Deviation = mean value - initial value 

7. Reproducibility of 2014 values was determined via % Deviation. % Deviation = [(mean - initial value) ÷ initial value] x 100 

8. NC: Not calculated. This element was not detected in 2014 
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Sample
1
 Element

2
 

Initial 

Value
3
 

Mean
4
 Median 

Confidence Level 

(95%) 

Standard 

Deviation 

Precision
5
 

(CV %) 
Deviation

6
 

% 

Deviation
7
 

TC14: 32-36' 

#17 

 (n = 18) 

F 0.22 0.20 0.20 4.43E-03 8.91E-03 4.53 -0.02 -10.96 

Na 0.17 0.15 0.15 2.43E-03 4.89E-03 3.25 -0.02 -10.91 

Mg 0.57 0.58 0.58 1.92E-03 3.86E-03 0.67 0.01 0.98 

Al 1.74 1.66 1.67 0.02 0.04 2.64 -0.08 -4.69 

Si 28.61 27.58 27.64 0.06 0.12 0.43 -1.03 -3.60 

P 1.37 1.34 1.33 2.37E-03 4.77E-03 0.36 -0.03 -2.19 

S 0.89 0.87 0.87 2.71E-03 5.45E-03 0.63 -0.02 -2.13 

Cl 20.66 55.98 60.93 6.28 12.63 22.57 35.31 170.92 

K 0.80 0.79 0.79 1.25E-03 2.51E-03 0.32 -0.02 -2.28 

Ca 15.89 15.61 15.60 0.02 0.05 0.32 -0.28 -1.76 

Ti 0.19 0.19 0.19 1.99E-04 4.01E-04 0.21 0.00 1.81 

Mn 0.04 0.04 0.04 1.65E-04 3.31E-04 0.93 0.00 -2.60 

Fe 2.02 1.96 1.96 5.59E-03 0.01 0.57 -0.06 -2.80 

Sr 367.98 361.69 360.66 0.99 1.99 0.55 -6.30 -1.71 

1. Pellet samples evaluated once in 2014 and multiple times in 2015. The number (n) of replicate XRF analyses 

2. Concentrations are expressed as weight percents except for Cl and Sr, which are in ppm 

3. The initial concentration measured in 2014 

4. Mean concentration for replicate analyses conducted in 2015 

5. Precision of the 2015 analyses was determined via CV %. CV % = (standard deviation ÷ mean) × 100 

6. Deviation = mean value - initial value 

7. Reproducibility of 2014 values was determined via % Deviation. % Deviation = [(mean - initial value) ÷ initial value] x 100 

8. NC: Not calculated. This element was not detected in 2014 



 

 

Appendix G7: Linear Regression Plots comparing the Initial 2014 Concentration with the 

Mean concentration of 2015 Analyses for TC14 Pellet Samples 
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Appendix H: LOI Data 

Sample ID
1
 

Dry 

Sample 

Weight 

Crucible 

Weight 

Initial 

Weight 

Final 

Weight 
%  LOI

2
 Depth 

0-4' #23 1.1993 8.6618 9.8611 9.8559 0.0527 0.9 

4-8' #16 1.1986 8.6643 9.8629 9.8548 0.0821 1.8 

8-12' #18 1.2007 7.4502 8.6509 8.6477 0.0370 3.6 

12-16' #7 1.1986 9.5847 10.7833 10.7797 0.0334 4.0 

12-16' #10 1.1937 8.2483 9.4420 9.3941 0.5073 4.1 

12-16' #15 1.1974 5.2154 6.4128 6.3981 0.2292 4.2 

12-16' #34 1.1977 8.8596 10.0573 10.0380 0.1919 4.8 

16-20' #1 1.1952 8.3071 9.5023 9.4491 0.5599 4.9 

16-20' #11 1.1974 8.0904 9.2878 9.2507 0.3994 5.2 

16-20' #16 1.1991 8.2271 9.4262 9.3806 0.4838 5.3 

20-24' #1 1.2002 8.5834 9.7836 9.7475 0.3690 6.1 

20-24' #27 1.1993 8.6361 9.8354 9.7898 0.4636 7.2 

24-28' #41 1.2004 5.2933 6.4937 6.4910 0.0416 8.3 

24-28' #47 1.2007 8.7128 9.9135 9.9084 0.0514 8.5 

28-32' #6 1.1978 8.7318 9.9296 9.9278 0.0181 8.8 

28-32' #11 1.1995 7.1889 8.3884 8.3857 0.0322 9.1 

32-36' #6 1.1984 9.0171 10.2155 10.1412 0.7273 9.9 

32-36' #16 1.1991 9.6509 10.8500 10.8255 0.2258 10.3 

32-36' #32 1.2003 6.9860 8.1863 8.1737 0.1539 11.0 

1. TC14 sediment samples selected for LOI analysis. weights are in grams, % LOI values are 

expressed as weight percents, and depths in meters below the land surface 

2. % LOI = [(Initial Weight – Final Weight) ÷ Initial Weight] × 100 

 



 

 

Appendix I: NCAG DATA 

Sample ID
1
 

HM 

%
2
 

W/V
3
 CEC

4
 BS %

2
 Ac

4
 

Sediment-

Water pH 
Pe

5
 Ke

5
 Cae

5
 Mge

5
 

 0-4' #1 0.66 1.47 3.6 74 1 5.8 50 41 472 27 

 0-4' #2 0.18 1.51 1.1 44 0.6 4.9 12 10 74 14 

 0-4' #3 0.09 1.46 1.3 43 0.7 5.3 12 11 79 14 

 4-8' #4 0.09 1.38 1.7 62 0.6 5 20 13 172 20 

 4-8' #5 0.09 1.24 1.8 62 0.7 5.1 19 20 158 34 

 8-12' #6 0.09 1.4 1.2 53 0.6 5.1 16 17 82 22 

 8-12' #7 0.09 1.39 1.7 43 1 5.1 15 18 93 26 

 12-16' #8 0.09 1.41 2.3 67 0.8 4.9 25 21 226 42 

 12-16' #9 0.09 1.06 17.1 85 2.6 5.2 52 341 2272 279 

 12-16' #10 0.04 1.01 10.3 85 1.5 5.5 150 152 1439 150 

 12-16' #11 0.04 1.13 11.8 87 1.6 5.8 534 75 1874 83 

 16-20' #12 0.04 0.99 120.2 100 0 7.8 14 67 23939 65 

 16-20' #13 0.04 0.98 124.5 100 0 8.1 6 35 24851 52 

 16-20' #14 0.04 1.05 124.6 100 0 8.1 3 24 24866 58 

 20-24' #15 0.04 1.39 122.3 100 0 7.7 3 92 24298 103 

 20-24' #16 0.04 1.21 116.8 100 0 7.4 5 107 23159 112 

 20-24' #17 0.04 1.22 103.1 100 0 7.4 8 99 20432 113 

 20-24' #18 0.04 1.35 120.9 100 0 7.8 6 38 24065 91 

 24-28' #19 0.04 1.22 95.1 100 0 7.8 7 53 18884 89 

 24-28' #20 0.04 1.35 88.5 100 0 7.7 5 52 17578 81 

 24-28' #21 0.04 1.29 28.2 100 0 7.8 7 39 5549 47 

 24-28' #22 0.04 1.27 29.8 100 0 8 7 31 5873 46 

 28-32' #23 0.04 1.27 51.2 100 0 8 14 40 10108 78 

 28-32' #24 0.04 1.39 91.9 100 0 7.9 4 46 18226 105 

 28-32' #25 0.04 1.41 124.5 100 0 7.8 2 51 24747 108 

 32-36' #26 0.04 1.19 126.7 100 0 7.6 2 186 24693 369 

 32-36' #27 0.04 1.16 128.4 100 0 7.6 4 325 24811 461 

 32-36' #28 0.04 1.06 129.1 100 0 7.5 2 393 24904 467 

 32-36' #29 0.04 1.08 128.9 100 0 7.7 1 467 24837 452 

1. TC14C samples sent to the NCAG's Soil Testing Division for geochemical analysis 

2. Units for percent humic matter and base saturation are expressed as volume percents 

3. Weight per volume (g/cm
3
) 

4. Cation exchange Capacity and exchangeable acidity are presented in units of 

meq/100cm
3
 

5. Extractable concentrations of phosphorus, potassium, calcium, and magnesium (mg/dm
3
) 

6. Depth is presented as meters below the land surface 
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Sample ID
1
 Se

5
 Mne

5
 Zne

5
 Cue

5
 Nae

5
 Ke

5
 Cae

5
 Mge

5
 Depth

6
 

 0-4' #1 21 5 1.3 0.6 0.1 0.1 2.36 0.22 0.2 

 0-4' #2 14 2.4 0.3 0.2 0 0.03 0.37 0.12 0.6 

 0-4' #3 28 3 0.2 0.2 0.1 0.03 0.4 0.12 1.0 

 4-8' #4 14 1.2 0.2 0.4 0 0.03 0.86 0.16 1.4 

 4-8' #5 8 1.4 0.2 0.3 0 0.05 0.79 0.28 1.9 

 8-12' #6 5 1.7 0.2 0.3 0 0.04 0.41 0.18 2.7 

 8-12' #7 7 6.1 0.1 0.3 0.1 0.05 0.47 0.21 3.3 

 12-16' #8 6 9.4 0.4 0.3 0 0.05 1.13 0.35 3.8 

 12-16' #9 16 76 1.9 0.7 0.2 0.87 11.36 2.29 4.1 

 12-16' #10 9 17.4 1.3 0.4 0.1 0.39 7.2 1.23 4.4 

 12-16' #11 8 66.5 4.1 0.4 0.1 0.19 9.37 0.68 4.7 

 16-20' #12 29 115.7 0.7 0.3 1.3 0.17 119.7 0.53 5.1 

 16-20' #13 32 95.1 0.2 0.1 1.5 0.09 124.26 0.43 5.5 

 16-20' #14 35 113.1 0.1 0.1 1.6 0.06 124.33 0.48 5.9 

 20-24' #15 260 86 0.6 0.2 1.4 0.24 121.49 0.85 6.2 

 20-24' #16 576 73.7 0.8 0.2 1.1 0.27 115.8 0.92 6.5 

 20-24' #17 726 18.5 0.8 0.2 0.9 0.25 102.16 0.93 6.8 

 20-24' #18 301 9.6 0.3 0.1 1.3 0.1 120.33 0.75 7.1 

 24-28' #19 316 8.7 0.5 0.1 0.9 0.14 94.42 0.73 7.5 

 24-28' #20 336 6.3 0.5 0.1 0.8 0.13 87.89 0.67 7.8 

 24-28' #21 222 3.3 0.5 0.1 0.3 0.1 27.75 0.39 8.1 

 24-28' #22 93 3.3 0.5 0.1 0.4 0.08 29.37 0.38 8.4 

 28-32' #23 180 4.7 0.5 0.1 0.6 0.1 50.54 0.64 8.7 

 28-32' #24 216 5 0.5 0.1 1 0.12 91.13 0.86 9.1 

 28-32' #25 400 7.9 0.4 0.1 1.6 0.13 123.74 0.89 9.5 

 32-36' #26 699 55.7 0.6 0.2 1.1 0.48 123.47 3.03 9.8 

 32-36' #27 684 58.9 0.4 0.1 0.6 0.83 124.06 3.79 10.2 

 32-36' #28 609 51.5 0.5 0.1 0.7 1.01 124.52 3.84 10.5 

 32-36' #29 618 39.5 0.5 0.1 0.7 1.19 124.19 3.72 10.8 

1. TC14C samples sent to the NCAG's Soil Testing Division for geochemical analysis 

2. Units for percent humic matter and base saturation are expressed as volume percents 

3. Weight per volume (g/cm
3
) 

4. Cation exchange Capacity and exchangeable acidity are presented in units of 

meq/100cm
3
 

5. Extractable concentrations of phosphorus, potassium, calcium, and magnesium 

(mg/dm
3
) 

6. Depth is presented as meters below the land surface 



 

 

Appendix J: Comparison of XRF and NCAG Results 

Comparison of NCAG and XRF results for magnesium. The left graph is a regression analysis of mean Mge concentrations (measured 

by NCAG) and mean Mg concentrations (measured by XRF). The right graph shows concentration profiles for extractable magnesium 

and total magnesium 
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Comparison of NCAG and XRF results for potassium. The left plot is a regression analysis of mean Ke concentrations (measured by 

NCAG) and mean K concentrations (measured by XRF). The graph on the right shows concentration profiles for extractable 

potassium and total potassium 
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Comparison of NCAG and XRF results for calcium. The left plot is a regression analysis of mean Cae concentrations (measured by 

NCAG) and mean Ca concentrations (measured by XRF). The graph on the right shows concentration profiles for extractable calcium 

and total calcium 
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Comparison of NCAG and XRF results for phosphorous. The left plot is a regression analysis of mean Pe concentrations (measured by 

NCAG) and mean P concentrations (measured by XRF). The graph on the right shows concentration profiles for extractable 

phosphorous and total phosphorous 
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Comparison of NCAG and XRF results for sulfur. The left plot is a regression analysis of mean Se concentrations (measured by 

NCAG) and mean S concentrations (measured by XRF). The graph on the right shows concentration profiles for extractable sulfur and 

total sulfur 
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Comparison of NCAG and XRF results for manganese. The left plot is a regression analysis of mean Mne concentrations (measured 

by NCAG) and mean Mn concentrations (measured by XRF). The graph on the right shows concentration profiles for extractable 

manganese and total manganese 



 

 

Appendix K: Results of Geochemical Modeling and PHREEQC Input Files 

Appendix K1: Simple Dissolution in Pure Water at pH 5 

Solution
1
 pH pe 

Alkalinity 

as HCO3
-
 

Dissolved  

Fe 

S.I.
2
 

Hematite 

S.I.
2
 

Goethite 

S.I.
2
 

Lepidocrocite 

S.I.
2 

Fe(OH)3 

S.I.
2
 

Pyrite 

Epidote 9.08 2.03 7.53 2.50E-07 1 0 -1 -5 -1000 

Hematite 5.00 12.86 -0.61 1.41E-06 0 0 -1 -6 -1000 

Fe(OH)3 5.07 12.52 -0.52 3.75E-06 1 0 -1 -5 -1000 

Lepidocrocite 5.00 12.73 -0.61 4.41E-06 1 0 -1 -5 -1000 

Goethite 5.00 12.69 -0.61 4.37E-06 1 0 -1 -5 -1000 

Goethite_2 5.00 12.64 -0.61 4.37E-06 1 0 -1 -5 -1000 

Glauconite 5.84 2.40 0.70 0.03 1 0 -1 -5 -1000 

Pyrite 5.01 -1.28 -0.59 0.01 -12 -7 -7 -12 0 

Hedenbergite 9.73 -8.98 5.62 0.03 1 0 -1 -5 -1000 

Staurolite 5.89 -0.68 1.21 0.11 -4 -2 -3 -7 -1000 

Schorl 6.45 -1.60 1.22 0.20 -2 -1 -2 -6 -1000 

Ilmenite 5.83 -0.72 -0.09 0.24 -3 -2 -3 -7 -1000 

Actinolite 8.94 -7.84 0.71 0.27 1 0 -1 -5 -1000 

Ferropargasite 8.98 -8.01 5.42 0.33 1 0 -1 -5 -1000 

Almandine 7.49 -3.79 1.21 0.42 1 0 -1 -5 -1000 

1. Chemistry of the “Pure Water” solution at equilibrium with 10 moles of individual Fe-bearing minerals. 

Concentrations are presented in units of mg/L 

2. S.I: Saturation indices of selected iron-oxyhydroxides and pyrite. Saturation index (S.I.) = log(IAP)/KT 

where IAP is the ion activity product of the dissolved components in solution, and KT is the solubility of the 

solid or gaseous phase at the specified temperature 



 

 

Appendix K2: Simple Dissolution in Pure Water at pH 7 

Solution
1
 pH pe 

Alkalinity 

as HCO3
-
 

Dissolved 

Fe 

S.I.
2
 

Hematite 

S.I.
2
 

Goethite 

S.I.
2
 

Lepidocrocite 

S.I.
2 

Fe(OH)3 

S.I.
2
 

Pyrite 

Pure Water 7.00 4.00 -2.23E-04 0.00 -1000 -1000 -1000 -1000 -1000 

Epidote 9.27 0.61 7.42 2.81E-07 1 0 -1 -5 -1000 

Hematite 7.00 10.90 0.00 7.41E-08 0 0 -1 -6 -1000 

Fe(OH)3 7.00 6.75 0.00 2.33E-07 1 0 -1 -5 -1000 

Lepidocrocite 7.00 6.51 0.00 2.33E-07 1 0 -1 -5 -1000 

Goethite 7.00 6.58 0.00 2.31E-07 1 0 -1 -5 -1000 

Goethite_2 7.00 6.67 0.00 2.31E-07 1 0 -1 -5 -1000 

Glauconite 7.35 -1.78 0.58 0.01 1 0 -1 -5 -1000 

Pyrite 7.04 -3.77 0.00 0.00 -7 -4 -5 -9 0 

Hedenbergite 9.78 -9.02 6.01 0.03 1 0 -1 -5 -1000 

Staurolite 6.67 -1.66 0.47 0.03 -2 -2 -2 -7 -1000 

Schorl 7.83 -4.17 0.93 0.10 1 0 -1 -5 -1000 

Ilmenite 7.42 -2.65 0.01 0.01 -1 -1 -2 -6 -1000 

Actinolite 9.10 -8.01 0.95 0.14 1 0 -1 -5 -1000 

Ferropargasite 9.12 -8.18 5.47 0.19 1 0 -1 -5 -1000 

Almandine 8.48 -6.22 0.59 0.13 1 0 -1 -5 -1000 

1. Chemistry of the “Pure Water” solution at equilibrium with 10 moles of individual Fe-bearing minerals. 

Concentrations are presented in units of mg/L 

2. S.I.: Saturation indices of selected iron-oxyhydroxides and pyrite. Saturation index (S.I.) = log(IAP)/KT 

where IAP is the ion activity product of the dissolved components in solution, and KT is the solubility of the 

solid or gaseous phase at the specified temperature 



 

 

Appendix K3: Simple Dissolution in Pure Water at pH 9 

Solution
1
 pH pe 

Alkalinity 

as HCO3
-
 

Dissolved 

Fe 

S.I.
2
 

Hematite 

S.I.
2
 

Goethite 

S.I.
2
 

Lepidocrocite 

S.I.
2 

Fe(OH)3 

S.I.
2
 

Pyrite 

Pure Water 9.00 4.00 0.59 0.00 -1000 -1000 -1000 -1000 -1000 

Epidote 9.40 5.48 7.55 3.15E-07 1 0 -1 -5 -1000 

Hematite 9.00 8.91 0.59 7.64E-08 0 0 -1 -6 -1000 

Fe(OH)3 8.93 1.19 0.50 2.33E-07 1 0 -1 -5 -1000 

Lepidocrocite 9.00 0.63 0.59 2.40E-07 1 0 -1 -5 -1000 

Goethite 9.00 0.80 0.59 2.38E-07 1 0 -1 -5 -1000 

Goethite_2 9.00 0.92 0.59 2.38E-07 1 0 -1 -5 -1000 

Glauconite 8.96 -6.51 1.22 0.01 1 0 -1 -5 -1000 

Pyrite 9.00 -6.01 0.59 0.00 1 0 -1 -5 0 

Hedenbergite 9.82 -9.05 6.41 0.03 1 0 -1 -5 -1000 

Staurolite 8.68 -6.64 2.23 0.09 1 0 -1 -5 -1000 

Schorl 8.92 -7.20 1.47 0.07 1 0 -1 -5 -1000 

Ilmenite 9.00 -4.84 0.59 0.00 1 0 -1 -5 -1000 

Actinolite 9.27 -8.18 1.33 0.08 1 0 -1 -5 -1000 

Ferropargasite 9.27 -8.33 5.71 0.11 1 0 -1 -5 -1000 

Almandine 9.02 -7.37 0.93 0.06 1 0 -1 -5 -1000 

1. Chemistry of the “Pure Water” solution at equilibrium with 10 moles of individual Fe-bearing minerals. 

Concentrations are presented in units of mg/L 

2. S.I.: Saturation indices of selected iron-oxyhydroxides and pyrite. Saturation index (S.I.) = log(IAP)/KT 

where IAP is the ion activity product of the dissolved components in solution, and KT is the solubility of the 

solid or gaseous phase at the specified temperature 



 

 

Appendix K4: Simple Dissolution in Surficial Water 

Solution
1
 pH pe 

Alkalinity 

as HCO3
-
 

 

Dissolved 

Fe 

S.I.
2
 

Hematite 

S.I.
2
 

Goethite 

S.I.
2
 

Lepidocrocite 

S.I.
2 

Fe(OH)3 

S.I.
2
 

Pyrite 

Pure Water 5.30 6.44 24.01 0.07 -1000 -1000 -1000 -1000 -1000 

Epidote 6.49 13.81 326.43 3.35E-07 1 0 -1 -5 -241 

Hematite 5.29 15.01 23.68 9.14E-07 0 0 -1 -6 -236 

Fe(OH)3 5.30 14.99 20.06 2.38E-06 1 0 -1 -5 -236 

Lepidocrocite 5.29 15.01 23.68 2.41E-06 1 0 -1 -5 -236 

Goethite 5.29 15.01 23.68 2.41E-06 1 0 -1 -5 -236 

Goethite_2 5.29 15.01 23.68 2.41E-06 1 0 -1 -5 -236 

Glauconite 5.30 15.01 23.79 2.39E-06 1 0 -1 -5 -236 

Pyrite 5.32 -0.94 25.09 1.77 -6 -3 -4 -8 0 

Hedenbergite 8.72 -4.84 325.70 0.01 1 0 -1 -5 -3 

Staurolite 5.94 6.83 344.30 1.71E-06 1 0 -1 -5 -125 

Schorl 5.76 6.75 176.46 4.57E-06 1 0 -1 -5 -121 

Ilmenite 5.38 3.89 28.21 0.03 1 0 -1 -5 -70 

Actinolite 6.81 -2.67 210.07 11.94 1 0 -1 -5 0 

Ferropargasite 6.97 -2.84 454.33 6.12 1 0 -1 -5 0 

Almandine 5.79 0.14 127.60 12.04 1 0 -1 -5 -22 

1. Chemistry of the "Surficial Water" solution at equilibrium with 10 moles of individual Fe-bearing minerals. 

Concentrations are presented in units of mg/L 

2. S.I.: Saturation indices of selected iron-oxyhydroxides and pyrite. Saturation index (S.I.) = log(IAP)/KT where 

IAP is the ion activity product of the dissolved components in solution, and KT is the solubility of the solid or 

gaseous phase at the specified temperature 



 

 

Appendix K5: Pyrite Titration with Oxygen in Pure Water 

Oxygen 

Added
1
 

pH pe 
Alkalinity 

as HCO3
-
 

Dissolved 

Fe 
SO4

2-
 S

2-
 

S.I.
2
 

Hematite 

S.I.
2
 

Goethite 

S.I.
2
 

Lepidocrocite 

S.I.
2 

Fe(OH)3 

0.00 7.00 4.00 0.00 0.00 0.00 0.00 -1000 -1000 -1000 -1000 

0.08 5.55 -1.57 -0.17 0.08 0.27 1.25E-03 -8 -4 -5 -9 

0.16 5.25 -1.17 -0.35 0.16 0.55 1.37E-03 -8 -5 -5 -10 

0.24 5.07 -0.93 -0.52 0.24 0.82 1.45E-03 -8 -5 -6 -10 

0.32 4.95 -0.76 -0.70 0.32 1.10 1.51E-03 -8 -5 -6 -10 

0.40 4.85 -0.63 -0.87 0.40 1.37 1.56E-03 -9 -5 -6 -10 

0.48 4.77 -0.52 -1.04 0.48 1.65 1.60E-03 -9 -5 -6 -10 

0.56 4.70 -0.43 -1.22 0.56 1.92 1.64E-03 -9 -5 -6 -10 

0.64 4.65 -0.35 -1.39 0.64 2.20 1.67E-03 -9 -5 -6 -10 

0.72 4.60 -0.28 -1.57 0.72 2.47 1.70E-03 -9 -5 -6 -10 

0.80 4.55 -0.22 -1.74 0.80 2.75 1.73E-03 -9 -5 -6 -10 

0.88 4.51 -0.17 -1.92 0.88 3.02 1.75E-03 -9 -5 -6 -10 

0.96 4.47 -0.12 -2.09 0.96 3.29 1.77E-03 -9 -5 -6 -10 

1.04 4.44 -0.07 -2.26 1.04 3.57 1.80E-03 -9 -5 -6 -10 

1.12 4.41 -0.03 -2.44 1.12 3.84 1.82E-03 -9 -5 -6 -10 

1.20 4.38 0.01 -2.61 1.20 4.12 1.84E-03 -9 -5 -6 -10 

1.28 4.35 0.05 -2.79 1.28 4.39 1.86E-03 -9 -5 -6 -10 

1.36 4.32 0.09 -2.96 1.36 4.67 1.87E-03 -9 -5 -6 -10 

1.44 4.30 0.12 -3.14 1.44 4.94 1.89E-03 -9 -5 -6 -10 

1. Composition of the "Pure Water" solution as a total of 8 mg/L oxygen is added to 10 moles of pyrite. Concentrations are 

presented in units of mg/L 

2. S.I.: Saturation indices of selected iron-oxyhydroxides. Saturation index (S.I.) = log(IAP)/KT where IAP is the ion activity 

product of the dissolved components in solution, and KT is the solubility of the solid or gaseous phase at the specified 

temperature 
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Oxygen 

Added
1
 

pH pe 
Alkalinity 

as HCO3
-
 

Dissolved 

Fe 
SO4

2-
 S

2-
 

S.I.
2
 

Hematite 

S.I.
2
 

Goethite 

S.I.
2
 

Lepidocrocite 

S.I.
2 

Fe(OH)3 

1.52 4.27 0.15 -3.31 1.52 5.22 1.91E-03 -9 -5 -6 -10 

1.60 4.25 0.18 -3.48 1.60 5.49 1.92E-03 -9 -5 -6 -10 

1.68 4.23 0.21 -3.66 1.68 5.76 1.94E-03 -9 -5 -6 -10 

1.76 4.21 0.24 -3.83 1.76 6.04 1.95E-03 -9 -5 -6 -10 

1.84 4.19 0.26 -4.01 1.84 6.31 1.97E-03 -9 -5 -6 -10 

1.92 4.17 0.29 -4.18 1.92 6.59 1.98E-03 -9 -5 -6 -10 

2.00 4.16 0.31 -4.36 2.00 6.86 1.99E-03 -10 -5 -6 -10 

2.08 4.14 0.33 -4.53 2.08 7.14 2.00E-03 -10 -5 -6 -10 

2.16 4.12 0.35 -4.70 2.16 7.41 2.02E-03 -10 -5 -6 -10 

2.24 4.11 0.37 -4.88 2.23 7.69 2.03E-03 -10 -5 -6 -10 

2.32 4.09 0.40 -5.05 2.31 7.96 2.04E-03 -10 -5 -6 -10 

2.40 4.08 0.41 -5.23 2.39 8.23 2.05E-03 -10 -5 -6 -10 

2.48 4.06 0.43 -5.40 2.47 8.51 2.06E-03 -10 -5 -6 -10 

2.56 4.05 0.45 -5.58 2.55 8.78 2.07E-03 -10 -5 -6 -10 

2.64 4.04 0.47 -5.75 2.63 9.06 2.08E-03 -10 -5 -6 -10 

2.72 4.03 0.49 -5.93 2.71 9.33 2.09E-03 -10 -5 -6 -10 

2.80 4.01 0.50 -6.10 2.79 9.61 2.10E-03 -10 -5 -6 -10 

2.88 4.00 0.52 -6.27 2.87 9.88 2.11E-03 -10 -5 -6 -10 

2.96 3.99 0.54 -6.45 2.95 10.16 2.12E-03 -10 -5 -6 -10 

3.04 3.98 0.55 -6.62 3.03 10.43 2.13E-03 -10 -5 -6 -10 

3.12 3.97 0.57 -6.80 3.11 10.70 2.14E-03 -10 -5 -6 -10 

1. Composition of the "Pure Water" solution as a total of 8 mg/L oxygen is added to 10 moles of pyrite. Concentrations are 

presented in units of mg/L 

2. S.I.: Saturation indices of selected iron-oxyhydroxides. Saturation index (S.I.) = log(IAP)/KT where IAP is the ion activity 

product of the dissolved components in solution, and KT is the solubility of the solid or gaseous phase at the specified 

temperature 
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Oxygen 

Added
1
 

pH pe 
Alkalinity 

as HCO3
-
 

Dissolved 

Fe 
SO4

2-
 S

2-
 

S.I.
2
 

Hematite 

S.I.
2
 

Goethite 

S.I.
2
 

Lepidocrocite 

S.I.
2 

Fe(OH)3 

3.20 3.96 0.58 -6.97 3.19 10.98 2.15E-03 -10 -5 -6 -10 

3.28 3.95 0.59 -7.15 3.27 11.25 2.16E-03 -10 -5 -6 -11 

3.36 3.94 0.61 -7.32 3.35 11.53 2.17E-03 -10 -5 -6 -11 

3.44 3.93 0.62 -7.49 3.43 11.80 2.18E-03 -10 -5 -6 -11 

3.52 3.92 0.63 -7.67 3.51 12.08 2.19E-03 -10 -5 -6 -11 

3.60 3.91 0.65 -7.84 3.59 12.35 2.19E-03 -10 -5 -6 -11 

3.68 3.90 0.66 -8.02 3.67 12.63 2.20E-03 -10 -5 -6 -11 

3.76 3.89 0.67 -8.19 3.75 12.90 2.21E-03 -10 -5 -6 -11 

3.84 3.88 0.68 -8.37 3.83 13.18 2.22E-03 -10 -5 -6 -11 

3.92 3.87 0.70 -8.54 3.91 13.45 2.22E-03 -10 -5 -6 -11 

4.00 3.86 0.71 -8.71 3.99 13.72 2.23E-03 -10 -5 -6 -11 

4.08 3.85 0.72 -8.89 4.07 14.00 2.24E-03 -10 -5 -6 -11 

4.16 3.84 0.73 -9.06 4.15 14.27 2.25E-03 -10 -5 -6 -11 

4.24 3.84 0.74 -9.24 4.23 14.55 2.25E-03 -10 -5 -6 -11 

4.32 3.83 0.75 -9.41 4.31 14.82 2.26E-03 -10 -5 -6 -11 

4.40 3.82 0.76 -9.59 4.39 15.10 2.27E-03 -10 -5 -6 -11 

4.48 3.81 0.77 -9.76 4.47 15.37 2.28E-03 -10 -5 -6 -11 

4.56 3.81 0.78 -9.93 4.55 15.65 2.28E-03 -10 -5 -6 -11 

4.64 3.80 0.79 -10.11 4.63 15.92 2.29E-03 -10 -6 -6 -11 

4.72 3.79 0.80 -10.28 4.71 16.19 2.30E-03 -10 -6 -6 -11 

4.80 3.78 0.81 -10.46 4.79 16.47 2.30E-03 -10 -6 -6 -11 

1. Composition of the "Pure Water" solution as a total of 8 mg/L oxygen is added to 10 moles of pyrite. Concentrations are 

presented in units of mg/L 

2. S.I.: Saturation indices of selected iron-oxyhydroxides. Saturation index (S.I.) = log(IAP)/KT where IAP is the ion activity 

product of the dissolved components in solution, and KT is the solubility of the solid or gaseous phase at the specified 

temperature 
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Oxygen 

Added
1
 

pH pe 
Alkalinity 

as HCO3
-
 

Dissolved 

Fe 
SO4

2-
 S

2-
 

S.I.
2
 

Hematite 

S.I.
2
 

Goethite 

S.I.
2
 

Lepidocrocite 

S.I.
2 

Fe(OH)3 

4.88 3.78 0.82 -10.63 4.87 16.74 2.31E-03 -10 -6 -6 -11 

4.96 3.77 0.83 -10.81 4.95 17.02 2.32E-03 -10 -6 -6 -11 

5.04 3.76 0.84 -10.98 5.03 17.29 2.32E-03 -10 -6 -6 -11 

5.12 3.76 0.85 -11.15 5.11 17.57 2.33E-03 -10 -6 -6 -11 

5.20 3.75 0.86 -11.33 5.19 17.84 2.33E-03 -10 -6 -6 -11 

5.28 3.74 0.87 -11.50 5.27 18.12 2.34E-03 -10 -6 -6 -11 

5.36 3.74 0.87 -11.68 5.35 18.39 2.35E-03 -10 -6 -6 -11 

5.44 3.73 0.88 -11.85 5.43 18.66 2.35E-03 -10 -6 -6 -11 

5.52 3.72 0.89 -12.03 5.51 18.94 2.36E-03 -10 -6 -6 -11 

5.60 3.72 0.90 -12.20 5.59 19.21 2.36E-03 -10 -6 -6 -11 

5.68 3.71 0.91 -12.37 5.67 19.49 2.37E-03 -10 -6 -6 -11 

5.76 3.71 0.92 -12.55 5.75 19.76 2.38E-03 -10 -6 -6 -11 

5.84 3.70 0.92 -12.72 5.83 20.04 2.38E-03 -10 -6 -6 -11 

5.92 3.70 0.93 -12.90 5.91 20.31 2.39E-03 -10 -6 -6 -11 

6.00 3.69 0.94 -13.07 5.98 20.59 2.39E-03 -10 -6 -6 -11 

6.08 3.68 0.95 -13.25 6.06 20.86 2.40E-03 -10 -6 -6 -11 

6.16 3.68 0.95 -13.42 6.14 21.14 2.40E-03 -10 -6 -6 -11 

6.24 3.67 0.96 -13.59 6.22 21.41 2.41E-03 -10 -6 -6 -11 

6.32 3.67 0.97 -13.77 6.30 21.68 2.41E-03 -10 -6 -6 -11 

6.40 3.66 0.98 -13.94 6.38 21.96 2.42E-03 -10 -6 -6 -11 

6.48 3.66 0.98 -14.12 6.46 22.23 2.42E-03 -10 -6 -6 -11 

1. Composition of the "Pure Water" solution as a total of 8 mg/L oxygen is added to 10 moles of pyrite. Concentrations are 

presented in units of mg/L 

2. S.I.: Saturation indices of selected iron-oxyhydroxides. Saturation index (S.I.) = log(IAP)/KT where IAP is the ion activity 

product of the dissolved components in solution, and KT is the solubility of the solid or gaseous phase at the specified 

temperature 
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Oxygen 

Added
1
 

pH pe 
Alkalinity 

as HCO3
-
 

Dissolved 

Fe 
SO4

2-
 S

2-
 

S.I.
2
 

Hematite 

S.I.
2
 

Goethite 

S.I.
2
 

Lepidocrocite 

S.I.
2 

Fe(OH)3 

6.56 3.65 0.99 -14.29 6.54 22.51 2.43E-03 -10 -6 -6 -11 

6.64 3.65 1.00 -14.47 6.62 22.78 2.44E-03 -10 -6 -6 -11 

6.72 3.64 1.00 -14.64 6.70 23.06 2.44E-03 -10 -6 -6 -11 

6.80 3.64 1.01 -14.81 6.78 23.33 2.45E-03 -10 -6 -6 -11 

6.88 3.63 1.02 -14.99 6.86 23.61 2.45E-03 -10 -6 -6 -11 

6.96 3.63 1.02 -15.16 6.94 23.88 2.46E-03 -10 -6 -6 -11 

7.04 3.62 1.03 -15.34 7.02 24.15 2.46E-03 -10 -6 -6 -11 

7.12 3.62 1.04 -15.51 7.10 24.43 2.47E-03 -10 -6 -6 -11 

7.20 3.61 1.04 -15.69 7.18 24.70 2.47E-03 -10 -6 -6 -11 

7.28 3.61 1.05 -15.86 7.26 24.98 2.47E-03 -10 -6 -6 -11 

7.36 3.60 1.05 -16.03 7.34 25.25 2.48E-03 -10 -6 -6 -11 

7.44 3.60 1.06 -16.21 7.42 25.53 2.48E-03 -10 -6 -6 -11 

7.52 3.59 1.07 -16.38 7.50 25.80 2.49E-03 -10 -6 -7 -11 

7.60 3.59 1.07 -16.56 7.58 26.08 2.49E-03 -10 -6 -7 -11 

7.68 3.59 1.08 -16.73 7.66 26.35 2.50E-03 -10 -6 -7 -11 

7.76 3.58 1.08 -16.91 7.74 26.62 2.50E-03 -10 -6 -7 -11 

7.84 3.58 1.09 -17.08 7.82 26.90 2.51E-03 -10 -6 -7 -11 

7.92 3.57 1.10 -17.26 7.90 27.17 2.51E-03 -10 -6 -7 -11 

8.00 3.57 1.10 -17.43 7.98 27.45 2.52E-03 -10 -6 -7 -11 

1. Composition of the "Pure Water" solution as a total of 8 mg/L oxygen is added to 10 moles of pyrite. Concentrations are 

presented in units of mg/L 

2. S.I.: Saturation indices of selected iron-oxyhydroxides. Saturation index (S.I.) = log(IAP)/KT where IAP is the ion activity 

product of the dissolved components in solution, and KT is the solubility of the solid or gaseous phase at the specified 

temperature 



 

 

Appendix K6: Pyrite Titration with Oxygen and Simultaneous Calcite Dissolution in Pure Water 

Oxygen 

Added
1
 

pH pe 
Alkalinity 

as HCO3
-
 

Dissolved 

Fe 
SO4

2-
 S

2-
 

S.I.
2
 

Hematite 

S.I.
2
 

Goethite 

S.I.
2
 

Lepidocrocite 

S.I.
2 

Fe(OH)3 

0.00 7.00 4.00 0.00 0.00 0.00 0.00 -1000 -1000 -1000 -1000 

0.08 9.86 -6.48 8.34 6.87E-05 34.08 0.01 1 0 -1 -5 

0.16 9.84 -6.45 8.20 7.28E-05 34.30 0.01 1 0 -1 -5 

0.24 9.81 -6.42 8.07 7.73E-05 34.51 0.01 1 0 -1 -5 

0.32 9.79 -6.39 7.95 8.23E-05 34.73 0.01 1 0 -1 -5 

0.40 9.76 -6.36 7.85 8.79E-05 34.95 0.01 1 0 -1 -5 

0.48 9.74 -6.32 7.77 9.41E-05 35.16 0.01 1 0 -1 -5 

0.56 9.71 -6.29 7.70 1.01E-04 35.37 0.01 1 0 -1 -5 

0.64 9.69 -6.26 7.65 1.08E-04 35.58 0.01 1 0 -1 -5 

0.72 9.66 -6.22 7.62 1.17E-04 35.79 0.01 1 0 -1 -5 

0.80 9.63 -6.19 7.61 1.26E-04 36.00 0.01 1 0 -1 -5 

0.88 9.60 -6.15 7.61 1.36E-04 36.20 0.01 1 0 -1 -5 

0.96 9.58 -6.12 7.64 1.47E-04 36.40 0.01 1 0 -1 -5 

1.04 9.55 -6.08 7.68 1.60E-04 36.59 0.01 1 0 -1 -5 

1.12 9.52 -6.05 7.74 1.73E-04 36.78 0.01 1 0 -1 -5 

1.20 9.50 -6.02 7.82 1.88E-04 36.96 4.70E-03 1 0 -1 -5 

1.28 9.47 -5.98 7.92 2.04E-04 37.14 4.39E-03 1 0 -1 -5 

1.36 9.45 -5.95 8.03 2.21E-04 37.31 4.11E-03 1 0 -1 -5 

1.44 9.42 -5.92 8.16 2.39E-04 37.48 3.84E-03 1 0 -1 -5 

1. Composition of the "Pure Water" solution as a total of 8 mg/L oxygen is added to 10 moles of pyrite and 10 moles 

of calcite. Concentrations are presented in units of mg/L 

2. S.I.: Saturation indices of selected iron-oxyhydroxides. Saturation index (S.I.) = log(IAP)/KT where IAP is the ion 

activity product of the dissolved components in solution, and KT is the solubility of the solid or gaseous phase at the 

specified temperature 
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Oxygen 

Added
1
 

pH pe 
Alkalinity 

as HCO3
-
 

Dissolved 

Fe 
SO4

2-
 S

2-
 

S.I.
2
 

Hematite 

S.I.
2
 

Goethite 

S.I.
2
 

Lepidocrocite 

S.I.
2 

Fe(OH)3 

1.52 9.39 -5.88 8.31 2.59E-04 37.64 3.60E-03 1 0 -1 -5 

1.60 9.37 -5.85 8.46 2.81E-04 37.80 3.37E-03 1 0 -1 -5 

1.68 9.35 -5.82 8.63 3.04E-04 37.96 3.17E-03 1 0 -1 -5 

1.76 9.32 -5.79 8.82 3.28E-04 38.10 2.98E-03 1 0 -1 -5 

1.84 9.30 -5.76 9.01 3.54E-04 38.25 2.80E-03 1 0 -1 -5 

1.92 9.28 -5.73 9.21 3.82E-04 38.39 2.64E-03 1 0 -1 -5 

2.00 9.25 -5.71 9.42 4.12E-04 38.52 2.50E-03 1 0 -1 -5 

2.08 9.23 -5.68 9.65 4.43E-04 38.65 2.36E-03 1 0 -1 -5 

2.16 9.21 -5.65 9.88 4.76E-04 38.78 2.24E-03 1 0 -1 -5 

2.24 9.19 -5.63 10.11 5.11E-04 38.90 2.12E-03 1 0 -1 -5 

2.32 9.17 -5.60 10.36 5.47E-04 39.02 2.01E-03 1 0 -1 -5 

2.40 9.15 -5.58 10.60 5.85E-04 39.14 1.91E-03 1 0 -1 -5 

2.48 9.13 -5.55 10.86 6.26E-04 39.25 1.82E-03 1 0 -1 -5 

2.56 9.11 -5.53 11.12 6.68E-04 39.36 1.74E-03 1 0 -1 -5 

2.64 9.10 -5.50 11.38 7.12E-04 39.47 1.66E-03 1 0 -1 -5 

2.72 9.08 -5.48 11.65 7.58E-04 39.58 1.58E-03 1 0 -1 -5 

2.80 9.06 -5.46 11.93 8.06E-04 39.68 1.51E-03 1 0 -1 -5 

2.88 9.04 -5.44 12.20 8.56E-04 39.78 1.45E-03 1 0 -1 -5 

2.96 9.03 -5.42 12.48 9.08E-04 39.88 1.39E-03 1 0 -1 -5 

3.04 9.01 -5.40 12.77 9.62E-04 39.98 1.33E-03 1 0 -1 -5 

3.12 9.00 -5.38 13.05 1.02E-03 40.07 1.28E-03 1 0 -1 -5 

1. Composition of the "Pure Water" solution as a total of 8 mg/L oxygen is added to 10 moles of pyrite and 10 moles 

of calcite. Concentrations are presented in units of mg/L 

2. S.I.: Saturation indices of selected iron-oxyhydroxides. Saturation index (S.I.) = log(IAP)/KT where IAP is the ion 

activity product of the dissolved components in solution, and KT is the solubility of the solid or gaseous phase at the 

specified temperature 
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Oxygen 

Added
1
 

pH pe 
Alkalinity 

as HCO3
-
 

Dissolved 

Fe 
SO4

2-
 S

2-
 

S.I.
2
 

Hematite 

S.I.
2
 

Goethite 

S.I.
2
 

Lepidocrocite 

S.I.
2 

Fe(OH)3 

3.20 8.98 -5.36 13.34 1.08E-03 40.17 1.23E-03 1 0 -1 -5 

3.28 8.97 -5.34 13.63 1.14E-03 40.26 1.18E-03 1 0 -1 -5 

3.36 8.95 -5.32 13.92 1.20E-03 40.35 1.14E-03 1 0 -1 -5 

3.44 8.94 -5.30 14.22 1.27E-03 40.45 1.10E-03 1 0 -1 -5 

3.52 8.92 -5.28 14.52 1.33E-03 40.54 1.06E-03 1 0 -1 -5 

3.60 8.91 -5.27 14.82 1.40E-03 40.62 1.02E-03 1 0 -1 -5 

3.68 8.90 -5.25 15.12 1.47E-03 40.71 9.87E-04 1 0 -1 -5 

3.76 8.88 -5.23 15.42 1.55E-03 40.80 9.54E-04 1 0 -1 -5 

3.84 8.87 -5.22 15.72 1.63E-03 40.89 9.23E-04 1 0 -1 -5 

3.92 8.86 -5.20 16.03 1.71E-03 40.97 8.93E-04 1 0 -1 -5 

4.00 8.84 -5.18 16.33 1.79E-03 41.06 8.64E-04 1 0 -1 -5 

4.08 8.83 -5.17 16.64 1.87E-03 41.14 8.38E-04 1 0 -1 -5 

4.16 8.82 -5.15 16.95 1.96E-03 41.23 8.12E-04 1 0 -1 -5 

4.24 8.81 -5.14 17.26 2.05E-03 41.31 7.88E-04 1 0 -1 -5 

4.32 8.80 -5.12 17.57 2.14E-03 41.39 7.65E-04 1 0 -1 -5 

4.40 8.79 -5.11 17.88 2.24E-03 41.48 7.42E-04 1 0 -1 -5 

4.48 8.77 -5.09 18.19 2.33E-03 41.56 7.21E-04 1 0 -1 -5 

4.56 8.76 -5.08 18.50 2.43E-03 41.64 7.01E-04 1 0 -1 -5 

4.64 8.75 -5.07 18.81 2.54E-03 41.73 6.82E-04 1 0 -1 -5 

4.72 8.74 -5.05 19.13 2.64E-03 41.81 6.63E-04 1 0 -1 -5 

4.80 8.73 -5.04 19.44 2.75E-03 41.89 6.46E-04 1 0 -1 -5 

1. Composition of the "Pure Water" solution as a total of 8 mg/L oxygen is added to 10 moles of pyrite and 10 moles 

of calcite. Concentrations are presented in units of mg/L 

2. S.I.: Saturation indices of selected iron-oxyhydroxides. Saturation index (S.I.) = log(IAP)/KT where IAP is the ion 

activity product of the dissolved components in solution, and KT is the solubility of the solid or gaseous phase at the 

specified temperature 
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Oxygen 

Added
1
 

pH pe 
Alkalinity 

as HCO3
-
 

Dissolved 

Fe 
SO4

2-
 S

2-
 

S.I.
2
 

Hematite 

S.I.
2
 

Goethite 

S.I.
2
 

Lepidocrocite 

S.I.
2 

Fe(OH)3 

4.88 8.72 -5.03 19.75 2.86E-03 41.97 6.29E-04 1 0 -1 -5 

4.96 8.71 -5.01 20.07 2.98E-03 42.06 6.12E-04 1 0 -1 -5 

5.04 8.70 -5.00 20.38 3.09E-03 42.14 5.97E-04 1 0 -1 -5 

5.12 8.69 -4.99 20.70 3.21E-03 42.22 5.82E-04 1 0 -1 -5 

5.20 8.68 -4.98 21.02 3.34E-03 42.31 5.68E-04 1 0 -1 -5 

5.28 8.67 -4.96 21.33 3.47E-03 42.39 5.54E-04 1 0 -1 -5 

5.36 8.66 -4.95 21.65 3.60E-03 42.47 5.40E-04 1 0 -1 -5 

5.44 8.65 -4.94 21.97 3.73E-03 42.56 5.28E-04 1 0 -1 -5 

5.52 8.64 -4.93 22.28 3.86E-03 42.64 5.15E-04 1 0 -1 -5 

5.60 8.63 -4.92 22.60 4.00E-03 42.73 5.04E-04 1 0 -1 -5 

5.68 8.63 -4.90 22.92 4.15E-03 42.81 4.92E-04 1 0 -1 -5 

5.76 8.62 -4.89 23.24 4.29E-03 42.90 4.81E-04 1 0 -1 -5 

5.84 8.61 -4.88 23.56 4.44E-03 42.98 4.70E-04 1 0 -1 -5 

5.92 8.60 -4.87 23.87 4.60E-03 43.07 4.60E-04 1 0 -1 -5 

6.00 8.59 -4.86 24.19 4.75E-03 43.15 4.50E-04 1 0 -1 -5 

6.08 8.58 -4.85 24.51 4.91E-03 43.24 4.41E-04 1 0 -1 -5 

6.16 8.57 -4.84 24.83 0.01 43.33 4.31E-04 1 0 -1 -5 

6.24 8.57 -4.83 25.15 0.01 43.41 4.22E-04 1 0 -1 -5 

6.32 8.56 -4.82 25.47 0.01 43.50 4.14E-04 1 0 -1 -5 

6.40 8.55 -4.81 25.79 0.01 43.59 4.05E-04 1 0 -1 -5 

6.48 8.54 -4.80 26.11 0.01 43.68 3.97E-04 1 0 -1 -5 

1. Composition of the "Pure Water" solution as a total of 8 mg/L oxygen is added to 10 moles of pyrite and 10 moles 

of calcite. Concentrations are presented in units of mg/L 

2. S.I.: Saturation indices of selected iron-oxyhydroxides. Saturation index (S.I.) = log(IAP)/KT where IAP is the ion 

activity product of the dissolved components in solution, and KT is the solubility of the solid or gaseous phase at the 

specified temperature 
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Oxygen 

Added
1
 

pH pe 
Alkalinity 

as HCO3
-
 

Dissolved 

Fe 
SO4

2-
 S

2-
 

S.I.
2
 

Hematite 

S.I.
2
 

Goethite 

S.I.
2
 

Lepidocrocite 

S.I.
2 

Fe(OH)3 

6.56 8.53 -4.79 26.43 0.01 43.77 3.89E-04 1 0 -1 -5 

6.64 8.53 -4.78 26.74 0.01 43.86 3.82E-04 1 0 -1 -5 

6.72 8.52 -4.77 27.06 0.01 43.95 3.74E-04 1 0 -1 -5 

6.80 8.51 -4.76 27.38 0.01 44.04 3.67E-04 1 0 -1 -5 

6.88 8.50 -4.75 27.70 0.01 44.13 3.60E-04 1 0 -1 -5 

6.96 8.50 -4.74 28.02 0.01 44.22 3.54E-04 1 0 -1 -5 

7.04 8.49 -4.73 28.34 0.01 44.32 3.47E-04 1 0 -1 -5 

7.12 8.48 -4.72 28.66 0.01 44.41 3.41E-04 1 0 -1 -5 

7.20 8.47 -4.71 28.98 0.01 44.50 3.35E-04 1 0 -1 -5 

7.28 8.47 -4.70 29.30 0.01 44.60 3.29E-04 1 0 -1 -5 

7.36 8.46 -4.69 29.61 0.01 44.69 3.23E-04 1 0 -1 -5 

7.44 8.45 -4.68 29.93 0.01 44.79 3.17E-04 1 0 -1 -5 

7.52 8.45 -4.68 30.25 0.01 44.89 3.12E-04 1 0 -1 -5 

7.60 8.44 -4.67 30.57 0.01 44.98 3.06E-04 1 0 -1 -5 

7.68 8.43 -4.66 30.89 0.01 45.08 3.01E-04 1 0 -1 -5 

7.76 8.42 -4.65 31.21 0.01 45.18 2.96E-04 1 0 -1 -5 

7.84 8.42 -4.64 31.52 0.01 45.28 2.91E-04 1 0 -1 -5 

7.92 8.41 -4.63 31.84 0.01 45.38 2.86E-04 1 0 -1 -5 

8.00 8.41 -4.62 32.16 0.01 45.48 2.81E-04 1 0 -1 -5 

1. Composition of the "Pure Water" solution as a total of 8 mg/L oxygen is added to 10 moles of pyrite and 10 moles 

of calcite. Concentrations are presented in units of mg/L 

2. S.I.: Saturation indices of selected iron-oxyhydroxides. Saturation index (S.I.) = log(IAP)/KT where IAP is the ion 

activity product of the dissolved components in solution, and KT is the solubility of the solid or gaseous phase at the 

specified temperature 



 

 

Appendix K7: Pyrite Titration with Oxygen in Surficial Water 

Oxygen 

Added
1
 

pH pe 
Alkalinity 

as HCO3
-
 

Dissolved 

Fe 
SO4

2-
 S

2-
 

S.I.
2
 

Hematite 

S.I.
2
 

Goethite 

S.I.
2
 

Lepidocrocite 

S.I.
2 

Fe(OH)3 

0.00 5.30 6.44 24.01 0.07 17.88 0.00 -1000 -1000 -1000 -1000 

0.08 5.31 -0.93 24.92 1.84 23.97 1.96E-04 -6 -3 -4 -8 

0.16 5.31 -0.92 24.76 1.92 24.23 1.92E-04 -6 -3 -4 -8 

0.24 5.31 -0.92 24.59 1.99 24.49 1.89E-04 -6 -3 -4 -8 

0.32 5.30 -0.91 24.42 2.07 24.75 1.86E-04 -6 -3 -4 -8 

0.40 5.30 -0.91 24.25 2.14 25.01 1.83E-04 -5 -3 -4 -8 

0.48 5.29 -0.90 24.08 2.22 25.27 1.80E-04 -5 -3 -4 -8 

0.56 5.29 -0.90 23.91 2.30 25.53 1.78E-04 -5 -3 -4 -8 

0.64 5.29 -0.89 23.74 2.37 25.80 1.75E-04 -5 -3 -4 -8 

0.72 5.28 -0.88 23.57 2.45 26.06 1.73E-04 -5 -3 -4 -8 

0.80 5.28 -0.88 23.40 2.53 26.33 1.71E-04 -5 -3 -4 -8 

0.88 5.28 -0.87 23.23 2.60 26.59 1.69E-04 -5 -3 -4 -8 

0.96 5.27 -0.87 23.05 2.68 26.86 1.67E-04 -5 -3 -4 -8 

1.04 5.27 -0.86 22.88 2.76 27.13 1.65E-04 -5 -3 -4 -8 

1.12 5.27 -0.86 22.71 2.84 27.39 1.63E-04 -5 -3 -4 -8 

1.20 5.26 -0.85 22.54 2.91 27.66 1.62E-04 -5 -3 -4 -8 

1.28 5.26 -0.84 22.37 2.99 27.93 1.60E-04 -5 -3 -4 -8 

1.36 5.25 -0.84 22.19 3.07 28.20 1.59E-04 -5 -3 -4 -8 

1.44 5.25 -0.83 22.02 3.15 28.47 1.57E-04 -5 -3 -4 -8 

1. Composition of the "Surficial Water" solution as a total of 8 mg/L oxygen is added to 10 moles of pyrite. Concentrations are 

presented in units of mg/L 

2. S.I.: Saturation indices of selected iron-oxyhydroxides. Saturation index (S.I.) = log(IAP)/KT where IAP is the ion activity 

product of the dissolved components in solution, and KT is the solubility of the solid or gaseous phase at the specified 

temperature 
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Oxygen 

Added
1
 

pH pe 
Alkalinity 

as HCO3
-
 

Dissolved 

Fe 
SO4

2-
 S

2-
 

S.I.
2
 

Hematite 

S.I.
2
 

Goethite 

S.I.
2
 

Lepidocrocite 

S.I.
2 

Fe(OH)3 

1.52 5.25 -0.83 21.85 3.23 28.74 1.56E-04 -5 -3 -4 -8 

1.60 5.24 -0.82 21.67 3.31 29.01 1.55E-04 -5 -3 -4 -8 

1.68 5.24 -0.82 21.50 3.38 29.28 1.54E-04 -5 -3 -4 -8 

1.76 5.24 -0.81 21.33 3.46 29.55 1.53E-04 -5 -3 -4 -8 

1.84 5.23 -0.80 21.15 3.54 29.82 1.52E-04 -5 -3 -4 -8 

1.92 5.23 -0.80 20.98 3.62 30.09 1.51E-04 -5 -3 -4 -8 

2.00 5.22 -0.79 20.81 3.70 30.36 1.50E-04 -5 -3 -4 -8 

2.08 5.22 -0.79 20.63 3.78 30.63 1.49E-04 -5 -3 -4 -8 

2.16 5.22 -0.78 20.46 3.86 30.90 1.48E-04 -5 -3 -4 -8 

2.24 5.21 -0.77 20.29 3.94 31.18 1.47E-04 -5 -3 -4 -8 

2.32 5.21 -0.77 20.11 4.01 31.45 1.47E-04 -5 -3 -4 -8 

2.40 5.20 -0.76 19.94 4.09 31.72 1.46E-04 -5 -3 -4 -8 

2.48 5.20 -0.76 19.77 4.17 31.99 1.45E-04 -5 -3 -4 -8 

2.56 5.19 -0.75 19.59 4.25 32.26 1.45E-04 -5 -3 -4 -8 

2.64 5.19 -0.75 19.42 4.33 32.54 1.44E-04 -5 -3 -4 -8 

2.72 5.19 -0.74 19.24 4.41 32.81 1.44E-04 -5 -3 -4 -8 

2.80 5.18 -0.73 19.07 4.49 33.08 1.43E-04 -5 -3 -4 -8 

2.88 5.18 -0.73 18.90 4.57 33.35 1.43E-04 -5 -3 -4 -8 

2.96 5.17 -0.72 18.72 4.65 33.63 1.42E-04 -5 -3 -4 -8 

3.04 5.17 -0.72 18.55 4.73 33.90 1.42E-04 -5 -3 -4 -8 

3.12 5.16 -0.71 18.38 4.81 34.17 1.42E-04 -5 -3 -4 -8 

1. Composition of the "Surficial Water" solution as a total of 8 mg/L oxygen is added to 10 moles of pyrite. Concentrations are 

presented in units of mg/L 

2. S.I.: Saturation indices of selected iron-oxyhydroxides. Saturation index (S.I.) = log(IAP)/KT where IAP is the ion activity 

product of the dissolved components in solution, and KT is the solubility of the solid or gaseous phase at the specified 

temperature 
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Oxygen 

Added
1
 

pH pe 
Alkalinity 

as HCO3
-
 

Dissolved 

Fe 
SO4

2-
 S

2-
 

S.I.
2
 

Hematite 

S.I.
2
 

Goethite 

S.I.
2
 

Lepidocrocite 

S.I.
2 

Fe(OH)3 

3.20 5.16 -0.70 18.20 4.89 34.45 1.41E-04 -5 -3 -4 -8 

3.28 5.16 -0.70 18.03 4.97 34.72 1.41E-04 -5 -3 -4 -8 

3.36 5.15 -0.69 17.85 5.05 34.99 1.41E-04 -5 -3 -4 -8 

3.44 5.15 -0.68 17.68 5.12 35.27 1.41E-04 -5 -3 -4 -8 

3.52 5.14 -0.68 17.51 5.20 35.54 1.40E-04 -5 -3 -4 -8 

3.60 5.14 -0.67 17.33 5.28 35.81 1.40E-04 -5 -3 -4 -8 

3.68 5.13 -0.67 17.16 5.36 36.09 1.40E-04 -5 -3 -4 -8 

3.76 5.13 -0.66 16.98 5.44 36.36 1.40E-04 -5 -3 -4 -8 

3.84 5.12 -0.65 16.81 5.52 36.63 1.40E-04 -5 -3 -4 -8 

3.92 5.12 -0.65 16.64 5.60 36.91 1.40E-04 -5 -3 -4 -8 

4.00 5.11 -0.64 16.46 5.68 37.18 1.40E-04 -5 -3 -4 -8 

4.08 5.11 -0.63 16.29 5.76 37.46 1.40E-04 -5 -3 -4 -8 

4.16 5.10 -0.63 16.11 5.84 37.73 1.40E-04 -5 -3 -4 -8 

4.24 5.10 -0.62 15.94 5.92 38.00 1.40E-04 -5 -3 -4 -8 

4.32 5.09 -0.61 15.77 6.00 38.28 1.40E-04 -5 -3 -4 -8 

4.40 5.09 -0.61 15.59 6.08 38.55 1.40E-04 -5 -3 -4 -8 

4.48 5.08 -0.60 15.42 6.16 38.83 1.41E-04 -5 -3 -4 -8 

4.56 5.08 -0.59 15.25 6.24 39.10 1.41E-04 -5 -3 -4 -8 

4.64 5.07 -0.59 15.07 6.32 39.38 1.41E-04 -5 -3 -4 -8 

4.72 5.07 -0.58 14.90 6.40 39.65 1.41E-04 -5 -3 -4 -8 

4.80 5.06 -0.57 14.72 6.48 39.93 1.42E-04 -5 -3 -4 -8 

1. Composition of the "Surficial Water" solution as a total of 8 mg/L oxygen is added to 10 moles of pyrite. Concentrations are 

presented in units of mg/L 

2. S.I.: Saturation indices of selected iron-oxyhydroxides. Saturation index (S.I.) = log(IAP)/KT where IAP is the ion activity 

product of the dissolved components in solution, and KT is the solubility of the solid or gaseous phase at the specified 

temperature 
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Oxygen 

Added
1
 

pH pe 
Alkalinity 

as HCO3
-
 

Dissolved 

Fe 
SO4

2-
 S

2-
 

S.I.
2
 

Hematite 

S.I.
2
 

Goethite 

S.I.
2
 

Lepidocrocite 

S.I.
2 

Fe(OH)3 

4.88 5.06 -0.57 14.55 6.56 40.20 1.42E-04 -5 -3 -4 -8 

4.96 5.05 -0.56 14.38 6.64 40.47 1.42E-04 -5 -3 -4 -8 

5.04 5.05 -0.55 14.20 6.72 40.75 1.43E-04 -5 -3 -4 -8 

5.12 5.04 -0.55 14.03 6.80 41.02 1.43E-04 -5 -3 -4 -8 

5.20 5.04 -0.54 13.86 6.88 41.30 1.43E-04 -5 -3 -4 -8 

5.28 5.03 -0.53 13.68 6.96 41.57 1.44E-04 -5 -3 -4 -8 

5.36 5.02 -0.53 13.51 7.04 41.85 1.44E-04 -5 -3 -4 -8 

5.44 5.02 -0.52 13.34 7.12 42.12 1.45E-04 -5 -3 -4 -8 

5.52 5.01 -0.51 13.16 7.20 42.40 1.45E-04 -5 -3 -4 -8 

5.60 5.01 -0.50 12.99 7.28 42.67 1.46E-04 -5 -3 -4 -8 

5.68 5.00 -0.50 12.81 7.36 42.95 1.46E-04 -5 -3 -4 -8 

5.76 5.00 -0.49 12.64 7.44 43.22 1.47E-04 -5 -3 -4 -8 

5.84 4.99 -0.48 12.47 7.52 43.50 1.48E-04 -5 -3 -4 -8 

5.92 4.98 -0.47 12.29 7.60 43.77 1.48E-04 -5 -3 -4 -8 

6.00 4.98 -0.47 12.12 7.68 44.05 1.49E-04 -5 -3 -4 -8 

6.08 4.97 -0.46 11.95 7.76 44.32 1.50E-04 -5 -3 -4 -8 

6.16 4.97 -0.45 11.77 7.84 44.60 1.50E-04 -5 -3 -4 -8 

6.24 4.96 -0.44 11.60 7.92 44.87 1.51E-04 -5 -3 -4 -8 

6.32 4.95 -0.44 11.43 8.00 45.15 1.52E-04 -5 -3 -4 -8 

6.40 4.95 -0.43 11.25 8.08 45.42 1.53E-04 -5 -3 -4 -8 

6.48 4.94 -0.42 11.08 8.16 45.70 1.54E-04 -5 -3 -4 -8 

1. Composition of the "Surficial Water" solution as a total of 8 mg/L oxygen is added to 10 moles of pyrite. Concentrations are 

presented in units of mg/L 

2. S.I.: Saturation indices of selected iron-oxyhydroxides. Saturation index (S.I.) = log(IAP)/KT where IAP is the ion activity 

product of the dissolved components in solution, and KT is the solubility of the solid or gaseous phase at the specified 

temperature 



330 

 

Oxygen 

Added
1
 

pH pe 
Alkalinity 

as HCO3
-
 

Dissolved 

Fe 
SO4

2-
 S

2-
 

S.I.
2
 

Hematite 

S.I.
2
 

Goethite 

S.I.
2
 

Lepidocrocite 

S.I.
2 

Fe(OH)3 

6.56 4.93 -0.41 10.91 8.24 45.98 1.55E-04 -5 -3 -4 -8 

6.64 4.93 -0.40 10.73 8.32 46.25 1.56E-04 -5 -3 -4 -8 

6.72 4.92 -0.39 10.56 8.40 46.53 1.57E-04 -6 -3 -4 -8 

6.80 4.91 -0.39 10.39 8.48 46.80 1.58E-04 -6 -3 -4 -8 

6.88 4.91 -0.38 10.21 8.56 47.08 1.59E-04 -6 -3 -4 -8 

6.96 4.90 -0.37 10.04 8.64 47.35 1.60E-04 -6 -3 -4 -8 

7.04 4.89 -0.36 9.87 8.72 47.63 1.61E-04 -6 -3 -4 -8 

7.12 4.89 -0.35 9.70 8.80 47.91 1.62E-04 -6 -3 -4 -8 

7.20 4.88 -0.34 9.52 8.88 48.18 1.64E-04 -6 -3 -4 -8 

7.28 4.87 -0.33 9.35 8.96 48.46 1.65E-04 -6 -3 -4 -8 

7.36 4.86 -0.33 9.18 9.04 48.73 1.66E-04 -6 -3 -4 -8 

7.44 4.86 -0.32 9.00 9.12 49.01 1.68E-04 -6 -3 -4 -8 

7.52 4.85 -0.31 8.83 9.20 49.29 1.69E-04 -6 -3 -4 -8 

7.60 4.84 -0.30 8.66 9.28 49.56 1.71E-04 -6 -3 -4 -8 

7.68 4.83 -0.29 8.49 9.36 49.84 1.72E-04 -6 -3 -4 -8 

7.76 4.83 -0.28 8.31 9.44 50.11 1.74E-04 -6 -3 -4 -8 

7.84 4.82 -0.27 8.14 9.52 50.39 1.75E-04 -6 -3 -4 -9 

7.92 4.81 -0.26 7.97 9.60 50.67 1.77E-04 -6 -3 -4 -9 

8.00 4.80 -0.25 7.80 9.68 50.94 1.79E-04 -6 -3 -4 -9 

1. Composition of the "Surficial Water" solution as a total of 8 mg/L oxygen is added to 10 moles of pyrite. Concentrations are 

presented in units of mg/L 

2. S.I.: Saturation indices of selected iron-oxyhydroxides. Saturation index (S.I.) = log(IAP)/KT where IAP is the ion activity 

product of the dissolved components in solution, and KT is the solubility of the solid or gaseous phase at the specified 

temperature 



 

 

Appendix K8: Pyrite Titration with Oxygen and Simultaneous Calcite Dissolution in Surficial Water 

Oxygen 

Added
1
 

pH pe 
Alkalinity 

as HCO3
-
 

Dissolved 

Fe 
SO4

2-
 S

2-
 

S.I.
2
 

Hematite 

S.I.
2
 

Goethite 

S.I.
2
 

Lepidocrocite 

S.I.
2 

Fe(OH)3 

0.00 5.30 6.44 24.01 0.07 17.88 0.00 -1000 -1000 -1000 -1000 

0.08 6.87 -2.69 364.31 7.30 42.76 1.34E-05 0 0 -1 -5 

0.16 6.87 -2.69 364.43 7.34 42.87 1.33E-05 0 0 -1 -5 

0.24 6.87 -2.69 364.54 7.37 42.98 1.33E-05 0 0 -1 -5 

0.32 6.87 -2.69 364.66 7.40 43.10 1.33E-05 0 0 -1 -5 

0.40 6.87 -2.69 364.78 7.43 43.21 1.33E-05 0 0 -1 -5 

0.48 6.87 -2.69 364.89 7.47 43.32 1.32E-05 0 0 -1 -5 

0.56 6.87 -2.69 365.01 7.50 43.44 1.32E-05 0 0 -1 -5 

0.64 6.87 -2.69 365.12 7.53 43.55 1.32E-05 0 0 -1 -5 

0.72 6.87 -2.69 365.24 7.57 43.66 1.31E-05 0 0 -1 -5 

0.80 6.87 -2.69 365.35 7.60 43.78 1.31E-05 0 0 -1 -5 

0.88 6.87 -2.69 365.47 7.63 43.90 1.31E-05 0 0 -1 -5 

0.96 6.87 -2.69 365.58 7.67 44.02 1.30E-05 0 0 -1 -5 

1.04 6.87 -2.69 365.69 7.70 44.13 1.30E-05 0 0 -1 -5 

1.12 6.87 -2.69 365.81 7.74 44.25 1.30E-05 0 0 -1 -5 

1.20 6.87 -2.69 365.92 7.77 44.37 1.29E-05 0 0 -1 -5 

1.28 6.87 -2.69 366.04 7.81 44.49 1.29E-05 0 0 -1 -5 

1.36 6.87 -2.68 366.15 7.84 44.62 1.29E-05 0 0 -1 -5 

1.44 6.87 -2.68 366.26 7.88 44.74 1.28E-05 0 0 -1 -5 

1. Composition of the "Surficial Water" solution as a total of 8 mg/L oxygen is added to 10 moles of pyrite and 10 

moles of calcite. Concentrations are presented in units of mg/L 

2. S.I.: Saturation indices of selected iron-oxyhydroxides. Saturation index (S.I.) = log(IAP)/KT where IAP is the ion 

activity product of the dissolved components in solution, and KT is the solubility of the solid or gaseous phase at the 

specified temperature 
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Oxygen 

Added
1
 

pH pe 
Alkalinity 

as HCO3
-
 

Dissolved 

Fe 
SO4

2-
 S

2-
 

S.I.
2
 

Hematite 

S.I.
2
 

Goethite 

S.I.
2
 

Lepidocrocite 

S.I.
2 

Fe(OH)3 

1.52 6.87 -2.68 366.38 7.91 44.86 1.28E-05 0 0 -1 -5 

1.60 6.87 -2.68 366.49 7.95 44.99 1.28E-05 0 0 -1 -5 

1.68 6.87 -2.68 366.60 7.99 45.11 1.27E-05 0 0 -1 -5 

1.76 6.87 -2.68 366.71 8.02 45.24 1.27E-05 0 0 -1 -5 

1.84 6.87 -2.68 366.83 8.06 45.36 1.27E-05 1 0 -1 -5 

1.92 6.87 -2.68 366.94 8.10 45.49 1.26E-05 1 0 -1 -5 

2.00 6.87 -2.68 367.05 8.13 45.62 1.26E-05 1 0 -1 -5 

2.08 6.87 -2.68 367.16 8.17 45.75 1.26E-05 1 0 -1 -5 

2.16 6.87 -2.68 367.28 8.21 45.88 1.25E-05 1 0 -1 -5 

2.24 6.87 -2.68 367.39 8.25 46.01 1.25E-05 1 0 -1 -5 

2.32 6.87 -2.68 367.50 8.29 46.14 1.25E-05 1 0 -1 -5 

2.40 6.86 -2.68 367.61 8.32 46.28 1.24E-05 1 0 -1 -5 

2.48 6.86 -2.68 367.72 8.36 46.41 1.24E-05 1 0 -1 -5 

2.56 6.86 -2.68 367.83 8.40 46.54 1.24E-05 1 0 -1 -5 

2.64 6.86 -2.68 367.94 8.44 46.68 1.23E-05 1 0 -1 -5 

2.72 6.86 -2.67 368.05 8.48 46.82 1.23E-05 1 0 -1 -5 

2.80 6.86 -2.67 368.16 8.52 46.95 1.23E-05 1 0 -1 -5 

2.88 6.86 -2.67 368.27 8.56 47.09 1.22E-05 1 0 -1 -5 

2.96 6.86 -2.67 368.38 8.60 47.23 1.22E-05 1 0 -1 -5 

3.04 6.86 -2.67 368.49 8.64 47.37 1.22E-05 1 0 -1 -5 

3.12 6.86 -2.67 368.60 8.68 47.51 1.21E-05 1 0 -1 -5 

1. Composition of the "Surficial Water" solution as a total of 8 mg/L Oxygen is added to 10 moles of pyrite and 10 

moles of calcite. Concentrations are presented in units of mg/L 

2. S.I.: Saturation indices of selected iron-oxyhydroxides. Saturation index (S.I.) = log(IAP)/KT where IAP is the ion 

activity product of the dissolved components in solution, and KT is the solubility of the solid or gaseous phase at the 

specified temperature 
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Oxygen 

Added
1
 

pH pe 
Alkalinity 

as HCO3
-
 

Dissolved 

Fe 
SO4

2-
 S

2-
 

S.I.
2
 

Hematite 

S.I.
2
 

Goethite 

S.I.
2
 

Lepidocrocite 

S.I.
2 

Fe(OH)3 

3.20 6.86 -2.67 368.71 8.72 47.65 1.21E-05 1 0 -1 -5 

3.28 6.86 -2.67 368.82 8.77 47.79 1.21E-05 1 0 -1 -5 

3.36 6.86 -2.67 368.93 8.81 47.94 1.20E-05 1 0 -1 -5 

3.44 6.86 -2.67 369.04 8.85 48.08 1.20E-05 1 0 -1 -5 

3.52 6.86 -2.67 369.14 8.89 48.23 1.20E-05 1 0 -1 -5 

3.60 6.86 -2.67 369.25 8.93 48.37 1.19E-05 1 0 -1 -5 

3.68 6.86 -2.67 369.36 8.98 48.52 1.19E-05 1 0 -1 -5 

3.76 6.86 -2.67 369.47 9.02 48.67 1.19E-05 1 0 -1 -5 

3.84 6.86 -2.67 369.58 9.06 48.82 1.18E-05 1 0 -1 -5 

3.92 6.86 -2.67 369.68 9.11 48.97 1.18E-05 1 0 -1 -5 

4.00 6.86 -2.67 369.79 9.15 49.12 1.18E-05 1 0 -1 -5 

4.08 6.86 -2.66 369.90 9.19 49.27 1.17E-05 1 0 -1 -5 

4.16 6.86 -2.66 370.00 9.24 49.42 1.17E-05 1 0 -1 -5 

4.24 6.86 -2.66 370.11 9.28 49.57 1.17E-05 1 0 -1 -5 

4.32 6.86 -2.66 370.22 9.33 49.73 1.16E-05 1 0 -1 -5 

4.40 6.86 -2.66 370.32 9.37 49.89 1.16E-05 1 0 -1 -5 

4.48 6.86 -2.66 370.43 9.42 50.04 1.16E-05 1 0 -1 -5 

4.56 6.86 -2.66 370.54 9.46 50.20 1.15E-05 1 0 -1 -5 

4.64 6.86 -2.66 370.64 9.51 50.36 1.15E-05 1 0 -1 -5 

4.72 6.86 -2.66 370.75 9.56 50.52 1.15E-05 1 0 -1 -5 

4.80 6.86 -2.66 370.85 9.60 50.67 1.14E-05 1 0 -1 -5 

1. Composition of the "Surficial Water" solution as a total of 8 mg/L Oxygen is added to 10 moles of pyrite and 10 

moles of calcite. Concentrations are presented in units of mg/L 

2. S.I.: Saturation indices of selected iron-oxyhydroxides. Saturation index (S.I.) = log(IAP)/KT where IAP is the ion 

activity product of the dissolved components in solution, and KT is the solubility of the solid or gaseous phase at the 

specified temperature 
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Oxygen 

Added
1
 

pH pe 
Alkalinity 

as HCO3
-
 

Dissolved 

Fe 
SO4

2-
 S

2-
 

S.I.
2
 

Hematite 

S.I.
2
 

Goethite 

S.I.
2
 

Lepidocrocite 

S.I.
2 

Fe(OH)3 

4.88 6.86 -2.66 370.96 9.65 50.84 1.14E-05 1 0 -1 -5 

4.96 6.86 -2.66 371.06 9.70 51.00 1.14E-05 1 0 -1 -5 

5.04 6.86 -2.66 371.17 9.74 51.16 1.13E-05 1 0 -1 -5 

5.12 6.86 -2.66 371.27 9.79 51.32 1.13E-05 1 0 -1 -5 

5.20 6.86 -2.66 371.38 9.84 51.49 1.13E-05 1 0 -1 -5 

5.28 6.86 -2.66 371.48 9.89 51.65 1.12E-05 1 0 -1 -5 

5.36 6.86 -2.66 371.58 9.94 51.82 1.12E-05 1 0 -1 -5 

5.44 6.86 -2.65 371.69 9.98 51.99 1.12E-05 1 0 -1 -5 

5.52 6.86 -2.65 371.79 10.03 52.16 1.11E-05 1 0 -1 -5 

5.60 6.86 -2.65 371.89 10.08 52.33 1.11E-05 1 0 -1 -5 

5.68 6.86 -2.65 372.00 10.13 52.50 1.11E-05 1 0 -1 -5 

5.76 6.85 -2.65 372.10 10.18 52.67 1.10E-05 1 0 -1 -5 

5.84 6.85 -2.65 372.20 10.23 52.84 1.10E-05 1 0 -1 -5 

5.92 6.85 -2.65 372.31 10.28 53.01 1.10E-05 1 0 -1 -5 

6.00 6.85 -2.65 372.41 10.33 53.19 1.09E-05 1 0 -1 -5 

6.08 6.85 -2.65 372.51 10.38 53.36 1.09E-05 1 0 -1 -5 

6.16 6.85 -2.65 372.61 10.43 53.53 1.09E-05 1 0 -1 -5 

6.24 6.85 -2.65 372.71 10.49 53.71 1.08E-05 1 0 -1 -5 

6.32 6.85 -2.65 372.82 10.54 53.89 1.08E-05 1 0 -1 -5 

6.40 6.85 -2.65 372.92 10.59 54.07 1.08E-05 1 0 -1 -5 

6.48 6.85 -2.65 373.02 10.64 54.25 1.08E-05 1 0 -1 -5 

1. Composition of the "Surficial Water" solution as a total of 8 mg/L Oxygen is added to 10 moles of pyrite and 10 

moles of calcite. Concentrations are presented in units of mg/L 

2. S.I.: Saturation indices of selected iron-oxyhydroxides. Saturation index (S.I.) = log(IAP)/KT where IAP is the ion 

activity product of the dissolved components in solution, and KT is the solubility of the solid or gaseous phase at the 

specified temperature 



 

 

Appendix K9: Goethite Titration in Surficial Water 

DOC 

Added
1
 

pH pe 
Alkalinity 

as HCO3
-
 

 

Dissolved 

Fe 

Dissolved 

Oxygen 
SO4

2-
 S

2-
 NO3

-
 

0.00 5.30 6.44 24.01 0.07 0.28 17.88 0.00 4.30 

0.05 5.29 14.68 23.68 2.41E-06 0.01 17.88 0.00 4.54 

0.10 5.30 14.25 23.87 2.39E-06 1.37E-04 17.88 0.00 4.35 

0.15 5.30 14.21 24.07 2.37E-06 9.82E-05 17.88 0.00 4.14 

0.20 5.30 14.19 24.28 2.35E-06 7.94E-05 17.88 0.00 3.93 

0.25 5.31 14.16 24.48 2.34E-06 6.72E-05 17.88 0.00 3.73 

0.30 5.31 14.15 24.68 2.32E-06 5.83E-05 17.88 0.00 3.52 

0.35 5.31 14.13 24.89 2.30E-06 5.13E-05 17.88 0.00 3.31 

0.40 5.32 14.11 25.09 2.29E-06 4.55E-05 17.88 0.00 3.11 

0.45 5.32 14.10 25.29 2.27E-06 4.06E-05 17.88 0.00 2.90 

0.50 5.32 14.08 25.49 2.25E-06 3.62E-05 17.88 0.00 2.70 

0.55 5.33 14.07 25.70 2.24E-06 3.24E-05 17.88 0.00 2.49 

0.60 5.33 14.05 25.90 2.22E-06 2.89E-05 17.88 0.00 2.28 

0.65 5.33 14.03 26.10 2.21E-06 2.57E-05 17.88 0.00 2.08 

0.70 5.34 14.02 26.31 2.19E-06 2.28E-05 17.88 0.00 1.87 

0.75 5.34 14.00 26.51 2.18E-06 2.00E-05 17.88 0.00 1.66 

0.80 5.34 13.98 26.71 2.16E-06 1.74E-05 17.88 0.00 1.46 

0.85 5.35 13.96 26.92 2.15E-06 1.49E-05 17.88 0.00 1.25 

0.90 5.35 13.94 27.12 2.13E-06 1.25E-05 17.88 0.00 1.04 

0.95 5.35 13.91 27.32 2.12E-06 1.02E-05 17.88 0.00 0.84 

1.00 5.36 13.88 27.53 2.11E-06 7.92E-06 17.88 0.00 0.63 

1.05 5.36 13.84 27.73 2.09E-06 5.61E-06 17.88 0.00 0.42 

1.10 5.36 13.78 27.93 2.08E-06 3.21E-06 17.88 0.00 0.22 

1.15 5.37 13.51 28.14 2.07E-06 2.79E-07 17.88 0.00 0.01 

1.20 5.39 2.37 30.07 0.88 0.00 17.88 9.22E-32 0.00 

1.25 5.42 1.98 32.11 1.81 0.00 17.88 6.53E-29 0.00 

1.30 5.45 1.72 34.14 2.74 0.00 17.88 3.82E-27 0.00 

1.35 5.47 1.53 36.17 3.67 0.00 17.88 8.06E-26 0.00 

1.40 5.50 1.36 38.20 4.60 0.00 17.88 9.63E-25 0.00 

1.45 5.52 1.22 40.23 5.53 0.00 17.88 7.97E-24 0.00 

1.50 5.54 1.09 42.26 6.46 0.00 17.88 5.09E-23 0.00 

1.55 5.56 0.97 44.30 7.39 0.00 17.88 2.67E-22 0.00 

1.60 5.58 0.87 46.33 8.32 0.00 17.88 1.21E-21 0.00 

1.65 5.60 0.77 48.36 9.25 0.00 17.88 4.81E-21 0.00 

1. Composition of the "Surficial Water" solution as a total of 5 mg/L DOC is added to 

10 moles of goethite. Concentrations are presented in units of mg/L 
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DOC 

Added
1
 

pH pe 
Alkalinity 

as HCO3
-
 

 

Dissolved 

Fe 

Dissolved 

Oxygen 
SO4

2-
 S

2-
 NO3

-
 

1.70 5.62 0.68 50.39 10.18 0.00 17.88 1.74E-20 0.00 

1.75 5.64 0.59 52.42 11.11 0.00 17.88 5.74E-20 0.00 

1.80 5.66 0.50 54.46 12.04 0.00 17.88 1.77E-19 0.00 

1.85 5.67 0.43 56.49 12.97 0.00 17.88 5.09E-19 0.00 

1.90 5.69 0.35 58.52 13.90 0.00 17.88 1.39E-18 0.00 

1.95 5.70 0.28 60.55 14.83 0.00 17.88 3.61E-18 0.00 

2.00 5.72 0.21 62.58 15.76 0.00 17.88 8.98E-18 0.00 

2.05 5.74 0.14 64.61 16.69 0.00 17.88 2.15E-17 0.00 

2.10 5.75 0.08 66.65 17.62 0.00 17.88 4.95E-17 0.00 

2.15 5.76 0.02 68.68 18.55 0.00 17.88 1.11E-16 0.00 

2.20 5.78 -0.04 70.71 19.48 0.00 17.88 2.40E-16 0.00 

2.25 5.79 -0.10 72.74 20.41 0.00 17.88 5.07E-16 0.00 

2.30 5.81 -0.15 74.77 21.34 0.00 17.88 1.04E-15 0.00 

2.35 5.82 -0.21 76.80 22.27 0.00 17.88 2.10E-15 0.00 

2.40 5.83 -0.26 78.84 23.20 0.00 17.88 4.15E-15 0.00 

2.45 5.84 -0.31 80.87 24.13 0.00 17.88 8.02E-15 0.00 

2.50 5.86 -0.36 82.90 25.06 0.00 17.88 1.52E-14 0.00 

2.55 5.87 -0.41 84.93 25.99 0.00 17.88 2.85E-14 0.00 

2.60 5.88 -0.46 86.96 26.92 0.00 17.88 5.23E-14 0.00 

2.65 5.89 -0.51 89.00 27.85 0.00 17.88 9.48E-14 0.00 

2.70 5.91 -0.56 91.03 28.78 0.00 17.88 1.69E-13 0.00 

2.75 5.92 -0.60 93.06 29.71 0.00 17.88 2.99E-13 0.00 

2.80 5.93 -0.65 95.09 30.64 0.00 17.88 5.21E-13 0.00 

2.85 5.94 -0.69 97.12 31.57 0.00 17.88 8.97E-13 0.00 

2.90 5.95 -0.73 99.15 32.50 0.00 17.88 1.53E-12 0.00 

2.95 5.96 -0.77 101.18 33.43 0.00 17.88 2.58E-12 0.00 

3.00 5.97 -0.82 103.22 34.36 0.00 17.88 4.32E-12 0.00 

3.05 5.98 -0.86 105.25 35.29 0.00 17.88 7.15E-12 0.00 

3.10 5.99 -0.90 107.28 36.22 0.00 17.88 1.17E-11 0.00 

3.15 6.00 -0.94 109.31 37.15 0.00 17.88 1.91E-11 0.00 

3.20 6.01 -0.97 111.34 38.08 0.00 17.88 3.09E-11 0.00 

3.25 6.03 -1.01 113.37 39.00 0.00 17.88 4.96E-11 0.00 

3.30 6.04 -1.05 115.40 39.93 0.00 17.88 7.91E-11 0.00 

3.35 6.05 -1.09 117.43 40.86 0.00 17.88 1.25E-10 0.00 

3.40 6.06 -1.13 119.46 41.79 0.00 17.88 1.97E-10 0.00 

3.45 6.07 -1.16 121.49 42.72 0.00 17.88 3.09E-10 0.00 

1. Composition of the "Surficial Water" solution as a total of 5 mg/L DOC is added to 

10 moles of goethite. Concentrations are presented in units of mg/L 
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DOC 

Added
1
 

pH pe 
Alkalinity 

as HCO3
-
 

 

Dissolved 

Fe 

Dissolved 

Oxygen 
SO4

2-
 S

2-
 NO3

-
 

3.50 6.08 -1.20 123.52 43.65 0.00 17.88 4.80E-10 0.00 

3.55 6.09 -1.24 125.55 44.58 0.00 17.88 7.43E-10 0.00 

3.60 6.10 -1.27 127.58 45.51 0.00 17.88 1.14E-09 0.00 

3.65 6.11 -1.31 129.61 46.43 0.00 17.88 1.75E-09 0.00 

3.70 6.11 -1.34 131.63 47.36 0.00 17.88 2.67E-09 0.00 

3.75 6.12 -1.38 133.66 48.29 0.00 17.88 4.06E-09 0.00 

3.80 6.13 -1.41 135.69 49.22 0.00 17.88 6.14E-09 0.00 

3.85 6.14 -1.44 137.71 50.14 0.00 17.88 9.26E-09 0.00 

3.90 6.15 -1.48 139.74 51.07 0.00 17.88 1.39E-08 0.00 

3.95 6.16 -1.51 141.76 51.99 0.00 17.88 2.08E-08 0.00 

4.00 6.17 -1.55 143.79 52.92 0.00 17.88 3.09E-08 0.00 

4.05 6.18 -1.58 145.81 53.84 0.00 17.88 4.60E-08 0.00 

4.10 6.19 -1.61 147.83 54.77 0.00 17.88 6.80E-08 0.00 

4.15 6.20 -1.64 149.84 55.69 0.00 17.88 1.00E-07 0.00 

4.20 6.21 -1.68 151.86 56.61 0.00 17.88 1.48E-07 0.00 

4.25 6.22 -1.71 153.86 57.53 0.00 17.88 2.16E-07 0.00 

4.30 6.23 -1.74 155.87 58.44 0.00 17.88 3.16E-07 0.00 

4.35 6.24 -1.77 157.85 59.35 0.00 17.88 4.59E-07 0.00 

4.40 6.25 -1.80 159.81 60.24 0.00 17.88 6.63E-07 0.00 

4.45 6.25 -1.83 161.73 61.12 0.00 17.88 9.47E-07 0.00 

4.50 6.26 -1.86 163.57 61.95 0.00 17.88 1.33E-06 0.00 

4.55 6.27 -1.89 165.29 62.74 0.00 17.88 1.83E-06 0.00 

4.60 6.28 -1.91 166.86 63.46 0.00 17.88 2.43E-06 0.00 

4.65 6.28 -1.93 168.23 64.08 0.00 17.88 3.12E-06 0.00 

4.70 6.29 -1.95 169.41 64.62 0.00 17.88 3.86E-06 0.00 

4.75 6.29 -1.97 170.42 65.08 0.00 17.88 4.62E-06 0.00 

4.80 6.30 -1.98 171.28 65.47 0.00 17.88 5.37E-06 0.00 

4.85 6.30 -1.99 172.01 65.80 0.00 17.88 6.11E-06 0.00 

4.90 6.30 -1.99 172.28 65.82 0.00 17.69 6.18E-06 0.00 

4.95 6.30 -1.99 172.50 65.80 0.00 17.50 6.19E-06 0.00 

5.00 6.30 -2.00 172.72 65.79 0.00 17.30 6.20E-06 0.00 

1. Composition of the "Surficial Water" solution as a total of 5 mg/L DOC is added to 

10 moles of goethite. Concentrations are presented in units of mg/L 
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DOC 

Added 

S.I.
1
 

Hematite 

S.I.
1
 

Goethite 

S.I.
1
 

Lepidocrocite 

S.I.
1 

Fe(OH)3 

S.I.
1 

Pyrite 

0.00 -1000 -1000 -1000 -1000 -1000 

0.05 1 0 -1 -5 -231 

0.10 1 0 -1 -5 -224 

0.15 1 0 -1 -5 -224 

0.20 1 0 -1 -5 -224 

0.25 1 0 -1 -5 -223 

0.30 1 0 -1 -5 -223 

0.35 1 0 -1 -5 -223 

0.40 1 0 -1 -5 -223 

0.45 1 0 -1 -5 -223 

0.50 1 0 -1 -5 -222 

0.55 1 0 -1 -5 -222 

0.60 1 0 -1 -5 -222 

0.65 1 0 -1 -5 -222 

0.70 1 0 -1 -5 -222 

0.75 1 0 -1 -5 -222 

0.80 1 0 -1 -5 -221 

0.85 1 0 -1 -5 -221 

0.90 1 0 -1 -5 -221 

0.95 1 0 -1 -5 -220 

1.00 1 0 -1 -5 -220 

1.05 1 0 -1 -5 -220 

1.10 1 0 -1 -5 -219 

1.15 1 0 -1 -5 -215 

1.20 1 0 -1 -5 -48 

1.25 1 0 -1 -5 -43 

1.30 1 0 -1 -5 -39 

1.35 1 0 -1 -5 -37 

1.40 1 0 -1 -5 -35 

1.45 1 0 -1 -5 -33 

1.50 1 0 -1 -5 -32 

1.55 1 0 -1 -5 -30 

1.60 1 0 -1 -5 -29 

1. S.I.: Saturation indices of selected iron-oxyhydroxides and 

pyrite. Saturation index (S.I.) = log(IAP)/KT where IAP is the ion 

activity product of the dissolved components in solution, and KT 

is the solubility of the solid or gaseous phase at the specified 

temperature 
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DOC 

Added 

S.I.
1
 

Hematite 

S.I.
1
 

Goethite 

S.I.
1
 

Lepidocrocite 

S.I.
1 

Fe(OH)3 

S.I.
1 

Pyrite 

1.65 1 0 -1 -5 -28 

1.70 1 0 -1 -5 -27 

1.75 1 0 -1 -5 -26 

1.80 1 0 -1 -5 -25 

1.85 1 0 -1 -5 -24 

1.90 1 0 -1 -5 -23 

1.95 1 0 -1 -5 -23 

2.00 1 0 -1 -5 -22 

2.05 1 0 -1 -5 -21 

2.10 1 0 -1 -5 -21 

2.15 1 0 -1 -5 -20 

2.20 1 0 -1 -5 -19 

2.25 1 0 -1 -5 -19 

2.30 1 0 -1 -5 -18 

2.35 1 0 -1 -5 -18 

2.40 1 0 -1 -5 -17 

2.45 1 0 -1 -5 -16 

2.50 1 0 -1 -5 -16 

2.55 1 0 -1 -5 -15 

2.60 1 0 -1 -5 -15 

2.65 1 0 -1 -5 -14 

2.70 1 0 -1 -5 -14 

2.75 1 0 -1 -5 -14 

2.80 1 0 -1 -5 -13 

2.85 1 0 -1 -5 -13 

2.90 1 0 -1 -5 -12 

2.95 1 0 -1 -5 -12 

3.00 1 0 -1 -5 -11 

3.05 1 0 -1 -5 -11 

3.10 1 0 -1 -5 -11 

3.15 1 0 -1 -5 -10 

3.20 1 0 -1 -5 -10 

3.25 1 0 -1 -5 -9 

1. S.I.: Saturation indices of selected iron-oxyhydroxides and 

pyrite. Saturation index (S.I.) = log(IAP)/KT where IAP is the ion 

activity product of the dissolved components in solution, and KT 

is the solubility of the solid or gaseous phase at the specified 

temperature 
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DOC 

Added 

S.I.
1
 

Hematite 

S.I.
1
 

Goethite 

S.I.
1
 

Lepidocrocite 

S.I.
1 

Fe(OH)3 

S.I.
1 

Pyrite 

3.30 1 0 -1 -5 -9 

3.35 1 0 -1 -5 -9 

3.40 1 0 -1 -5 -8 

3.45 1 0 -1 -5 -8 

3.50 1 0 -1 -5 -8 

3.55 1 0 -1 -5 -7 

3.60 1 0 -1 -5 -7 

3.65 1 0 -1 -5 -7 

3.70 1 0 -1 -5 -6 

3.75 1 0 -1 -5 -6 

3.80 1 0 -1 -5 -6 

3.85 1 0 -1 -5 -5 

3.90 1 0 -1 -5 -5 

3.95 1 0 -1 -5 -5 

4.00 1 0 -1 -5 -4 

4.05 1 0 -1 -5 -4 

4.10 1 0 -1 -5 -4 

4.15 1 0 -1 -5 -3 

4.20 1 0 -1 -5 -3 

4.25 1 0 -1 -5 -3 

4.30 1 0 -1 -5 -2 

4.35 1 0 -1 -5 -2 

4.40 1 0 -1 -5 -2 

4.45 1 0 -1 -5 -2 

4.50 1 0 -1 -5 -1 

4.55 1 0 -1 -5 -1 

4.60 1 0 -1 -5 -1 

4.65 1 0 -1 -5 -1 

4.70 1 0 -1 -5 0 

4.75 1 0 -1 -5 0 

4.80 1 0 -1 -5 0 

4.85 1 0 -1 -5 0 

4.90 1 0 -1 -5 0 

1. Saturation indices of selected iron-oxyhydroxides and pyrite. 

Saturation index (S.I.) = log(IAP)/KT where IAP is the ion 

activity product of the dissolved components in solution, and KT 

is the solubility of the solid or gaseous phase at the specified 

temperature 
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DOC 

Added 

S.I.
1
 

Hematite 

S.I.
1
 

Goethite 

S.I.
1
 

Lepidocrocite 

S.I.
1 

Fe(OH)3 

S.I.
1 

Pyrite 

4.95 1 0 -1 -5 0 

5.00 1 0 -1 -5 0 

1. Saturation indices of selected iron-oxyhydroxides and pyrite. 

Saturation index (S.I.) = log(IAP)/KT where IAP is the ion 

activity product of the dissolved components in solution, and KT 

is the solubility of the solid or gaseous phase at the specified 

temperature 



 

 

Appendix K10: Goethite Titration with DOC and Simultaneous Calcite Dissolution in 

Surficial Water 

DOC 

Added
1
 

pH pe 
Alkalinity 

as HCO3
-
 

Dissolved 

Fe 

Dissolved 

Oxygen 
SO4

2-
 S

2-
 NO3

-
 

0.00 5.30 6.44 24.01 0.07 0.28 17.88 0.00 4.30 

0.05 6.86 13.11 367.51 2.54E-07 6.65E-03 17.88 0.00 4.54 

0.10 6.86 12.37 367.66 2.54E-07 7.25E-06 17.88 0.00 4.35 

0.15 6.86 12.33 367.81 2.54E-07 5.23E-06 17.88 0.00 4.14 

0.20 6.86 12.31 367.97 2.54E-07 4.26E-06 17.88 0.00 3.93 

0.25 6.86 12.29 368.12 2.54E-07 3.63E-06 17.88 0.00 3.73 

0.30 6.86 12.28 368.27 2.54E-07 3.17E-06 17.88 0.00 3.52 

0.35 6.86 12.27 368.42 2.54E-07 2.80E-06 17.88 0.00 3.31 

0.40 6.86 12.25 368.58 2.54E-07 2.50E-06 17.88 0.00 3.11 

0.45 6.86 12.24 368.73 2.54E-07 2.25E-06 17.88 0.00 2.90 

0.50 6.86 12.23 368.88 2.54E-07 2.02E-06 17.88 0.00 2.70 

0.55 6.86 12.22 369.04 2.54E-07 1.82E-06 17.88 0.00 2.49 

0.60 6.86 12.21 369.19 2.54E-07 1.63E-06 17.88 0.00 2.28 

0.65 6.86 12.20 369.34 2.54E-07 1.46E-06 17.88 0.00 2.08 

0.70 6.86 12.18 369.49 2.54E-07 1.30E-06 17.88 0.00 1.87 

0.75 6.86 12.17 369.65 2.54E-07 1.15E-06 17.88 0.00 1.66 

0.80 6.86 12.16 369.80 2.54E-07 1.01E-06 17.88 0.00 1.46 

0.85 6.86 12.14 369.95 2.54E-07 8.68E-07 17.88 0.00 1.25 

0.90 6.86 12.12 370.10 2.54E-07 7.34E-07 17.88 0.00 1.04 

0.95 6.86 12.10 370.26 2.54E-07 6.01E-07 17.88 0.00 0.84 

1.00 6.86 12.07 370.41 2.54E-07 4.69E-07 17.88 0.00 0.63 

1.05 6.86 12.04 370.56 2.54E-07 3.34E-07 17.88 0.00 0.42 

1.10 6.86 11.98 370.71 2.54E-07 1.92E-07 17.88 0.00 0.22 

1.15 6.86 11.71 370.87 2.54E-07 1.68E-08 17.88 0.00 0.01 

1.20 6.86 -1.53 371.02 0.88 0.00 17.88 3.62E-15 0.00 

1.25 6.86 -1.85 371.18 1.81 0.00 17.88 1.27E-12 0.00 

1.30 6.87 -2.04 371.34 2.74 0.00 17.88 3.83E-11 0.00 

1.35 6.87 -2.18 371.49 3.67 0.00 17.88 4.36E-10 0.00 

1.40 6.87 -2.28 371.64 4.59 0.00 17.88 2.92E-09 0.00 

1.45 6.88 -2.37 371.79 5.51 0.00 17.88 1.39E-08 0.00 

1.50 6.88 -2.45 371.93 6.41 0.00 17.88 5.15E-08 0.00 

1.55 6.88 -2.50 372.07 7.21 0.00 17.88 1.45E-07 0.00 

1.60 6.88 -2.54 372.20 7.81 0.00 17.88 2.90E-07 0.00 

1. Composition of the "Surficial Water" solution as a total of 5 mg/L DOC is added to 10 

moles of goethite and 10 moles of calcite. Concentrations are presented in units of mg/L 
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DOC 

Added
1
 

pH pe 
Alkalinity 

as HCO3
-
 

Dissolved 

Fe 

Dissolved 

Oxygen 
SO4

2-
 S

2-
 NO3

-
 

1.65 6.88 -2.57 372.31 8.20 0.00 17.88 4.48E-07 0.00 

1.70 6.88 -2.59 372.41 8.48 0.00 17.88 5.98E-07 0.00 

1.75 6.88 -2.60 372.51 8.68 0.00 17.88 7.36E-07 0.00 

1.80 6.89 -2.61 372.60 8.84 0.00 17.88 8.64E-07 0.00 

1.85 6.89 -2.61 372.70 8.98 0.00 17.88 9.84E-07 0.00 

1.90 6.89 -2.62 372.79 9.09 0.00 17.88 1.10E-06 0.00 

1.95 6.89 -2.63 372.88 9.19 0.00 17.88 1.20E-06 0.00 

2.00 6.89 -2.63 372.97 9.28 0.00 17.88 1.30E-06 0.00 

2.05 6.89 -2.63 373.07 9.36 0.00 17.88 1.40E-06 0.00 

2.10 6.89 -2.64 373.16 9.43 0.00 17.88 1.49E-06 0.00 

2.15 6.89 -2.64 373.25 9.50 0.00 17.88 1.58E-06 0.00 

2.20 6.89 -2.64 373.34 9.56 0.00 17.88 1.66E-06 0.00 

2.25 6.89 -2.65 373.43 9.62 0.00 17.88 1.75E-06 0.00 

2.30 6.89 -2.65 373.51 9.68 0.00 17.88 1.82E-06 0.00 

2.35 6.89 -2.65 373.60 9.73 0.00 17.88 1.90E-06 0.00 

2.40 6.89 -2.65 373.69 9.78 0.00 17.88 1.98E-06 0.00 

2.45 6.89 -2.66 373.78 9.83 0.00 17.88 2.05E-06 0.00 

2.50 6.89 -2.66 373.87 9.87 0.00 17.88 2.12E-06 0.00 

2.55 6.89 -2.66 373.96 9.91 0.00 17.88 2.19E-06 0.00 

2.60 6.89 -2.66 374.05 9.96 0.00 17.88 2.26E-06 0.00 

2.65 6.89 -2.66 374.14 10.00 0.00 17.88 2.33E-06 0.00 

2.70 6.89 -2.66 374.22 10.03 0.00 17.88 2.39E-06 0.00 

2.75 6.89 -2.66 374.31 10.07 0.00 17.88 2.46E-06 0.00 

2.80 6.89 -2.67 374.40 10.11 0.00 17.88 2.52E-06 0.00 

2.85 6.89 -2.67 374.49 10.14 0.00 17.88 2.58E-06 0.00 

2.90 6.89 -2.67 374.58 10.18 0.00 17.88 2.65E-06 0.00 

2.95 6.89 -2.67 374.67 10.21 0.00 17.88 2.71E-06 0.00 

3.00 6.89 -2.67 374.75 10.24 0.00 17.88 2.76E-06 0.00 

3.05 6.89 -2.67 374.84 10.27 0.00 17.88 2.82E-06 0.00 

3.10 6.89 -2.67 374.93 10.31 0.00 17.88 2.88E-06 0.00 

3.15 6.89 -2.67 375.02 10.34 0.00 17.88 2.94E-06 0.00 

3.20 6.89 -2.67 375.10 10.37 0.00 17.88 2.99E-06 0.00 

3.25 6.88 -2.68 375.19 10.39 0.00 17.88 3.05E-06 0.00 

1. Composition of the "Surficial Water" solution as a total of 5 mg/L DOC is added to 

10 moles of goethite and 10 moles of calcite. Concentrations are presented in units of 

mg/L 
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DOC 

Added
1
 

pH pe 
Alkalinity 

as HCO3
-
 

Dissolved 

Fe 

Dissolved 

Oxygen 
SO4

2-
 S

2-
 NO3

-
 

3.30 6.88 -2.68 375.28 10.42 0.00 17.88 3.10E-06 0.00 

3.35 6.88 -2.68 375.37 10.45 0.00 17.88 3.16E-06 0.00 

3.40 6.88 -2.68 375.46 10.48 0.00 17.88 3.21E-06 0.00 

3.45 6.88 -2.68 375.54 10.50 0.00 17.88 3.26E-06 0.00 

3.50 6.88 -2.68 375.63 10.53 0.00 17.88 3.31E-06 0.00 

3.55 6.88 -2.68 375.72 10.56 0.00 17.88 3.36E-06 0.00 

3.60 6.88 -2.68 375.81 10.58 0.00 17.88 3.41E-06 0.00 

3.65 6.88 -2.68 375.89 10.61 0.00 17.88 3.46E-06 0.00 

3.70 6.88 -2.68 375.98 10.63 0.00 17.88 3.51E-06 0.00 

3.75 6.88 -2.68 376.07 10.66 0.00 17.88 3.56E-06 0.00 

3.80 6.88 -2.68 376.15 10.68 0.00 17.88 3.61E-06 0.00 

3.85 6.88 -2.68 376.24 10.71 0.00 17.88 3.66E-06 0.00 

3.90 6.88 -2.68 376.33 10.73 0.00 17.88 3.71E-06 0.00 

3.95 6.88 -2.68 376.42 10.75 0.00 17.88 3.75E-06 0.00 

4.00 6.88 -2.69 376.50 10.78 0.00 17.88 3.80E-06 0.00 

4.05 6.88 -2.69 376.59 10.80 0.00 17.88 3.85E-06 0.00 

4.10 6.88 -2.69 376.68 10.82 0.00 17.88 3.89E-06 0.00 

4.15 6.88 -2.69 376.76 10.84 0.00 17.88 3.94E-06 0.00 

4.20 6.88 -2.69 376.85 10.87 0.00 17.88 3.98E-06 0.00 

4.25 6.88 -2.69 376.94 10.89 0.00 17.88 4.03E-06 0.00 

4.30 6.88 -2.69 377.03 10.91 0.00 17.88 4.07E-06 0.00 

4.35 6.88 -2.69 377.11 10.93 0.00 17.88 4.11E-06 0.00 

4.40 6.88 -2.69 377.20 10.95 0.00 17.88 4.16E-06 0.00 

4.45 6.88 -2.69 377.29 10.97 0.00 17.88 4.20E-06 0.00 

4.50 6.88 -2.69 377.37 10.99 0.00 17.88 4.24E-06 0.00 

4.55 6.88 -2.69 377.46 11.01 0.00 17.88 4.29E-06 0.00 

4.60 6.88 -2.69 377.55 11.03 0.00 17.88 4.33E-06 0.00 

4.65 6.88 -2.69 377.63 11.05 0.00 17.88 4.37E-06 0.00 

4.70 6.88 -2.69 377.72 11.07 0.00 17.88 4.41E-06 0.00 

4.75 6.88 -2.69 377.81 11.09 0.00 17.88 4.45E-06 0.00 

4.80 6.88 -2.69 377.90 11.11 0.00 17.88 4.49E-06 0.00 

4.85 6.88 -2.69 377.98 11.13 0.00 17.88 4.53E-06 0.00 

4.90 6.88 -2.69 378.07 11.15 0.00 17.88 4.57E-06 0.00 

1. Composition of the "Surficial Water" solution as a total of 5 mg/L DOC is added to 

10 moles of goethite and 10 moles of calcite. Concentrations are presented in units of 

mg/L 
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DOC 

Added
1
 

pH pe 
Alkalinity 

as HCO3
-
 

Dissolved 

Fe 

Dissolved 

Oxygen 
SO4

2-
 S

2-
 NO3

-
 

4.95 6.88 -2.69 378.16 11.17 0.00 17.88 4.61E-06 0.00 

5.00 6.88 -2.69 378.24 11.19 0.00 17.88 4.65E-06 0.00 

1. Composition of the "Surficial Water" solution as a total of 5 mg/L DOC is added to 

10 moles of goethite and 10 moles of calcite. Concentrations are presented in units of 

mg/L 
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DOC 

Added 

S.I.
1
 

Hematite 

S.I.
1
 

Goethite 

S.I.
1
 

Lepidocrocite 

S.I.
1 

Fe(OH)3 

S.I.
1 

Pyrite 

0.00 -1000 -1000 -1000 -1000 -1000 

0.05 1 0 -1 -5 -237 

0.10 1 0 -1 -5 -226 

0.15 1 0 -1 -5 -226 

0.20 1 0 -1 -5 -225 

0.25 1 0 -1 -5 -225 

0.30 1 0 -1 -5 -225 

0.35 1 0 -1 -5 -225 

0.40 1 0 -1 -5 -225 

0.45 1 0 -1 -5 -224 

0.50 1 0 -1 -5 -224 

0.55 1 0 -1 -5 -224 

0.60 1 0 -1 -5 -224 

0.65 1 0 -1 -5 -224 

0.70 1 0 -1 -5 -223 

0.75 1 0 -1 -5 -223 

0.80 1 0 -1 -5 -223 

0.85 1 0 -1 -5 -223 

0.90 1 0 -1 -5 -223 

0.95 1 0 -1 -5 -222 

1.00 1 0 -1 -5 -222 

1.05 1 0 -1 -5 -221 

1.10 1 0 -1 -5 -220 

1.15 1 0 -1 -5 -216 

1.20 1 0 -1 -5 -18 

1.25 1 0 -1 -5 -13 

1.30 1 0 -1 -5 -10 

1.35 1 0 -1 -5 -8 

1.40 1 0 -1 -5 -7 

1.45 1 0 -1 -5 -5 

1.50 1 0 -1 -5 -4 

1.55 1 0 -1 -5 -4 

1.60 1 0 -1 -5 -3 

1. Saturation indices of selected iron-oxyhydroxides and pyrite. 

Saturation index (S.I.) = log(IAP)/KT where IAP is the ion 

activity product of the dissolved components in solution, and KT 

is the solubility of the solid or gaseous phase at the specified 

temperature 



347 

 

DOC 

Added 

S.I.
1
 

Hematite 

S.I.
1
 

Goethite 

S.I.
1
 

Lepidocrocite 

S.I.
1 

Fe(OH)3 

S.I.
1 

Pyrite 

1.65 1 0 -1 -5 -3 

1.70 1 0 -1 -5 -2 

1.75 1 0 -1 -5 -2 

1.80 1 0 -1 -5 -2 

1.85 1 0 -1 -5 -2 

1.90 1 0 -1 -5 -2 

1.95 1 0 -1 -5 -2 

2.00 1 0 -1 -5 -2 

2.05 1 0 -1 -5 -2 

2.10 1 0 -1 -5 -2 

2.15 1 0 -1 -5 -2 

2.20 1 0 -1 -5 -2 

2.25 1 0 -1 -5 -2 

2.30 1 0 -1 -5 -1 

2.35 1 0 -1 -5 -1 

2.40 1 0 -1 -5 -1 

2.45 1 0 -1 -5 -1 

2.50 1 0 -1 -5 -1 

2.55 1 0 -1 -5 -1 

2.60 1 0 -1 -5 -1 

2.65 1 0 -1 -5 -1 

2.70 1 0 -1 -5 -1 

2.75 1 0 -1 -5 -1 

2.80 1 0 -1 -5 -1 

2.85 1 0 -1 -5 -1 

2.90 1 0 -1 -5 -1 

2.95 1 0 -1 -5 -1 

3.00 1 0 -1 -5 -1 

3.05 1 0 -1 -5 -1 

3.10 1 0 -1 -5 -1 

3.15 1 0 -1 -5 -1 

3.20 1 0 -1 -5 -1 

3.25 1 0 -1 -5 -1 

1. Saturation indices of selected iron-oxyhydroxides and pyrite. 

Saturation index (S.I.) = log(IAP)/KT where IAP is the ion 

activity product of the dissolved components in solution, and KT 

is the solubility of the solid or gaseous phase at the specified 

temperature 
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DOC 

Added 

S.I.
1
 

Hematite 

S.I.
1
 

Goethite 

S.I.
1
 

Lepidocrocite 

S.I.
1 

Fe(OH)3 

S.I.
1 

Pyrite 

3.30 1 0 -1 -5 -1 

3.35 1 0 -1 -5 -1 

3.40 1 0 -1 -5 -1 

3.45 1 0 -1 -5 -1 

3.50 1 0 -1 -5 -1 

3.55 1 0 -1 -5 -1 

3.60 1 0 -1 -5 -1 

3.65 1 0 -1 -5 -1 

3.70 1 0 -1 -5 -1 

3.75 1 0 -1 -5 -1 

3.80 1 0 -1 -5 -1 

3.85 1 0 -1 -5 -1 

3.90 1 0 -1 -5 -1 

3.95 1 0 -1 -5 -1 

4.00 1 0 -1 -5 -1 

4.05 1 0 -1 -5 -1 

4.10 1 0 -1 -5 -1 

4.15 1 0 -1 -5 -1 

4.20 1 0 -1 -5 -1 

4.25 1 0 -1 -5 -1 

4.30 1 0 -1 -5 -1 

4.35 1 0 -1 -5 -1 

4.40 1 0 -1 -5 -1 

4.45 1 0 -1 -5 -1 

4.50 1 0 -1 -5 -1 

4.55 1 0 -1 -5 -1 

4.60 1 0 -1 -5 -1 

4.65 1 0 -1 -5 -1 

4.70 1 0 -1 -5 -1 

4.75 1 0 -1 -5 -1 

4.80 1 0 -1 -5 -1 

4.85 1 0 -1 -5 -1 

4.90 1 0 -1 -5 -1 

1. Saturation indices of selected iron-oxyhydroxides and pyrite. 

Saturation index (S.I.) = log(IAP)/KT where IAP is the ion 

activity product of the dissolved components in solution, and KT 

is the solubility of the solid or gaseous phase at the specified 

temperature 
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DOC 

Added 

S.I.
1
 

Hematite 

S.I.
1
 

Goethite 

S.I.
1
 

Lepidocrocite 

S.I.
1 

Fe(OH)3 

S.I.
1 

Pyrite 

4.95 1 0 -1 -5 -1 

5.00 1 0 -1 -5 -1 

1. Saturation indices of selected iron-oxyhydroxides and pyrite. 

Saturation index (S.I.) = log(IAP)/KT where IAP is the ion 

activity product of the dissolved components in solution, and KT 

is the solubility of the solid or gaseous phase at the specified 

temperature 



 

 

Appendix K11: Percent Glauconite and Simulated Dissolved-Fe Concentrations 

Distance
1
 0% 1% 5% 10% 15% 20% 

0 16.4 16.4 16.4 16.4 16.4 16.4 

1 16.4 16.1 14.6 13.7 13.0 12.6 

3 16.3 15.4 11.4 8.8 7.1 6.0 

5 16.1 14.0 7.0 3.9 2.4 1.7 

7 15.5 11.7 3.4 1.3 0.6 0.3 

9 14.5 8.8 1.2 0.3 0.1 0.1 

11 13.5 6.3 0.4 0.1 0.0 0.0 

1. Percent glauconite and simulated dissolved-Fe 

concentrations (mg/L) with increasing distance 

(km) along a simulated flow path in the UCHA. 

The values for cation exchange capacity and 

dispersivity used in the reactive transport model 

are 0.115 eq/L and 800 m, respectively. 

Glauconite is assumed to have an average CEC 

of 20 meq/100g and the density and porosity of 

the UCHA are assumed to be 2.7 kg/L and 20%, 

respectively 



 

 

Appendix K12: Conservative Model Results 

Distance
1
 pH pe 

Alkalinity 

as HCO3
-
 

Na
+
 K

+
 Mg

2+
 Ca

2+
 Fe

2+
 

S.I.
2
 

Hematite 

S.I.
2
 

Goethite 

S.I.
2
 

Lepidocrocite 

S.I.
2 

Fe(OH)3 

S.I.
2 

Pyrite 

S.I.
2 

Siderite 

1 7 -3 343 14 26 9 71 16 1 0 -1 -5 -7 0 

3 7 -3 342 14 26 9 71 16 1 0 -1 -5 -7 0 

5 7 -3 342 14 26 9 71 16 1 0 -1 -5 -6 0 

7 7 -3 340 14 25 9 71 16 1 0 -1 -5 -6 0 

9 7 -3 338 13 24 9 70 15 1 0 -1 -5 -5 0 

11 7 -3 335 13 23 9 70 14 1 0 -1 -5 -5 0 

1. Conservative transport model results. Elemental concentrations (mg/L) are shown with respect to increasing distance (km) along 

a simulated flow path in the UCHA. Dispersivity used in the conservative transport model is 800 m 

2. S.I.: Saturation indices of common authigenic iron-minerals. Saturation index (S.I.) = log(IAP)/KT where IAP is the ion activity 

product of the dissolved components in solution, and KT is the solubility of the solid or gaseous phase at the specified temperature 



 

 

Appendix K13: Reactive Transport Model Results 

Distance
1
 pH pe 

Alkalinity 

as HCO3
-
 

Na
+
 K

+
 Mg

2+
 Ca

2+
 Fe

2+
 

S.I.
2
 

Hematite 

S.I.
2
 

Goethite 

S.I.
2
 

Lepidocrocite 

S.I.
2 

Fe(OH)3 

S.I.
2 

Pyrite 

S.I.
2 

Siderite 

1 7 -3 390 14 23 11 86 15 1 1 0 -5 -7 1 

3 7 -3 389 14 18 15 84 11 1 0 0 -5 -7 0 

5 7 -3 388 13 12 17 86 7 1 0 -1 -5 -7 0 

7 7 -3 384 13 8 18 88 3 0 0 -1 -6 -7 0 

9 7 -3 378 12 7 19 88 1 -1 -1 -1 -6 -6 0 

11 7 -3 371 11 6 18 87 0 -2 -1 -2 -7 -7 -1 

1. Reactive transport model results. Elemental concentrations (mg/L) are shown with respect to increasing distance (km) along a 

simulated flow path in the UCHA.  The values for cation exchange capacity and dispersivity used in the reactive transport model 

are 0.115 eq/L and 800 m, respectively 

2. S.I.: Saturation indices of common authigenic iron-minerals. Saturation index (S.I.) = log(IAP)/KT where IAP is the ion activity 

product of the dissolved components in solution, and KT is the solubility of the solid or gaseous phase at the specified temperature 

 

 



 

 

Appendix L: PHREEQC Input Files 

Appendix L1: Dissolving Individual Fe-Bearing Minerals in Pure Water at pH 5 

 

SOLUTION 1  

    temp  25 

    pH   5 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 1 

    Epidote  0 10 

    Goethite_2 0 0 

    

SELECTED_OUTPUT 1 

    -file             C:\Users\Mark Akland\Desktop\modeling.xls 

    -reset        false 

    -solution      true 

    -step          true 

    -pH             true 

    -Alkalinity true 

    -pe    true 

    -reaction    true 

    -totals       Fe  Fe(2)  Fe(3) 

    -saturation_indices  Hematite Goethite Lepidocrocite Fe(OH)3 Pyrite 

 

END 

 

SOLUTION 2 

    temp  25 

    pH   5 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 2 

    Hematite  0 10 

    Goethite_2  0 0 

 

End 

 

 



 

354 

 

SOLUTION 3 

    temp  25 

    pH   5 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 3 

    Fe(OH)3  0 10 

    Goethite_2  0 0 

 

End 

 

SOLUTION 4 

    temp  25 

    pH   5 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 4 

    Lepidocrocite   0 10 

    Goethite_2       0 0 

 

End 

 

SOLUTION 5 

    temp  25 

    pH   5 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 5 

    Goethite  0 10 # Lyndsay 

    Goethite_2   0 0 

 

End 

SOLUTION 6 

    temp  25 
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    pH   5 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 6 

    Goethite_2  0 10 

    Goethite  0 0 

 

End 

 

SOLUTION 7 

    temp  25 

    pH   5 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 7 

    Glauconite  0 10 

    Goethite_2  0 0 

     

End 

 

SOLUTION 8 

    temp  25 

    pH   5 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 8 

    Pyrite  0 10 

    Goethite_2  0 0 

 

End 

 

SOLUTION 9 

    temp  25 

    pH   5 
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    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 9 

    Hedenbergite   0 10 

    Goethite_2      0 0 

 

End 

 

SOLUTION 10 

    temp  25 

    pH   5 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 10 

    Staurolite 0  10 

    Goethite_2  0 0 

 

End 

 

SOLUTION 11 

    temp  25 

    pH   5 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 11 

    Schorl  0 10 

    Goethite_2  0 0 

 

End 

 

SOLUTION 12 

    temp  25 

    pH   5 

    pe   4 
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    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 12 

    Ilmenite  0 10 

    Goethite_2  0 0 

 

End 

 

SOLUTION 13 

    temp  25 

    pH   5 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 13 

    Actinolite  0 10 

    Goethite_2   0 0 

 

End 

 

SOLUTION 14 

    temp  25 

    pH   5 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 14 

    Ferropargasite   0 10 

    Goethite_2        0 0 

 

End 

 

SOLUTION 15 

    temp  25 

    pH   5 

    pe   4 

    redox  pe 
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    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 16 

    Almandine  0 10 

    Goethite_2  0 0 

 

End 

 



 

 

Appendix L2: Dissolving Individual Fe-Bearing Minerals in Pure Water at pH 7 

 

SOLUTION 1  

    temp  25 

    pH   7 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 1 

    Epidote  0 10 

    Goethite_2  0 0 

    

SELECTED_OUTPUT 1 

    -file             C:\Users\Mark Akland\Desktop\modeling.xls 

    -reset    false 

    -solution    true 

    -step  true 

    -pH    true 

    -Alkalinity true 

    -pe    true 

    -reaction true 

    -totals   Fe  Fe(2)  Fe(3) 

    -saturation_indices Hematite Goethite Lepidocrocite Fe(OH)3 Pyrite 

 

END 

 

SOLUTION 2 

    temp  25 

    pH   7 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 2 

    Hematite  0 10 

    Goethite_2  0 0 

 

End 
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SOLUTION 3 

    temp  25 

    pH   7 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 3 

    Fe(OH)3  0 10 

    Goethite_2  0 0 

 

End 

 

SOLUTION 4 

    temp  25 

    pH   7 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 4 

    Lepidocrocite 0 10 

    Goethite_2     0 0 

 

End 

 

SOLUTION 5 

    temp  25 

    pH   7 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 5 

    Goethite  0 10 # Lyndsay 

    Goethite_2  0 0 

 

End 
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SOLUTION 6 

    temp  25 

    pH   7 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 6 

    Goethite_2  0 10 

    Goethite  0 0 

 

End 

 

SOLUTION 7 

    temp  25 

    pH   7 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 7 

    Glauconite  0 10 

    Goethite_2  0 0 

     

End 

 

SOLUTION 8 

    temp  25 

    pH   7 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 8 

    Pyrite  0 10 

    Goethite_2  0 0 

 

End 
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SOLUTION 9 

    temp  25 

    pH   7 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 9 

    Hedenbergite   0 10 

    Goethite_2      0 0 

 

End 

 

SOLUTION 10 

    temp  25 

    pH   7 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 10 

    Staurolite  0 10 

    Goethite_2  0 0 

 

End 

 

SOLUTION 11 

    temp  25 

    pH   7 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 11 

    Schorl  0 10 

    Goethite_2  0 0 

 

End 
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SOLUTION 12 

    temp  25 

    pH   7 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 12 

    Ilmenite  0 10 

    Goethite_2  0 0 

 

End 

 

SOLUTION 13 

    temp  25 

    pH   7 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 13 

    Actinolite  0 10 

    Goethite_2  0 0 

 

End 

 

SOLUTION 14 

    temp  25 

    pH   7 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 14 

    Ferropargasite  0 10 

    Goethite_2       0 0 

 

End 
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SOLUTION 15 

    temp  25 

    pH   7 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 15 

    Almandine  0 10 

    Goethite_2  0 0 

 

End 
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Appendix L3: Dissolving Individual Fe-Bearing Minerals in Pure Water at pH 9 

 

SOLUTION 1  

    temp  25 

    pH   9 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 1 

    Epidote  0 10 

    Goethite_2  0 0 

    

SELECTED_OUTPUT 1 

    -file    C:\Users\Mark Akland\Desktop\modeling.xls 

    -reset    false 

    -solution   true 

    -step           true 

    -pH           true 

    -Alkalinity true 

    -pe              true 

    -reaction      true 

    -totals        Fe  Fe(2)  Fe(3) 

    -saturation_indices Hematite Goethite Lepidocrocite Fe(OH)3 Pyrite 

 

END 

 

SOLUTION 2 

    temp  25 

    pH   9 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 2 

    Hematite  0 10 

    Goethite_2  0 0 

 

End 
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SOLUTION 3 

    temp  25 

    pH   9 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 3 

    Fe(OH)3  0 10 

    Goethite_2  0 0 

 

End 

 

SOLUTION 4 

    temp  25 

    pH   9 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 4 

    Lepidocrocite   0 10 

    Goethite_2       0 0 

 

End 

 

SOLUTION 5 

    temp  25 

    pH   9 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 5 

    Goethite  0 10 # Lyndsay 

    Goethite_2  0 0 

 

End 
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SOLUTION 6 

    temp  25 

    pH   9 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 6 

    Goethite_2  0 10 

    Goethite  0 0 

 

End 

 

SOLUTION 7 

    temp  25 

    pH   9 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 7 

    Glauconite  0 10 

    Goethite_2  0 0 

     

End 

 

SOLUTION 8 

    temp  25 

    pH   9 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 8 

    Pyrite  0 10 

    Goethite_2 0 0 

 

End 
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SOLUTION 9 

    temp  25 

    pH   9 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 9 

    Hedenbergite  0 10 

    Goethite_2     0 0 

 

End 

 

SOLUTION 10 

    temp  25 

    pH   9 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 10 

    Staurolite  0 10 

    Goethite_2 0 0 

 

End 

 

SOLUTION 11 

    temp  25 

    pH   9 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 11 

    Schorl  0 10 

    Goethite_2 0 0 

 

End 
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SOLUTION 12 

    temp  25 

    pH   9 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 12 

    Ilmenite  0 10 

    Goethite_2  0 0 

 

End 

 

SOLUTION 13 

    temp  25 

    pH   9 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 13 

    Actinolite  0 10 

    Goethite_2  0 0 

 

End 

 

SOLUTION 14 

    temp  25 

    pH   9 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 14 

    Ferropargasite 0 10 

    Goethite_2      0 0 

 

End 
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SOLUTION 15 

    temp  25 

    pH   9 

    pe   4 

    redox  pe 

    units  mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 15 

    Almandine  0 10 

    Goethite_2 0 0 

 

End 

 

 



 

 

Appendix L4: Dissolving Individual Fe-Bearing Minerals in Surficial Water [water 

chemistry from Woods et al. (2000)] 

 

SOLUTION 1  

    temp  23 

    pH     5.3 

    pe         6.439 # Adjusted for platinum electrode potential 

    redox     pe 

    units      mg/l 

    density    1 

    O(0)       0.282 

    Alkalinity  24 as HCO3 

    Cl(-1)     13.21 

    S(+6)      17.87 

    Na         8.96 

    K          3.61 

    Ca         3.15 

    Si         13.7 

    F          0.089 

    Mg         4.31 

    N(+5)      0.971 

    N(+3) 0.035 

    N(-3) 0.026 as NH4 

    P        0.129 as PO4 

    Fe(+2)     0.07 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 1 

    Epidote 0  10 

    Goethite_2 0 0 

    

SELECTED_OUTPUT 1 

    -file  C:\Users\Mark Akland\Desktop\modeling.xls 

    -reset  false 

    -solution      true 

    -step            true 

    -pH              true 

    -Alkalinity true 

    -pe               true 

    -reaction   true 

    -totals     Fe  Fe(2)  Fe(3) 

    -saturation_indices  Hematite Goethite Lepidocrocite Fe(OH)3 Pyrite 

 

END 
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SOLUTION 2 

    temp  23 

    pH     5.3 

    pe         6.439 # Adjusted for platinum electrode potential 

    redox     pe 

    units      mg/l 

    density    1 

    O(0)       0.282 

    Alkalinity  24 as HCO3 

    Cl(-1)     13.21 

    S(+6)      17.87 

    Na         8.96 

    K          3.61 

    Ca         3.15 

    Si         13.7 

    F          0.089 

    Mg         4.31 

    N(+5)      0.971 

    N(+3) 0.035 

    N(-3) 0.026 as NH4 

    P        0.129 as PO4 

    Fe(+2)     0.07 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 2 

    Hematite  0 10 

    Goethite_2  0 0 

 

End 

 

SOLUTION 3 

    temp  23 

    pH     5.3 

    pe         6.439 # Adjusted for platinum electrode potential 

    redox     pe 

    units      mg/l 

    density    1 

    O(0)       0.282 

    Alkalinity  24 as HCO3 

    Cl(-1)     13.21 

    S(+6)      17.87 

    Na         8.96 

    K          3.61 

    Ca         3.15 

    Si         13.7 

    F          0.089 
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    Mg         4.31 

    N(+5)      0.971 

    N(+3) 0.035 

    N(-3) 0.026 as NH4 

    P        0.129 as PO4 

    Fe(+2)     0.07 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 3 

    Fe(OH)3  0 10 

    Goethite_2  0 0 

 

End 

 

SOLUTION 4 

    temp  23 

    pH     5.3 

    pe         6.439 # Adjusted for platinum electrode potential 

    redox     pe 

    units      mg/l 

    density    1 

    O(0)       0.282 

    Alkalinity  24 as HCO3 

    Cl(-1)     13.21 

    S(+6)      17.87 

    Na         8.96 

    K          3.61 

    Ca         3.15 

    Si         13.7 

    F          0.089 

    Mg         4.31 

    N(+5)      0.971 

    N(+3) 0.035 

    N(-3) 0.026 as NH4 

    P        0.129 as PO4 

    Fe(+2)     0.07 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 4 

    Lepidocrocite   0 10 

    Goethite_2       0 0 

 

End 
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SOLUTION 5 

    temp  23 

    pH     5.3 

    pe         6.439 # Adjusted for platinum electrode potential 

    redox     pe 

    units      mg/l 

    density    1 

    O(0)       0.282 

    Alkalinity  24 as HCO3 

    Cl(-1)     13.21 

    S(+6)      17.87 

    Na         8.96 

    K          3.61 

    Ca         3.15 

    Si         13.7 

    F          0.089 

    Mg         4.31 

    N(+5)      0.971 

    N(+3) 0.035 

    N(-3) 0.026 as NH4 

    P        0.129 as PO4 

    Fe(+2)     0.07 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 5 

    Goethite  0 10 # Lyndsay 

    Goethite_2  0 0 

 

End 

 

SOLUTION 6 

    temp  23 

    pH     5.3 

    pe         6.439 # Adjusted for platinum electrode potential 

    redox     pe 

    units      mg/l 

    density    1 

    O(0)       0.282 

    Alkalinity  24 as HCO3 

    Cl(-1)     13.21 

    S(+6)      17.87 

    Na         8.96 

    K          3.61 

    Ca         3.15 

    Si         13.7 

    F          0.089 
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    Mg         4.31 

    N(+5)      0.971 

    N(+3) 0.035 

    N(-3) 0.026 as NH4 

    P        0.129 as PO4 

    Fe(+2)     0.07 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 6 

    Goethite_2  0 10 

    Goethite  0 0 

 

End 

 

SOLUTION 7 

    temp  23 

    pH     5.3 

    pe         6.439 # Adjusted for platinum electrode potential 

    redox     pe 

    units      mg/l 

    density    1 

    O(0)       0.282 

    Alkalinity  24 as HCO3 

    Cl(-1)     13.21 

    S(+6)      17.87 

    Na         8.96 

    K          3.61 

    Ca         3.15 

    Si         13.7 

    F          0.089 

    Mg         4.31 

    N(+5)      0.971 

    N(+3) 0.035 

    N(-3) 0.026 as NH4 

    P        0.129 as PO4 

    Fe(+2)     0.07 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 7 

    Glauconite  0 10 

    Goethite_2  0 0 

     

End 

 

 

 



 

376 

 

SOLUTION 8 

    temp  23 

    pH     5.3 

    pe         6.439 # Adjusted for platinum electrode potential 

    redox     pe 

    units      mg/l 

    density    1 

    O(0)       0.282 

    Alkalinity  24 as HCO3 

    Cl(-1)     13.21 

    S(+6)      17.87 

    Na         8.96 

    K          3.61 

    Ca         3.15 

    Si         13.7 

    F          0.089 

    Mg         4.31 

    N(+5)      0.971 

    N(+3) 0.035 

    N(-3) 0.026 as NH4 

    P        0.129 as PO4 

    Fe(+2)     0.07 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 8 

    Pyrite  0 10 

    Goethite_2  0 0 

 

End 

 

SOLUTION 9 

    temp  23 

    pH     5.3 

    pe         6.439 # Adjusted for platinum electrode potential 

    redox     pe 

    units      mg/l 

    density    1 

    O(0)       0.282 

    Alkalinity  24 as HCO3 

    Cl(-1)     13.21 

    S(+6)      17.87 

    Na         8.96 

    K          3.61 

    Ca         3.15 

    Si         13.7 

    F          0.089 
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    Mg         4.31 

    N(+5)      0.971 

    N(+3) 0.035 

    N(-3) 0.026 as NH4 

    P        0.129 as PO4 

    Fe(+2)     0.07 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 9 

    Hedenbergite 0 10 

    Goethite_2     0 0 

 

End 

 

SOLUTION 10 

    temp  23 

    pH     5.3 

    pe         6.439 # Adjusted for platinum electrode potential 

    redox     pe 

    units      mg/l 

    density    1 

    O(0)       0.282 

    Alkalinity  24 as HCO3 

    Cl(-1)     13.21 

    S(+6)      17.87 

    Na         8.96 

    K          3.61 

    Ca         3.15 

    Si         13.7 

    F          0.089 

    Mg         4.31 

    N(+5)      0.971 

    N(+3) 0.035 

    N(-3) 0.026 as NH4 

    P        0.129 as PO4 

    Fe(+2)     0.07 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 10 

    Staurolite  0 10 

    Goethite_2  0 0 

 

End 
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SOLUTION 11 

    temp  23 

    pH     5.3 

    pe         6.439 # Adjusted for platinum electrode potential 

    redox     pe 

    units      mg/l 

    density    1 

    O(0)       0.282 

    Alkalinity  24 as HCO3 

    Cl(-1)     13.21 

    S(+6)      17.87 

    Na         8.96 

    K          3.61 

    Ca         3.15 

    Si         13.7 

    F          0.089 

    Mg         4.31 

    N(+5)      0.971 

    N(+3) 0.035 

    N(-3) 0.026 as NH4 

    P        0.129 as PO4 

    Fe(+2)     0.07 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 11 

    Schorl 0 10 

    Goethite_2 0 0 

 

End 

 

SOLUTION 12 

    temp  23 

    pH     5.3 

    pe         6.439 # Adjusted for platinum electrode potential 

    redox     pe 

    units      mg/l 

    density    1 

    O(0)       0.282 

    Alkalinity  24 as HCO3 

    Cl(-1)     13.21 

    S(+6)      17.87 

    Na         8.96 

    K          3.61 

    Ca         3.15 

    Si         13.7 

    F          0.089 
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    Mg         4.31 

    N(+5)      0.971 

    N(+3) 0.035 

    N(-3) 0.026 as NH4 

    P        0.129 as PO4 

    Fe(+2)     0.07 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 12 

    Ilmenite  0 10 

    Goethite_2   0 0 

 

End 

 

SOLUTION 13 

    temp  23 

    pH     5.3 

    pe         6.439 # Adjusted for platinum electrode potential 

    redox     pe 

    units      mg/l 

    density    1 

    O(0)       0.282 

    Alkalinity  24 as HCO3 

    Cl(-1)     13.21 

    S(+6)      17.87 

    Na         8.96 

    K          3.61 

    Ca         3.15 

    Si         13.7 

    F          0.089 

    Mg         4.31 

    N(+5)      0.971 

    N(+3) 0.035 

    N(-3) 0.026 as NH4 

    P        0.129 as PO4 

    Fe(+2)     0.07 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 13 

    Actinolite  0 10 

    Goethite_2  0 0 

 

End 
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SOLUTION 14 

    temp  23 

    pH     5.3 

    pe         6.439 # Adjusted for platinum electrode potential 

    redox     pe 

    units      mg/l 

    density    1 

    O(0)       0.282 

    Alkalinity  24 as HCO3 

    Cl(-1)     13.21 

    S(+6)      17.87 

    Na         8.96 

    K          3.61 

    Ca         3.15 

    Si         13.7 

    F          0.089 

    Mg         4.31 

    N(+5)      0.971 

    N(+3) 0.035 

    N(-3) 0.026 as NH4 

    P        0.129 as PO4 

    Fe(+2)     0.07 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 14 

    Ferropargasite  0 10 

    Goethite_2       0 0 

 

End 

 

SOLUTION 15 

    temp  23 

    pH     5.3 

    pe         6.439 # Adjusted for platinum electrode potential 

    redox     pe 

    units      mg/l 

    density    1 

    O(0)       0.282 

    Alkalinity  24 as HCO3 

    Cl(-1)     13.21 

    S(+6)      17.87 

    Na         8.96 

    K          3.61 

    Ca         3.15 

    Si         13.7 

    F          0.089 
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    Mg         4.31 

    N(+5)      0.971 

    N(+3) 0.035 

    N(-3) 0.026 as NH4 

    P        0.129 as PO4 

    Fe(+2)     0.07 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 15 

    Almandine  0 10 

    Goethite_2  0 0 

 

End 

 

 



 

 

Appendix L5: Titrating 10 moles of Pyrite with 8 mg/L Oxygen in Pure Water 

 

SOLUTION 1     

    temp 25 

    pH     7 

    pe         4 

    redox     pe 

    units      mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 1 

    Pyrite  0 10 

    Goethite_2  0 0 

 

REACTION 1 

    O2(g)      1 

    5e-4 in 100 steps 

    

SELECTED_OUTPUT 1 

    -file      C:\Users\Mark Akland\Desktop\modeling.xls 

    -reset         false 

    -solution      true 

    -step             true 

    -pH         true 

    -Alkalinity true 

    -pe         true 

    -reaction      true 

    -totals       Fe  Fe(2)  Fe(3) S(+6) S(-2) 

    -saturation_indices   Hematite Goethite Lepidocrocite Fe(OH)3 

 

USER_GRAPH 

heading O(0) Fe(2) S(6) Ca pH 

-chart_title "Titrating Pyrite w/ 8 mg/L Oxygen in Pure water with 10 moles of calcite" 

-axis_titles "Oxygen added, mg/L" "Concentration, mg/L" 

-start 

10 graph_x step_no * 8/100 

20 graph_y tot("Fe(2)")*55845, tot("S(6)")*96066, tot("Ca")*40078 

50 graph_sy -la("H+") 

 

END 

 

 



 

 

Appendix L6: Titrating 10 moles of Pyrite with 8 mg/L Oxygen in Pure Water and 10 

moles of Calcite 

 

SOLUTION 1  

    temp 25 

    pH     7 

    pe         4 

    redox     pe 

    units      mmol/kgw 

    density    1 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 1 

    Pyrite 0 10 

    Calcite  0 10 

    Goethite_2 0 0 

 

REACTION 1 

    O2(g)      1 

    5e-4 in 100 steps 

    

SELECTED_OUTPUT 1 

    -file   C:\Users\Mark Akland\Desktop\modeling.xls 

    -reset  false 

    -solution    true 

    -step         true 

    -pH           true 

    -Alkalinity true 

    -pe      true 

    -reaction    true 

    -totals     Fe  Fe(2)  Fe(3) S(+6) S(-2) 

    -saturation_indices   Hematite Goethite Lepidocrocite Fe(OH)3 

USER_GRAPH 

heading O(0) Fe(2) S(6) Ca pH 

-chart_title "Titrating Pyrite w/ 8 mg/L Oxygen in Pure water with 10 moles of calcite" 

-axis_titles "Oxygen added, mg/L" "Concentration, mg/L" 

-start 

10 graph_x step_no * 8/100 

20 graph_y tot("Fe(2)")*55845, tot("S(6)")*96066, tot("Ca")*40078 

50 graph_sy -la("H+") 

 

END 

 

 



 

 

Appendix L7: Titrating 10 moles of Pyrite with 8 mg/L Oxygen in Surficial Water [(water 

chemistry from Whitley (2003)] 

 

SOLUTION 1  

    temp 23 

    pH       5.3 

    pe     6.439 # Adjusted for platinum electrode potential 

    redox      pe 

    units      mg/l 

    density    1 

    O(0)       0.282 

    Alkalinity  24 as HCO3 

    Cl(-1)     13.21 

    S(+6)       17.87 

    Na         8.96 

    K          3.61 

    Ca         3.15 

    Si         13.7 

    F          0.089 

    Mg         4.31 

    N(+5)      0.971 

    N(+3) 0.035 

    N(-3) 0.026 as NH4 

    P          0.129 as PO4 

    Fe(+2)      0.07 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 1 

    Pyrite  0 10 

    Goethite_2  0 0 

 

REACTION 1 

    O2(g)      1 

    5e-4 in 100 steps 

    

SELECTED_OUTPUT 1 

    -file   C:\Users\Mark Akland\Desktop\modeling.xls 

    -reset         false 

    -solution      true 

    -step        true 

    -pH         true 

    -Alkalinity true 

    -pe              true 

    -reaction     true 

    -totals        Fe  Fe(2)  Fe(3) S(+6) S(-2) 

    -saturation_indices   Hematite Goethite Lepidocrocite Fe(OH)3  
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USER_GRAPH 

heading O(0) Fe(2) S(6) pH 

-chart_title "Titrating Pyrite w/ 8 mg/L Oxygen in Surficial Water" 

-axis_titles "Oxygen added, mg/L" "Concentration, mg/L" 

-start 

10 graph_x step_no * 8/100 

20 graph_y tot("Fe(2)")*55845, tot("S(6)")*96066 

50 graph_sy -la("H+") 

 

END 

 

 



 

 

Appendix L8: Titrating 10 moles of Pyrite and 10 moles of Calcite with 8 mg/L Oxygen in 

Surficial Water [(water chemistry from Whitley (2003)] 

 

SOLUTION 1  

    temp 23 

    pH       5.3 

    pe     6.439 # Adjusted for platinum electrode potential 

    redox      pe 

    units      mg/l 

    density    1 

    O(0)       0.282 

    Alkalinity  24 as HCO3 

    Cl(-1)     13.21 

    S(+6)       17.87 

    Na         8.96 

    K          3.61 

    Ca         3.15 

    Si         13.7 

    F          0.089 

    Mg         4.31 

    N(+5)      0.971 

    N(+3) 0.035 

    N(-3) 0.026 as NH4 

    P          0.129 as PO4 

    Fe(+2)      0.07 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 1 

    Pyrite  0 10 

    Calcite  0 10 

    Goethite_2  0 0 

 

REACTION 1 

    O2(g)      1 

    5e-4 in 100 steps 

    

SELECTED_OUTPUT 1 

    -file      C:\Users\Mark Akland\Desktop\modeling.xls 

    -reset         false 

    -solution   true 

    -step          true 

    -pH            true 

    -Alkalinity true 

    -pe         true 

    -reaction      true 

    -totals         Fe  Fe(2)  Fe(3) S(+6) S(-2) 
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    -saturation_indices   Hematite Goethite Lepidocrocite Fe(OH)3  

USER_GRAPH 

heading O(0) Fe(2) S(6) pH 

-chart_title "Titrating Pyrite w/ 8 mg/L Oxygen in Surficial Water" 

-axis_titles "Oxygen added, mg/L" "Concentration, mg/L" 

-start 

10 graph_x step_no * 8/100 

20 graph_y tot("Fe(2)")*55845, tot("S(6)")*96066 

50 graph_sy -la("H+") 

 

END 

 

 

 



 

 

Appendix L9: Titrating 10 moles Goethite with 5 mg/L DOC in Surficial Water [(water 

chemistry from Whitley (2003)] 

 

SOLUTION 1  

    temp 23 

    pH        5.3 

    pe         6.439 # Adjusted for platinum electrode potential 

    redox      pe 

    units      mg/l 

    density    1 

    O(0)       0.282 

    Alkalinity  24 as HCO3 

    Cl(-1)     13.21 

    S(+6)       17.87 

    Na         8.96 

    K          3.61 

    Ca         3.15 

    Si         13.7 

    F          0.089 

    Mg         4.31 

    N(+5)      0.971 

    N(+3) 0.035 

    N(-3) 0.026 as NH4 

    P          0.129 as PO4 

    Fe(+2)      0.07 

    -water    1 # kg 

 

EQUILIBRIUM_PHASES 1 

    Goethite_2  0 10 

    Pyrite  0 0 

 

SOLUTION_MASTER_SPECIES 

 C(0) CH2O  0 30.03 

 

 SOLUTION_SPECIES 

 CO2 + 4H+ + 4e- = CH2O + H2O 

 log_k -4.8 

 

REACTION 1 

CH2O 1 

4.1628507201732e-4 in 100 steps 

    

SELECTED_OUTPUT 1 

    -file  C:\Users\Mark Akland\Desktop\modeling.xls 

    -reset           false 

    -solution      true 



 

389 

 

    -step      true 

    -pH          true 

    -Alkalinity true 

    -pe             true 

    -reaction     true 

    -totals Fe  Fe(2)  Fe(3) O(0) S(+6) S(-2) N(+5) 

    -saturation_indices   Hematite Goethite Lepidocrocite Fe(OH)3 Pyrite 

 

USER_GRAPH 

heading C(0) N(5) Fe(2) S(+6) pH  

-axis_titles "Carbon added, mg/L" "Concentration, mg/L" 

-start 

10 graph_x step_no * 5/100 

20 graph_y tot("N(5)")*62007, tot("Fe(2)")*55845, tot("S(6)")*96000 

50 graph_sy -la("H+") 

 

END 

 

 



 

 

Appendix L10: Titrating 10 moles Goethite and 10 moles Calcite with 5 mg/L DOC in 

Surficial Water [(water chemistry from Whitley (2003)] 

 

SOLUTION 1  

    temp 23 

    pH        5.3 

    pe         6.439 # Adjusted for platinum electrode potential 

    redox      pe 

    units      mg/l 

    density    1 

    O(0)       0.282 

    Alkalinity  24 as HCO3 

    Cl(-1)     13.21 

    S(+6)       17.87 

    Na         8.96 

    K          3.61 

    Ca         3.15 

    Si         13.7 

    F          0.089 

    Mg         4.31 

    N(+5)      0.971 

    N(+3) 0.035 

    N(-3) 0.026 as NH4 

    P          0.129 as PO4 

    Fe(+2)      0.07 

    -water    1 # kg 

 

EQUILIBRIUM_PHASES 1 

    Goethite_2  0 10 

    Calcite 0 10 

    Pyrite  0 0 

 

SOLUTION_MASTER_SPECIES 

 C(0) CH2O  0 30.03 

 

 SOLUTION_SPECIES 

 CO2 + 4H+ + 4e- = CH2O + H2O 

 log_k -4.8 

 

REACTION 1 

CH2O 1 

4.1628507201732e-4 in 100 steps 

    

SELECTED_OUTPUT 1 

    -file  C:\Users\Mark Akland\Desktop\modeling.xls 

    -reset           false 
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    -solution      true 

    -step      true 

    -pH          true 

    -Alkalinity true 

    -pe             true 

    -reaction     true 

    -totals Fe  Fe(2)  Fe(3) O(0) S(+6) S(-2) N(+5) 

    -saturation_indices   Hematite Goethite Lepidocrocite Fe(OH)3 Pyrite 

 

USER_GRAPH 

heading C(0) N(5) Fe(2) S(+6) pH  

-axis_titles "Carbon added, mg/L" "Concentration, mg/L" 

-start 

10 graph_x step_no * 5/100 

20 graph_y tot("N(5)")*62007, tot("Fe(2)")*55845, tot("S(6)")*96000 

50 graph_sy -la("H+") 

 

END 

 

 

 



 

 

Appendix L11: Conservative-Transport Model 

SOLUTION 0 # T15 speciated. Data from Brown (1999) 

    temp  17.0 

    pH      6.90 

    pe         3.921 

    redox     pe 

    units      mg/l 

    density    1 

    Alkalinity  344 as HCO3 

    Cl(-1)     12.3 

    Na         14.07 

    K          26.35 

    Ca         70.98 

    Si         34.19 

    F          0.22 

    Mg         8.57 

    S(-2)      0.0145 

    N(+5)      0.0026 

    N(+3) 0.0021 

    N(-3)      0.48 as NH4 

    P          0.626 as PO4 

    Fe(+2)     16.4 

    -water     1 # kg 

 

END 

 

SOLUTION 0 # T15 speciated. Data from Brown (1999) 

    temp    17.0 

    pH         6.90 

    pe         3.921 

    redox      pe 

    units      mg/l 

    density    1 

    Alkalinity  344 as HCO3 

    Cl(-1)     12.3 

    Na         14.07 

    K          26.35 

    Ca         70.98 

    Si         34.19 

    F          0.22 

    Mg         8.57 

    S(-2)      0.0145 

    N(+5)      0.0026 

    N(+3) 0.0021 

    N(-3)      0.48 as NH4 
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    P          0.626 as PO4 

      Fe(+2)    16.4 

    -water     1 # kg 

 

END 

 

SOLUTION 1 # T15 water equilibrated with calcite. Data from Brown (1999) 

    temp       17.0 

    pH         6.90 

    pe         3.921 

    redox      pe 

    units      mg/l 

    density    1 

    Alkalinity  344 as HCO3 

    Cl(-1)     12.3 

    Na         14.07 

    K          26.35 

    Ca         70.98 

    Si         34.19 

    F          0.22 

    Mg         8.57 

    S(-2)      0.0145 

    N(+5)      0.0026 

    N(+3) 0.0021 

    N(-3)      0.48 as NH4 

    P          0.626 as PO4 

    Fe(+2)      16.4 

    -water     1 # kg 

 

SAVE solution 1 

 

END 

 

SOLUTION 2-6 # Low Fe UCH water Far East. Data from Brown(1999) 

    temp       18.0 

    pH         7.41 

    pe         2.974 

    redox      pe 

    units      mg/l 

    density    1 

    Alkalinity  305 as HCO3 

    Cl(-1)     0.726 

    S(+6)      1.53 

    Na         8.83 

    K          5.18 

    Ca         65.80 



 

394 

 

    Si         29.05 

    F          0.36 

    Mg         13.21 

    S(-2)      0.2 

    N(+5)      0.0015 

    N(+3)      0.0032 

    N(-3)      1.21 as NH4 

    P          0.013 as PO4 

    Fe(+2)     0.01 

    -water     1 # kg 

 

SAVE solution 2-6 

 

END 

 

TRANSPORT # Assuming a UCH flow velocity of 0.365 ft/day = 40.6 m/yr = 1.55e9 secs to 

traverse one cell 

 -cells 6; -lengths 2000 # m  

 -time_step 1.55315e9 # v = 40.6 m/yr (25.23 miles/ka) 

 -flow_direction forward; -shifts 6 

 -dispersivities 800; -punch_frequency 100 

 

END 

 

TRANSPORT 

 -cells 6; 

 -time_step 0 # v = 40.6 m/yr (25.23 miles/ka) 

 -flow_direction forward; -shifts 1 

 -dispersivities 0; 

 

SELECTED_OUTPUT 1 

    -file                 C:\Users\Mark Akland\Desktop\modeling.xls 

    -reset                false 

    -solution           true 

    -step                 false 

    -pH                   true 

    -Alkalinity      true 

    -pe                    true 

    -reaction           false 

    -distance           true 

    -time                 true 

    -totals               Fe  Fe(2)  Fe(3) Ca K Na Mg S(-2) 

    -saturation_indices   Hematite Goethite_2 Lepidocrocite Fe(OH)3 Pyrite Siderite   

 

USER_PUNCH 

 -head cell time/yr dist/kilometers Na K Mg Ca Fe S(-2) Alk pH 
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10 punch cell_no, total_time / (3600 * 24 * 365) 

20 n = 0 

30 punch (cell_no - n) * 2.0 - 1.0 

40 punch tot("Na")*22990, tot("K")*39098, tot("Mg")*24305, tot("Ca")*40078, 

tot("Fe")*55845, tot("S(-2)")*32066, Alk*61018, -la("H+") 

 

USER_GRAPH 

 -heading dist Na K Mg Ca*0.125 Fe Alk/10 pH 

 -chart_title "Conservative Transport Model" 

 -initial_solutions true 

 -plot_concentration_vs x 

 -axis_titles "Distance / m" "mg/L" 

-axis_scale x_axis 0 12000 2000 

 -start 

 10 graph_x dist 

 20 graph_y tot("Na")*22990, tot("K")*39098, tot("Mg")*24305, tot("Ca")*5009.75, 

tot("Fe")*55845, Alk*6101.8 

 50 graph_sy -la("H+") 

END 

 



 

 

Appendix L12: Reactive-Transport Model 

SOLUTION 0 # T15 speciated. Data from Brown (1999) 

    temp  17.0 

    pH      6.90 

    pe         3.921 

    redox     pe 

    units      mg/l 

    density    1 

    Alkalinity  344 as HCO3 

    Cl(-1)     12.3 

    Na         14.07 

    K          26.35 

    Ca         70.98 

    Si         34.19 

    F          0.22 

    Mg         8.57 

    S(-2)      0.0145 

    N(+5)      0.0026 

    N(+3) 0.0021 

    N(-3)      0.48 as NH4 

    P          0.626 as PO4 

    Fe(+2)     16.4 

    -water     1 # kg 

 

END 

 

SOLUTION 0 # T15 speciated. Data from Brown (1999) 

    temp    17.0 

    pH         6.90 

    pe         3.921 

    redox      pe 

    units      mg/l 

    density    1 

    Alkalinity  344 as HCO3 

    Cl(-1)     12.3 

    Na         14.07 

    K          26.35 

    Ca         70.98 

    Si         34.19 

    F          0.22 

    Mg         8.57 

    S(-2)      0.0145 

    N(+5)      0.0026 

    N(+3) 0.0021 

    N(-3)      0.48 as NH4 
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    P          0.626 as PO4 

      Fe(+2)    16.4 

    -water     1 # kg 

 

END 

 

SOLUTION 1 # T15 water equilibrated with calcite Brown (1999) 

    temp       17.0 

    pH         6.90 

    pe         3.921 

    redox      pe 

    units      mg/l 

    density    1 

    Alkalinity  344 as HCO3 

    Cl(-1)     12.3 

    Na         14.07 

    K          26.35 

    Ca         70.98 

    Si         34.19 

    F          0.22 

    Mg         8.57 

    S(-2)      0.0145 

    N(+5)      0.0026 

    N(+3) 0.0021 

    N(-3)      0.48 as NH4 

    P          0.626 as PO4 

    Fe(+2)      16.4 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 1 

 Calcite  0 10 

 

SAVE solution 1 

 

END 

 

SOLUTION 2-6 # Low Fe UCH water Far East. Data from Brown (1999) 

    temp       18.0 

    pH         7.41 

    pe         2.974 

    redox      pe 

    units      mg/l 

    density    1 

    Alkalinity  305 as HCO3 

    Cl(-1)     0.726 

    S(+6)      1.53 
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    Na         8.83 

    K          5.18 

    Ca         65.80 

    Si         29.05 

    F          0.36 

    Mg         13.21 

    S(-2)      0.2 

    N(+5)      0.0015 

    N(+3)      0.0032 

    N(-3)      1.21 as NH4 

    P          0.013 as PO4 

    Fe(+2)     0.01 

    -water     1 # kg 

 

EQUILIBRIUM_PHASES 1 

 Calcite  0 10 

 

SAVE solution 2-6 

 

END 

 

EXCHANGE 2-6 

 X 0.115; -equil 2 # Assume 5% glauconite, 20 meq/100g, aquifer density of 2.7 kg/L, and 20% 

porosity 

 

END 

 

TRANSPORT # Assuming a UCH flow velocity of 0.365 ft/day = 40.6 m/yr = 1.55e9 secs to 

traverse one cell 

 -cells 6; -lengths 2000 # m  

 -time_step 1.55315e9 # v = 40.6 m/yr (25.23 miles/ka) 

 -flow_direction forward; -shifts 6 

 -dispersivities 800; -punch_frequency 100 

 

END 

 

TRANSPORT 

 -cells 6; 

 -time_step 0 # v = 40.6 m/yr (25.23 miles/ka) 

 -flow_direction forward; -shifts 1 

 -dispersivities 0; 

 

SELECTED_OUTPUT 1 

    -file                 C:\Users\Mark Akland\Desktop\modeling.xls 

    -reset                false 

    -solution           true 
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    -step                 false 

    -pH                   true 

    -Alkalinity      true 

    -pe                    true 

    -reaction           false 

    -distance           true 

    -time                 true 

    -totals               Fe  Fe(2)  Fe(3) Ca Si K P Na Mg S(-2) 

    -saturation_indices   Hematite Goethite_2 Lepidocrocite Fe(OH)3 Pyrite Siderite   

 

USER_PUNCH 

 -head cell time/yr dist/kilometers Na K Mg Ca Fe S(-2) Alk pH 

10 punch cell_no, total_time / (3600 * 24 * 365) 

20 n = 0 

30 punch (cell_no - n) * 2.0 - 1.0 

40 punch tot("Na")*22990, tot("K")*39098, tot("Mg")*24305, tot("Ca")*40078, 

tot("Fe")*55845, tot("S(-2)")*32066, Alk*61018, -la("H+") 

 

USER_GRAPH 

 -heading dist Na K Mg Ca*0.125 Fe Alk/10 pH 

 -chart_title "Reactive Transport Model" 

 -initial_solutions true 

 -plot_concentration_vs x 

 -axis_titles "Distance / m" "mg/L" 

-axis_scale x_axis 0 12000 2000 

 -start 

 10 graph_x dist 

 20 graph_y tot("Na")*22990, tot("K")*39098, tot("Mg")*24305, tot("Ca")*5009.75, 

tot("Fe")*55845, Alk*6101.8 

 50 graph_sy -la("H+") 

END 

 



 

 

 

 


