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Poxviruses are double-stranded DNA viruses capable of causing disfiguring and deadly 

disease in a wide range of hosts, from insects to mammals. Orthopoxviruses (OPXV) encode many 

proteins that are not essential for viral replication, but are responsible for vast differences in 

pathogenesis. Of the >200 proteins in the prototypical OPXV vaccinia virus (VACV), many remain 

functionally cryptic. The objective of these studies was to understand how the VACV O1 protein 

functions by investigating cell-specific effects that may contribute to virulence. 

The O1L gene is expressed early as the O1 protein, a 78 kDa protein that lacked N-linked 

glycosylation. These data are the first to demonstrate the reduced ability of an O1 deletion mutant 

(∆O1) to induce cell migration compared to the parental VACV Western Reserve strain (VACV-

WR). ∆O1-infected cell monolayers also exhibited reduced plaque diameter and clearance in 

plaque foci. These observations indicated that O1 is a significant contributor to VACV cytopathic 

effects (CPE) in vitro, in agreement with published reports. The results reported herein are the first 

to describe an altered immunological response with ∆O1, as levels of anti-VACV immunoglobulin 

significantly increased with ∆O1 infection at a time point (seven days post-infection) when VACV-

WR induced VACV-specific antibody levels were comparable to sera from mock-infected mice. 

∆O1 was more immunogenic in an ex vivo antigen presentation assay, although mitogen-induced 

CD4
+
 T cell activation during ∆O1 infection was equivalent to VACV-WR infection. Surprisingly, 



of all the immune cell types tested, ∆O1 significantly differed from VACV-WR infection in the 

metabolic readout of only one cell type – RAW 264.7 macrophages. VACV-WR infected RAW 

264.7 macrophages were more metabolically active than ∆O1-infected cells at higher infectious 

doses, which may be indicative of a specialized niche for O1 function. Taken together, these data 

may provide clues into the mechanism of O1 virulence.   
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Chapter 1: Introduction and Literature Review 

1.1 Research Overview 

 The overall purpose of the studies described in this thesis was to better understand how 

poxviruses cause disease in mammals. Poxviruses encode many proteins that promote virulence 

by manipulating the host immune system. The vaccinia virus O1 protein was hypothesized to be 

among a class of novel pox-specific immunoregulators; experiments performed to test this 

hypothesis are described herein. Identifying poxvirus proteins that manipulate the host immune 

response and determining their functional mechanisms provides knowledge of biological 

processes inherent to both poxviral pathogenesis and host immunity. Further appreciation of the 

poxviral-host systemic interactions generates new opportunities for a wide range of therapeutic 

interventions. 

1.2 Poxvirus biology  

1.2.1 Poxvirus classification  

Poxviridae are large, enveloped, double-stranded DNA viruses with linear genomes that 

can encode over 200 proteins. Poxviruses are classified into two subfamilies: Chordopoxvirinae 

(poxviruses that infect vertebrates) and Entemopoxvirinae (poxviruses that infect insects). 

Chordopoxvirinae are divided among nine genera, including four genera that infect humans – 

orthopoxvirus (OPXV), parapoxvirus, yatapoxvirus, and molluscipoxvirus (MCV). MCV and the 

OPXV variola virus (VARV: the causative agent of smallpox) are strictly human pathogens; the 

remaining viruses cause zoonoses. While MCV infections are currently more widespread (1), it 

is the OPXV [e.g. VARV, monkeypox virus (MPXV), and vaccinia virus (VACV)] infections 

that are among the most pathogenic for humans. 
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1.2.2 Vaccinia virus  

As the prototype OPXV, VACV is a valuable tool for investigating the biology of 

poxviruses and their mechanisms of pathogenicity. Structurally, VACV is composed of a 

dumbbell-shaped core flanked by two lateral bodies (Figure 1 A). The VACV core is enveloped 

by one or more lipid bilayers, resulting in two forms of infectious VACV. The most abundant 

form is the mature virus (MV), which has a single lipid bilayer studded with non-glycosylated 

viral proteins (2). The other infectious form is the enveloped virus (EV), which consists of MV 

particles with an additional viral membrane containing an alternate set of glycosylated viral and 

host proteins (3).  

The linear VACV genome is covalently closed by hairpin loops at both ends, and 

inverted terminal repeats flank the open reading frames (ORF) (4). There is an overall genomic 

organization to the > 200 ORFs encoded by VACV (Figure 1 B), wherein the most highly 

conserved poxviral genes (encoding replication machinery and structural proteins) are located in 

the central part of the genome [49 are common to all sequenced Poxviridae (5, 6)]. In contrast, 

genes with greater genetic variation tend to be located in the flanking ends of the genome and 

encode for a large proportion of virulence and immunomodulatory accessory genes. These genes 

are not essential for replication in tissue culture and can vary widely among viral strains and 

species (7). Pox genes can also be classified as early, intermediate, or late genes based upon their 

expression kinetics following infection, and recently a new class of genes – intermediate early – 

has also been proposed. [Figure 1C (8)]. Genes are classically named by their location on a 

HindIII restriction digest map (9). The HindIII digest of VACV (Copenhagen strain) has 15 

fragments (designated A-O in order of decreasing fragment size), with each ORF within a 
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fragment named using sequential numbers and relative orientation (10). Thus, the O1L gene is 

the first ORF in the HindIII “O” fragment, and the ORF reads to the left (L).  

1.2.3 Replication, morphogenesis, and dissemination 

The VACV infectious cycle (Figure 2) can be divided into seven phases (discussed as 

numbered): (1) entry, (2) uncoating, (3) DNA replication, (4) gene expression, (5) 

morphogenesis, (6) egress, and (7) spread. 1) VACV entry into a host cell is complex and can 

occur via multiple routes.  A single entry receptor for VACV has not been identified; the virus 

associates with various surface proteins prior to entry, including glycosaminoglycans (GAGs) 

and laminins (11). Entry into the cell is cell type and host dependent (12–14), and MV particles 

have been observed entering through macropinocytosis, endocytosis, apoptotic mimicry (12), 

and membrane fusion (15). Unlike most viruses, which may enter cells via a single protein-

receptor interaction, VACV has highly complex entry/fusion machinery, with at least 12 separate 

viral proteins forming a complex to facilitate fusion independently of binding (15). Since the 

entry/fusion machinery of VACV is only on the MV membrane (16), the EV outer envelope 

must dissociate before EV entry can occur (17).  

2) Upon entering the host cell, viral membranes are shed and the naked viral core is 

released into the cytoplasm. Microtubule machinery is hijacked by viral proteins to traffic the 

viral core further into the cell. Early mRNAs are transcribed within the cytoplasm, leading to 

uncoating of core and 3) subsequent DNA replication.  Unlike nearly all other DNA viruses, 

VACV encodes and packages its own enzymatic replication machinery, allowing for replication 

in a distinct cellular environment within the cytoplasm called the viral factory (2).  

4) VACV gene expression is temporally separated into three classes: early, intermediate, 

and late. Prior to viral DNA replication, early genes are expressed to produce proteins necessary 
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for DNA replication, as well as proteins that combat the host immune response (18). VACV 

DNA initiates replication by self-priming in the inverted terminal repeats through a mechanism 

that is still incompletely understood. The resultant DNA concatamers are cleaved by a viral 

resolvase enzyme into single-genome units (19). Subsequently, intermediate genes are expressed, 

resulting in a small number of intermediate genes, several of which are transcription factors for 

late gene expression. The late genes generally encode structural proteins needed for viral 

morphogenesis and the transcription machinery that must be packaged into nascent virions.   

5) During morphogenesis, MV particles are produced and processed within viral 

factories. A small proportion of MVs can be further transported through early endosomes and the 

trans-Golgi network, where the MV particles gain two additional membranes to form 

intracellular enveloped viruses (IEVs) (3). Again, VACV uses microtubules to transport itself 

within the cell, with IEVs being transported to the cell surface. 6) For the majority of virions, 

morphogenesis ends when MVs escape from the cell via cell lysis. However, in the case of IEVs, 

the outermost membrane fuses with the plasma membrane to expose an EV particle, termed cell 

associated EV (CEV) (3). Actin tail polymerization beneath the CEV is used to drive the virus 

into adjacent cells, or the virus is released as an EV. 7) EV particles are important for spread 

within the host, (20) and it is thought that the EV membrane functions to evade the host immune 

system, as it sequesters neutralizing antibody. Finally, cell-to-cell spread of VACV in tissue 

culture can occur in several ways. In cell culture, released EV can either infect adjacent cells or 

spread in a convection mediated, unidirectional manner to distal cells (21), forming the 

characteristic comet-shaped monolayer holes, with comet tails that are formed by secondary 

plaques. 
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Figure 1. VACV structural and genomic organization 

(A) VACV virion structure: Transmission electron micrograph of the double membrane-

wrapped mature VACV virion (left); a cartoon depicts the virion structural components (right). 

Figure from (22) with permission from the publisher (Appendix B). (B) VACV genomic 

organization: The linear dsDNA VACV genome is ~200 kbp and flanked by terminal loops 

with inverted tandem repeats (ITR). Centrally located genes, generally essential for viral 

replication and morphogenesis, are more conserved, whereas termini-encoded ORFs are 

genetically variable and encode virulence factors. Adapted from (23) with permission from the 

publisher (Appendix B).  (C) Expression kinetics of VACV genome: Genes are classified 

according to when they are expressed upon infection. Colored boxes represent genomic islands 

with similar gene expression profiles.  Figure reproduced from (8) with permission from the 

publisher (Appendix B).  

Figure 1 A 

B 

C 
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Figure 2 

 
Figure 2. VACV morphogenesis. 

(1) VACV virions attach to cells through varied mechanisms, and enter cells by membrane 

fusion. (2) Virus trafficking into cytoplasm is followed by virion uncoating and early gene 

transcription.  (3) DNA replication occurs within cytoplasmic viral factories, with subsequent 

intermediate and late gene expression. (4) Immature virions (IV) are packaged into intracellular 

mature virions (IMV), which are either released upon cell lysis, or (5) traffic through Golgi to 

form intracellular enveloped virus (IEV). (6) IEV are transported by microtubules to the cell 

membrane, where (7) cell associated virions (CEV) egress further via polymerized actin 

protrusions (green), releasing the extracellular enveloped virus (EEV).  
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1.3 Smallpox, vaccination, and emerging poxviruses 

1.3.1 A brief history of vaccination 

 The deliberate inoculation of smallpox (i.e. variolation) is thought to have been initiated 

by a Buddhist nun around 1000 AD. The practice of variolation spread from China to India and 

Turkey, but it was only in the late 1700s that this practice was implemented by European 

physicians. Several methods of variolation have been described, including the inhalation of 

powdered scabs or inoculation of pus into the skin. Lifelong immunity to smallpox was worth the 

slight chance of contracting smallpox (around 1%) from variolation. In 1796, Edward Jenner 

demonstrated that inoculation with infectious cowpox specimens also protected against 

smallpox. This form of inoculation, termed “vaccination,” (from the Latin vacca, for cow) 

appeared to be safer than variolation. While complications from the cross-protective vaccination 

method were far less than those of variolation, the protective effects lasted only 5-10 years. Later 

vaccination regimens indicated a regional preferences for either horsepox (France) or cowpox 

(England) specimens (24); ultimately, it was discovered that the Jenner vaccine was replaced by 

inoculation with the live VACV (25, 26). In 1939, the smallpox vaccines being used at the time 

were recognized not as CPXV, as originally thought, but a distinct OPXV species that was later 

designated VACV (27). VACV is a virological enigma, as it is the only vaccine to have been 

used to eradicate a disease, while its origin and natural host remain unknown. 

Although protective against OPXV, VACV can also be highly virulent in 

immunocompromised individuals, pregnant women, and individuals with inflammatory skin 

conditions like eczema, among others. If vaccinated with the currently stockpiled VACV 

vaccine, many individuals would have adverse and possibly fatal reactions, including: 

encephalitis, progressive vaccinia (uncontrolled spread of virus from vaccination site), eczema 
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vaccinatum (vaccinia lesions covering eczema prone regions) and generalized vaccinia (vaccinia 

lesions covering the body) (28, 29). VACV virulence makes its use contraindicated in up to 25% 

of the population (30–33), so vaccination is limited to military, first responders, and laboratory 

personnel. Research is ongoing to develop a more effective, safer VACV vaccine. 

1.3.2 The pathogenesis and eradication of smallpox  

Smallpox is one of the worst pandemics to decimate humanity, with an average fatality 

rate of ~30%. Indeed, in the 20
th

 century alone, smallpox deaths are estimated to have been ~500 

million (34). VARV infection begins when as few as 10 plaque-forming units (PFU) are 

absorbed into the respiratory or alimentary tracts (28, 35). VARV spreads from the initial site of 

infection to proximal draining lymph nodes. Over a 4 – 17 day latent period, VARV multiplies 

within the lymphatic phagocytic cells, primarily macrophages and monocytes. Following the 

conclusion of the latent period, VARV spreads from the lymph nodes into oropharyngeal mucous 

membranes and dermal capillaries. This brief viremia results in a prodrome stage, where 

symptoms include fever, malaise, and occasional vomiting. A rash appears 2 – 4 days after the 

prodromal symptoms, leading to the lesion formation in the mouth and subsequent centrifugal 

diffusion to the face, arms, and legs. The emerging lesions become pus filled and assume the 

distinctive “pock” mark: an opaque papule with a depressed center that eventually will burst, 

forming scab-covered lesions. Individuals are infectious from the onset of the rash until all scabs 

have fallen off and lesions heal. Approximately 30% of individuals exposed to VARV developed 

smallpox, with 5 – 40% succumbing to the disease (29). The major and minor strains of VARV 

accounted for the wide variance in morbidity, with the VARV major strain exhibiting more 

extensive morbidity and mortality rates from 10-40%. VARV minor strain mortality rates were 

usually <1% despite almost identical clinical presentation to the VARV major strain.  
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Historically, smallpox infections have been described as early as the 4
th

 century AD in 

China and in the 7
th

 century AD in India.  Due to the World Health Organization (WHO) mass 

vaccination campaign, the last natural incidence of smallpox occurred in 1977, followed by a 

laboratory incident shortly thereafter. The WHO declared smallpox successfully eradicated from 

nature in 1980 (36). Currently, VARV only officially exists in two laboratories in the United 

States and in Russia; however, the US government and many scientists still consider smallpox a 

threat, due to its potential use as a biowarfare agent. Indeed, VARV use as a bioweapon would 

be more effective than B. anthracis (anthrax) due to the efficient anthroponotic (human-human) 

transmission via an aerosol route, a largely susceptible (unvaccinated) population, and a high 

fatality rate.  

1.3.3 Studying an eradicated virus  

Several poxviruses currently present a credible threat to human health. MCV infections 

are common in young children, and recently MCV has also become a common sexually 

transmitted infection worldwide (1). The emergence of MPXV has dramatically increased in 

Africa, with one outbreak spreading to the USA in 2003 (37, 38). Although MCV infections are 

more prevalent, MPXV is currently the most significant threat to public health by a member of 

the Orthopoxvirus genus (39), because it is a viral zoonotic disease with an unverified reservoir 

(likely African rodents), has an indistinguishable clinical presentation to VARV infection, and a 

high case-fatality rate (37). Additionally, cowpox transmitted by rats recently caused an outbreak 

in a primate facility, killing 40% of animals, underscoring how dangerous zoonotic pox can be 

(40–42). Other pox zoonoses [buffalopox (43), tanapox (44), Cantagalo (45)] are also emerging, 

and it is thought by some to be occurring due to the decline in smallpox vaccinations (25, 38, 46, 

47).  Current literature on the phylogenetic relationships, ecology, and host range of OPXV 
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suggests that a VARV-like virus could emerge in the course of the natural adaptation of modern 

zoonotic OPXV, so continuing pox research is necessary.  

Poxviruses can also be used to treat diseases, as there are numerous biological properties 

that make them ideal for use as a vaccine vector (48–51).  Although there are still a number of 

poxvirus proteins of unknown function, there are a large number of well characterized poxvirus 

vectors that are in use or are being developed. These pox vectors are stable in both the physical 

particle and the genome, so they are suitable for accommodating large insertions of DNA for 

recombinant vaccines. Poxvirus vectors are also immunogenic (i.e. induce B cell and T cell 

responses), and are relatively easy to produce. Poxviruses are currently used as, or are being 

developed into, vaccines to treat malaria (52), rabies (48, 53), severe acute respiratory syndrome 

coronavirus (SARS-CoV) (34), Middle Eastern respiratory syndrome coronavirus (MERS-CoV) 

(54, 55), flu (52, 56), human immunodeficiency virus (HIV) (50, 57, 58), as well as cancer (59–

62). A more thorough characterization of the pox virulence proteins and host immune responses 

that promote adverse and fatal reactions to VACV vaccination could enhance development of 

VACV into more effective vectors and oncolytic agents.  
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Figure 3. History of smallpox vaccination and pathogenesis 
Figure 3 A depicts the timeline of human smallpox infections and highlights the history of 
VACV vaccination.  Reproduced from (23), with permission (see Appendix B). Figure 3 B) 
Smallpox morbidity (characteristic rash) and mortality rate (X) differ with inoculation route 
(respiratory, nasal, and dermal) and the ability of a host to control viral replication (lymphatic) 
and spread (viremia). Sourced from (63), with permission (Appendix B).  
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1.4 Viral manipulation of the mammalian immune system 

1.4.1 Poxvirus-encoded mammalian homologs  

Mammalian hosts have developed complex defense mechanisms to control and clear 

virus infection, and protect against subsequent infections (Figure 4). Within the host 

environment, poxviruses are under selective pressure to evade the immune response and actively 

manipulate the host immune system in order to survive and replicate. Many poxviral genes that 

encode immunomodulatory proteins have an origin in the host genome (18, 64–66), having been 

acquired as necessary defenses from their host environments over time. These genes were 

identified through their homology to host proteins; however, poxviruses have also developed 

unique mechanisms for suppressing host immunity (18). Poxviral immunomodulatory proteins 

facilitate infection by preventing, evading, and diminishing host immune responses. A number of 

strategies are employed (Figure 5), including secreting decoy cytokine or chemokine receptors 

(66, 67), regulating apoptosis (68–72), and preventing complement-mediated lysis (73, 74). 

These effective immune evasion strategies also contribute to viral host specificity (18, 68). The 

majority of immunomodulatory genes are expressed early during infection to provide the virus 

with a substantial defense against the host immune system (reviewed in 19). With few 

exceptions, the removal of one or more of these immunomodulatory genes from VACV results in 

a mutant virus that causes attenuated disease in animals (44, 51). 

1.4.2 Poxviral modulators of antibody production 

Both the innate (75–78) and the adaptive (18, 79–81) immune responses are critical for 

controlling primary poxvirus infection (Figure 4) (18, 64, 69, 78). Furthermore, the successful 

use of poxvirus vaccines highlights the critical role of the adaptive immune response in 

controlling subsequent pox exposure events. The production of antibody by B cells is essential 
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for survival during primary pox infection, as it is one of the principal means of clearing 

poxviruses and inhibiting viral replication (80–82). The humoral response is the longest lasting, 

most effective means of preventing a secondary poxvirus infection (81). Thus, VACV may 

employ several direct approaches that reduce antibody production, including infecting B cells 

(82–84), manipulating intracellular signal transduction (85–91), and inhibiting regulatory 

cytokine production (77, 78, 85, 88, 92).  

CD4
+
 T cells also play a critical role during acute poxvirus infection by stimulating 

cytolytic T cells to clear virus (76, 82, 93) and helping B cells produce virus neutralizing 

antibody (76, 80, 94). Furthermore, CD4
+
 T cell help is necessary for B cell affinity maturation 

to produce high-affinity antibodies (25, 93). When CD4
+
 T cells are ablated during a poxvirus  

infection, there is a marked reduction in memory B cells, and a subsequent reduction in virus-

specific IgG and neutralizing antibody titers (76, 93, 95). However, it is not well understood 

whether VACV can act directly within CD4
+
 T cells to reduce their ability to help B cells 

generate high antibody titers during VACV infection. Suppressing the humoral immune response 

would be advantageous for virus survival, so identifying and understanding any contributing 

virulence factors is important. 

1.4.3 Inhibiting antigen presentation 

Poxviruses encode immunosuppressive proteins that are able to suppress T cell activation 

(77, 96), major histocompatibility complex I and II (MHC I and MHC II) molecules (97, 98) and 

anti-viral cytokines (IFN, TNF)(18) produced by CD4
+
 T cells in the early stages of natural pox 

infection. Prior studies have employed antigen presentation assays to understand basic biological 

interactions of the host immune responses in the context of viral pathogenesis during VACV 

infection (84, 97–99). Antigen presentation can be studied using splenocytes, which contain T 
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cells and a variety of antigen presentation cells (APCs: macrophages, dendritic cells, B cells). T 

cells become activated when the T cell receptor (TCR) recognizes its cognate antigen by 

interacting with MHC II on the surface of APCs. The activation state of T cells can be further 

modulated by APC co-stimulatory molecules. When T cells are activated they produce various 

lymphokines, including interleukin-2 (IL-2). Since production of IL-2 changes depending on the 

activation state of T cells, IL-2 is one measure of antigen-dependent T cell activation (84, 98, 

99). Thus, splenocytes from mice with TCR specific for a single cognate peptide can be used as a 

source of antigen-specific T cells to measure T cell activation, which is assessed by a cell 

proliferation bioassay using IL-2 dependent T cell lines. By employing antigen presentation 

assays, it is possible to then dissect intra- and intercellular mechanisms involved in adaptive 

immunity. Since a number of viral immunomodulatory strategies have previously been 

determined using antigen presentation assays (77, 84, 98–100), it may be possible to uncover 

novel cell-specific mechanism(s) that VACV employs to regulate host immunity. 

1.4.4 Other immunomodulatory strategies 

VACV primarily targets monocytes (101) and the innate APCs [e.g. dendritic cells (DCs) and 

macrophages] that are necessary for initiating adaptive immune responses. VACV has recently 

been shown to productively infect M1 and M2 primary human monocyte derived macrophages 

(MDM) polarized in culture (102). This is surprising, given earlier reports that VACV infection 

of macrophages is abortive (75, 103). Byrd et al. demonstrated that VACV productively infects 

primary macrophages, with higher viral loads produced by infection of anti-inflammatory M2 

polarized macrophages (102). VACV replication within M2 macrophages resulted mainly in EV, 

the virion subset that mediates long-range dissemination in hosts. In contrast to the detection of 

EV in supernatants by Byrd, et al. (102), prior reports only assessed VACV CEV from 
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macrophage lysates, so the lack of EV detection could be construed as an abortive infection 

(103). VACV replication was also enhanced with upregulated ERK and AKT activity and was 

susceptible to IL-10 mediated suppression.  Furthermore, VACV-infected macrophages 

exhibited characteristic cellular protrusions and branching reminiscent of VACV-induced 

migration of BS-C-1 cells (discussed below), supporting theories that VACV-induced migration 

may be a mechanism of viral dissemination. The apparent tropism for the M2 subset is 

interesting, as M2 macrophages are found within tissues with high replicative capacity (e.g. 

ovaries and tumors) for which VACV is highly tropic. It will be important to determine if 

macrophages with a lower innate antiviral response are specifically targeted by VACV, and if 

production of EV within macrophages promotes dissemination to other tissues where VACV can 

replicate unimpeded by the immune system. Migration of VACV-infected macrophages would 

promote VACV dissemination as well. Finally, the influence of VACV infection on tumor 

resident macrophage behavior is an important consideration for the development of more 

effective oncolytic vectors. 

 DCs are required to survive primary poxvirus infection (104), so it is interesting that 

VACV infection induces differentiation of monocytes into DCs (105). VACV also directly 

infects immature and mature DCs; however, VACV is only able to produce early genes in those 

abortive infections (83). Still, these early genes are sufficient to suppress many DC functions, 

including antigen uptake (106) and presentation (98), migration (107), maturation (98, 108, 109), 

and cytokine secretion (77). Furthermore, VACV inhibition of APC function results indirectly in 

impaired antiviral cytokine secretion by T cells (98), as well as reduced antibody production 

(84). In an evolutionary context, it is possible that poxviruses acquired mechanisms to induce 

monocyte differentiation into DCs in order to spread within the host. With the advent of the 
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adaptive immune response, poxviruses may have subsequently acquired separate mechanism(s) 

to prevent further maturation of immunostimulatory DCs. Determining which specific pox 

protein(s) mediate immunosuppressive functions could be important for the future development 

of effective DC-delivered tumor immunotherapies, as well as safer vaccine vectors (66). 
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Figure 4  

 
Figure 4.  Anti-VACV host immune response. 

Antiviral innate immune defenses activated by pattern recognition receptors inhibit viral 

replication and activate antigen presenting cells (APCs) to initiate adaptive immunity. APC 

secrete cytokines and chemokines to attract effector lymphocytes into infected tissues. APC 

acquire and present endogenous (via MHC I), or exogenous antigens (via MHC II), thus 

activating CD8
+
 and CD4

+
 T cells, respectively. CD4

+
 T (TH) cells produce cytokines and 

costimulatory factors that help B cells produce high affinity anti-VACV antibody (functions 

listed above), as well as promote CD8
+
 (CTL) T cell activation, expansion, and effector 

functions. Once the humoral and adaptive immune responses clear VACV from the host, VACV-

specific lymphocytes contract to the smaller, memory populations. Adapted from (33).  
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Figure 5. VACV immunoregulatory proteins. 

A significant proportion of the VACV genome (~30%) is devoted to immunomodulatory 

proteins. The functional mechanisms of these proteins are broadly classified as virostealth 

(proteins that mask infection and reduce cell-mediated immunity, green), virotransducers 

(proteins that inhibit innate antiviral, cell and host tropism signaling pathways, red), and 

viromimetics [(proteins that mimic host immunosuppressive proteins (black), cytokines and 

chemokines (light blue), or their extracellular (purple) and surface receptors (dark blue)]. 

Adapted from (68, 110). 

  

Figure 5 
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1.5 Cytopathic effects during virus infection  

1.5.1 An introduction to cytopathic effects (CPE) 

Cytopathic effects (CPE) are changes in host cell behavior and structure attributed to 

virus infection. Common CPEs include: cell lysis, apoptosis (programmed cell death), cell 

rounding, syncytia formation (i.e. cell-to-cell fusion), cell-clumping, blebbing, cell detachment, 

formation of cytoplasmic projections, actin polymerization, cell motility, cessation of contact-

inhibition, antigenic changes on the cell-surface, cell division, release of lysosomal contents and 

formation of inclusion bodies. While some viruses produce obvious CPE, other viruses cause 

minimal CPE, or in the case of Hepatitis B virus (HBV), CPE that is only apparent in 

immunocompromised hosts (111). Hereafter follows an introduction to VACV-induced CPE. 

1.5.2 Examples of VACV CPE  

VACV infection disrupts numerous cellular pathways, resulting in significant changes in 

cell morphology. For instance, confluent monolayers of adherent cell lines infected with VACV 

result in the formation of large, circular plaques. Plaque formation is caused by a combination of 

CPE and migration of infected cells (112). Poxvirus genes that affect plaque formation can be 

grouped into three categories. First, many poxvirus genes that are essential for virus replication 

also contribute to plaque formation (reviewed in 85). Second, plaque formation relies upon actin 

polymerization to spread of infectious EV on actin tails (reviewed in 54). A third group of genes 

is required for normal plaque morphology and size but are not high contributors to virus output 

in vitro (112). Loss of proteins involved in 1) morphogenesis, 2) intracellular transport of IMV, 

or 3) actin tail formation dramatically reduce plaque size despite production of high levels of 

MV. 



20 

 

VACV mutants with reduced plaque size or altered plaque morphology typically alter 

virulence. Examples in the third category include: C16 and B14 proteins, both of whose 

functions are required for normal plaque size and for virulence (114, 115). VACV proteins C2 

and A55 have been also shown to alter viral plaque morphology, because infections with mutants 

lacking either protein produced fewer cellular projections and lacked the characteristic Ca
2+

-

independent adhesion of VACV-infected cells (116–118). Identifying and understanding how the 

third group of plaque phenotype regulatory proteins functions may reveal novel pox virulence 

mechanisms which contribute to disease. Plaque size is positively correlated with case fatality 

rates for VARV isolates (119), which has supported the conventional view that changes in 

plaque morphology will be mirrored by in vivo changes to virus replication, spread and/or 

virulence. 

1.5.3 VACV and cell migration 

As mentioned above, one virally-induced CPE is cellular migration. It has long been 

established that VACV infection induces migration of infected cells in culture (120, 121), and 

this behavior is reminiscent of the epithelial to mesenchymal transition (EMT) of oncogenic 

cells. VACV-induced cellular migration has been partially attributed to the F11 protein (122, 

123), and studies have shown that the F11 mechanism promotes VACV spread, both in vitro and 

in vivo (124). However, in regards to other functionally distinct areas of VAVC-induced 

migration previously described, the mechanism(s) employed by VACV to induce this CPE 

remains unclear. Interestingly, VACV infection promotes migration of monocytes (125) and DCs 

(107, 126). Enhanced DC migration is not unique to poxvirus infection (reviewed in 96), as 

Ebola (128) and HIV-1 (129) infections have also been shown to promote migration of partially 

matured DCs. In contrast, VACV also encodes chemokine homologues that impair directional 
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migration of NK cells (130) and leukocytes (69, 73). While cell migratory behaviors are 

demonstrably affected by VACV infection in vitro and in vivo, it is still not fully understood how 

VACV functions within different cell types alter cell migration patterns. 

1.6 Vaccinia virus O1L gene in the literature 

1.6.1 O1L gene conservation and protein characterization 

Expression of the O1L gene (conventionally called O1 when referring to the protein) has 

been shown to begin early and continue through the infection cycle (8, 89, 131). Incidentally, the 

majority of VACV immunoregulatory genes are also expressed early, in theory, to rapidly 

counteract host defenses (18) . One report suggests that the O1 protein is present in the MV 

(132); however,  it was not identified in other studies (133–136). It is unknown with which viral 

or host proteins O1 may interact, as a large yeast-two-hybrid study reported no interactions 

between O1 and other VACV proteins (137), and reports have yet to identify interactions with 

host proteins (reviewed in 111). A recent bioinformatics study proposed a unique mutation 

pattern within the O1L gene, and suggested that O1 may have been particularly important for 

promoting virulence as VARV emerged in humans (139). Understanding how VARV adapted to 

specifically infect humans is an area of ongoing interest, and identification of genetic hotspots 

that contributed to VARV anthroponotic speciation may be important for predicting future 

emergence of pox zoonoses. 

It has been hypothesized that the poxvirus genome contains immunomodulatory proteins 

that are highly conserved in mammalian-tropic pox, with relative genetic conservation 

diminishing as viruses diverge into non-mammalian tropic pox, to the point where there is little 

to no homology with non-pox proteins. If these proteins are not essential for viral replication and 

are not related to any known proteins (pox or otherwise), the theoretical implications are that 1) 
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the proteins do not have an obvious host origin, and 2) poxviruses developed unique functions in 

a manner divergent from closely related viruses (like herpesviruses); of these pox-specific 

functions, some may be conserved to combat the mammalian adaptive immune system. Thus far, 

this hypothesis has led to the identification of several genes, one of which is immunosuppressive, 

A35 (84, 140–142). The studies discussed hereafter were initiated to determine whether another 

of these identified genes, O1L, modifies immune responses in a manner unique to poxviruses. 

1.6.2 Antigenic characteristics 

Several studies have shown that O1 contains prominent epitopes recognized by CD4
+
 and 

CD8
+
 T-lymphocytes (131, 143–145). In a VACV proteome-wide screen, an assay detecting 

secreted Th1 and Th2 signature cytokines showed that O1 was among the top Th1 targets, as O1 

peptides were able to restimulate both IL-2 and IFN-γ production by splenocytes from VACV-

WR–infected mice (146). O1 peptides were also identified among a screen of HLA-A and HLA-

B binding epitopes as immunogenic, although the immunogenicity of the O1-encoded peptides 

were either subdominant or cryptic (143). In that report, Assarsson speculated that subdominant 

T cells may be depleted, tolerized, or impaired in the course of an antiviral immune response to 

dominant epitopes. Thus, it is possible that immune responses against O1 epitopes may be 

reduced in favor of a stronger response to more immunostimulatory VACV epitopes. 

Reports indicate that O1 may be a prominent target of B lymphocytes as well (147, 148). 

In a serological screening targeting VACV proteins expressed individually in eukaryotic vectors,  

O1 was identified among 19 other VACV proteins as an immunodominant antibody target by 

sera from vaccinated C57BL/6 mice (148).  Additionally, O1 was identified among other VACV 

proteins that elicited a robust antibody response in Dryvax- and ACAM2000-vaccinated 

individuals (147). Thus, O1-specific antibody could be an important biomarker of VACV 
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immunity. Taken together, these data suggest that O1 is an important target of the adaptive 

immune response to VACV. However, the question of whether the immune system can impede 

the function of O1 is still outstanding.  

1.6.3 O1L and VACV CPE 

O1L has recently been identified as another VACV gene that influences plaque 

morphology in a study using the Chorioallantois Vaccinia Ankara (CVA) and Modified Vaccinia 

virus Ankara (MVA) strains (89). Due to a combination of missing and fragmented genes, MVA 

fails to replicate on most mammalian cell lines (149, 150). By reinserting fractured or missing 

genes, it is possible to generate recombinant MVAs with improved replication in some 

mammalian cells (151). Since the O1L gene is fractured in MVA, Schweneker et al. inserted the 

full-length O1L gene into MVA in an attempt to restore MVA replication (89). While this O1L 

reinsertion was associated with significant changes in plaque morphology, replication did not 

significantly improve in vitro. Additionally, when O1 was removed from CVA (CVA-∆O1), 

plaque sizes were 30 – 50% smaller than parental CVA in human epithelial kidney cells. 

Differences in plaque phenotype are often indicative of roles in replication, spread, and host 

range/cell tropism, although new evidence suggests there may be VACV proteins that affect 

plaque size without affecting any of the former life cycle functions (112). Since the contribution 

of O1 to VACV replication and spread are still tenuous at best, it may be possible that O1 is 

among this novel class of proteins for which a functional link to plaque phenotype has yet to be 

established. 

1.6.4 O1L alters MAPK signal transduction  

Mitogen-activated protein kinases (MAPK) are an important group of signaling mediators 

in the cell. The conserved signaling cascade consists of three sequentially activated kinases: a 
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MAP kinase kinase kinase (MEKK), a MAP kinase kinase (MEK), and a MAP kinase (MAPK). 

The mitogen activated protein kinase/extracellular signal regulated kinase 1/2 (MAPK/ERK) 

pathway plays a critical role in transmission of mitogenic and survival signals in response to a 

variety of extracellular stimuli. Since cell survival is vital for efficient virus multiplication, it is 

not surprising that many viruses, including VACV, manipulate this pathway.  

MAPK signaling cascades are still not completely characterized in the context of OPXV 

infections. This is unsurprising, given that basal MAPK activation varies with cell type, and 

OPXV manipulation of signaling cascades varies among species and strains. It is known that  

VACV infection triggers the MEK/ERK signaling cascade through the epidermal growth factor 

receptor (EGFR) which promotes infection; the disruption of these pathways results in decreased 

viral protein expression, DNA replication, and VACV multiplication (85). The C11 protein, also 

known as Vaccinia growth factor (VGF) has homology to human epithelial growth factor (EGF) 

and transforming growth factor β (TGFβ). C11 initiates a mitogenic signal that induces the early 

activation of ERK, but it is not necessary to sustain ERK activation or its downstream effects. 

Sustained ERK activation enhances cell proliferation in some cell lines, creating a productive 

environment for VACV replication. While the exact mechanism is still not fully characterized, 

some reports link proliferative effects of C11-mediated ERK activation to the proto-oncogene c-

fos (88). On the other hand, since c-fos transcription also increased with ∆C11 infection, other 

VACV protein(s) may be implicated in inducing c-fos activity. C11 also activates the 

EGF/interferon (IFN)-responsive Cip1 protein in cells expressing high levels of EGFR, resulting 

in cell cycle arrest (152). Interestingly, Cip1 is also thought to promote cell motility (153), but 

this has not been investigated in context of VACV infection. C11 functionally synergizes with a 

number of VACV proteins, including F1, which in turn suppresses apoptosis (154, 155). It is 
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clear that VACV manipulation of ERK signal transduction though C11 activation of EGFR 

results in a myriad of downstream effects that are not limited to viral replication, since numerous 

genes cooperate with C11 to promote ERK activation. However, only C11 has been shown to 

significantly enhance VACV replication through ERK manipulation in cell culture. Overall, 

C11-activated ERK may result in any number of effects depending upon the cell type, so the 

functional relevance in vivo will need to be carefully dissected in the future.   

O1 has recently been implicated in modulating the Raf-MEK-ERK signal transduction 

pathway (89). Schweneker reported that CVA-∆O1 infection reduced phosphorylation of c-RAF, 

MEK, and ERK1/ERK2, with no effects on JAK, FAK, AKT, or PI3K kinases. This indicates 

that O1 may function upstream of RAF, resulting in ERK activity that could indirectly influence 

any number of cellular processes, including cell proliferation (156), apoptosis, cytokine 

production, angiogenesis (157), cell polarity (158), and migration (159). While the reduction in 

CVA-∆O1 plaque size described above was partially attributed to the reduction in ERK 

signaling, the size of plaques treated with an ERK inhibitor were reduced similarly in both CVA 

and CVA-∆O1, with CVA-∆O1 plaque diameter again reduced by 30% compared to CVA. This 

suggests that the effects on plaque size are not entirely attributable to O1 stimulation of ERK 

activity.  

Importantly, since threshold ERK activity varies widely among cell types, it is likely that 

the function of O1 in an immortalized cell line does not accurately reflect viral effects in vivo. 

Furthermore, while prior studies have provided valuable insight into how viral manipulation of 

ERK signal transduction promotes virus infection and survival in the host, the associated 

mechanisms are vastly different. ERK manipulation may promote viral entry, expand host range, 
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and/or inhibit antiviral factors depending on the virus, host, and even cell type. Thus, the 

functional significance of upregulated MAPK signal transduction remains elusive.  

1.6.5 O1L contributes significantly to VACV virulence in mice 

Multiple studies have demonstrated that O1 and its orthologs are not essential for viral 

replication (89, 160–163), and reinsertion of O1 into MVA (where the gene is truncated) proved 

insufficient to restore wild type levels of viral replication in mammalian cells (89). However, O1 

was shown to be a significant contributor to VACV virulence in mice (89), observations that 

have been independently documented elsewhere [Wilkinson, unpublished; and (164)].  

Schweneker et al. reported that BALB/c mice (H2
d
 haplotype) infected with CVA-∆O1 (10

6
 – 

10
7
 PFU/mouse) exhibited significantly reduced morbidity, and mortality rates were 80% lower 

than CVA-infected mice. A preliminary study by Wilkinson (unpublished) demonstrated similar 

effects in C57BL/6 mice infected with ∆O1 and the parental VACV-WR strain. In both studies, 

no differences were reported in viral titers of murine lungs, indicating that O1 is unlikely to 

influence VACV replication. On the other hand, Schweneker reported that CVA titers were 

higher than CVA-∆O1 in distal organs (ovaries), but only significantly differed six days post-

infection. Since VACV preferentially infects ovaries (165), high titers six days post-infection are 

not surprising. Given no differences in viral replication in vitro and in murine lungs, differences 

in ovary titers six days post-infection may indicate either: 1) enhanced tropism of CVA for 

ovarian tissue; 2) a delay in CVA clearance; or 3) a defect in CVA-∆O1 dissemination. None of 

these are mutually exclusive. Since an intact humoral immune response is required to control 

VACV dissemination (166), a defect in either CD4
+
 T cell activity or antibody levels (or both) 

during CVA infection would allow uncontrolled dissemination and prolonged presence within 



27 

 

the ovaries. As it stands, O1 contributes to virulence in mice, but the mechanism in vivo remains 

poorly understood. 
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Figure 6 

 
Figure 6. ERK/MAPK signal transduction and putative O1 mechanism 

The mitogen activated protein kinase (MAPK) signal cascade is activated by ligation of various 

cell surface receptors, including the extracellular growth factor (EGF) receptor (EGFR). 

Activation of the extracellular signal regulated kinase (ERK) MAPK cascade through EGFR 

results in cellular functions (e.g. gene transcription, cell growth and proliferation, and cell 

survival) that can be further modified by simultaneous signaling through alternate surface 

molecules (i.e. integrins). The VACV C11 protein is a viral growth factor (VGF) homolog of 

EGF. VGF activates the ERK MAPK cascade, which enhances VACV multiplication by 

promoting cellular proliferation. The VACV O1 protein purportedly functions downstream of 

VGF to sustain ERK signaling activated through RAF and MEK (89). Although the exact 

mechanism of O1 is unknown, sustaining activation of ERK could occur through 1) enhancing 

upstream stimulators of RAF (e.g. RAS, SOS); 2) directly activating RAF; or 3) inhibiting 

negative regulators of ERK (e.g. MKP). O1 modulation of the RAF/MEK/ERK cascade has 

insofar not been linked to changes in cellular physiology; thus, the functional significance 

remains unknown.
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1.7 Project Aims and Hypotheses  

The overall aim of this project was to understand how the VACV O1 protein promotes 

virulence in mice, as attaining better insight into O1-specific mechanisms that enhance VACV 

survival of the immune response may have implications for biotherapeutic applications. Since 

viral modulation of signal transduction molecules can cause varied effects among hosts and 

immune cell types, consistency of O1 effects were evaluated across various immune and cultured 

cell types. Additionally, prior studies of non-essential VACV proteins that contribute to plaque 

morphology have revealed unique virus-host interactions, some of which influence the host 

immune response. Therefore, the effects of O1 on VACV-induced CPE was also examined   

Finally, since structural data on the O1 protein has been limited to sequence analysis predictions, 

the structural characteristics of the O1 protein were elucidated in order to gain insight into the 

functional mechanism of this protein. 

Thus, experiments were undertaken to test the hypotheses that O1:  

1) Influences the host immune system (Chapter 3) 

2) Functions differently in alternate cell types (Chapter 4) 

3) Alters VACV CPE other than plaque phenotype (Chapter 4) 

4) Has novel protein characteristics (e.g. size, modifications, homology, expression kinetics) 

(Chapter 4) 

If these hypotheses are supported, this would reveal (a) mechanism(s) whereby O1 functions in a 

novel manner to influence the host immune response to promote virulence. The functional 

mechanism(s) could be further delineated in vitro if alterations in cell-specific behavior are noted 

in ∆O1 compared to VACV, and if any cell-specific functions are influenced by the unique 

composition of the O1 protein.  



 

 

Chapter 2. Materials and Methods 

2.1 Virological methods 

2.1.1 Cell lines and culture conditions 

Mammalian cell lines used included: BS-C-1 green monkey kidney cells, RAW 264.7 

murine macrophage cell line,  1153 B lymphocytes and B04 T lymphocytes [both HEL peptide-

specific murine cell lines previously obtained from the Janice Blum laboratory (167)], cytotoxic 

T lymphocyte line (CTLL), Jurkat human T lymphocyte cell line, and HeLa human immortalized 

ovarian cell line (kind gifts of Dr. Isabelle Lemasson). RAW 264.7 cells were cultured using 

Dulbecco’s modified Eagle’s medium (DMEM). BS-C-1 and HeLa cells were cultured in 

modified Eagle’s medium (MEM), and all lymphocyte cell lines were cultured in Roswell Park 

Memorial Institute (RPMI) media. All media were completed by supplementation with 10% fetal 

bovine serum (FBS), 2 mM glutamine, 100 U/mL penicillin, 100 μg/mL streptomycin, and 50 

μM beta-mercaptoethanol. IL-2 dependent CTLL T cell lines were grown in complete RPMI 

(cRPMI) supplemented with a 0.5% dilution of IL-2 containing supernatants (produced by Sf9 

insect cell culture infected with IL-2 expressing-baculovirus, a kind gift from Dr. Mark Mannie). 

Bone marrow derived dendritic cells (BMDC) were obtained by harvesting bone marrow and 

culturing for 6-8 days in cRPMI supplemented with granulocyte-macrophage colony stimulating 

factor (GM-CSF, 1.5% Sf9 supernatant dilution). All cell lines were cultured at 37˚C in 5% CO2 

atmosphere conditions.  

2.1.2 Viruses, propagation, and purification 

Vaccinia virus Western Reserve strain (VACV-WR) was used throughout as the wild-

type (O1-expressing) virus. O1L deletion mutants (∆O1) were constructed previously (168) by 

homologous recombination of the O1L gene with an enhanced green fluorescent protein (eGFP) 
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marker. O1 deletion mutants (∆O1-1A1 and ∆O1-3A2) were independently selected and 

propagated, and both ∆O1 viruses were used throughout experiments to confirm ∆O1 

phenotypes. For virus propagation, BS-C-1 cells were grown to desired confluence (80-90%); 

viruses were diluted in cMEM to desired multiplicity of infection (MOI), and incubated for 2-3 

days at 37˚C. VACV-infected cell lysates were collected and stored at -80˚C for subsequent 

infections. Crude lysates were purified via sucrose gradient centrifugation prior to use in all 

animal infection and immunological assays. 

2.2 Animals and reagents 

2.2.1 Mouse infections 

All animal experiments described herein were approved by the East Carolina University 

Animal Care and Use Committee and performed in an AALAC accredited facility.  For analysis 

of VACV immunological effects, BALB/c and C57BL/6 mice were purchased from Charles 

River. To assess the effects of O1 on the murine immune system, BALB/c mice (n = 5) were 

intranasally administered aliquots (18 μL total, 9 μL/nares) of either VACV-WR, one of the ∆O1 

viruses (∆O1-1A1 or ∆O1-3A2), or were mock-infected with phosphate buffered saline (PBS). 

Infectious doses ranged from 7x10
3
-7x10

4
 PFU/mouse, depending on the experiment, and virus 

titers were determined on the day of challenge to confirm infectious dose. Weight and signs of 

illness were monitored daily, and mice were euthanized by isoflurane overdose at the end of the 

study, or if initial body weight decreased by 20%. Spleens and blood were harvested for ELISA 

and ELISPOT analysis. For antigen presentation assays, spleens were obtained post-mortem 

from naïve mice [B6, FOXP3-IRES-GFP knock-in (FIG) mice (B6.Cg-Foxp3
tm2Tch

/J) were 

crossed with MOG35-55 specific TCR transgenic 2D2 mice (Tcra2D2,Tcrb2D21Kuch/J) to obtain 

2D2-FIG mice (169), a kind gift from Dr. Mark Mannie] used for other purposes. 
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2.2.2 Antibodies 

Polyclonal rabbit sera (Genemed Synthesis) were raised against two synthetic O1 peptide 

sequences (AA351-371 and AA393-414), and used as a primary antibody for immunoblot analysis 

(1:1000 dilution). An unconjugated anti-mouse IgG-IgM-IgA (H+L, Sigma) was used for 

ELISA. Fluorescently conjugated primary antibodies used for the studies described herein 

included: PE-CF594 conjugated anti-CD69 (BD Horizon) BV421 conjugated anti-CD69 (BD 

Horizon), and PE-Cy7 conjugated anti-CD4. Secondary antibodies included: alkaline 

phosphatase-conjugated anti-rabbit IgG (Sigma), and alkaline phosphatase-conjugated anti-

mouse IgG-IgM (H+L, Invitrogen).  

2.3 Analysis of viral protein expression and post-translational modification 

2.3.1 SDS-PAGE analysis 

Proteins from infected cells were harvested in sodium dodecyl sulfate (SDS)-reducing 

sample buffer (62.5 mM Tris-HCl, 0.25 M glycerol, 2% SDS, 0.01% [wt/vol] bromophenol blue, 

12.5% [vol/vol] β-mercaptoethanol) and boiled at 95°C for 5 min. Proteins were separated by 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) using Tris-HEPES gradient gel (4-20%, 

Thermo) or prepared Tris-glycine gel (resolving gel of 8% acrylamide solution, 0.375 M Tris-

HCl, pH 8.8, 0.1% [wt/ vol] SDS, 0.1% ammonium persulfate (APS), and 0.1% N,N,N=,N=-

tetramethylethylenediamine [TEMED]; stacking gel of 4% acrylamide solution [37.5:1], 0.375 

M Tris-HCl, pH 6.8, 0.1% [wt/vol] SDS, 0.1% APS, and 0.1% TEMED). Coomassie Blue R-250 

(Sigma: 0.5 % [wt/vol] prepared in 50% methanol with 10% acetic acid) staining was used for 

visualization of total protein. 
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2.3.2 Immunoblot for protein expression and size analysis 

Proteins samples were resolved via SDS-PAGE (as described above) and transferred (200 

mA, 2h) to PVDF membranes using low methanol transfer buffer (12% methanol, 0.1% SDS). 

Membranes were probed with anti-O1 rabbit sera as primary antibody diluted in PBS- milk (5% 

[wt/vol] skim milk in PBS with 0.1% Tween 20) for 30 min. The membrane was washed three 

times in PBS-milk and probed with alkaline phosphatase conjugated secondary antibodies  for 30 

min. Immunoreactive protein bands were visualized by incubating membranes in alkaline 

phosphatase substrate (Western Blue, Promega) for 30-45 minutes (25˚C). 

2.3.3 Glycosidase assay for analysis of N-linked glycosylation 

To determine whether O1 is N-linked glycosylated, HeLa cells were infected (MOI =10) 

for 18 hours. Whole cell lysates were digested for 3-5 hours using either endoglycosidase H 

(Endo H, Promega) or peptide N glycosidase F (PNGase F, Promega). SDS-PAGE was 

performed under denaturing conditions as described above. Immunoblots were developed using 

anti-O1 sera or polyclonal anti-B5R sera (BEI Resources) to detect a known vaccinia N-linked 

glycosylated protein (B5R) as a positive control for enzymatic degradation. 

2.4 Analysis of antiviral immune responses in vivo 

2.4.1 ELISA for in vivo total anti-VACV immunoglobulin  

Enzyme-linked immunosorbant assay 96 well plates (Immulon H2B, Thermo Electron) 

were coated with ELISA coating buffer (ddH2O, 1% H2BO4, 0.7% NaCl, pH 8.6) containing 

VACV-WR lysates (10
5
 PFU/well) and incubated overnight at 4˚C. Plates were blocked (PBS, 

2% FBS, 0.1% NaN3) at room temperature for 30 min, washed three times (PBS, 0.02% Tween 

20, 0.1% NaN3), and titrations of sera obtained from each infected mouse were added. Plates 

were incubated 1.5 hours at room temperature and washed again before the addition of the 



34 

 

secondary antibodies (alkaline phosphatase-conjugated goat anti-mouse IgM-IgA-IgG and 

alkaline phosphatase-conjugated goat anti-mouse IgG [Southern Biotech]). After a 2 hour 

incubation period, plates were washed three times, developed (alkaline phosphatase substrate kit; 

Bio-Rad), and the colored product was analyzed by spectrophotometric detection of absorbance 

at 405 nm. 

2.4.2 ELISpot 

Anti-mouse IFNγ antibodies (1:500 dilution) were used to coat 96 well plates (1X PBS, 

pH 7.2) and incubated overnight.  Plates were blocked with blocking buffer (2% FBS in PBS, 

0.1% NaN3) and washed with PBS prior to the addition of mouse splenocytes. Splenocytes were 

then incubated in cRPMI media for 40 hours with VACV-WR infected cell lysates (MOI = 1) to 

stimulate production of IFNγ. After the removal of splenocytes and virus with wash buffer (PBS 

with 0.05% Tween 20, 0.1% NaN3), plates were then blocked with biotinylated rat anti-mouse 

IFNγ (1:250 dilution) and incubated for 2 hours in a humidified chamber. Plates were washed 

again with wash buffer and blocked with Streptavidin AP. Following a 1 hour incubation and 

washing, plates were overlayed with BCIP in AMP buffer and agarose to obtain countable blue 

spots upon development. 

2.5 Ex vivo immunological assays 

2.5.1 Purification and activation of T cells 

Splenocytes were isolated from C57BL/6 mice and infected for 3 hours (MOI = 3 and 5) 

with VACV-WR, ∆O1 or mock (cRPMI), followed by treatment with concanavalin A (ConA, 5 

μg/mL) diluted in cRPMI to induce activation. Alternately, CD4
+ 

T cells were purified via 

positive selection using CD4
+
 T cell magnetic beads (EasySep), infected and activated with 
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ConA as before. Cells were monitored microscopically for blastogenesis for 24 - 48 hours prior 

to flow cytometric experiments assessing activation markers.  

2.5.2 Purification and activation of B cells 

Splenocytes were isolated from C57BL/6 mice and purified via negative selection using 

Pan-B cell magnetic bead kit (EasySep). Cells were infected for 3 hours (MOI = 5) with VACV-

WR, ∆O1 or mock (cRPMI) and plated in 96 well plates (1x10
5
 cells/well). Appropriate groups 

were treated with lipopolysaccharide (LPS, Sigma: 1-10 μg/mL) diluted in cRPMI. For ex vivo 

antibody production assays, supernatants (100 μL) were collected from plates that had incubated 

for either seven or 12 days post-infection. 

2.5.3 Antigen presentation assays 

2D2-FIG mice are TCR transgenic mice with self-reactive TCR that are specific for 

myelin oligodendrocyte glycoprotein peptide 35-55 (MOG35-55) and cross-reactive with the 

neurofilament medium (NEFM18-30) peptide (169, 170). 2D2-FIG splenocytes contain both APC 

and T cells specific for these antigens. Upon incubation of splenocytes with the antigenic 

peptide, splenic APC present antigen to activate T cells, which produce lymphoproliferative 

cytokines like IL-2. Splenocytes isolated from 2D2-FIG mice were cultured in 96 well plates 

(1x10
5
 cells/well) and infected with VACV-WR, ∆O1 (MOI = 1, 3h), or mock-infected (media) 

as a positive control. Cells were then pulsed with one of the cognate antigenic peptides [either 

MOG (5 μg/mL) or NEFM (1 μg/mL)] and supernatants were collected 24-96 hours post-

infection to determine levels of bioactive IL-2 via bioassay 

2.5.4 CTLL cell proliferation bioassay 

Antigen presentation was quantified using a bioassay measuring proliferation of IL-2 

dependent CTLL T cells. CTLL cells were washed with cRPMI twice to remove IL-2 within 
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culture media, and incubated in 96 well plates (5x10
4
 cells/well in 150 μL) for 24 hours. 

Supernatants (50 μL/well) from antigen presentation assays described above were added to 

CTLL cells, followed by 24 hours of incubation. MTS was added (10 μL/well) and absorbance 

was measured (492 nm) incrementally over 24 hours. 

2.5.5 ELISA for ex vivo antibody production 

Enzyme-linked immunosorbant assay 96 well plates (Immulon H2B, Thermo Electron) 

were coated with ELISA coating buffer (ddH2O, 1% H2BO4, 0.7% NaCl, pH 8.6) containing 

anti-mouse IgM-IgG-IgA (H+L, Invitrogen) and incubated overnight at 4˚C. Plates were blocked 

(PBS, 2% FBS, 0.1% NaN3) at room temperature for 30 min, washed three times (PBS, 0.02% 

Tween 20, 0.1% NaN3), and dilutions of supernatants obtained from ex vivo B cell activation 

culture were added. Plates were incubated 1.5 hours at room temperature and washed again 

before the addition of the secondary antibodies (alkaline phosphatase-conjugated goat anti-

mouse IgM-IgA-IgG ) After a 2 hour incubation period, plates were washed three times, 

developed (alkaline phosphatase substrate kit; Bio-Rad), and the colored product was analyzed 

by spectrophotometric detection of absorbance at 405 nm. 

2.5.6 Flow cytometric analysis 

Splenocytes were analyzed by flow cytometry for CD4
+
 T cell activation. Splenocytes 

(1x10
6
 cells/mL) or purified, activated T cells (1x10

6
 cells/mL) were fixed in 3% 

paraformaldehyde, washed, and incubated with an anti-Fc block (BD Pharmingen) to prevent 

non-specific binding of antibodies to Fc receptors. Fluorescently conjugated anti-mouse primary 

antibodies were incubated on ice for 1 hour, then washed and resuspended in flow buffer (PBS, 

2% FBS, 0.2% sodium azide). Samples were taken (10,000 events/group) on an LSR II flow 

cytometer (Becton Dickinson) and data were analyzed using FlowJo software. 
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2.6 Analysis of ∆O1 cytopathic effects (CPE) 

2.6.1 Plaque assays 

For plaque assays, confluent BS-C-1 monolayers were infected in duplicate using the 

methods describe above.  Viral doses added to wells were calculated to result in 50-100 

countable plaques per well. Following five 1:10 serial dilutions, appropriate virus dilutions were 

added to cell monolayers, and plaques were allowed to form 40 – 48 hours before fixation with 

crystal violet solution (0.1% in 20% ethanol). Viral titers were defined as plaque forming units 

per mL (PFU/mL) of initial virus solution, as determined by enumeration of plaques by 

independent blind observers. Plaques were photographed, and plaque diameters were calculated 

using Fiji software (10 plaques/virus) for statistical analysis.  

2.6.2 Wound-healing assay 

For wound-healing assays, confluent BS-C-1 monolayers grown in 6 well plates were 

serum-starved for 2 hours and then carefully scratched with a yellow 200 µl pipette tip to create a 

grid pattern. Immediately after scratching, cells were washed in PBS and infected in duplicate as 

described above. Monolayers were photographed at specified times post-infection, and fixed 

with crystal violet 24 – 48 hours post-scratch. For statistical analyses, cells migrating into 

scratched regions (five regions/well) were enumerated by two independent observers.   

2.6.3 MTS/PMS cytotoxicity assays 

The effects of O1 on the viability of various immune cell types [e.g. macrophages (RAW 

264.7 cell line), T cells (B04, Jurkat, CTLL lines and splenic primary cells), B cells (1153 line 

and splenic primary cells), and bone marrow derived dendritic cells (BMDC)] were examined. 

Cells were infected with VACV-WR or ∆O1 (MOI = 1, 5, and 10 PFU/cell), or mock-infected 

with media. Twenty-four hours post-infection, 10 μL of 3-(4, 5-dimethylthiazol-2-yl)-5-(3-
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carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium/phenazine methosulfate [MTS/PMS 

(2.0 mg/mL MTS and 0.1 mg/mL PMS)] was added to each well and the resultant colorimetric 

change was detected at 492 nm over designated intervals. 

2.7 Computational analysis 

The O1 peptide sequence (WR068, PDB: Q80HX1) was obtained from the NCBI 

database (https://www.ncbi.nlm.nih.gov/protein) and compared to peptide sequences using 

UniProt (http://www.uniprot.org). Protein domains were characterized using the InterPro 

database (http://www.ebi.ac.uk/interpro). Transmembrane regions were examined using the 

TMPred (embnet.vital-it.ch/software/TMPRED_form.html) and MINNOU servers 

(minnou.cchmc.org), and Signal P was used to predict the signal peptide sequence 

(http://cbs.dtu.dk/services/SignalP). O1 protein structural predictions were investigated using 

various programs on Protein Model Portal (http://www.proteinmodelportal.org), and Phyre2 

(www.sbg.bio.ig.ac.uk/phyre2) was used to render 3D models of O1 tertiary structure. 

2.8 Statistics 

For comparison of more than two conditions at a single point in time, one-way ANOVA 

was used with Tukey’s multiple comparison tests. For multiple comparisons of two or more 

groups, two-way ANOVA with replicates was employed. For comparison of two conditions, a 

two-tailed Student t test was used. The Data Analysis ToolPak in Microsoft Excel was employed 

for all statistical analyses. 

 



 

 

Chapter 3. Immunogenicity during ∆O1 infection was increased 

compared to VACV-WR infection 

3.1 VACV-specific immunoglobulin levels increased in ∆O1-infected mice 

3.1.1 In vivo antibody levels were enhanced during ∆O1 infection 

Published reports have demonstrated that O1 contributes to VACV pathogenesis in mice 

(89), and it was hypothesized that O1 mediates virulence by interfering with the mammalian 

immune response. To investigate the effects of O1 upon the immune response, mice were 

infected with lower doses of VACV-WR or ∆O1 viruses [7 x 10
3
 PFU/mouse] to preclude the 

effects of systemic illness seen in infections with high doses (171). The specific anti-VACV 

antibody levels detected in sera collected seven days post-infection from VACV-WR infected 

mice were similar to levels of sera in mock-infected mice (Figure 7). Significantly greater 

quantities of anti-VACV antibody were detected in sera from ∆O1-infected mice. The 

diminished levels of total anti-VACV antibody in VACV-WR infection suggest that ∆O1 may be 

more immunogenic than the parental strain.   
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Figure 7. ∆O1 infection induced a stronger humoral response than VACV-WR in mice.  

BALB/c mice (n = 5) were infected intranasally (2 x 10
3 

PFU/mouse) with either VACV-WR 

(WR), ∆O1 (∆O1-1A1 or ∆O1-3A2,), or mock-infected (PBS). To quantify the VACV-specific 

antibody produced, serum isolated from each group seven days post-infection was analyzed by 

ELISA to detect VACV-specific IgM, IgG, and IgA antibodies. Experiments were performed 

three times, and the representative data shown are the average absorbance (OD 405 nm) of the 

serum titration from each group (± SEM). Two-way ANOVA and post-hoc Tukey’s assessments 

were performed to assess the statistical differences between VACV-WR and both ∆O1 mutants. 

Absorbance of both ∆O1-1A1 and ∆O1-3A2 groups were statistically greater than VACV-WR, 

with significance at ρ ≤ 0.05 (compared to VACV-WR).  

 

Figure 7 
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3.1.2 Ex vivo antibody production reduced similarly by VACV and ∆O1 infection 

Antibody production was examined ex vivo to detect interactions occurring during 

VACV-WR infection that could result in reduced antibody levels. LPS stimulation of murine 

splenic B cells moderately increased (20-40%) ex vivo antibody levels in all infection groups 

above unstimulated levels (Figure 8). Infection with both viruses significantly reduced antibody 

levels compared to mock-infected cells, and reductions by VACV-WR and ∆O1 were equivalent. 

Because splenic-resident T cells and DC are instrumental in helping B cells produce antibody in 

vivo, whole splenocytes were infected as before and stimulated with LPS to induce antibody 

production (Figure 9). Results obtained seven days post-infection (Figure 9 A) were similar to 

those obtained using in purified B cells (i.e. LPS induced antibody production that was 

significantly reduced by infection with either virus). Because the background readings of 

unstimulated cells seemed high for these assays, splenic cultures were also allowed to incubate 

longer to ensure sufficient time for antibody production. However, total antibody detected on day 

12 (Figure 9 B) was diminished compared to seven days post-infection (Figure 9 A). Taken 

together, these data suggest that ex vivo assays of LPS-stimulated antibody production are not 

sufficient to understand how O1 influences antibody production. These data provide suggestive 

evidence that other mechanisms (e.g. cell types or functions) that are operative in vivo are likely 

involved in the processes by which O1 influences antibody production. 
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Figure 8: VACV infection reduced LPS-induced immunoglobulin produced by purified 

mouse splenic B cells. 

B cells were isolated (Pan-B negative selection kit, EasySep) from C57BL/6 mouse splenocytes, 

were infected with either VACV-WR or ∆O1L-1A1, or remained uninfected (MOI = 3, 4 hours). 

Groups treated with LPS (10 µg/mL) to induce immunoglobulin production are depicted by 

black bars, and groups of unstimulated B cells are in white. Supernatants were harvested seven 

days post-infection and assayed via ELISA for total mouse antibody (IgG, IgM, IgA) production. 

OD readings are expressed as the mean (n = 3) ± standard deviation. Experiments were repeated 

twice, and representative data are depicted. * denotes statistical significant differences between 

LPS-treated, mock-infected cells and virus groups (black bars, one-way ANOVA, ρ ≤ 0.05.) 

 

  

Figure 8 
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Figure 9: VACV infection reduced ex vivo LPS-induced immunoglobulin produced by 

murine splenocytes. 

C57BL/6 mouse splenocytes were isolated and were infected with either VACV-WR or ∆O1-

1A1 or were not infected (mock) (MOI = 3, 4 hours).  Splenocytes were then treated with LPS 

(10 µg/mL) to induce immunoglobulin production. Supernatants harvested seven (Figure 9 A) 

and 12 (Figure 9 B) days post-infection were assayed via ELISA for total mouse antibody (IgG, 

M, A) production. Each assay was repeated twice, with similar results. OD readings of 

unstimulated splenocytes (white bars) and LPS-stimulated splenocytes (black bars) are expressed 

as the mean (n = 3) ± standard deviation * denotes statistical significant differences between 

LPS-treated, mock-infected cells and virus groups (black bars, one-way ANOVA, ρ ≤ 0.05.) 

  

A 

 

 

 

 

 

 

 

 

 

 

B 

Figure 9 
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3.2 Equal VACV-specific interferon-γ produced by VACV-WR and ∆O1-

infected splenocytes 

To ascertain whether O1 had an effect on T lymphocytes during VACV infection, 

ELISpot assays of IFN-γ production were performed. Splenocytes from mice infected with 

VACV-WR, ∆O1, or mock-infected with saline were isolated, and stimulated with VACV-WR 

to reactivate VACV-specific T cells ex vivo, and IFN-γ was measured as a marker for 

reactivation. As shown in Figure 10, splenocytes from mock-infected mice do not produce IFN-

γ, indicating that mock-infected mice do not have recall responses to VACV, as T cells were not 

introduced to VACV in vivo. Splenocytes from mice infected with either VACV-WR or ∆O1 

produced equivalent levels of IFN-γ, which suggests that there were no detectable differences in 

the anti-VACV T cell responses seven days post-infection.   
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Figure 10: VACV-specific IFN-γ production by VACV-WR and ∆O1 infected murine 

splenocytes was equivalent. 

Effector responses to VACV were quantified by assessing IFN-γ production in response to 

VACV-WR stimulation ex vivo. Splenocytes from VACV-WR, ∆O1 (∆O1-1A1 and ∆O1-3A2), 

and mock-infected BALB/c mice (n = 5/group) were isolated seven days post-infection, and 

stimulated with VACV-WR. IFN-γ producing cells were enumerated via ELISpot assay. 

Experiments were performed twice, with essentially equivalent results. The mean of each group 

(± SEM) are depicted, and a one-way ANOVA analysis revealed no statistically significant 

differences among virus-infected groups (ρ ≤ 0.05.) 

Figure 10 
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3.3 Ex vivo antigen presentation is enhanced during ∆O1 infection 

3.3.1 2D2-FIG antigen presentation assay 

Because ∆O1 infected mice generated enhanced levels of antibody, it was hypothesized 

that the O1 function may be immunosuppressive. Since B cells need T cell help for maximal 

VACV-specific antibody responses, the hypothesis was that lower antibody levels observed in 

vivo could be due to inferior priming of T cells at the level of antigen presentation. Since T cell 

recall responses were similar (Figure 10) during VACV-WR and ∆O1 infection, it was possible 

that differences in vivo may have been too small to distinguish. Alternately, it is likely that O1 

may have affected the helper T cell processes necessary for humoral, but not cellular, immunity. 

Thus, ex vivo antigen presentation assays were performed to determine how O1 influences 

immunological processes.  

2D2-FIG mouse splenocytes were isolated and infected with VACV-WR, ∆O1 or mock 

infected (media), and then stimulated with cognate antigens (MOG35-55 or NEFM18-30). 

Supernatants collected at various time points were added to IL-2 dependent CTLL T cell cultures 

to quantify bioactive lymphoproliferative cytokines produced in response to antigenic 

stimulation. Supernatants from 2D2-FIG antigen presentation assays promoted CTLL 

proliferation in peptide-stimulated groups (Figure 11). Supernatants from VACV infected 

groups significantly inhibited CTLL proliferation compared to mock-infected cells. Stimulation 

with MOG appears to have no effect on VACV-WR infected cells (Figure 11 A) whereas 

supernatants from NEFM treated, VACV-WR infected groups increased CTLL proliferation 

approximately 10% more than the unstimulated VACV-WR infected group (Figure 11 B). 

However, when cultured with supernatants from antigen stimulated ∆O1-infected groups, CTLL 

proliferation significantly increased. Although not quite to mock-infected levels, supernatants 
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from ∆O1 infections enhanced CTLL proliferation by 12 – 20% over VACV-WR groups, and 

these differences were statistically significant at 24 and 48 HPI. The reduced CTLL proliferation 

in response to supernatants from the VACV-WR infected, antigen-stimulated group indicate that 

some step in the antigen presentation process is significantly different during ∆O1 infection. 

Given the complexity of the antigen presentation process, these data provide a foundational step 

for the further work needed to determine which processes (e.g. antigen processing or 

presentation, TCR recognition and signaling, IL-2 gene transcription, etc.) may be influenced to 

a greater extent by VACV-WR compared to ∆O1 infection. 

3.3.2 CD4
+
 T cell activation 

Lymphoproliferative cytokines secreted in response to antigenic stimulation may be 

reduced if T cell activation is altered by VACV-WR infection. Therefore, the possibility was 

considered that antigen presentation would be reduced in VACV-WR infection if O1 directly 

affected T cell activation. To investigate this, splenocytes were isolated, infected with VACV-

WR or ∆O1, followed by treatment with ConA for 18-36 hours to induce T cell activation. Flow 

cytometry was used to measure surface expression of CD4 for helper T cells, as well as CD69, a 

marker of lymphocyte activation. T cells activated with ConA for 18-36 hours were considered 

the CD4
+
 CD69

+
 events present in the upper right quadrant of dot plots (Figure 12 A). Treatment 

with ConA induced a 10 fold increase in CD4
+
CD69

+
 events, with the greatest increase in the 

ConA-treated mock-infected group. The percentage of CD4
+
CD69

+
 cells trended lower in 

VACV infected groups (Figure 12).  VACV-WR and ∆O1 infected groups had an equivalent 

percentage of CD4
+
CD69

+
 T cells (Figure 12 B). These experiments were also repeated using 

positively selected CD4
+
 T cells, with similar results (data not shown). Taken together, the 

equivalent activation of CD4
+
T cells during VACV-WR and ∆O1 infection suggests that O1 is 
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unlikely to directly interfere with mitogenic CD4
+
 T cell activation. Whether or not O1 directly 

interferes with the antigenic activation of CD4
+
 T cell activation remains to be seen.  
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Figure 11. CTLL proliferation was enhanced by antigen-stimulated ∆O1-infected 

supernatants.  

The antigen presentation process, culminating in IL-2 production, was assessed via CTLL cell 

proliferation assay. Splenocytes isolated from 2D2-FIG mice were infected (MOI = 1, 3h) with 

VACV-WR, ∆O1 (∆O1-1A1) or mock-infected (mock). Cells were pulsed with cognate antigens 

(Figure 11 A: MOG, 5 µg/mL; Figure 11 B: NEFM, 1 µg/mL), and supernatants were collected 

24-96 HPI. The IL-2 dependent CTLL T cell line was used to measure IL-2 in collected 

supernatants. CTLL cells were IL-2 depleted 24 h before addition of collected supernatants (50 -

100 µL). After 24 hr culture, MTS was added and OD read at 492 nm. Experiments were 

repeated twice, and data from 24 h post-infection is displayed. OD readings are expressed as the 

mean (n = 3) ± standard deviation. * denotes statistical significant differences between antigen-

treated, mock-infected cells and virus groups (black bars, one-way ANOVA, ρ ≤ 0.05.)  

Figure 11 A 
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Figure 12: ConA-induced CD4

+
 T cell activation was equal in VACV-WR and ∆O1 

infections.  

C57BL/6 mouse splenocytes were isolated, infected (MOI = 3) with VACV-WR or ∆O1 in 

duplicate, or mock infected (mock) for five hours before treatment with concanavalin A (ConA, 

10 µg/mL) to induce T cell activation. After 48 h, flow cytometry was performed to detect 

activated helper T cells (CD4
+
CD69

+
). Cells were gated to exclude debris, and plotted CD4 

versus CD69 (Figure 12 A) to find the percentage of CD4
+
CD69

+
 events (Figure 12 B). Data 

were analyzed via two-way ANOVA, and differences among ConA stimulated groups were not 

statistically significant. Experiments were performed twice, and representative data is shown. 
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Chapter 4. O1 protein expression and contribution to VACV CPE 

4.1 O1 sequence analysis 

The O1L gene (VACV Copenhagen strain designation) encodes the putative O1 protein 

(666 aa) which is predicted to be approximately 78 kDa. Since there are no reported O1-

homologous viral or mammalian proteins with known functions [phylogenetic analysis reviewed 

elsewhere (139)], comparisons could not be made to predict possible O1 function(s). Thus, 

software analyses were performed to assess biological composition of O1 to understand how its 

structure may influence function. The O1L gene is located within the central portion of the 

VACV genome, which contains a large proportion of genes that are necessary for viral 

replication and morphogenesis (23). The genes most proximal to O1L include DNA 

polymerases, DNA binding proteins, and viral core proteins (Figure 13 A). However, data from 

prior studies  (89, 168) do not support a role for O1 in viral replication or spread in cell culture or 

in vivo. In Figure 13 B, secondary structural domains of the O1 protein include a predicted 

transmembrane region (TMPred), two nuclear localization sequences (SwissProt), and five N-

linked glycosylation motifs (visual inspection of NxS/T sequences). Many peptide sequences in 

O1 are hydrophobic in nature (Figure 13 C), which could suggest membrane association or a 

tertiary folding pattern such that hydrophobic sequences are sequestered to reduce solvent 

accessibility. Ab initio 3D-rendering of the O1 peptide sequence (Figure 13 D, Phyre2) 

generated a protein with numerous alpha-helices, and several low structure regions. The 

structural homologs reported by Phyre2 (Table 1) exhibited low-levels of structural identity (7 – 

50%, with confidence ranging from 5.2 – 54.3 %). Several enzyme families were overly 

represented among the proteins identified (more than five hits in six different groups Table 1 A), 

and at least two structural domains were identified more than five different times (Table 1 B). 
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While this may be indicative of potential O1 functional orthologs, the low sequence identity 

suggests that the function of O1 may be completely novel. Future biochemical studies will be 

necessary to confirm whether the described peptide regions and structural motifs contribute to 

O1 location and/or function. 
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Figure 13. O1 sequence analysis 

Figure 13 A: The O1L gene sequence is depicted in context of proximal VACV genes. Figure 

13 B: Secondary sequence searches revealed predicted N-linked glycosylation sites (designated 

NxS/T motifs as marked below arrow), transmembrane region (TMPred software, denoted TM), 

and nuclear localization signals (NLS, SwissProt). Peptide regions selected for anti-rabbit sera 

generation are denoted P1 and P2. Figure 13 C: Plot of O1 sequence hydrophobicity depicts 

peak regions of hydrophobicity, including one transmembrane region also predicted by TMPred. 

Figure 13 D: A model of the tertiary structure of the O1 protein, as predicted using Phyre2 

software. Figure 13 E depicts frequency of non-pox proteins reported (Phyre2) to share any 

degree of sequence identity with O1 within the listed taxonomic domains.  
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Table 1. O1 shared sequence identity with protein families and domains 

The O1 peptide sequence (PDB designation: Q80HX1) was analyzed with Phyre2 to determine 

structural homology with proteins of known structure. Table 1 A summarizes the protein 

families reported to be among the top 100 proteins to have any degree of sequence homology. 

Table 1 B summarizes the types of protein domains and structural motifs reported. The number 

of separate structures per domain/family type (# hits), the level of sequence similarity (% 

identity), and the probability that O1 is a structural homolog of these proteins [% confidence, 

(100% maximal)] is listed.  

Table 1 

A           B 
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4.2 Characterization of O1 protein expression during VACV infection 

4.2.1 O1 protein was determined to be approximately 78 kDa 

Polyclonal rabbit sera were raised against two synthetic O1 peptide sequences [(AA351-371 

and AA393-414), Genemed Synthesis]. The two sequences selected consist of relatively 

hydrophilic amino acids (Figure 13 B and C), in order to increase the likelihood of antibody 

epitope availability in both a linear and conformation state. To detect expression of O1, VACV-

WR and ∆O1 infected cell lysates were separated via SDS-PAGE and immunoblots were probed 

with each of the four anti-O1 rabbit sera generated. Initially, none of the sera were able to 

differentiate between bands present within VACV-WR and ∆O1 cell lysates (data not shown), so 

rabbits were boosted with O1 peptides to enhance levels of anti-O1 antibody in sera. Subsequent 

immunoblots revealed a single ~81 kDa band that was present in VACV-WR lysates but not in 

∆O1 lysates (Figure 14 A) or mock-infected controls (data not shown), suggesting the band 

detected within VACV-WR lysates is the O1 protein. Further electrophoresis was performed to 

determine molecular weight more precisely (Figure 14 B), and the O1 band was calculated to be 

~78 kDa. 

4.2.2 Expression of O1 was detected from 3 to 24 h post-infection 

The O1L gene sequence is predicted to contain an early promoter (8), and mRNA has 

been detected as early as three  hours and throughout infection (89). Protein expression was 

examined via immunoblot at various times (3, 6, 8, and 24 HPI). A single O1 band (~78 kDa) 

was detected at each time point tested (Figure 15).  
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Figure 14: O1 protein was approximately 78 kDa.  

Polyclonal rabbit antisera were raised against two O1 peptides (351-

LEDILAHIDNARKNSKVSIED-C and 393-LSDIDIKTKIMVLKIVKDWKSC). To detect 

the O1 protein, BS-C-1 cells were equally infected with either VACV-WR (WR) or an ∆O1 

mutant (∆O1-1A1 and ∆O1-3A2). Whole cell lysates were obtained and separated on 4-20% 

SDS-Tris-HEPES gels. All immunoblots performed as described were repeated at least 3 times, 

and representative blots are displayed. 

  

A                B Figure 14 
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Figure 15. O1 protein expression was detected from 3 to 24 hours post-infection.  

HeLa cells were infected (MOI = 10 for 3 and 6 h; MOI = 5 for 8 and 24 h) with either VACV-

WR (WR) or an ∆O1 mutant (∆O1-1A1 and ∆O1-3A2). Nuclei were isolated, separated via 

SDS-PAGE, and immunoblots were performed using rabbit polyclonal anti-O1 sera. 

Electrophoresis was performed as described at least twice, and representative immunoblots are 

displayed. Arrows indicate putative O1 band. 

 

  

Figure 15 
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4.3 N-linked glycosylation (NXS/T) is predicted by O1 sequence, but was not 

detected via immunoblot 

The O1 peptide sequence contains numerous predicted glycosylation sites, including five 

N-linked glycosylation motifs (NxS/T, Figure 13). To determine whether O1 is post-

translationally glycosylated, VACV-WR and ∆O1 infected cell lysates were incubated with 

either endoglycosidase H (EndoH), which cleaves the chitobiose core of high mannose and some 

hybrid oligosaccharides, or peptide:N glycosidase F (PNGase), an amidase which cleaves the 

bond between the asparagine residue and the innermost N-acetylglucosamine moiety of high 

mannose, hybrid and complex oligosaccharides. Immunoblot analysis of treated lysates 

demonstrated that B5R, a known N-linked glycosylated VACV protein, was degraded in the 

presence of both EndoH and PNGase F (Figure 16), resulting in several faster migrating 

peptides in the EndoH and PNGase F treated lanes. However, in both EndoH and PNGase treated 

groups, the O1 band resolved as a single band at the same molecular weight (~78 kDa) as in 

untreated lysates. Therefore, no evidence to support N-linked glycosylation of the O1 protein 

was detected in this assay.   
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Figure 16. N-linked glycosylation of O1 was not detected.  

HeLa cells were infected (MOI = 10 PFU/cell, 12 h) with either VACV-WR or an ∆O1 mutant. 

Whole cell lysates were treated with or without endoglycosidase H (Endo H, top) or peptide:N-

glycosidase F (PNGase F, bottom). Samples were separated via SDS-PAGE and immunoblots 

developed using polyclonal rabbit anti-O1 sera. As a positive control for each sample 

glycosidase digestion, polyclonal anti-B5R sera was used to detect the Vaccinia protein B5R, a 

protein known to be N-linked glycosylated and susceptible to deglycosylation by both EndoH 

(top right) and PNGase F (bottom right).  Immunoblots were performed at least twice and 

representative data are displayed. 

 

Figure 16 



60 

 

4.4 O1 contribution to VACV CPE 

4.4.1 VACV-WR plaques were significantly larger than ∆O1 plaques 

Distinct alterations in ∆O1 plaque morphology (89) appear to mimic characteristics of 

several VACV proteins (reviewed in 141) that promote cytopathic effects but not viral 

replication or morphogenesis. As described previously, this also seems to be the case when O1 is 

removed from the VACV CVA strain. However, this has not been established for O1 deletion 

from the VACV-WR strain. Accordingly, plaque assays were performed to quantify ∆O1 

alterations in plaque morphology. Titration of VACV-WR on BS-C-1 cell monolayers produced 

plaques with approximately 30% larger diameter (Figure 17) than plaques formed in ∆O1-

infected wells. Additionally, clearance from the center of ∆O1 foci was significantly reduced. 

These data support prior studies of O1 mutants in the VACV CVA strain, and indicate that O1 

contributes to VACV CPE in cell culture. 

4.4.2 ∆O1-induced metabolic perturbations significantly differed from those induced by 

VACV-WR only in RAW 264.7 macrophages 

MTS/PMS cell viability assays were performed on several cell lines and isolated primary 

immune cells to address the possibility that cytotoxicity is altered with ∆O1 infection. There are 

two lines of evidence that suggest O1 may affect cytotoxicity: 1) reduced cellular debris 

observed within WR-VACV plaque foci may result from more dead cells being released from the 

matrix; and 2) purported O1 effects on ERK signaling may differentially influence various 

immune cells processes, including cell viability/metabolism. Figure 18 shows that VACV 

infection had minimal effects on the lymphocyte cells tested [i.e. T cells (Figure 18 A and B), 

and B cells (Figure 18 B and C)]. However, in the innate APCs, VACV infection significantly 

reduced metabolism (Figure 19). In immature BMDC and BMDC induced to mature with LPS, 
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the metabolism of VACV-WR and ∆O1 infected cells was similar (Figure 19 A). In RAW 264.7 

macrophages (Figure 19 B), the decline in metabolism was proportional to viral dose in both 

VACV-WR and ∆O1 infections. However, metabolism was further reduced by ∆O1, and this 

was significantly different at the highest viral dose tested. Because the differences noted between 

macrophage metabolism during VACV-WR and ∆O1 infections were statistically significant at 

higher doses, these data may indicate an immune cell type in which O1 is functionally relevant. 

However, since the magnitude of effect was modest, the biological significance remains 

uncertain. 

4.4.3 O1 contributed to VACV induced cell motility 

The migratory potential of infected cells is another component of CPE that influences 

plaque size. VACV-WR promotes migration of infected cells (120, 122), which may enhance 

viral dissemination or immune evasion in vivo. Contributions of the O1 protein to this phenotype 

were assayed using BS-C-1 cells in a wound assay. As shown in Figure 20, uninfected cells 

remained relatively stationary, whereas VACV-WR infected cells migrated into a wound created 

by ‘scratching’ a monolayer of BS-C-1 cells with a pipette tip. VACV-WR infected cells 

migrated maximally between 16 and 24 HPI (Figure 20 B). In contrast, ∆O1 infected cell 

migration was significantly lower (ρ < 0.01) from 16 through 44 HPI. The greatest differences 

between migration effects were observed prior to 24 hours. This reflects prior reports that 

maximal migration of VACV-WR infected cells occurs from 9 to 18 hours post-infection (120). 

Thus, data indicates that the parent VACV-WR infected cells are induced to migrate to a 

significantly greater extent than ∆O1 infected cells. This may suggest that the O1 function 

enhances cell migration during VACV-WR infection. 
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Figure 17: Plaque size and foci clearance were reduced with ∆O1 infection. 

Plaque morphology was evaluated by the titrating viruses (VACV-WR and ∆O1) on BS-C-1 

monolayers and staining with crystal violet (0.1% in 20% ethanol) 40 HPI. Figure 17 A) Plaques 

formed by 40 HPI were photographed, and the average diameter of plaques formed by each virus 

was determined. Figure 17 B) Plaque sizes are expressed as the mean diameter (mm, n = 10) ± 

standard deviation. * denotes statistical significance, (Student’s t test, ρ ≤ 0.05.)
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Figure 18. No significant differences in lymphocyte viability were detected via MTS assay.  

MTS assays were used as to measure metabolism as an indicator of cell viability. To test whether 

O1 reduces T lymphocyte viability, Jurkat (Figure 18 A) and B04 (Figure 18 B) T lymphocyte 

cell lines were infected in triplicate with VACV-WR or ΔO1 or mock-infected. To test whether 

O1 reduces B cell viability, the 1153 B lymphocyte cell line (Figure 18 C) was infected in 

triplicate with VACV-WR or ΔO1 or mock-infected (media). Purified mouse splenic B cells 

were isolated (EasySep Pan-B negative selection kit), infected as above, and treated with LPS (5 

µg/mL) to induce B cell activation (Figure 18 D). MTS/PMS was added 24 hours post-infection, 

and cellular metabolism was measured (492 nm) as an indicator of cell viability. These 

experiments were repeated at least twice with similar results, and representative data (MOI = 5, 

24 h) are displayed for each experiment. One-way AVOVA revealed no significant differences 

between mock and virus infected cells (Figure 18 A-C), and no statistically significant 

differences among LPS-stimulated cells (Figure 18 D). 

  

A                B 

C                 D 

Figure 18 
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Figure 19. VACV infection significantly reduced innate APC metabolism, but ∆O1 

infection significantly differed only in RAW 264.7 macrophages.  

(Figure 19 A) C57BL/6 mouse BMDCs cultured for seven days (cRPMI + GMCSF 1.5%) were 

infected in triplicate with either VACV-WR or ∆O1-1A1 (MOI = 5) or mock-infected (media) 

for 3 hours prior to LPS treatment (5 µg/mL). (Figure 19 B) Macrophages (RAW 264.7 cell 

line) were infected in triplicate with either VACV-WR or ∆O1 (MOI = 1, 5, and 10) or mock-

infected (mock, MOI = 0). MTS/PMS was added to culture 24 HPI, and metabolism was 

measured (OD 492 nm) as an indicator of cell viability. Experiments were performed at least 

twice, with similar results.  * denotes significant difference (ANOVA, ρ ≤ 0.05) between 

infection groups and mock infection (MOI = 0). † denotes significant difference (ANOVA, ρ ≤ 

0.05) between VACV-WR and ∆O1. 
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Figure 20. VACV-induced motility was ablated with ∆O1 infection. 

Confluent monolayers of BS-C-1 cells were serum starved for 2 h, then infected with VACV-

WR (WR) or ΔO1 (MOI = 1). After virus adhesion (one HPI), wounds were scratched into the 

cell monolayer with pipette tip. Cells were washed three times, and incubated in serum-free 

media. Wounds were photographed (100X magnification) 0 – 44 HPI. Experiments were 

performed at least 3 times, and representative data are presented. The number of cells that 

migrated into scratch regions (n = 5) were enumerated, and the mean ± standard deviation of 

Figures 20 A and B are indicated in Figure 20 C and D, respectively.  One-way ANOVA was 

performed separately for each time point and * denotes significance (ρ ≤ 0.05).  
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Chapter 5. Discussion 

That the O1 protein regulates the host immune system to promote virulence during 

VACV infection was the major hypothesis tested by this study. This hypothesis was initially 

based on evidence from sequence and literature analysis that the O1L gene is a large gene most 

highly conserved within poxviruses that specifically infect mammals. It is unlikely that 

poxviruses would retain a large gene unless it conferred some survival advantage, either through 

viral multiplication or as a defense against a host. Since O1L is a gene not essential for viral 

replication, it was surmised that this gene, among a number of other possibilities, was retained to 

allow poxviruses to combat the antagonistic environment of a host immune response. 

Furthermore, the levels of O1L gene homology are highest among mammalian-tropic poxviruses, 

compared to poxviruses that infect other host species. Since mammals have a more complex 

adaptive immune system that is lacking in lesser vertebrates, it was hypothesized that the O1L 

gene may more specifically interact with the host adaptive immune response.  

5.1 ∆O1 and VACV-WR immunogenicity   

Investigations into the function of O1 in context of the adaptive immune system 

originated with a survey of the ability of a murine host to initiate a humoral immune response to 

VACV infection in the presence (VACV-WR) or absence (∆O1) of the O1 protein. The humoral 

immune response during ∆O1 infection was enhanced, as evidenced by the substantial increase 

in the level of anti-VACV antibody detected in sera from ∆O1 infected mice compared to 

VACV-WR-infected mouse sera (Figure 7). Although studies have identified O1 as one of 21 

VACV proteins that compose the human antibody response to vaccination with different strains 

of VACV (147), and O1 is one of 19 VACV proteins preferentially targeted by mouse sera (148), 

how O1-specific antibody influences a primary VACV-WR infection in mice has not been 
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directly tested. Future experiments should be performed to clarify whether the reduced antibody 

levels detected in sera from VACV-WR infected mice are due to a mechanistic suppression of 

the immune response, or if the reduced signal in the ELISA assays (Figure 7) was due to 

significant levels of O1-neutralizing antibody in vivo. If VACV-specific antibody in the serum of 

VACV-WR infected mice was bound to the O1 protein (not present in ∆O1 infection), this may 

have sequestered antibody available for ex vivo detection via ELISA. Since these observations 

were initially deemed sufficient indication that O1 may interact with the host immune response, 

experiments to define a putative immunoregulatory mechanism were pursued. 

ELISpot assays were performed to elucidate whether T cell responses were affected in 

the same time frame as observed alterations in the humoral response. Cellular responses to 

VACV-WR and ∆O1, as detected by IFN-γ ELISpot, appeared to be similar in magnitude. This 

was surprising, given the number of reported CD4- and CD8-specific epitopes within the O1 

protein (131, 143, 144, 173, 174). These recall responses to VACV antigens were measured 

seven days post-infection, so it is possible that splenocytes at this time had not sufficiently 

expanded in vivo to allow for a detectable difference in VACV-specific recall response to 

VACV-WR and ∆O1 infection ex vivo. Future studies investigating a difference at a later time 

point post-infection (>12 days post-infection) may therefore provide more information of O1 

effects on VACV-specific T cell development in vivo. 

5.2 ∆O1 and ex vivo antibody production 

Given the observed alteration in humoral response, and lack of detectable differences in T 

cell response in vivo, it was hypothesized that O1 may directly influence the ability of B cells to 

produce antibody. Splenocytes from naïve mice that were infected and activated ex vivo with 

LPS produced a reduced quantity of antibody compared to mock-infected cells; however, 
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reductions induced by both VACV-WR and ∆O1 were similar (Figures 8 and 9). Although LPS 

stimulation was sufficient to induce levels of antibody production significantly greater than 

unstimulated cells, there is the potential that the experimental approach did not accurately reflect 

the mechanisms needed to induce the biologically relevant levels of antibody observed in vivo. 

Since LPS activation of B cells is not the primary mechanism for inducing antiviral antibody 

production during VACV infection, it is likely that ∆O1-infected B cells may still be better 

equipped to mount a humoral response. Optimal production of antibody by B cells in vivo relies 

on a combination of signals, including BCR activation, and T cell dependent stimulation through 

ligation of co-stimulatory receptors and production of cytokines like IL-4. LPS is known to 

stimulate ERK signal transduction (175), so if O1 constitutively sustains ERK activation, it is 

possible for the O1 expressed in VACV-WR infection to functionally synergize with the LPS 

signal, effectively minimizing detectable differences in antibody production between VACV-WR 

and ∆O1. For future studies to confirm that the O1 protein does not directly inhibit B cell 

production of antibody, it would be beneficial to employ an antibody induction assay where B 

cell activation reflects in vivo conditions more closely.  

5.3 Ablated antigen presentation with equivalent T cell activation 

Taking a step back, it was hypothesized that if O1 did not directly affect B cells, O1 may 

modify the global process that precedes humoral immunity – antigen presentation. If appropriate 

interactions between APC and T cells are ablated, any number of subsequent alterations in the 

nature of T cell physiology (i.e. activation, differentiation, or proliferation) or function (i.e. 

cytokine production, etc.) would theoretically result in the reduced antibody production observed 

previously. To preclude interference of T cell specific epitopes present in the O1 protein, the 

well-established 2D2 antigen presentation model was employed (169). Compared to VACV-WR 
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infection, ∆O1-infected splenocytes were better activated upon antigenic stimulation, resulting in 

higher levels proliferation by IL-2 dependent CTLL cells. Despite the significant difference 

between the parental infection and the mutant, the magnitude of difference between the two 

viruses was smaller than expected. This small but significant difference was observed 24 HPI 

(Figure 11) through 48 HPI (data not shown), but diminished at later time points. There are 

several explanations that may provide insight for future studies. First, it is possible that, over 

time, excess bioavailable IL-2 was either degraded or consumed by proliferating T cells in 

splenocyte culture, resulting in the inability to detect potentially greater differences in the 

subsequent bioassay. Secondly, although IL-2 containing media was used as a positive control, 

since anti-IL-2 antibodies were not used to confirm that IL-2 was actually contributing to CTLL 

proliferation; it is possible that differences in CTLL proliferation with ∆O1 were due to 

production of another lymphoproliferative cytokine that also promotes CTLL proliferation, but is 

produced in smaller quantities (e.g. IL-4). Additionally, multiple OPXVs encode IL-2 binding 

proteins and decoy IL-2 homologs, including VACV (176). If these VACV IL-2 modulatory 

proteins function in VACV as they reportedly do in other OPXV, this would alter detectable IL-2 

in both virus groups. Since it is unknown how O1 influences the function of other VACV 

proteins, including putative IL-2 regulatory virulence proteins, it is not possible to draw a direct 

association between O1 and IL-2 production with these data.  

Furthermore, Yao et al. reported that lower doses of VACV activate DC better than 

higher doses, and that viral doses >10
-3

 PFU/cell resulted in inhibition of DC maturation (98). 

Since the MOI used (1 PFU/cell) may have been too high, the lower magnitude of difference 

between VACV-WR and ∆O1 would make sense considering DC function may have been 

reduced overall. Reports have also shown that splenic DC (SPDC) are more resistant to infection 
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in vitro (98) compared to BMDC, so the splenocyte culture used for antigen presentation assays 

may have consisted of cells that were more refractory to infection (e.g. SPDC), thus reducing the 

magnitude of antigen presentation observed. Finally, it is conceivable that if O1 function is 

restricted to a specific cell type, the quantity of these putative cells may have been insufficient 

within antigen-activated splenocyte culture to induce a greater measurable difference in antigen 

presentation. 

Since there were multiple observations that antigen presentation was increased in ∆O1-

infected, antigen-activated splenocytes, it was of interest to dissect this system to identify 

putative intercellular and/or cell-specific interactions that may have contributed to these 

differences. Splenocytes that were infected and activated with ConA were assessed via flow 

cytometry to detect expression of the lymphocyte activation marker CD69 on the surface of 

CD4
+
 T cells. Data in Figure 12 demonstrate that ConA was sufficient to induce significant 

levels of CD4
+
CD69

+
 cells; however, CD69 expression was equivalent between VACV-WR and 

∆O1 infections. The results obtained were similar when ConA was used to activate positively 

selected CD4
+
 splenic T cells that were infected with either virus (data not shown). Since the 

data indicated no difference between VACV-WR and ∆O1 infection in the ability of CD4
+
 T 

cells to express the activation marker CD69, it is more likely that if O1 is indeed affecting some 

aspect of T cell biology, it is a process subsequent to T cell activation. 

5.4 Cell survival and metabolism during VACV infection 

Another method was employed to determine whether ∆O1 functioned in splenocyte 

resident cell types differently than VACV-WR. MTS assays were performed, and focused on cell 

types found in spleen – B cells, T cells, macrophages, and DCs. Since VACV-WR infection is 

lethal in certain cell types, it was expected that if cells were permissive to infection, they should 
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be killed with sufficient quantities of VACV-WR. In the T cell lines assayed, doses up to 10 

PFU/cell did not significantly reduce the OD readings in either VACV-WR or ∆O1 (Figure 18 

A). This is not surprising, given that resting T cells are refractory to VACV infection (101, 177), 

and it has been previously reported that high doses of VACV-WR have minimal effects on T cell 

metabolism (99). However, Byrd et al. recently reported that when activated, T cells derived 

from primary human leukocytes become permissive to a complete cycle of VACV binding, 

infection, and replication (177). The lack of VACV membrane receptors on the surface of these 

cultured rodent T cells, as well as an intracellular environment lacking key replication factors, 

are likely explanations for the absence of metabolic effects during T cell infection with either 

virus.  

Similarly, VACV infection had no effects on the metabolism of a murine B cell line or 

purified primary murine splenic B cells, and there were no differences between VACV-WR and 

∆O1 infections. When B cells were treated with LPS (Figure 18 D), the MTS OD significantly 

increased in both virus and mock infected groups. This suggests that LPS treatment increased the 

overall number of B cells in culture, consistent with literature reports that LPS induces B cell 

activation and proliferation (178–181). According to one report, B cells are permissive to VACV 

binding, but not infection (177), so the observation that VACV infection had little effect on B 

cell metabolism/viability suggests that B cells may not have been infected. The question that 

remains is how VACV could reduce antibody production ex vivo, if B cells were not infected. 

Taken together, the ex vivo antibody production and B cell viability assays suggest that VACV 

directly reduces antibody levels, without reducing B cell viability. Future studies should be 

performed to identify whether these B cells are permissive to infection, and if VACV binding to 
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B cells is sufficient to block antibody production, or if antibody produced ex vivo is neutralizing 

VACV in culture, which would explain reduced levels detected via ELISA.  

The ability of VACV-WR to reduce cell viability was observed in the BMDC (Figure 19 

A) and RAW 264.7 macrophage cell infections (Figure 19 B), as doses between 3-5 PFU/cell 

were sufficient for both VACV-WR and ∆O1 to reduce OD. In BMDCs, the addition of LPS also 

enhanced metabolism, although the influence of VACV-WR and ∆O1 infections on metabolism 

was essentially the same. These data suggest that O1 does not influence BMDC metabolism, and 

by proxy, cell viability.  

∆O1-infected macrophages were less metabolically active than VACV-WR infected cells, 

and the magnitude of difference increased with viral dose (ρ > 0.05 at MOI =10, Figure 19 B). 

Since MTS assays are limited to the ability to correlate the metabolic state of living cells present 

in culture, the differences in OD observed could indicate several possibilities, including: 1) ∆O1 

infection reduces the metabolic state of macrophages compared to the parent virus; 2) that ∆O1 

infected macrophages proliferated to a lesser extent, effectively reducing the quantity of 

metabolically active cells, or 3) macrophages remain viable for longer during VACV-WR 

infection compared to ∆O1. The latter two possibilities are not mutually exclusive, however, as 

increased proliferation and sustained viability could occur simultaneously.  

Given any of the circumstances discussed above, a model of the O1 mechanism in the 

context of the macrophage environment might include: enhanced proliferation, metabolism, or 

anti-apoptotic functions. As one example of how this might work: VGF is a homolog of the 

human EGF, and has long been established as a virulence factor that induces cell proliferation 

during VACV infection. Cells in a prolonged proliferative state are thought to provide a 

productive environment for optimal viral replication. Since it is has been reported that O1 
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functions downstream of VGF (89), it is not unlikely that O1 synergizes with VGF signaling to 

enhance cellular proliferation in certain cells. Increased cellular proliferation in VACV-WR 

infected RAW 264.7 cell line would be a simple explanation for why metabolism was greater 

than in ∆O1 infection.  

An interesting proposition is one where O1 concurrently influences: 1) cellular tropism, 

by enhancing infectivity of EGFR-expressing cells, 2) viral dissemination, as motility of VACV-

infected cells enhances viral spread, and infiltration of macrophages into uninfected tissues is 

thought to be one of the primary mechanisms for VARV spread; and 3) immune evasion. If O1 

influences the preference of VACV for infecting anti-inflammatory macrophages (102), this 

would be a stealth mechanism for avoiding early immune detection while the virus waits for 

safer environments to establish infection (e.g. in ovaries). The betaherpesvirus human 

cytomegalovirus (HCMV) has been shown to simultaneously affect the first two possibilities, 

with speculation that the third is also possible (182). Like VACV, activation of EGFR by HCMV 

promotes infection. Chan et al. demonstrated that inhibiting EGFR abrogated HCMV infectivity 

of monocytes, and led them to conclude that EGFR acts as an entry receptor for HCMV. 

Furthermore, EGFR activation promoted monocyte motility and trans-endothelial migration 

during HCMV infection. The demonstration by Chen et al. that these effects were PI3K-

independent was important for establishing that the aforementioned effects occurred subsequent 

to HCMV glycoprotein B (gB) activation of EGFR. HCMV gB induction of EGFR activity is 

functionally orthologous to VACV C11, including anti-apoptotic functions. It would be 

interesting to determine whether the HCMV manipulates ERK downstream of EGFR to 

influence entry and motility. Given that herpesviruses and poxviruses are closely related, it is 
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possible that there is some betaherpesvirus protein that is functionally orthologous to O1, which 

bears further study. 

Upon demonstrating that ERK activation and plaque sizes were equivalent in CVA and 

CVA-∆O1 infected, ERK inhibitor-treated chick embryo fibroblast cell line, but significantly 

different in a number of other cell lines tested, Schweneker et al. surmised that O1-sustained 

activation of ERK clearly depends upon cell type (89). Whether O1 functions similarly in 

macrophages (i.e. by sustaining ERK activation) remains to be established. If so, it is 

conceivable that this would provide an experimental model in which to study the O1 functional 

phenotypes observed to date in a single, biologically relevant, environment. Finally, since the 

ERK/MAPK signal cascades are also known to regulate metabolism, apoptosis, and macrophage 

differentiation, whether O1 has any functional significance in these contexts will be of great 

interest.   

5.5 ∆O1 plaque and cell migration phenotypes 

Another aspect of this study was to evaluate O1 behavior in cell culture. Investigations 

were initiated on two levels: 1) determine a mechanism whereby O1 influences CPE; and 2) 

characterize the O1 protein to understand how the structural biology of this pox virulence protein 

lends itself to novel functions.  

 Prior reports (89) showed that CVA-∆O1 formed plaques that were up to 50% smaller in 

some cell types. It was of interest to quantify similar effects with the VACV-WR strain and ∆O1. 

Although predecessors in the laboratory where these studies were performed reported little to no 

difference between VACV-WR and ∆O1 plaque sizes (168), the data reported herein 

demonstrate a 30% reduction in the diameter of ∆O1 plaques formed on BS-C-1 cell monolayers. 

Additionally, clearance of cellular debris from plaque foci was also reduced in ∆O1 infection, in 
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agreement with Schweneker et al. Furthermore, data collected by predecessors to this study 

demonstrated equivalent levels of VACV-WR and ∆O1 replication and spread in single and 

multi-step growth analyses. Taken together, these results suggest that O1 may be classified 

among an emerging group of plaque phenotype-modulating proteins that affect cell morphology 

but not viral life cycle (113).  

 One of the proteins in the aforementioned group, F11, has been shown to similarly 

enhance VACV plaque size, and subsequent studies have demonstrated that F11 promotes the 

motility of VACV-infected cells (122, 124, 183). Thus, it was hypothesized that O1 may 

influence VACV-WR induced cellular migration. Indeed, VACV-WR infected cells were 

significantly enhanced in their migratory capacity compared to ∆O1 infected cells. The greatest 

magnitude of VACV-WR induced cellular migration into a monolayer wound occurred between 

0 and 16 HPI, which closely reflects prior kinetic studies demonstrating that VACV-induced 

migration occurs maximally 10-14 HPI (120). Furthermore, Sanderson et al. also reported that 

early VACV gene expression was necessary and sufficient to induce cell migration, but not 

formation of cellular projections (120). This supports a role for O1 in the temporal regulation of 

VACV-WR induced migration, since O1 is expressed early and the increased cell migration of 

VACV-WR infected BS-C-1 cells was within established kinetics. Interestingly, in recent 

observations of RAW 264.7 macrophages, there appeared to be distinct cellular projections in 

VACV-WR infected cells that were not present with ∆O1 infection at 16 HPI (data not shown). 

Byrd et al also recently published similar observations that VACV alters macrophage CPE at 16 

HPI (102). Although these preliminary data are informative, to further explore the role of O1 in 

cell migration, and whether VACV-WR infection induces migration of macrophages and 

potentially contributed to virulence in vivo, additional studies should be conducted. The current 
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data provide strong evidence to suggest that O1 promotes migration of VACV-WR infected 

cells, which may contribute to the expanded plaque size during VACV-WR infection. 

5.6 Structural characteristics of the O1 protein 

 Finally, knowledge of the structural biology of O1 has been limited to analysis of DNA 

and peptide sequences to uncover protein homology and predict functional motifs (89, 139, 160), 

or PCR analysis of mRNA expression (8, 89). Given that the majority of gene functions depend 

upon protein structure, the O1 protein was characterized to determine 1) if the O1 protein was 

expressed; 2) whether the protein size was as the amino acid sequence predicted or if cell-

dependent modifications (e.g. predicted N-linked glycosylation motifs) were functional; and 3) 

relative expression kinetics. Rabbit sera raised against two separate O1 peptides sequences used 

in immunoblot analyses detected a protein band of ~78 kDa that was present in VACV-WR 

infected cell lysates but not in ∆O1 lanes (Figures 14-16). These data are the first reported 

studies detecting the O1 protein expression during VACV-WR infection.  

 Although the O1 protein band detected was equivalent to the size predicted based on the 

peptide sequence, it is possible that this same size range would also be observed if the O1 protein 

undergoes cleavage and post-translational modification following expression. With at least five 

putative N-linked glycosylation motifs in the O1 sequence, it was of interest to determine 

whether O1 was, in fact, N-linked glycosylated. Two enzymes that cleave glycosylation moieties 

at different positions were used, but the O1 band did not migrate differently upon enzymatic 

treatment, suggesting that the O1 protein is not N-linked glycosylated. This is not surprising, 

given the early expression and activity kinetics of O1. If glycosylation did occur, the O1 

functional kinetics would rely upon cellular processes, and the time required to traffic through 

the cell would delay potential functions. Since O1 mRNA is detected as early as 30 minutes post-
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infection (8, 89), and RAF/MEK/ERK phosphorylation is reduced with ∆O1 infection within 30 

minutes (89), it is questionable whether any post-translational modifications occur prior to O1 

function. This is not to say that later modifications do not occur; however, data obtained from 

cellular lysates 8-10 HPI (Figures 15 and 16) indicate that N-linked glycosylation is not among 

them. Furthermore, the O1 band migrates to the same ~78 kDa range from 3 through 24 HPI 

(Figure 15), suggesting that any protein modifications that may occur would be minimal. Since 

many VACV proteins that are highly glycosylated are expressed later and are membrane 

associated, the absence of N-linked glycosylation argues against possible integral membrane 

localization for O1. Additionally, since ERK is mainly cytoplasmic until activated, and O1has 

been speculated to function upstream of RAF, it could be inferred that O1 is a soluble 

cytoplasmic protein. Taken together, these findings are the first to show that O1 is expressed as a 

78 kDa protein that lacks N-linked glycosylation modifications. 

 Finally, Phyre2 software was used to generate a 3D model of the O1 protein based on the 

amino acid sequence. The homology of the protein structure generated ab initio was compared to 

previously modeled proteins reported in PDB (Table 1). Ab initio modeling is notoriously 

imprecise, so it is unsurprising that reported structural homology to the O1 protein (of which 

little is known) was given low confidence scores. However, proteins from different species can 

share low sequence similarity, yet be functional orthologs; therefore, these findings were given 

due consideration.  Interestingly, low levels of sequence identity with O1 (5 – 30%) were shared 

among a number of protein families with functions ranging from bacterial toxins to mammalian 

enzymes involved in DNA replication. Since O1 contains a predicted DNA binding domain, it 

was unsurprising that there were a number of proteins associated with DNA replication. 

However, with numerous demonstrations that O1 is not necessary for VACV replication, it is 
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unlikely that O1 functions within this realm. On the other hand, the putative O1 nuclear 

localization signal (NLS) is interesting in the context of ERK signal cascade, since ERK is 

known to translocate to the nucleus upon activation. Whether the predicted O1 NLS is 

functional, and whether this has any bearing on ERK activity during VACV infection would be 

useful to know, as nuclear translocation by a virulence protein would be a completely novel 

signal cascade manipulation for poxviruses.  

The sequence identity to various lyase domains, although limited, is also of significant 

interest, since it has been shown that the HMG CoA lyase indirectly regulates B-RAF mediated 

cell proliferation (184). Additionally, ATP citrate lyase, which functions downstream of HMG 

CoA lyase, has also been implicated in EGF-initiated MAPK-mediated anti-apoptotic signaling 

(185). It could therefore be possible that O1 functions as a lyase to enhance ERK activation. O1 

also had a putative thioredoxin-like fold. Thioredoxins negatively regulate signaling of apoptosis 

signal-regulating kinase (ASK) through direct binding (186). Thioredoxin overexpression 

elevates ERK phosphorylation (187), and thioredoxin knockdown inactivates EGF-induced ERK 

activation (188). Since all known VACV apoptosis regulators are inhibitory (189), it would be 

interesting to determine whether O1 moderates pro-apoptotic stress responses in order to 

maintain the cell viability needed for VACV infection. 

O1 also exhibited low levels of predicted structural homology to the ligase family of 

proteins, with multiple E3 ubiquitin ligase homologs represented. Ubiquitin ligases target 

proteins for degradation, and it has been shown that an E3 ubiquitin ligase targets the ERK 

phosphorylase MKP-1 (190). Since MKP-1 downregulates ERK, inhibition of this negative 

feedback regulator would be one method that O1 could employ to sustain VGF-mediated 

RAF/MEK/ERK signaling (Figure 6). Since VACV encodes an MKP homolog [H1 (191)], it is 
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likely that O1 activity influences the function of H1, so it will be important to determine if O1 

functions in tandem with this protein. 

Since O1 is such a large protein, it is possible that the shared sequence identity with 

smaller proteins is not as low as predicted. Given that enzyme active sites don’t encompass the 

entirety of a protein, and proteins can have a number of active sites with different functions, it is 

possible that there may be more than one functional ortholog among the protein families 

discussed. Although many of the protein domains discussed exhibited lower levels of structural 

homology to the O1 protein, there are some poxvirus proteins that have been demonstrated to 

function similarly to homologous proteins with as little as 25% sequence similarity (138, 192), so 

there is some relevance to these considerations. Overall, these predictions may provide 

mechanistic insight into the O1 functions observed, and provide targets when designing future 

studies.  

5.7 Implications for biotherapeutics 

In less than a century, the poxvirus field has progressed beyond desperation to eradicate 

the scourge of smallpox to the ability to actually use sister OPXV viruses to treat many other 

human menaces, from cancer to Ebola virus. In the context of these studies to understand the role 

of O1, the alacrity in which novel foundational research into O1 has been translated into a 

functional treatment for cancer is especially noteworthy. When Schweneker and colleagues first 

published data on O1 in 2012, there was minimal interest in continuing research on a protein that 

behaved contrary to expectation, and the project was discarded by that group (personal 

communication, 2014). As the research in this report was ongoing, Nakamura et al. (164) were 

able to utilize the expanded catalogue of poxvirus information provided by Schweneker, and a 

novel VACV oncolytic vector lacking both VGF and O1 was developed in Japan in 2014. The 
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concept was that enhanced cell proliferation promotes efficient VACV infection, so removing 

VGF and/or O1 would only allow efficient VACV replication in cells where basal 

RAF/MEK/ERK is elevated. In this case, tumor cells become the only proliferative environment 

for VACV, so the tumor cells that are targeted for VACV multiplication are subsequently lysed 

upon resolution of viral life cycle. Thus, VGF-/O1- virus use to preferentially target tumor cells 

for oncolysis was experimentally tested, and received patents worldwide in 2016. Given the 

laudable accomplishments that have employed established phenotypes in the absence of O1, it 

will be of great importance in the future to differentiate this from what happens when O1 is 

present.  With certain classes of poxvirus virulence proteins (cytokine inhibitors/mimics, 

complement inhibitors, protease inhibitors) having been tested individually in the absence of 

virus for their potential as novel biotherapeutics (67), it is conceivable that the O1 protein may 

have a positive future after all. 

 



 

 

Chapter 6. Key Findings and Conclusions 

Because the O1 protein is most highly conserved by poxviruses that infect mammals, but 

is not essential for the viral life cycle, it was hypothesized that the O1 protein may be retained by 

mammalian-tropic poxviruses in order to combat the host immune response. Mice were infected 

with the VACV Western Reserve strain (VACV-WR) or with VACV-WR virus lacking the O1 

protein (∆O1), and higher levels of VACV specific antibody were detected in sera from ∆O1-

infected mice. However, VACV-specific T cells from mice infected with either virus were 

reactivated equally ex vivo. To determine if VACV-WR directly ablated antibody production, 

murine splenocytes and primary B cells infected with VACV-WR and ∆O1 infection were 

examined ex vivo for their ability to produce antibody. Infection with both viruses reduced 

antibody levels equally, suggesting that alterations in antibody levels during ∆O1 infection may 

occur through an indirect mechanism.  

VACV inhibition of antigen presentation is a mechanism that indirectly reduces antibody 

production in vivo, therefore the influence of VACV-WR and ∆O1 infection on the ability of 

antigen-stimulated mouse splenocytes to present antigen and subsequently induce T cells to 

produce interleukin-2 (IL-2) was tested ex vivo. Compared to VACV-WR, ∆O1-infected 

splenocytes induced significantly higher levels of IL-2. However, the number of activated helper 

T cells (CD4
+
CD69

+
) did not increase with ∆O1 infection, suggesting that the improved antigen 

presentation noted with ∆O1 infection may not occur at the level of T cell activation. Taken 

together, it appears that ∆O1 infection increases immunogenicity but may not directly enhance B 

or T cell activity. 

O1 purportedly enhances MAPK signal transduction, the functional relevance of which is 

speculated to be cell type dependent. Thus, it was hypothesized that O1 function differs among 
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immune cell types. Of the adaptive (e.g. T and B lymphocytes) and innate [e.g. DCs and 

macrophages] immune cells examined for differences in cell viability, the macrophage cell line 

was the only one found to be differentially affected by VACV-WR or ∆O1 infection, signifying 

that macrophages may be a biologically relevant immune cell in which O1 functions.  

Plaque assays were performed to investigate the contribution of O1 to VACV CPE in cell 

culture. VACV-WR plaques were significantly larger than ∆O1, supporting prior reports of 

reduced CPE with another VACV strain lacking O1. VACV-induced cell migration contributes 

to CPE, so it was hypothesized that O1 may enhance migration during infection. Cellular 

migration was significantly delayed with ∆O1 infection, whereas VACV-WR infected cells 

migrated optimally as previously reported.  O1 effects on migration may be an important 

mechanism for virulence in vivo, especially if O1 functions similarly in an immunologically-

relevant cell type. 

Expression of O1 has been detected between three and 24 hours post-infection. Despite 

numerous NxS/T motifs, N-linked glycosylation of the O1 protein was not detected. Analysis of 

the O1 secondary structure revealed a number of proteins with low levels (5 – 30%) of sequence 

identity. Although several pox proteins reportedly have low sequence identity with their 

functional orthologs, the low levels of structural homology detected suggest that the O1 protein 

structure is unique to poxviruses, and may have a completely novel functional mechanism. 

In summary, this work has revealed novel properties of O1 biology, and provided data 

suggesting that the immunogenicity of the VACV-WR strain can be increased by the removal of 

O1. Data support prior reports that O1 function may be cell type dependent, as results showed 

that RAW 264.7 macrophage cell line was the only one tested where metabolic activity, and 

implied cellular viability/proliferation, significantly differed between VACV-WR and ∆O1. This 
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data may provide a biologically relevant immune cell type in which O1 functions optimally to 

promote virulence in vivo. The influence of the VACV O1 protein on enhancing virally-induced 

cellular migration provides insight into how VACV-WR causes CPE in vitro, which may provide 

a foundation for future studies that seek to clarify potential associations between plaque 

phenotype with poxvirus virulence mechanisms in vivo. Finally, the function of the VACV 

virulence protein O1 has been of significant interest in emerging oncolytic vectors, so any 

mechanistic insight provided by these studies may be applicable to future biotherapeutic 

development.  
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