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Using the theory of General Relativity and quasi-normal modes (QNMs)

from the Teukolsky equation as a source of quasi-periodic oscillations (QPOs)

from black holes provides information about black hole mass and spin. This

is related to standing wave resonance phenomena of gravitons and photons

trapped in a gravitational potential well surrounding the black hole and pro-

vides evidence for the existence of standing wave gravitons in a high gravita-

tional environment, which are observable by the QPO frequencies as infalling

electrons interact with these resonance states.

We calculate the QNM angular frequency as a function of spin parameter

and create regression equations to relate these frequencies back to spin param-

eter. The QNM frequencies are what can be experimentally measured, and

therefore are preferred as the independent variables. We then compare these

equations to QPO data collected from the supermassive black hole Sgr A* and

stellar mass black hole GRS1915+105 to calculate the spin parameter for each.

The spin parameter of Sgr A* is calculated to be 0.431±0.075 and the spin pa-

rameter for GRS1915+105 is calculated to be −0.9875± 0.0005. This indicates

GRS1915+105 has a retrograde spin.

Due to the precise measurement of the QPOs from GRS1915+105, we are



able to calculate the mass of the black hole to be 10.09 M� using the necessity

for consistency of mass and spin between the graviton and photon resonances.
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1 Introduction

Chi-kwan Chan, from the Harvard-Smithsonian Center for Astrophysics states,

“Quasi-periodic oscillations (QPOs) are strong coherent features in the power den-

sity spectra that are found in different low mass x-ray binaries. Their frequencies...

correspond to accretion flows very close to the central objects. Understanding the

origin of QPOs will, therefore, lead to precise measurements of black hole spins as

well as direct tests of Einstein’s equivalence principle. Although several models have

been proposed in the last decade to explain some aspects of the observations, the

origin of QPOs is still a matter of debate” [1].

According to Chan, understanding the nature of the QPOs is the gateway to un-

derstanding the nature of the black hole spin. The work presented in this dissertation

provides a new understanding for the QPOs and provides an explanation for their

existence within the observed signal from a black hole. This new model for the QPO

shows that they are a consequence of the Quasi-Normal Modes (QNMs) of standing

wave graviton and photon resonance states orbiting in the near event horizon region

(below the Innermost Stable Circular Orbit, ISCO) as described by the solutions to

the Teukolsky equation.

Not only does this method provide a calculation for the spin of a black hole based

on these resonance frequencies, it also tests the theory of general relativity (GR) in a

near black hole environment and provides observational evidence for the nature and

existence of standing wave gravitons, which have yet to be observed in this form. The

measurement of a graviton or gravitational wave, is a well sought after experiment

which has been gaining popularity and evidence since the two previous proofs of grav-

itational wave existence, the Hulse and Taylor pulsar binary experiment [2], and the



Laser Interferometer Gravitational-Wave Observatory (LIGO) interferometer experi-

ment which observed gravitational waves from a black hole merger [3] and a neutron

star merger. Measuring a graviton standing wave would provide an additional proof

of this type of wave and will show they are not limited to traveling waves.

The resonance states of graviton and photon standing waves relate to a well ob-

served phenomenon known as the 3:2 ratio for the x-ray spectrum of stellar mass

black hole binaries. The 3:2 ratio phenomenon, up to the work presented in this dis-

sertation, has not been adequately explained by a harmonic interpretation due to the

lack of a fundamental frequency observation [4], but the resonance states presented

in this work provide an explanation for this phenomenon using the nature of photons

and gravitons in the near event horizon environment of a black hole.

The work in this dissertation provides two accurate spin calculations, one for the

supermassive black hole Sgr A*, which resides in the center of the Milky Way galaxy,

and one for the stellar mass black hole GRS1915+105. Both of these calculations

provide results within the limits for previously accepted value of the spin parameters

for these black holes. A calculation for the mass of GRS1915+105, based on the

method, is also given to be within the expected values for the mass. These two spin

measurements show the ability for this method to accurately provide a spin parameter

value for both a supermassive black hole and a stellar mass black hole. The mass

calculation for GRS1915+105 also provides a possible new calculation method for the

mass of a black hole based on the accuracy of the measurements of the QPOs.
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2 Background

2.1 Units in General Relativity

General relativistic (GR) equations, especially those pertaining to black holes, are

often scaled to be unitless. This is done by setting specific constants, such as the speed

of light (c) and the gravitational constant (G), to 1. Converting then from a value

in this unitless system to one usable in the real world becomes crucial to understand

the significance of that result, but this simplifies the mathematics significantly. Black

Holes are often scaled by mass as well. This is viable since black holes only differ by

two factors, mass and spin. Outside of mass and spin, all black holes are the same.

This means that if the mathematics is scaled by mass and spin, it is universal for all

black holes. A simple conversion for time can be seen in equation 1, where τ(s) is a

time in units of seconds and t is unitless. Notice that if G, c, and M are all set to 1,

this unitless value represents a time in this unit system.

τ(s) = t ∗GM/c3 (1)

Performing a unit analysis on the GM/c3 term shows that if G is in units of Nm2

kg2
,

c is in m/s and M is in kg, this creates a unit of seconds, making the unitless t a value

in seconds, τ(s), with this conversion factor. A conversion factor of GM
c2

is used for

unitless length. Table 1 shows many of the commonly used unit conversion factors in

general relativity.



Table 1: The typical unit conversions for distance (meters), time (seconds), energy
(joules), and angular momentum (joule seconds) units to unitless quantities. This is
commonly used in GR to represent these quantities as mass scaled pure numbers to
apply them to all black holes.

Quantity SI Unit Unitless Conversion Factor

Distance m GM
c2

Time s GM
c3

Angular Momentum Js GM2

c

Energy J Mc2

Frequency Hz c3

GM

2.2 Black Holes

2.2.1 Collapse Creation Model

Introductory texts to astrophysics, such as Introduction to Modern Astrophysics

by Carroll and Ostlie [5], explain current black hole creation methods for stellar mass

black holes. Stellar mass black holes are created when the largest supergiant stars

explode in a supernova. This occurs because the core of the supergiant has depleted

its fusable materials and is left with an iron core. Iron is not energy-efficient to fuse

or undergo fission and so it does not provide energy to the star in order to continue

to create enough radiation to stabilize against gravitational collapse. In smaller, non-

supergiant stars, iron is not the final stage and so the resulting explosion is only known

as a nova. This is because the star is not massive enough to create enough heat when

collapsing to ignite another element’s fusion reaction within the star. Figure 1 shows

4



the life of a star, from nebula birth to final remnant left over from this collapse. Note

that only the largest of the supergiants are able to become black holes.

Figure 1: The life cycle and evolution for various sized stars and their progression
toward their final remnant. (Image Credit: User:BedrockPerson for Public Domain
use in June 2017 for Wikipedia.)

Whether the core is iron or an other element the star is incapable of fusing, the

star then begins to collapse without stabilizing and expanding out again. If the star

is large enough, the total collapse of the star exerts enough pressure within the star

to overcome proton-electron degeneracy, creating a core of neutrons. This is shown in

5



Figure 2, which shows the differences between the structure of a white dwarf, neutron

star, and black hole. Since neutrons are fermions, they follow the Pauli Exclusion

Principle and are unable to enter the same state, causing an outward degeneracy

pressure which can balance the gravitational pressure from the collapsing remnant,

creating a stable neutron sphere. In the case of a neutron star, the outer shell of the

star explodes from the stable neutron sphere, leaving the core behind. For a black hole

to be created, the pressure inward due to gravity must exceed neutron degeneracy

pressure outward, due to the Pauli Exclusion Principle, forcing the neutrons into the

same state and smaller volume [5]. This creates a singularity known as a black hole.

Figure 2: The remnants of a stellar collapse. White dwarfs are created by smaller
stars and while the electrons are forced into their lowest state, the pressure is not
enough to overcome quantum degeneracy so the atoms remain in tact. Neutron
stars are created when electron degeneracy is overcome. Black holes are created
when neutron degeneracy is overcome, creating a singularity. (Image taken from
http://keywordsuggest.org/gallery/508491.html)

This degeneracy pressure can only be overcome if enough mass is contained within

a small volume, defined by the Schwarzschild radius (section 2.2.3) for a non-spinning

black hole [5].

6



2.2.2 Other Methods of Black Hole Creation

A black hole can also be created in a similar manner to the last stages of the

collapse creation method, when a neutron star is able to gain enough mass to overcome

degeneracy [5]. If the neutron star is able to increase its mass to a critical level, then

it will evolve into a black hole. This is usually only seen in neutron star binary

systems, where the neutron star is in a binary with a main sequence or giant star.

The gravitational pull from the neutron star is large enough to distort the Roche lobe

system of the binary and strip mass from the companion star, accreting it onto itself.

This increases the overall mass of the neutron star and it is able to collapse farther.

A Roche lobe is a sphere of gravitational influence that has been altered by another

body to become a teardrop shape for each body. If a mass extends outside of the

Roche lobe, it will transfer to the companion star through a point known as the

Lagrangian point in the mass transfer or accretion stream. It is possible, with a large

enough companion, for a white dwarf to accrete enough mass to evolve into a neutron

star and then eventually, with enough mass, into a black hole using this same process.

It is important to note that the mass transfer stream, and thus the direction of

the accreting material is dependent on the rotation of the binary, not on the spin of

the individual binary components.

2.2.3 The Schwarzschild Radius

The Schwarzschild radius (rs) is the radius at which light can no longer escape

from a non-spinning black hole, and it defines the size of the black hole for a non-

spinning black hole [5]. The entire mass of the black hole must fit within rs for it to

be able to overcome neutron degeneracy when spin is zero. This radius is determined

7



by and directly proportional to the mass. In a unitless mass scaled system rs is at 2

(the meaning of this can be seen in equation 2).

This is determined by the escape velocity equation, equation 3, with the velocity,

v equal to the speed of light c. Solving for the radius then gives equation 2, which is

the definition of the Schwarzschild radius [6].

rs =
2GM

c2
(in meters) = 2(unitless) (2)

1

2
mv2 =

GMm

r
(3)

Notice that these equations are non-relativistic. This is because the event horizon

is defined from the point of view of an outside observer and this Newtonian approach

is accurate given the constraint of being in the Schwarzschild metric (section 3) which

also indicates a zero spin. The Schwarzschild radius is the definition for the event

horizon for a black hole in the Schwarzschild Metric (zero spin), which is explained

in section 3, and does not hold true for other metrics.

The Schwarzschild radius provides a simple tool for understanding and calculating

the event horizon for a simple non-spinning black hole, since it combines commonly

known equations, such as escape velocity, with relativistic ideas in an easy to under-

stand manner. The event horizon placement for a spinning black hole is explained in

sections 2.2.6 and 3.3.

8



2.2.4 Types of Black Holes

Black holes have three basic size categories based on their mass, stellar mass,

intermediate mass, and supermassive [5].

The most common black hole is one created by a stellar collapse and is the stellar

mass black hole, which has about 3-15 times the mass of the sun, or solar masses

(M�) [5]. This mass means that the stellar mass black hole had to be formed by a

collapsing star significantly larger than the sun. If the remnant is 3-15 times the mass

of the sun, the original star must have been more massive than that. In physical size,

stellar mass black holes are very small. The Schwarzschild radius for these black holes

is only on the order of meters.

Intermediate mass black holes have a mass of about 100−105 M� but are debated

on whether or not they exist [5]. They are only observed as ultraluminous x-ray

sources in the centers of globular clusters and very small galaxies. This is because

the most massive stars are around 100 M� and the black holes must be smaller than

their parent star due to the collapse and expulsion of an outer envelope. Globular

clusters are old stellar groups that exist in the halo of galaxies. Their centers are

likely intermediate black holes that have formed from initial stars and over time have

built up their mass by absorbing other stars from the cluster.

Supermassive black holes are the largest at 105 to 109 M� [5]. They usually exist

at the centers of large galaxies, such as the Milky Way. Sgr A*, the black hole at the

center of the Milky Way Galaxy, has a mass determined to be near 4.0 × 106 M�.

This is discussed further in section 7.1.

Supermassive black holes at the centers of large galaxies are believed to aid in

the creation and stability of those galaxies, but little is truly known about their

9



role in this. Quasi-stellar radio sources (QSRs or Quasars) are believed to be actively

accreting black holes (they are actively taking in material) that emit massive amounts

of radiation during the early stages of galactic formation [5]. This indicates that the

supermassive black holes are present and growing during these early stages.

Supermassive black holes can be ejected from their host galaxy or absorbed by

another supermassive black hole during galactic mergers [5]. The largest supermassive

black holes are often found in the center of large galactic clusters, as those centers

are usually where many galactic mergers take place and the black hole is able to

grow significantly by consuming other black holes. If a supermassive black hole is

ejected, it is no longer visible unless it passes in front of an object. Black holes do

not emit light themselves and so the only way to observe one is when it interacts

with other material. This can be a gravitational influence, as can be seen by a binary

companion being pulled by a black hole, through gravitational lensing, or when it

absorbs material. When a spinning black hole absorbs material, some of the nearby

charged particles are able to follow magnetic field lines and get ejected from a jet

at the magnetic pole of a black hole. This is generally what happens in the case of

actively accreting QSRs, which can have jets lightyears (ly) long [5].

2.2.5 How Black Hole Spin is Initiated and Changed

Thinking about a black hole as a singularity, it may be difficult to also think of

it as a spinning body, but looking at the collapse creation model, it is reasonable to

believe a black hole would spin. The collapse of a star causes the body to spin due to

the conservation of angular momentum (equation 4), where I is the rotational inertia

and ω is the angular frequency.

10



I0 × ω0 = If × ωf (4)

This is exemplified by how a figure skater increases his/her rate of spin by retracting

his/her arms. The skater decreases the distance from his/her axis of rotation to a

mass in the system (his/her arm) and as that distance decreases, the inertia of the

system (I) decreases and the angular frequency (ω) of the system increases to conserve

momentum. Similarly an already spinning star that begins to collapse will rapidly

increase its spin as infalling material gets closer to the axis of rotation. This leaves a

rapidly spinning core once the star has fully collapsed. An infall of material is critical

to both black hole creation methods (section 2.2.1 and 2.2.2).

This phenomenon is observed with neutron stars which have a magnetic pole

misaligned with their axis of rotation and in the direction of Earth. This particular

type of neutron star is called a pulsar. The if the magnetic pole faces the direction of

earth, scientists are able to observe x-ray radiation coming from the neutron star. If

the pole is not aligned with the axes of rotation, the pulsar spin acts as a lighthouse,

where the x-rays are visible at some points in time and not in others. This allows

scientists to calculate a rate of spin. Through observation it is determined that

pulsars are generally rapidly spinning, which is a consequence of the spin induced by

conservation of angular momentum during their formation [5].

If other remnants, such as pulsars, are able to spin rapidly, it makes sense that

this same principle can apply to black holes. Black hole spin is rapidly increased

during their formation.

Black holes can increase and decrease their spin over time by adhering to the

conservation of angular momentum. As material falls into a black hole, that black
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hole’s spin increases similarly to how the spin increased during the collapse of its

parent star [5]. This indicates that black holes that are part of a binary system will

increase in spin more rapidly than those outside of a binary. Black holes decrease

their spin in the same way, by expelling material known through processes named the

Penrose Process, Blandford Znajek Process, or Hawking radiation. All are related

to quantum effects near the event horizon which can cause the statistically probably

emission of particles from the near event horizon region, causing a black hole to lose

mass and spin. Over an extremely long period of time, if a black hole does not intake

material, it can slow, shrink, and eventually vanish from existence through these

processes, which is known as black hole evaporation [5].

2.2.6 Prograde and Retrograde Spin

It is possible for a black hole to have an initial spin from collapsing and then

acquire an accretion disk that orbits in the same or opposite directions [5]. When the

orbiting material rotates in the same direction as the spin, the black hole has what

is called prograde spin. When the black hole is rotating in the opposite direction as

the material surrounding it, it has retrograde spin.

When thinking about retrograde spin and the method by which infalling material

can change spin, it is logical to think that the spin would slow over time, but with

black holes this is not the case. This is due to an effect known as frame-dragging [5].

The black hole pulls the space around it to conform to its motion in an effect called

frame-dragging. Infalling material for a retrograde spinning black hole will change

the direction of the space around it such that a particle with contrary angular velocity

of the spin will turn around and have a complimentary angular velocity to the black
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hole. Figure 3 shows what happens as a particle falls into a spinning black hole and

experiences the effects of frame-dragging.

Figure 3: The left image depicts the path of a particle falling into a prograde spinning
black hole. The right image shows the path of a particle falling into a retrograde
spinning black hole. In both cases, when the particle reaches the black hole it is
moving in the same direction as the spin and so will increase the spin of the black
hole. (Image credit: Dwight Vincent of University of Winnipeg)

In figure 3, notice how the retrograde case forces material farther outward from the

black hole before it spins inward. This changes the geometry of how material can enter

the black hole and shifts the event horizon and the Innermost Stable Circular Orbit

(ISCO) to a farther location from the center than that of an equal mass non-spinning

black hole [5]. Conversely, the frame-dragging from a prograde spinning black hole

will add to the motion of the infalling material and shift the event horizon and ISCO

closer to the black hole center as compared with an equal mass non-spinning black

hole, as seen in figure 4.
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Figure 4: The difference in particle distribution for retrograde, non spinning, and
prograde black holes. Retrograde spin causes the ISCO and event horizon to be
pushed farther from the center of the black hole compared to a non-spinning case, as
shown by the size of the black disk, and prograde spin causes the ISCO and event
horizon to be pulled closer. (Image Credit: NASA/JPL-Caltech)

The separation of particles near the black hole is something of importance when

determining if a black hole is spinning and by how much in the Teukolsky equation

(section 3.3.2). To understand the idea of particle separation, think of a constant

number of particles occupying the space, giving a certain density, around the edge of

the event horizon. If the event horizon is pushed farther from the center, the surface

area of the event horizon is increased, the density decreases, and the separation of

14



particles increases as compared to a non-spinning case. For a prograde spinning black

hole, the distance to the event horizon is decreased indicating a higher density and

less separation between particles.

2.3 Radiation of Electrons Near a Black Hole

Radiation near a black hole is dependant on the intake of material and distance

the material is from the black hole. Once material is close to the black hole, its

structure breaks down and it forms an elementary particle plasma. This is due to the

gravitational distortion as well as the temperature of the region, which can be near

1010 K. The sun, by comparison, is only 2 × 106 K at the corona, making it about

ten-thousand times cooler than the near event horizon region [5].

The near event horizon regions are dominated by synchrotron emission, since the

magnetic field in this region is exceptionally strong [7], where regions beyond r = 50

are dominated by bremsstrahlung cooling. The intake of material is also important

in the emission type. Black holes which intake more material will have more compton

effects present. The electrons near the event horizon and therefore in the region of

interest, emit via synchrotron radiation. Since the emission based on the square of

the magnetic field and so as they move closer to the black hole and the magnetic

field increases, their synchrotron emission also increases. The effect is enhanced as

the electrons move toward the poles in the near event horizon region, since that is

where the magnetic field lines are most condensed. This work is not concerned with

the bremsstrahlung regions since they are significantly farther from the black hole

than the region of interest, but it is important to know how emission changes as

observation moves farther from the black hole.
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Electrons in the near black hole environment also emit radiation with an intensity

that is proportional to the number of electrons squared, rather than the number of

electrons. This is known as the emission measure, which is observed with other large

radiating bodies, such as the sun [7]. This is a superradiance effect that is based on

the overlap of electron radiation, which causes the emission to be influenced by and

dependant on a group of electrons rather than a single electron. This happens when

the wavelength being emitted is longer than 10−4 times the distance between electrons

[8]. The radiation emitted from an electron bunch or group is then coherent, in the

same phase and direction, since the entire group influences each electron’s emission.

Naryan and Yi [7] give the frequency ranges at which this coherent radiation occurs

in the emission measure. The emission measure dominates in the lower frequency

domain since that is where electron spacing becomes comparable to the frequency of

emission and creates emission by bunches. The emission increases drastically in the

coherent region. This is because the electrons are emitting based on their number

squared rather than their number.

2.4 Calculations of Black Hole Mass

2.4.1 Stellar Mass Black Holes

Stellar mass black holes in binary systems can have their mass calculated by

comparing them to their companion star, as the mass of any orbital system can be

calculated by how the orbits of the two stars are influenced by their companion [5].

In a black hole binary system, the companion star is studied in the same way it

would be for the calculation of any binary system. The spectrum of the companion

star is compared as it moves around the black hole to show a red shift then blue shift,
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as shown in figure 5.

Figure 5: The orbits of binary systems are calculated using the red shift and blue
shift of the spectra from the two bodies as they orbit one another. At certain points
in the orbit one of the stars will be approaching earth and be blueshifted and the
companion will be moving away from earth creating a redshift. The first star will
then be redshifted and the second will be blueshifted at another point in the orbit.
Comparing the spectrum at these points within the orbit shows the speeds of the
orbiting bodies and their periods. (Image Credit: Aleš Tošovskỳ for public domain
use)

As the objects orbit one another, the deviation from the expected spectrum fre-

quency value is calculated for varying positions in the orbit. When the black hole is

moving away from earth’s point of view and the stellar companion is moving toward

earth the blueshift of the black hole will be less extreme than the redshift of the

companion, as the black hole is typically more massive and will have a smaller orbit

than the companion. Focusing on the stellar companion gives the extremes of the

shifts and is also likely to have a prominent hydrogen spectrum signal, which is a well

known spectrum and can be studied as an expected spectrum for comparison when

studying the shifts. A value for the expected spectrum that is higher frequncy than
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expected for a blueshift, as depicted in figure 5. While the stellar companion moves

away from earth’s point of view, the frequency is lower than expecteed, as depicted

in figure 5. If the stellar companion is moving perpendicular to the earth’s direction,

the spectrum will give the expected value. This creates a range of spectra for the

stellar companion, which can indicate the orbital velocity based on the amount of

shift (equation 5) and period based on how long in time these shifts are apart. In

equation 5, K represents the directional speed of the star as it approaches or moves

away from earth, c is the speed of light, λ is the expected wavelength and ∆λ is the

maximum deviation from the expected frequency in red or blue shift.

c
∆λ

λ
= K (5)

The K must be related to an incident angle, since this calculation of K assumes

a perfectly parallel orbit within the plane of view of earth, which is often not the

case. It must also be changed to the angular speed (KB) of the star to indicate how

quickly the star orbits rather than its tangential speed (K). Equation 6 is used in the

calculation of this KB, which is the angular speed when also considering an incident

angle. In equation 6, aB is the semi major axis for the star (this is calculated using

aAMA = aBMB), θi is the incident angle and T is the period of oscillation of the star.

The incident angle can be observed by the alteration of the position of the orbit along

the y-axis as the binary rotates. This KB value is used to calculate the mass function

of the black hole, f(MA), which can be related to the mass as shown in equation 7 if

the mass of the companion star is known. Calculations for companion star mass often

relate to spectral analysis of the star, which relates to mass and distance of separation

via a comparison to known stars by a color luminosity or Hertzsprung-Russell (H-R)
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diagram. [5]

KB =
2πaB sin θi

T
(6)

f(MA) ≡ M3
A sin3 θi

(MB +MA)2
=
K3
BT

2πG
(7)

Calculating the mass of a black hole in a binary system is the simplest way to

calculate the mass of a black hole and is the primary way of calculating the mass of a

black hole. Since it is impossible to see a black hole outside of its gravitational effects,

it is impossible to relate a black hole mass in a similar way to the mass of stars on

the H-R diagram, though calculating the event horizon radius of a black hole could

give an estimate for the mass since all black holes are identical aside from a scaling

based on mass and spin, but a way to measure this event horizon would be needed

as well as an accurate calculation of the spin. Since the spin is complex to calculate,

it is easier to calculate the mass as related to an orbiting object than it is to use the

idea that all black holes are identical when scaled as a method for calculating mass.

2.4.2 Supermassive Black Hole Sgr A*

The calculation of the mass Sgr A* is completed using a combination of orbits of

nearby stars in a similar manner to how the mass is measured for a stellar mass black

hole in a binary system (section 2.4.1), though the difficulty is greatly increased by

the amount of orbiting stars and the inability to see exact positions of those orbiting

stars [9].

Several groups have been using adaptive optics and other image analysis tech-
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niques to find the positions of stars orbiting Sgr A* at the center of the galaxy and

the inclination of their orbits and track them over the course of several decades to

attempt to map orbital paths and calculate the effect of the central mass on those

orbits. [9]

This is a complicated and time consuming method, but several publications ex-

plain the modern methods used and give constraints on the mass of the supermassive

black hole Sgr A*. Two of the most recent publications from these groups give an

explanation of the process of calculating the black hole mass and an estimate of the

constraints on the parameters of the orbiting stars.

Bohele et al.[10] and Gillissen et al.[11] give estimates for the mass of (4.02±0.16±

0.04)× 106M� and (4.28± 0.10± 0.21)× 106M� respectively. These estimates both

exist within a reasonable range for the purposes of this paper, though the estimate

by Bohele et al will be used primarily since it is the most constrained value.

2.5 Previous Calculations of Black Hole Spin

2.5.1 Stellar Mass Black Hole Spin

The spin parameter (a∗) is a mass weighted unitless measure of the angular mo-

mentum of a black hole. There are several currently standard ways to measure the

spin parameter of a stellar mass black hole in a binary, as presented by McClintock

et al. [12]. These methods include continuum fitting, high-frequency QPOs, the Iron

Potassium (Fe K) line, and polarimetry. McClintock et al. also state that their own

method, based upon the radiation of the disk which is included in their work.

The continuum fitting method is limited by its requirements for precise measure-

ments of the black hole mass, inclination angle, and distance, according to McClintock
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et al. [12] which can all be difficult measurements to measure accurately. This method

is therefore relatively uncertain but can provide limits on the spin. This is still con-

sidered the best current method by McClintock et al., despite its inaccuracies and

measurement difficulties. This is due to an inability for the other methods to provide

a meaningful result [12].

The high-frequency QPO method as listed by McClintock et al. is the Abramowicz

& Kluźniak hotspot method[13], which is based on high density hotspot measurements

as the primary source of the QPOs. This hotspot model has been since discredited

as it does not accurately explain the existance of similar QPO measurements across

different black holes[4]. The Abramowicz & Kluźniak hotspot model is based on the

existence of hotspot regions in the disk region of the black hole, which will be randomly

generated and change as the hotspots fall toward the event horizon. This indicates

that they should not be consistent across black holes, as the random generation will be

different for each black hole. McClintock et al. [12] also mention the inaccuracy of the

Abramowicz & Kluźniak hotspot QPO method as it does not put useful constraints

on the spin parameter due to its inaccuracy.

The Fe K line method is based on the broadening of iron spectral lines and is

powerful in that it does not require a measurement for the mass, though knowledge

of the inclination angle decreases the error in the estimate. This model still produces

a large amount of uncertainty based upon the placement of the continuum, the model

of the flourescing sources, and the ionization state of the disk [12] . This line is also

not omnipresent across black holes, making it unable to be used for many black holes.

Polarimetry is a useful method when the polarization features of the black hole

disk radiation is visible because it is highly affected by GR effects. This would
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provide useful information about the spin, but like the Fe K line measurements, these

polarization features are not visible in all black holes [12].

The method presented by McClintock et al. [12] gives the spin based on the fitting

of the thermal disk without QPO signal. They fitted 22 disk spectra using a thin

disk model and obtained a spin parameter based on the luminosity of the disk when

compared to the Eddington luminosity. They state that this method assumes a zero

torque near the ISCO and an optically thin disk. They give an estimate for the spin

parameter of GRS1915+105, one of the more commonly studied stellar mass black

holes, to be |a∗| > 0.98 given this method [12]. The method appears to only utilize

the luminosity of the disk which is shown to be due to a rapidly spinning black hole,

but does not specify whether it is prograde or retrograde spin. This is likely due to

the non-inclusion of the torque near the ISCO, which will be different in the two cases.

This method does show the black hole GRS1915+105 to be spinning near maximum.

2.5.2 Spin of Sgr A*

The main estimates for the spin of Sgr A* come from the analysis of high frequency

QPOs as given by the Abramowicz & Kluźniak hotspot model [13]. These models

give varying estimates for the black hole spin from 0.65 ± 0.05 (Dokuchaev [14]) to

0.56 (Iwata et al. [15]). This method bears similarity to the Abramowicz & Kluźniak

hotspot model for measuring a stellar mass black hole spin and provides the same

inherent error due to the lack of understanding about where the QPOs originate and

inability to choose correct QPO frequencies.

Kato et al. [16] measured a spin parameter of 0.44 by combining certain high

frequency and radio frequency QPOs with disk seismology, and compared it to other
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observable supermassive black holes. This method puts more constraints on the spin

by comparing it to other black holes and gives a lower spin value for Sgr A* than

many of the other spin measurements from the hotspot model.

Without fully knowing the cause of the QPO phenomenon around a black hole, it

is not possible to validate if the Abramowicz & Kluźniak hotspot model is accurate.

This introduces a large issue in the accuracy of the hotspot model, as an improper

understanding of the QPOs can drastically change the calculation of the spin.

2.6 Continued Fraction Mathematical Solution Method

The continued fraction solution method is a rapidly converging, series-like method

that utilizes a fraction where the denominator contains a number plus or minus the

next iteration of the series, as illustrated by equation 8 [17].

y = a0 +
a1

b1 + a2
b2+

a3
b3+...

(8)

In a simple continued fraction, the terms an are 1. These kind of continued

fractions can be used to approximate rational numbers, by dividing and using the

remainder to form the next term, such as in equation 9 [17].

45

16
= 2 +

13

16
= 2 +

1
16
13

= 2 +
1

1 + 3
13

= 2 +
1

1 + 1
13
3

= 2 +
1

1 + 1
4+ 1

3

(9)

General continued fractions have other values of an and are used to approximate

rational numbers and to solve linear equations [17]. An example of a quadratic

equation solution is shown in equation 10.
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Ax2 +Bx+ C = 0

x(Ax+B) + C = 0

x =
−C

B + Ax

x =
−C

B − AC
B+Ax

x =
−C

B − AC
B− AC

B+...

(10)

Continued fractions are often written in a linear form. This form is presented

for the final solution for the quadratic equation in equation 11 [17]. The linear form

implies that the fraction term following the previous term (except the first) is to be

inserted after the last mathematical operator symbol (+ or -) in the denomenator of

the previous term.

x =
−C
B−

AC

B−
AC

B−
... (11)

This linear form is more convenient due to the complexity given by the continu-

ously small elements. This presents the fraction elements in an easy to see way and

gives an understanding of the idea of terms in a continued fraction.
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3 The Schwarzschild and Kerr Metrics

3.1 Metrics

A metric is used to describe mathematically the distance between two points, and

is commonly used in GR to describe how space time changes that distance [5]. A

metric can be represented mathematically as a combination of squares of changes in

coordinates, similar to how the Pythagorean theorem, which is effectively a metric

in a 2-dimensional cartesian system. The cartesian and spherical coordinate system

metrics are given in equations 12 and 13.

ds2 = dx2 + dy2 + dz2 (12)

ds2 = dr2 + r2dθ2 + sin2 θdφ2 (13)

These metrics are used to represent a displacement in a geometry and describe

how an object moves within that coordinate system [5]. In GR, the constant speed

of light adds the ability for time to become a factor in the metric, since when scaled

by that speed it becomes a distance measurement. The standard GR metric is shown

in equation 14.

c2dτ 2 = −c2dt2 + dx2 + dy2 + dz2 (14)

This metric can be converted into other coordinate systems, such as spherical

coordinates, by changing the standard cartesian coordinates. The major difference in

the GR metric is that the ds is replaced by a cdτ , which is the distance related to the



proper time (τ) [5]. The proper time is the time experienced in the reference frame

of the object, while the time t is the time of an infinitely far stationary clock.

3.2 The Schwarzschild Metric

The Schwarzschild metric is the metric describing the space around a non-spinning,

non-charged, spherically symmetric black hole that exists in a vacuum as measured

from far away [18]. This is the simplest approximation of an extremely massive object

and is used as a simple solution when attempting to calculate phenomena near black

holes even though it is not usually the real-world case.

The reduced circumference, a common distance measurement when looking from

afar, is given by the circumference divided by 2π. In a standard geometry system,

this gives the exact radius, but in the Schewarzschild metric, geometry and distance

cannot be measured the same way they are on earth and this definition helps with

the understanding of where something is in relation to the black hole [18].

The reduced circumference model must be used since the volume inside a black

hole creates a singularity in space-time and so it is impossible to measure a true radius

to the center of the space [18]. Think of this like a funnel, as pictured in figure 6.

Measuring the radius of a funnel as you move toward the center of the funnel (dr)

cannot be done if you are restricted to only touching the surface of the funnel, since

you are on an inclined surface and would measure ds rather than dr. The idea that

this funnel is a declined ramp means the distance moved will not be equal to the

amount of radius changed. Using the reduced circumference, you could measure the

circle around your position on the funnel and then calculate how far you are away

from the center using the reduced circumference. Figure 6 also shows how space is
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changed as something moves a distance ds toward a Schwarzschild black hole. The

flat plane at the top of the figure shows how the space looks to an outside observer.

The distance ds translates into an observed distance of only dr, which is significantly

smaller when close to the black hole. The difference in the outer and inner edges of

the dr ring can be compared to show how far one has moved in the dr plane, even

though the total movement was ds. Reduced circumference gives a frame of reference

for distance that is capable of being measured but moving a certain distance closer

to the black hole will not reduce the reduced circumference by that same amount in

the near black hole environment. This idea is foreign to someone on Earth, where

space-time does not bend in such a drastic way.

Figure 6: The flat plane where r and dr are located is what the radius appears
to be to an outside observer, but ds is the true distance moved. Notice that dr is
significantly shorter than ds. The reduced circumference of dr in this case would
give the measurement of r rather than the true distance to the center, which would
be infinite since as dr moves closer to the black hole, ds increases significantly. The
circle at r = 2m is the location of the event horizon. Image credit: Dwight Vincent
of University of Winnipeg.
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This idea of reduced circumference is crucial when trying to measure distances

near a black hole and is introduced into the Schwarzschild metric.

This idea of space becoming more warped as one approaches the black hole gives

rise to strange effects, such as the idea that an object entering the black hole, as seen

from an outside observer, can never truly enter the black hole, the object can only

get closer and closer to it [18].

The Schwarzschild metric is represented mathematically by equation 15.

c2dτ 2 =
(

1− rs
r

)
c2dt2 −

(
1− rs

r

)−1
dr2 − r2

(
dθ2 + sin2θdφ2

)
(15)

The Schwarzschild metric is similar to a standard GR metric (equation 14). τ in

equation 15 represents the proper time, as it does in the standard GR metric, r, θ, and

φ are defined the same as the spherical coordinates in a 3 dimensional system, though

r is defined as the reduced circumference rather than a true radius, t represents the

time as measured from infinitely far away, and rs is the Schwarzschild radius described

in section 2.2.3.

This metric, at r >> rs does not differ from the standard GR space-time met-

ric in spherical coordinates [18]. While standing on the radius of Earth, which

has a Schwarzschild radius of roughly 9mm and a radius of roughly 6370km, the

schwarzschild metric does not change how an object moves in any significant way,

but near rs, the correction terms to the standard space-time metric (equation 14)

become more significant.
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3.3 The Kerr Metric

The Kerr metric is used to describe the space-time surrounding a spinning, non-

charged black hole with angular momentum, J , and mass, M [19]. The Kerr metric

equations are given as corrections to the Schwarzschild metric and are therefore in

terms of the Schwarzschild radius, rs (equation 2). Typically the Kerr metric is used

in spherical coordinates, as shown in equation 16. θ and φ are angular coordinates

similar to the spherical cooridinate system, r is the reduced circumference, t is the

time coordinate, c is the speed of light, τ is the proper time, ρ and ∆ are given by

equations 17 and 18 respectively and α is a spin term given by equation 19 where J

is the angular momentum.

c2dτ 2 = (1− rsr

ρ2
)c2dt2 − ρ2

∆
dr2 − ρ2dθ2 − (r2 + α2 +

rsrα
2

ρ2
sin2 θ) sin2 θdφ2

+
2rsrα sin2 θ

ρ2
cdtdφ

(16)

ρ2 = Σ = r2 + α2 cos2 θ (17)

∆ = r2 − rsr + α2 (18)

α =
J

Mc
(19)

a =
αc2

G
=

Jc

GM
(20)
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The spin paramter, a, is given by equation 20 and the unitless mass scaled spin

parameter, a∗ is the spin parameter divided by the mass (a∗ = a
M

). The spin param-

eter relates to what amount of the mass energy is due to spin [19]. The percentage

spin parameter is obtained when 2M is set to 1 rather than M . The spin parameter is

dependent on the moment of intertia, and therefore the mass distribution of the black

hole. Notice that in the standard unitless GR system (section 2.1), α = a = a∗. This

is not only valid for a black hole, but also for other spinning objects. The Earth, for

example, has an a∗ of roughly 734 and a sphere of Earth’s mass but uniform density

has an a∗ of 889. The Earth has a lower a∗ because the mass is more concentrated at

the center than on the outer edge.

A black hole is unique in that the mass is concentrated at the center and so its

rotational inertia is brought to an extreme. The absolute value of a∗ for a black

hole can only range from 0 to 1, which relates to a non-spinning black hole or one

spinning such that the event horizon spins at the speed of light [19]. This value range

is calculated for the extremes of not spinning to spinning at the speed of light (recall

c = 1 in this unitless system). It is not uncommon for the system to be altered such

that this value instead represents the percentage of the mass energy due to spin, which

ranges from 0-0.5. The maximal spin, when a∗ = 1 in the typical system, relates to

the spin contributing 50% of the total mass energy.

In the Kerr metric (equation 16), the dtdφ term represents a spherical asymmetry

and corresponds to a rotation of the angular direction φ in time [19]. This, along with

the α dependence for various terms, is the major separation from the Schwarzschild

metric. Reducing the spin term in equation 16 to 0 gives the Schwarzschild metric

(equation 15), as the term containing dtdφ as well as the correction terms go to zero.
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This is an important check as a Kerr black hole without spin is no different from a

Schwarzschild black hole.

3.3.1 The Boyer-Lyndquist Formalism

The Boyer-Lindquist formalism is a coordinate system that is used for the metric

of a Schwarzschild black hole, that can express the metric of a Kerr black hole [20].

In this system the constants G and c are set to 1 and M , a, and r are set to units

of length using the conversions covered in section 2.1. The Kerr metric in the Boyer-

Lindquist formalism is given in equation 21, where all terms are the same as those

defined for the Kerr metric in 3.3. The Σ term is given to be ρ2 as shown in equation

17. This equation is set in units of length, and s is a length variable rather than the

spin quantum number.

ds2 = −
(

1− 2Mr

Σ

)
dt2 − 4Mra sin2 θ

Σ
dtdφ+

Σ

∆
dr2 + Σdθ2

+

(
r2 + a2 +

2Mra2 sin2 θ

Σ

)
sin2 θdφ2

(21)

The Boyer-Lindquist coordinate system is commonly used for equations in the

Kerr metric since the Hamiltonian for a test particle in motion in the Boyer-Lindquist

system is separable.

3.3.2 The Teukolsky Equation

Saul Teukolsky, in 1972, applied a gravitational perturbation to the Kerr metric

in the Boyer-Lindquist coordinate system [21]. This gravitational perturbation is
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described by the Newman-Penrose quantity and the Weyl tensor. He was able to

show that a perturbation of several different fields are detectable by a single master

equation, which was named the Teukolsky equation, shown in equation 22.

[
(r2 + a2)2

∆
− a2 sin2 θ

]
δ2sψ

δt2
+

4Mar

∆

δ2sψ

δtδφ
+

(
a2

∆
− 1

sin θ

)
δ2sψ

δφ2

−∆
δ

δr

(
∆s+1 δsψ

δr

)
− 1

sin θ

δ

δθ

(
sin θ

dsψ

δθ

)
− 2s

[
a(r −M)

∆
+
i cos θ

sin2 θ

]
δsψ

δφ

−2s

[
M(r2 − a2)

∆
− r − ia cos θ

]
δsψ

δt
+ (s2 cot θ − s)sψ = 4πΣT

(22)

In the Teukolsky equation, the variable s is different from the one in the Boyer-

Lindquist coordinate system, in that instead of representing a length it represents the

spin quantum number of the particle (s = 0 for a scalar field, s = ±1 for electromag-

netic particles, and s = ±2 for graviton particles). T represents a source term, which

is 0 in a vacuum. sψ is a wave function given by equation 23 for a particle of spin

quantum number s and magnetic quantum number m in a vacuum [21].

sψ(t, r, θ, φ) = e−iωteimφS(θ)R(r) (23)

Detailed explanations for the solutions and solution methods to the Teukolsky are

presented in section 6.

3.4 Differences Between Schwarzschild and Kerr Black Holes

Introducing a spin term into the Schwarzschild metric changes the near event

horizon significantly due to the introduction of frame dragging as discussed in section
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2.2.6 and seen in figure 3. The changing of space time changes the shortest distance

between points such that infalling material, including photons, spins in the direction

of the black hole [6]. This effect significantly alters the way the movement of a particle

in the Schwarzschild metric versus the Kerr metric.

The introduction of spin also alters the potential energy of the region surrounding

the black hole. Potential energy cuves will be discussed in detail in section 4.1 for

Schwarzschild black holes and section 5 for Kerr black holes, but it is important to

understand that the potential energy curves of a Kerr black hole are different from

those of a Schwarzschild black hole. Prograde spin will cause the material to orbit

closer to the black hole and retrograde spin will cause material to orbit farther from

the black hole when compared to the Schwarzschild case, as seen in figure 4 in section

2.2.6. This also changes the event horizon, pulling it closer toward the black hole for

prograde spin and farther from the black hole for retrograde spin. The effect on the

event horizon effectively changes the physical size of the black hole.

Mathematically, the Kerr metric is significantly more complex than the Schwarzschild

metric and is not spherically symmetric. This means that solution methods for the

Schwarzschild metric that reduce the equation due to symmetry will not be valid in

the Kerr metric [19].
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4 Theory and Previous Work

4.1 Resonance Cavities Surrounding a Schwarzschild Black

Hole

In the Schwarzschild metric, the idea of reduced circumference (section 3.2) changes

how an outside observer has to look at material falling into a black hole. Since moving

closer to the black hole reduces the reduced circumference to that black hole by a

smaller amount per unit length traveled as a particle moves toward the black hole,

the particle is never able to reach the black hole as seen from an outside observer.

This creates an effective potential energy barrier, meaning that the potential energy

of the system behaves as normal (decreases as a body moves closer) for a gravitational

body only to a certain point before encountering the barrier [22]. The change from

decreasing to increasing for a particle must mean there is a point at which there is a

potential well for that particle near the black hole.

Equation 24 shows the square of the effective gravitational potential of the re-

gion near a Schwarzschild black hole for a massless particle with angular momentum

quantum number L and spin quantum number s [23].

V 2
L,s =

(
1− 2

r

)(
L(L+ 1)

r2
+

2(1− s2)
r3

)
(24)

This equation is represented graphically for both s = 1 and s = 2 particles with

L = 1 and L = 2 respectively in figure 7. The potential squared curve looks like a

potential hump, or scattering potential but since this is a square equation, a scattering

potential is not the only solution possible [22].
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Figure 7: Potential energy squared of a Schwarzschild black hole for graviton particles
(blue) of L=2 and photons (red) at L=1. r is in the standard GR unitless system,
and the event horizon is therefore at r = 2. [22]

There are two possibilities for the solution for the potential given this potential

squared equation. These solutions are given in equation 25 [6]. The first solution is a

positive root equation which leads to a potential hump, or scattering potential. This

scattering potential is often used to calculate the frequency of massless particles which

are expelled from the near black hole region, as they have come into the region of this

potential and have been forced back out due to the potential barrier created. The

second is a negative root equation, which creates a potential well. The potential well,

with V = −
√
V 2, creates a region surrounding the black hole in which an oscillation

can occur for massless particles [22].

VL,s = ±
√

1− 2

r

√
L(L+ 1)

r2
+

2(1− s2)
r3

(25)

The negative root equation is shown graphically in figure 8 compared to a classical

gravitational potential energy for a particle of the same angular momentum but non-
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zero rest mass (equation 26).

V = −1

r
+
L2

2r2
(26)

The event horizon is at r=2 and so, it can be seen that in a classical approach,

the gravitational potential is not constrained by this event horizon as it is in the GR

approach. The rest masses of photons and gravitons are zero, meaning the classical

gravitational potentials are not able to accurately describe their energy curves.
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Figure 8: Potential energy wells of photons and gravitons around a Schwarzschild
black hole. r is in the standard GR unitless system, and the event horizon is therefore
at r = 2. The black and orange curves show a classical curve for a particle of non-
zero rest mass and non-zero angular momentum shown in equation 26 for L = 1 and
L = 2 particles respectively. The red and blue curves are potential wells based on
the negative root of the potential squared equation, shown in equation 25 for s = 1,
L = 1 and s = 2, L = 2 particles respectively. [22]

The red and blue curves in figure 8 show the curves of interest for photons and

gravitons near a black hole. The potential well created by using the negative root

creates a possible resonance cavity at the bottom of the well, at r = 3.000 for photons
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of L=1 and r = 3.281 for gravitons of L=2.

The Innermost Stable Circular Orbit (ISCO) for a Schwarzschild black hole is

located at r = 6 which means that these resonance cavities exist closer to the black

hole than the last allowed stable circular orbit (the orbit of smallest r, where material

circles the black hole without falling into it) [22]. These cavities are not expected to

contain stable orbits, but rather to be what is known as a “leaky cavity,” which has

an imaginary component to the frequency of particles within the cavity relating to a

half-life [22]. This half-life means these particles will eventually leave the cavity and

either fall toward the black hole or fall out of the orbit and escape. Since the cavity

will lose particles, in order to continue influencing the region around the black hole,

the cavity must be repopulated.

Kaniadakis and Quarati [24] explain the inclusion principle, a net attractive force

between large groups of bosons and individual bosons that causes the individual of

proper frequency to change phase and direction to match the group. This inclusion

principle is one way the photons and gravitons in the resonance cavities are able to

repopulate the cavity in coherent oscillation.

4.1.1 The Tortoise Coordinate System

The tortoise coordinate system [25], which shifts the event horizon to negative

infinity using equation 27, gives a way to approximate the cavity as a perturbation

from a harmonic oscillator, a commonly studied equation for a cavity [23]. In this

equation, r∗ is the new coordinate, r is the original coordinate, and C is a shifting

constant that allows the equation to be centered to any numerical or graphical lo-

cation. In this case, the prefered center is for the minimum of the cavity to be at
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r∗ = 0. This numerical value is different for each cavity, but they are both set such

that the center of the cavity is at 0.

r∗ = r + 2 ln
(r

2
− 1
)

+ C (27)

The tortoise coordinate system is so named for the story of Achilles and the

tortoise, where a tortoise agrees to race Achilles so long as it gets a head start. The

explanation of why Achilles could not win was that he would have to first traverse the

distance the tortoise traveled, but while he did so the tortoise would continue moving.

The distance the tortoise moved then would have to also be traversed by Achilles, but

again the tortoise would have moved farther during this time. This pattern continues

until the tortoise crosses the finish line and so Achilles is never able to fully make up

the distance to the tortoise [26]. This relates to the tortoise convincing Achilles he

will never be able to reach the tortoise and therefore in a mathematical framework

the system creates a value that can never be reached. The tortoise coordinate system

is used to shift a point to negative infinity such that numbers in the system can

approach that point, but never truly reach it. The point r = 2 in equation 27 is

chosen as the point shifted to infinity, as that is the location of the event horizon.

In order to use a tortoise coordinate system, the r in the original equation must

be replaced with the solution for r in the new coordinate system, given by equation

28 [22]. In this equation, the ProductLog function is required and is the solution

to y = x + ln(x), which cannot be solved analytically. This means the tortoise

coordinates must be solved and input numerically.

r = 2(1 + ProductLog(
√
e−2−C+r∗)) (28)
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Substituting equation 28 into the negative potential equation, equation 25 gives

equation 29, which is the potential energy in the tortoise coordinate system.

VL,s(r
∗) = −

√
1− 1

1 + ProductLog(
√
e−2−C+r∗)

(29)

×

√
L(L+ 1)

(2(1 + ProductLog(
√
e−2−C+r∗)))2

+
(1− s2)

4(1 + ProductLog(
√
e−2−C+r∗))3

This new tortoise coordinate system gives a graphical representation shown in

figure 9 for graviton particles of L = 2, L = 3, and L = 4. Despite the L = 4

state being the deepest well, this is not the preferred state, as the L = 2 state has

the lowest imaginary part for the wave function, which indicates the longest lifetime

(half-life is inversely proportional to the imaginary component) [22]. This means the

L = 2 state will be the most populated.

-40 -20 0 20 40

-0.8

-0.6

-0.4

-0.2

0.0

r
*

V

Figure 9: The potential energy curve for gravitons of L = 2 (red), L = 3 (blue) and
L = 4 (black) in the tortoise coordinate system. The center of the potential well is
placed at r∗ = 0 and the singularity is pushed to r∗ = −∞. This coordinate system
creates a graph similar to that of a harmonic oscillator near r∗ = 0 [22].
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4.1.2 Harmonic Oscillator Approximation and Perturbation Theory

Comparing the tortoise coordinate system potential to a harmonic oscillator can

be accomplished by finding an equation for a harmonic oscillator (equation 30) where

k is defined to have a similar curvature to the potential near r∗ = 0 [22]. This k value

is calculated using the second derivative of r∗ since that relates to curvature, as seen

in equation 31.

V =
1

2
k(r∗)2 (30)

r̈∗|r∗=0 = k (31)

This calculation allows for the construction of a wave function based on the cal-

culated k value for this oscillator (equation 32).

ψ =
(k
2
)1/4
√
π
× e−(

k
2
)1/2(r∗)2 (32)

To compare the harmonic oscillator with the tortoise coordinate potential, the

region containing the largest area of the wave function but be near equal [22]. This

region is shown in figure 10, and is defined as the area under the red curve. Notice

in this region, the blue and black curves are near equivalent. The difference between

these two equations in the region of interest, defined by the wave equation are shown

in figure 11, where the wave equaiton is again in red.
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Figure 10: The harmonic oscillator function generated by equations 30 and 31 is
shown in blue and is compared to the L=1 state photon potential energy in black.
The red curve shows the wave function, which has highest probability near r∗ = 0
and defines the region of interest. [22]
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Figure 11: The blue curve represents the difference between the harmonic oscillator
defined by equations 30 and 31 from the initial potential energy equation for L = 1
photons in the tortoise coordinate system. The region of interest is defined by the
wave equation, shown in red. Near the outer limits of this wave function, the difference
is no longer near 0, and therefore a perturbation must be introduced. [22]
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Using perturbation theory techniques from quantum mechanics, a correction to

the harmonic oscillator can be used to find a more accurate solution to the equation for

the gravitational potential for a photon near a Schwarzschild black hole [22]. To utilize

this perturbation theory correction method, harmonic oscillator energy eigenvalues

were calculated using equation 37 and altered as seen in equation 33, where E
(0)
n is

the basic harmonic oscillator eigenvalue and higher order E
(x)
n terms are corrections

to that eigenvalue.

En = E(0)
n + E(1)

n + E(2)
n + E(3)

n + E(4)
n + ... (33)

Enm = E(0)
n − E(0)

m (34)

dV = VGR −
1

2
kr∗2 (35)

dVnm =< U (0)
n |dV |U (0)

m > (36)

E(0)
n =< n|1

2
kr∗2|n > (37)

E(1)
n = dVnn (38)

E(2)
n =

∑
k2

|dVnk2|2

Enk2
(39)

E(3)
n =

∑
k3,k2

dVnk3dVk2k3dVk2n
Enk2Enk3

− dVnn
∑
k3

dVnk3
E2
nk3

(40)

E(4)
n =

∑
k4,k3,k2

dVnk4dVk4k3dVk3k2dVk2n
Enk2Enk3Enk4

− E(2)
n

∑
k4

|dVnk4|2

E2
nk4

(41)

−2dVnn
∑

k4,k3,k2

dVnk4dVk3k4dVk2n
E2
nk3
Enk4

+ dV 2
nn

∑
k4

|dVnk4|2

E3
nk4

These corrections are given in equations 38 through 41. Correction terms to a

fourth perturbation were not calculated and provide a lesser correction to the overall
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value of the eigenvalue than the previous terms, making them less significant, and are

seen to be significantly more difficult to calculate [22]. As the number of perturbation

terms approaches infinity, the value of En approaches the true value for the energy

eigenvalues for the gravitational potential energy well in the tortoise coordinate sys-

tem. The base harmonic oscillator terms for L=2 gravitons of n = 0 to 6 are shown in

table 2. These are used when calculating the perturbations for the n wavefunctions.

More of these tables, for various particles and L states are given in appendix A.

Table 2: E
(0)
n terms, in a basis of two harmonic oscillator wave functions for gravi-

tons in the state L=2. These correction terms are used in the perturbation theory
corrections. [22]

Harmonic Oscillator Eigenvalue Numerical Calculation

E
(0)
0 0.0392

E
(0)
1 0.118

E
(0)
2 0.196

E
(0)
3 0.275

E
(0)
4 0.353

E
(0)
5 0.432

E
(0)
6 0.510

Table 3 gives values calculated for the perturbation method for the dVnm terms

for various combinations of < Un|, |Um > and dV given by equation 36. Additional

tables for these calculations are presented in appendix A.
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Table 3: dVnm terms for perturbation theory for various combinations of wave func-
tions and dV , given by Equation 36 for gravitons in the L=2 state. The table is
arranged such that the Bra and Ket are each with dV , producing the value for dVnm
at the location of the intersection on the table of the Bra and Ket. The intersection
values represent the value of dVnm where n is the wavefunction in the Bra and m is
the wavefunction in the Ket. This is presented for a basis of seven harmonic oscillator
wave functions. [22]

Wave Function |U0 > |U1 > |U2 > |U3 > |U4 > |U5 > |U6 >
< U0| -.00421 -.0289 -.0169 .000893 -.00892 .000764 .00268
< U1| -.0288 -.0281 -.0393 -.0471 .00349 -.0134 .000410
< U2| -.0168 -.0393 -.0738 -.0480 -.0815 .00569 -.0167
< U3| .000893 -.0471 -.0480 -.129 .0461 .117 .00760
< U4| -.00892 .00349 -.0815 .0461 .191 -.0471 -.156
< U5| .000764 -.0134 .00569 .117 -.0471 -.256 -.0475
< U6| .00268 .000410 -.0167 .00760 -.156 -.0475 -.323

Tables 4 and 5 show the correction terms and overall values for the energy at dif-

ferent orders of perturbation theory for L=2 gravitons and L=1 photons respectively

[22]. It is important to note that these values are measured from the bottom of the

potential well, to the location of the energy level. This means the overall measure-

ment of the energy level outside of this coordinate system will be different from the

value shown, as the energy is related to the distance from the 0 potential (V = 0)

line rather than the bottom of the potential well. The graviton resonances, which

have a deeper well, will have a higher energy or lower frequency since the energy is

measured from zero rather than from the bottom of the well.
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Table 4: The central, Perturbation Value, column displays the correction terms cal-
culated from perturbation theory. The Energy After Inclusion column shows the
calculations from Equation 33, in a basis of seven, for perturbation theory corrections
to harmonic oscillator energies for gravitons in the state L=2 of different orders of
correction. [22]

Perturbation Order Perturbation Value Energy After Inclusion

E
(0)
0 .03927 .03927

E
(1)
0 -.004209 .03506

E
(2)
0 -.01270 .02235

E
(3)
0 -.007726 .01463

Table 5: The central, Perturbation Value, column displays the correction terms cal-
culated from perturbation theory. The Energy After Inclusion column shows the
calculations from Equation 33, in a basis of seven, for perturbation theory corrections
to harmonic oscillator energies for photons in the state L = 1 of different orders of
correction. [22]

Perturbation Order Perturbation Value Energy After Inclusion

E
(0)
0 .03542 .03542

E
(1)
0 -.00829 .02713

E
(2)
0 -.00419 .02294

E
(3)
0 -.00344 .01950

4.1.3 Energy States of Photons and Gravitons Near a Schwarzschild Black

Hole

Since the tortoise coordinate system with the harmonic oscillator is shifted in the

potential by an amount equal to the position of the bottom of the potential well, these

energy eigenvalues relate to how high above the bottom of the well these eigenvalues

exist [22]. The energy of the resonance is related to how far from the V = 0 line
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these eigenvalues are when related back into the original coordinate system. Figure

12 shows the graviton potential energy curve with a line showing the position of the

energy eigenvalue for the potential well. This shows the distance above the bottom of

the cavity as calculated by perturbation theory (section 4.1.2) as it applies to a real

world case. The energy of this resonance is observably far below the energy required

for a particle to leave the cavity and the measurable value of this resonance energy

is equal to the negative value of the line rather than the distance from the bottom of

the well, as calculated in section 4.1.2. The frequency is given by this negative value

for the energy level.
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Figure 12: The blue curve displays the effective gravitational potential energy for a
L = 2 graviton near a Schwarzschild black hole, given by equation 25. The red line
is the location of the energy level calculated from perturbation theory corrections to
third order given by table 4. [22]

Table 6 shows the calculated values of the square root of the normal modes from

Fröman et al. for a scattering potential for varrying values of L and s [27]. These

values at n = 0 give the same result calculated using the perturbation method, seen
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in section 4.1.2, when compared to the V = 0 line, which are compared in table 7,

rather than the bottom of the potential well. The numerical equality of these values

shows that either interpretation of the potential, as a scattering potential or potential

well, is valid. While both a scattering interpretation and potential well interpretation

explain the system, the potential well includes the idea of a leaky cavity based nature

of the potential well [22]. This idea of a leaky cavity means the region is able to house

photon or graviton resonances within their potential energy curves, which can lead to

observational effects from the particles within these cavities interacting with infalling

material. This is significantly closer to the black hole than the ISCO, which lies at

r = 6 for a Schwarzschild black hole, since these wells exist at r = 3.000 for photons

and r = 3.281 for gravitons. Both of these resonances are able to exist within the

ISCO due to the standing wave nature of these massless particles. A standing wave

introduces a stability that is not present in a short wavelength traveling wave.
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Table 6: The square root of the normal modes calculated from the potential squared
given by Equation 25 for different values of L and s. The n represents the nth mode
for that iteration of L and s. States with n = 0 and n = 1 were included in this table
but only n = 0 states were calculated in this thesis. The n = 1 states are shown
to display the well behavior, shown in this section, of the normal modes. A line has
been placed between the s = 1 and s = 2 values to show the change from photon to
graviton modes. These values were calculated by Fröman et al. [27].

s L n Real Part Imaginary Part
1 1 0 0.2483 -0.09249

1 0.2145 -0.2937
2 0 0.4576 -0.09500

1 0.4365 -0.2907
3 0 0.6569 -0.09562

1 0.6417 -0.2897
2 2 0 0.3737 -0.08896

1 0.3467 -0.2739
3 0 0.5994 -0.09270

1 0.5826 -0.2813
4 0 0.8092 -0.09416

1 0.7966 -0.2843

Table 7: The real part of the normal modes represent the energy of the state. These
values are comparable to the calculated values using the perturbation method when
those values are measured from the zero energy line as opposed to the shifted potential
used when comparing to the harmonic oscillator. [22]

s L Value from Scattering Potential Value from Perturbation Theory Percent Error
1 1 0.2483 0.2439 1.77%
2 2 0.3737 0.3731 0.161%

The imaginary component of the normal modes in table 6 introduces the leaky

cavity nature of the resonance states, as this imaginary part of the frequency relates

to the negative inverse of the half-life for particles of that energy. The most stable
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energy states, based on this half-life are the n = 0 states and the most stable states

in L based on this half-life are the lowest L states (L = 1 for photons and L = 2

for gravitons) [22]. The energy value for the n = 0 states is also lower than that for

higher values of n, indicating these latter states are less likely to be populated since

they are not the lowest energy state.

It is then assumed that these most stable (n = 0) lowest energy (L = 1 for photons

and L = 2 for gravitons) states are where the resonances would be most likely to be

able to repopulate and would exist in highest quantity, so that these states have the

dominant effect on particles within the region when compared to other states.

4.1.4 Effects of the Resonance Cavities Upon Infalling Electrons

As seen in section 2.3, the radiation of electrons near a black hole is based on

synchrotron emission and is effected by the emission measure, in which emission

is determined by the density squared rather than the density of electrons. These

densities are influenced by the resonance phenomena near a black hole. The electrons

are formed into bunches of higher density as they fall into the cavity region due to

their charge and mass.

Photons exist as an oscillating electromagnetic field and have a dipole moment.

This creates an effective dipole where the positive electric field section of the wave acts

as a positive charge and the negative electric field section acts as a negative charge

[22]. For a wavelength the size of this resonance state (λ ≈ 2π× 3 = 2π× 3GM
c2

, since

the wavelength must be nearly equivalent to the circumference of the region to be a

standing wave), the electric field regions are significantly separated when compared to

the size of an electron. This means the electrons will be attracted toward the positive
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electric field component of the resonance and will be repelled by the negative electric

field component. This causes a bunching of the electrons based on charge.

Gravitons influence matter by the mass of the matter (electrons) in a quadrupole

moment shape of the gravitons. The field for a graviton is more complex conceptually

than that of a photon, but effectively the principle is the same. The electrons are

forced into higher density bunches based on their mass. This bunching will be changed

by the quadrupole moment to have two bunches per iteration of the frequency rather

than one, as is the case with the photon resonance.

The emission measure model (section 2.3) indicates that this bunching of elec-

trons as they fall into the region of interest will significantly change their synchrotron

emissions [22]. The emission will be coherent and of higher intensity in the bunch

regions when compared to the void regions. This will produce an oscillation in in-

tensity of signal when observing the black hole. Since the synchrotron emission near

a supermassive black hole will be in the Near-Infrared (NIR) spectrum, that spec-

trum should be studied for fluctuations in intensity with a periodic nature based on

these resonances states. Similarly, the x-ray spectrum should be studied for stellar

mass black holes, since the frequency is proportional to the inverse mass, and the

wavelength is proportional to the mass.

4.2 Orbital Structure Surrounding Schwarzschild Black Holes

A major comparison for resonance state phenomena is the atomic model. The

resonances for photons and gravitons surrounding a black hole were calculated using

techniques that are often applied to the atomic model [22]. This shows that mathe-

matically these two systems are not fundamentally different and should exhibit some
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of the same behaviors. An orbital nature to the resonances is one of these potential

natures and is a consequence of looking at the potential energy as a negative potential

as opposed to a scattering potential. The model itself is not far conceptually from

an atomic model either. The black hole acts as an attractive center which creates a

potential energy curve, similar to the nucleus of an atom [22].

Electrons in the atomic model exist in discreet energy levels, which is also seen

to be true for these resonances, given the harmonic oscillator calculation method

shown in section 4.1.2. A major difference from the atomic model is that photons and

gravitons are both bosons, unlike electrons which are fermions, and so they are able to

occupy the same state within the resonance and are not forced into higher order states

by an exclusion principle [5]. This difference is emphasized by the inclusion principle,

presented in section 4.1, which forces bosons into the same state. The existence of

multiple bosons in the same state does not hinder the model, it just makes the ground

state (the most stable, least energy state) to be more prominently populated than

any other state and therefore have the more impact on nearby material.

In the atomic model, electrons are organized into orbitals based on their angular

momentum. The organization of orbitals should not differ significantly for photons

and gravitons around a black hole. The dipole moment and preferred L = 1 state

for photons indicates they exist in a P-orbital shape, while the quadrupole moment

and preferred L = 2 state for gravitons indicates they will exist in D-orbital shapes

[22]. These orbital shapes for black holes with zero spin should be similar to those

of the atomic model, presented in figures 13 and 14 for P-orbitals and D-orbitals

respectively.

These orbitals are altered in size by the mass of the non-spinning black hole as
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compared to the reduced circumference to the resonance and by the difference in

potential of the resonances from the potential in the atomic model, but these orbitals

will at least serve as a base for understanding the orbital nature of these resonance

states [22]. Notice how the D-orbital has two iterations of a positive and negative

lobe per circumference in their own plane. This indicates that the graviton resonance

will create two bunches per circumference when compared to the photon’s one. The

graviton resonance therefore, will create a more rapid intensity change when compared

to the photon resonance for similar values of r for the resonance.

Figure 13: This shows the basic shape of a P-orbital from quantum mechanics. The
Z-direction of the orbitals for a non-spinning black hole is defined by the magnetic
field of the accretion disk. P-orbitals are the shape associated with L=1 angular
momentum states, the shape of the orbital photons in the lowest energy state. (This
image was taken from http://nanotech.sc.mahidol.ac.th/genchem/atom1/p-orb.jpg)
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Figure 14: D-orbital shapes are typically the shape of L=2 states in
quantum mechanics. The Z-direction is defined by the magnetic field of
the accretion disk for a non-spinning black hole. This is the shape of
the orbital containing the most stable graviton state. (This image was
taken from http://chemistry.stackexchange.com/questions/2547/why-are-some-salt-
solutions-coloured.)
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5 Resonance Cavities Surrounding a Kerr Black

Hole

Adding spin to the potential changes the effective potential curve of the particles

in the region. This is due to the additional terms added into the Kerr metric. This

changes the geometry of the space around the black hole and can pull the resonance

states closer to (prograde spin) or farther from (retrograde spin) the singularity as is

seen by the lowest point on the curves shown on the left in figure 15, for a∗ = 0.95.

Notice that the event horizon is closer to the singularity (r near 1) than in the

Schwarzschild (non-spinning) case (r = 2). The bottom of the well is also deeper in

figure15, which has prograde spin, than in the Schwarzschild case.

Figure 15: Potential energy curves for the L=-m=2 state for graviton particles around
a Kerr black hole of spin parameter, a∗ = +0.95. The real part of the potential is
shown on the left side while the imaginary part is shown on the right. Notice the
lowest part of the well is at the most stable location (imaginary part is 0). The real
part of the well is also deeper, relating to a higher frequency when compared to the
Schwarzschild (non-spinning) case. [23]



The deeper well indicates a larger separation of the real part of the eigenvalue from

zero, meaning a higher frequency. A retrograde spin will have a shallower real part

of the well, which indicates a lower frequency. The well in this case is farther from

the singularity, requiring a larger wavelength to create a standing wave determined

by the circumference of the black hole.

The singularity in figure 15 is located at r = 0. V = 0, similar to the Schwarzschild

case (figure 8), is the event horizon. The major differences between the Kerr potential

and the Schwarzschild potential are that the Kerr potential includes an imaginary

component, which is not seen in the representation of the Schwarzschild potential

given in equation 25 in section 4.1, though there is an imaginary component to the

potential in the Schwarzschild metric, as is seen by the resonance states calculated

by Fröman et al. [27] shown in table 6. The most stable position in the potential

curve (where the imaginary component is 0, which relates to infinite half-life since

half-life is inversely proportional to the imaginary component) shows the location of

the deepest part of the potential well.

The position of the potential well is significantly pulled inward when compared

to the Schwarzschild case, where r = 3.281 is the location of the deepest part of

the potential well for gravitons. In the Kerr case (non-zero spin), with large spin

(a∗ = 0.95), the deepest part of the potential well is near r = 2, as seen in figure

15.Therefore the resonance circumference is smaller and the frequency is higher.

These resonance cavities will be altered by the spin of the black hole and will

produce changes to the resonance states when compared to the Schwarzschild (non-

spinning) case. The new resonance states will be calculated using solutions to the

Teukolsky equation (equation 22) in section 3.3.2 for photon and graviton particles.
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Solutions to the Teukolsky equation are presented in section 6, which provide the

solutions to the energy levels of the states of photons and gravitons in the potential

energy wells of a Kerr black hole.

5.1 Spin Changes Orbital Structure

Due to the effects of frame dragging in a Kerr black hole, it is believed that the

orbital structure of photons and gravitons will be altered. The orbitals are likely to

be dragged with the space-time as it curves around the black hole and therefore will

be pulled into a spiral shape. This effect on the orbitals should not significantly alter

the way electrons interact with the orbitals, as they will also be influenced by the

frame dragging in the region.

The space which the orbitals occupy in the Schwarzschild case is shifted to spiral

around the black hole to an outside observer, being rotated and condensed in the case

of a prograde spinning black hole. This changes the effective distance the orbitals

appear to occupy and brings them closer to the singularity, as it does with the space

in the region of interest.

The bunches, as explained in the Schwarzschild case (section 4.1.4) should still

be formed, but the periods of intensity fluctuation should decrease or increase as the

spin increases in the prograde or retrograde direction respectively, as the potential

well locations are pulled closer to or farther from the singularity.
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6 Solutions to the Teukolsky Equation

There are several numerical solution methods to the Teukolsky equation (equation

22 on page 32), with varying complexity and convergences. The solutions to the

Teukolsky equation give the Quasi-Normal-Modes (QNMs) for a Kerr black hole and

are the solutions to the potential energy equation for the resonance states of particles

in the Kerr metric in the near event horizon environment. The QNMs are similar to

the normal modes calculated for a Schwarzschild black hole, though they include the

spin of the black hole as a factor.

The two methods first considered for this work were (1) the solution method

presented by Cook and Zalutskiy [19] which uses spin-weighted spheroidal harmonic

functions which are spherical harmonic functions combined with angular spheroidal

functions to create a spinning oblate spheroid geometry to satisfy the angular part

of the Teukolsky equation and a confluent Heun function for the radial part, and (2)

the continued fraction method used by Leaver [28], which uses a continued fraction

method to solve the angular and radial parts of the Teukolsky equation then relate

them to one another and to reasonable values of the angular separation constant to

find an approximation for the proper solution.

The Cook and Zalutskiy method [19] requires a self consistent solution between

the radial and angular parts through an iterative method after completing solution

for the radial Heun function and a large pentadiagonal matrix solution method for

the angular part. This pentadiagonal method is presented in equations 42 and 43.

Equation 42 gives the matrix elements Mll′ which are defined by equation 43 (c in

this equation is a constant, not the speed of light).



Mll′ =



if l′ = l − 2: −c2Asl′m,

if l′ = l − 1: −c2Dsl′m + 2csFsl′m,

if l′ = l: sAl′m(0)− c2Bsl′m + 2csHsl′m,

if l′ = l + 1: −c2Esl′m + 2csGsl′m,

if l′ = l + 2: −c2Csl′m,

otherwise: 0

(42)

Aslm = FslmFs(l+1)m

Cslm = GslmGs(l−1)m

Dslm = Fslm(Hs(l+1)m +Hslm)

Bslm = FslmGs(l+1)m +GslmFs(l−1)m +H2
slm

Eslm = Gslm(Hs(l−1)m +Hslm)

Fslm =

√
(l + 1)2 −m2

(2l + 3)(2l + 1)

√
(l + 1)2 − s2

(l + 1)2

Gslm =


if l 6= 0:

√
l2−m2

4l2−1

√
l2−s2
l2

,

if l = 0: 0

Hslm =


if l 6= 0 and s 6= 0: ms

l(l+1)
,

if l = 0 or s = 0: 0

(43)

While the Cook and Zalutskiy solution method is a valid solution to the Teukolsky

equaiton and is important to present as it represents other solution methods for the

Teukolsky equation, the continued fraction method is more rapidly converging and
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with fewer iterations, high levels of significance can be calculated.

The continued fraction method, due to its relative simplicity and rapid conver-

gence, is the prefered method for calculating the QNM solutions to the Teukolsky

equation for this work and is presented in section 6.1. [28]

6.1 Continued Fraction Solution to the Teukolsky Equation

[28]

In the unit system preferred by Leaver, c = G = 2M = 1, which differs from the

standard GR unit system in that this unit system places the event horizon at r = 1

rather than r = 2. Having the singularity at r = 1 scales the geometry but allows

for certain mathematical techniques that would be more difficult if the location of

the event horizon were at r = 2. This must be considered when interpreting the

results from this solution method as compared to other solution methods which use

c = G = M = 1 as a unit system.

Leaver, in his solution method [28], uses the field quantity equations given by

Teukolsky [29] for ψ in the Teukolsky equation, equation 44 (u is a substitution for

cos(θ)).

ψ(t, r, θ, φ) =
1

2π

∫
e−iωt

∞∑
l=|s|

l∑
m=−l

eimφSlm(u)Rlm(r)dω (44)

Teukolsky gives the equations for Slm(u) and Rlm(r) as shown in equations 45 and

46 respectively. The V (r) in equation 46 is defined by equation 47 and ∆ is defined

by equation 48. These are the separated differential equations for the Teukolsky wave

equation.
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[(1− u2)Slm,u]u +

[
a2ω2u2 − 2aωsu+ s+ Alm −

(m+ 2u)2

1− u2

]
Slm = 0 (45)

∆Rlm,rr + (s+ 1)(2r − 1)Rlm,r + V (r)Rlm = 0 (46)

V (r) = {[(r2 + a2)2ω2 − 2amωr + a2m2 + is(am(2r − 1)− ω(r2 − a2))]∆−1

+[2isωr − a2ω2 − Alm]}
(47)

∆ = r2 − r + a2 (48)

In the unit system used by Leaver [28] (Leaver unit system), the a is a spin

parameter (the angular momentum per unit mass) as presented in section 3.3 but this

value is restricted to −1
2
≤ a ≤ 1

2
due to the differing unit for the mass component.

This relates to a percent of the total mass that is due to spin, the maximum of which

is 50%. This is compared to the unit system where c = G = M = 1, where a ranges

from -1 to 1, as it relates to a maximum spin value of the speed of light, c. In the

Leaver unit system, the mass scaling of the angular momentum introduces a factor

of 1
2

into the spin parameter, changing the numerical limits of the spin parameter

and their meaning, but not the overall effect when scaled between the two systems.

Recall in a unit system where a is scaled by mass, a = a∗.
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The s in equations 45 through 47 is the spin-weight field parameter, equivalent

to the s presented in section 3.3 (s = 0,±1,±2 for scalar, electromagnetic, and

gravitational fields respectively). The value u in the angular system is cos θ and

represents substitution for the value of θ. Alm is the angular separation constant,

which in the Schwarzschild case reduces to l(l + 1) − s(s + 1), where convention

dictates that s=-1, and -2 for electromagnetic and gravitational fields respectively. In

the Kerr case, this value must be calculated in the method by a system of continued

fraction equations when calculating ω and gives a selection method for choosing the

proper solution from the list generated by this method.

6.1.1 Solutions to the Angular Part of the Teukolsky Equation

The boundary conditions set on Slm are such that it is finite at the singular points

u = ±1, where the indices are ±1
2
(m+s) and ±1

2
(m−s) for the positive and negative

bounds respectively. This gives a solution, as shown by Baber and Hassé [30], to

the angular component of the Teukolsky equation to be given by equation 49, where

k1 = 1
2
|m− s| and k2 = 1

2
|m+ s|.

Slm(u) = eaωu(1 + u)k1(1− u)k2
∞∑
n=0

an(1 + u)n (49)

A set of expansion coefficients are related by a three-term recursion relation for

the continued fraction for the angular equation (indicated by the superscript θ), given

in equation 50, where the boundary condition u = 1 is only satisfied for minimum

solution sequences.
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αθ0a1 + βθ0a0 = 0

αθnan+1 + βθnan + γθnan−1 = 0 where n = 1, 2...

(50)

This recursion relation gives solutions for the angular part of the Teukolsky equa-

tion with the coefficients presented in equation 51.

αθn =− 2(n+ 1)(n+ 2k1 + 1)

βθn =n(n− 1) + 2n(k1 + k2 + 1− 2aω)

− [2aω(2k1 + s+ 1)− (k1 + k2)(k1 + k2 + 1)]− [a2ω2 + s(s+ 1) + Alm]

γθn =2aω(n+ k1 + k2 + s)

(51)

These coefficients give a continued fraction equation which will satisfy the minimal

solution requirement, imposed by the u = 1 boundary condition when the Alm is a

root of the continued fraction given in equation 52.

0 = βθ0 −
αθ0γ

θ
1

βθ1−
αθ1γ

θ
2

βθ2−
αθ2γ

θ
3

βθ3−
... (52)

Equation 52 represents a solution continued fraction to the angular part of the

Teukolsky equation, but with three unknown variables, ω, a and Alm. This solution

will need to be combined with another solution to solve for these variables. The

radial part of the Teukolsky equation has the same unknown variables, and so with

a constraint on the Alm terms, a solution for ω or a as a function of the other can be

obtained.
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As the spin parameter a approaches 0, the angular separation constant, Alm ap-

proaches the Schwarzschild value, Alm → n(n + 1) − s(s + 1) → l(l + 1) − s(s + 1)

since βθn = 0 for n = l values in this case. This shows the behavior of this solution

gives the proper value as the Schwarzschild limit is approached, which is necessary

for agreement between the Kerr and Schwarzschild metrics when spin is 0.

6.1.2 Solutions to the Radial Part of the Teukolsky Equation

The solution to the radial equation is similar to the solution to the angular part.

Both equations are spheroidal wave equations and have similar boundary conditions.

This means that the process for finding the continued fraction solution will be rela-

tively similar, as explained by Leaver. [28]

The regular singular points in the radial equation exist such that the roots of

∆ are given by equation 53. These singular points are required to define boundary

conditions on the radial equation.

∆ = r2 − r + a2 ≡ (r − r−)(r − r+) (53)

Leaver defines a rotational parameter, b, with equaiton 54 to create a simple

expression for the r± terms and to simplify the mathematics for the boundary con-

ditions. This b rotational parameter is easily related back to the spin parameter, a,

when it is necessary to calculate the spin parameter.

b =
√

1− 4a2 (54)

This rotational parameter ranges from 0 to 1, as |a| goes from 0 to 1
2
. This gives
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r± in the ∆ constraint (equation 53) as defined by equation 55.

r± =
1

2
(1± b) (55)

Notice that for the Schwarzschild case, (a = 0), the rotation parameter, b (equation

54), is 1, making the event horizon at location r+ = 1 (equaiton 55) as is expected

in the Schwarzschild case in the c = G = 2M = 1 unit system. Similarly, the r−

value for a Schwarzschild black hole can be calculated to be r− = 0 which gives the

location of the singularity within the black hole. This shows that the location of r−

is somewhere within the event horizon and represents a ring singularity rather than a

point singularity. The r− will be ignored as a boundary in this solution, as r− exists

inside the event horizon. The primary boundary for infalling material is at the outer

event horizon, r+. The boundary condition at r+ gives indices iσ+ and −s − iσ+,

where σ+ is defined by equation 56.

σ+ =
ωr+ − am

b
(56)

Teukolsky [29] gives two asymptotic solutions for the radial equation, one related

to the outgoing material and one related to infalling material. These are presented

in equaion 57.

lim
r→∞

Rlm ∼r−1−iωre−iωr

lim
r→∞

Rlm ∼r−1−2s+iωe+iωr
(57)

This gives two solutions including boundary conditions, one as r → r+ as material
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falls in and one as r →∞ as material falls away. These are given in equation 58.

Rlm
r→r+−−−→(r − r+)−s−iσ+

Rlm
r→∞−−−→r−1−2s+iωeiωr

(58)

These two equations can be combined to form an expression for Rlm given in

equation 59.

Rlm = eiωr(r − r−)−1−s+iω+iσ+(r − r+)−s−iσ+
∞∑
n=0

dn

(
r − r+
r − r−

)n
(59)

Similar to the angular recursion relation equation (equation 50), this radial equa-

tion has expansion coefficients defined by a three-term resursion relation, given in

equaiton 60, where the superscript r identifies these as the radial recursion terms.

αr0d1 + βr0d0 = 0

αrndn+1 + βrndn + γrndn−1 = 0 where n = 1, 2...

(60)

These relations are similar to those in the angular equation, though the coefficients

will differ. This similarity is due to the similar form of the summation terms in the

two equations (equations 50 and 60) and does create the same form of continued

fraction as the angular solution (equation 52) for the radial equation (equation 61).

0 = βr0 −
αr0γ

r
1

βr1−
αr1γ

r
2

βr2−
αr2γ

r
3

βr3−
... (61)

The coefficients for the radial equation are given in equation 62, with terms defined
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in equation 63.

αrn = b[n2 + (c0 + 1) + c0]

βrn = b[−2n2 + (c1 + 2)n+ c3]

γrn = b[n2 + (c2 − 3)n+ c4 − c2 + 2]

(62)

c0 = 1− s− iω − 2i

b

(ω
2
− am

)
c1 = −4 + 2iω(2 + b) +

4i

b

(ω
2
− am

)
c2 = s+ 3− 3iω − 2i

b

(ω
2
− am

)
c3 = ω2(4 + 2b− a2)− 2amω − s− 1 + (2 + b)iω − Alm +

4ω + 2i

b

(ω
2
− am

)
c4 = s+ 1− 2ω2 − (2s+ 3)iω − 4ω + 2i

b

(ω
2
− am

)
(63)

The roots of the continued fraction, equation 61, give the ω value for a given a,

m, Alm and s. Notice that in the necessary limit of a → 0 the Alm term approaches

the necessary value of l(l+1)−s(s+1) for agreement between the Schwarzschild and

Kerr metrics at their common value of spin (a = 0).

6.2 Creating a Solution for Black Hole Spin

The two solutions for the separable terms in the Teukolsky equation, as solved

by Leaver, give a set of two equations with three unknowns. This can be used to

relate two of the variables through a common one. In this case, the relation desired

is between the spin parameter, a (a=a∗), and the QNM angular frequency, ω.
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These solutions must be obtained through a numerical iterative solution method

using a system of two continued fractions.

Mathematica’s [31] ContinuedFractionK function was the preferred method for

the input of these continued fractions which allowed for a solution to be calculated

using the NSolve function. The Mathematica coding used is provided in appendix B

and shows the definitions for these continued fractions in the Mathematica syntax,

as well as the definition coding for the solution terms for these equations.

Using guidlines set by Leaver for number selection for the proper solutions, the

numerical values for a given spin parameter were defined by the most stable (imagi-

nary value nearest 0) angular separation constant (Alm) values and angular frequency

(ω) for Alm value less than l(l + 1) − s(s + 1) for prograde spin and greater than

l(l + 1) − s(s + 1) for retrograde spin. This selection criteria is set due to the most

probable state being the most stable (least imaginary component) and the nature of

the change in angular particle separation (angular separation constant Alm) as spin

increases in the prograde or retrograde direction to define prograde or retrograde.

Table 8 gives the calculated values for a black hole of spin a = 0.05 and a particle

of s = m = −2. The state m = −2 is the preferred state for gravitons (most sta-

ble, imaginary part closest to zero), and the convention for s = −2 is preferred in

literature for gravitons.

The critical value to determine prograde and retrograde spin is based on whether

the separation constant is greater than or less than the separation constant for a

Schwarzschild black hole. The angular separation constant for a Schwarzschild black

hole is given by Alm = l(l + 1) − s(s + 1) which gives a Schwarzschild value (Kerr

critical value) to be Alm = 4 and Alm = 2 for lowest energy (highest frequency)
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gravitons and photons respectively.

Table 8: Solutions given to the Teukolsky equation from the continued fraction
method for an l = −s = −m = 2 graviton around a prograde spinning black
hole (Re[Alm] < l(l + 1) − s(s + 1) = 4). For retrograde spin (not shown here),
Re[Alm] > l(l + 1)− s(s+ 1) = 4.

Re[Alm] Im[Alm] Re[ω] Im[ω]
3.9746 -0.136204 0.40785 -2.02908
3.9644 -0.099968 0.54652 -1.48666
3.9578 -0.066858 0.63433 -0.99263
3.9525 -0.037723 0.70950 -0.55933
3.9490 -0.012081 0.75952 -0.17899

In Table 8 the proper values to be selected are Alm = 3.9490 − 0.012081i and

ω = 0.75952− 0.17899i as these meet the criteria of being the most stable (smallest

value of IM[Alm] and IM[ω]). This ω can be related back to a real world value by

using the conversion factor for frequency from section 2.1 (ωHz = ω c3

GM
). Recall ω is

an angular frequency, and it must be divided by 2π when comparing to frequency.

The value for various spin parameters (0 ≤ a < 0.5) are given in table 9 and 10

for gravitons and photons respectively near a prograde spinning black hole and table

11 and 12 for gravitons and photons respectively near a retrograde spinning black

hole. These values were calculated at n = 4 in the Mathematica code, as this was the

minimum value required to get three significant figure accuracy. The limitation on

n significantly reduced the required time to process the code and, due to the quick

convergence of the continued fraction method, had little impact on the accuracy of

the solution.
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Table 9: The solutions for l = −m = 2 gravitons around a prograde spinning black
hole for various spin parameters (0 ≤ a < 0.5).

Spin
Parameter (a) Re[ω] Im[ω]
0 0.7467 -0.17914
0.025 0.759522 -0.17899
0.05 0.773405 -0.178583
0.075 0.788065 -0.177676
0.1 0.803831 -0.177625
0.125 0.820635 -0.177035
0.15 0.83871 -0.176331
0.175 0.858211 -0.175536
0.2 0.879416 -0.174593
0.225 0.902543 -0.173424
0.25 0.927992 -0.172037
0.275 0.956266 -0.17029
0.3 0.9878 -0.1681
0.325 1.02375 -0.165545
0.35 1.065 -0.162188
0.375 1.11341 -0.157778
0.4 1.17179 -0.151923
0.425 1.24494 -0.143445
0.45 1.342266 -0.130424
0.475 1.49082 -0.1072214
0.4999 1.91283 -0.00752466
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Table 10: The solutions for l = −m = 1 photons around a prograde spinning black
hole for various spin parameters (0 ≤ a < 0.5).

Spin
Parameter (a) Re[ω] Im[ω]
0 0.498103 -0.185097
0.025 0.504587 -0.184918
0.05 0.51165 -0.184407
0.075 0.519157 -0.183804
0.1 0.52722 -0.182958
0.125 0.535741 -0.182144
0.15 0.544862 -0.181202
0.175 0.554665 -0.1801
0.2 0.565244 -0.178804
0.225 0.576704 -0.177313
0.25 0.589054 -0.175701
0.275 0.60294 -0.173431
0.3 0.618137 -0.170918
0.325 0.635137 -0.167872
0.35 0.654404 -0.164115
0.375 0.676616 -0.159395
0.4 0.702838 -0.153246
0.425 0.734858 -0.144922
0.45 0.775848 -0.132011
0.475 0.835966 -0.110559
0.4999 0.964367 -0.00666179
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Table 11: The solutions for l = −m = 2 gravitons around a retrograde spinning black
hole for various spin parameters (0 ≤ a < 0.5).

Spin
Parameter (a) Re[ω] Im[ω]
0 0.7467 -0.17914
0.025 0.734156 -0.179576
0.05 0.72232 -0.179896
0.075 0.711119 -0.180128
0.1 0.700562 -0.180264
0.125 0.690184 -0.180525
0.15 0.680265 -0.180743
0.175 0.670823 -0.180902
0.2 0.661543 -0.181112
0.225 0.652311 -0.181383
0.25 0.643229 -0.18165
0.275 0.634176 -0.181951
0.3 0.624929 -0.182318
0.325 0.615312 -0.182758
0.35 0.60481 -0.183346
0.375 0.592865 -0.184182
0.4 0.578144 -0.185549
0.425 0.557768 -0.188129
0.45 0.525857 -0.194322
0.475 0.461797 -0.215211
0.4999 0.0716654 -0.466235
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Table 12: The solutions for l = −m = 1 photons around a retrograde spinning black
hole for various spin parameters (0 ≤ a < 0.5).

Spin
Parameter (a) Re[ω] Im[ω]
0 0.498103 -0.185097
0.025 0.491602 -0.185786
0.05 0.485604 -0.186146
0.075 0.479912 -0.186467
0.1 0.474608 -0.186642
0.125 0.469439 -0.186946
0.15 0.46453 -0.187224
0.175 0.459835 -0.187515
0.2 0.455358 -0.187822
0.225 0.45101 -0.188211
0.25 0.446826 -0.188666
0.275 0.442751 -0.18924
0.3 0.438748 -0.18998
0.325 0.43471 -0.190976
0.35 0.430532 -0.192331
0.375 0.425989 -0.194231
0.4 0.420635 -0.196694
0.425 0.413494 -0.201251
0.45 0.401719 -0.208552
0.475 0.374743 -0.224841
0.4999 0.00817686 -0.444966
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Using the data in tables 9 through 12, the graphs in figures 16 through 19 were

made and the best linear fit was found using a least squares linear regression of

polynomial terms, as is seen in the coding in appendix B. The regression equations

are given by equations 64 and 65 for gravitons and photons around a prograde black

hole and equations 66 and 67 for gravitons and photons around a retrograde spinning

black hole. The values, standard errors, t-statistics, and P-values for the coefficients

of these regression equations are given in appendix C. All are shown to be significant.

The statistical R2 values for these equations are 0.99865, 0.999542, 0.996823, and

0.991043 for equations 64, 65, 66 and 67 respectively. P-values for these equations

are presented in Appendix C. The accuracy of the fit was needed to ensure that the

limiting factor on the method was the numerical data, which is presented later in

this work. The accuracy of the theoretical work can, if need be for future study, be

improved by increasing the number of iterations in the continued fraction calculation,

by increasing the accuracy in the parameters of the fit, or by including additional

polynomial orders in the fit.

ωpros=−2 = 0.753992 + 161.815a3− 1704.27a4 + 7231.43a5− 13803.4a6 + 9873.49a7 (64)

ωpros=−1 = 0.503623 + 62.3338a3 − 602.75a4 + 2407.49a5 − 4391.5a6 + 3036.52a7 (65)
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ωretros=−2 = 0.750033− 42.104a2 + 922.524a3 − 8925.12a4 + 45012.1a5

−123042.a6 + 172750a7 − 97625.9a8
(66)

ωretros=−1 = 0.503433− 37.407a2 + 899.149a3 − 9063.91a4 + 46748.8a5

−129507a6 + 183312a7 − 104067.a8
(67)
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Figure 16: Data and linear regression for gravitons of l = −m = 2 around a prograde
spinning black hole. The data for the points is calculated to be correct to four
significant figures, as is determined by the number of iterations in the continued
fraction used, and so the associated error is less than the size of the point on the
graph.
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Figure 17: Data and linear regression for photons of l = −m = 1 around a prograde
spinning black hole. The data for the points is calculated to be correct to four
significant figures, as is determined by the number of iterations in the continued
fraction used, and so the associated error is less than the size of the point on the
graph
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Figure 18: Data and linear regression for gravitons of l = −m = 2 around a retrograde
spinning black hole. The data for the points is calculated to be correct to four
significant figures, as is determined by the number of iterations in the continued
fraction used, and so the associated error is less than the size of the point on the
graph
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Figure 19: Data and linear regression for photons of l = −m = 1 around a retrograde
spinning black hole. The data for the points is calculated to be correct to four
significant figures, as is determined by the number of iterations in the continued
fraction used, and so the associated error is less than the size of the point on the
graph
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Solving these linear regression equations (equations 64 through 67) for the spin as

a function of ω gives a function for spin which can be calculated from a known angular

frequency of the QNM resonance state, as shown in the coding in appendix B for the

ProPeriodSolve, RetroPeriodSolve, ProFreqSolve, and RetroFreqSolve functions. The

spin parameter, a∗, must be real and when using the prograde equations, the spin

must be positive. Likewise for the retrograde case, the spin must be positive and real,

understanding that the solution equation gives a positive value for a which relates

to a negative a∗ since the equation is valid only for retrograde spinning black holes,

which by convention have a negative a∗. These constraints give only one solution for

a∗ when using a numerical solve method. If a solution is not possible for a set of given

frequencies for a prograde solution, it is likely the black hole is instead in retrograde,

and the retrograde equations must be used.

The graviton and photon states must give consistent values for the spin of the

black hole to within a reasonable amount of error based on the regression equations.

This self consistency requirement forces a constraint on the possible values for the

spin, though the solutions are heavily dependent on mass when converted back into

real world measurable units. This is discussed further in section 8.
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7 NIR and X-Ray Observation of Black Holes

The QNMs for a Kerr black hole can be related to observational phenomena,

similar to the effect in the Schwarzschild case presented in section 4.1.4. The NIR or

x-ray emission from accelerated electrons falling through the cavity region is used as

an effective measurement tool to probe the region. Falling electrons interact with the

photon cavity due to their charge and the graviton cavity due to their mass, causing

a bunching of electrons which results in an increased emission due to the emission

measure. The bunching of electrons causes a fluctuation in the intensity of radiation

based on the cycle of the standing waves in the resonance cavity.

7.1 Sgr A*

Analyzing emissions from Sgr A* is difficult due to the amount of dust in the

space between earth and the galactic center. This dust is not the typical definition

of dust humans think of, but rather small particulates that exist within seemingly

empty space. Over large distances these dust particles can effectively block photons

which are traveling through it. For light to pass beyond the dust, the wavelength

must be longer than the size of the particle, as anything smaller will reflect off of or

be adsorbed by the particle. NIR radiation is typically able to penetrate the dust

that exists between the Earth and Sgr A*. This makes NIR the preferred wavelength

range to study when studying Sgr A* or other far objects in our galaxy.

X-ray emissions are also often studied for astronomical bodies due to their small

wavelength, as this small wavelength relates to a small physical size, which makes it

possible for an x-ray to statistically avoid dust. This means the overall x-ray signal



will be significantly diminished, since many x-ray photons will interact with dust, but

some x-ray emissions will be able to be observed as they are the ones that were able

to avoid the dust entirely before reaching Earth. For closer objects, x-ray may be a

preferred frequency range, but the amount of dust lowers the probability of x-rays

reaching the Earth from Sgr A* and therefore NIR is still preferred.

Genzel et al. [32] analyzed data from the supermassive black hole Sgr A* in 2003,

to study the pattern on subflares duing a flare event of the black hole. Their data

is presented in figure 20. While this analysis was not directly related to this work,

the NIR data they collected provides the necessary data to see the QNMs of Sgr A*

which can be related through the solutions for the Teukolsky equation to a value for

the spin.

Figure 20: NIR data of Sgr A* when it is flaring. The quiescent oscillations show two
frquencies which can be calculated to be around 4.8±0.1min and 7.35±0.1min. This
is roughly a 3:2 ratio of the frequencies. The arrows indicate locations of subflares,
which occur near every 2 and 3 iterations of the desired periods [32]. This image is
used with expressed permission. See appendix D for documentation.

The Genzel et al. data [32] show a quiescent oscillation signal that disappears

and reappears within the small intensity fluctuations that exist above the Nyquist
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frequency. This did not, however, appear on their Fourier analysis due to the inability

for a Fourier transform to pick up a constantly appearing and disappearing signal. If

the signal is not onmipresent it is significantly reduced in amplitude when compared

to other frequencies in a Fourier analysis. These frequencies of 4.8 ± 0.1 min and

7.35 ± 0.1 min were calculated by hand and through observation of the numerical

data presented by Genzel et al. By observing the peaks in their numerical data,

the periods were determined by comparing distances between peaks over long time

periods. The periods were assumed to be stable and continue in phase. The periods

occasionally disappeared for several cycles but would reappear in perfect phase with

the previous peak. This reappearance after a random number of cycles allowed for

a determination of the number of oscillations for which the signal was suppressed

and value of the periods. Even when comparing between the two days, these peaks

remained in phase between the two completely different sets of data.

These periods represent a fluctuation in electron emission on a millihertz scale and

correspond to the QNMs for a black hole the size of Sgr A*, as is discussed further

in section 8.

It is expected that the appearance and disappearance of these periods is due to the

infrequency of material falling into Sgr A*. The signal is only produced as electrons

fall into the near black hole environment (below the ISCO), which is time dependent.

For a black hole that is not actively accreting material, the rate of electrons falling

into this region will not be steady and therefore the signal from these electrons will

also not be consistent.

81



7.2 Stellar Mass Black Hole Binaries

Stellar mass black holes in a binary system are constantly fed by their companion

star and therefore are actively accreting material. This active accretion allows them

to have a relatively constant inflow of material, making a Fourier analysis viable

for these black holes. The time dependence of the signal heavily impacts a Fourier

analysis, and for these black holes, the constant infall of material means there is little

time dependence for an actively accreting black hole.

Remillard and McClintock [4] show a Fourier analysis for several stellar mass

black hole binaries (figure 21), the most commonly studied of which is GRS1915+105.

GRS1915+105 is a rapidly spinning black hole binary that is relatively nearby and

provides a strong signal. It is also considered one of the heaviest stellar mass black

holes, with a mass between 10 and 18 M�. Remillard and McClintock make note that

all of these black holes display a phenomenon known as the 3:2 ratio, where there is a

roughly 3:2 ratio present in primary peaks of the changes in electron emission intensity.

The primary explanation, though it is discredited by Remillard and McClintock, is

that there is an Abramowicz hotspot around the black hole [4]. This is discredited

because a hotspot would provide a fundamental frequency which would dominate over

the harmonics, which provide the 3:2 ratio. This fundamental frequency has never

been observed with this phenomenon. A hotspot is also a randomly generated bunch

of material. It is unlikely that a hotspot would exist in every stellar mass black hole

binary with enough density variation to produce the observed effects, especially given

that hotspots deteriorate over time as they fall toward the black hole and become

absorbed.

This 3:2 ratio is a calculated phenomenon, which is a result of the spacing between
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the most stable photon and graviton resonance states, and can be explained by the

QNM oscillations, as is discussed in section 8.

Figure 21: Fourier transforms of QPOs of stellar mass black holes in binaries. There
is a near 3:2 ratio in peak frequency for the black hole of interest, GRS1915+105 of
113 and 168 Hz. This is well documented, though it has yet to be explained [4].

These Quasi-Periodic Oscillations (QPOs) are readily and easily observed for stel-

lar mass black hole binaries. It is said that understanding these QPO oscillations will

give an understanding for the spin of a black hole. [1]

Given that mathematically all Kerr black holes are the same and are only scaled

by mass and spin, if a stellar mass black hole in a binary exhibits this behavior, it is

reasonable for a supermassive black hole such as Sgr A* to exhibit the same behavior.

This lends credibility to the calculations of the periods of the supermassive black hole

Sgr A*.
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Remillard and McClintock mention that this behavior is only observed in the three

most studied stellar mass black hole binaries [4]. It is currently unknown why only

these three black holes exhibit this behavior, but Bakala et al. [33] give a reasoning

for this which agrees with our theory. The reasoning given by Bakala et al. is

that the certain high spin black holes create a sufficiently high frequency QPO that

current technology is unable to measure. This concurs with our theory, as the QPO

frequencies for near maximally spinning prograde stellar mass black holes are higher

than the frequencies currently observable. This indicates that the three main studied

black holes, including GRS1915+105, have retrograde spin which makes their QPOs

visible.
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8 Results and Discussion

8.1 Supermassive Black Hole Sgr A* Results

In order to obtain self consistent solutions for the spin parameter for Sgr A*, the

values of the bounds of the spin are determined by the lowest period for the graviton

state and the highest period for the photon state which give the extremes of the

spin values. These bounds are given from the periods of oscillation determined in

section 7.1 to be 4.8± 0.1 min and 7.35± 0.1 min for graviton and photon resonances

respectively. These bounds are then set when the graviton period is 4.70min and the

photon period is set at 7.45 min. This is because the range of spin values the graviton

resonance can give above 4.70 min contains all possible values up to the value of spin

when the graviton resonance is at period 7.45 min. Similarly the photon resonance

lower bound of 7.25 min exceeds the minimum value of spin given by the graviton

resonance and therefore the constraining term on the lower bound is the graviton

resonance term.

These terms set the bounds on a black hole of mass 4.02 ×106 M� (as calculated

by Bohele et al. [10] and shown in section 2.4.2) to be a∗ = 0.404 ± 0.029 in the

c = G = M = 1 unit system, which is the standard convention for the spin parameter.

When considering the mass constraints given by Bohele et al. [10] of ±0.2 × 106

M�, the results for spin vary more greatly to a∗ = 0.371± .147. This radical increase

in the error of the value is due to the strong mass dependency of the method. By

decreasing the error in the mass estimate, the error in the spin estimate rapidly

decreases.

Using the lower bound of Genzel et al. [32] given in section 2.4.2, the lower bound



of the mass can be set at 3.97 × 106 M�. This instead gives a value for the spin to

be a∗ = 0.431± 0.075. Using both of these constraints gives a better estimate for the

overall mass of the black hole and narrows the range of possible spin values.

This gives a close resemblance to the previous calculation done by Kato et al. [16]

which calculated a black hole spin of a∗ ≈ 0.44. The calculation method provided in

this work is then validated by this other spin calculation method for the supermassive

black hole Sgr A*.

Due to the strong dependence on the mass, as constraints on the mass become

harsher, the constraints on the spin will be greatly reduced, giving a more accurate

spin estimate. Likewise, if the periods of the QPOs are studied more closely for Sgr

A*, the constraints on the angular frequency will become harsher and the limits on

the spin will as well.

8.2 Stellar Mass Binary Black Hole GRS1915+105 Results

For GRS1915+105, with mass 10.1± 0.6 M� as shown by Steeghs et al. [34], the

values of the x-Ray shown in figure 21, show a prominent peak at 168 Hz and 113

Hz, which are understood to be the signals from the graviton and photon resonances

respectively as the graviton resonance should provide a higher frequency oscillation.

There is a notaible lower frequency oscillation for GRS1915+105 in figure 21 (at 67

and 41 Hz), but these frequencies are known to vary with luminosity [35] while the

168 and 113 Hz frequencies are not. This variation in frequency with luminosity

indicates these frequencies are caused by another phenomenon, as the frequencies of

the graviton and photon resonance states are not dependent on the luminosity. This

gives a selection criterion for the proper QPO frequencies.
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The variance on the mass (10.1± 0.6 M� [34]) gives the spin of GRS1915+105 to

be a∗ = −0.9888±0.0064 which indicates a near maximum retrograde spin. The spin

for GRS1915+105 is often calculated to be a∗ > 0.98 [4] but direction is not indicated.

This rapid spin is often seen by the enormous jet that GRS1915+105 produces, as it

is considered a micro-quasar. This jet does not indicate direction of spin, only that

it is actively accreting while rapidly spinning.

Considering the requirement for self consistency of the spin as estimated by the

two resonant frequencies, the mass of GRS1915+105 can be calculated by setting the

spin parameter, a∗, equal between the two resonance cavity equations and solving for

the mass. This gives a mass estimate of M = 10.09 ± 0.005 M� for GRS1915+105,

which is within the expected value of (10.1 ± 0.6) M� given by Steeghs et al. [34].

This shows that for a well known QPO frequency, the solution method can provide

both an estimate for the mass, and an estimate for the spin of the black hole. If the

frequencies of the QPOs given by Remillard and McClintock [4]are accurate to three

significant figures, there is no other solution using this method that gives consistency

for the photon and graviton resonance frequencies other than M = 10.09± 0.005 and

a∗ = −0.9875± 0.0005.
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9 Conclusions

The spin solutions produced in this work provide an accurate and easy to calculate

method for determining the spin of a black hole. Since the base graphs have been

generated already and trendlines created, the solution method for determining the

black hole spin only requires the simple numerical solution of a polynomial function

when the QPOs of the black hole are known. These black holes can be seen in the

NIR and x-ray observations of the black hole, giving a solution for the spin based on

the physical measurements from the black hole, which separates it from other black

holes of its type.

The QPOs of a black hole’s NIR and x-ray signal are created by the QNMs of

standing wave gravitons and photons surrounding the black hole, below the ISCO.

These standing wave resonances influence the bunching of electrons and create higher

density regions around the black hole, which, due to the emission measure, produce

a significantly increased signal. This change in electron emission is then seen as a

fluctuating intensity, or QPO.

These QPOs are related to the QNMs as a unitless angular frequency and are

then used to calculate the spin parameter, a∗. The supermassive black hole Sgr A*

has QPOs with periods of 4.8 ± 0.1 min and 7.35 ± 0.1 min for the graviton and

photon resonances respectively and this relates to a spin parameter, based on its

mass, of a∗ = 0.431 ± 0.077. The error on this number can be significantly reduced

by incorporating better estimates for the mass and QPO periods.

In the stellar mass case, GRS1915+105 was chosen to be observed due to its

well known values for mass and spin. The spin was calculated using its mass of

10.1 ± 0.6 M�, and QPO frequencies of 168 Hz and 113 Hz for the graviton and



photon resonances respectively to be a∗ = −0.9888±0.0064. If the self consistency of

the photon and graviton resonances is considered and the QPO frequencies are taken

to be accurate without error, the mass for GRS1915+105 can be calculated using this

method to be M = 10.09M� which is within the error for the latest calculation of the

mass, 10.1± 0.6 M� [34]. This shows that with accurate measurements of the QPO

frequencies, the spin and mass can be calculated for black holes.

The continued fraction solution method for the QPOs of a black hole is a powerful

and rapidly converging approximation method, which may apply to various other

numerical solutions. In the case of black hole QPOs, this work provides the necessary

solutions and linear regressions to not require the calculation of the continued fracitons

for additional uses of this method when calculating spin. Since all black holes are

equivalent when scaled by mass and spin, and mass is included in the calculation of

the unitless angular frequency, these solution equations are valid for all Kerr black

holes.
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Appendices

A Additional Perturbation Calculation Tables

The following tables are intended to further the understanding of the perturbation

method used by S. Culbreth [22] when calculating the energy levels of the various

states of the photon and graviton resonances.

Table 13: E
(0)
n terms for perturbation theory corrections for harmonic oscillator wave

functions in the harmonic oscillator potential for gravitons in the state L=3.

Harmonic Oscillator Eigenvalue Numerical Calculation

E
(0)
0 .0531

E
(0)
1 .159

E
(0)
2 .266

E
(0)
3 .372

E
(0)
4 .478

E
(0)
5 .585

E
(0)
6 .691

Table 14: E
(0)
n terms for perturbation theory corrections for harmonic oscillator wave

functions in the harmonic oscillator potential for gravitons in the state L=4.

Harmonic Oscillator Eigenvalue Numerical Calculation

E
(0)
0 .0591

E
(0)
1 .177

E
(0)
2 .295

E
(0)
3 .414

E
(0)
4 .532

E
(0)
5 .651

E
(0)
6 .769



Table 15: E
(0)
n terms for perturbation theory corrections for harmonic oscillator wave

functions in the harmonic oscillator potential for photons in the state L=1.

Harmonic Oscillator Eigenvalue Numerical Calculation

E
(0)
0 .0355

E
(0)
1 .106

E
(0)
2 .177

E
(0)
3 .248

E
(0)
4 .319

E
(0)
5 .390

E
(0)
6 .461

Table 16: E
(0)
n terms for perturbation theory corrections for harmonic oscillator wave

functions in the harmonic oscillator potential for photons in the state L=2.

Harmonic Oscillator Eigenvalue Numerical Calculation

E
(0)
0 .0467

E
(0)
1 .140

E
(0)
2 .234

E
(0)
3 .366

E
(0)
4 .420

E
(0)
5 .513

E
(0)
6 .607
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Table 17: E
(0)
n terms for perturbation theory corrections for harmonic oscillator wave

functions in the harmonic oscillator potential for photons in the state L=3.

Harmonic Oscillator Eigenvalue Numerical Calculation

E
(0)
0 .0555

E
(0)
1 .167

E
(0)
2 .278

E
(0)
3 .389

E
(0)
4 .500

E
(0)
5 .611

E
(0)
6 .722

Table 18: dVnm terms for perturbation theory for various combinations of wave func-
tions and difference between the harmonic oscillator and our calculated potential for
gravitons in the L=3 state.

Wave Function |U0 > |U1 > |U2 > |U3 > |U4 > |U5 > |U6 >
< U0| -.00967 -.0238 -.0242 -.00321 -.00941 .00204 .00223
< U1| -.0238 -.0439 -.0392 -.0607 -.00186 -.0156 .00261
< U2| -.0242 -.0392 -.101 -.0484 -.104 .000126 -.0207
< U3| -.00321 -.0607 -.0484 -.171 .0542 -.151 .00225
< U4| -.00941 -.00186 -.104 .0542 .250 -.0580 -.200
< U5| .00204 -.0156 .000126 -.151 -.0580 -.334 -.0604
< U6| .00223 .00261 -.0207 .00225 -.200 -.0604 -.421

Table 19: dVnm terms for perturbation theory for various combinations of wave func-
tions and difference between the harmonic oscillator and our calculated potential for
gravitons in the L=4 state.

Wave Function |U0 > |U1 > |U2 > |U3 > |U4 > |U5 > |U6 >
< U0| -.00836 -.00896 -.0219 -.00889 -.00965 .00361 .00181
< U1| -.00896 -.0393 -.0281 -.0574 -.0103 -.0169 .00553
< U2| -.0219 -.0281 -.0948 -.0400 -.101 -.0938 -.0236
< U3| -.00889 -.0574 -.0400 -.165 -.0498 -.150 .00760
< U4| -.00965 -.0103 -.101 -.0498 -.245 -.0569 -.202
< U5| .00361 -.0169 -.0938 -.150 -.0569 -.332 -.0621
< U6| .00181 .00553 -.0236 -.00760 -.202 -.0621 -.424
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Table 20: dVnm terms for perturbation theory for various combinations of wave func-
tions and difference between the harmonic oscillator and our calculated potential for
photons in the L=1 state.

Wave Function |U0 > |U1 > |U2 > |U3 > |U4 > |U5 > |U6 >
< U0| -.00836 -.00896 -.0219 -.00889 -.00965 .00361 .00181
< U1| -.00896 -.0393 -.0281 -.0574 -.0103 -.0169 .00553
< U2| -.0219 -.0281 -.0948 -.0400 -.101 -.0938 -.0236
< U3| -.00889 -.0574 -.0400 -.165 -.0498 -.150 .00760
< U4| -.00965 -.0103 -.101 -.0498 -.245 -.0569 -.202
< U5| .00361 -.0169 -.0938 -.150 -.0569 -.332 -.0621
< U6| .00181 .00553 -.0236 -.00760 -.202 -.0621 -.424

Table 21: dVnm terms for perturbation theory for various combinations of wave func-
tions and difference between the harmonic oscillator and our calculated potential for
photons in the L=2 state.

Wave Function |U0 > |U1 > |U2 > |U3 > |U4 > |U5 > |U6 >
< U0| -.00836 -.00896 -.0219 -.00889 -.00965 .00361 .00181
< U1| -.00896 -.0393 -.0281 -.0574 -.0103 -.0169 .00553
< U2| -.0219 -.0281 -.0948 -.0400 -.101 -.0938 -.0236
< U3| -.00889 -.0574 -.0400 -.165 -.0498 -.150 .00760
< U4| -.00965 -.0103 -.101 -.0498 -.245 -.0569 -.202
< U5| .00361 -.0169 -.0938 -.150 -.0569 -.332 -.0621
< U6| .00181 .00553 -.0236 -.00760 -.202 -.0621 -.424

Table 22: dVnm terms for perturbation theory for various combinations of wave func-
tions and difference between the harmonic oscillator and our calculated potential for
photons in the L=3 state.

Wave Function |U0 > |U1 > |U2 > |U3 > |U4 > |U5 > |U6 >
< U0| -.00836 -.00896 -.0219 -.00889 -.00965 .00361 .00181
< U1| -.00896 -.0393 -.0281 -.0574 -.0103 -.0169 .00553
< U2| -.0219 -.0281 -.0948 -.0400 -.101 -.0938 -.0236
< U3| -.00889 -.0574 -.0400 -.165 -.0498 -.150 .00760
< U4| -.00965 -.0103 -.101 -.0498 -.245 -.0569 -.202
< U5| .00361 -.0169 -.0938 -.150 -.0569 -.332 -.0621
< U6| .00181 .00553 -.0236 -.00760 -.202 -.0621 -.424

98



B Mathematica Code for the Solution of a System

of Continued Fractions

The following Mathematica [31] coding was used to caluclate the solutions for the

Teukolsky equation using the Continued Fraction method, regression equations based

on those solutions, and values for the spin and mass of both supermassive and stellar

mass black holes based on observational data from Sgr A* and GRS1915+105.



ClearAll[k1, k2, αθ, βθ, γθ, Contθ]

k1[m_, s_] := 1  2 * Abs[m - s];

k2[m_, s_] := 1  2 * Abs[m + s];

αθ[m_, s_, n_] := -2 n + 1 n + 2 * k1[m, s] + 1;

βθ[m_, s_, n_] := n n - 1 + 2 * n k1[m, s] + k2[m, s] + 1 - 2 * a * ω -

2 * a * ω 2 * k1[m, s] + s + 1 - k1[m, s] + k2[m, s] k1[m, s] + k2[m, s] + 1 -

a2 * ω
2
+ s s + 1 + Alm;

γθ[m_, s_, n_] := 2 * a * ω n + k1[m, s] + k2[m, s] + s;

Contθ[m_, s_, nmax_] := βθ[m, s, 0] +

ContinuedFractionK[-αθ[m, s, n] * γθ[m, s, n + 1], βθ[m, s, n + 1], {n, 0, nmax}]

ClearAll[b, c1, c2, c3, c4, αr, βr, γr, Contr]

b[a_] := Sqrt[1 - 4 a^2]

c0[m_, s_] := 1 - s - ⅈ * ω -
2 ⅈ

b[a]

ω

2
- a * m

c1[m_, s_] := -4 + 2 ⅈ * ω 2 + b[a] +
4 ⅈ

b[a]
ω  2 - a * m

c2[m_, s_] := s + 3 - 3 ⅈ * ω -
2 ⅈ

b[a]
ω  2 - a * m

c3[m_, s_] :=

ω
2
4 + 2 b[a] - a2 - 2 a * m * ω - s - 1 + 2 + b[a] * ⅈ * ω - Alm +

4 ω + 2 ⅈ

b[a]
ω  2 - a * m

c4[m_, s_] := s + 1 - 2 ω
2
- 2 s + 3 * ⅈ * ω -

4 ω + 2 ⅈ

b[a]

ω

2
- a * m

αr[m_, s_, n_] := b[a] * n2 + c0[m, s] + 1 n + c0[m, s];

βr[m_, s_, n_] := b[a] * -2 n2 + c1[m, s] + 2 n + c3[m, s];

γr[m_, s_, n_] := b[a] * n2 + c2[m, s] - 3 n + c4[m, s] - c2[m, s] + 2;

Contr[m_, s_, nmax_] := βr[m, s, 0] +

ContinuedFractionK[-αr[m, s, n] * γr[m, s, n + 1], βr[m, s, n + 1], {n, 0, nmax}]

OmegaSolve[m_, s_, nmax_, A_] := NSolveContr[m, s, nmax] ⩵ 0 /. a → A,

Contθ[m, s, nmax] ⩵ 0 /. a → A, 0 <= Re[Alm] ≤ -2 * s, {ω, Alm}

OmegaSolveRetro[m_, s_, nmax_, A_] := NSolveContr[m, s, nmax] ⩵ 0 /. a → A,

Contθ[m, s, nmax] ⩵ 0 /. a → A, -3 * s >= Re[Alm] >= -2 * s, {ω, Alm}

OmegaFrequency[f_, Mass_] :=
4 * Pi * f * 6.674 * 10^-11 * Mass * 1.989 * 10^30

2.997 * 10^8^3

OmegaPeriod[t_, Mass_] :=

4 * Pi * 1  60 t * 6.674 * 10^-11 * Mass * 1.99 * 10^30  2.99 * 10^8^3
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ProgradeGravData =

{{0, 0.7467}, {0.025, 0.759522}, {0.05, 0.773405}, {0.075, 0.788065},

{0.1, 0.803831}, {0.125, 0.820635}, {0.15, 0.83871}, {0.175, 0.858211},

{0.2, 0.879416}, {0.225, 0.902543}, {0.25, 0.927992}, {0.275, 0.956266},

{0.3, 0.9878}, {0.325, 1.02375}, {0.35, 1.065}, {0.375, 1.11341}, {0.4, 1.17179},

{0.425, 1.24494}, {0.45, 1.342266}, {0.475, 1.49082}, {0.4999, 1.91283}};

ProgradeGravFit = Fit[ProgradeGravData, {1, a^3, a^4, a^5, a^6, a^7}, a]

0.753992 + 161.815 a3 - 1704.27 a4 + 7231.43 a5 - 13803.4 a6 + 9873.49 a7

ProLeaverGravSolve[w_] := NSolve[{w == ProgradeGravFit, Im[a] ⩵ 0, a > 0}, a];

ProNormalGravSolve[w_] :=

NSolvew == 0.7539916586895395` + 161.81507772877058` 0.5 a3 -

1704.268782577845` 0.5 a4 + 7231.434859887723` 0.5 a5 -

13803.44707011829` 0.5 a6 + 9873.487259870546` 0.5 a7, Im[a] ⩵ 0, a > 0, a;

ProgradePhotData = {{0, 0.498103}, {0.025, 0.504587},

{0.05, 0.51165}, {0.075, 0.519157}, {0.1, 0.52722}, {0.125, 0.535741},

{0.15, 0.544862}, {0.175, 0.554665}, {0.2, 0.565244}, {0.225, 0.576704},

{0.25, 0.589054}, {0.275, 0.60294}, {0.3, 0.618137}, {0.325, 0.635137},

{0.35, 0.654404}, {0.375, 0.676616}, {0.4, 0.702838}, {0.425, 0.734858},

{0.45, 0.775848}, {0.475, 0.835966}, {0.4999, 0.964367}};

ProgradePhotFit = Fit[ProgradePhotData, {1, a^3, a^4, a^5, a^6, a^7}, a]

0.503623 + 62.3338 a3 - 602.75 a4 + 2407.49 a5 - 4391.5 a6 + 3036.52 a7

ProLeaverPhotSolve[w_] := NSolve[{w == ProgradePhotFit, Im[a] ⩵ 0, a > 0}, a];

ProNormalPhotSolve[w_] :=

NSolvew == 0.503622771939244` + 62.333813287027915` 0.5 a3 -

602.75001383744` 0.5 a4 + 2407.490737456206` 0.5 a5 -

4391.497982187425` 0.5 a6 + 3036.524360721154` 0.5 a7, Im[a] ⩵ 0, a > 0, a;

retrogradeData = {{0, 0.7467}, {0.025, 0.734156},

{0.05, 0.72232}, {0.075, 0.711119}, {0.1, 0.700562}, {0.125, 0.6901823},

{0.15, 0.680265}, {0.175, 0.670823}, {0.2, 0.661543}, {0.225, 0.652311},

{0.25, 0.643229}, {0.275, 0.634176}, {0.3, 0.624929}, {0.325, 0.615312},

{0.35, 0.60481}, {0.375, 0.592865}, {0.4, 0.578144}, {0.425, 0.557768},

{0.45, 0.525857}, {0.475, 0.461797}, {0.4999, 0.0716654}};

RetroGravFit = Fit[retrogradeData, {1, a^2, a^3, a^4, a^5, a^6, a^7, a^8}, a]

0.750033 - 42.104 a2 + 922.524 a3 - 8925.12 a4 +

45012.1 a5 - 123042. a6 + 172750. a7 - 97625.9 a8
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RetroLeaverGravSolve[w_] := NSolve[{w ⩵ RetroGravFit, Im[a] ⩵ 0, a > 0}, a];

RetroNormalGravSolve[w_] :=

NSolvew == 0.7500326375139046` - 42.10398448915728` 0.5 a2 +

922.5236396406078` 0.5 a3 - 8925.117673339491` 0.5 a4 +

45012.09101799327` 0.5 a5 - 123041.83720358968` 0.5 a6 +

172749.6352801519` 0.5 a7 - 97625.85927214101` 0.5 a8, Im[a] ⩵ 0, a > 0, a;

retrogradePhotData = {{0, 0.498103}, {0.025, 0.491602},

{0.05, 0.485604}, {0.075, 0.479912}, {0.1, 0.474608}, {0.125, 0.469439},

{0.15, 0.46453}, {0.175, 0.459835}, {0.2, 0.455358}, {0.225, 0.45101},

{0.25, 0.446826}, {0.275, 0.442751}, {0.3, 0.438748}, {0.325, 0.43471},

{0.35, 0.430532}, {0.375, 0.425989}, {0.4, 0.420635}, {0.425, 0.413494},

{0.45, 0.401719}, {0.475, 0.374743}, {0.4999, 0.00817686}};

photretrofit = Fit[retrogradePhotData, {1, a^2, a^3, a^4, a^5, a^6, a^7, a^8}, a]

0.503433 - 37.407 a2 + 899.149 a3 - 9063.91 a4 +

46748.8 a5 - 129507. a6 + 183312. a7 - 104067. a8

RetroLeaverPhotSolve[w_] := NSolve[{w ⩵ photretrofit, Im[a] ⩵ 0, a > 0}, a];

RetroNormalPhotSolve[w_] :=

NSolvew == 0.5034326322131738` - 37.40696615833125` 0.5 a2 +

899.1494051721885` 0.5 a3 - 9063.913725004471` 0.5 a4 +

46748.798593545456` 0.5 a5 - 129507.42211401962` 0.5 a6 +

183312.3608807261` 0.5 a7 - 104067.3866033424` 0.5 a8, Im[a] ⩵ 0, a > 0, a;

ProPeriodSolve[g_, p_, m_] :=

{ProNormalGravSolve[OmegaPeriod[g, m]], ProNormalPhotSolve[OmegaPeriod[p, m]]}

ProFreqSolve[g_, p_, m_] := {ProNormalGravSolve[OmegaFrequency[g, m]],

ProNormalPhotSolve[OmegaFrequency[p, m]]}

RetroPeriodSolve[g_, p_, m_] :=

{RetroNormalGravSolve[OmegaPeriod[g, m]], RetroNormalPhotSolve[OmegaPeriod[p, m]]}

RetroFreqSolve[g_, p_, m_] := {RetroNormalGravSolve[OmegaFrequency[g, m]],

RetroNormalPhotSolve[OmegaFrequency[p, m]]}

MassSolve[g_, p_] :=

NSolveOmegaFrequency[p, 2 m] == 0.5034326322131738` - 37.40696615833125` 0.5 a2 +

899.1494051721885` 0.5 a3 - 9063.913725004471` 0.5 a4 +

46748.798593545456` 0.5 a5 - 129507.42211401962` 0.5 a6 +

183312.3608807261` 0.5 a7 - 104067.3866033424` 0.5 a8,

OmegaFrequency[g, 2 m] == 0.7500326375139046` - 42.10398448915728` 0.5 a2 +

922.5236396406078` 0.5 a3 - 8925.117673339491` 0.5 a4 +

45012.09101799327` 0.5 a5 - 123041.83720358968` 0.5 a6 + 172749.6352801519`

0.5 a7 - 97625.85927214101` 0.5 a8, Im[a] ⩵ 0, a > 0, {a, m}
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C Linear Regression Significance Tables

Table 23: Statistics for the linear regression coefficient terms for a graviton (l =
−m = 2) near a prograde spinning black hole. R2 = 0.99865

Estimate Standard Error t-Statistic P-Value

1 0.753992 0.00667147 113.017 2.12× 10−23
a3 1610815 23.4112 6.91187 4.96× 10−6
a4 -1704.27 263.134 -6.4768 1.04× 10−5
a5 7231.43 1101.63 6.56433 8.97× 10−6
a6 -13803.4 2017.71 -6.84114 5.59× 10−6
a7 9873.49 1361.13 7.2539 2.81× 10−6

Table 24: Statistics for the linear regression coefficient terms for a graviton (l =
−m = 1) near a prograde spinning black hole. R2 = 0.999542.

Estimate Standard Error t-Statistic P-Value

1 0.503626 0.00164049 306.996 6.60× 10−30
a3 62.3338 5.75672 10.828 1.74× 10−8
a4 -602.75 64.7036 -9.31555 1.26× 10−7
a5 2407.49 270.885 8.88749 2.30× 10−7
a6 -4391.5 496.147 -8.8512 2.43× 10−7
a7 3036.52 334.696 9.07249 1.77× 10−7



Table 25: Statistics for the linear regression coefficient terms for a graviton (l =
−m = 2) near a retrograde spinning black hole. R2 = 0.996823.

Estimate Standard Error t-Statistic P-Value

1 0.750033 0.00815877 91.9296 1.12× 10−19
a2 -42.104 12.1885 -3.4544 0.00427
a3 922.524 267.403 3.44993 0.00431
a4 -8925.12 267.403 -3.70868 0.00263
a5 45012.1 11140.7 4.04031 0.00140
a6 -123042 27919.3 -4.40706 0.000708
a7 172750 35997.3 4.479896 0.000347491
a8 -97625.9 18718.9 -5.21535 0.000167

Table 26: Statistics for the linear regression coefficient terms for a graviton (l =
−m = 1) near a retrograde spinning black hole. R2 = 0.991043.

Estimate Standard Error t-Statistic P-Value

1 0.503433 0.00965439 52.1455 1.74× 10−16
a2 -37.407 14.4228 -2.59359 0.0223
a3 899.149 316.422 2.84161 0.0138
a4 -9063.91 2847.71 -3.18288 0.00720
a5 46748.8 13183 3.54614 0.00358
a6 -129507 33037.3 -3.92004 0.00176
a7 183312 42596.2 4.30349 0.000858
a8 -104067 22150.4 -4.69822 0.00041

104



D Rights and Permissions

All images in this work were created for this work, exist in a public domain setting

with credits for images given if able, contain a clause stating use of material in a

thesis/dissertation is allowed without permission, or have the expressed permission

of those holding the copyright. The following documents show legal permission for

images not in the public domain.



11/20/2017 Copyright Clearance Center

https://www.copyright.com/printCoiConfirmPurchase.do?operation=defaultOperation&confirmNum=11682340&showTCCitation=TRUE 1/7

Step 3: Order Confirmation

Confirmation Number: 11682340
 Order Date: 11/20/2017

If you paid by credit card, your order will be finalized and your card will
be charged within 24 hours. If you choose to be invoiced, you can
change or cancel your order until the invoice is generated.

Shawn Culbreth 
 culbreths11@students.ecu.edu 

 +1 (267) 221-9300 
 Payment Method: CC ending in 2017 

 

Note: Copyright.com supplies permissions but not the copyrighted content itself.

Thank you for your order! A confirmation for your order will be sent to your account email address. If you have
questions about your order, you can call us 24 hrs/day, M-F at +1.855.239.3415 Toll Free, or write to us at
info@copyright.com. This is not an invoice.

Payment Information

Order Details  

Permission type: Republish or display content
Type of use: Republish in a thesis/dissertation

Requestor type Academic institution

Format Print, Electronic

Portion image/photo

Number of
images/photos
requested

1

The requesting
person/organization Shawn Culbreth

Title or numeric
reference of the
portion(s)

Figure 1

Title of the article or
chapter the portion is
from

On the Equations
Governing the
Gravitational Perturbations
of the Kerr Black Hole

Order detail ID: 70799444
Order License Id: 4233190586582

ISSN: 0080-4630
Publication Type: Journal
Volume:
Issue:
Start page:
Publisher: HARRISON AND SON,
Author/Editor: ROYAL SOCIETY (GREAT BRITAIN)

Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and
physical character

Permission Status:  Granted
 

106



11/20/2017 Copyright Clearance Center

https://www.copyright.com/printCoiConfirmPurchase.do?operation=defaultOperation&confirmNum=11682340&showTCCitation=TRUE 2/7

Editor of portion(s) N/A

Author of portion(s) S. Chandrasekhar and S.
Detweiler

Volume of serial or
monograph 350

Issue, if republishing
an article from a serial 1661

Page range of portion 170

Publication date of
portion Aug. 20, 1976

Rights for Main product

Duration of use Life of current edition

Creation of copies for
the disabled no

With minor editing
privileges no

For distribution to United States

In the following
language(s)

Original language of
publication

With incidental
promotional use no

Lifetime unit quantity of
new product Up to 499

Title

A solution method
determining the effect of
spin upon gravitational
effects in the surroundings
of a black hole.

Instructor name Orville Day

Institution name East Carolina University

Expected presentation
date Dec 2017

Note: This item will be invoiced or charged separately through CCC's RightsLink service. More info $ 48.50

107



11/20/2017 Copyright Clearance Center

https://www.copyright.com/printCoiConfirmPurchase.do?operation=defaultOperation&confirmNum=11682340&showTCCitation=TRUE 3/7

Total order items:  1 Order Total: 48.50 USD
 

This is not an invoice.

108



11/20/2017 Copyright Clearance Center

https://www.copyright.com/printCoiConfirmPurchase.do?operation=defaultOperation&confirmNum=11682340&showTCCitation=TRUE 4/7

Confirmation Number: 11682340

Special Rightsholder Terms & Conditions
The following terms & conditions apply to the specific publication under which they are listed

Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character
Permission type: Republish or display content 
Type of use: Republish in a thesis/dissertation 

TERMS AND CONDITIONS

The following terms are individual to this publisher:

None

Other Terms and Conditions:

 

STANDARD TERMS AND CONDITIONS

1. Description of Service; Defined Terms. This Republication License enables the User to obtain licenses for republication 
of one or more copyrighted works as described in detail on the relevant Order Confirmation (the “Work(s)”). Copyright 
Clearance Center, Inc. (“CCC”) grants licenses through the Service on behalf of the rightsholder identified on the Order 
Confirmation (the “Rightsholder”). “Republication”, as used herein, generally means the inclusion of a Work, in whole or in 
part, in a new work or works, also as described on the Order Confirmation. “User”, as used herein, means the person or 
entity making such republication.

2. The terms set forth in the relevant Order Confirmation, and any terms set by the Rightsholder with respect to a 
particular Work, govern the terms of use of Works in connection with the Service. By using the Service, the person 
transacting for a republication license on behalf of the User represents and warrants that he/she/it (a) has been duly 
authorized by the User to accept, and hereby does accept, all such terms and conditions on behalf of User, and (b) shall 
inform User of all such terms and conditions. In the event such person is a “freelancer” or other third party independent 
of User and CCC, such party shall be deemed jointly a “User” for purposes of these terms and conditions. In any event, 
User shall be deemed to have accepted and agreed to all such terms and conditions if User republishes the Work in any 
fashion.

3. Scope of License; Limitations and Obligations.

3.1 All Works and all rights therein, including copyright rights, remain the sole and exclusive property of the Rightsholder. 
The license created by the exchange of an Order Confirmation (and/or any invoice) and payment by User of the full 
amount set forth on that document includes only those rights expressly set forth in the Order Confirmation and in these 
terms and conditions, and conveys no other rights in the Work(s) to User. All rights not expressly granted are hereby 
reserved.

3.2 General Payment Terms: You may pay by credit card or through an account with us payable at the end of the month. 
If you and we agree that you may establish a standing account with CCC, then the following terms apply: Remit Payment 
to: Copyright Clearance Center, 29118 Network Place, Chicago, IL 60673-1291. Payments Due: Invoices are payable upon 
their delivery to you (or upon our notice to you that they are available to you for downloading). After 30 days, 
outstanding amounts will be subject to a service charge of 1-1/2% per month or, if less, the maximum rate allowed by 
applicable law. Unless otherwise specifically set forth in the Order Confirmation or in a separate written agreement signed 
by CCC, invoices are due and payable on “net 30” terms. While User may exercise the rights licensed immediately upon 
issuance of the Order Confirmation, the license is automatically revoked and is null and void, as if it had never been 
issued, if complete payment for the license is not received on a timely basis either from User directly or through a 
payment agent, such as a credit card company.

3.3 Unless otherwise provided in the Order Confirmation, any grant of rights to User (i) is “one-time” (including the 
editions and product family specified in the license), (ii) is non-exclusive and non-transferable and (iii) is subject to any 
and all limitations and restrictions (such as, but not limited to, limitations on duration of use or circulation) included in the 
Order Confirmation or invoice and/or in these terms and conditions. Upon completion of the licensed use, User shall either 
secure a new permission for further use of the Work(s) or immediately cease any new use of the Work(s) and shall render 
inaccessible (such as by deleting or by removing or severing links or other locators) any further copies of the Work 
(except for copies printed on paper in accordance with this license and still in User's stock at the end of such period).

3.4 In the event that the material for which a republication license is sought includes third party materials (such as 
photographs, illustrations, graphs, inserts and similar materials) which are identified in such material as having been used 
by permission, User is responsible for identifying, and seeking separate licenses (under this Service or otherwise) for, any 
of such third party materials; without a separate license, such third party materials may not be used.

3.5 Use of proper copyright notice for a Work is required as a condition of any license granted under the Service. Unless 
otherwise provided in the Order Confirmation, a proper copyright notice will read substantially as follows: “Republished 
with permission of [Rightsholder’s name], from [Work's title, author, volume, edition number and year of copyright]; 
permission conveyed through Copyright Clearance Center, Inc. ” Such notice must be provided in a reasonably legible font 
size and must be placed either immediately adjacent to the Work as used (for example, as part of a by-line or footnote 
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but not as a separate electronic link) or in the place where substantially all other credits or notices for the new work 
containing the republished Work are located. Failure to include the required notice results in loss to the Rightsholder and 
CCC, and the User shall be liable to pay liquidated damages for each such failure equal to twice the use fee specified in 
the Order Confirmation, in addition to the use fee itself and any other fees and charges specified.

3.6 User may only make alterations to the Work if and as expressly set forth in the Order Confirmation.  No Work may be 
used in any way that is defamatory, violates the rights of third parties (including such third parties' rights of copyright, 
privacy, publicity, or other tangible or intangible property), or is otherwise illegal, sexually explicit or obscene.  In 
addition, User may not conjoin a Work with any other material that may result in damage to the reputation of the 
Rightsholder.  User agrees to inform CCC if it becomes aware of any infringement of any rights in a Work and to cooperate 
with any reasonable request of CCC or the Rightsholder in connection therewith.

4. Indemnity. User hereby indemnifies and agrees to defend the Rightsholder and CCC, and their respective employees 
and directors, against all claims, liability, damages, costs and expenses, including legal fees and expenses, arising out of 
any use of a Work beyond the scope of the rights granted herein, or any use of a Work which has been altered in any 
unauthorized way by User, including claims of defamation or infringement of rights of copyright, publicity, privacy or other 
tangible or intangible property.

5. Limitation of Liability. UNDER NO CIRCUMSTANCES WILL CCC OR THE RIGHTSHOLDER BE LIABLE FOR ANY DIRECT, 
INDIRECT, CONSEQUENTIAL OR INCIDENTAL DAMAGES (INCLUDING WITHOUT LIMITATION DAMAGES FOR LOSS OF 
BUSINESS PROFITS OR INFORMATION, OR FOR BUSINESS INTERRUPTION) ARISING OUT OF THE USE OR INABILITY TO 
USE A WORK, EVEN IF ONE OF THEM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. In any event, the 
total liability of the Rightsholder and CCC (including their respective employees and directors) shall not exceed the total 
amount actually paid by User for this license. User assumes full liability for the actions and omissions of its principals, 
employees, agents, affiliates, successors and assigns.

6. Limited Warranties. THE WORK(S) AND RIGHT(S) ARE PROVIDED “AS IS”. CCC HAS THE RIGHT TO GRANT TO USER 
THE RIGHTS GRANTED IN THE ORDER CONFIRMATION DOCUMENT. CCC AND THE RIGHTSHOLDER DISCLAIM ALL OTHER 
WARRANTIES RELATING TO THE WORK(S) AND RIGHT(S), EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT 
LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. ADDITIONAL 
RIGHTS MAY BE REQUIRED TO USE ILLUSTRATIONS, GRAPHS, PHOTOGRAPHS, ABSTRACTS, INSERTS OR OTHER 
PORTIONS OF THE WORK (AS OPPOSED TO THE ENTIRE WORK) IN A MANNER CONTEMPLATED BY USER; USER 
UNDERSTANDS AND AGREES THAT NEITHER CCC NOR THE RIGHTSHOLDER MAY HAVE SUCH ADDITIONAL RIGHTS TO 
GRANT.

7. Effect of Breach. Any failure by User to pay any amount when due, or any use by User of a Work beyond the scope of 
the license set forth in the Order Confirmation and/or these terms and conditions, shall be a material breach of the 
license created by the Order Confirmation and these terms and conditions. Any breach not cured within 30 days of written 
notice thereof shall result in immediate termination of such license without further notice. Any unauthorized (but 
licensable) use of a Work that is terminated immediately upon notice thereof may be liquidated by payment of the 
Rightsholder's ordinary license price therefor; any unauthorized (and unlicensable) use that is not terminated 
immediately for any reason (including, for example, because materials containing the Work cannot reasonably be 
recalled) will be subject to all remedies available at law or in equity, but in no event to a payment of less than three times 
the Rightsholder's ordinary license price for the most closely analogous licensable use plus Rightsholder's and/or CCC's 
costs and expenses incurred in collecting such payment.

8. Miscellaneous.

8.1 User acknowledges that CCC may, from time to time, make changes or additions to the Service or to these terms and 
conditions, and CCC reserves the right to send notice to the User by electronic mail or otherwise for the purposes of 
notifying User of such changes or additions; provided that any such changes or additions shall not apply to permissions 
already secured and paid for.

8.2 Use of User-related information collected through the Service is governed by CCC’s privacy policy, available online 
here:  http://www.copyright.com/content/cc3/en/tools/footer/privacypolicy.html.

8.3 The licensing transaction described in the Order Confirmation is personal to User. Therefore, User may not assign or 
transfer to any other person (whether a natural person or an organization of any kind) the license created by the Order 
Confirmation and these terms and conditions or any rights granted hereunder; provided, however, that User may assign 
such license in its entirety on written notice to CCC in the event of a transfer of all or substantially all of User’s rights in 
the new material which includes the Work(s) licensed under this Service.

8.4 No amendment or waiver of any terms is binding unless set forth in writing and signed by the parties. The 
Rightsholder and CCC hereby object to any terms contained in any writing prepared by the User or its principals, 
employees, agents or affiliates and purporting to govern or otherwise relate to the licensing transaction described in the 
Order Confirmation, which terms are in any way inconsistent with any terms set forth in the Order Confirmation and/or in 
these terms and conditions or CCC's standard operating procedures, whether such writing is prepared prior to, 
simultaneously with or subsequent to the Order Confirmation, and whether such writing appears on a copy of the Order 
Confirmation or in a separate instrument.

8.5 The licensing transaction described in the Order Confirmation document shall be governed by and construed under 
the law of the State of New York, USA, without regard to the principles thereof of conflicts of law. Any case, controversy, 
suit, action, or proceeding arising out of, in connection with, or related to such licensing transaction shall be brought, at 
CCC's sole discretion, in any federal or state court located in the County of New York, State of New York, USA, or in any 
federal or state court whose geographical jurisdiction covers the location of the Rightsholder set forth in the Order 
Confirmation. The parties expressly submit to the personal jurisdiction and venue of each such federal or state court.If 
you have any comments or questions about the Service or Copyright Clearance Center, please contact us at 978-750-
8400 or send an e-mail to info@copyright.com.
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