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 Cardiovascular and pulmonary diseases are leading causes of morbidity and mortality 

worldwide. Studies report an inverse correlation between levels of serum high-density lipoprotein 

(HDL) and the severity of cardiovascular and lung diseases. HDL has also been shown to be anti-

inflammatory, anti-atherosclerotic, and anti-oxidative. HDL’s cardioprotective functions are well 

understood through the reverse cholesterol transport process.  However, how HDL effects the 

immune system in the lungs is still unknown.  We hypothesize that HDL is critical in preventing 

pulmonary injury from lipopolysaccharide (LPS) through inhibiting neutrophil (PMN) 

chemotaxis. While HDL is known to be biologically protective, it has also been reported that HDL 

can become dysfunctional (D-HDL) in chronic inflammatory diseases. HDL is characterized as 

dysfunctional when it does not perform its protective mechanisms. It has been challenging to study 

D-HDL, in part, because D-HDL is found in specific patient populations commonly burdened with 

comorbidities and subsequent medications. Apolipoprotein A-I (apoA-I), the major protein 

component of HDL, is primarily responsible for HDL’s beneficial properties. There are apoA-I 

mimetic peptides, such as L-4F, available to study the biological properties of HDL in both in vitro 

and in vivo models. However, there is no such research tool available to study D-HDL. Therefore, 

to better understand how D-HDL differs from HDL, we also sought to design a D-HDL mimetic 

peptide that can be used to examine the biological mechanisms of how HDL and D-HDL differ.
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CHAPTER I: INTRODUCTION 

 

Introduction 

 

Cardiovascular and lung diseases were reported to be two of the top three leading causes of death 

in the United States as of 2015 (1). These diseases are commonly driven by chronic inflammation 

which can lead to severe tissue injury. As research has been conducted, an emerging role for 

cholesterol in the pathogenesis of cardiovascular and pulmonary diseases has developed (2, 3). 

High-density lipoprotein (HDL), a cholesterol transporter, has been shown to be protective of the 

cardiovascular and respiratory systems (4-7). Cholesterol is essential in the body for integrity of 

cellular membranes, cellular signaling, steroid production, and as a form of energy (8, 9). 

However, excess levels of cholesterol termed ‘hypercholesteremia’ can be pathological in the 

pulmonary and circulatory system (10, 11). Therefore, balanced cholesterol homeostasis is 

necessary and, when thrown out of balance, can exacerbate chronic inflammation. This has driven 

a need for pharmaceuticals that balance cholesterol levels in the body, such as the use of statins. 

However, these treatments have not been effective in treating cardiovascular diseases (12). As a 

result, there has been a call for new therapeutic targets for balancing cholesterol in the body. HDL 

plays a critical role in the balance of cholesterol by transporting cholesterol out of the circulatory 

system (13). However, the connection between HDL’s ability to transport cholesterol and its 

protective of role is unknown. It is only understood that HDL carries cholesterol and has an anti-

inflammatory role in the immune system. Therefore, developing a better understanding of the role 

of HDL in the immune system is important for the development of better therapeutics for these 

diseases.   
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The innate immune response during chronic inflammation 

 

Cardiovascular and pulmonary diseases are considered to be the result of chronic inflammation 

from an acute immune response to a stimulus (14-16). The innate immune system generally 

recognizes two types of stimuli, a damaged-associated molecular pattern (DAMP) or a pathogen-

associated molecular pattern (PAMP). Lipopolysaccharide (LPS) is an PAMP commonly used to 

induce acute and chronic inflammatory responses. LPS is a lipid found in the outer membrane of 

gram-negative bacteria (17). When LPS enters the body, it binds to LPS-binding protein (LBP). 

This catalyzes LPS binding to cluster of differentiation molecule 14 (CD14), a receptor commonly 

found on myeloid cells, facilitating the activation of toll-like receptor 4 (TLR4) (18). Once TLR4 

is activated, an extensive cascade is triggered beginning with myeloid differentiation primary 

response protein 88 (MyD88) and ending with nuclear factor-κB (NF-κB). NF-κB is the 

responsible for the transcription and release of chemokines such as keratinocyte chemoattractant 

(KC) and macrophage inflammatory protein-2 (MIP-2) in rodents, or interleukin-8 (IL-8) in 

humans. NF-κB also contributes to transcription of pro-inflammatory cytokines such as tumor 

necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) (19, 20). Because LPS 

so easily binds to LBP and triggers the TLR4 cascade, an overly amplified immunological response 

can occur at certain exposure concentrations (21). Hyperinflammation can then damage the local 

tissue due to increased neutrophilia, reactive oxygen species (ROS) production, and protease 

release. Increased blood flow to the site of inflammation also perpetuates the inflammatory 

response as more macrophages, neutrophils (PMNs), and pro-inflammatory cytokines accumulate 

in the site of injury (22).  
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High-Density Lipoprotein 

 

HDL is an 8-10 nm particle composed of a core with cholesterol, cholesteryl ester, fatty acids, 

triglycerides, proteins, enzymes, and micro RNAs and a phospholipid monolayer membrane 

interwoven with several apolipoprotein(apo)s (23-25). HDL’s primary function is cholesterol 

transport and is understood to be protective in the cardiovascular and respiratory systems. There 

are two HDL subpopulations based on density, HDL2, and HDL3 with HDL2 being less dense and 

larger than HDL3 (26). ApoA-I is the primary structural protein of HDL which makes up 70% of 

its protein content (27, 28). The second major structural protein is apoA-II, making up 15-20% of 

total HDL protein (29). HDL’s remaining protein content is composed of several other 

apolipoproteins, enzymes, lipid transfer proteins, acute phase proteins, proteinase inhibitors and 

various other proteins (27). Notable proteins are lecithin: cholesterol acetyltransferase (LCAT), 

phospholipid transfer protein (PLTP), paraoxonase 1 (PON1), and α-1-antitrypsin (AAT). LCAT 

is necessary for the esterification of cholesterol as it is transferred from tissue to nascent HDL to 

form mature HDL (30). PLTP transfers phospholipids from triglyceride-rich lipoproteins to HDL 

and has also been shown to bind other lipids such as LPS (31). PON1 is an enzyme found in HDL 

that has been shown to be anti-atherosclerotic due to hydrolyzing specific oxidized phospholipids 

in lipoproteins (32, 33), and increasing HDL binding to foamy macrophages (34). AAT is an 

enzyme that neutralizes elastase, the proteinase enzyme released by PMNs during inflammation 

(35). These proteins and enzymes all contribute to the overall function of HDL in the body, whether 

that be cholesterol transportation, or inhibition of inflammation, atherosclerosis, oxidation, or 

thrombosis.  
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HDL in reverse cholesterol transport 

 

The primary function of HDL is to perform reverse cholesterol transport (RCT) (30). RCT is the 

process in which HDL takes up cholesterol from the cells of peripheral tissues or lipid-laden 

macrophages and transports the cholesterol to the liver to produce sterols, steroids, glucocorticoids, 

or excrete the cholesterol. Cholesterol is effluxed from peripheral tissues by ATP binding cassette 

transporter A-1 (ABCA1) and is transported to pre-β HDL (nascent/immature HDL) which is 

synthesized in the liver. The cholesterol is then esterified by LCAT, making the cholesterol more 

hydrophobic and stable within the HDL particle. As pre-β HDL fills with cholesteryl ester, it grows 

to HDL3, where ATP binding cassette transporter G-1 (ABCG1), in addition to ABCA1, effluxes 

cholesterol from macrophages and transports it to HDL. HDL then grows to HDL2, the largest and 

least dense HDL molecule. The filled HDL particle then passively passes through circulation until 

reaching the liver. Once HDL reaches the liver, scavenger receptor B class I (SR-BI) binds to the 

HDL particle and transfers the cholesteryl ester into the liver (36, 37).  

 

The cardioprotective role of HDL 

 

HDL is most widely known for being protective in the cardiovascular system. There is an inverse 

relationship between plasma HDL and the severity of cardiovascular disease (CVD) (4, 5). The 

leading pathway in HDL’s protective function has generally been thought to be the result of HDL 

performing RCT (38). Through RCT, HDL takes up cholesterol from foamy macrophages that are 

attempting to destroy plaque lesions (39). As a result, HDL inhibits the development of 

atherosclerosis or other forms of CVD. It is for this reason that clinicians measure the concentration 

of systemic HDL-cholesterol (HDL-C) as a diagnostic measure of early CVD development. 

Additionally, HDL has been shown to play a protective role in many other ways. For example, 
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HDL has been shown to lower the susceptibility of low-density lipoprotein (LDL) oxidation which 

is pro-atherosclerotic (40, 41). Also, HDL carries another protein, sphingosine-1-phosphate, which 

facilitates nitric oxide production and facilitates vascular tone modulation and circulatory 

homeostasis (42). Additionally, HDL has been shown to inhibit neutrophil adhesion to and 

migration through endothelial cells by suppressing adhesion molecule surface display (43). The 

ability of HDL to suppress intracellular adhesion molecule-1 (ICAM-1) is thought to be the result 

of HDL carrying micro RNA miR-223, which blunts the expression of ICAM-1 (44, 45). HDL is 

also beneficial to endothelial cell proliferation and migration, increasing the wound healing of 

human umbilical vein endothelial cells (HUVECs) (46). It has also been described that HDL can 

inhibit the activation of monocytes due to the decreased display of cluster of differentiation 

molecule 11b (CD11b) (47, 48). Along with these anti-atherosclerotic and anti-inflammatory 

properties, HDL has also demonstrated anti-oxidative (49-51), and some anti-thrombotic (52, 53) 

functions.  

 

The pulmonary protective role of HDL  

 

While HDL is primarily understood as cardioprotective, recent literature has indicated a protective 

role for HDL in the lungs. It has been recently reported that low HDL-C levels are associated with 

the development of asthma in adolescents (6). Also, apoA-I deficiency, which essentially prevents 

HDL formation, induces increased oxidative stress, inflammation, collagen deposition, and airway 

hyperresponsiveness (7). These findings indicate HDL is necessary for fundamental lung function. 

Additional research has demonstrated that HDL also plays a significant role in the pulmonary 

inflammatory response. It was found that HDL will accumulate in the lungs in a mouse model of 

pulmonary emphysema (54). Likewise, apoA-I deficient mice were found to have increased airway 
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PMNs after ovalbumin-induced airway inflammation (55). In that study, pulmonary neutrophilia 

was then suppressed by administration of an anti-granulocyte colony-stimulating factor (G-CSF) 

antibody, indicating the necessity of apoA-I to suppress PMN production after pulmonary injury. 

Furthermore, excess apoA-I administration decreases pulmonary neutrophilia and collagen 

deposition after bleomycin challenge (55), pulmonary inflammation after LPS challenge (56), and 

pulmonary inflammation from house dust mite-driven asthma (57). Collectively, this research 

demonstrates the necessity of HDL, and its primary structural protein apoA-I, in the pulmonary 

immune response and its ability to inhibit that response when given in excess.  

 

Apolipoprotein A-I  

 

ApoA-I is the major structural protein of HDL. It is a 243 amino acid protein with an amphipathic 

alpha-helix structure (23). The amphipathic alpha-helix structure of apoA-I and other 

apolipoproteins allows for the formation of lipoproteins by providing a hydrophobic side to face 

lipids and a hydrophilic side to allow lipoproteins to be soluble. There are many apolipoproteins 

within HDL and other lipoproteins, but apoA-I is unique to HDL and thought to be responsible for 

HDL’s protective function (58). For example, apoA-I is primarily responsible for the activity of 

HDL in RCT. ApoA-I selectively interacts with lipoprotein receptors to efflux cholesterol from 

lipid-laden macrophages or peripheral tissue and take up cholesterol within HDL (59-63). ApoA-

I is also a cofactor for LCAT to esterify cholesterol and increase its hydrophobicity, stabilizing 

cholesterol within HDL (64). While this role of apoA-I in RCT makes apoA-I anti-atherosclerotic, 

there have also been many studies demonstrating delipidated apoA-I to have anti-inflammatory 

properties similar to HDL. ApoA-I was shown to inhibit nonocclusive carotid periarterial collar-

induced ROS, ICAM-1, vascular cell adhesion molecule (VCAM), and monocyte chemoattractant 
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protein-1 (MCP-1) in rabbits (65). Additionally, in an LPS-induced inflammatory model, 

genetically transferred human apoA-I by adenoviral vector to mice increased mouse survival and 

suppressed TLR4 expression (66). PMN density and myeloperoxidase concentrations in the lungs, 

markers of TLR4 induced inflammation, were also suppressed by apoA-I. Continued research has 

implicated apoA-I to play a role in the immune response through TLR4. Completely delipidated 

apoA-I can initiate TLR4 activation and through MyD88-dependent and –independent pathways, 

can activate NF-κB, and induce cytokine production in macrophages (67). Taken together, this 

information suggests that apoA-I has the ability to directly influence components of the immune 

system including modulation of the TLR4 pathway. 

 

ApoA-I mimetic peptides 

 

Because of the anti-inflammatory properties of apoA-I, apoA-I mimetic peptides have been 

designed to replicate endogenous apoA-I. These peptides are unique sequences designed to 

replicate the class A amphipathic alpha-helix of apoA-I (68). The original apoA-I mimetic, 18A, 

was shown to replace 40% of apoA-I within HDL. The modified HDL was then shown to be 

equally effectual as unmodified HDL in acting as an LCAT substrate, indicating 18A sufficiently 

mimics the structural motif of apoA-I (69). 18A has since been altered to increase lipid affinity, 

and thus increase the solubilization of lipids and prevent atherosclerosis (70, 71). While these 

peptides have been shown to increase lipid affinity and more effectively induce cholesterol efflux, 

the high lipid affinity is associated with cytotoxicity because of adverse effects on the integrity of 

the plasma membrane (72). Consequently, more peptides have been designed to reduce general 

lipid affinity, but induced cholesterol efflux specifically through a lipoprotein receptor (73-75). 

Despite these advances, the most commonly studied peptide is L-4F (76) due to its simple 18 
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amino-acid sequence with effective cholesterol efflux and anti-inflammatory properties (77-79). 

While these peptides have been primarily studied in the context of CVD, L-4F has also been shown 

to be protective in the lungs (80, 81). These peptides have been designed as tools to further study 

the role of HDL, as well as to be studied as potential therapeutics for CVD and pulmonary diseases.  

 

Dysfunctional HDL 

 

While HDL is generally necessary for lung/cardiovascular homeostasis and protection, it can 

become dysfunctional in individuals with chronic inflammatory diseases. Dysfunctional HDL (D-

HDL) is identified as being larger in size or as having decreased protective function. As a result, 

D-HDL is less anti-inflammatory (82), anti-oxidative (83), anti-apoptotic,  and anti-atherosclerotic 

(84). D-HDL develops in chronic inflammatory diseases such as coronary artery disease (85), type 

II diabetes mellitus (86), or obesity (87) due to the high levels of oxidative stress throughout the 

body in these diseases. D-HDL may also contribute to the development of lung diseases such as 

chronic obstructive pulmonary disease (88) or viral pneumonia (89). D-HDL has been shown to 

be unable to prevent LDL oxidation in woman with systemic lupus erythematosus (90). Also, D-

HDL from diabetics is unable to increase endothelial cell wound healing (84). The definition of 

D-HDL is unclear, with the notion of it not behaving as functional HDL being the primary 

stipulation. As a result, there are many forms of D-HDL. One can be found to have D-HDL in a 

circumstance as simple as having a greater density of the larger sized subpopulation of HDL 

(HDL2) in circulation (91). The smaller sized subpopulation of HDL (HDL3) has been reported to 

be more protective than HDL2 (92), however, this is somewhat controversial as there have been 

conflicting reports on this finding (93, 94). Another form of D-HDL occurs during the acute phase 

inflammatory response as serum amyloid A replaces apoA-I in HDL (95), significantly reducing 
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the cholesterol efflux, anti-inflammatory (96), and the anti-oxidative ability of HDL (97, 98). HDL 

can also become dysfunctional when apoA-I is glycated, which usually is found in type II diabetics 

(99). D-HDL by glycation has an impaired ability to induce monocyte cholesterol efflux (100) and 

suppress the inflammatory response of monocytes/macrophages to LPS (101). The most 

commonly studied (102), and ubiquitously identified, type of D-HDL is induced by oxidation of 

apoA-I. Oxidized HDL has been found in type II diabetes (86), coronary artery disease (103), 

obesity (87), chronic kidney disease (104), atherosclerosis (105), and after acute inflammation 

(89). Most research has discovered where D-HDL can be found, however, there is very little 

literature on the ramifications of developing D-HDL, particularly in pulmonary disease.  

 

Goal of research and statement of hypothesis 

 

The role of HDL in CVD has been studied for decades, however the role of HDL in pulmonary 

immunity is severely understudied. As described earlier, HDL is necessary for fundamental lung 

function, and is involved in the innate immune response of the lungs. Yet, how HDL is 

incorporated into lung function is unknown. With the lack of clarity for the role of HDL in 

pulmonary immunity, the consequences of D-HDL in the pulmonary immune response is even less 

understood. ApoA-1 has been shown to be critical in the protective role of HDL in the lung and, 

as a result, apoA-1 mimetic peptides have been designed to study HDL. However, there are 

currently no D-HDL mimetic peptides that could be used to study the consequences of D-HDL in 

cardiovascular or pulmonary disease pathogenesis. The goal of this project is to further elucidate 

the role of HDL in the pulmonary immune system, and to design a D-HDL mimetic peptide to be 

used as a tool to study D-HDL in the context of pulmonary inflammation that can drive the 

development of chronic lung diseases. 
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Specific aims 

 

Aim 1: Determine if HDL protects the lungs from inflammation by decreasing PMN 

chemotaxis. Hypothesis: HDL decreases pulmonary inflammation by decreasing the display of 

CXCR2 on PMNs, thus inhibiting PMN chemotaxis and chemokine potency. 

A. Observe if HDL suppresses the LPS-induced increase in pulmonary neutrophilia 

and inflammation. 

B. Evaluate if HDL suppresses the LPS-induced increase in surface display of CXCR2 

on blood PMNs. 

C. Determine the impact of LPS and HDL on cholesterol transportation in the lungs. 

Aim 2: Develop a model for evaluating the functionality of a novel D-HDL mimetic peptide. 

Hypothesis: The apoA-I mimetic peptide, L-4F, will replicate the protective functions of HDL 

during endothelial cell inflammation. 

A. Reveal if HDL suppresses the LPS-induced increases in VCAM and ICAM-1 

expression on endothelial cells in vitro.  

B. Ascertain if L-4F mimics the protective properties of HDL on endothelial cells 

C. Engineer a novel D-HDL mimetic peptide (L-2W) for future study of D-HDL 
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CHAPTER II: A NOVEL ROLE FOR HDL IN PULMONARY IMMUNITY 

 

INTRODUCTION 

 

Pulmonary diseases are the third leading cause of death in the United States, accounting 

for more than 30% of deaths in 2015 (106). Additionally, metabolic and cardiovascular diseases 

can contribute to pulmonary disease onset and progression (107, 108). It has long been appreciated 

that there is an inverse relationship between plasma high-density lipoprotein (HDL) and 

cardiovascular disease (CVD) (4, 5). Recently, it has been reported that there is a similar 

relationship between serum HDL-cholesterol and the severity of pulmonary diseases (109-111). 

However, the mechanistic interaction of HDL influencing the severity of lung disease is 

understudied. Therefore, it is critical to further understand how HDL interacts with the pulmonary 

immune system. 

Several pulmonary diseases, such as chronic obstructive pulmonary disease, are the result 

of continuous acute phase inflammation (16). The innate immune response is generally stimulated 

by damage-associated molecular patterns (DAMPs) or pathogen-associated molecular patterns 

(PAMPs). A commonly used PAMP for inducing acute phase inflammation is a lipid known as 

lipopolysaccharide (LPS), which activates the immune system through the toll-like receptor 4 

(TLR4) pathway (17, 18). This pathway leads to the production of pro-inflammatory cytokines 

such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), 

neutrophil (PMN) chemokines such as keratinocyte chemoattractant (KC) and macrophage 

inflammatory protein-2 (MIP-2), and adhesion molecules such as intracellular adhesion molecule 

1 (ICAM-1) and vascular cell adhesion molecule (VCAM) (19, 20, 112).  

During host defense, activated PMNs display a CD11b/CD18 complex (113-115). 

Additionally, PMN trafficking is facilitated by chemotaxis, which involves the secretion of 
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chemokine molecules to create a chemotactic gradient to communicate to immune cells in 

circulation (116). MIP-2 and KC are the ligands for the C-X-C Motif Chemokine Receptor 2 

(CXCR2) on PMNs (117), which facilitates PMN chemotaxis (118). Production of these molecules 

contribute to trafficking leukocytes to the cite of inflammation for the body to resolve the 

inflammatory stimulus. However, hyperinflammation can damage the local tissue due to increased 

neutrophilia, reactive oxygen species production (ROS), and protease release (119). Due to the 

severity of pulmonary diseases across the world, it is critical to further understand the pulmonary 

immune response. Through further understanding, better treatments can be developed to reduce 

the burden of pulmonary diseases on society.  

It has recently become understood that HDL plays a significant role in the pulmonary 

immune system (120). HDL is an 8-10 nm particle composed of a core with cholesterol, cholesteryl 

ester, fatty acids, triglycerides, proteins, enzymes, and micro RNAs and a phospholipid monolayer 

membrane interwoven with several apolipoproteins (23-25). The protective properties of HDL 

have primarily been attributed to its major structural protein, apolipoprotein A-I (apoA-I) (58). 

ApoA-I deficient mice have increased pulmonary inflammation, oxidative stress, collagen 

deposition, and airway hyperresponsiveness (7). HDL is also beneficial to the lungs by increasing 

type II alveolar cell proliferation (121). Additionally, isolated apoA-I protects mouse lungs from 

LPS-induced inflammation (56). Also, HDL has been shown to accumulate in the lungs of mice 

with induced pulmonary emphysema (54). Congruently, HDL has been shown to decrease ICAM-

1 and VCAM expression after tumor necrosis factor α (TNF-α) incubation in vitro (43).  

Many of HDL’s cardioprotective properties have been attributed to its role in reverse 

cholesterol transport (RCT) (36, 122).  During RCT, lipoprotein receptors ATP binding cassette 

transporter A1 (ABCA1), ATP binding cassette transporter G1 (ABCG1), and scavenger receptor 
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B-I (SR-BI) transport cholesterol from tissues/cells to HDL (30, 36, 123, 124). These lipoprotein 

receptors used in RCT are expressed in the lung on type I and type II alveolar epithelial cells and 

alveolar macrophages (61, 125, 126). These receptors allow HDL to interact with the lungs 

directly, promoting the RCT of lipids from type I and type II alveolar epithelial cells and surfactant 

secretion (127, 128). In addition to RCT, lipoprotein receptors have been reported to be protective 

against lung injury and development of chronic lung diseases (129-132).  

The hypothesis of this study was that increasing circulating levels of HDL will mitigate 

pulmonary injury and inflammation through modulation of lipoprotein receptors. This study 

evaluated the mechanism of how circulating HDL can mitigate pulmonary inflammation utilizing 

a well characterized model of pulmonary inflammation (LPS-induced injury).  These data indicate 

that HDL inhibits the pulmonary inflammatory response by suppressing the chemotactic and 

transmigratory potential of blood PMNs. Additionally, these findings show that HDL abrogates 

pulmonary lipoprotein receptor expression during lung injury. To our knowledge, these findings 

are the first to implicate the ability of HDL to inhibit PMN chemotactic potential through the 

modulation of lipoprotein receptors in the lungs.  

 

METHODS 

 

Murine HDL pretreatment and whole body LPS exposure. C57BL/6J (WT) male mice, 8-12 

weeks were purchased from Jackson Laboratories (Bar Harbor, ME). HDL was purchased from 

Kalen biomedical (Germantown, MD). Escherichia coli 0111:B4 LPS was from Sigma (St. Louis, 

MO). All experiments were performed in accordance with the Animal Welfare Act and the U.S. 

Public Health Service Policy on Humane Care and Use of Laboratory Animals after review by 

East Carolina University’s Animal Care and Use Committee. Mice were pretreated with HDL 
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(40mg/kg), or phosphate buffered saline (PBS) through retro-orbital injection (200 μL) and then 

exposed to aerosolized LPS (300 μg/mL) or were unexposed. Mice were exposed to aerosolized 

LPS for 30 min and necropsied 2 or 24 hours after exposure. 

 

Murine sample collection. Mice were first anesthetized with 990 mg/kg ketamine and 10 mg/kg 

xylazine, and then euthanized by a bilateral thoracotomy. During necropsy, blood, bronchoalveolar 

lavage fluid (BALF), and lung tissue were collected. Blood was collected by puncturing the right 

atrium with a 25-gauge needle and collecting from venous flow. Three quarter BALF was collected 

by actively instilling and withdrawing 26.25 ml/kg(body wt) PBS three times from the right lung with 

the left lung clamped off. The left lung was then excised, flash frozen, and stored at -80°C.  

 

Assessment of airspace inflammation and cholesterol content. Cell differentials were 

performed as previously described (129). Total cholesterol content in BALF was measured using 

an Amplex Red cholesterol assay kit from ThermoFisher (Wilmington, DE). BALF protein was 

measured using a Pierce BCA Protein Assay Kit from ThermoFisher (Wilmington, DE) and 

microplate photometer set to 562 nm .   

 

Pro-inflammatory cytokines, chemokines, and lipoprotein receptors expression in the lung. 

The left lungs of mice were flash frozen and total RNA was isolated using a Qiagen RNeasy Mini 

Kit (Qiagen, Valencia, CA). Concentrations of RNA for each sample were determined using the 

NanoDrop 2000 (ThermoFisher Scientific, Wilmington, DE). RNA was reverse transcribed, using 

the High Capacity RNA-to-cDNA Kit or High Capacity cDNA Reverse Transcription Kit, and 

real-time polymerase chain reaction (RT-PCR) was performed in a one-step reaction using iScript 
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One-Step RT-PCR kit (ThermoFisher Scientific, Waltham, MA). RT-PCR was completed with the 

Taqman Universal PCR Master Mix from Thermofisher (Waltham, MA). Taqman primers were 

obtained from Invitrogen (Waltham, MA). Primers used for RT-PCR were 18s (Mm03928990), 

Abcg1 (Mm00437390), Abca1 (Mm00442646), Cd36 (Mm00432403), Scarb1 (Mm00450234), 

Ldlr (Mm01177349), Cxcl2 (Mm00436450), Cxcl1 (Mm04207460), IL-1β (Mm00434228), TNF 

(Mm00443258), IL-6 (Mm00446190), ICAM-1 (Mm00516023), and VCAM (Mm01320970) 

from Thermofisher (Waltham, MA). Genes were amplified and detected using a ViiA 7 RT-PCR 

System (ThermoFisher, Waltham, MA) to obtain cycle threshold (Ct) values for target and internal 

reference cDNA levels. Fold changes in expression for mRNA quantities were calculated using 

the 2-ΔΔCt method and Ct values. Samples were normalized to 18S as previously described (133). 

Taqman primers identified pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) PMN chemokines 

(MIP-2, and KC) and lipoprotein receptors (ABCA1, ABCG1, SR-BI, Cluster of Differentiation 

36 (CD36), and LDL receptor (LDLr)) gene expression. 

 

Blood flow cytometry. During necropsy, blood was collected into EDTA tubes. Cells were 

blocked using 5% normal mouse serum and 5% normal rat serum (Jackson ImmunoResearch 

Laboratories Inc, West Grove, PA), and 1% Fc-receptor-block (anti-mouse CD16/32; eBioscience, 

San Diego, CA), and then stained with anti-mouse antibodies for anti-Ly6G-APC, anti-C-X-C 

Motif Chemokine Receptor 2 (CXCR2)-PerCp, anti-CD45-Pacific Blue, and anti-cluster of 

differentiation molecule 11B (CD11b)-BUV. Antibodies used were from Biolegend (San Diego, 

CA). Laser refraction was measured (BD LSRII flow cytometer) and analyzed using FlowJo 

software (Tree Star Inc, Ashland, OR). PMNs were identified as CD45 and Ly6G positive.  
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Statistical analysis. Data were analyzed using parametric or nonparametric one-way ANOVA 

(Kruskal-Wallis test) followed by comparison using a Dunn’s multiple comparisons test to correct 

for multiple comparisons using statistical hypothesis testing in GraphPad Prism 7.0 (San Diego, 

CA). Where deemed appropriate, unpaired nonparametric t-test (Mann-Whitney tests) were 

utilized to analyze data. A value of p<0.05 was deemed significant. 

 

RESULTS 

 

HDL suppresses LPS induced pulmonary neutrophils and macrophages  

 

LPS exposure has been shown to induce pulmonary inflammation (18), which is inhibited by 

apoA-I and apoA-I mimetic peptides (56, 81, 121). However, the anti-inflammatory effects of 

HDL in the context of aerosolized LPS-induced acute lung injury has not been studied. Mice were 

pretreated with HDL retro-orbitally, then challenged with aerosolized LPS to induce an acute 

pulmonary inflammatory response. 24 hours after pretreatment and challenge, cell differentials 

from BALF were analyzed (Figure 2.1). HDL pretreatment alone did not alter pulmonary 

inflammation in unexposed mice. LPS exposure increased the number of airspace PMNs and 

decreased airspace macrophages. HDL pretreatment before LPS exposure caused a decrease in 

airway PMNs and macrophages compared to LPS exposed mice. 

 

LPS-increased airway protein concentration was not suppressed by HDL 

 

LPS is known to increase markers of injury such as lung protein (134-137). Given HDL 

pretreatment prevented leukocyte influx into the lungs, it was of interest to determine if HDL 

influced lung injury. 24 hours after pretreating mice with HDL and exposing them to LPS, BALF 

was collected to measure total protein (Figure 2.2). HDL pretreatment had no effect on BALF 
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protein when mice were unexposed. LPS exposure significantly increased lung protein. HDL 

pretreatment did not suppress the LPS-induced increase of protein in the lungs.  

 

HDL inhibits select LPS induced pro-inflammatory cytokines 

 

HDL has been reported to suppress circulating levels of pro-inflammatory cytokines IL-6 and 

TNF-α in various animal models and models of acute lung injury (138-140). Given that 

pretreatment with HDL suppressed LPS induced pulmonary neutrophilia, the influence of HDL on 

pro-inflammatory cytokine expression was determined. Mice pretreated with HDL and exposed to 

LPS were necropsied 2 h after exposure to assess the inflammatory response of pulmonary resident 

cells, or 24 h after exposure to observe peak lung inflammation (141). RNA was isolated from 

whole lung tissue and expression of pro-inflammatory cytokines IL-6, TNF-α, IL-1β, and PMN 

recruiting chemokines MIP-2, and KC were measured by RT-PCR 2 and 24hrs post exposure 

(Figure 2.3). Pro-inflammatory cytokines and chemokines were unaffected by HDL in unexposed 

mice. After LPS exposure, all measured genes were upregulated both 2 and 24 hours after exposure 

compared to respective controls. Pro-inflammatory cytokine TNF-α was unaffected by HDL 

pretreatment 2 and 24 hours after LPS exposure. IL-6 was inhibited in HDL pretreated mice 2 

hours after LPS exposure and IL-1β 24 hours after LPS exposure. However, MIP-2 expression was 

suppressed by HDL 2 hours after LPS exposure, and KC was suppressed 2 and 24 hours after 

exposure.  

 

HDL decreases PMN migration adhesion molecules 

 

Downregulation of pulmonary PMNs and suppression of PMN chemoattractants suggested that 

HDL inhibits general PMN trafficking. Another component of PMN trafficking involves the use 
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of adhesion molecules ICAM-1 and VCAM, which are crucial for endothelial adhesion and 

transmigration (142), and have previously been shown to be suppressed by HDL (43). However, 

the effect of HDL on aerosolized LPS-induced expression of pulmonary ICAM-1 and VCAM has 

not been studied. mRNA gene expression of ICAM-1 and VCAM was measured by RT-PCR from 

the lungs of WT mice pretreated with HDL and exposed to LPS (Figure 2.4). HDL did not affect 

either adhesion molecule in unexposed mice. LPS exposure increased the expression of ICAM-1 

and VCAM 2 hours after injury. ICAM-1 and VCAM were not suppressed by HDL 2 hours after 

LPS exposure. 24 hours after LPS exposure, pulmonary ICAM-1 expression was increased. HDL 

pretreatment suppressed ICAM-1 and VCAM gene expression in the lungs 24 hours after LPS 

exposure.  

 

HDL blunts LPS-induced upregulation of PMN chemotaxis receptor, CXCR2 

 

Decreased pulmonary PMNs, PMN chemokines expression, and adhesion molecule expression 

suggests HDL would suppress PMN chemotaxis receptor, CXCR2; however, no report to which 

we are aware has demonstrated the effect of HDL on CXCR2 surface display on PMNs. Blood 

collected from HDL pretreated, and LPS exposed, mice was labeled with CD45, Ly6G, CD11b 

and CXCR2 antibodies and surface display on PMNs was observed by flow cytometry (Figure 

2.5). The percent of PMNs present in the blood (out of all hemopoietic cells) was suppressed in 

unexposed mice pretreated with HDL. LPS exposure did not cause a change in percent neutrophils. 

HDL pretreatment did not change percent neutrophils after LPS exposure. CD11b, a marker of 

PMN activation (113-115), was not altered by HDL pretreatment. Display of CXCR2 was 

decreased in HDL pretreated mice both unexposed and exposed to LPS.  
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LPS exposure increases pulmonary cholesterol content 

 

After finding HDL inhibits PMN chemotaxis during LPS exposure, we sought to begin to uncover 

the mechanism associated with this anti-inflammatory role in the lung. HDL is a cholesterol 

transporter, thus many of its protective functions are dependent on removing cholesterol from 

specific tissues. Since HDL modulates pulmonary cholesterol homeostasis and pulmonary 

inflammation, we evaluated the impact of HDL on the concentration of cholesterol in the BALF 

of LPS exposed mice. Surprisingly, we found that HDL pretreatment alone did not affect airspace 

cholesterol. LPS exposure significantly increased the concentration of total cholesterol in the 

lungs, which was then suppressed in HDL pretreated mice (Figure 2.6).  

 

HDL suppresses lipoprotein receptors after exposure to LPS 

 

HDL is actively involved in the transport of cholesterol via lipoprotein receptors such as ABCG1, 

ABCA1, and SR-BI. These receptors have also been tied to the pulmonary immune response in 

several studies (129, 131, 143). Because of these connections, the impact of HDL pretreatment on 

the gene expression of these receptors in the lungs of mice exposed to LPS was evaluated. The 

gene expression of CD36 was also observed because of its many overlapping roles with SR-BI 

(144), and LDLr expression was assessed because of its close relationship with HDL (145) (Figure 

2.7). HDL pretreatment alone had no effect on these lipoprotein receptors. LPS exposure caused a 

marked increase in gene expression of ABCG1, ABCA1, SR-BI, and LDLr 24 hours after, which 

was strongly suppressed by HDL pretreatment. CD36 was suppressed 24 hours after LPS exposure 

and suppressed further in HDL pretreated mice. There was also found to be an increase in gene 

expression of SR-BI 2 hours after LPS exposure, which increased further with HDL pretreatment.  
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DISCUSSION 

 

Pulmonary diseases are serious conditions with considerable impact on current and future 

society. In 2010 lung diseases were reported to be the third leading cause of death worldwide 

(146). Medical costs associated with pulmonary diseases were reported to be $32.1 billion in 2010 

and are expected to rise to $49 billion by 2020 (147). As there is an inverse relationship between 

HDL-cholesterol and pulmonary diseases, advances in the understanding of HDL’s interaction 

with the pulmonary immune system may be necessary to alleviate some of the burden of 

pulmonary diseases across the world.  

 In this study it was demonstrated that HDL inhibits PMN chemotaxis in the lung after acute 

lung injury. This was concluded from finding that HDL suppressed pulmonary neutrophilia, PMN 

recruiting chemokines, and PMN chemokine receptor CXCR2. It was later demonstrated that this 

inhibition may be the result of a decreased cholesterol burden in the lungs due to the decreased 

pulmonary cholesterol content and lipoprotein receptor gene expression in the lung after HDL 

pretreatment. Overall, this report demonstrates a potential mechanistic outline of HDL’s role in 

pulmonary protection from acute lung injury.  

 To uncover the role of HDL in the pulmonary immune system, it was first demonstrated 

that HDL decreases pulmonary neutrophilia after LPS exposure, indicating an abrogation in the 

inflammatory response. However, it was found that HDL does not suppress airway protein 

concentration after LPS exposure. This indicates that alveolar damage was not prevented by HDL 

pretreatment. The inflammatory signaling response was then evaluated to determine the cause for 

decreased airway neutrophilia, but not decreased damage. The gene expression of pro-

inflammatory cytokines and PMN chemokines was assessed, and select suppression of pro-
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inflammatory cytokines and PMN chemokines at 2 and 24 hours after injury was observed. By 

observing the response 2 hours after exposure, the responses of local resident cells were evaluated 

because there is minimal systemic migration to the site of injury after 2 hours. Consequently, 24 

hours after exposure peak leukocyte infiltration occurs (141), giving an indication of the complete 

inflammatory response. The only pro-inflammatory cytokine that was not affected by HDL was 

TNF-α. This is contradictory to previous studies; however, previous studies have used different 

routes of HDL delivery, LPS exposure, and animal models (56, 148-152). The early inhibition of 

IL-6 observed could suggest inhibition of resident alveolar macrophage activation and pro-

inflammatory response. IL-1β was only suppressed 24 hours after exposure in HDL pretreated 

mice, suggesting the pro-inflammatory state was becoming resolved after 24 hours in HDL 

pretreated mice. IL-6 can also play an anti-inflammatory role later after acute injury (153, 154), 

correlating with HDL pretreated mice having a resolving inflammatory state after 24 hours. 

Interestingly, PMN chemokines MIP-2 and KC were both suppressed 2 hours after LPS exposure. 

MIP-2 and KC are primarily secreted by macrophages, further supporting HDL effects alveolar 

macrophages early during injury (155, 156). KC also continued to be suppressed 24 hours after 

LPS exposure. The suppression of these PMN chemokines suggests a possible explanation to the 

decrease in pulmonary neutrophilia previously observed. Taken together, it appears HDL partially 

suppressed early secretion of pro-inflammatory cytokines, which lead to the suppression of 

alveolar macrophage mediated PMN recruitment.  

Additionally, the effect of HDL on PMN transmigratory potential was evaluated by 

measuring the expression of adhesion molecules ICAM-1 and VCAM in the lungs. It was found 

that HDL pretreatment suppresses the gene expression of ICAM-1 and VCAM in LPS exposed 

mice. The suppression of ICAM-1 has been thought to be the result of HDL carrying micro RNA 
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miR-223, which blunts the expression of ICAM-1 (44, 45). By inhibiting adhesion molecule 

expression, HDL effectively mitigated the ability of PMN’s to migrate into the lungs where 

chemokines would be secreted. The additional suppression of PMN chemokines with adhesion 

molecules leads to decreased chemotactic potential of PMNs during inflammation. Previously, 

HDL has indirectly been shown to influence leukocyte chemotaxis in pulmonary inflammation. 

Addition of an apoA-I mimetic peptide decreases PMN chemotaxis as well as CXCR2 surface 

display in apoA-I deficient murine PMNs (77). Also, isolated apoA-I has been shown to decrease 

monocyte chemotaxis in rabbits (157), and the number of BALF PMNs is increased in ovalbumin-

challenged apoA-I knockout mice when compared to ovalbumin-challenged WT mice (55). 

Additionally, HDL has been shown to decrease PMN migration to a sight of cardiac infarction in 

mice (158), indicating the potential to decrease PMN migration to the sight of injury in the lungs. 

This information was supported when it was observed that HDL pretreatment suppresses the 

surface display of CXCR2, but not percent PMNs after LPS exposure. This data suggests signaling 

for PMN production and activation was not inhibited by HDL pretreatment. However, PMN 

chemotactic potential through the endo/epithelium and into the lung was suppressed, possibly 

preventing pulmonary neutrophilia. If HDL prevents PMN transmigration through the 

endo/epithelium, then secretion of oxidative enzymes, ROS, and PMN phagocytosis would be 

prevented in the lungs which would reduce pulmonary inflammation.   

Knowing HDL can take up cholesterol from macrophages, we evaluated the cholesterol 

content in the lungs and found HDL slightly inhibits the LPS-induced increase of cholesterol in 

the lung BALF. The increase in cholesterol after LPS exposure may have been the result of 

systemic leak into the lung because of damaged alveoli from increased pulmonary neutrophilia. 

As more PMNs migrated to the lungs, they caused temporary pores in the endo/epithelium, which 
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could then have been expanded by secreted ROS, and oxidative enzymes (159, 160). The decrease 

in observed cholesterol in the BALF might then be the result of an attenuated inflammatory 

response, and less damage to the alveolar membrane. Several studies have reported that the 

increased lipid raft formation that occurs in ABCG1 and ABCA1 deficient macrophages could 

account for enhanced inflammatory responses, especially after exposure to LPS (161-165). It is 

possible that the increased cholesterol deposition observed here during LPS injury exacerbated the 

inflammatory response. Additionally, ABCG1, ABCA1, and SR-BI have been shown to play a 

protective role in the lungs. ABCG1 deficient mice have been shown to have increased airway 

PMNs after ovalbumin sensitization and challenge (35). SR-BI deficient mice were also shown to 

have increased PMN recruitment and cytokine production in the airspace of lungs injured by 

bacterial pneumonia (33). ABCA1 has been shown to be activated by LPS exposure in THP-1 

monocytes and WT mice (54). Therefore, HDL pretreatment may have attenuated the 

inflammatory response by reducing the cholesterol burden on alveolar macrophages and 

consequently decreased PMN chemotaxis. To answer this question, the gene expression of 

cholesterol transporters and lipoprotein receptors ABCG1, ABCA1, SR-BI, CD36 and LDLr was 

measured. It was found that LPS significantly increased the expression of ABCG1, ABCA1, SR-

BI, and LDLr 24 hours after exposure. This expression was then suppressed by HDL pretreatment. 

We believe the increases in expression of the lipoprotein receptors was the result of cholesterol 

loading of alveolar macrophages after lung injury. When mice were pretreated with HDL, SR-BI 

was then responsible for transporting cholesterol from the alveolar macrophages to HDL 2 hours 

after exposure, thus reducing the cholesterol burden in the lungs. This reduced burden resulted in 

a decreased demand for the lipoprotein receptors 24 hours after exposure, and thus decreased gene 

expression.  
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Overall, it has been demonstrated that HDL suppresses PMN chemotaxis by inhibiting 

MIP-2/KC production, suppressing adhesion molecules ICAM-1/VCAM production, and 

decreasing the surface display of CXCR2 on PMNs. It has also been shown that LPS exposure 

increases cholesterol content in the lungs and gene expression of several lipoprotein receptors. The 

increases in cholesterol and lipoprotein receptors was then suppressed by HDL. We have proposed 

a connection between these two phenotypes, stating increased cholesterol load on alveolar 

macrophages increases the inflammatory response, and HDL prevents that increased 

inflammation. With this information, treatments could be developed to target this anti-

inflammatory role of HDL in the pulmonary immune system to help alleviate the severity of 

pulmonary diseases.  
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FIGURES 

 

Figure 2.1 HDL suppresses lung macrophage and neutrophil populations after lung injury. Mice 

were pretreated with PBS or HDL retro-orbitally and exposed to aerosolized LPS or were 

unexposed and then necropsied 24 hours after exposure to measure BALF cell differentials. 

Macrophage (MΦ) and neutrophil (PMN) populations were recorded (n=5 per group; * p<0.05 

from PBS; # p<0.05). 
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Figure 2.2 HDL does not suppress LPS-increased airway protein. Mice were pretreated with HDL, 

exposed to LPS, and BALF was collected 24 hours after LPS exposure to measure BALF protein. 

(n=5 per group; * p<0.05 from PBS).  
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Figure 2.3 HDL suppresses select pro-inflammatory cytokines and PMN chemokines after lung 

injury by LPS. WT mice were pretreated with PBS or HDL and were then left unexposed or 

exposed to 300 μg/mL of LPS. 2h and 24h after LPS exposure, mice were necropsied. RNA was 

isolated from whole lung tissue and proinflammatory cytokines (A) TNF-a, (B) IL-6, (C) IL-1β 

and neutrophil chemoattractants (D) MIP-2 and (E) KC were measured by real time PCR. Data is 

presented as ddCt compared to 18S (n=5 per group; * p<0.05 from PBS of respective time point; 

# p<0.05). 
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Figure 2.4 HDL suppresses adhesion molecule expression after LPS exposure. WT mice were 

pretreated with PBS or HDL and were then left unexposed or exposed to 300 μg/mL of LPS. 2h 

and 24h later, mice were necropsied. RNA was isolated from the lungs and adhesion molecules 

(A) ICAM-1 and (B) VCAM expression were measured by real time PCR. Data is presented as 

ddCt compared to 18S (n=5 per group; * p<0.05 from PBS of respective time point; # p<0.05). 
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Figure 2.5 CXCR2 surface display, but not percent PMNs, is suppressed by HDL. WT mice were 

pretreated with PBS or HDL and were then left unexposed or exposed to 300 μg/mL of LPS. 24h 

later, mice were necropsied. Blood was collected into EDTA tubes and labeled with Ly6g, CD45, 

CD11b, and CXCR2 antibodies and analyzed by flow cytometry. HDL pretreatment suppressed 

(A) scatter plot of percent PMN B) histogram of CXCR2 surface display (C) quantified percent 

PMN, (D) quantified CXCR2 surface display were analyzed (n=5 per group; * p<0.05 from PBS; 

# p<0.05). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

30 

 

Figure 2.6 LPS exposure increases airway cholesterol concentration. WT mice were pretreated 

with PBS or HDL and were then left unexposed or exposed to 300 μg/mL of LPS. 2 and 24h later, 

BALF was analyzed for cholesterol content (measured by the Amplex Red Cholesterol Assay; n=5 

per group; * p<0.05 from PBS; # p<0.05). 
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Figure 2.7 HDL suppresses LPS-increased lipoprotein receptor gene expression. WT mice were 

pretreated with PBS or HDL and were then unexposed or exposed to 300 μg/mL of LPS. 2h and 

24h later, mice were necropsied. RNA was isolated from whole lung tissue and lipoprotein 

receptors (A) ABCG1, (B) ABCA1, (C) CD36 (D) SR-BI, and (E) LDLr expression was measured 

by real time PCR. Data is presented as ddCt compared to 18S (n=5 per group; * p<0.05 from PBS 

of respective time point; # p<0.05).  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

32 

 

CHAPTER III: ENGINEERING A NOVEL DYSFUNCTIONAL HDL MIMETIC PEPTIDE 

 

INTRODUCTION 

 

 In 2015 pulmonary diseases contributed to almost 8% of reported deaths in the United 

States, ranking third behind cardiovascular disease and cancer (106). Pulmonary diseases are a 

continuously growing epidemic that have a severe impact on our current society. One avenue that 

has recently been pursued to develop therapies for these diseases is with high-density lipoprotein 

(HDL). There is an inverse relationship between HDL-cholesterol levels and the severity of 

pulmonary disease (109-111). Additionally, a potentially pathogenic post-translational 

modification to HDL, known as dysfunctional HDL (D-HDL), has been found in subjects with 

pulmonary disease (88). The repercussions of developing D-HDL could be severe, however, there 

are currently few effective methods to study the consequences of D-HDL in the lung. 

 HDL is an 8-10 nm cholesterol transporter composed of a core with cholesterol, cholesteryl 

ester, fatty acids, triglycerides, proteins, enzymes, and micro RNAs and a phospholipid monolayer 

membrane interwoven with several apolipoproteins (23-25). Many of HDL’s protective properties 

have been attributed to its role in reverse cholesterol transport (RCT) (36, 122).  During RCT, 

HDL takes up cholesterol from peripheral tissue and lipid-laden macrophages and transports that 

cholesterol to the liver for production of glucocorticoids, steroids, or excretion of cholesterol (36, 

37). This action gives HDL its anti-atherosclerotic properties. By removing cholesterol from lipid-

laden macrophages on atherosclerotic plaques (166), and altering the monocyte/macrophage lipid 

rafts (47), HDL inhibits vascular plaque buildup and inflammation. Along with this anti-

atherosclerotic role, HDL is also anti-inflammatory (167) anti-oxidative (49-51), and anti-

thrombotic (52, 53). 
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Many of HDL’s protective functions are thought to be attributed to HDL’s major structural 

protein, apolipoprotein A-I (apoA-I). ApoA-I is a 243 amino acid protein with an amphipathic 

alpha-helix structure (23). It makes up 70% of its protein content (27, 28), and selectively interacts 

with lipoprotein receptors to efflux cholesterol from lipid-laden macrophages or peripheral tissue 

and take up cholesterol within HDL (59-63, 168). Delipidated apoA-I has also been shown to be 

anti-inflammatory, suppressing tumor necrosis factor α (TNF-α), interleukin-1β, (IL-1β), 

interleukin-6 (IL-6), reactive oxygen species (ROS), intracellular adhesion molecule-1 (ICAM-1), 

vascular cell adhesion molecule (VCAM), monocyte chemoattractant protein-1 (MCP-1), and toll-

like receptor 4 (TLR4) in various inflammatory models (56, 65, 66). ApoA-I mimetic peptides 

have been created to replicate the cholesterol efflux and anti-inflammatory abilities of endogenous 

apoA-I (69). These peptides are unique sequences designed to replicate the class A amphipathic 

alpha-helix of apoA-I (68). The most commonly studied apoA-I mimetic peptide is L-4F (76), 

which has been shown to effectively replicate the cholesterol efflux and anti-inflammatory 

properties of HDL (77-79).  

 HDL is normally protective in the body, however, in chronic inflammatory diseases HDL 

can become dysfunctional. D-HDL is identified as being larger in size or as having decreased 

protective function. As a result, D-HDL is less anti-inflammatory (82), anti-oxidative (83), and 

anti-atherosclerotic (84). The definition of D-HDL is unclear, with the notion of it not behaving as 

functional HDL being the primary stipulation. As a result, there are many forms of D-HDL. There 

can be an imbalance in HDL subpopulations (91), replacement of apoA-I with other proteins (95), 

glycation of apoA-I (99), or oxidation of apoA-I. The most commonly studied (102), and most 

ubiquitously identified, type of D-HDL is induced by oxidation of apoA-I. Oxidized D-HDL has 

been found in type II diabetes (86), coronary artery disease (103), obesity (87), chronic kidney 
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disease (104), atherosclerosis (105), and after acute inflammation (89). This oxidation inhibits 

apoA-I’s endothelial repair (169), cholesterol transport (170), and anti-inflammatory properties 

(171), indicating oxidized HDL is dysfunctional. While the development of D-HDL has begun to 

become uncovered, the consequences of D-HDL in pulmonary diseases has yet to be elucidated.  

  Here in it was hypothesized that the apoA-I mimetic peptide, L-4F, would replicate the 

protective functions of HDL during endothelial cell inflammation. In this chapter, a model was 

established for reproducibly testing the mimicking ability of an apoA-I mimetic peptide and a D-

HDL mimetic peptide. Additionally, a D-HDL mimetic peptide (L-2W) was carefully designed to 

best reproduce the dysfunction of endogenous D-HDL. To our knowledge, this is the first D-HDL 

mimetic peptide that has been designed with the purpose of assessing the consequences of D-HDL 

in pulmonary disease.  

 

METHODS 

 

Peptide synthesis. L-4F (Ac-DWFKAFYDKVAEKFKEAF-NH2) was synthesized using an 

automated solid phase synthesizer (PS3 from Protein Technologies Inc., Tucson, AZ). 

Fluorinylmethyloxycarbonyl (FMOC)-amino acids were coupled to a rink amide resin from 

Millipore Sigma (Burlington, MA) in the presence of 2-(H-benzotriazole-1-yl)-1,1,3,3-

tetramethyluronium hexafluorophosphate (HBTU), and acetylated with acetic anhydride at the N-

terminus. The peptide was cleaved from the solid support using 90% TFA in the presence of 

anisole (5%) and triethylsilane (5%) during a 3-hour incubation, purified by high performance 

liquid chromatography (HPLC), lyophilized, and stored in a sealed container at room temperature. 

Peptides were diluted in phosphate buffered saline (PBS) when used.  
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Murine HDL pretreatment, whole body LPS exposure, and sample collection. All experiments 

were performed in accordance with the Animal Welfare Act and the U.S. Public Health Service 

Policy on Humane Care and Use of Laboratory Animals after review by East Carolina University’s 

Animal Care and Use Committee. C57BL/6J (WT) male mice, 8-12 weeks were purchased from 

Jackson Laboratories (Bar Harbor, ME). HDL was purchased from Kalen biomedical 

(Germantown, MD). Escherichia coli 0111:B4 lipopolysaccharide (LPS) was from Sigma (St. 

Louis, MO). RNeasey minikit was from Qiagen (Germantown, MD). Mice were pretreated with 

HDL (40mg/kg), or PBS through retro-orbital injection (200 μL) and then exposed to aerosolized 

LPS (300 μg/mL) or room air (RA). Mice were exposed to aerosolized LPS for 30 min and 

necropsied 24 hours after exposure. Mice were anesthetized with 990 mg/kg ketamine and 10 

mg/kg xylazine, and then euthanized by a bilateral thoracotomy. During necropsy the left lung was 

excised, flash frozen, and stored at -80°C.  

 

Endothelial cell culture and exposures. Human umbilical vein endothelial cells (HUVECs) were 

purchased from Lonza (Morristown, NJ) and cultured in Endothelial Cell Medium from ScienCell 

Research Laboratories (Carlsbad, CA). Cells were cultured in T-75 culture flasks from 

ThermoFisher (Waltham, MA), or Falcon Tissue Culture Dish plates (100 x 20 mm) from Corning 

(Corning, NY). Cells were passaged until P5, P6, or P7 and stored in liquid nitrogen until use. 

After thawing, cells were passaged once and seeded in 12-well culture plates for about one day or 

until wells reached ~80% confluency, or if a monolayer was formed when desired. Cells were then 

incubated with PBS, HDL (200 μg/ml), or L-4F (50 μg/ml). Either at the same time, or 16-20 hours 

after incubation with PBS, HDL, or L-4F, cells were exposed to LPS (1 μg/ml or 0.1 μg/ml). Cells 

were then lysed lysed by 1% β-Mercaptoethanol in RLT buffer and collected.  
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Wound healing assay. Cell migration ability can be determined by performing a wound healing 

migration assay (46). HUVECs were plated in 12-well plates with 1 ml of endothelial cell medium 

containing 1% fetal bovine serum and cultured until ~80% confluency or until monolayers formed. 

PBS, HDL (200 μg/ml), or L-4F (50 μg/ml) were incubated with the cells at ~80% confluency for 

16-20 hours before wounding, or treatments were incubated with the cells forming a monolayer 

immediately before wounding. Cells were then exposed to LPS (1 μg/ml or 0.1 μg/ml), and a 

wound was formed by scratching HUVECs with a 200 μl micropipette tip. Wound healing was 

observed by photographing the scratch with the EVOS FL Cell Imaging System 0, 4, 8, and 12 

hours after wounding. The width of the wound was measured at 6 locations per well using ImageJ 

software and a single averaged width per well was reported.  

 

Pro-inflammatory cytokine, and adhesion molecule expression in the lung. The left lungs of 

mice were flash frozen and total RNA was isolated using a Qiagen RNeasy Mini Kit (Qiagen, 

Valencia, CA). RNA was also collected from HUVECs. Concentrations of RNA for each sample 

were determined using the NanoDrop 2000 (ThermoFisher Scientific, Wilmington, DE). RNA was 

reverse transcribed, using the High Capacity RNA-to-cDNA Kit or High Capacity cDNA Reverse 

Transcription Kit, and real-time polymerase chain reaction (RT-PCR) was performed in a one-step 

reaction using iScript One-Step RT-PCR kit (ThermoFisher Scientific, Waltham, MA). RT-PCR 

was completed with the Taqman Universal PCR Master Mix from Thermofisher (Waltham, MA). 

Taqman primers were obtained from Invitrogen (Waltham, MA). Primers used for RT-PCR were 

18s (Mm03928990 or Hs03003631), Abcg1 (Mm00437390), Abca1 (Mm00442646), Cd36 

(Mm00432403), Scarb1 (Mm00450234), Ldlr (Mm01177349), Cxcl2 (Mm00436450), Cxcl1 
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(Mm04207460), IL-1β (Mm00434228 or Hs01555410), TNF (Mm00443258 or Hs), IL-6 

(Mm00446190 or Hs00985639), ICAM-1 (Mm00516023 or Hs00164932), VCAM (Mm01320970 

or Hs01003372), and IL-8 (Hs00174360) from Thermofisher (Waltham, MA).  Genes were 

amplified and detected using a ViiA 7 RT-PCR System (ThermoFisher, Waltham, MA) to obtain 

cycle threshold (Ct) values for target and internal reference cDNA levels. Fold changes in 

expression for mRNA quantities were calculated using the 2-ΔΔCt method and Ct values. Samples 

were normalized to 18S as previously described (133). Taqman primers used were pro-

inflammatory cytokine TNF-α, ICAM-1, and VCAM.  

 

RESULTS 

 

HDL in vivo suppresses LPS-increased expression of adhesion molecules 

 

There is currently no universal model in vitro used to test the functional ability of an HDL or D-

HDL mimetic peptide in relation to pulmonary disease. To determine which cell line to use in 

vitro, HDL’s ability to influence the lungs in vivo was evaluated. WT mice were pretreated with 

HDL retro-orbitally, then exposed to aerosolized LPS, and necropsied 24 hours after exposure. 

Whole lung tissue was excised, and RNA was collected to measure adhesion molecules ICAM-1, 

and VCAM gene expression by RT-PCR (Figure 3.1).  HDL pretreatment did not affect ICAM-1 

and VCAM levels before exposure. LPS exposure caused an increase in ICAM-1 gene expression. 

HDL pretreated and then LPS exposed mice had suppressed gene expression of ICAM-1 and 

VCAM compared to LPS alone.  
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HDL suppresses LPS-induced inflammation of endothelial cells 

 

HDL has been shown to suppress ICAM-1 and VCAM secretion from endothelial cells exposed 

to TNF-α (45, 172). Given that the data indicates that HDL can alter the expression of endothelial 

cell expressed adhesion molecules after pulmonary inflammation, endothelial cells were 

specifically assessed. HUVECs were incubated with HDL for 16 hours, exposed to LPS, and RNA 

was collected to measure ICAM-1, VCAM, and TNF-α by RT-PCR (Figure 3.2). HDL incubation 

alone had no effect on ICAM-1, VCAM, and TNF-α expression 16 hours after treatment. LPS 

exposure increased gene expression of ICAM-1, VCAM, and TNF-α. HDL incubation along with 

simultaneous LPS exposure suppressed gene expression of ICAM-1, VCAM, and TNF-α 

compared to LPS alone.  

 

L-4F mimics HDL’s ability to suppress LPS-induced inflammation of endothelial cells 

 

After demonstrating endothelial cells are suitable for the mimetic peptide testing model, L-4F’s 

ability to mimic HDL was assessed. L-4F has been shown to inhibit the production of ICAM-1, 

VCAM, and TNF-α from endothelial cells co-cultured with monocytes that had been pretreated 

with LPS (78). However, there is limited literature on the optimal LPS exposure concentration for 

assessing L-4F function on endothelial cells. Because of this, HUVECs were exposed to L-4F and 

LPS at 0.1 μg/ml or 1 μg/ml simultaneously (L-4F+LPS) for 12 hours and were collected to 

measure gene expression of ICAM-1, VCAM, and TNF-α by RT-PCR (Figure 3.3). L-4F alone 

did not affect expression. 0.1 μg/ml LPS increased gene expression for all markers, and 1 μg/ml 

of LPS increased gene expression more than 0.1 μg/ml of LPS. L-4F+LPS(1 μg/ml) cells had 

suppressed expression of ICAM-1, VCAM, and TNF-α and L-4F+LPS(0.1 μg/ml) cells had further 

suppressed expression of all markers.  



 

 

39 

 

LPS suppresses wound healing of endothelial cells 

 

HDL has been shown to increase endothelial cell wound healing (84), however, the effect of L-4F 

on HUVEC wound healing has not been assessed. Likewise, the impact of LPS on wound healing 

has been understudied. To uncover these effects, HUVECs were exposed to L-4F and LPS at 0.1 

μg/ml or 1 μg/ml, scratched, and photographed 0, 4, 8, and 12 hours after exposure. Percent wound 

closure after 12 hours was recorded (Figure 3.4). Cells exposed to PBS as a control averaged 89.8% 

wound closure 12 hours after scratching. L-4F did not alter wound healing. LPS exposure at 0.1 

μg/ml did not alter wound healing. LPS exposure at 1 μg/ml significantly suppressed wound 

healing 12 hours after exposure. Cells exposed to LPS+L-4F also had significantly suppressed 

wound healing 12 hours after exposure, indicating L-4F did not rescue wound healing.  

 

L-4F rescues endothelial cell wound healing from LPS-induced suppression 

 

Despite initially finding L-4F did not rescue wound healing, it seemed unlikely the apoA-I mimetic 

peptide would be unable to replicate the wound healing ability of HDL. L-4F has been shown to 

bind to LPS and suppress LPS induced inflammation (78), suggesting L-4F should inhibit the 

deleterious effects of LPS on wound healing. In one report, HDL has been shown to rescue wound 

healing after being incubated with cells 16 hours before TNF-α exposure (43). Therefore, 

HUVECs were incubated with L-4F 16 hours before LPS exposure, scratched, and wound healing 

was observed 12 hours later (Figure 3.5). L-4F alone did not influence endothelial wound healing. 

LPS exposure decreased wound healing. Cells incubated with L-4F for 16 hours and then exposed 

to LPS saw partially rescued wound healing, although not back to baseline.  
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A novel D-HDL mimetic peptide retains the alpha-helix of L-4F 

 

Here in a model has been developed to assess the functionality of an HDL or D-HDL mimetic 

peptide. Subsequently, a D-HDL mimetic peptide has been designed to be used for studying the 

impact of developing D-HDL in the context of pulmonary disease. Due to the high propensity of 

oxidized D-HDL, oxidation of an apoA-I mimetic peptide is the foundation behind the novel 

peptide’s design. It was reported that hypochlorite (HOCl) oxidation of L-4F does not inhibit its 

ability to efflux cholesterol (173). Therefore, the novel D-HDL mimetic peptide was designed to 

increase L-4F’s susceptibility to oxidation. The novel mimetic, L-2W, was designed by 

substituting the carboxyl-terminal phenylalanine of L-4F for a tryptophan and oxidizing the 

peptide with HOCl (Figure 3.6A). This design was constructed to maintain the amphipathic alpha 

helix of L-4F before oxidation occurs. Using 3D molecular dynamics modeling, L-2W was shown 

to retain an alpha-helix structure (Figure 3.6B) and the chosen amino acid substitution maintains 

amphipathicity.  

 

DISCUSSION 

 

Research on HDL has mostly been focused on its protective role in cardiovascular disease, 

however, there is a growing need to evaluate the role of HDL in the context of pulmonary disease 

(120). Along with the protective role of HDL in the lungs, the consequences of D-HDL in the 

lungs are critically important to understand. However, due to the heterogeneous nature of HDL 

(174, 175), and the variety of D-HDL that develops (91, 95, 99, 102), this pathologic condition is 

difficult to study. Because of these difficulties, the goal of this research is to develop a model for 

reproducibly testing the functionality of a HDL and D-HDL mimetic peptide. Furthermore, a D-

HDL mimetic peptide is being designed to be used as a tool for evaluating the consequences of D-
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HDL in pulmonary diseases. With this goal in mind, it is hypothesized that the apoA-I mimetic 

peptide, L-4F, will replicate the protective functions of HDL on endothelial cells exposed to LPS. 

 A model was to be developed by identifying the parameters required for the HDL mimetic 

peptide, L-4F, to accurately mimic the protective functions of HDL. The first challenge was to 

determine what cell type in the lungs is consistently protected by HDL. It is known that HDL can 

interact with macrophages, endothelial cells, and epithelial cells in the lungs through lipoprotein 

receptors to transport cholesterol (61, 125, 126). Macrophages may be a suitable cell type to use 

for assessing HDL mimetic peptide function because of HDL’s ability to suppress their 

inflammatory response (176) and efflux cholesterol (177). However, delipidated apoA-I can cause 

a pro-inflammatory response in macrophages (67). This is contrary to the normal anti-

inflammatory role of HDL and requires more research to increase the understanding of HDL, thus 

making macrophages an unsuitable cell type for developing a model to assess HDL mimetic 

peptide function. Because of this, endothelial or epithelial cells were decided to be the more likely 

candidates to be used for developing an HDL mimetic peptide testing model. This was verified 

when WT mice were pretreated with HDL, exposed to LPS, and observed to have decreased 

adhesion molecule expression (ICAM-1, and VCAM) in isolated lung tissue. Endothelial cells 

were then selected over epithelial cells because HDL more commonly interacts with endothelial 

cells since it passes through circulation, there is no concern of air-liquid interface culturing, and 

HDL can increase wound healing of endothelial cells (84, 178). Endothelial cells were confirmed 

to be a suitable cell type when HUVECs had suppressed expression of adhesion molecules ICAM-

1, and VCAM when treated with HDL and LPS compared to LPS alone.  

 After establishing that HDL protects endothelial cells in vitro from LPS-induced 

inflammation, the anti-inflammatory abilities of L-4F needed to be evaluated. Also, the optimal 
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concentration of LPS for assessing the anti-inflammatory ability of L-4F was evaluated because 

there is limited literature on the use of LPS in combination with L-4F with endothelial cells. It was 

reported that L-4F suppressed the gene expression of adhesion molecules, ICAM-1 and VCAM, 

as well as pro-inflammatory cytokine TNF-α. It was also shown that suppression was concentration 

dependent for LPS exposure, with the lower concentration of LPS (0.1 μg/ml) being suppressed 

more than the higher concentration of LPS (1 μg/ml). Consequently, there was not complete 

immunosuppression in the L-4F treated cells. This is likely the result of concentration dependent 

binding of L-4F to LPS. It was reported that L-4F likely binds LPS as L-4F incubated with LPS 

had a single size exclusion chromatographic peak distinct from individual LPS or L-4F peaks (78). 

It is likely that L-4F binds the lipid A moiety of LPS because of its anionic and amphipathic 

structure making an ideal target for L-4F binding (179). This binding would inhibit the LPS-

induced inflammatory response by competitively inhibiting the lipid binding protein (LBP)/cluster 

of differentiation 14 (CD14) complex necessary for activating the TLR4 inflammatory pathway 

(112, 180). Thus, by increasing the concentration of LPS from 0.1 μg/ml to 1 μg/ml without 

changing the concentration of L-4F, there was less competitive inhibition of LBP/CD14, and less 

suppression of inflammation.  

 Another method for determining HDL mimetic peptide functionality in this model is to 

assess the wound healing ability of the mimetic peptides. It has been well established that HDL 

increases endothelial repair, proliferation, and migration (46, 84, 178, 181-184). However, to the 

best of our knowledge, only one group has evaluated the endothelial repair abilities of L-4F, using 

human aorta endothelial cells (178). It was reported that L-4F did not increase HUVEC wound 

healing when incubated with endothelial cells for 12 hours. There has also been little research on 

the impact of LPS on endothelial cell migration, and proliferation. Furthermore, current research 
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shows controversial data of LPS either increasing or decreasing migration (185, 186). Therefore, 

the impact of LPS at 0.1 μg/ml or 1 μg/ml on wound healing of endothelial cells was assessed in 

the presence or absence of L-4F after 12 hours. LPS decreased wound healing at 1 μg/ml, which 

was not prevented by co-incubation with L-4F. After further investigation, it was found that 

incubation of L-4F with endothelial cells for 16 hours before LPS exposure and scratching rescued 

the decreased wound healing caused by LPS. This is a novel finding that requires further 

investigation because of the potential impact to cardiovascular and pulmonary diseases.  

 Once a model had been established for evaluating the functionality of HDL mimetic 

peptides, a D-HDL mimetic peptide could be designed. The idea behind the D-HDL mimetic 

peptide design was to create an oxidized HDL mimetic peptide since oxidized HDL is the most 

commonly studied type of D-HDL (102). HDL oxidation usually occurs, but not exclusively, 

through a reaction involving an enzyme secreted by PMNs and macrophages called 

myeloperoxidase (MPO) (105). MPO catalyzes a reaction utilizing hydrogen peroxide and a 

chlorine containing compound, such as sodium chloride, to produce HOCl (187). MPO has been 

shown to bind selectively to apoA-I on HDL, likely facilitating the oxidation of apoA-I from 

produced HOCl (188), which has been shown to occur on varying amino acids in apoA-I’s 

sequence (170, 189-191).  Oxidizing the currently studied apoA-I mimetic peptide, L-4F, is not 

enough to induce peptide dysfunction, as the oxidized peptide’s ability to induce cholesterol efflux 

on macrophages is preserved (173). However, it is still true that oxidation of apoA-I causes HDL 

dysfunction (169, 178, 189, 191, 192), therefore it is likely that increasing the susceptibility of the 

L-4F would induce peptide dysfunction. By increasing susceptibility of oxidation, the 

amphipathicity, and hydrophobicity of the peptide would be disrupted once oxidized, possibly 

preventing lipid binding and inhibiting the protective functions of the peptide. Susceptibility of 
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oxidation was increased by substituting the carboxyl-terminal phenylalanine for tryptophan 

because tryptophan was the one amino acid oxidized when incubated with HOCl (173). The 

phenylalanine was chosen because tryptophan and phenylalanine have similar non-polar 

tendencies and have similar structural shapes. These similarities allow the substitution to occur 

without denaturing the amphipathic alpha-helix of all other apoA-I mimetic peptides. The terminal 

phenylalanine was also chosen to avoid denaturing, as a more central phenylalanine might have 

caused a kink in the peptide since tryptophan is slightly bulkier than phenylalanine. The new 

peptide, L-2W, was confirmed to retain the necessary alpha-helix structure by 3D molecular 

dynamic modeling. L-2W, a hypothetically functional peptide, could then be oxidized by HOCl 

and then become dysfunctional because of the increased susceptibility to oxidation. 

 In this study, a model has been developed to assess the functional capabilities of HDL or 

D-HDL mimetic peptides. It has been reported that HDL suppresses the LPS-induced expression 

of adhesion molecules in the lungs. HDL was confirmed to influence the endothelial cell 

inflammatory response to LPS in vitro, which was shown to be effectively mimicked by L-4F. The 

anti-inflammatory effect of L-4F was shown to be influenced by the concentration of LPS 

exposure. The concentration of LPS was also shown to influence wound healing of endothelial 

cells. Also, incubation period of L-4F before LPS exposure was shown to influence wound healing. 

By developing this model, the designed D-HDL mimetic peptide, or future HDL or D-HDL 

mimetic peptides, could be evaluated to test their functional capabilities. With these tools, the 

consequences of D-HDL in the context of pulmonary disease can be further understood. 

Furthermore, by understanding the consequences of D-HDL development, therapies for pulmonary 

disease can be more accurately optimized for effective treatment of pulmonary disease.  
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FIGURES 

 

Figure 3.1 HDL suppresses LPS-induced inflammation in the lungs. WT mice were pretreated 

with PBS or HDL and were then exposed to RA or 300 μg/mL of LPS. 24h later, mice were 

necropsied. Whole lung RNA was isolated and adhesion molecules (A) ICAM-1 and (B) VCAM 

expression were measured by RT-PCR. Data is presented as ddCt compared to 18S (n=5 per 

group; * p<0.05 from PBS; # p<0.05). 
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Figure 3.2 HDL suppresses LPS-induced inflammation in endothelial cells. HUVECs were 

incubated with HDL (200 μg/ml) for 16 hours and exposed to LPS (1 μg/ml) for 12 hours. Cells 

were lysed and collected to measure RNA. Gene expression of A) ICAM-1, B) VCAM, and C) 

TNF-α was measured by RT-PCR. Data is presented as ddCt compared to 18S (n=3 per group; * 

p<0.05 from PBS; # p<0.05). 
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Figure 3.3 L-4F suppresses LPS-induced inflammation in endothelial cells. HUVECs were 

exposed to L-4F (50 μg/ml) and LPS (0.1 μg/ml or 1 μg/ml) for 12 hours. Cells were then lysed 

and collected to measure gene expression of ICAM-1, VCAM, and TNF-α by RT-PCR. Data is 

presented as ddCt compared to 18S (n=3 per group; * p<0.05 from PBS; # p<0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

48 

 

Figure 3.4 LPS suppressed endothelial cell wound healing at 1 μg/ml. HUVECs were exposed to 

L-4F (50 μg/ml) and LPS (0.1 μg/ml or 1 μg/ml), scratched with a 200 μl pipette tip, and imaged 

0, 4, 8, and 12 hours after exposure. Width of wound was measured by ImageJ, and percent wound 

closure from 0 to 12 hours was recorded. (n=3 per group; * p<0.05 from PBS). 
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Figure 3.5 L-4F abrogates LPS-suppressed endothelial cell wound healing. HUVECs were seeded 

in a 12 well plate, and incubated with L-4F (50 μg/ml) after reaching ~80% confluency. 16 hours 

after incubation, cells were exposed to LPS (1 μg/ml) and scratched with a 200 μl pipette tip. Cells 

were then imaged 0, and 12 hours after exposure and percent wound closure was assessed using 

ImageJ. (n=3 per group; * p<0.05 from PBS; # p<0.05). 
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Figure 3.6 A designed novel D-HDL mimetic peptide retains an alpha-helix. (A)L-2W was 

designed by substituting the carboxyl-terminus phenylalanine for a tryptophan and the D-HDL 

mimetic peptide was then designed by oxidizing L-2W with HOCl to make oxL-2W. (B) L-2W 

molecular dynamics was performed on the AMBER 14 computer software.  
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CHAPTER IV: CONCLUSIONS AND FUTURE DIRECTIONS 

 

CONCLUSIONS/DISSCUSION 

 

This thesis contributes to developing a higher knowledge of the role of HDL in the 

pulmonary immune system and developing tools to study HDL and D-HDL in the lungs. In chapter 

II, HDL was reported to inhibit the chemotactic potential of PMNs while modulation of several 

lipoprotein receptors in the lungs was observed. This significant finding implicates the crucial role 

of HDL in the pulmonary immune response. In chapter III, a model was developed for testing the 

functionality of HDL or D-HDL mimetic peptides and a novel D-HDL mimetic peptide was 

designed. These tools were created to further study the roles of HDL and D-HDL in the respiratory 

and circulatory systems. With these new technologies, the consequences of developing D-HDL 

can be understood, and therapies can be produced to protect the body from this pathological 

condition.  

Chapter II investigates the role of HDL in the pulmonary inflammatory response to LPS. 

It was suggested that the inhibition of chemotactic potential, and the observed suppression of the 

inflammatory response, is the result of HDL taking up cholesterol from alveolar macrophages to 

reduce their inflammatory response. It has already been reported that HDL reducing the lipid load 

of monocytes/macrophages, and altering their lipid rafts, reduces their inflammatory response (47). 

It is likely this occurred in the lungs when mice were pretreated with HDL. Once mice received 

LPS exposure their alveolar macrophages may have already had a reduced lipid load, or HDL was 

still passing through circulation and taking up cholesterol after exposure. SR-BI was the only 

lipoprotein receptor shown to be upregulated by HDL at the early time point, 2 hours after 

exposure. Increased expression of ABCG1/ABCA1 by HDL was not observed in this report, but 

it is possible increased expression occurred at an earlier or later time point. Increased 
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ABCG1/ABCA1 transcription will have allowed for increased cholesterol uptake from 

macrophages to occur, thus attenuating the inflammatory response of alveolar macrophages.  

Transcription of ABCG1 and ABCA1 can be activated by liver X receptor (LXR) which is 

known to be activated by physiologic sterol ligands (e.g. oxysterols, cholesterol intermediates 

(193, 194)). Also, LXR agonist supplementation has been reported to decrease human PMN 

chemotaxis to IL-8 (the human analog to MIP-2/KC) (195), as well as knocking in LXR has been 

shown to protect mice from acute lung injury from intranasally instilled LPS (196). There is a clear 

effect of LXR on PMN chemotaxis (197), however the mechanism is unclear. It is possible 

increased LXR leads to decreased CXCR2, preventing PMN migration towards MIP-2/KC. 

Because LXR can be activated by sterol ligands, increased levels of alveolar macrophage 

cholesterol may correlate with an increased expression of the ABCG1, and ABCA1 as part of the 

inflammatory response to LPS.  

HDL may serve one of two purposes in the observed inflammatory response to LPS. First 

HDL may decrease inflammation by decreasing cholesterol concentrations in lung tissue, and thus 

decreasing activation of LXR and lipoprotein receptor transcription after 24 hours. Second, HDL 

can serve as an LXR agonist, possibly by acting directly on circulating PMNs. This would decrease 

PMN chemotaxis towards any MIP-2/KC secreted in the lungs, possibly by inhibiting CXCR2 

surface display. Also, increased LXR would increase the transcription of ABCG1 and ABCA1 

which we’ve proposed would consequently lead to decreased MIP-2/KC secretion. This two-fold 

impact of HDL on CXCR2 and MIP-2/KC would then considerably inhibit PMN chemotaxis, 

which would explain the decreased pulmonary neutrophilia observed. This is a novel application 

to the already understood ability of HDL to interact with lipoprotein receptors found in the lung.  
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In chapter III, a model was developed to assess the functional capabilities of HDL and D-

HDL mimetic peptides. Then a D-HDL mimetic peptide was designed by increasing the 

susceptibility of L-4F to oxidation. HOCl was chosen as the oxidizing agent to maintain 

physiological relevance. HDL is most commonly oxidized by MPO in the body because of the 

tendency for HDL and MPO to accumulate in atherosclerotic plaques (103). MPO produces HOCl 

and has been found to oxidize several different sites of apoA-I to make it dysfunctional (190, 198-

200). Originally, it was intended to use the enzymatic reaction of MPO with H2O2 and NaCl to 

produce HOCl and oxidize L-2W. However, it quickly became understood that analyzing the 

oxidation of the mimetic peptide would be complicated because of the size of MPO compared to 

L-2W. Oxidation was intended to be verified by recording ultraviolet light visual 

spectrophotometry, circular dichroism, and matrix assisted laser desorption/ionization time of 

flight mass spectrometry (MALDI-TOF) measurements of the peptides. These measurements 

would require the filtration of MPO and the other substrates out of solution after peptide oxidation, 

otherwise observation of the peptide would be obscured by the large enzyme. This additional step 

simply added an unnecessary complication to the procedure since the oxidative interaction is solely 

between HOCl and apoA-I, with MPO only producing HOCl. The intention of developing a D-

HDL mimetic peptide was to create a simple tool to be used to study the more complicated 

consequences of D-HDL in pulmonary diseases. Therefore, simply incubating L-2W with HOCl 

was decided to be the optimal method of oxidation. By creating a simple and reproducible model 

for evaluating peptide function, and engineering a novel D-HDL mimetic peptide, valuable 

research can be conducted to understand the complications of D-HDL.  

In conclusion, HDL plays a critical role in the pulmonary inflammatory response, and a D-

HDL mimetic peptide has been designed to asses the impact of developing D-HDL on the lungs. 
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Understanding the ability of HDL to suppress the inflammatory response of alveolar macrophages 

highlights the possible ramifications of D-HDL. It is possible D-HDL does not have the ability to 

suppress the inflammatory response. This could lead to more severe pulmonary injury in subjects 

suffering from obesity or diabetes because of a compromised immune system. More research needs 

to be conducted to understand how exactly D-HDL fails to match up to HDL. The D-HDL mimetic 

peptide designed here can be used to conduct this research. Also, the model for evaluating peptide 

function can also be used to assess other D-HDL mimetic peptides that replicate the other types of 

endogenous D-HDL. Overall, this research contributes to the scientific fields of pulmonary 

immunology, cardiovascular health, and lipid research to assist in the medical fields of pulmonary 

and cardiovascular diseases.  

 

FUTURE DIRECTIONS 

 

Future work may be aimed at further understanding the mechanisms of HDL’s anti-

inflammatory role, and how that is perturbed in D-HDL. This research was primarily conducted to 

elucidate what the role is of HDL in the lungs, and to create a tool for studying D-HDL. HDL has 

been shown to suppress production of inflammatory cytokines, chemokines, and to reduce injury. 

However, there has been little work demonstrating the mechanism of how HDL influences those 

responses. Likewise, there has been even less work on how that influence is altered when HDL 

becomes dysfunctional. The goal would be to identify therapeutic targets encouraging the 

protective effects of HDL and inhibiting the deleterious effects of D-HDL.  

Dependency of HDL’s anti-inflammatory response on lipoprotein receptors could be 

further studied. Here we observed the influence of HDL on lipoprotein receptor expression, so it 

would be enlightening to evaluate the anti-inflammatory properties of HDL when specific 
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lipoprotein receptors were genetically removed or pharmacologically inhibited. Alveolar 

macrophage specific inhibition of SR-BI could be used to determine the direct interaction point of 

HDL with the pulmonary immune system. It has been reported here that HDL increases SR-BI 

expression 2 hours after LPS exposure, and suppresses its expression 24 hours after LPS exposure. 

It has been proposed that HDL inhibits alveolar macrophage inflammation by reducing 

intracellular cholesterol concentration by transporting cholesterol through SR-BI. Therefore, if 

SR-BI was abolished, alveolar macrophage inflammation would hypothetically increase. 

Investigating the intracellular cholesterol of alveolar macrophages in SR-BI deficient models could 

elucidate the mechanism of HDL’s anti-inflammatory role in the lung. 

The ability of L-4F, and oxL-2W to suppress the pulmonary immune response is another 

area that could be further studied. L-4F has been shown to be suppress the inflammatory response 

to LPS in some models (80, 81). However, there has been no report on the influence of a D-HDL 

mimetic peptide on the pulmonary immune response. An interesting study would be to genetically 

knock out apoA-I, and then administer either L-4F or oxL-2W, or a ratio of the two, and observe 

the inflammatory response of the lungs to LPS. This would first clarify the therapeutic potential 

of L-4F in the face of developed D-HDL, and second could highlight how exactly the pulmonary 

immune system is compromised when D-HDL is present. Presently, there is no good model for 

evaluating the presence of D-HDL via genetic knock out. SR-BI or apoE deficiencies are potential 

options, but because of their widespread necessity throughout the body, expanding beyond the role 

of HDL, it would be impossible to discern between phenotypes of obesity (201), Alzheimer’s 

(202), dyslipidemia (203, 204), or immune suppression (129) and D-HDL.  

Other possibilities exist for further research around the role of HDL and D-HDL in the 

lungs. There is a lot that is not understood about HDL and D-HDL, while there is significant 
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clinical relevance revolving around these lipoproteins. Continued research on the influence of 

HDL on migrating PMNs, endothelial cell inflammation, epithelial cell inflammation and the 

connection to surfactant secretion are all areas that are understudied. Consequently, the impact of 

D-HDL on each of these areas needs to be evaluated if we are to attempt to reduce the drastic 

burden of pulmonary diseases on the global population.  
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