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Users activities produce an enormous amount of data when using popular devices such as

smartphones. These data can be used to develop behavioral models in several areas including

fraud detection, finance, recommendation systems, and marketing. However, enabling fast

analysis of such a large volume of data using traditional data analytics may not be applicable.

In-memory analytics is a new technology for faster querying and processing of data stored in

computers memory (RAM) rather than disk storage. This research reports on the feasibility

of user behavior analytics based on their activities in applications with a large number of

users using in-memory processing. We present a new instantaneous behavioral model to

examine users activities and actions rather than results of their activities in order to analyze

and predict their behaviors. For the purpose of this research, we designed a software to

simulate user activity data such as users swipes and taps, and studied the performance and

scalability of this architecture for a large number of the users.
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CHAPTER 1: INTRODUCTION

Big data analytics has become significantly more important for both academic and profes-

sional communities over the past two decades and has had a great impact on different areas

such as the Internet of Things (IoT), retail, healthcare, social networking, and finance [1].

This impact creates an opportunity to invest in devices such as smartphones, which are

providing a continuous connection to the Internet, along with various interaction methods

with their users [2].

Smartphone users continuously produce data directly and indirectly while using their

phone. According to a study regarding interaction time [3], which is total accumulated time

of phone usage during the day, 90% of the users had a range of 20-100 minutes of interaction

time per day. On the other hand, Statista [4] reports that the number of smartphones in the

world is expected to grow into 2.5 billion in 2019, an increase of 1 billion over the number of

smartphones in 2015. Furthermore, according to Statista by 2018, 36 percent of the world’s

population is projected to use smartphones.

The increasing number of smartphones along with long interaction times of their users

makes them an ideal candidate to be a source of data for applications in the domain of big

data analytics. The common point about most of the data sets and studies regarding human

interactions with smartphones [3] is that the focus of analysis is the result of user activities

such as app usage details and battery usage, which has a slower rate of production compared

to activities themselves. Analysis of activities which have a greater rate of production, such

as a user’s taps and swipes, require a superior architecture which can process the large
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amounts of data coming in simultaneously from numerous sources. This architecture has

to be capable of analyzing these streams of data flowing from smartphones into the data

analytics component.

We utilize Apache Kafka as our distributed stream processing engine, it allows for the

ingestion of stream/IoT data to be robust and scalable, which is important for a system

that may be collecting data from millions of devices at a time. Agarwal and Prasad [5]

demonstrate that stream processing is particularly useful in the implementation of real-time

application usage analytics. Our research expands on this by processing less-structured idata

within the domain of mobile devices.

Thesis presents a new real-time behavioral model to examine users’ activities and actions

rather than results of their activities to analyze their behaviors. Prediction of users’ de-

mographic information is part of user profiling which is an important subject in the area of

personalization. The importance of user profiling arises from the fact that users are reluctant

to give their demographic information away.

This scalable architecture utilizes Hadoop framework including Kafka and Spark applica-

tions which is a popular platform for distributed computing, to enable analysis of high volume

streams coming from a large number of smartphones. We have studied the challenges and

performance issues of this architecture under a variety of circumstances, and implemented

performance optimization methods that increase the response time of this system.

Contributions of this thesis:

• Demonstrated the opportunities and challenges that large-scale smartphone applica-
tions create, using their sensors and interaction methods.

• The new architecture for analysis of stream/IoT data.

• Performance analysis of proposed user behavior analytics architecture and its scalabil-
ity for a large number of simulated users.



CHAPTER 2: RELATED WORKS

2.1 User Activities in Smartphones

User activities are defined as any data that can be produced by users’ actions directly and

indirectly. These activities are categorized into different types [3]:

• App sequence and usage

• Screen interactions

• Microphone

• Camera

• Sensors

• Wi-Fi and Bluetooth

In the past several years there have been numerous studies researching the challenges

and the opportunities that smartphone data streams creates.

Miguel-Hurtado et al. [6] studied user swipes and tried to predict the gender of the users.

They have reported the accuracy of 78 percent using swipe gesture data from two different

directions.

According to MindMining project by Hoppe et al. [7], building a rich user profile is

feasible using semantic technologies in addition to machine learning techniques. This project

deals with highly heterogeneous Web-based information, which is mainly navigation traces

of users on the web.
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Smartphone sensor data was studied by Aichinger et al. [8] to predict location of crash

spots in road networks. They utilized smartphone GPS and motion sensor data to automat-

ically recognize critical car driving situations and near-misses such as emergency braking,

evasion maneuvers or sudden driving speed changes.

Mirsky et al. [9] developed an automated system to prevent attackers from accessing

private information of users by use of data streams coming from smartphones such as CPU

consumption, accelerometer readings, etc. They have created an algorithm called pcStream

that detects anomaly by use of data streams.

2.2 Data Analytics on Data Streams

Liu et. al. [10] have proposed a distributed video stream processing architecture using

Apache Kafka, Storm, and Hadoop. Their results show that the solution performs well

regarding scalability, fault tolerance, and efficiency.

Integration of Apache Kafka and Spark to process and analyze web usage logs was further

studied by Agarwal et al. [5]. Their proposed framework shows how this technology can be

used to create up=to-date statistical profiles of web usage patterns.

In the application of machine learning algorithms to streaming data study by, Nair et

al. [11] they have used Spark based machine learning model for predicting health status of

users based on the twitter data streams. Their research implies the necessity of big data

architecture such as Hadoop ecosystem for processing of such a large stream of data.

Mestre et al. [12] have implemented an efficient spark-based adaptive windowing for entity

matching. This research has shown that how this problem can be solved and optimized by

use of a distributed computing framework such as Hadoop and Spark.
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2.3 Machine Learning

Machine learning with its automated learning power unleashes big datas power to aid data

scientists to gain knowledge in a variety of applications such as computer vision, speech

processing, natural language understanding, neuroscience, health, and Internet of Things

(IoT). The major challenges of using machine learning in big data are to perform the analysis

in a reasonable time [13].

Machine learning is a type of artificial intelligence that provides computers with the abil-

ity to learn autonomously, using a combination of methodologies developed by the statisti-

cians and computer scientists, to learn relationships from data while also placing emphasis

on efficient computing algorithms. Machine learning is also used in the analysis and diagno-

sis of medical images in radiological medicine, predict the susceptibility of soil liquefaction,

and forecast models of consumer credit risk. The techniques used within these countless ap-

plications of machine learning techniques each fall under one of two categories of supervised

or unsupervised learning [14–17].

In this study, we have examined the performance of the following five machine learning

algorithms.

a) Logistic Regression: Linear regression attempts to fit a line to data that has only two

levels or outcomes, whereas, logistic regression models the chance of an outcome based on

a transformation known as a logit [18]. In this study, we examined Spark’s two optimizers

which are both available for logistic regression algorithm. These optimizers are Stochastic

Gradient Descent (SGD) and Limited Memory Broyden Fletcher Goldfarb Shanno algorithm

(L-BFGS) [19].

The SGD approximates the gradient by accessing a single element within the dataset dur-

ing each iteration. It works best for machine learning algorithms that are large in magnitude

because it does not require loading the entire dataset. It is also inexpensive in regards to
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computations, and the dataset can be processed quickly. Those benefits are key factors that

influence many to use SGD to optimize logistic regression and SVM algorithms [20]. LBFGS

is a quasi-Newton method optimizer that uses prior iterations to estimate the Hessian matrix

of the objective function. These previous iterations have a sequence of gradient vectors that

are used to solve unconstrained nonlinear minimization problems. Logistic regression uti-

lizes LBFGS to optimize its performance among the machine algorithms that we mentioned

previously.

b) Support Vector Machine (SVM): The Support Vector Machine algorithm [20] uses

training examples to create a hyperplane that separates the dataset into classes. The com-

plexity of classes may vary, but the simplest form of the SVM algorithm has only two possible

labels to choose from. To reduce misclassifications, a decision boundary is obtained while

training the SVM algorithm. This decision boundary is known as the optimal separation

hyperplane. The only optimizer available for SVM on Spark is SGD optimizer.

c) Decision Trees: Classification via decision trees begins with a series of questions about

the various features of the dataset. Each question is housed in a node that points to at least

one child node that responds to the question. A hierarchical tree is formed as a result of

these questions and thus, allowing the classification of an item based on how we answer the

questions. A classification occurs once we have reached a leaf node [21].

d) Random Forests: Random forests and boosted trees are other forms of classifiers that

are based on decision trees and yield more precise classifications by its multiple decision

trees. Random forests are one of the methods of tree ensembles where tree predictors are

combined in such a way that each trees prediction depends on the values of a random vector

sampled independently and with the same distribution for all trees in the forest. In the

process of training a random forests predictor model, the root node corresponds to whole

input space and this input space will be partitioned into multiple disjoint partitions. At each

of these nodes, a decision tree model will be trained based on its data partition [22].
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e) Gradient Boosted Trees: One of the common methods for improving the accuracy

of any machine learning algorithm is by boosting it. This method has been introduced by

Sapphire [23] and utilizes a combination of weak classifiers to create a sturdier classification

model. Gradient Boosted Trees classification algorithm allows for first decision tree model

to be trained based on the training dataset, improving the accuracy of the model iteratively

by retraining the model. During each training, tuples will be reweighted so that the model

can decrease its error rate. Boosting does not suffer from overfitting regularly, but because

of its iterative nature takes a longer time to train the model.

2.4 Machine Learning Data

In this study, HIGGS dataset from UCI machine learning repository [24] has been adopted

and produced using Monte Carlo simulations. The first 21 features are kinematic properties

measured by the particle detectors in the accelerator and the last seven features are functions

of the first 21 features; these are high-level features derived by to help discriminate between

the two classes.



CHAPTER 3: BIG DATA INFRASTRUCTURE

3.1 Hardware Components

Big Data analytics require a scalable hardware infrastructure with parallel processing capa-

bility. This system should have enough memory, bandwidth, and throughput to run multiple

tasks simultaneously, and perform parallel processing of advanced analytics algorithms in a

matter of seconds. Since the central concept of Big Data computing is distributed processing,

in this study, we implemented the framework over a cluster of servers. We have arranged a

cluster of 16 servers providing a robust hardware base for big data analytics tasks. Four of

these servers act as administrative nodes, and 12 servers operate as worker nodes. Each of

the 16 servers has two Intel(R) Xeon(R) quad-core CPU 5620 2.40 GHz processors, meaning

there are eight real cores or 16 virtual cores on each server. The servers consist of 16 GB

DDR3 RAM and a 1 TB hard disk. The operating system used is a Linux Ubuntu server

14.04 64-bit distribution. The switch used is Juniper EX4200, which is a high-performance,

low-latency, and provides a one Gigabit Ethernet (GbE) access environment.

3.2 Software Components

To analyze the performance of machine learning algorithms on Spark, we began by building

a Hadoop cluster using YARN as the resource manager. YARN is a platform that provides

consistent operations, security, and data governance tools across Hadoop clusters. We chose

YARN as the resource manager because it outperforms Sparks standalone mode for handling
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clusters. YARN allows for multi-tenancy, dynamic allocation of cluster resources, and data

center expansion [25]. A bash script was created that ran machine learning models on the

HIGGS dataset with data size of 8 gigabytes, 28 attributes, and 11 million instances [24].

To test the performance of the machine learning algorithms, we utilized a maximum of 7

machines with 8 virtual cores and 16 gigabytes of RAM. The amount of data partitions were

also taken into account when analyzing the performance of the machine learning algorithms.

There was a range of 40 to 60 partitions used. The performance time of the machine learning

algorithms was first averaged in regards to the number of machines and then averaged by

the number of cores.

3.2.1 Apache Spark

Spark is a framework for the parallel processing of Big Data. Spark is designed to use

Hadoop MapReduce with some modifications that enable it to perform more efficiently.

Apache Spark has a streaming API and independent processes for continuous micro-batch

processing across intervals with varying, but short time duration. Spark runs up to 100

times faster than Hadoop in certain circumstances. Spark has some features for real-time

analytics and is supportive of applications such as machine learning, stream processing,

and graph computation [26]. MLlib is Spark’s machine learning library, focusing on learning

algorithms and utilities, including classification, regression, clustering, collaborative filtering,

dimensionality reduction, as well as underlying optimization primitives. MLlib is built on

Apache Spark, which is a fast and general engine for large-scale processing that is up to 100x

faster than Hadoop MapReduce or 10x faster compared to disk. It supports Java, Scala, and

Python. Various big data frameworks take advantage of in-memory processing and of those

frameworks the one that is mostly used is Apache Spark, a descendant of Hadoop. Using

its in-memory capabilities Apache Spark executes machine learning algorithms efficiently by

keeping the dataset in RAM and eliminating the repetitious pulling of data from the hard
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disk [27]. For example, the machine learning algorithm known as logistic regression is over

100 times faster when using Spark instead of Hadoop [28].

Spark has caused a surge of interest due to companies desire to utilize real-time analytics,

analysis of streaming IoT data sets, and efficient implementation of iterative algorithms. But

regardless of its benefits, the unfamiliarity of many companies with big data cluster specifica-

tions such as the number of machines, number of cores per machine, and the interoperability

of machines, often results in lower hardware usage efficiency.

Every data analysis ecosystem has two main components which are filesystem and pro-

cessing system. Spark, handles files in the form of Resilient Distributed Datasets (RDD) and

processes them with its in-memory processing engine. In the following sections, we discuss

these components as well as our choice of test data set and algorithms.

3.2.2 In-memory Processing Engine

In-memory processing has been studied since the 1980s, but recently it has gained popularity

due to the availability of ultra-fast memories, each with its massive capacity often offered at

the lower cost [29, 30]. There are several significant differences between processing in main

memory versus processing on hard disks. The most quantifiable difference is the fact that

main memory processes computations notably faster than hard disks [31]. This is because in-

memory processing places the computation near the data as means to reduce data movement

[32]. Despite the volatility and vulnerability of main memory, the processing speed and other

benefits make using in-memory processing worthwhile.

In-memory processing with its increased performance in response time has been proven

beneficial in a range of areas such as fraud detection, risk management, and decision-making,

where machine learning algorithms are used to conduct analytics. Together with real-time

analytics, it provides unmatched productivity and profit gains that explain why companies

such as Facebook, Twitter, and Amazon take advantage of their capabilities [33, 34].
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In-memory processing involves querying data in computers RAM instead of its hard disk.

Being able to interact directly with RAM as opposed to the traditional method of hard disks

I/O operations greatly increases response times and throughput. Acker et al. concluded

that response times were 5 to 19 times better and throughput increased by seven times when

using in-memory processing platforms. It has been reported that in-memory processing is

easier to set up and maintain which is ideal when analyzing large datasets [35], reduction in

memory prices, and higher user satisfaction that enables faster data access that contributes

to faster decision making. [36–38].

3.2.3 Resilient Distributed Datasets

Resilient Distributed Datasets (RDDs) are data structures that partition the dataset into

multiple partitions, and aid with parallel computing by supporting iterative operations on

the Spark. The resilient feature of RDD that logs the transformations used to build a dataset

will capture enough information to re-compute a lost or damaged partition. Furthermore,

RDD gives users control over how the data is partitioned, the storage strategy for each

RDD, and indicate which RDDs will be reused. Due to its parallel computing capabilities,

RDD significantly improves the performance of large dataset computations on an in-memory

computing platform [26].



CHAPTER 4: USER BEHAVIOR ANALYSIS USING SMARTPHONES

4.1 Data Collection

This thesis studies the performance of user behavior analysis model with the designed archi-

tecture. Therefore we must observe and analyze the efficiency of the system under different

circumstances. The response time of the system is one of the important factors, and it should

not fall behind in data processing while analyzing a large number of streams in the short

amount of time.

An experiment has been designed to observe the performance of the system. In this

experiment, A large number of simulated data are streamed into the cluster and then ana-

lyzed to see how many of these streams are being processed in real-time depending on the

complexity of the analysis.

4.2 Data Simulation

The data streams that are entering the cluster are the simulated version of the user behaviors,

where each message is all information that we can gather from smartphone sensors. These

behaviors can be a single swipe or a tap inside an application. For example, in a game that

requires its users to react multiple times in a short amount of time, users will produce a

significant amount of data in a short amount of time. Our data simulation software creates

a large number of activities and sends them to the cluster for data analysis. See Fig. 4.1.

To create valid data for simulation, we have defined some static rules for each field of the
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Figure 4.1: Details of game swipes

data, and then data is being produced using those static rules. On the other hand, since

our online analysis only involves statistical operations and no content-based analysis like

machine learning algorithms, the only thing that would matter is the length of the streams

and their quantity. Table 4.1 and 4.2 showing the characteristics of the each field of the data

that simulator is sending to the cluster.

Table 4.1: Information gained based on swipe location

Total length (px) Maxima speed (px/ms)
Total time (ms) Average speed (px/ms)

Width (px) Maxima acceleration (px/ms2)
Height (px) Average acceleration (px/ms2)
Area (px2) Average arc distance (px)

Average thickness (px) Max arc distance (px)
Average pressure Angle start to end (degrees)

4.3 System Architecture and Topology

The smartphones initially connect to a name server, which will forward the IP address of a

game server to which they connect. The game server runs a Kafka ”producer” application,

which will directly take the received data and forward it to the Kafka cluster. The cluster

processes the streaming data then organizes it into topics and replicates it for easy consump-

tion. Kafka also sends the processed data to a database for short-term storage in the HDFS
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Table 4.2: Information gained based on accelerometer

Starting acceleration (x) Ending acceleration (x)
Starting speed (x) Ending speed (x)

Starting location (x) Ending location (x)
Starting acceleration (y) Ending acceleration (y)

Starting speed (y) Ending speed (y)
Starting location (y) Ending location (y)

Starting acceleration (z) Ending acceleration (z)
Starting speed (z) Ending speed (z)

Starting location (z) Ending location (z)

this action will prevent data loss in case of any unexpected failures. The spark cluster is

running a Kafka ”consumer” application and will receive data in micro-batches for statistical

analysis. It processes the data and adjusts its model accordingly. We also use Apache Flume

to store data in the HDFS directly from Kafka, for offline data analytics. HDFS acts as our

data persistence layer and runs as a cluster. See Fig. 4.2.

Figure 4.2: Details of system topology

Apache Kafka is a distributed message log framework, and its loose coupling of data

producers and data consumers allows for the scalability and fault tolerance which we desired

for this research. Our game servers connect to the Kafka cluster whenever they need to send
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data, and our Spark Streaming Contexts (SSC) connect to our Kafka cluster to continuously

consume the data for updating the predictive model. These topics are replicated across

multiple brokers for fault-tolerance, and one broker is designated the ”leader” for a topic.

Additionally, each of the consumers has an index which is kept track of by the brokers. The

coordination of the brokers is achieved through Apache Zookeeper. We only have one topic

to which the SSC subscribe, but each data point contains multiple parameters to be used in

the analytics. See Fig. 4.3.

Figure 4.3: Details of Kafka cluster architecture

4.4 Data Analysis

The problem that we want to solve is a classification problem where we want to predict the

gender of the users, and the architecture will perform this task as shown in Fig. 4.4 using

two different types of machine learning algorithms. Our model has a combination of online

and offline machine learning algorithms, which helps with building more complicated models

with better throughput for real-time analysis.
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Figure 4.4: Details of the data analytics



CHAPTER 5: EVALUATION AND RESULTS

5.1 Experimental Condition

For the purpose of evaluation of we setup five servers to send simulated user activity data,

these servers will send data and results based on the number of the users and the number

of the extracted features. On the receiving side, the data will be captured by a distributed

message passing system. Finally, the captured data will be stored in HDFS for offline

learning, and also it will be forwarded to our real-time data analysis system for online

learning

For the purpose of offline learning, an experiment was set up to investigate the perfor-

mance of the machine learning algorithms with 128 different configurations, the number of

servers 3 through 10, and the number of virtual cores 1 through 16 with data chunk size of 64

megabytes. The minimum number of servers needed to perform machine learning algorithms

were selected to conform with the replication factor of 3 that refers to the storing of data on

different machines.

5.2 Analysis of Data Ingestion Component

In this section, we are presenting the benchmark for Apache Kafka which is our chosen

distributed message passing system. Apache Kafka groups messages based on the topic,

these topics lets data producers and consumers communicate synchronously. Apache Kafka

distributes messages in each topic into multiple partitions and lets each of the Kafka brokers



18

to lead one of the partitions, so messages spread through the Kafka cluster. Fig. 5.1

illustrates the schematic of this distribution.

Figure 5.1: The distribution of messages among Kafka brokers

The Kafka cluster consists of 5 Kafka brokers as shown in Fig. 5.2 where we have analyzed

the load of the network based on the number of the partitions, the number of the messages

passed to the Kafka cluster and also the number of the features captured. The format of

the captured data will be in Comma Separated Values (CSV). The number of the features

depends on which sensors we are trying to capture data from, where it can vary from 20-200

features.

Figure 5.2: The distribution of messages among Kafka brokers
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Kafka producers use Round Robin algorithm to distribute messages among Kafka brokers,

and our observations indicate that this distribution is unequal among brokers most of the

time regardless of configuration parameters. The message distribution of this system has

been presented in the Figs. 5.3, 5.4, and 5.5. The unequal message distribution can result in

the waste of resources, and limits the message receiving capacity of this system and requires

significant improvement.

Figure 5.3: The distribution of messages among Kafka brokers with 30k messages per second
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Figure 5.4: The distribution of messages among Kafka brokers with 60k messages per second

Figure 5.5: The distribution of messages among Kafka brokers with 90k messages per second

As stated before the messages will be received with public interface of the Kafka cluster,

and it needs to be replicated before being passed to consumers. The reason for replication is

to make system fault-tolerant. Replicating the message on few brokers will make our system
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immune to failed broker nodes. Although replication makes the system resistant to failures,

it also puts a heavy load of network traffic on the intra-network of the Kafka brokers. In

Fig. 5.6 and 5.7 the total network load of these brokers with different replication factors has

been presented.

Figure 5.6: The replication of messages among Kafka brokers with replication factor of 2

Figure 5.7: The replication of messages among Kafka brokers with replication factor of 3
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5.3 Online Analysis of Data Streams

After the ingestion of data into the cluster, the next step is moving data into processing unit

(Apache Spark) for performing the actual analysis. Worker nodes will do this step of the

data analysis. Apache Spark allows its users to specify how many streams should be ingested

into worker nodes simultaneously as well as how many threads should work on ingestion of

these streams. Increasing the number of ingested streams will make more data available for

worker nodes for the final step of the program which is data processing. On the other hand,

if we overwhelm the processing unit with the excessive amount of data, this would result in

lower performance since worker nodes will not be able to process ingested data on time.

As mentioned earlier, the final step is data processing of data streams. In this section, we

are presenting the report of the performance analysis of our system under different analysis

scenarios. For the purpose of performance analysis of the online analytic component of the

system, we have designed several data analysis pipelines, and we are observing how many

streams can we process in real-time in each step of the process.

The important parameters that should be noted while doing data processing are the

number of data partitions which specifies the level of parallelism in data processing as well

as the number of virtual cores assigned to a worker node. Data partitioning allows worker

node threads to do the processing simultaneously, but increasing this number can also result

in overheads that can decrease the performance of the processing task, so it is essential to

choose a correct number of partitions for every data analysis task.

To summarize the relevant parameters affecting the performance of online data analysis,

we should determine the number of data streams and also the number of threads assigned

to this task. Also the number of virtual cores assigned to worker nodes and the number of

partitions that the data is divided into are important.

This research reports the performance of real-time data processing on simulated user be-
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havior data streams on our Hadoop cluster, and how changing above-mentioned parameters

can affect the number of data streams that can be processed in real time. For example, Fig.

5.8 shows how many messages can be read and counted by cluster in 200 seconds. As shown,

number of the streams in each worker node is an important factor and by increasing this

number we can achieve higher data input in our cluster.

Figure 5.8: Number of the messages that cluster processes with different number of data
streams in each worker node in 200 seconds

5.4 Offline Analysis of Stored Data

In the process of training the classification models, we observed that the split rate of selected

data for training data set does not affect the training time of the machine learning algorithms.

This means that the only parameters affecting the training time of classification models for

particular dataset and infrastructure are software settings and the resources that are being

used. We have discovered that the analysis won’t complete if we don’t provide enough

RAM for the execution, and on the other hand adding excessive RAM will not increase the

performance.
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In this experiment, we trained the logistic regression model with two LBFGS and SGD

optimizers, with over 100 different configurations. The average training time of SGD was

207 seconds and an average time of LBFGS was 106 seconds, as shown in Fig. 5.9, so we

can conclude that logistic regression model can be trained 49 percent faster using LBFGS

optimizer compared to SGD while being trained with similar cluster configurations.

Figure 5.9: Comparison of average training time for logistic regression using SGD and LBFGS

We observed that an increase in the performance of machine learning algorithms as the

number of servers increased which is an expected result. It is noteworthy to state, however,

that adding additional servers will increase the performance, but decaying performance with

a higher number of servers and adding these additional servers may outweigh the performance

benefit. The results of this experiment are presented in Fig. 5.10.
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Figure 5.10: Time comparison of classification algorithms on different number of servers

We observed that having more than one virtual core makes a significant difference in

the training time and having 2 through 8 virtual cores performs equally well. Furthermore,

increasing number of virtual cores used on each server to more than 8 degrades the perfor-

mance of machine learning algorithm. We conclude that independent of selected algorithm

the efficient number of virtual cores is between 2 and 8. In the next step, we compared

training time based on the number of servers.
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Figure 5.11: Comparison of average training time of classification algorithms per number of
virtual cores on each server

As shown in Fig. 5.11, the relationship between the number of cores and the performance

of the machine learning algorithms did not follow a similar pattern to that of the number

of machines and performance. This interesting issue raises concerns regarding Spark and

YARNs ability to manage resources in training of machine learning algorithms.

We further analyzed results using tree ensembles and as was expected random forests

capability to adapt with parallel processing; will allow training higher number of subtrees

for training predictor model. Fig. 5.12 shows the average training time for this algorithm

using 5, 25 and 50 subtrees.
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Figure 5.12: Training time comparison of decision tree and random forests with 5, 25, 50
sub trees

We Tested Gradient Boosted Trees with a different number of iterations and as expected

the increasing number of iterations significantly increased its training time. Because of the

iterative nature of this algorithm, parallelism and cluster computing only marginally helps

with its boosting. Fig. 5.13 shows that the training time of gradient boosted tree with even

few iterations increases rapidly.
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Figure 5.13: Training time Comparison of decision tree and gradient boosted trees with 3
and 6 iterations



CHAPTER 6: CONCLUSION AND FUTURE WORKS

In this thesis we purpose an architecture to analyze the large streams of data streaming from

smartphones. Furthermore, we studied the opportunities that this type of data can create.

Our architecture is completely scalable and can process the data streams in real-time. We

have presented the optimal server and core configurations needed to best perform machine

learning models using Apache Spark on a specific dataset. These optimal configurations will

not only save time, but will also reduce cost of infrastructure. The performance of these

machine learning algorithms were analyzed in regards to time in seconds. Factors such as

number of cores, number of machines, and number of partitions were taken into consideration

when analyzing the performance of the machine learning algorithms. It was discovered that

as the number of servers increased, the performance increased as well, but performance

however decreased, as the number of cores increased. These results infer that more servers

and fewer cores are needed for optimal performance of machine learning algorithms. From

a business perspective, it is best to use the number of machines that makes a significant

impact on performance rather than a meager impact as means to save money. This justifies

why we chose a number of servers that was less than the maximum amount of machines

that were available. Our methodology aimed to maximize benefits and resources while

minimizing expenditures. For future works, researchers can implement out architecture on

other distributed processing systems to analyze the accuracy of the results.
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