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 In order to predict evolutionary outcomes of environmental change on populations in 

nature, we need an improved understanding of the biological mechanisms that affect whether 

organisms will adapt to a changed environment. This dissertation capitalizes on the unlikely 

discovery of a freshwater treefrog (Hyla cinerea) inhabiting brackish marshes along the coast of 

North Carolina to better understand adaptive evolution to a changed environment. The goals of 

this research are to (1.) examine the extent that salt-exposed, coastal frog populations are 

diverging from salt-naïve, inland populations in response to saltwater exposure across life stages, 

(2.) determine the molecular and life history mechanisms that permit this species to persist in 

brackish habitats, and (3.) explore factors that influence likelihoods of evolution (e.g., density 

dependence, phenotypic plasticity).  

 Chapter 1 used field surveys, meta-analysis, and common garden experiments to show 

that Hyla cinerea are unique among frog species in their ability to inhabit saline wetlands. 

Coastal H. cinerea laid more eggs in saltwater compared to inland H. cinerea, more coastal eggs 



hatched in saltwater compared to inland eggs, and in the highest experimental treatment (12ppt), 

early-stage coastal tadpoles had higher survival rates than inland tadpoles. Chapter 2 investigated 

the role of plasticity in generating divergent phenotypes across larval development. Regardless 

of salinity, coastal tadpoles grew faster and initiated metamorphosis sooner but at a smaller size 

compared to inland tadpoles, and more coastal tadpoles survived to metamorphosis. Chapter 3 

used individual-based modeling to explore how density dependence and selection interact to 

affect evolution in complex life cycle organisms. Density dependence increased genetic variation 

across populations by reducing population size, and evolutionary rescue was most likely to occur 

when selection precedes density dependence. Chapter 4 used transcriptomics to explore the 

mechanisms that produce differences across inland and coastal populations. We identified 1,924 

differentially expressed genes between coastal and inland frog populations. We found that 

differentially expressed genes encode diverse molecular functions including ionic and osmotic 

transporters and stress response pathways. 

 This dissertation shows that coastal H. cinerea can become locally adapted to inhabit 

brackish habitats and explores several mechanisms that affect adaptive evolution to 

environmental change. 
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I. ADAPTIVE RESPONSES TO SALINITY STRESS ACROSS MULTIPLE LIFE STAGES IN 

ANURAN AMPHIBIANS 

Abstract 

In many regions, freshwater wetlands are increasing in salinity at rates exceeding historic levels. 

Some freshwater organisms, like amphibians, may be able to adapt and persist in salt-

contaminated wetlands by developing salt tolerance. Yet adaptive responses may be more 

challenging for organisms with complex life histories because the same environmental stressor 

can require responses across different ontogenetic stages. Here we investigated responses to 

salinity in anuran amphibians, a common, freshwater taxon with a complex life cycle. We 

conducted a meta-analysis to define how the lethality of saltwater exposure changes across 

multiple life stages, surveyed wetlands in a coastal region experiencing progressive salinization 

for the presence of anurans and used common garden experiments to investigate whether chronic 

salt exposure alters responses in three sequential life stages (reproductive, egg, and tadpole life 

stages) in Hyla cinerea, a species repeatedly observed in saline wetlands. Meta-analysis revealed 

differential vulnerability to salt stress across life stages with the egg stage as the most salt-

sensitive. Field surveys revealed that 25% of the species known to occur in the focal region were 

detected in brackish habitats. Remarkably, Hyla cinerea was found in large abundances in 

multiple wetlands with salinity concentrations 450% higher than the tadpole-stage LC50. 

Common garden experiments showed that coastal (chronically salt exposed) populations of H. 

cinerea lay more eggs, have higher hatching success, and greater tadpole survival in higher 

salinities compared to inland (salt naïve) populations. Collectively, our data suggest that some 

species of anuran amphibians have divergent and adaptive responses to salt exposure across 
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populations and across different life stages. We propose that anuran amphibians may be a novel 

and amenable natural model system for empirical explorations of adaptive responses to 

environmental change. 

Introduction 

Accumulating greenhouse gas concentrations are increasing the heat retained in the atmosphere, 

which is in turn causing global mean sea levels to rise through intensified ice sheet and glacier 

melting and thermal expansion of ocean water (Meehl et al. 2005, Nicholls and Tol 2006, 

Domingues et al. 2008, Church et al. 2013). Sea levels have already risen 17-21cm over the past 

110 years, and current models forecast that sea levels could rise an additional 40-63 cm over the 

next century with additions expected if ice sheets on Greenland and West Antarctica collapse 

(Scavia et al. 2002, Senior et al. 2002, Domingues et al. 2008, Kemp et al. 2011, Rahmstorf et al. 

2012, Church et al. 2013). Ancillary impacts of climate change on coastal wetlands include 

alterations in the frequency and intensity of storm surges and coastal flooding, which may 

compound the effects of coastal erosion and saltwater inundation (Peng et al. 2004, Mulligan et 

al. 2012). The magnitude of sea level rise and impact on coastal ecosystems will vary depending 

on glacial isostatic adjustment, tectonic processes, oceanic circulation patterns, sediment 

compaction and accretion, wind patterns, and gravitational changes (DaLaune and Pezeshki 

1994, Abrams 1995, Michener et al. 1997, Loaiciga 2003, Day et al. 2008, Meyssignac and 

Cazenave 2012, Church et al. 2013, Williams 2013), yet many areas are already being affected 

by sea level rise (Knighton et al. 1991, Baldwin and Mendelssohn 1998, Williams et al. 1999, 

Geddes and Mopper 2006, Kopp et al. 2015). Rising salinities are broadly anticipated to 

negatively impact freshwater organisms inhabiting coastal regions by reducing both the quality 

and quantity of suitable habitat, lowering individual fitness (e.g., increased physiological stress, 
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morphological deformities, reduced fecundity, and modifications to growth, development, and 

mortality), reducing population carrying capacity, and by altering biological interactions, disease 

risk, species movement, and community structure (Morris et al. 2002, Hamer and McDonnell 

2008, Foden et al. 2009, Reed et al. 2011).  

To survive in higher salinity habitats, osmoregulators require a wide variety of physiological, 

morphological, life historical, and behavioral traits to conserve water and expel enough excess 

ions. Although examples of adaptive responses across strong abiotic clines are multiplying 

quickly (Lee 1999, Reznick and Ghalambor 2001, Fraser et al. 2011, Brady 2012, Lamichhaney 

et al. 2012a, Mopper and Strauss 2013, Anderson et al. 2015), adaptive responses might be 

slowed by an organism’s life history strategy, amount of standing genetic variation, demographic 

constraints (e.g., competition), or decoupling of environmental cue from response (Pfennig et al. 

2010, Reed  et al. 2010, Wund 2012, Hendry 2015, Nonaka et al. 2015). For example, organisms 

with complex life cycles, such as amphibians, have different ontogenetic life stages that are 

typically marked by abrupt shifts in morphology, physiology, behavior, and often distinct 

changes in habitat use. Therefore, the same stressor may differently impact each life stage, and 

require multiple adaptive responses across life stages to successfully adapt to an emerging 

environmental stressor. 

 

Amphibians are a classic model for exploring responses to environmental stressors such as 

salinity (Morgan and Stockard 1907, Schmidt-Nielsen and Forster 1954, Thorson 1955, Thorson 

1956, Christensen et al. 1961, McClanahan 1964, Gordon 1965, Gordon and Tucker 1965). 

Amphibians are widely regarded as important indicator species of wetland quality due to a life 

history tied to freshwater coupled with unique characteristics such as permeable skin, an inability 
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to concentrate and excrete excess salts, and poor dispersal capabilities (Neill 1958, Vitt et al. 

1990, Carignan and Villard 2002, Hopkins and Brodie 2015). Additionally, amphibians comprise 

a significant proportion of the vertebrate biomass in wetland ecosystems (Gibbons et al. 2006, 

McCoy et al. 2009) and have been classified by the IUCN as “climate change susceptible” 

(Foden et al. 2009). Most amphibians have a complex life cycle in which they are obligatorily 

aquatic throughout the egg and larval period and become semi-terrestrial upon metamorphosis. 

Depending on the species, amphibians typically return to water as adults to breed or rehydrate.  

 

A recent review identified ca. 140 anuran amphibian species that have been observed in saline 

habitats (ranging from tidal mangrove swamps to inland freshwater habitats contaminated with 

road deicing salts). Yet these species represent only 2% of all known species (Neill 1958, 

Hopkins and Brodie 2015), supporting the widely held belief that anurans are a generally salt-

sensitive, freshwater order. A few notable species of amphibians such as Fejervarya cancrivora, 

Bufo viridis, and Rhinella marina  are known to tolerate brackish conditions (Neill 1958, 

Christman 1974, Gibbons and Coker 1978, Balinsky 1981, Gomez-Mestre and Tejado 2003, Wu 

and Kam 2009a, Hopkins and Brodie 2015, Wijethunga et al. 2016), but these species still 

require freshwater habitats to complete their life cycles suggesting differential vulnerability to 

salt exposure across life stages even in specialist salt-tolerant species (Gordon et al. 1961, 

Gordon 1962, 1965, Gordon and Tucker 1965). 

 

In addition to field observations, there are many published studies that experimentally explore 

egg, tadpole, or adult responses to salt stress (Hopkins and Brodie 2015). These studies typically 

evaluate how saltwater impacts anuran survivorship and behavior in a single life stage, and in 
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doing so, provide informative data on expected responses across a range of salinities. Hopkins 

and Brodie published an extensive review of saltwater tolerance in amphibians (Hopkins and 

Brodie 2015), which provides a useful framework to better understand and predict how 

salinization affects anuran populations. Yet the information about how salt impacts frog 

survivorship contained in these studies has not yet been coalesced to precisely quantify how salt 

tolerance changes across different life stages. Moreover, to best predict how anurans will 

respond to progressively increasing salinities, we not only need to define how salinity affects 

each life stage, but also how labile salt-tolerant responses are across populations. 

 

In this study, we use multiple, complementary strategies to evaluate salt sensitivity in anurans 

generally, and substitute space for time to explore whether populations that inhabit coastal 

wetlands with a history of increasing salt exposure demonstrate adaptive responses across 

multiple life stages. First, we conducted a meta-analysis to establish an empirically derived 

quantitative framework of expected survivorship following exposure to saltwater in anuran 

amphibians for different life stages. Second, we performed a field survey of brackish and 

freshwater wetlands to describe and characterize amphibian distributions along a salt gradient in 

a coastal location predicted to be among the most impacted by sea level rise. Third, we substitute 

space for time in common garden experiments to investigate how exposure to saltwater across 

life stages differs among chronically salt-exposed (coastal) and salt-naïve (inland) anuran 

populations. If coastal frogs are responding adaptively, we expect to find differences in 

oviposition site choice behaviors, higher hatching rates, and higher tadpole survival in coastal 

populations compared to inland populations.  
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We focus on reproductive behaviors, egg hatching patterns, and post-hatching tadpole survival 

for our common garden experiments. During breeding events, male frogs amplex females and 

then the females will transport the males to assess potential egg laying sites. Females of some 

species are highly discriminatory and choose among oviposition sites to avoid a variety of biotic 

and abiotic stressors (Hsu et al. 2012, Wilder and Welch 2014). Oviposition site choice 

behaviors are under strong selection because her choice can strongly affect fertilization success, 

mortality risk to offspring, as well as resource availability to offspring, thus impacting offspring 

survival and performance (Sanzo and Hecnar 2006, Wu and Kam 2009b, Hsu et al. 2012, Wu et 

al. 2012, Wilder and Welch 2014, Nakkrasae et al. 2015). After eggs have been deposited, 

developing clutches are vulnerable to aquatic contaminants because frog eggs are enclosed by a 

permeable, jelly coat and lack a hard, protective shell (Touchon 2006, Haramura 2007). Upon 

hatching, many species frog larvae (tadpoles) are obligatorily aquatic and cannot survive on land 

until the completion of metamorphosis. During this period, tadpoles respire and osmoregulate via 

gills that function similar to freshwater teleosts such that ions and salts are conserved, and excess 

water is expelled (Dietz and Alvarado 1974, Uchiyama and Yoshizawa 1992, Wu et al. 2014). 

Saltwater is known to impact each of these stages (Christy and Dickman 2002, Dougherty and 

Smith 2006, Smith et al. 2006, Wu and Kam 2009a, Haramura 2011, Bernabò et al. 2013, Wilder 

and Welch 2014), and so we chose reproductive choices, embryo hatching success, and tadpole 

survival because these stages are key periods in the anuran life cycle that are highly vulnerable to 

external stressors, and strongly influence individual fitness and population persistence. 
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Methods 

Study Location: We conducted these studies in eastern North Carolina, USA. North Carolina’s 

coastline, barrier islands, and coastal habitats are predicted to be among the most significantly 

impacted by sea level rise due to the geomorphology of the Northern coastal zone (Albemarle 

embayment), coastal subsidence rates (-1mm±0.15mm/yr.), and gently sloped coastal plains 

(Titus and Richman 2001, Kemp et al. 2009, Williams 2013, Kopp et al. 2015). Indeed, the 

North Carolina coast has already seen intensified coastal flooding, and increased saltwater 

intrusion into coastal lowlands and freshwater aquifers making it an important location for 

investigating the impacts of sea level rise and increasing salinities on coastal organisms 

(Parkinson 1994, Michener et al. 1997, Kopp et al. 2015). 

 

Meta-Analysis 

Literature Search: We searched Google Scholar and Scopus databases for experimental studies 

evaluating the survivorship of anuran amphibians after experimental exposure to saltwater. We 

conducted the primary, exhaustive searches on December 16-20, 2014. Literature was checked 

again on July 14, 2015, September 23, 2015, February 25, 2016, and February 2, 2017 to ensure 

recently published work was included. We used the search terms (and all combinations of): 

“frog” OR “anuran” OR “amphibian” AND “saltwater” OR “salt” OR “salinity” OR “ocean” OR 

“NaCl” AND “mortality” OR “survivorship”. Initial searches returned ~24,500 hits in total. 

These studies were further refined by scanning titles and abstracts. We excluded studies that did 

not mention survivorship or mortality of anurans (e.g., excluding Caudata and Gymnophonia 

amphibian orders) and exposure to saltwater in the abstract. We also cross checked against the 
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list of studies in Hopkins and Brodie’s review of amphibian salt tolerance to ensure all 

appropriate studies were included (Hopkins and Brodie 2015). 

 

Data Extraction: After refining our database to 129 studies, each study was read in detail and 

data were extracted from the text or from the figures. We extracted data only on studies that 

experimentally and directly manipulated salt concentrations against known sample sizes (e.g., 

field observations and studies with incidental, non-targeted salt exposure were excluded). We 

used studies that exposed frogs to saltwater solutions comprised of sodium chloride (NaCl), (e.g. 

InstantOcean® or natural seawater) and excluded studies that exposed frogs to mixed salt 

solutions (e.g., mixed road salt solutions) (Hintz and Relyea 2017). In studies where multiple 

saltwater compositions (e.g., MgCl2, KCl, CaCl2) were tested, we only used data from the trials 

that utilized NaCl. See supplementary material for detailed list of studies. 

 

We used GraphClick® software version 3.0.3 (Arizona Software) to extract estimates from 

published figures and graphs. We report the mean survivorship (with error) for studies containing 

multiple replicates across salinities. For studies that compare survivorship across replicate 

populations, we present global averages across all populations tested. Although three studies 

report intra-specific differences in saltwater tolerance across different populations (e.g., (Gomez-

Mestre et al. 2003, Crother and Fontenot 2006, Wu et al. 2014)), there were too few studies 

available to permit a meaningful formal analysis on population level differences in saltwater 

tolerance across studies or species. We recorded species identity, family, life stage (tadpole, egg, 

or adult), experimental salinity concentrations, sample size (N), survivorship (as proportion), the 

standard deviation of survivorship (converted from standard error when necessary), location of 
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the study, and length of exposure (in hours) for each study. Because different studies reported 

salinity using different units, we used standard conversions to transform all salinity 

measurements to parts per thousand (ppt). 

 

Field Survey 

Study Sites: We monitored wetlands regularly to make sure species that breed at different times 

could be detected. We surveyed 55 salt and freshwater wetlands in eastern North Carolina 

between February and September of 2014 for the presence of anuran amphibians. We included 

bogs, retention areas, marshes, ponds, ditches, and swamps, but excluded estuaries, sea grass 

beds, and other large, open water habitats. The most southern and eastern location was Cape 

Hatteras National Seashore and the survey extended northward to the town of Nags Head. Along 

this transect, we surveyed wetlands along Rodanthe, New Inlet, Bodie Island, Oregon Inlet, and 

Pea Island National Wildlife Refuge. We also sampled wetlands along an east to west transect 

spanning from the outer banks of NC, across Roanoke Island, which lies between the inner and 

outer banks and throughout Alligator River National Wildlife Refuge located on the Albemarle 

peninsula. The geographic bounds of the study area are 35º55’7”N to 35º14’7”N, and between 

75º48’43”W to 75º27’27”W, excluding the Atlantic Ocean and the Pamlico, Croatan, and 

Roanoke sounds. 

 

Survey Techniques: We used standard sampling methods to characterize anuran presence and 

relative abundance including auditory call surveys, standardized dip netting for larvae, and active 

searching for adults (Rader et al. 2001, Heyer et al. 2014). Our primary approach used auditory 

surveys to identify and locate frog populations, as well as to determine species identities and 
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relative abundances of the anurans present. When frogs were detected via call, the site was geo-

referenced using a Garmin® GPSMAP 60CSx GPS navigator (Garmin, Ltd., Olathe, KS) and 

salinity (in ppt) and the temperatures of the air and water were measured using YSI Professional 

Plus multiparameter meter (Xylem, Inc., Yellow Springs, OH). We returned the following day 

(auditory surveys occurred at night) to the geo-referenced sites to determine egg mass/larvae 

presence using fixed-effort dip netting, and visual transect surveys (Rader et al. 2001, Heyer et 

al. 2014). To ensure that we thoroughly surveyed all wetlands for the presence of amphibians 

(and not just wetlands with detectable choruses), we used Google Maps® and visual surveys to 

identify additional wetlands that were not identified using call surveys, and sampled these 

wetlands using visual transect surveys and dip-netting for the presence of adult and/or larval 

anuran species. Tuberville et al. (Tuberville et al. 2005) conducted a thorough amphibian field 

survey along the North Carolina coast that included Cape Hatteras and Cape Lookout National 

Seashore and documented the current or historic presence of 17 anuran species, and we use the 

results of this study as a comparison for our own observations. Notably, the Tuberville study did 

not record salinity of locations in which anurans were observed. 

 

Common Garden Experiments 

We used Hyla cinerea, the American green tree frog (average size: 3.2-5.7 cm), for each of our 

common garden experiments, as this species is common across the Southeastern United States 

and has been repeatedly documented in brackish environments (Crother and Fontenot , Neill 

1958, Wells 2007, Brown and Walls 2013, Wilder and Welch 2014). These experiments were 

conducted between May and August 2015. To characterize and identify how responses to 

saltwater differ among populations, we compared individuals from chronically salt-exposed Hyla 
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cinerea populations (hereafter referred to as “coastal” populations) against individuals from 

freshwater, salt-naive Hyla cinerea populations (hereafter referred to as “inland” populations). 

We located coastal and inland populations via the field survey. All coastal individuals were 

collected from sites in which salinities remained at or above 3ppt over the course of the breeding 

season, and all inland individuals were collected from populations with salinities below 1ppt. 

Coastal populations and inland populations were geographically separated from one another by 

at least 190 kilometers, so we assume that pairs collected from populations within these locations 

are sufficiently distant both geographically and environmentally to provide an accurate 

assessment of population-level differences produced by the different salinity of their habitats. 

The protocols for these experiments were approved by East Carolina’s Animal Care and Use 

committee (D328 and D314) and collected under North Carolina Wildlife Collection License 

(#16-SC00840). 

 

Oviposition Site Choice and Egg Hatching: We tested oviposition site choice by collecting four 

amplexed pairs of Hyla cinerea from either coastal or inland populations. Each pair was placed 

into an 18-Liter clear bin, the bottom of which was lined with six pint cups. Three of the six cups 

contained 400ml tap water (0ppt) treated with API® Tap Water Conditioner (Chalfont, PA), and 

the remaining cups contained 400ml saltwater prepared by mixing treated tap water with 

InstantOcean Sea Salt® (Blacksburg, VA). Each bin contained a single saltwater concentration 

that was either 4ppt, 6ppt, 8ppt, or 10ppt. In doing so, we presented each pair with a binary 

choice between laying eggs in freshwater or saltwater. The four salt concentration treatments 

collectively comprised a single replicate (i.e., four bins = one replicate). On nights when multiple 

replicates were conducted, each replicate was arranged in a spatial block at the site of collection. 
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Bins were left in situ overnight to allow pairs to complete breeding. The following morning, 

adult frogs were released, lids fastened to each cup, and bins were transported to the laboratory. 

Each cup was individually photographed, the salinity measured, and then monitored for hatching. 

Eggs hatched after 72-96 hours, defined as the point in which individuals were no longer retained 

in egg matrix and have functional gills (Gosner stage 20 (Gosner 1960)). Hatchlings were 

counted and recorded.  

 

Tadpole Survivorship: To determine the effects of salinity on tadpole survival, we used the 

individuals hatched from eggs laid in freshwater during the previous oviposition experiments. 

Hatchlings were held in the laboratory that was maintained at 26.67ºC (~80ºF) and allowed to 

develop until reaching Gosner stage 25 (approximately 5 days) (Gosner 1960). Several studies 

have indicated that acclimatizing anurans to elevated salinities reduces mortality (Gordon 1962, 

Gordon and Tucker 1968, Hsu et al. 2012), and natural salinity fluctuations typically do not 

exceed +/- 2ppt per day, excluding an extreme event such as storm surge or flooding event. 

Therefore, to best mimic natural conditions and quantify survival, tadpoles were gradually 

acclimatized to a specified target salinity over 6 days. We chose five target salinities, 0.5ppt, 

4ppt, 6ppt, 8ppt, and 12ppt, which are representative of natural salinities observed in coastal 

wetlands. Freshwater treatments (0.5ppt) were maintained at 0.5ppt throughout the six-day 

acclimatization period. The 4ppt treatments were raised by 0.67ppt per day, 6ppt treatments were 

raised by 1ppt per day, 8ppt treatments raised by 1.33ppt per day, and 12ppt treatments were 

raised by 2ppt per day, with final target salinities reached on day 6. 
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We divided each clutch into five groups of fifty tadpoles, which were then randomly assigned to 

one of the five salinity treatments, replicated 8 times for each location. Each clutch divided into 

five groups comprised a single replicate block to account for potential parental effects. Groups of 

tadpoles were placed into 350mL glass containers containing 300 mL of treated tap water 

(treated with API® Tap Water Conditioner (Chalfont, PA)) within a laboratory with 12-hour 

light/dark cycle. After acclimatizing overnight, salinity was increased incrementally each day 

according to treatment. Prior to water changes each day, tadpole mortality in each cup was 

assessed and recorded, and deceased individuals were removed. Tadpoles were fed 0.01g of 

Spirulina fish food flakes (Ocean Star International, Coral Springs, FL) each day following the 

water change. To perform water changes, tadpoles were carefully poured into a small holding 

container. 300mL of new, treated water with experimentally raised saltwater concentrations 

(InstantOcean Sea Salt® (Blacksburg, VA)) was poured into glass containers. 

 

Statistical Analyses 

We use a Bayesian approach to analyze data. For all statistical analyses we used JAGS interfaced 

with the R statistical programming environment, version 3.2.3 (2017) via “R2jags” (Su and 

Yajima 2015), “rjags”(Plummer 2015), and “coda”(Plummer et al. 2006) packages. For each 

analysis, we ran 5,000 iterations of three separate Markov Chain Monte Carlo (MCMC) chains 

with starting values that varied by an order of magnitude, each with a burn in of 2500 unless 

otherwise specified (Gelman et al. 2004). We used Gelman-Rubin diagnostics to assess model 

convergence in each analysis (Gelman et al. 2004).  

 



 14 

Meta-Analysis: To estimate the probability of survival in saltwater for each life stage across 

anuran taxa and across salinities, we tested how increasing salinity affects anuran survivorship 

across clades for each life stage (e.g., egg, larvae, adult). We did not use phylogenetically 

corrected data because a recent review of all instances of amphibians in saline environments 

revealed no phylogenetic signal (Hopkins and Brodie 2015) and we detected no signal of 

phylogeny in the unexplained deviance from our analysis. We performed a Bayesian beta 

regression with an uninformative (relatively flat; mean = 0, std. dev. = 0.001) Gaussian prior. We 

chose the beta distribution because the data extracted for the meta-analysis were often only 

reported as “proportion survived” or “proportion killed” and lacked the necessary information 

(e.g., sample sizes and replicate numbers) required to back-calculate starting densities. In this 

analysis, survivorship and salinity were considered fixed effects, with individual studies treated 

as random effects.  

 

Field Survey: We used the posterior distribution from the meta-analysis of all anuran species to 

predict the probability of anuran survivorship across several salinities including the salinities 

where we observed coastal Hyla cinerea during field surveys. Specifically, we generated a 

survival curve (with uncertainty) across salinities ranging from 1ppt (freshwater) up to 40ppt, 

and estimated the expected probability and credible intervals for finding frogs in sites with 

salinity concentrations we found in our field observations. Although 40ppt exceeds the salinity of 

natural seawater (35ppt), Gordon and colleagues observed Fejervarya cancrivora tadpoles in 39 

ppt water in 1961 (Gordon et al. 1961). While this particular observation was not included in our 

meta-analysis due to its non-experimental nature, we wanted to ensure that all possible salinities 

were considered in our meta-analysis. 
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Common Garden Experiments: We used ImageJ® software to quantify the number of eggs that 

were laid in each cup. Briefly, files for each container were imported and changed to 8-bit 

images. The image background was subtracted, images were made binary, and files were 

converted to a mask. To separate groups of eggs that were clumped together, we used the 

watershed feature to demarcate individual egg boundaries. Outputs were visually inspected to 

ensure that all eggs were included and correctly counted. 

 

We ran two-stage tests for both oviposition site-choice and hatching data.  In the first step, we 

analyzed the data in binary form to ask if the probability of egg deposition or hatching changed 

as a function of the interaction between source population (e.g., coastal vs. inland) and salinity. 

In the second step, given that egg deposition or hatching occurred (i.e., excluding all cups in 

which zero eggs were laid or hatched), we analyzed the proportion of eggs deposited into 

freshwater and the proportion of offspring hatched as a function of the interaction between 

source population and salinity. These dual approaches answer distinct but complementary 

questions. Regarding oviposition, the first test asks if the probability of depositing eggs into 

saltwater or freshwater reflects a choice between salinities, while the second test reveals how 

parental investment differs according to salinity. Regarding hatching, the first test uncovers 

differences in the probability of complete loss due to salinity, while the second test reveals 

thresholds of sensitivity to salt. 

 

To test the probability of oviposition, we ran Bernoulli regression to test for a relationship 

between egg presence or absence according to salinity and location (step one above). To test 
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whether there were differences in investment (step two above), we ran a binomial regression to 

examine whether salinity and location affected the proportion of eggs deposited by a female into 

saltier water.  For both of these analyses, we used uninformative Gaussian priors (mean = zero 

and precision as a decaying power function with exponent = -2). To test the probability of 

hatching and proportion that hatched, we use informed priors based on the posterior distribution 

produced by the egg stage meta-analysis. Similar to the oviposition analyses, we ran Bernoulli 

regression to determine the relationship between egg hatching and salinity and location. We then 

used a binomial regression to analyze differences in the proportion of eggs that hatched in each 

salinity and location. Each of these four models considers salinity and location (e.g., coastal or 

inland) as fixed effects with “bin” nested in location as a random effect to account for parental 

effects (Bennett et al. 1996). 

 

Tadpole Survivorship: To quantify how salinity, location, and time (e.g., day) affect tadpole 

survivorship, we used a binomial regression with informed priors based on the posterior 

distribution produced by the tadpole stage meta-analysis. This model considers salinity and 

location (e.g., coastal or inland) as fixed effects with “clutch” included as a random effect to 

account for sibship (Bennett et al. 1996). For this analysis we ran four separate MCMC chains 

with 50,000 iterations, each with a burn in of 25,000 (Gelman et al. 2004). 

 

Results 

Meta-Analysis 

Effects of Salt on Amphibian Survivorship: We utilized data from 39 papers published between 

1961 to early 2017 (see supplementary materials for detailed information). Overall, the literature 
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uniformly demonstrates that increasing saltwater concentrations lowers anuran survivorship 

across all three life-stages (Fig. 1-1). We found that across all studies included in this analysis, 

the lethal concentration of saltwater required to impose 50% mortality (LC50) to anuran 

amphibian eggs is 4.15ppt (95% Bayesian credible interval [BCI] = 2.25 to 6.25ppt). The LC50 

for larval anurans is 5.5ppt (4.24-6.65ppt BCI), while the LC50 for adults is 9.0ppt (0-19.9ppt 

BCI). 

 

Field Surveys 

Species Presence: We surveyed 55 wetlands along North Carolina’s coastal plain (Fig. 1-2). In 

coastal freshwater habitats (<3ppt) with no connection to saltwater influence (e.g., municipal 

retention ponds), we documented the regular presence of 16 of the 17 anuran species found in the 

Tuberville study including Hyla cinerea, Hyla chrysoscelis, Hyla squirella, Hyla femoralis, 

Anaxyrus fowleri, Anaxyrus quercicus, Anaxyrus terrestris, Lithobates sphenocephalus, 

Lithobates clamitans, Lithobates virgatipes, Lithobates catesbeianus, Gastrophryne carolinensis, 

Pseudacris ocularis, Pseudacris crucifer, and Acris gryllus. We did not detect Scaphiopus 

holbrookii (Tuberville et al. 2005). In brackish wetlands (>3ppt), we documented the presence of 

4 of those 16 species (Hyla cinerea, Gastrophryne carolinensis, Lithobates catesbeianus, and 

Lithobates sphenocephalus) (Table1). 

 

Relative Abundance: In general, we noted that relative abundances of all species (except Hyla 

cinerea) declined as wetlands grew more saline. Hyla cinerea demonstrated unique distribution 

patterns along North Carolina’s coast as the most abundant species found within brackish 

habitats along both the estuarine shoreline and outer banks. Notably, in some locations we 
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observed that the relative abundance of Hyla cinerea actually increased with increasing salinity, 

a pattern not shared with any of the other species found in brackish wetlands. We observed early 

and late stage Hyla cinerea tadpoles, metamorphs (between Gosner stages 31-39 (Gosner 1960)), 

and adults from multiple locations including from ponds and marshes with 3.9ppt, 8.3ppt, 11ppt, 

16.8ppt, and 23.4ppt water (Table 1-1). 

 

Probability of Field Findings: Using the posterior probability distributions from our meta-

analysis we examined the relative probability of survival for frogs in the observed salinities: 

3.9ppt, 8.3ppt, 11ppt, 16.8ppt, and 23.4ppt saltwater. The expected probability of survival for an 

individual anuran following exposure to a 3.9ppt saltwater solution during the egg stage is 0.52 

(0.39-0.66 95% BCI), 0.60 (0.51-0.68 BCI) for larval anurans, and 0.62 (0.39-0.84 BCI) for 

adults. The probability of survival in 8.3ppt water for eggs is 0.25 (0.09-0.45 BCI), 0.32 (0.23-

0.39 BCI) for larvae, and 0.53 (0.32 – 0.74 BCI) for adult frogs. At 11ppt, the survivorship for 

eggs is 0.15 (0.03-0.35 BCI), larval survivorship is 0.18 (0.12-0.25 BCI), with adult survivorship 

predicted at 0.46 (0.25 – 0.70 BCI). Wetlands at 16.8ppt have 0.04 (0.002-0.19 BCI) expected 

egg survivorship, 0.04 (0.02-0.07 BCI) expected larval survivorship, and 0.35 (0.13-0.61 BCI) 

expected adult survivorship. In 23.4ppt wetlands, 0.01 (0.00-0.008 BCI) eggs are expected to 

survive, larval survivorship is 0.01 (0.002-0.02 BCI), and expected adult survivorship is 0.25 

(0.05-0.57 BCI) (Table 1-1). 

 

Common Garden Experiments 

The oviposition site choice experiment used Hyla cinerea pairs collected from three 

geographically discrete populations from inland and coastal locations in eastern North Carolina. 
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The subsequent egg hatching and tadpole survivorship experiments utilized the offspring of the 

collected pairs. For the coastal locations, we sampled three discrete populations along the inner 

and outer banks of North Carolina. We collected 1 replicate from a population near New Inlet 

bridge (35º41'11.5" N, 75º29'03.92"W), 1 replicate from Coastal Studies Institute on Roanoke 

Island (35º52'26.14" N, 75º39'38.54" W), and 2 replicates from Point Peter Road, Alligator River 

National Wildlife Refuge (35º46’13.1” N, 75º44’30.1” W). These populations are separated by 

the Croatan and/or Roanoke Sounds. For the inland locations, we sampled three discrete 

populations around Greenville, North Carolina. Specifically, we collected 1 replicate from a 

population near MacGregor Downs Road (35º37'15.8" N, 77º26'45.29" W), 1 replicate along 

Pactolus Highway (35º37'18.9" N, 77º20'43.8" W), and 2 replicates from a retention pond on 10th 

Street (35º35'26.49" N, 77º19'09.89" W). Each inland population is at least 5km apart from other 

populations with the Tar River and multiple highways between populations. 

 

Oviposition Site Choice: We conducted four replicates in coastal and inland locations. Pairs 

successfully bred in every bin except one that contained a coastal pair. On average, females laid 

1,363 eggs (minimum = 713 eggs, maximum = 3,039 eggs) per bin. We found that location (e.g., 

coastal vs. inland) and salinity both affected the probability that a female will lay her eggs in a 

particular pool (Fig. 1-3). As salinity increased, pairs from inland populations were less likely to 

deposit eggs in salinized water, while coastal females maintained a high probability of laying 

eggs in the higher salinity treatments (Fig. 1-3). For example, in the lower salinity treatments 

(4ppt), coastal females showed no divergence with inland females having 0.87 (0.85-0.91 BCI) 

probability of laying any eggs in the 4ppt water, and coastal females having 0.84 (0.81-0.88 BCI) 

probability of laying eggs. Yet in the higher salinity treatments in which females chose between 
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fresh or 12ppt water, inland females had a 0.51 (0.41- 0.61 BCI) probability of laying any eggs 

into 12ppt water, while coastal females exhibited 0.91 (0.88-0.96 BCI) probability of laying 

eggs. Source population and salinity both affected the proportion of eggs laid in freshwater (Fig. 

1-4). Pairs from both locations tended to lay the majority of their eggs into freshwater as salinity 

increased, but at 12ppt, pairs from inland populations laid only 6% (0.04-0.07 BCI) into the 

saline water, while coastal pairs laid 16% (0.14-0.18 BCI) of their eggs in the saline water (Fig. 

1-4). 

 

Egg Hatching: Salinity and source population affect the probability that any eggs would hatch 

out of a particular treatment (Fig. 1-5). At 4ppt, the probability that an egg sourced from inland 

parents would hatch is 0.31 (0.24-0.38 BCI), while the probability that an egg laid by coastal 

parents would hatch is 0.54 (0.47-0.61 BCI). At higher salinities (10ppt), eggs from both 

populations had an exceedingly low probability of hatching (inland probability: 0.02 (0.007-0.03 

BCI); coastal probability: 0.04 (0.02-0.06 BCI)) (Fig. 1-5). We also observed that although the 

proportion of eggs that hatched in 3ppt was similar across locations (inland proportion hatched: 

0.33 (0.27-0.38 BCI); coastal proportion hatched: 0.36 (0.31-0.42 BCI)), 10% (0.07-0.11 BCI) of 

the coastal-sourced eggs hatched at 6ppt compared to 3% (0.02-0.04 BCI) of the eggs sourced 

from inland populations (Fig. 1-6). 

 

Tadpole Survivorship: Following the 6-day acclimation, the predicted survival probability for 

coastal and inland Hyla cinerea tadpoles in freshwater for coastal-sourced tadpoles is 0.98 (0.96-

0.99 BCI) and 0.98 (0.96-0.99 BCI) for inland-sourced tadpoles (Fig. 1-7). At 4ppt, predicted 

survivorship for coastal offspring is 0.96 (0.92-0.98 BCI) while inland offspring survivorship is 
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0.97 (0.95-0.99 BCI). Survivorship in 6ppt treatments is 0.94 (0.90-0.97 BCI) for coastal 

tadpoles and 0.95 (0.89-0.98 BCI) from inland tadpoles. In the 8ppt treatments, coastal tadpoles 

had higher survivorship at 0.97 (0.94-0.99 BCI) than inland tadpoles at 0.84 (0.73-0.92 BCI). At 

12ppt, we again observed higher survivorship among coastal tadpoles with 0.24 (0.14-0.39 BCI) 

survivorship compared to inland tadpoles with 0.09 (0.04-0.16 BCI) survivorship. The random 

effect standard deviation representing parental influence is 0.17. Fixed effect slope and intercept 

estimates are listed in Table 1-3 in the supplementary material. 

 

Discussion 

We are at the precipice of dramatic environmental transformation as a result of global climate 

change, which provides the ideal canvas for exploring organismal responses to environmental 

change. Wetlands in coastal zones around the globe are among those anticipated to be most 

severely impacted from climate change due to increased frequency and intensity of coastal 

storms as well as increased flooding and secondary salinization from sea level rise (Titus and 

Richman 2001, Meehl et al. 2005, Domingues et al. 2008, Craft et al. 2009, Nicholls and 

Cazenave 2010, Kemp et al. 2011, Kopp et al. 2015). Yet despite the amount of cultural and 

research attention that climate change garners, a distressing deficiency exists in our empirical 

understanding of how rising salinities will impact coastal freshwater habitats and the animal 

communities sustained therein. 

 

Ecological niche models aimed at understanding how environmental changes will impact 

affected populations typically predict that species that cannot emigrate to more suitable habitats 

are at risk of being locally extirpated as environmental quality degrades (Walther et al. 2002, 
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Thomas et al. 2004, Davis et al. 2005, Bradshaw and Holzapfel 2006, Nicholls and Tol 2006, 

Parmesan 2006, Chen et al. 2011, Dawson et al. 2011, Harley 2011, Moritz and Agudo 2013). 

This forecast is rational for freshwater organisms (like amphibians) that inhabit coastal wetlands 

given the lethal nature of osmotic stress (Stuart et al. 2004, Thomas et al. 2004, Lewis 2006, 

Schwartz et al. 2006, Traill et al. 2010, Maclean and Wilson 2011, Chown 2012, Moritz and 

Agudo 2013). However, an important assumption inherent in most model predictions is that 

species either completely lack or have limited capacity to respond to environmental change -- an 

assumption that can lead to overestimates of extinction rates or expected range contraction 

(Davis and Shaw 2001, Holt and Gomulkiewicz 2004, Thomas et al. 2004, Lewis 2006, 

Schwartz et al. 2006, Lawler et al. 2010, Reed et al. 2011, Moritz and Agudo 2013). Although 

adaptive evolution is increasingly well appreciated as a potential source of rescue for some, it is 

unclear whether organisms with complex life history strategies will be able to adapt to 

environmental change. In amphibians, we currently lack the ability to make more informed 

predictions that include adaptation for two main reasons. First, we do not know how sensitivity 

to salt stress varies across different life stages, and second, we know little about whether salt-

tolerant responses are evolutionarily labile across life stages. In this paper, we address these gaps 

using a variety of tools (e.g., meta-analysis, field surveys, and common-garden experiments). 

 

Meta-Analysis and Field Surveys: Studies on amphibian responses to saltwater often begin with 

some variant of the statement, it is well accepted that frogs do not belong in saline habitats 

(Neill 1958). These statements stem from long standing dogma that amphibians are not 

physiologically equipped to osmoregulate in non-freshwater environments. Nonetheless, we 

observed Lithobates catesbeieanus, Lithobates sphenocephalus, Gastrophryne carolinensis, and 
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Hyla cinerea in brackish marshes in coastal North Carolina. These four species have been 

reported in brackish habitats previously (Hardy 1953, Hardy 1972, Christman 1974, Gunzburger 

2006, Brown and Walls 2013) and the recurrence of these observations draws attention to the 

paucity of information explaining why some species are repeatedly observed inhabiting brackish 

wetlands while other closely related species are absent (Hopkins and Brodie 2015). A 

particularly interesting contribution on this subject stems from our repeated field observations of 

abundant and thriving Hyla cinerea populations in salt marshes with salinities 450% higher than 

the expected larval LC50 concentration (as revealed by the meta-analysis). Indeed, these findings 

were deemed inconceivable by the authors at the outset of the survey. While previous studies 

reported Hyla cinerea from saltmarshes along the Chesapeake Bay in Maryland in salinities up to 

15ppt (Hardy 1953), we found populations in salinities as high as 23ppt, which is also the highest 

salinity that any North American frog species has been found to date (though Puerto Rican 

populations of Rhinella marina, Eleutherodactylus coqui, and Lithobates grylio come close at 

20.5ppt (Rios-López 2008)). 

 

Hopkins and Brodie recently updated (2015) Neill’s 1958 review and provide a valuable and 

thorough review of all published observations of amphibians in saltwater (Neill 1958, Hopkins 

and Brodie 2015). In their review, Hopkins and Brodie present a range of salinity tolerances 

revealed by experimental and field studies and suggest that the median maximum experimental 

salinity that can be tolerated by anuran amphibians falls between 9ppt-12ppt (Ruibal 1959, 

Gordon et al. 1961, Munsey 1972, Hopkins and Brodie 2015). Our meta-analysis refines and 

builds upon these estimates by providing an empirically derived range of survival probability 

estimates for each salinity and life stage. For example, at 9ppt we may expect around 21% of 



 24 

eggs to survive, 27% of larvae to survive, and 50% of adult to survive – fundamental information 

for managing anuran populations across landscapes affected by salinization.  

 

The meta-analysis underlines the fact that amphibians have different abilities to persist in saline 

environments according to life stage. Though most studies test the effects of salt on a single life 

stage, our meta-analysis integrates the findings of all of these studies to better understand how 

salt sensitivity changes through each life stage and provides a quantitative baseline and important 

context for our common garden experiments and field observations of anurans in salinities as 

high as 66% seawater. Broadly, all studies examined in our meta-analysis demonstrate declines 

in survivorship as salinity increased across each life stage, our analyses, which includes studies 

on 35 species representing 26 different genera across 10 families. We found that eggs are the 

most sensitive to osmotic stress across the anuran clade, followed by the larval stage, and adults 

are the least susceptible. The results of the meta-analysis indicate that the lethal experimental salt 

concentration in which 50% mortality (LC50) is expected for eggs occurs at approximately 

4.15ppt for anuran eggs, 5.5ppt for larvae, and 9.0ppt for adults. Although the uncertainty in 

LC50 concentrations identified in the meta-analysis stems largely from differences in sample 

sizes (only three studies on adult frogs met our criteria for the meta-analysis), it might also 

reflect greater sensitivity during particular stages among species.  

 

Embryos, for example, are expected to be more sensitive to external stressors than other stages 

because important developmental pathways are initiated during the early embryonic period and 

so perturbations at this stage may be teratogenic or fatal (Wilbur 1980, Meteyer et al. 2000). It 

has been shown that pathogens (e.g., bacteria, endoparasites, or water-borne fungi), predators, 
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ultraviolet radiation, and toxins can all have strong effects on embryonic survival, and induce 

effects that carry over to affect developmental outcomes in later life stages (Grant and Licht 

1995, Kiesecker and Blaustein 1997, Burkhart et al. 1998, Touchon et al. 2006, Rohr and McCoy 

2010). Tadpoles are also expected to be more sensitive to water quality than are adults because 

they are obliged to the aquatic habitat. Larvae may be more tolerant of osmotic stress than 

embryos if they can increase the activity or concentration of ion pumps in the gills. However, 

tadpoles raised in saltwater tend to have stunted developmental rates and metamorphose at 

smaller sizes compared to freshwater-raised tadpoles (Uchiyama and Yoshizawa 1992, Christy 

and Dickman 2002, Langhans et al. 2009, Wu and Kam 2009a, Hsu et al. 2012, Bernabò et al. 

2013, Wood and Welch 2015), which can affect adult survival and reproductive success (Berven 

1990). Adults, on the other hand, are less confined to aquatic environments and thus can reduce 

contact with stressful habitats via behavioral avoidance or dispersal. Additionally, adults can 

likely physiologically tolerate a greater degree of osmotic stress and/or desiccation by increasing 

urea in the blood (Balinsky 1981, Shoemaker et al. 1992), altering cellular ion or water transport 

(Uchiyama and Yoshizawa 1992, Konno et al. 2006, Uchiyama and Konno 2006, Wu et al. 

2014), or adjusting the permeability of the skin (McClanahan et al. 1978, Lillywhite 2006).  

 

Common Garden Experiments: In the oviposition, hatching, and tadpole survivorship 

experiments, we find evidence for altered and adaptive responses to salinization across multiple 

life stages in Hyla cinerea. Specifically, we report differences in egg deposition patterns, 

hatching success, and tadpole survivorship between salt-exposed coastal and salt-naïve inland 

populations of North American green treefrogs (Hyla cinerea).  We focus on reproductive 

behaviors, egg hatching, and tadpole viability because they are stages and traits that are highly 
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vulnerable to environmental quality, and directly affect fitness and population viability (Gordon 

et al. 1961, Roberts 1970, Chinathamby et al. 2006, Brand et al. 2010, Petranka and Doyle 2010, 

Bernabò et al. 2013, Thirion 2014, Hopkins and Brodie 2015). Female oviposition site selection 

directly affects the fitness of both the parents and the offspring, so decisions about oviposition 

sites should reflect an adaptive response. Therefore, we expected strong patterns of saltwater 

avoidance among both coastal and inland populations if salt were equally lethal to eggs and 

offspring from both inland and coastal populations (Rieger et al. 2004, Refsnider and Janzen 

2010, Haramura 2011, Wilder and Welch 2014). However, we found that coastal and inland 

frogs exhibited different patterns of oviposition site selection across the experimental salt 

gradient. Both inland and coastal pairs increasingly avoided saline water as salinity increased but 

inland frogs had greater response and did not deposit any eggs in salinities above ~12ppt, 

whereas coastal pairs laid approximately 24% of their eggs in the highest salinities (Fig. 1-3). 

Additionally, eggs laid by coastal parents have higher probabilities of hatching in higher 

salinities and more coastal tadpoles survive in higher salinities when compared to inland-sourced 

conspecifics. Our inferences are based on experiments on three coastal and three inland 

populations and so should be extrapolated more broadly with caution. However, collectively our 

results provide evidence that some coastal populations of Hyla cinerea are responding adaptively 

to saltwater exposure across multiple life stages, which is contrary to expected outcomes given 

the general reputation of anuran amphibians as a highly salt sensitive order. Gomez-Mestre and 

Tejado report similar findings in Bufo calamita, the Natterjack Toad, in which embryos and 

tadpoles from brackish populations demonstrate higher survival compared to tadpoles from 

inland, freshwater populations (Gomez-Mestre and Tejado 2003, Gomez-Mestre and Tejado 

2005). Together these studies suggest that the ability to respond adaptively to saltwater exposure 
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may be more possible than previously appreciated, and future studies may consider using 

comparative, common-garden approaches to not only determine how salt-exposure affects 

various endpoints, but also whether other species also exhibit population-level differences in salt 

tolerance across species and life stages. 

 

The physiological mechanisms that explain why coastal pairs have relaxed salt avoidance 

behaviors, higher hatching success, and higher tadpole survivorship are likely to be numerous 

and spread across the different life stages. In adults, coastal male Hyla cinerea may have more 

viable and motile sperm in saline water. A recent study examined sperm survivorship and 

motility in Hyla cinerea located in Charleston, South Carolina (a coastal location) and found that 

4ppt saltwater reduced ability of sperm to survive and swim, but that study did not compare 

coastal and inland populations (Wilder and Welch 2014). Alternatively, adult coastal females 

may increase the partitioning of yolk resources into eggs, or alter the egg coat matrix to provide 

additional protection against osmotic stressors compared to inland eggs. In tadpoles, coastal 

individuals may have an increased abundance of water channels (AQPs) and ion pumps (e.g., 

Na+/K+-ATPase) in the gills that enhance the ability to maintain internal water and ion balance, 

thus improving survival. Several studies have demonstrated that exposure to saltwater can 

increase the quantity and activity of sodium-potassium pumps in tadpole gills (Bernabò et al. 

2013, Havird et al. 2013, Wu et al. 2014). These hypotheses remain to be tested in coastal Hyla 

cinerea, leaving the exact mechanisms explaining the observed patterns undefined. Moreover, 

the adaptive processes that produce advantageous physiological responses also remain largely 

unknown. 
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There are three possible overlapping adaptive processes that may explain the divergence in 

responses that we observed between coastal and inland anuran populations: local adaptation, 

phenotypically plastic responses, and/or maternal effects. Local adaptation occurs when 

populations have higher fitness in their local environmental conditions compared to populations 

from other environments, and our results are consistent with expected outcomes if coastal 

populations are becoming locally adapted to tolerate elevated salt concentrations across different 

life stages (Savolainen et al. 2013). Adaptive evolution is a well-appreciated process that can 

sustain or rescue populations facing strong selection gradients (Bell 2013, Gonzalez et al. 2013, 

Martin et al. 2013, Bourne et al. 2014, Carlson et al. 2014). Yet several criteria must be met 

before local adaptation can be confirmed. “Adaptive” phenotypes must be shown to correlate 

positively with fitness, and the production of putatively adaptive phenotypes should be directly 

linked to specific environmental drivers, and studies on adaptive responses must demonstrate a 

genetic basis for differences observed among populations (Merilä and Hendry 2014).  Our results 

are consistent with the expectations of the first two criteria, but we are not yet able to deduce 

whether there is a genetic basis for such changes. 

 

Phenotypic plasticity (defined here as the ability to modulate phenotype in response to 

environmental cues) can also produce phenotypes that appear different and adaptive, yet may be 

genetically indistinguishable from other populations (Merilä and Hendry 2014, Urban et al. 

2014, Urban et al. 2016). Because plasticity can promote adaptation, inhibit adaptation, or be the 

adaptive response itself, uncovering the role of phenotypic plasticity remains one of the most 

important challenges for understanding and predicting adaptive responses to climate change 

(Lande 2009, Whitman and Agrawal 2009, Chevin et al. 2010, Pfennig et al. 2010, Wund 2012, 
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Urban et al. 2014, Hendry 2015, Murren et al. 2015b, Nonaka et al. 2015). Indeed, some degree 

of phenotypic plasticity has been observed in nearly every trait that has been measured to date, 

which underlines the importance of examining the contribution of plasticity in studies of 

adaptive responses (Whitman and Agrawal 2009, Wund 2012, Urban et al. 2014, Forsman 2015, 

Hendry 2015, Murren et al. 2015b, Nonaka et al. 2015). 

 

Maternal effects induced by environmental conditions experienced by the parents are also 

emerging as important factors that influence offspring fitness in different environments 

(Marshall and Uller 2007, Räsänen and Kruuk 2007). Increased prevalence of maternally 

affected traits is expected when the environment experienced by the mother matches the 

environment experienced by the offspring (Kirkpatrick and Lande 1989), and in such situations, 

can explain up to 96% of the variation in improved offspring fitness in stressful environments 

(Chirgwin et al. 2016). 

 

The divergent responses that we present in this paper may be the production of either maternal 

effects, phenotypic plasticity, or local adaptation alone. However, some blend of these 

mechanisms is more likely. For example, exposure to saltwater during the ontogeny of coastal 

individuals may have initiated cascades of plastic responses that predisposed females from 

coastal populations toward salt tolerant responses. These responses may have transferred to 

offspring, which mixes plasticity with maternal effects. Alternatively, coastal individuals with 

increased ability to tolerate salt through enhanced plasticity may have been favored by selection. 

Presumably, selecting for more plastic individuals would gradually increase the overall amount 

of plasticity observed in coastal populations, which blends plasticity with genetic adaptation 
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(sensu Baldwin effect) (Crispo 2007). In reality, there is a multitude of possible mechanistic 

combinations as plasticity, local adaptation, and maternal effects can be reciprocal processes that 

serve as both the product and raw material for selection and adaptation. Future research should 

prioritize discerning how adaptive evolution, phenotypic plasticity, and maternal effects are 

interwoven to produce different responses to environmental stressors especially in organisms 

with complex life cycles. A more complete understanding of all contributing processes will help 

managers identify thresholds of tolerance, detect vulnerable populations, and determine which 

organisms are likely to successfully tolerate novel stressors and persist in their environments. 

 

Despite the consistent differences in behavior, embryo, and larval survivorship we observed 

between inland and coastal populations, our results indicate that all populations and life stages of 

Hyla cinerea (coastal and inland populations) are salt-sensitive. Frog pairs laid the majority of 

eggs into freshwater in all populations; saltwater negatively affected hatching rates across all 

populations, and saltwater reduced survivorship for both coastal and inland tadpoles. While we 

have focused on the degree to which these responses differed among populations as indications 

of adaptive responses, we believe that it should be noted that anurans on the whole, remain an 

osmotically sensitive group of organisms even in chronically salt-exposed populations. The 

continued preference for, and higher performance in, freshwater, even among coastal 

populations, may indicate that thresholds of saltwater tolerance exist. 

 

Conclusions: This study provides the following insights. First, our meta-analysis offers a 

quantitative baseline for salt tolerance in anurans and provides important context for future field 

observations and experimental studies exploring saltwater tolerance in anurans. The meta-
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analysis also shows that generally, anurans are salt-sensitive across species and across life stages 

and are therefore likely to be adversely affected by progressive salinization of freshwater 

systems. Second, we show different sensitivities and responses to salt stress across life stages and 

across populations, significant information for future studies and management. Third, we provide 

initial evidence that despite their sensitivity, some anuran species (Hyla cinerea) have 

populations that are able to respond adaptively to salt stress across different life stages. Though 

these findings are an encouraging indication that some frog populations may persist through 

salinization, our results also illuminate that much more remains to be known. Key unknowns 

include the physiological mechanisms and adaptive processes that underlie salt tolerance in 

anurans, determining whether we can expect adaptive responses to match the pace and intensity 

of environmental change (i.e., define the limits of tolerance and rates of adaptation), and 

exploring the factors that govern amphibian distributions across brackish landscapes (i.e., why 

only 4 out of the 17 possible species occur in brackish wetlands).  

 

Testing multiple mechanistic hypotheses about adaptive processes (e.g., maternal effects, genetic 

evolution, and phenotypic plasticity) in ecological time in wild macro-organisms has remained 

an empirical challenge. Yet identifying populations with complex life cycles that demonstrate 

divergent responses to an environmental stressor across life stages (such as coastal frog 

populations adapting to saline environments) may provide unique and valuable opportunities to 

empirically address questions about the etiology of adaptive and non-adaptive responses, how 

novel adaptive phenotypes emerge, and how population and demographic dynamics interact with 

adaptive processes. 
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Figures and tables 

Figure 1-1. Map of Survey Sites along eastern North Carolina. Locations of survey sites are 

denoted by white circles. During surveys, the relative abundance of anurans was 

recorded, along with salinity of the wetland along with other environmental data.  
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Figure 1-2. Anuran survival across life stages. The predicted survival for each life stage across 

the anuran amphibian clade as a function of salinity (in parts per thousand). 
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Figure 1-3. Predicted probability of oviposition according to salinity and population location 

with 95% credibility envelopes. Green denotes the oviposition patterns from inland populations; 

blue indicates the oviposition patterns from coastal populations. 
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Figure 1-4. The proportion of eggs laid in freshwater according to salinity and population 

location with 95% credible envelopes. Green denotes the proportion of eggs laid in freshwater by 

inland populations; blue indicates the proportion of eggs laid in freshwater from coastal 

populations. 
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Figure 1-5. Predicted probability of egg hatching according to salinity and population location 

with 95% credible envelopes. Green denotes the hatching patterns from inland populations; blue 

indicates hatching patterns from coastal populations. 
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Figure 1-6. The proportion of eggs that hatched according to salinity and population location 

with 95% confidence envelopes. Green denotes the proportion of eggs hatched from inland 

populations; blue indicates the proportion of eggs hatched from coastal populations. 
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Figure 1-7. Mean probability of tadpole survivorship according to salinity and population 

location with 95% credible envelopes. Green denotes the proportion of tadpoles sourced from 

inland populations; blue indicates tadpoles sourced from coastal populations. 
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Table 1-1. The location and identity of the four anuran species observed in coastal, brackish 

wetlands along with the highest salinity in which each species was observed.  

 

 

Species 

Highest 

Salinity 

Observed 

 

Occurrence 

 

Location 

 

Lithobates sphenocephalus 

 

11ppt 

 

Abundant 

 

Alligator River NWR 

 

Hyla cinerea 

 

23.4ppt 

 

Abundant 

 

Cape Hatteras National Seashore 

 

Gastrophryne carolinensis 

 

3.9ppt 

 

Abundant 

 

Alligator River NWR 

 

Lithobates catesbeianus 

 

6.2ppt 

 

Rare 

 

Pea Island NWR 
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Table 1-2. Predicted survivorship (and Bayesian Credible Intervals) of anurans in various 

salinities based on the findings of the meta-analysis (Fig. 1-2). Each salinity 

concentration represents the salinity of a wetland in which frogs were observed along 

North Carolina’s coast. 

 

 

Salinity (ppt) in which 

anurans were observed: 

Predicted Egg 

Survivorship (+95% 

BCIs) 

Predicted Larval 

Survivorship (+95% 

BCIs) 

Predicted Adult 

Survivorship (+95% 

BCIs) 

 

3.9 

 

0.52 

(0.39-0.66) 

 

0.60 

(0.51-0.68) 

 

0.62 

(0.39-0.84) 

 

8.3 0.25 

(0.09-0.45) 

0.32 

(0.23-0.39) 

0.53 

(0.32 – 0.74) 

 

11 0.15 

(0.03-0.35) 

0.18 

(0.12-0.25) 

0.46 

(0.25 – 0.70) 

 

16.9 0.04 

(0.002-0.19) 

0.04 

(0.02-0.07) 

0.35 

(0.13-0.61) 

23.4 0.01 

(0.00-0.008) 

0.01 

(0.002-0.02) 

0.25 

(0.05-0.57) 
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Supporting Materials 

Table 1-3. Predicted Hyla cinerea tadpole survivorship after a six-day exposure to one of 

five salinity concentrations, along with slope and intercept estimates, each with 95% Bayesian 

credible intervals (L.C.I = Lower Credible Interval, U.C.I = Upper Credible Interval) (Fig. 1-7) 

 

  

Coastal Inland 

Sa
lin

ity
 (p

pt
) 

Su
rv

iv
or

sh
ip

 

 L
.C

.I 

U
.C

.I 

Sl
op

e 
E

st
im

at
e 

L
.C

.I 

U
.C

.I  

In
te

rc
ep

t E
st

im
at

e 

L
.C

.I 

U
.C

.I 

Su
rv

iv
or

sh
ip

 

 L
.C

.I 

U
.C

.I 

Sl
op

e 
E

st
im

at
e 

L
.C

.I 

U
.C

.I 

In
te

rc
ep

t E
st

im
at

e 

L
.C

.I 

U
.C

.I 

0 

0.
98

 

0.
97

 

0.
99

 

-0
.3

8  

-0
.6

7 

- 0
.1

3 

6.
09

 

4.
95

 

7.
46

 

0.
97

 

0.
96

 

0.
99

 

- 0
.1

4 

-0
.2

4 

-0
.0

6 

7.
42

 

6.
77

 

8.
14

 

4 

0.
93

 

0.
91

 

0.
95

 

-0
.3

9  

-0
.5

5 

-0
.2

3 

4.
96

 

4.
26

 

5.
75

 

0.
97

 

0.
95

 

0.
98

 

-0
.1

7 

-0
.2

7 

-0
.0

7 

3.
33

 

2.
93

 

3.
78

 
6 

0.
94

 

0.
90

 

0.
95

 

-0
.4

2 

-0
.5

8  

-0
.2

7  

5.
07

 

4.
35

 

5.
84

 

0.
94

 

0.
92

 

0.
96

 

-0
.2

0  

-0
.2

9  

-0
.1

2 

3.
06

 

2.
71

 

3.
43

 

8 

0.
94

 

0.
92

 

0.
96

 

-0
.2

3 

-0
.3

6 

-0
.0

9 

4.
12

 

3.
61

 

4.
80

 

0.
84

 

0.
80

 

0.
87

 

-0
.3

9 

-0
.4

7 

-0
.3

0 

3.
72

 

3.
31

 

4.
12

 

12 

0.
25

 

0.
22

 

0.
29

 

- 1
.4

2 

- 1
.5

6 

- 1
.2

9 

7.
42

 

6.
78

 

8.
14

 

0.
10

 

0.
08

 

0.
12

 

- 1
.5

7 

- 1
.7

1 

- 1
.5

2 

5.
59

 

5.
15

 

6.
04

 



 

II. THE ROLE OF ENVIRONMENTALLY INDUCED PHENOTYPIC PLASTICITY IN THE 

EVOLUTION OF SALTWATER-TOLERANCE IN AN AMPHIBIAN 

Abstract 

Environmental change linked to anthropogenic activities is affecting the quality and quantity of 

ecosystems and the organisms they support. Currently we do not fully understand the 

mechanisms that drive adaptive evolutionary responses in response to environmental change. 

Phenotypic plasticity, or the ability of a single genotype to produce different phenotypes in 

response to the environment, is a common and important biological mechanism that can either 

drive or inhibit adaptation to environmental change. In this study, we compare how highly plastic 

developmental endpoints differ between coastal and inland frog populations after exposing 

embryos and tadpoles to either freshwater or saltwater. We show that regardless of 

developmental environment, coastal frogs demonstrate a canalized developmental pattern to 

grow faster and initiate metamorphosis sooner than inland populations, but at a smaller size at 

metamorphosis. This pattern is exhibited even in the lowest stress environments, which supports 

the hypothesis that genetic assimilation (e.g., when phenotypes become fixed across 

environments) is contributing to adaptive divergence across frog populations. We also show that 

the salinity within coastal wetlands is highly variable across the breeding season and across 

years. We suggest that high variability in salinity may drive the decoupling of environmental cue 

(e.g., salinity) to individual fitness, which may be driving character displacement in coastal 

populations. 
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Introduction 

Environmental change is triggering a proliferation of new and intensified selective pressures on 

organisms around the world (Bellard et al. 2012, Brysse et al. 2013, Moritz and Agudo 2013, 

Urban 2015). While some affected biota will adapt to the novel conditions, others may be 

extirpated. Recently there has been a surge of studies documenting local adaptation across strong 

environmental clines (Reznick and Ghalambor 2001, Fraser et al. 2011, Brady 2012, 

Lamichhaney et al. 2012a, Mopper and Strauss 2013, Anderson et al. 2015, Reid et al. 2016), but 

few studies provide mechanistic insights about how adaptation to novel stressors arises in natural 

systems (Merilä and Hendry 2014, Urban et al. 2016). For example, some populations may 

exhibit distinct phenotypes that appear adaptive, yet these populations may have no detectable 

genetic differences (Gienapp et al. 2008, Merilä and Hendry 2014, Cattau et al. 2018). We have 

limited capacity to make realistic predictions about whether a species will adapt or be extirpated 

after an environmental shift because we do not fully understand the etiological mechanisms that 

promote or inhibit adaptive evolutionary responses (Murren et al. 2015a, Nunney 2015, Urban et 

al. 2016).  

 

One common and important process that can affect adaptive evolution is phenotypic plasticity, 

which occurs when a single genotype can express different phenotypes (e.g., behavior, 

morphology, development, etc.) in response to the environment (Travis 1994, West-Eberhard 

2003). Adaptive phenotypic plasticity is a well-studied phenomenon that allows organisms to 

inhabit a wider range of environments by better matching phenotypes to environmental optima 

(Whitman and Agrawal 2009, Whitehead et al. 2011b, Wund 2012, Urban et al. 2014, Forsman 

2015, Hendry 2015, Murren et al. 2015a, Nonaka et al. 2015, Cattau et al. 2018). Following a 
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shift in the environment, adaptive plasticity should decrease extinction risk as long as the 

plasticity is not too costly to maintain, whereas costly or non-adaptive plasticity may increase 

extinction risk by diminishing overall fitness (Bradshaw 1965, Pigliucci and Murren 2003, 

Schlichting 2004, Ghalambor et al. 2007, Murren et al. 2015a, Scheiner et al. 2017). Moreover, 

plasticity itself has a genetic basis and therefore may be subject to evolutionary change (Scheiner 

1993, West-Eberhard 2003, Chevin et al. 2010). Because plasticity can promote adaptation, 

inhibit adaptation, or be the adaptive response itself, understanding the role of phenotypic 

plasticity in adaptive evolution remains a key challenge for understanding and predicting 

adaptation to environmental change (Gienapp et al. 2008, Whitman and Agrawal 2009, Chevin et 

al. 2010, Pfennig et al. 2010, Wund 2012, Chevin et al. 2013, Urban et al. 2014, Hendry 2015, 

Murren et al. 2015a, Nonaka et al. 2015, Cattau et al. 2018).  

 

Two key processes through which plasticity can contribute to adaptive evolution are the Baldwin 

effect and genetic assimilation (Pigliucci and Murren 2003, West-Eberhard 2003, Crispo 2007, 

Ghalambor et al. 2007, Lande 2009). The Baldwin effect suggests that if an organism can 

improve its fitness via an induced plastic response to a change in the environment, then selection 

will favor a progressive and directional shift that enhances heritable plasticity toward the 

environmental optimum (Baldwin 1896, Crispo 2007). Because the reaction norm is the evolving 

feature, the product of Baldwin’s effect is increased plasticity within an adapting population 

(Sarkar 2004) (Fig. 2-1-Panel B). Conversely, genetic assimilation occurs when plastic 

phenotypes that initially require an environmental trigger for induction eventually become 

genetically fixed and no longer require the trigger because they only express the induced 

phenotype) (Fig. 2-1 – Panel C). Populations that exhibit genetic assimilation should have a 
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reaction norm that is reduced or lost across different environments compared to non-assimilated 

populations) (Fig. 2-1 – Panels C and D).  

 

Genetic assimilation and Baldwin’s effect are not mutually exclusive processes and can occur 

simultaneously to drive adaptive evolution within a single trait, or they may act independently 

and influence the evolution of different traits within the same population. Nonetheless, certain 

environmental conditions are predicted to favor each process. Genetic assimilation is predicted if 

the environmental cue is decoupled from the adaptive phenotype (Lande 2009). If the 

environmental cue is unreliable, yet the fitness benefits of generating an induced phenotype are 

high, the best strategy may be to generate the induced phenotype constitutively. Genetic 

assimilation is also expected when the costs of phenotypic plasticity outweigh the fitness benefits 

(Via and Lande 1985, Relyea 2002a, Lande 2009, Murren et al. 2015a). Costs may include any 

energetic costs associated with producing and maintaining phenotypes, or possibly genetic costs 

if the alleles that allow for plasticity are antagonistically correlated with disadvantageous traits 

via pleiotropy or genetic linkage (Relyea 2002a, Murren et al. 2015a). Conversely, the Baldwin 

effect should be favored when costs of plasticity are low and the environment is variable (DeWitt 

et al. 1998, Crispo 2007). Although there are other patterns of evolution associated with 

phenotypic plasticity, we chose to focus on Baldwin’s effect and genetic assimilation as umbrella 

concepts from which other evolutionary patterns can be understood (West-Eberhard 2003, Crispo 

2007, Lande 2009, Renn and Schumer 2013, Levis et al. 2017, Scheiner et al. 2017).   

 

In order to advance our ability to understand and forecast organismal responses to global climate 

change, studies should disentangle how mechanisms such as plasticity contribute to adaptive 
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responses (Gienapp et al. 2008, Merilä and Hendry 2014, Urban et al. 2016). Current methods 

that predict organismal responses to climate change are based on statistical correlations between 

species ranges and future climate forecasts, but they are increasingly inapplicable as 

environmental change continues to create new and unique conditions that fall outside the scope 

of historic correlations (Urban et al. 2016). A powerful way to improve upon our predictive 

capacity is to identify populations that are persisting in novel or stressful conditions and use 

these populations to understand how factors such as plasticity contribute to their persistence. 

Here, we capitalize on populations of a freshwater organism known to be inhabiting and 

persisting in atypical brackish marshes to understand how plasticity (via genetic assimilation or 

the Baldwin effect) contributes to the adaptive evolution of organismal traits in a changed 

environment.  

 

We focus on the evolution of salt tolerance in an amphibian, which may occur response to 

secondary salinization. Secondary salinization is the rapid increase of soluble salts into 

freshwater due to a variety of anthropogenic causes and global climate change (Araujo and 

Rahbek 2006, Harley 2011, Bellard et al. 2012, Herbert et al. 2015, Kaushal et al. 2018). In 

coastal areas, salt concentrations are progressively increasing due to canal dredging, storm 

surges, saltwater intrusion, modified riverine flow, agricultural activities, and sea level rise 

(SLR) (Montagna et al. 2002, Mulligan et al. 2012, Church et al. 2013, Manda et al. 2014, 

Schuler and Relyea 2018). Many coastal freshwater species will be affected by increased osmotic 

stress in coastal regions including anuran amphibians (frogs and toads) (DaLaune et al. 1987, 

Parkinson 1994, Moorhead and Brinson 1995, Michener et al. 1997, Williams et al. 1999, 

Nicholls and Cazenave 2010, Williams 2013). Anurans are particularly vulnerable to rising 
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salinities due to their permeable skin, a life history tied to freshwater wetlands, and an inability 

to concentrate and excrete excess salts (Neill 1958, Balinsky 1981, Hillyard et al. 2009b, 

Hopkins and Brodie 2015). However, some species, such as the American green treefrog (Hyla 

cinerea), have been documented in low to moderate salinity wetlands, including coastal swamps 

and saltmarshes (McNab 2002, Hillyard et al. 2009a, Albecker and McCoy 2017). Further, 

research comparing coastal, chronically salt-exposed H. cinerea populations against inland 

saltwater-naive populations found divergent and adaptive responses to saltwater exposure among 

coastal green tree frog populations  (Albecker and McCoy 2017). Therefore, coastal H. cinerea is 

an ideal model to better understand the biological mechanisms that drive the ability of some 

species to adapt and persist in a brackish environment.   

 

The egg and larval stages for pond-breeding frog species, like those found along the southeastern 

coast of the United States, are obligatorily aquatic for the duration of the larval period and are 

sensitive to the biotic and abiotic features of their environment, especially salinity (Gomez-

Mestre and Tejado 2003, Haramura 2007, Karraker 2007, Karraker and Ruthig 2009, Albecker 

and McCoy 2017). Many North American frog species lay eggs in large, gelatinous masses. As 

eggs are extruded, they are covered in a thin, jelly matrix that allows sperm to inseminate the 

egg. Upon entering the water, the thin matrix surrounding the fertilized embryo absorbs water 

from the environment and inflates to provide each embryo with a protective jelly coat. Because 

the water contacts the egg directly and contemporaneously with fertilization, the quality of the 

water can impact developmental pathways occurring within the embryo and alter phenotypes 

throughout development that include anti-predator behavior and morphological deformities 

(Allran and Karasov 2001, Ferrari and Chivers 2009).  
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Upon hatching, exposure to low to moderate levels of salt stress (i.e., 1 to 6 ppt) during larval 

development has been shown to decrease growth rates and to increase mortality and the time to 

reach metamorphosis (Rios-López 2008, Langhans et al. 2009, Hsu et al. 2012, Kearney et al. 

2012, Brown and Walls 2013, Wijethunga et al. 2016). Because body size in frogs is considered 

an important indicator of fitness (e.g., larger females will produce a larger clutch, larger males 

typically have greater reproductive success), reduced growth rates, a smaller size at 

metamorphosis, increased mortality, and longer time to metamorphosis are typically considered 

to be maladaptive outcomes (Berven 1990, Harris 1999). Therefore, we may expect that adaptive 

responses for individuals that develop under salt stress should resemble the growth rates, 

survival, size at, and time to metamorphosis as individuals raised in freshwater, low abiotic stress 

environments.  

 

We explore the role of plasticity by comparing how life history endpoints differ between coastal 

and inland frog populations after exposing early developmental stages to either freshwater or 

saltwater. We investigate multiple outcomes throughout two key life history stages: egg and 

larval development through metamorphosis from coastal and inland populations. Specifically, we 

test whether early-life exposure to saltwater from fertilization through the egg stage induces 

downstream differences in larval growth rates, size at metamorphosis, the length of time to reach 

metamorphosis, and survival to metamorphosis between coastal and inland Hyla cinerea 

populations.  
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If Baldwin’s effect underlies divergence between coastal and inland populations, we expected to 

observe a change in the degree of plasticity in phenotype expression across both populations in 

response to saltwater exposure, with a much steeper reaction norm in coastal H. cinerea 

populations (Fig. 2-1- Panel B). Conversely, if genetic assimilation is occurring, we expected to 

observe little influence of the environment on coastal frog populations with the characteristic 

loss plasticity (Fig. 2-1- Panel C). Indeed, both Baldwin’s effect and genetic assimilation could 

be contributing to the ability of coastal frogs to persist in saline wetlands (Fig. 2-1- Panel D). 

 

Experimental Methods 

Experimental Methods: To initiate the common-garden experiment, we collected 2 amplexed 

green tree frogs from 4 coastal populations (i.e., populations chronically exposed to saltwater) 

and 4 inland populations (i.e., populations chronically exposed to freshwater) between May 23, 

2017 and July 17, 2017. Because the coastal and inland populations are separated by 

approximately 200 kilometers as well as the Croatan and Pamlico sounds, so we assumed that 

pairs collected from populations in these two regions are sufficiently distant geographically and 

environmentally. Therefore, potential differences that emerge between coastal and inland frogs 

may be interpreted as being produced by the historically different properties of the habitats.  

 

Each of the pairs was randomly assigned to a 5.7-liter (L) Sterilite ® container holding either 2 L 

of freshwater (<0.5ppt) or moderate concentration of saltwater (4ppt) water where they were 

allowed to deposit eggs overnight. By placing pairs into a container holding freshwater or 

saltwater, hereafter referred to as “egg environment”, we ensure that eggs from populations 

across both locations are exposed to saltwater or freshwater from the moment they are fertilized. 
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To control for possible differences in source tap water across both locations, we used 

Greenville’s municipal tap water treated with label recommended amounts of API® Tap Water 

Conditioner (Chalfont, PA) with salinities experimentally raised using InstantOcean Sea Salt® 

(Blacksburg, VA). We chose 4ppt because this salinity is regularly observed in coastal wetlands 

and has been shown to induce effects( e.g. reduced growth) in these frogs without prohibitively 

high rates of egg mortality (Albecker and McCoy 2017). After completing oviposition, the adults 

were released at the site of capture, and the egg clutches were transported back to the laboratory. 

Eggs were allowed to develop and hatch at room temperature (25C), which took approximately 

48 hours. All experimental protocols were approved by ECU’s animal care and use committee 

(IACUC #D314), and animals were collected under NC wildlife collection license (17-

SC00840). 

 

Approximately two days post-hatching, hatchlings transition from yolk absorption to active 

foraging (Gosner stage 25) (Gosner 1960). At this time, we subsampled 200 hatchlings from 

each clutch. These individuals were then divided into four groups of 50 individuals. Dividing the 

clutches allows us to control for genetic relatedness within clutches (Merilä and Hendry 2014). 

Each of the four groups was randomly assigned to a “tadpole environment” treatment and placed 

into small glass containers containing 400mL of water matching the salinity of the egg 

environment. At this point we expanded the range of salinities that tadpoles were exposed to for 

the duration of development.  We randomly assigned each of the groups into a salinity that either 

matched the egg environment, or was either freshwater, 4ppt, 6ppt, or 8ppt.  The salinity was 

gradually increased, decreased, or maintained over 6 days until the specified target salinity was 

reached. Gradually adjusting anurans to elevated salinities reduces mortality (Gordon and Tucker 
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1965, Gordon and Tucker 1968, Hsu et al. 2012). Tadpoles were fed spirulina flakes (O.S.I.®, 

Coral Springs, FL) ad libitum each day following water changes. 

 

On day 6, we haphazardly selected 10 individuals from the freshwater and 4ppt treatments and 5 

individuals from the 6ppt and 8ppt treatments. These tadpoles were placed into individual 16oz. 

plastic cups holding 300mL of treated tap water mixed to match their assigned salinity. Tadpoles 

were housed in these cups for the duration of development. Individual housing allows for easy 

monitoring and eliminates the need to control for the potentially confounding effect of changes 

in density from mortality. The temperature of the laboratory was maintained at 27ºC, with a 12h 

light/dark cycle. Tadpoles were checked daily, and mortality recorded. Water changes occurred 

every other day. Tadpoles were weighed and measured (total length) once per week using 

Neiko® digital calipers and GeneMate® digital balance, and water temperatures were also 

checked at that time. Upon reaching stage 42, defined as the point that forelimbs emerge (Gosner 

1960), metamorphs were weighed and measured. Water levels were reduced to 50mL, lids with 

breathing holes fastened, and cups were tilted to allow tadpoles to climb out of the water. Upon 

full emergence from the water, the water was replaced with a moist paper towel, and 

metamorphs were checked daily for tail resorption. When tails were fully resorbed, individuals 

were weighed, and snout-vent length was measured. Froglets were then released at the site from 

which they were collected as eggs as required by IACUC. In total, we reared 480 tadpoles (4 

populations x 2 locations [coastal, inland] x 2 egg environments [FW or 4ppt] x 4 developmental 

environments [FW, 4ppt, 6ppt, 8ppt]).  
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Conductivity Dataloggers:  To characterize the seasonal salinity fluctuations across the frog 

breeding season, we installed three U-24 HOBO® Conductivity loggers into three coastal 

wetlands on September 30, 2014 and intermittently logged data at these sites through January 24, 

2018. Loggers were occasionally removed to read out data. Loggers measured conductivity and 

temperature at 8-hr intervals to capture daily variation. Sites were selected because they support 

large frog populations and were located in regions undergoing high erosion and saltwater 

inundation rates. One logger was placed in the marsh near the Pamlico Sound on Point Peter 

Road (35º46’11.7”N, 75º44’31”W), which is a part of the Albemarle peninsula and Alligator 

River National Wildlife Refuge. The second logger was placed in the marsh near Bodie Island 

Lighthouse on Cape Hatteras National Seashore (35º49’12.6”N,75º33’44.5”W). The third logger 

was placed in a pond adjacent to New Inlet near Rodanthe, NC (35º41’11”N,75º29’03.6”W). 

Loggers were left undisturbed for the duration of the field season each year. Data were 

downloaded from dataloggers using HOBOware® software (version 3.7.13). The 2014 data was 

incomplete as the sampling design had not been finalized but we included the incomplete data 

nonetheless. Currently data from 2016 and 2017 are missing from Alligator River National 

Wildlife Refuge due to displacement during Hurricane Matthew in 2016. New Inlet is also 

missing 2017 data because we have not yet been able to recover the logger.  

 

Statistical Methods:  We quantified initial mass of the tadpoles one week following acclimation, 

growth rates throughout development, survival through time, and time to and size at 

metamorphosis because each of these are venerated correlates of fitness for anurans (Semlitsch et 

al. 1988, Skelly 1992, Werner and McPeek 1994, Werner and Anholt 1996, Denver 1997, Van 

Buskirk and McCollum 2000, Glennemeier and Denver 2002, Laurila et al. 2002, Relyea 2002b, 
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Werner and Peacor 2003, Touchon and Warkentin 2008). Each of the analyses described below 

was conducted in the R statistical programing environment version 3.5.0 (Team 2018) 

 

To determine differences in initial mass according to egg environment, tadpole environment, and 

location, we used a linear mixed effects model using the lme4 library (function lmer) assuming a 

log-normal error distribution (Bates et al. 2015). We treated egg environment (freshwater or 

4ppt), tadpole environment (0, 4, 6 or 8 ppt), and location (coastal or inland) as fixed effects, and 

population as a random effect to account for non-target variation across sampling sites. Because 

the ages of tadpoles (in days post oviposition) were slightly different, we included age as a 

covariate. We use a model selection approach based on sample size-corrected Akaike 

Information Criterion (AICc) (Burnham and Anderson 2003, Bolker and Team 2017) to 

determine the relative support for our different candidate models with all combinations of 

possible interactive or additive relationships between egg environment, tadpole environment, and 

location (Table 1). Based on AICc, we then performed hypothesis tests for the fixed effects on 

the most parsimonious model using likelihood ratio tests. 

 

Growth: We analyzed the growth data by fitting a Gompertz growth curve of the form:  

𝑌 = 𝑆%
('()	(+,-

(./0)) 

where S0 is an estimate of initial size, 𝛾 (gamma) corresponds to the maximum size specific 

growth rate, and 𝛼	(alpha) is the exponential decay of size specific growth rates, which 

biologically is associated with a slowed rate of cell division, cell death, or the suspension of 

growth as cell differentiation occurs (Harris 1999). The functional form of this model is 

consistent with most empirical observations of amphibian growth (Hota 1994), and is defined by 
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biologically meaningful parameters for determining biological processes that underlie 

differences in growth.  

 

We analyze the changes in total length (in mm) through time across the different treatments as 

our metric of size because we are primarily interested in somatic growth and not differences in 

water loss/retention through time that may occur from changes in the osmotic environment. We 

used maximum likelihood estimation using mle2() in package “bblme” (Bolker and Team 2017) 

to fit 32 different parameterizations of this growth model.  Our most complex model included a 

2-way interaction for initial size and 3-way interactions among the treatments (e.g., egg 

environment, tadpole environment, and location) for the alpha and gamma parameter and our 

simplest was fit to the pooled data ignoring treatment effects. For the initial size parameter, we 

only include location and egg environment, as hatchlings had not spent much time in the tadpole 

environment at that point. The specific parameterizations of the 32 models are listed in Table 2. 

The most parsimonious model for describing differences in growth rate between location, egg 

environment, and tadpole environment was selected using AICc (Table 2). After selecting the 

best model, we used likelihood ratio tests to test specific hypotheses about the parameters within 

the best model. 

 

Survival analysis: We tested for differences in survival across treatments using two methods. 

First, we analyzed whether there are differences in the proportion of individuals surviving to 

metamorphosis according to egg environment, tadpole environment, and location. Second, we 

determined how survival through time varied across treatments. The first approach tells us how 

overall survival differed, while the second approach uncovers whether there were differences in 
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the risk of mortality during development across treatments. To test for differences in the 

proportion of individuals that survived to metamorphosis, we used Generalized linear mixed 

effects models with a binomial error distribution. However, we encountered numerical instability 

because of several scenarios with complete separation in the data (e.g., all inland 8ppt 

developmental salinity treatments experienced 100% mortality). To deal with the complete 

separation, we used Bayesian generalized mixed-effects models using function bglmer() in 

package “blme” (Bolker and Team 2017) and specified the non-derivative based optimization 

algorithm “bobyqa” to improve optimization efficiency. We used AICc to determine the relative 

support for different models ranging between the most complex (full three-way interactions 

between egg environment, developmental environment, and location) to simple (additive model) 

and no effects models. After selecting the best model, significance among fixed effects in the 

most parsimonious model was tested using likelihood ratio tests. For these models, we treated 

egg environment, developmental environment, and location as fixed effects and treated the 

different populations as random effects.  

 

To test for differences in risk of mortality through time we conducted the Cox-Proportional 

hazard regression analysis with the R package “survival” (Therneau 2015). Survival curves were 

plotted using package “survminer” (Kassambara and Kosinski 2018). 

 

Age and size at metamorphosis: To analyze differences in the length of time (in days) that it took 

for tadpoles to reach metamorphosis (defined as the day of forelimb emergence), we used 

generalized mixed effects models using package “lme4” (Bates et al. 2015). Age was calculated 

as the number of days since hatching. We assumed a Poisson error distribution.  
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To test how the size of tadpoles varied at metamorphosis, we test for differences in length and 

weight separately. We used a linear mixed effects model (function lmer()) assuming a log-

normal error distribution. For each of these analyses, we used AICc to determine the relative 

support for different models ranging between the most complex to simple and no effects models. 

Again, after selecting the best model, significance of fixed effects in the most parsimonious 

model was tested using likelihood ratio tests. For these analyses, we again treated location, egg 

environment, and developmental environment as fixed effects with population as a random 

effect. 

 

Conductivity Dataloggers: To test for differences in salinity through time and across the three 

sites, we used generalized additive models (function gam()) in package “mgcv” (Wood 2011). In 

these models we treated day-of-year, month, year, and location as fixed effects. We used AICc to 

determine the relative support for different models ranging between the most complex (full four-

way interactions between day, month, year, and location) to simple, additive model (Table 3). 

Upon selecting the most parsimonious model, we use likelihood ratio tests to determine 

significance of fixed effects.  

 

Results 

Mass after Initial Acclimation: The model that best fit tadpole mass one week following 

placement into tadpole salinities included an additive relationship between egg environment and 

tadpole environment and an interaction with location (dAICc = 2.9; df = 8, weight = 0.81) (Table 

1). Within that model, there was a significant influence of egg environment (C28 =3.82, p = 0.05), 
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tadpole environment (C28 =264.01, p <0.0001), and location (C28 =10.65, p = 0.005). After one 

week in the tadpole environment following acclimation, coastal tadpoles were consistently larger 

than inland tadpoles (Fig. 2-2). Coastal frogs laid in the freshwater egg environment that 

remained in freshwater were 33% heavier with a mass of 0.28g (0.15g to 0.53g 95% Confidence 

Interval (C.I.) compared to 0.21g (0.11g to 0.39 C.I.) for inland. Coastal individuals laid in 

freshwater and transitioned into 4ppt tadpole environment were 33% heavier than inland and 

weighed 0.26g (0.14 – 1.49g C.I.) while inland weighed 0.19g (0.10-0.36g C.I.). Coastal tadpoles 

laid in freshwater and transitioned into the higher salinities were also larger by approximately 

50% (6ppt: 0.15g (0.08-0.28g C.I.); 8ppt: 0.12g (0.06-0.23g C.I.)) relative to inland tadpoles 

(6ppt: 0.08g (0.04-0.15g C.I.); 8ppt: 0.05g (0.03-0.11g C.I.)). The same trend with larger coastal 

individuals continued for individuals laid in 4ppt water, though both coastal and inland 

individuals tended to weigh less than individuals laid in freshwater. In the 4ppt egg/ freshwater 

tadpole treatments, coastal tadpoles were 63% heavier and weighed 0.18g (0.097-0.35g C.I.) and 

inland weighed 0.11g (0.06-0.21g C.I.). In the 4ppt egg/4ppt tadpole, coastal tadpoles weighed 

an average of 0.16g (0.09-0.32g C.I.), approximately 75% heavier than inland that weighed 

0.09g (0.05-0.18g C.I.). In the higher salinities, tadpoles weighed even less, with coastal 

individuals weighing 0.13g (0.06-0.24g C.I.) in 6ppt tadpole treatment, and 0.10g (0.05-0.19g 

C.I.) in the 8ppt tadpole treatment, while inland individuals weighed about 50% less at 0.07g 

(0.03-0.14g C.I.) in the 6ppt tadpole treatment and 0.05g (0.02-0.09g C.I.) in the 8ppt tadpole 

treatment.  
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Growth rates: The best fit model for tadpole length included the full complement of additive 

relationships between main effects (dAICc = 1.1 df = 16, weight = 0.25). The best fit is model 30 

in Table 2-2.  

 

Gamma Parameter (Size specific growth rate):  Egg environment had little impact on coastal 

tadpole growth rates (𝛾) (Fig. 2-3). Coastal individuals from both the freshwater egg 

environment and coastal environment that were raised in the freshwater tadpole environment 

(FW egg environment: 𝛾 = 0.157; C.I. 0.141 – 0.171; 4ppt egg environment: 𝛾 = 0.159; C.I. 

0.136 – 0.182) and 4ppt tadpole environment (FW egg environment: 𝛾 = 0.159; C.I. 0.136 – 

0.182; 4ppt egg environment: 𝛾 = 0.149; C.I. 0.119 – 0.179) had very similar growth rates. 

Likewise, egg environment had no impact on inland growth rates. Rather, coastal growth rates 

were higher than the growth rates of inland tadpoles in the freshwater tadpole environment (FW 

egg environment: 𝛾 = 0.111; C.I. 0.084 – 0.138; 4ppt egg environment: 𝛾 = 0.114; C.I. 0.079 – 

0.148) and 4ppt tadpole environment (FW egg environment: 𝛾 = 0.101; C.I. 0.067 – 0.135; 4ppt 

egg environment: 𝛾 = 0.104; C.I. 0.062 – 0.145). Growth rate for coastal tadpoles hatched from 

both fresh and salt egg environments declined at 6ppt (FW egg environment: 𝛾 = 0.105; C.I. 

0.082 – 0.128; 4ppt egg environment: 𝛾 = 0.108; C.I. 0.077 – 0.139) but remained higher than 

inland growth rates across both egg environments (FW egg environment: 𝛾 = 0.060; C.I. 0.025 – 

0.094; 4ppt egg environment: 𝛾 = 0.063; C.I. 0.020 – 0.105).  

 

Alpha Parameter (exponential decay of size specific growth rates): We observed very little 

impact of the egg environment on exponential decay of size specific growth rates (𝛼) (Fig. 2-4). 

Coastal individuals from both egg environments had a higher alpha value compared to inland 
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populations in both the freshwater tadpole environments (Coastal FW egg environment: 𝛼 = 

0.128; C.I. 0.118 – 0.138; Coastal 4ppt egg environment:	𝛼 = 0.134; C.I. 0.117 – 0.151; Inland 

FW egg environment: 𝛼 = 0.077; C.I. 0.059 – 0.096; Inland 4ppt egg environment:	𝛼 = 0.083; 

C.I. 0.058 – 0.109) and 4ppt tadpole environments (Coastal FW egg environment: 𝛼 = 0.116; 

C.I. 0.099 – 0.133; Coastal 4ppt egg environment:	𝛼 = 0.121; C.I. 0.096 – 0.147; Inland FW egg 

environment: 𝛼 = 0.066; C.I. 0.039 – 0.092; Inland 4ppt egg environment:	𝛼 = 0.071; C.I. 0.038 

– 0.104). In the 6ppt tadpole environment treatments, alpha declined for both inland and coastal 

similarly across both egg environments, but coastal retained a higher alpha (Coastal FW egg 

environment: 𝛼 = 0.082; C.I. 0.063 – 0.101; Coastal 4ppt egg environment:	𝛼 = 0.087; C.I. 0.062 

– 0.113; Inland FW egg environment: 𝛼 = 0.031; C.I. 0.043 – 0.058; Inland 4ppt egg 

environment:	𝛼 = 0.037; C.I. 0.0032 – 0.071).  

 

Survival: The most parsimonious model describing the proportional survival of individuals 

involved a three-way interaction between egg environment, tadpole environment, and location 

(dAICc = 139.1, df = 9, weight = 1) (Fig. 2-5). Within that model, survival according to egg 

salinity, developmental salinity, and location were statistically significant (egg environment: Z=-

3.1, p = 0.001; tadpole environment: Z = -4.19, p <0.001; location: Z=-3.5, p = 0.0004). All 

interactions were also statistically significant (egg*tadpole: Z = 3.14, p=0.002; Egg * location: Z 

= 3.35, p = 0.0008; tadpole * location: Z = 3.31, p = 0.0009; egg * tadpole * location: Z = -3.26, 

p = 0.001). The lethal concentration required to impose 50% mortality (LC50) in inland 

individuals from the freshwater egg environment was 4.5ppt (C.I. 3.51-5.63ppt). LC50 for inland 

individuals from the 4ppt egg environment was slightly higher at 5.6ppt (C.I. 4.76-6.68). Coastal 

individuals hatched in the 4ppt egg environment had an LC50 of 6.83ppt (C.I. 5.91-8.21). The 
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highest survival was observed in the coastal individuals hatched from freshwater with an LC50 of 

7.16ppt (C.I. 6.56-7.65). Only 2 individuals out of the original 40 assigned to the 8ppt treatment 

survived to metamorphosis. Both of these individuals were coastal individuals laid in the 

freshwater egg environment (Fig. 2-6).  

 

Cox proportional hazards analysis showed that longevity was also different according to egg 

environment, tadpole environment salinity, and location (C24 =198, p <0.0001). Increasing the 

salinity in the tadpole environment increased mortality rates by 1.47-fold (standard error (SE): 

+/- 0.037; Z = 10.5, p <0.0001) across all treatments. The environment had less of an impact on 

coastal survival, as coastal individuals laid in freshwater had the lowest mortality rates through 

time. Compared to coastal individuals laid in the freshwater egg environment, coastal individuals 

laid in 4ppt egg environment had 1.9-fold increase in daily mortality rates (SE +/- 0.306; Z = 

2.18, p = 0.029). Inland tadpoles fared worse than coastal tadpoles. Inland tadpoles laid in 4ppt 

egg environment had a 5.25-fold increase in daily mortality risk relative to coastal individuals 

(SE +/- 0.284; Z = 5.83, p <0.001). Inland individuals from the freshwater egg environment had 

the highest risk with a 6.99-fold increase in risk of death compared to coastal/freshwater egg 

environment (SE +/- 0.278; Z = 6.96, p < 0.001). 

 

Time to Metamorphosis: The model that best describes the length of time in days for individuals 

to reach metamorphosis did not include effects of the egg environment as an important predictor 

but did include the additive effects of location and tadpole environment (dAICc = 1.6, df = 4, 

weight = 0.39) (Fig. 2-7). Within this model, we find a significant effect of tadpole environment 

salinity (C24 = 13.18, p = 0.0002), with a trend towards an effect of location (C24 =2.64, p = 
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0.10). Inland tadpoles raised in the freshwater tadpole environment from both the freshwater and 

4ppt egg environment took approximately 43 days to reach metamorphosis (FW egg: 42.78 days 

(95% Confidence Interval (C.I.) 40.34 – 45.39; 4ppt egg: 43.22, C.I. 40.75-45.82), which was 

about 3 days longer than freshwater coastal tadpoles that metamorphosed after approximately 40 

days (FW egg: 39.97 days, C.I. 37.71 – 42.36; 4ppt egg: 40.35, C.I. 38.06-42.79). Both coastal 

and inland tadpoles increased the time to metamorphosis as salinities increased. In the 4ppt 

tadpole environment, inland tadpoles reached metamorphosis after approximately 45 days (FW 

egg: 45.02 days, C.I. 42.46 – 47.73; 4ppt egg: 45.44, C.I. 42.92-48.15), while coastal tadpoles 

took approximately 42 days to reach metamorphosis (FW egg: 42.06 days, C.I. 39.79 – 44.45; 

4ppt egg: 42.45, C.I. 40.13 – 44.89). In the 6ppt tadpole salinity, inland tadpoles took 

approximately 46 days to reach metamorphosis (FW egg: 46.17 days, C.I. 43.35 – 49.17; 4ppt 

egg: 46.61, C.I. 43.81-49.59) compared to coastal individuals that took approximately 43 days 

(FW egg: 43.11 days, C.I. 40.65 – 45.76; 4ppt egg: 43.54, C.I. 41.04 – 46.22). The two coastal 

individuals that survived to metamorphosis in the 8ppt treatment metamorphosed at 55 days and 

63 days.  

 

Size at Metamorphosis: The model describing both mass at metamorphosis and length at 

metamorphosis included additive effects of egg environment and tadpole environment and an 

interaction between tadpole environment and location (Mass: dAICc = 13.3 df = 7, weight = 

0.998; Length: dAICc = 18.7, df = 7, weight = 1). Within this model, there was a significant 

effect of egg salinity (Mass: C27 = 13.29, p = 0.0002; Length: C27 = 29.26, p < 0.0001), 

developmental salinity (Mass: C27 = 20.22, p = 0.0001; Length: C27 = 40.59, p < 0.0001), and 

location (Mass: C27 = 18.61, p < 0.0001; Length: C27 = 38.55, p < 0.0001).  
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As salinity of the tadpole environment increased, inland tadpoles from both freshwater and 4ppt 

treatments were smaller at metamorphosis in both weight and length as tadpole environment 

salinities increased, while the coastal tadpoles metamorphosed at slightly larger mass and length 

despite increasing salinities (Mass: Fig. 2-8; Length: Fig. 2-9). In the freshwater tadpole 

environments, inland individuals weighed approximately 0.84g with an approximate length of 

52mm at metamorphosis (Mass: FW egg environment: 0.86g, C.I. 0.72-1.03; 4ppt egg 

environment: 0.83g, C.I. 0.69-0.99; Length: FW egg environment: 53.50mm, C.I. 49.29-58.15; 

4ppt egg environment: 51.63mm, C.I. 47.48-56.05). Coastal individuals metamorphosed smaller, 

with a mass of approximately 0.69g and a length of 47mm (Mass: FW egg environment: 0.71g, 

C.I. 0.59-0.85; 4ppt egg environment: 0.68g, C.I. 0.57-0.82; Length: FW egg environment: 

48.17mm, C.I. 44.37-52.38; 4ppt egg environment: 46.48mm, C.I. 42.77-50.47). In the 6ppt 

tadpole environment, inland metamorphs were approximately 16% smaller in mass and 6% 

shorter in length by approximately 6% (Mass: FW egg environment: 0.74g, C.I. 0.61-0.89; 4ppt 

egg environment: 0.69g, C.I. 0.58-0.84; Length: FW egg environment: 50.50mm, C.I. 46.47-

54.86; 4ppt egg environment: 48.82mm, C.I. 44.92-53.10). In the 6ppt tadpole environment, 

coastal frogs were slightly larger in both mass and length by 2% and 6%, respectively (Mass: 

FW egg environment: 0.72g, C.I. 0.60-0.86; 4ppt egg environment: 0.70g, C.I. 0.58-0.84; 

Length: FW egg environment: 51.02mm, C.I. 46.96-55.46; 4ppt egg environment: 49.24mm, C.I. 

45.31-53.50). 

 

Conductivity Dataloggers: AICc revealed two models with equivalent likelihoods, AICc weights 

(0.5) and degrees of freedom (Table 3). Because both models included the same main effects and 
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only differed in the structure of interactions, the choice between them had little effect on overall 

inferences. As a result, we arbitrarily selected one of these models to use for hypothesis testing. 

Thus, we base our inferences on the model that included additive effects of year and month and 

an interaction between day of year and location. The equivalent model had an interaction 

between year and month, but an additive relationship between month, day of year, and location. 

We found that salinity was highly variable with differences in salinity for each parameter 

including year (C23 <1000, p < 0.0001), month (C233 <1000, p < 0.0001), day of year (C217 

<1000, p < 0.0001), and location (C222 <1000, p < 0.0001) (Table 3) (Fig. 2-10).  

 

Discussion  

To improve our ability to predict outcomes of environmental change, we must gain a better 

mechanistic understanding of how ubiquitous biological factors such as phenotypic plasticity 

affect organismal responses and population persistence in changed environments. In this study, 

we characterize how early life exposure to saltwater modifies well-studied forms of 

developmental plasticity in frog populations that are diverging across a salt gradient. We found 

that in nearly every endpoint measured, coastal populations demonstrate different responses than 

inland populations with a very limited influence of early environment, which supports the 

hypothesis that developmental patterns are becoming fixed (e.g., genetically assimilated) in 

coastal populations which contributes to the adaptive divergence across frog populations. Coastal 

frogs grow faster (𝛾) and initiate metamorphosis sooner (𝛼), but at the cost of being smaller at 

metamorphosis. This strategy to grow fast but metamorphose small is a well-described 

developmental tactic for frogs in risky or stressful environments (Werner and Gilliam 1984, 

Werner and Anholt 1996, Harris 1999) and is often observed in individuals experiencing an 
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increased risk of mortality due to predation or desiccation (Wilbur and Collins 1973, Werner and 

Gilliam 1984, Alford and Harris 1988, Touchon et al. 2015).  

  

Theory predicts that developing larvae should maximize their future fitness by minimizing the 

ratio between current mortality risk (µ) and growth rate (g) (Werner and Gilliam 1984, Werner 

1986, Touchon et al. 2015). So, tadpoles should prioritize transitioning into the next stage (e.g., 

metamorphosing) when the perceived risk of mortality or reduction in growth in the current life 

stage supersedes perceived risks of the next life stage (Istock 1967, Werner and Gilliam 1984, 

Werner 1986). To balance these pressures to grow rapidly and survive, many species have 

evolved to use information from different time points throughout development to progressively 

gauge risk and adjust growth rates and timing of metamorphosis (Buskirk and Saxer 2001, 

Vonesh and Warkentin 2006, Touchon et al. 2015). As a result, developmental traits such as 

growth rate, time to metamorphosis, and size at metamorphosis have been shown to be highly 

plastic contingent upon the quality of the larval environment.  

 

High environmental variability leads to imperfect predictability of environmental variation, 

which may reduce the ability of coastal tadpoles to accurately gauge risk and adjust growth 

accordingly. As shown through the high degree of variability in salinity profiles in North 

Carolina’s coastal wetlands across single breeding seasons and across years (Fig. 2-10), the 

environment experienced throughout the egg and larval development of coastal frogs may be an 

unreliable signal of future environment. Thus, the salinity encountered during hatching may be 

very different from the salinity encountered later in development. This decoupling of 

environmental cue from phenotypic response can drive decreased plasticity during genetic 
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assimilation (Via and Lande 1985, Crispo 2007, Lande 2009, Chevin et al. 2010). 

Consequentially, as theory predicts, selection favors coastal frogs that have canalized around a 

risk-reducing life history strategy that lessens the time spent in the larval period regardless of 

how saline their current environment may be. Indeed, coastal frogs consistently show a shift in 

developmental patterns across all egg and tadpole environments toward minimizing the amount 

of time spent as larvae within saline wetland – even in the least stressful, freshwater treatments. 

 

Impact of Location: The changes in life history strategy were evident through increased 𝛾 (size-

specific growth rates) (Fig. 2-3), increased 𝛼 (exponential decay of growth rate) (Fig. 2-4), 

trends toward decreased time to metamorphosis (Fig. 2-7), and decreased size at metamorphosis 

(Figs. 2-8 & 2-9) in coastal populations across both egg environments. Increased 𝛼 in coastal 

frogs indicates that coastal frogs are ceasing growth earlier as metamorphosis is initiated (Harris 

1999). It is possible that a higher 𝛼 may also signify increased cell death or slowed cell division, 

but the trend towards earlier metamorphosis in coastal frogs lends support to the hypothesis that 

coastal frogs reduce growth rates earlier to initiate metamorphosis sooner than inland frogs. 

Interestingly, a smaller size at metamorphosis is considered maladaptive and may affect coastal 

frog population dynamics, because smaller size at metamorphosis is correlated with older age of 

maturation, smaller size at first reproduction, and reduced fecundity, and reduced terrestrial 

performance (e.g., reduced foraging ability and predator-escape response) (Berven and Gill 

1983, Smith 1983, Pough and Kamel 1984, Taigen and Pough 1985, Emerson 1986, Ficetola and 

De Bernardi 2006). However, previous experiments that collected H. cinerea adults from 

breeding populations show no differences in the size or mass of breeding adults across locations 

(Albecker et al. 2018) suggesting that post-metamorphic coastal frogs may be engaging in 
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compensatory growth to offset any potential fitness costs of a stressful larval period (Squires et 

al. 2010).  

  

Egg Environment Impacts: We observed very few impacts of embryonic exposure to saltwater 

across both coastal and inland populations. With inland populations, we did observe that early 

exposure to saltwater reduces the risk of mortality and improves survivorship to metamorphosis 

in ways consistent with the predictions of Baldwin’s effect. A greater proportion of inland 

individuals from the 4ppt egg environment survived and had lower risks of mortality compared 

to individuals hatched in freshwater (Fig. 2-5). This response is consistent with the predictions of 

Baldwin's effect as early life exposure to saltwater generates a downstream improvement in 

ability to survive in higher salinities. It is possible that differential survivorship due to early life 

environment may have contributed to the original ability of H. cinerea to invade and persist in 

saline environments, but further research is required (Albecker and McCoy 2017, Barrow et al. 

2017). The cellular mechanisms that underpin improved survivorship are yet unidentified but 

may be key in understanding how and why this species is able to persist in coastal habitats. 

Interestingly, we observed the opposite pattern in coastal tadpole survival, where individuals 

hatched in 4ppt egg environment had lower survival to metamorphosis with higher risk of 

mortality compared to individuals hatched in freshwater. It is important to note that even though 

survival was reduced for coastal individuals from the 4ppt egg environment compared to coastal 

individuals from freshwater egg environment, survival of both coastal treatments was still higher 

than inland populations from both egg environments. Nonetheless, reduced survival can be 

expected when embryos are exposed to some elevated stressor, so reduced coastal survival is 

consistent with life history plasticity theory (Werner and Gilliam 1984), as well as other studies 



 77 

that demonstrate that early exposure to stress (e.g., low resource availability, predator presence) 

can lead to reduced survival and growth (Wilbur & Collins 1973, Alford and Harris 1988, 

Hensley 1993, Leips and Travis 1994, Audo et al. 1995, Beck 1997, Newman 1994, Tejedo and 

Reques 1994).  

 

Tadpole Environment Impacts: Across nearly all endpoints, we observed an effect of tadpole 

environment which suggests that saltwater exposure during development impacts developmental 

outcomes for both coastal and inland tadpoles. For example, growth rate was reduced across 

coastal and inland populations in the 6ppt treatment, although coastal growth rate remained 

higher than inland. Although both coastal and inland populations were affected by tadpole 

salinity, the nature of responses sometimes differed according to location. For example, inland 

tadpoles metamorphosed at a smaller size (e.g., weight and length) as tadpole salinity increased, 

but coastal individuals metamorphosed at a marginally increased size as tadpole salinity 

increased (Figs. 2-8 & 2-9). This location by environment pattern is consistent with patterns 

expected with genetic assimilation (Crispo 2007).  

 

Our findings differ from a study by Wu et al. (2012) investigating developmental impacts of 

early salt-exposure in the salt-specialist frog species, Fejervarya cancrivora. This study found 

that individuals that were initially exposed to low salinities but switched to higher salinities later 

in development were smaller at metamorphosis. Although metamorphosing frogs from coastal 

populations were smaller than inland populations, the size differences were produced regardless 

of the salinity of the environment suggesting a stronger influence of environment on F. 

cancrivora development (Wu et al. 2012). Differences between H. cinerea and F. cancrivora 
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may be due to different phylogenetic histories of these species (Gordon et al. 1961, Gordon and 

Tucker 1965, Gordon and Tucker 1968).  

 

We are yet uncertain of the genetic mechanisms that underlie the observed phenotypic patterns, 

but the consistency in phenotypic differences regardless of egg and tadpole environment suggests 

that genetic differences do exist between coastal and inland frog populations (Gienapp et al. 

2008, Merilä and Hendry 2014). We expect genetic changes to be reflected in genetic and 

physiological pathways that regulate development and metabolism because coastal frogs have 

shifted towards a constitutive strategy that involves faster growth and development. 

Additionally, since we observed significantly higher survivorship in coastal individuals across 

tadpole salinities, it is likely that some genetic differences also exist in osmoregulatory pathways 

that allow for increased salt tolerance.  

 

Conclusions: We show evidence that coastal H. cinerea frog populations are diverging from 

inland counterparts via genetic assimilation. Genetic assimilation has been demonstrated in 

laboratory settings (Waddington 1953, Walworth et al. 2016) and there is a growing list of 

genetic assimilation observed in wild populations (Wund et al. 2008, Losos 2009., Lamichhaney 

et al. 2016, Parsons et al. 2016, Levis et al. 2017). This suggests that genetic assimilation may be 

a more common mechanism of character displacement in evolving populations than previously 

appreciated (Levis et al. 2017), and should be considered in future research on adaptation to 

environmental change. However, few have provided mechanisms that drive the loss of plasticity 

across assimilated populations. In this study, we suggest that the mechanism underlying the 

canalization of tadpole development is the decoupling of environmental cue (e.g., salinity) to 
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individual fitness, based on theoretical principles (Lande 2009) and the high degree of salinity 

variability as revealed by long-term environmental monitoring.  
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Figures and tables:  

 

Figure 2-1. Possible phenotypic outcomes given varying influence of plasticity in the 

adaptive evolution of coastal and inland frog populations in response to saltwater. The egg 

environment salinity refers to the pool into which eggs are laid and hatched, and the salinity of 

the tadpole environment is the salinity of the environment into which tadpoles are transferred and 

spend the majority of development. Panel A describes expected outcomes if phenotypes are 

produced entirely via environmentally induced phenotypic plasticity. Panel B shows outcomes if 

plasticity resembling Baldwin’s effect drives the adaptive evolution of coastal frog populations. 

Panel C demonstrates the loss of plasticity expected if genetic assimilation is occurring. Panel D 

shows expected patterns if both Baldwin’s effect and genetic assimilation contribute to adaptive 

evolution. 
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Figure 2-2. Tadpole mass after spending approximately one week in the tadpole 

environment according to egg environment, tadpole environment, and location. Each panel 

denotes a different tadpole environment while colors refer to the different egg environments 

(green = freshwater egg environment, blue = 4ppt egg environment). Error bars represent 95% 

confidence intervals.  
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Figure 2-3. Parameter for 𝜸 predicted by Gompertz growth model. Larger 𝛾 indicates 

greater size specific growth rates. Each panel refers to a different tadpole environment while 

colors refer to the different egg environments (green = freshwater egg environment, blue = 4ppt 

egg environment). Since only coastal individuals survived long enough (see Fig. 2-6) to gather 

growth rate data from the 8ppt tadpole environment, we excluded all 8ppt tadpole environments 

from this analysis to avoid bias. Error bars represent 95% confidence intervals.  
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Figure 2-4. Parameter for 𝜶 predicted by Gompertz growth model. Larger 𝛼 indicates 

exponential decay of size specific growth rates, which biologically is associated with a slowed 

rate of cell division, cell death, or the suspension of growth as cell differentiation occurs. Each 

panel refers to a different tadpole environment while colors refer to the different egg 

environments (green = freshwater egg environment, blue = 4ppt egg environment). Since only 

coastal individuals survived long enough (see Fig. 2-6) to gather growth rate data from the 8ppt 

tadpole environment, we excluded all 8ppt tadpole environments from this analysis to avoid bias. 

Error bars represent 95% confidence intervals.  
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Figure 2-5. The proportion of tadpoles that survived to metamorphosis. Each panel refers to 

a different tadpole environment while colors refer to the different egg environments (green = 

freshwater egg environment, blue = 4ppt egg environment). Error bars represent 95% confidence 

intervals.  
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Figure 2-6. Kaplan-Meier survival curves through time (in days) for tadpoles from each 

location and environment combination. Each panel refers to a different tadpole environment 

while colors refer to the different egg environments and location (light green = inland tadpoles 

laid in freshwater egg environment, light blue = coastal tadpoles laid in freshwater egg 

environment, dark green = inland tadpoles laid in 4ppt egg environment, dark blue = coastal 

tadpoles laid in 4 ppt egg environment. 
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Figure 2-7. The amount of time in days to reach metamorphosis. Each panel denotes a 

different tadpole environment while colors refer to the different egg environments (green = 

freshwater egg environment, blue = 4ppt egg environment).  Since only 2 coastal individuals 

metamorphosed from the 8ppt tadpole environment, 8ppt tadpole treatment was excluded from 

this analysis. Error bars represent 95% confidence intervals.  
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Figure 2-8. Mass at metamorphosis according to egg environment, tadpole environment, 

and location. Each panel denotes a different tadpole environment while colors refer to the 

different egg environments (green = freshwater egg environment, blue = 4ppt egg environment).  

Since only 2 coastal individuals metamorphosed from the 8ppt tadpole environment, 8ppt 

tadpole treatment was excluded from this analysis. Error bars represent 95% confidence 

intervals.  
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Figure 2-9. Total length (snout to vent in mm) at metamorphosis according to egg 

environment, tadpole environment, and location. Each panel denotes a different tadpole 

environment while colors refer to the different egg environments (green = freshwater egg 

environment, blue = 4ppt egg environment).  Since only 2 coastal individuals metamorphosed 

from the 8ppt tadpole environment, 8ppt tadpole treatment was excluded from this analysis. 

Error bars represent 95% confidence intervals.  
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Figure 2-10. Salinity profiles for three coastal wetlands (Bodie Island, New Inlet, and 

Alligator River National Wildlife Refuge) over the frog breeding season for four years. The 

different panels denote different sites (top = Bodie Island at Cape Hatteras National Seashore, 

middle = New Inlet near Rodanthe, NC, bottom = Point Peter Road in Alligator River National 

Wildlife Refuge). Salinity is shown in partial salinity units (psu), and colors show salinity 

profiles for each year (blue = 2014, red = 2015, green = 2016, yellow = 2017). Data is missing 

from 2014 because dataloggers were not installed for the entirety of the breeding season. 

Alligator River NWR are missing some years because Hurricane Matthew displaced the 

datalogger.  
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Table 2-1. Basic models used in sample-size corrected Akaike Information Criterion (AICc) 

model comparisons. These models were used to determine best fit for tests on response variables 

that include initial size in length, time to metamorphosis, size at metamorphosis (both weight and 

length), and survival. Because the same models were used for multiple tests, no dAICc, ranks, or 

weight data are provided here.  

 

Model:  Formula: 

Model 1:  Response ~ egg environment * tadpole environment * location + (1|Population) 

Model 2:  Response ~ egg environment + tadpole environment * location + (1|Population) 

Model 3:  Response ~ egg environment * tadpole environment + location + (1|Population) 

Model 4:  Response ~ egg environment + tadpole environment + location + (1|Population) 

Model 5:  Response ~ tadpole environment + location + (1|Population) 

Model 6:  Response ~ egg environment + location + (1|Population) 

Model 7:  Response ~ egg environment + tadpole environment + (1|Population) 
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Table 2-2. Models and results used in sample-size corrected Akaike Information Criterion 

(AICc) model comparisons to determine best fit for tests on tadpole length (in mm) based on the 

Gompertz growth equation. All 32 possible combinations of interactive and additive 

relationships are shown. 

  
Model So 𝜸 𝜶 Rank dAICc Df weight 

1 Egg * location Egg * Location * Tadpole Egg * Location * Tadpole 31 58.3 37 <0.001 
2 Egg * location Egg + Location + Tadpole Egg * Location * Tadpole 14 13.3 27 <0.001 
3 Egg * location Egg + Location * Tadpole Egg * Location * Tadpole 20 20.1 30 <0.001 
4 Egg * location Egg * Location + Tadpole Egg * Location * Tadpole 28 45.3 28 <0.001 
5 Egg + location Egg * Location * Tadpole Egg * Location * Tadpole 32 60.2 36 <0.001 
6 Egg + location Egg + Location + Tadpole Egg * Location * Tadpole 27 41.9 26 <0.001 
7 Egg + location Egg + Location * Tadpole Egg * Location * Tadpole 24 32.3 29 <0.001 
8 Egg + location Egg * Location + Tadpole Egg * Location * Tadpole 29 46.6 27 <0.001 
9 Egg * location Egg * Location * Tadpole Egg + Location * Tadpole 15 17.0 30 <0.001 
10 Egg * location Egg + Location + Tadpole Egg + Location * Tadpole 6 2.4 20 0.0765 
11 Egg * location Egg + Location * Tadpole Egg + Location * Tadpole 22 25.2 23 <0.001 
12 Egg * location Egg * Location + Tadpole Egg + Location * Tadpole 17 17.8 21 <0.001 
13 Egg + location Egg * Location * Tadpole Egg + Location * Tadpole 26 41.5 29 <0.001 
14 Egg + location Egg + Location + Tadpole Egg + Location * Tadpole 30 47.1 19 <0.001 
15 Egg + location Egg + Location * Tadpole Egg + Location * Tadpole 23 29.0 22 <0.001 
16 Egg + location Egg * Location + Tadpole Egg + Location * Tadpole 9 3.3 20 0.0472 
17 Egg * location Egg * Location * Tadpole Egg * Location + Tadpole 25 39.8 28 <0.001 
18 Egg * location Egg + Location + Tadpole Egg * Location + Tadpole 18 6.0 18 0.0123 
19 Egg * location Egg + Location * Tadpole Egg * Location + Tadpole 3 1.3 21 0.128 
20 Egg * location Egg * Location + Tadpole Egg * Location + Tadpole 11 6.0 19 0.0125 
21 Egg + location Egg * Location * Tadpole Egg * Location + Tadpole 21 23.1 27 <0.001 
22 Egg + location Egg + Location + Tadpole Egg * Location + Tadpole 8 2.6 17 0.0689 
23 Egg + location Egg + Location * Tadpole Egg * Location + Tadpole 7 2.5 20 0.0711 
24 Egg + location Egg * Location + Tadpole Egg * Location + Tadpole 10 5.1 18 0.0198 
25 Egg * location Egg * Location * Tadpole Egg + Location + Tadpole 17 19.0 27 <0.001 
26 Egg * location Egg + Location + Tadpole Egg + Location + Tadpole 4 2.1 17 0.088 
27 Egg * location Egg + Location * Tadpole Egg + Location + Tadpole 2 1.1 20 0.141 
28 Egg * location Egg * Location + Tadpole Egg + Location + Tadpole 13 7.0 18 0.0075 
29 Egg + location Egg * Location * Tadpole Egg + Location + Tadpole 19 19.6 26 <0.001 
30 Egg + location Egg + Location + Tadpole Egg + Location + Tadpole 1 0 16 0.25 
31 Egg + location Egg + Location * Tadpole Egg + Location + Tadpole 5 2.4 19 0.0768 
32 Egg + location Egg * Location + Tadpole Egg + Location + Tadpole 16 17.8 17 <0.001 
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Table 2-3. Models and results for sample-size corrected Akaike Information Criterion (AICc) 

model comparison testing conductivity in coastal wetlands through time based on data collected 

over four years.  

 

Model Formula Rank dAICc Df Weight 

1 Year * Month * Day of year * Location 2 169.2 38 <0.001 

2 Year * Month + Day of year * Location 2 169.2 38 <0.001 

3 Year * Month * Day of year + Location 2 169.2 38 <0.001 

4 Year + Month * Day of year * Location 1 ** 0 25 0.5 

5 Year * Month + Day of year + Location 1 0 25 0.5 

6 Year + Month + Day of year * Location 3 383.9 15 <0.001 

7 Year + Month * Day of year + Location 3 383.9 15 <0.001 

8 Year + Month + Day of year + Location 3 383.9 15 <0.001 

 ** Model arbitrarily chosen of two most parsimonious models for likelihood ratio tests 

 

 

 

 

 

 



 

III. DENSITY DEPENDENCE, STAGE-SPECIFIC SELECTION, AND THE GOLDILOCKS 

EFFECT: EVOLUTIONARY RESCUE IN ORGANISMS WITH COMPLEX LIFE 

HISTORIES 

Abstract  

Ecosystems are changing at unprecedented rates, which can reduce individual fitness and 

population growth rates of affected species. Although rapid evolution may rescue some 

populations from extirpation, the processes that govern adaptation and the spread of the adaptive 

alleles through populations have primarily been explored in organisms with simple life cycles. 

These dynamics may be different for organisms with complex life cycles especially when one or 

more life stages are independently regulated by density-dependence. This is because selection 

and density dependence may interact across discrete life stages to affect population dynamics 

and evolutionary outcomes. We use an agent-based model to explore how stage-specific density 

dependence and selection interact to influence whether environmental change will cause 

extinction or evolutionary rescue in organisms with complex life cycles. We show that adults and 

larvae that experience strong selection pressure and undergo weak or strong density dependence 

have higher rates of extinction after environmental change. However, at intermediate levels of 

density dependence and selection, more populations persist. Additionally, the timing of selection 

and density dependence is also important since strong selection and density dependence can 

induce extinction or adaptation depending upon which stage they are imposed. The scenario 

demonstrating the highest potential for evolutionary rescue and least amount of extinction 

occurred when selection acted on the stage preceding the stage regulated by density-dependent 
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processes. In general, we found that evolutionary rescue is most likely to occur at intermediate 

levels of selection and density dependence—a “Goldilocks effect”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 102 

Introduction 

Human activities are causing rapid and drastic changes to natural habitats at a global scale. The 

extreme rate and degree of change have led some researchers to suggest that human activities 

have changed the geological environment sufficiently to move the Earth from the Holocene 

epoch into the Anthropocene (Crutzen 2002, Steffen et al. 2011). Environmental changes include 

increases in rates of climate change, sea level rise, habitat destruction and fragmentation, 

pollution, spread of invasive species, and disease and epidemics. Each of these changes imposes 

new selection pressures on organisms causing reductions in individual fitness and population 

growth rates. Consequentially, population extirpation rates are accelerating and predicted to 

continue accelerating through time (Thomas et al. 2004, Malcolm et al. 2006, Foden et al. 2013). 

 

To persist, organisms must either migrate into suitable habitats or adapt to the new conditions 

(Parmesan 2006, Moritz and Agudo 2013, Urban et al. 2016). However, for many organisms 

migration may be limited by increased habitat fragmentation (Kubisch et al. 2014), and further 

complicated by lesser-understood dynamics such as maintaining genetic diversity across 

dispersal clines or competition with established species in the new range (Pearson 2006, Aitken 

et al. 2008, Nadaeu et al. 2017). Evolutionary adaptation in situ may be key for some populations 

to persist. Evolutionary adaptation can occur over ecological timescales (e.g., within several 

dozen generations), and in some cases, can rescue maladapted populations from extinction 

(Gomulkiewicz and Holt 1995, Bell and Gonzalez 2009).  

 

Evolutionary rescue occurs when adaptive alleles that improve fitness and facilitate positive 

population growth rate in a maladapted population (Carlson et al. 2014, Bell 2017). For example, 
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after a change in the environment, most individuals may be maladapted causing an initial decline 

in abundance followed by a period of stabilization and subsequent increase in population 

abundance as adaptive alleles increase in frequency in the population (Fig. 3-1). However, 

several interacting factors can affect the probability of evolutionary rescue such as initial 

population size (Lynch and Lande 1993, Gomulkiewicz and Holt 1995, Bell 2013), genetic 

variation present within the population (Barrett and Schluter 2008), rates of immigration and 

emigration (Bolnick and Nosil 2007, Holt 2011), degree of initial maladaptation (Bell and 

Gonzalez 2009), and the rate and degree of environmental change (Boeye et al. 2013, Scheiner et 

al. 2017) -- see Carlson et al. (2014) and Bell (2017) for reviews). 

 

Density-dependent population regulation can also influence likelihoods of evolutionary rescue 

(Gomulkiewicz et al. 1999, Holt et al. 2004b). On the one hand, positive density dependence 

(e.g., allee effects) coupled with immigration can indirectly improve likelihoods of evolutionary 

rescue by increasing population size through immigration. Immigration boosts the effective 

population size, which can enhance population growth via allee effects which ultimately can 

facilitate the spread of adaptive alleles in recipient populations (Holt et al. 2004b). Negative 

density dependence, on the other hand, may reduce population sizes to levels that make 

evolutionary rescue and population persistence increasingly unlikely (Lynch and Lande 1998, 

Gomulkiewicz et al. 1999). Plasticity, by allowing individuals to induce phenotypes that better 

match the environment, can buffer individuals from selective pressure which can slow 

adaptation. However, we propose that under some conditions negative density dependence might 

also facilitate evolutionary rescue. When population sizes are small, changes in the frequency of 

adaptive alleles can have greater proportional impact on population level fitness (Gomulkiewicz 
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and Holt 1995). Because these individuals may be released from density-dependent processes, 

population growth is unhindered and the distribution of adaptive alleles throughout the 

population may be enhanced (Vonesh and De la Cruz 2002, Holt and Gomulkiewicz 2004). 

 

Evolutionary rescue can also depend on the life history strategy of organisms. For instance, many 

organisms have complex life cycles in which they undergo rapid and significant changes in their 

morphology, physiology, and behavior through ontogeny, which are typically accompanied with 

changes in habitats (Wilbur 1980). Complex life cycles evolved because they allow organisms to 

respond to selective pressures in different habitats via ontogenetic habitat shifts  (Moran 1994), 

yet may hinder the ability of taxa to evolve to novel environmental stressors compared to 

organisms with simpler life cycles (Schluter et al. 1991, Marshall et al. 2016). Because complex 

life cycles allow for independent adaptation to different selective pressures in each life stage, 

changes to the environment across life stages may delay adaptation (but see Barfield et al. 

(2011)).   

 

It is estimated that upwards of  80% of higher-order taxa have a complex life history (Wilbur 

1980, Werner and Gilliam 1984), and strong density dependence is pervasive in at least one life 

history stage for most taxa (Brook and Bradshaw 2006). However, we know little about how 

evolutionary rescue will be affected when selection and density dependence act independently 

across discrete life stages. There are three ways that evolutionary responses to environmental 

change could differ in organisms with complex life cycles in which one or more life stages are 

regulated by density dependence. First, the environmental change may affect life stages 

differently. For example, early life stages (free glochidia) of freshwater bivalves have different 
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exposure to aquatic pollutants at the surface of the water because glochidia  are only exposed 

through brief contact with surface water, while sessile adults can face years of exposure to 

contaminated surface water (Cope et al. 2008). Second, if all life stages are affected by a 

common environmental perturbation, each life stage could have different vulnerabilities to the 

same environmental stressor. For example, adult frogs can survive in saltwater concentrations 

that are twice the lethal concentration for frog eggs (Albecker and McCoy 2017). Third, density 

dependence can strongly influence population level dynamics that result from complex life cycle 

organisms in a changing environment. For example, high egg mortality reduces the number of 

emerging juveniles but those few eggs that do survive are released from density-dependent 

mortality in subsequent stages. Thus the number of adults recruited from earlier life stages may 

go unchanged (Crouse et al. 1987, Vonesh and De la Cruz 2002).  

 

Although the impacts of selection and density dependence have been explored extensively in a 

theoretical framework in organisms with simple life cycles, less is understood about how both 

selection and density dependence will interact across life stages in organisms with complex life 

cycles. To enhance our ability to predict extinction or evolutionary rescue for organisms with 

complex life cycles, we must understand how the strength of selection and density dependence 

that occur across different life stages affect adaptation and persistence following an 

environmental change. Here, we investigate evolutionary rescue for organisms with complex life 

cycles and density-dependent population regulation using an individual based modeling approach 

with the goal of understanding how the impacts of selection and density dependence affect 

extinction and evolution when they occur in different life stages.  
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The Model 

We base our model on a four-stage amphibian life cycle that is representative of many organisms 

with distinct egg, larval, juvenile, and adult life stages (Fig. 2). In our model, the number of eggs 

is a function of adult fecundity (clutch size) and the number of breeding pairs. The model 

proceeds in annual time steps during which the eggs hatch into the larval stage, which emerge as 

juveniles, eventually becoming full adults, at which point breeding and egg laying can occur to 

begin the next annual cycle and generation (i.e. our model assumes an annual, semelparous 

species). Each individual has a transition probability (σ) that they will survive to the next stage 

of the life cycle, which can be affected by either selection or density dependence (Fig. 2).  

 

Density-dependent Regulation -- Density dependence can occur across stages (e.g., large egg 

clutches can reduce hatching due to lack of available oxygen, high densities of adults may 

facilitate breeding opportunities, etc.). However, it is a common characteristic of many 

organisms with complex life cycles (e.g., amphibians, invertebrates) to produce many eggs that 

subsequently experience high larval mortality rates due in part to density-dependent processes. 

Therefore, we incorporate density dependence into the larval stage by calculating the proportion 

of larvae that survive through the larval stage (σ6) as a function of larval density using a classic 

recruitment function (Beverton and Holt 1957): 

σ6 =
789:;
(+<=>)?

     (Equation 1)  

where larval survival is a function of σ6@AB which sets the maximum larval survival, the density-

dependent coefficient, d, which functions primarily as a scaling term (m2/larvae), the initial 

density of larvae (N), and the density dependence exponent, γ, which determines the strength of 

density dependence. For γ = 0, larval survival would be density independent, while γ between 0 
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and 1 indicates weak density dependence. Compensation occurs when γ	approaches unity, and 

any γ value over 1 indicates over compensation via strong density-dependent population 

regulation.  

 

Imposing Selection -- To model selection for traits in any given life stage, we use a standard 

Gaussian fitness function (Scheiner 2014):  

ωFG = 	 e
,I

JKL.KMN8O

P Q
R

	
   (Equation 2) 

In our model, fitness (𝜔) is the probability of survival to the next stage for a given phenotype for 

each individual (i) in every environment (j). An individual’s fitness is the difference between an 

individual’s phenotype (θF) and the optimum phenotype (θUV6)	for a particular environment 

scaled by the level of selection (ρ) (Scheiner 2014). In this equation, the strength of selection is 

the inverse of ρ.   

 

For each individual, we assume a 10-allele genotype, in which the value for each allele position 

in the founding population is randomly selected from a uniform distribution and could take any 

integer value between -2 and 2. The individual “phenotype” is the arithmetic mean of all 10 

positions, thus the initial cohort has an average phenotype near the optimum value of zero. For 

every generation we randomly assign a “sex” and select pairs from the surviving adults to mate. 

The allelic value for each of the 10 allele positions is then randomly selected from one of the 

parents (heredity = 50%). We imposed a mutation probability of 5% at each allele position per 

generation (Scheiner and Holt 2012, Scheiner 2014). When an allele mutated, a value was 

randomly selected from a normal distribution with a mean of zero and standard deviation of 0.1 

and added to the original allele value.  
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Simulating Environmental Change -- The founding populations in our model have phenotypes 

close to the optimum value of zero, which are maintained by moderate stabilizing selection 

(ρ=1.2) for 200 generations. This simulates a scenario in which populations are relatively well 

suited to the current environment. During these 200 generations, we impose 6 different 

magnitudes of negative density-dependent regulation on the number of larvae surviving to the 

juvenile stage. These ranged from weak (𝛾	= 0.6), to strong (𝛾	=1.6) density dependence. These 

values are based on a range of density dependence estimates calculated from amphibian 

populations in nature (Vonesh and De la Cruz 2002).  

 

After 200 generations, we abruptly change to the environment by shifting the optimum (θUV6)	 

phenotype from zero to two, which effectively imposes strong maladaptation on populations. 

Changing the optimum phenotype value reflects a scenario commonly observed in species 

undergoing an abrupt environmental change, but it should be noted that an abrupt change will 

likely lead to different evolutionary outcomes compared to more gradual environmental shifts 

(Scheiner et al. 2017). Following the change in the environment, we explore the consequences of 

six different magnitudes of selection (𝜌,	equation 2) crossed with each of the six levels of density 

dependence. We change the levels of selection to reflect that some populations and life stages 

may be more or less vulnerable to a changing environment. Simulations were continued for 400 

generations (total of 600 generations) or until the population went extinct. We conducted a total 

of 36 combinations of selection (n = 6) and density dependence (n = 6) across each life stage 

scenario (e.g., egg, larval, adult, egg + larval). Each scenario was replicated 1200 times and 

consider each simulation as an independent “population”. 



 109 

 

Results and Discussion  

Influence of density dependence -- Density dependence and selection interact to produce different 

and emergent evolutionary outcomes dependent upon which life stage is affected as well as the 

strength of selection and density dependence. Across all life stages, density dependence 

influences the genetic variation of phenotypes across populations before the environmental 

change (i.e., within the first 200 generations). In our model, weak density dependence maintains 

the starting phenotypic distribution and variation across populations, while increased density 

dependence increases the variation in phenotypes across populations via drift (Fig. 3). Weak 

density dependence likely maintains the original distribution of phenotypes around the optimum 

because few individuals are removed from the population as a result of density-dependent 

regulation. As a result, there are no significant changes to genetic diversity across populations, 

which on average remains near the optimum.  

 

Strong density dependence (e.g., γ	greater or equal to 1) maintains small populations sizes such 

that genetic drift leads to increasing amounts of genetic variation among populations over time 

(Fig. 3, panels B, C). This pattern is illustrated by the inverse relationship between genetic 

variance among populations and population size (Fig. 4). Because density dependence is 

reducing population size via random filtering and because variation in allele frequencies is 

occurring independent of selection, some populations will by random chance drift towards 

average phenotypes that are predisposed to the new conditions that may follow in the aftermath 

of environmental change. For example, some populations may drift towards a phenotypic 

average that is closer to the future optimum phenotype. However, other populations may drift 
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toward average phenotypes that are maladapted to future optima. Consequently, density-

dependent regulation may predispose certain populations to adaptation or extinction before 

environmental change by random chance alone (Lynch and Lande 1993, Burger and Lynch 

1995). 

 

Most research has focused on the role of genetic variation within populations and has found that 

sufficient background genetic variation and relatively large population sizes are required for 

population persistence following an abrupt environmental shift (Lande and Shannon 1996, Lynch 

and Lande 1998, Gomulkiewicz et al. 1999, Bolnick and Nosil 2007). Indeed, genetic variation is 

often the raw material that selection acts upon that allows for rapid adaptation to occur (Bürger 

1999, Barrett and Schluter 2008). However, our simulations show increased genetic variation 

across populations as the result of density-dependent population regulation. Increased genetic 

variation across populations could possibly function as a genetic form of the spatial insurance 

hypothesis, which proposes that biological diversity across a heterogenous landscape can protect 

overall ecosystem function and stability by maintaining sufficient diversity that can disperse into 

open niche space and functionally compensate for any species losses (Loreau et al. 2003). The 

outcome of spatial insurance hypothesis depends on the rates of dispersal among habitats, as 

intermediate levels of dispersal optimally increase productivity and reduce variability (Loreau et 

al. 2003). Because density-dependent regulation increases genetic variation across populations, 

meta-populations that are connected by dispersal may be buffered against extinction as 

dispersing individuals continuously introduce necessary genetic diversity into populations that 

are experiencing a genetic bottleneck (e.g., genetic rescue) (Gomulkiewicz et al. 1999, Bolnick 

and Nosil 2007). If so, immigration and subsequent gene flow should behave similarly as the 
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spatial insurance hypothesis since previous theoretical work has established that moderate 

amounts of immigration have the optimal impact on the population’s ability to evolve. 

Specifically, low rates of immigration may not supply sufficient genetic variation, but too much 

immigration may continuously introduce maladapted alleles into the population and reduce the 

ability of adaptive alleles to propagate (Gomulkiewicz et al. 1999, Holt et al. 2004b). Previous 

empirical work supports the theory that adaptation in a meta-population is indeed contingent 

upon both the rates of dispersal as well as the level of environmental deterioration (Bell and 

Gonzalez 2011). In our model, we consider each simulation as an independent population and do 

not connect populations or allow for immigration, but future theoretical work may explore the 

hypothesis that increasing the diversity of the regional gene pool through density-dependent 

processes will increase the probability of adapted alleles immigrating into populations 

experiencing maladaptation or genetic bottlenecks.  

 

Selection at the Egg Stage -- We found that when selection is imposed at a stage preceding the 

stage experiencing density-dependent regulation, populations were less likely to be extirpated, 

and evolutionary rescue occurred more frequently for all levels of selection strengths (Figs. 3-5, 

panels A,B,C & 3-6, panel on egg selection). We propose that this pattern emerges when 

selection is imposed during the egg stage, because egg survivorship is significantly reduced and 

only the individuals with adapted phenotypes are likely to hatch. These adapted cohorts are then 

largely released from the deleterious effects of density-dependent processes during the larval 

stage, thus permitting a larger proportion of individuals with adapted phenotypes and higher 

fitness potential to survive to become reproductive adults (Crouse et al. 1987, Vonesh and De la 

Cruz 2002). Because individuals that hatch are more likely to have adapted genotypes that more 
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closely match the new environmental optimum, the rate in which adaptive alleles spread through 

the population is hastened and so these populations experience rapid adaptation and increased 

rates of evolutionary rescue.  

 

Importantly, the strength of selection on the egg stage affects rates of recovery in similar ways as 

selection on the tadpole and adult stages. When strong selection occurs in the egg stage, fitness 

rebounds quickly, compensating for any lost fitness prior to the environmental change from 

density dependence (Gomulkiewicz and Holt 1995). But at weaker levels of selection, fitness 

gradually increases but does not always fully recover to initial fitness levels. 

 

Selection at larval, adult, and at multi-stages -- We observed similar outcomes across all three-

life stage-scenarios (selection imposed at the larval, adult, and egg + larval stages). Both weak 

and strong density dependence led to rapid, complete extinctions following the environmental 

change. We propose two hypotheses for why density dependence coupled with strong selection is 

driving rapid extinctions. First, it could be that strong density dependence kept population sizes 

below the critical minima needed for recovery. Further, while density dependence increased the 

amount of genetic variation among populations, over half of the populations were predisposed to 

extinction because they drifted toward maladaptation prior to environmental change. When these 

two factors were coupled with an abrupt change in the environment along with an increase in the 

strength of selection, the combined effects rapidly lowered populations below the critical 

abundance needed to recover and persist in the new environmental conditions. Indeed, consistent 

with other studies, we found that population size at the time of environmental change is a key 

factor influencing evolutionary rescue (Lynch and Lande 1993, 1998, Bell 2013), and declines in 
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abundance below a threshold critical value (sometimes referred to as the stochastic threshold – 

Fig. 1) can put populations at increased risk of extinction due to random chance alone 

(Gomulkiewicz and Holt 1995, Gomulkiewicz et al. 1999). A second hypothesis is that 

populations experiencing strong selection and strong density dependence did respond to 

selection, yet strong density dependence randomly removed such a high proportion of 

individuals with high fitness potential (individuals with genotypes near the new optimum) that 

the ability of those populations to respond adaptively was reduced (Gomulkiewicz et al. 1999, 

Chevin and Lande 2010). 

 

Interestingly, we also observed extinctions in weak density dependence scenarios under strong 

selection. Weak density dependence maintained large population sizes and stabilizing selection 

kept the variation of phenotypes across populations near the initial phenotypic optimum. By 

extension, phenotypes near the tails of the original distribution (i.e. near the new, shifted 

optimum) were rare at the moment of environmental change. As a result, the lack of genetic 

diversity may have ultimately driven those populations to extinction. This result corroborates 

findings across a variety of theoretical and empirical studies that report that mutation alone is 

typically insufficient to provide necessary genetic variation to keep pace with rapid 

environmental change (Bell and Gonzalez 2009, Futuyma 2010), so in the absence of 

immigration, populations that persist through abrupt changes to the environment must have 

sufficient genetic variation already present prior to the change to buffer against extinction 

(Hoffmann and Sgrò 2011). This suggests that genetic variation may be more important than 

population size in determining population persistence, although several studies have implicated 



 114 

that both population size and genetic variation are key for persistence (Lynch and Lande 1993, 

Gomulkiewicz and Holt 1995, Lande and Shannon 1996, Barrett and Schluter 2008, Bell 2013).  

 

When strong selection is imposed at the larval, adult, or across multiple life stages, we find that it 

is just the intermediate levels of density dependence that persist and successfully recover high 

fitness, showing the U-shaped pattern in population trajectories over times that is indicative of 

evolutionary rescue (Fig. 1 & 5). This is one of the most compelling effects of density 

dependence identified in our model and suggests that moderate density dependence allows for 

population persistence and evolution through environmental change.  

 

As expected, when selection was weak we observed very few population extirpations across all 

life stages and levels of density dependence (Fig. 5). However, the distribution of phenotypes 

and associated fitness of populations was affected by density dependence prior to the 

environmental change, and the subsequent rates of fitness recovery were reduced under weak 

selection. For example, the average phenotype of populations with strong density dependence 

was pushed farther from the optimum which conferred lower average fitness in those populations 

(Fig. 5). When weak selection was imposed after the 200th generation, the recovery rate was 

much lower although all populations began showing signs of positive population growth and 

improved fitness by the 600th generation (Fig. 5). The slowed pace of recovery likely stems from 

weaker selection which allowed more maladapted phenotypes to persist which can dull rates of 

evolutionary rescue (Lynch and Lande 1993, Lande and Shannon 1996, Holt 2003, Holt and 

Gomulkiewicz 2004, Lande 2009, Barfield et al. 2011, Holt 2011).  
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Conclusions -- Collectively, we show that density dependence and selection have significant, but 

predictable impacts on the evolution and extinction of complex life cycle organisms that 

experience varying levels of selection and density-dependence across stages. In general, patterns 

that emerge from our model suggest that a “Goldilock’s principle” may govern outcomes 

following environmental change. Goldilock’s principle, based on the children’s fable, describes 

the idea that there is an optimal amount of a given entity, and deviations on either end of that 

optimum will have negative consequences. For adults and larvae that endure strong selection 

pressure, strong density dependence causes high extinction following an environmental change, 

as does weak density dependence. Additionally, the timing of selection and density dependence 

are important, since strong selection and density dependence can induce extinction or adaptation, 

depending when each pressure is applied. The scenario which demonstrated the highest amount 

of evolutionary rescue and lowest amount of extinction was when selection occurred during the 

stage that preceded density-dependence, but in general, the most favorable evolutionary 

outcomes occur at intermediate levels of selection and density dependence—a Goldilocks effect 

of density dependence and strength of selection.  
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Figures and tables:  
 
Figure 3-1. Trademark pattern of evolutionary rescue adapted from Carlson et al. (2014). 

Following an environmental change, the abundance of individuals within a population declines 

(blue line) and recovers following an increase in the frequency of adaptive alleles (orange line). 

The stochastic threshold line refers to a critical threshold density below which extinction 

becomes increasingly likely due to random chance.  
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Figure 3-2. The four-stage amphibian life cycle on which the individual-based model is based. 

Although we use amphibians, this model can be modified to fit any organism with a complex life 

cycle. In this model, there is a cohort of eggs determined by clutch size and the number of 

breeding pairs. The eggs have some probability of hatching (𝜎Z). Survival through the larval 

period (𝜎[) is determined by density-dependent regulation in which survival is a function of 

maximum tadpole survivorship (𝜎[\]^) over the number of incoming tadpoles (N) multiplied by 

a scaling term (d) and raised to the power of the density-dependent exponent (𝛾). When selection 

is imposed at each stage, the fitness of the individual (𝜔_`) becomes the probability of survival 

(𝜎) to the next stage. The fitness of individuals is defined by a gaussian function in which fitness 

is defined by the difference of the individual’s phenotype (𝜃_) to the optimum phenotype in a 

particular environment (𝜃bc[) over the strength of selection (𝜌). 
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Figure 3-3. Phenotypic variation among populations according to density dependence prior 

to a shift in environmental optimum. Violin plots show data distributions similar to a boxplot, 

with the distribution of data shown along the Y-axis and the frequency of data points represented 

by the width along the X-axis. Each panel represents the genetic variation among populations at 

50-generation intervals across three density-dependence scenarios (weak, compensation, and 

strong density dependence). Each of these demonstrates the impact of density dependence of 

genetic variation prior to environmental change, which occurred following generation 200.   
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Figure 3-4. Among population genetic variance according to population size. As the 

population size becomes smaller, the genetic variation among populations increases independent 

of selection or environmental change, which supports the hypothesis that increased genetic 

variation among populations with strong density dependence is due to reduced population sizes. 
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Figure 3-5. Average fitness of populations through time. Each plot shows fitness through 600 

generations with different color lines denoting different levels of density dependence. For 

generation zero through 200, only moderate selection is imposed across all scenarios. At 

generation 200, the optimum phenotype shifts from zero to two and the strength of selection 

either grows stronger (𝜌=0.5), remains the same (𝜌=1.2), or weakens (𝜌=1.9). Although the 

model simulated six different selection scenarios, only three are shown here for simplicity. The 

left-hand column shows the scenarios with the strongest selection (𝜌=0.5), the middle column 

with moderate selection (𝜌=1.2), and the right-hand column showing the weak selection 

scenarios (𝜌=1.9). The top row, plots A, B, and C, show how fitness is affected when selection is 

imposed at the egg stage. The middle row (D, E, and F) show fitness is impacted when selection 

occurs at the larval stage, and the bottom row (G, H, and I) show fitness when selection occurs 

during the adult life stage. Lines that terminate indicate that all populations went extinct. 
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Figure 3-6. Probability of evolutionary rescue according to the strength of density dependence 

and selection for each of the different life stages during which selection was imposed. In all 

scenarios, density-dependent regulation occurred during the larval stage. In each plot, higher 

likelihoods of evolutionary rescue are denoted with lighter blue, while higher likelihoods of 

extinction are denoted by dark blue. The top left plot shows evolutionary rescue likelihoods 

when selection is imposed during the egg stage. Top right shows selection at the larval stage, 

bottom left is selection during the adult stage, and bottom right shows the impact of selection 

during two stage, the egg and larval stages.  

 

 

 

 

 

Selection

D
en

si
ty

 D
ep

en
de

nc
e 

Ex
po

ne
nt

0.00

0.25

0.50

0.75

1.00
Rescue

Probability of Rescue − Adult

Selection 

Selection

D
en
si
ty
 D
ep
en
de
nc
e 
Ex
po
ne
nt

0.00

0.25

0.50

0.75

1.00
Rescue

Probability of Rescue − Larvae

Larvae

Weak

Selection

D
en
si
ty
 D
ep
en
de
nc
e 
Ex
po
ne
nt

0.25

0.50

0.75

1.00
Rescue

Probability of Rescue − Egg Egg

D
en

si
ty

 D
ep

en
de

nc
e

Selection

D
en
si
ty
 D
ep
en
de
nc
e 
Ex
po
ne
nt

0.00

0.25

0.50

0.75

1.00
Rescue

Probability of Rescue − Adult
Strong

Adult
StrongWeak

Selection

D
en
si
ty
 D
ep
en
de
nc
e 
Ex
po
ne
nt

0.00

0.25

0.50

0.75

1.00
Rescue

Probability of Rescue − 2 stage
Egg + Larval

Selection 
StrongWeak

Larval

Probability of 
Evolutionary Rescue

StrongWeak

StrongWeak StrongWeak

Strong

Weak

Strong

Weak



 125 

 



 

IV. MOLECULAR SIGNATURES OF ADAPTATION TO SALTWATER ENVIRONMENTS 

IN WILD POPULATIONS OF AMPHIBIANS 

Abstract 

Environmental change is imposing selective pressure on a wide variety of biota, providing an 

ideal setting to investigate mechanisms of adaptive responses as they occur in natural systems. 

Salinization is a change occurring in wetland habitats globally, and it is assumed that many taxa 

affected by salinization will be locally extirpated. However, some coastal populations of a 

treefrog inhabit brackish wetlands. This study characterizes how saltwater exposure affects 

transcriptional responses and early developmental fitness correlates between coastal and inland 

populations of Hyla cinerea. We identify molecular mechanisms that may underlie salt tolerance 

in wild populations of frogs and disentangle hypotheses about the role of plasticity in the 

evolution of adaptive change. We found that 1,924 genes are differentially expressed between 

coastal and inland populations, while just 267 genes are differentially expressed across the 

different salinity treatments (e.g., different exposure to saltwater during egg or tadpole stages), 

showing clear divergence across locations that cannot be explained by phenotypic plasticity due 

to saltwater exposure. Moreover, individuals from coastal populations have higher tadpole 

survival and higher plasma osmolality which may be correlated with differences in gene 

expression. The genes that emerged as different between coastal and inland populations perform 

diverse molecular functions but include several genes that encode cellular transporter proteins 

and stress response pathways. Collectively, these results reveal the molecular signatures of 

saltwater tolerance in coastal frog populations and support the hypothesis that coastal 

populations of Hyla cinerea are locally adapted to inhabit brackish environments. 
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Introduction 

Since the landmark studies of Charles Darwin (Darwin 1859) and Alfred Russel Wallace 

(Wallace 1859), understanding how organisms evolve and what factors govern species 

distributions across space and time remains a key focus of biological research. Current rates of 

environmental change have amplified the urgency to understand the conditions under which 

populations may evolve or decline to extinction (Lynch and Lande 1993, Bell and Gonzalez 

2009, Maclean and Wilson 2011, Lindsey et al. 2013, Moritz and Agudo 2013, Nunney 2015). 

One changing environmental factor that determines the ecology, evolution, and distributions of 

aquatic species worldwide is salinity (James et al. 2003, Pinder et al. 2004, Lorenz 2014, Castillo 

et al. 2018, Piscart et al. 2005). However, currently, many freshwater habitats are becoming 

increasingly saline (Herbert et al. 2015, Kaushal et al. 2018) due to a variety of 

anthropogenically influenced changes including sea level rise (Church et al. 2013, Schuler and 

Relyea 2018), application of road de-icing salts (Schuler and Relyea 2018), reductions in riverine 

freshwater flow (Montagna et al. 2002), storm surges (Mulligan et al. 2012), and altered coastal 

geomorphology (Day et al. 2008, Manda et al. 2014).  

 

Although there are appreciable differences in the toxicity of salinity across taxa (Castillo et al. 

2018) and life-stages (Kefford et al. 2012, Albecker and McCoy 2017), increases in salt 

concentrations in freshwater systems are typically concomitant with declines in species richness 

(Hart et al. 1991, Williams et al. 1999, Williams et al. 2003, Lorenz 2014, Herbert et al. 2015). 

Freshwater organisms have evolved physiologies that resist the natural inflow of water and loss 

of ions, so increases in external salt concentrations can lead to toxic levels of ion accumulation 

and water loss within cells (Willmer et al. 2005, Dawson and Liu 2009). Therefore, in order to 
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persist in wetlands that are becoming increasingly saline, freshwater organisms must 

fundamentally modify osmoregulatory machinery (Willmer et al. 2005, McCormick and 

Bradshaw 2006, Dawson and Liu 2009).  

 

If the rates of adaptation within the population can keep pace with the rates or degree of 

salinization, natural selection can rescue a population from extinction following salinization 

(Bell 2017). Yet there are myriad factors that affect the probability that a population will evolve 

in response to a changing environment (Carlson et al. 2014). For example, if the rate or degree of 

salinization is severe (e.g., sudden inundation via storm surge), adaptation is unlikely 

(Gomulkiewicz and Holt 1995, Scheiner et al. 2017). Additionally, population size (Lynch and 

Lande 1993, Gomulkiewicz and Holt 1995, Lynch and Lande 1998, Bell 2013), the amount of 

genetic variation within a population (Barrett and Schluter 2008, Vander Wal et al. 2013), and 

gene flow across populations (Gomulkiewicz et al. 1999, Holt et al. 2004b) can affect evolution. 

However, adaptation to salinity stress has been documented in a broad range of freshwater 

organisms including invertebrates (Riginos and Cunningham 2005), fish (Lamichhaney et al. 

2012b), and amphibians (Gomez-Mestre and Tejado 2003, Brady 2012) – some emerging within 

the past 100 years (e.g., Spotted Salamanders, see Brady (2012)).  

 

Adaptive phenotypic plasticity can also decrease extinction risk following salinization (Pfennig 

et al. 2010, Nonaka et al. 2015, Nunney 2015). Individuals that are considered plastic can alter 

some aspect of their phenotype (e.g., behavior, morphology, development) to better match the 

environment (Travis 1994, West-Eberhard 2003). Because phenotypic plasticity and natural 

selection can both produce phenotypic differences across a landscape that appear adaptive, 
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investigations into the mechanisms of adaptation should consider both plasticity and genetics in 

generating different phenotypes (Gienapp et al. 2008, Merilä and Hendry 2014).  

 

Theory about rapid adaptive evolution and evolutionary rescue of populations following 

environmental change is well developed (Bell 2013, Gonzalez et al. 2013, Martin et al. 2013, 

Alexander et al. 2014, Bourne et al. 2014, Carlson et al. 2014), but logistical challenges have 

historically hindered efforts to empirically vet theoretical assumptions (Via and Lande 1985, 

Gomulkiewicz et al. 1999, Holt and Gomulkiewicz 2004, Holt et al. 2004a, Lande 2009, Chevin 

et al. 2010, Berdahl et al. 2015, Forsman 2015). Recent advances in genomic technologies and 

computing power allows empirical research to disentangle the relative contributions of plasticity 

and genetics and identify causal mechanisms underlying adaptive responses. Indeed, both are 

needed to improve our ability to understand and forecast organismal responses to environmental 

change (Urban et al. 2014, Urban et al. 2016).  

 

In this study, we use a common garden experiment to quantify changes in tadpole phenotypes 

and gene expression in populations of an anuran amphibian that inhabit brackish habitats to 

determine a.) differences in growth, survival, and physiology, b.) the genetic basis for differences 

observed between coastal and inland populations, and c.) which genes are being differentially 

expressed both among locations and in response to saltwater exposure. Revealing the genetic 

basis of adaptation to saltwater in an amphibian is particularly compelling because amphibians 

are highly salt-sensitive (Albecker and McCoy 2017) with only 2% of all described amphibian 

species capable of occupying a brackish habitat (Hopkins and Brodie 2015). However, within 

that 2% are some anuran species such as Fejervarya cancrivora, Rhinella marina, 
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Eleutherodactylus coqui, and Hyla cinerea that are regularly observed in nearly full-strength 

seawater (Gordon and Tucker 1965, Rios-López 2008, Albecker and McCoy 2017). These salt-

tolerant amphibian species may hold important clues in understanding how osmotic transitions 

occur and are an excellent model system for studying the evolution of salt tolerance amidst 

environmental change.  

 

Despite the fact that frogs were heavily used as models for early physiological research defining 

basic osmoregulatory processes, we know relatively little about how frogs osmoregulate in 

osmotically stressful environments (Hopkins and Brodie 2015, Cunningham et al. 2016).  There 

are several known proteins, including the Sodium-Potassium Pump (Na+/K+-ATPase or NKA) 

(Havird et al. 2013), Sodium-Potassium-Chloride co-transporter (Na+-K+-Cl- co-transporter or 

NKCC), and Aquaporins (AQPs) that are central to maintaining osmotic balance (Alvarado and 

Moody 1970, Hildebrandt 1997, Uchiyama and Konno 2006, Ogushi 2010, Pandey et al. 2010b, 

Lee et al. 2011, Bernabò et al. 2013, Havird et al. 2013, Saitoh et al. 2014, Wu et al. 2014) and 

whose activity and abundance can change according to the environment (Havird et al. 2013, Wu 

et al. 2014). Yet these represent a small proportion of mechanisms known to contribute to 

maintaining cellular ion balance in other vertebrates. Even less is known about the genes and 

gene networks that initiate adaptive responses to osmotic stress. Euryhaline fish have been 

studied extensively (Evans and Somero 2008, Whitehead et al. 2011a, Whitehead et al. 2011b, 

2012, DeFaveri and Merila 2013, Ruiz-Jarabo et al. 2016, Kusakabe et al. 2017), and larval frogs 

(tadpoles) breathe and osmoregulate through gills that function similar to teleosts (Hillyard et al. 

2009b, Wu et al. 2014). Therefore, we also investigate whether certain genes and gene families 

known to contribute to osmotic responses in fish are important for frogs as well. For example, in 
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fish, several genes are up-regulated following saltwater exposure including ion pumps (ATP1a1, 

ATP1a3, ATP6V1E1), transcription factor HNF-4a, AQP3 (aquaporin3), OSTF-1 (osmotic stress 

transcription factor), and IGF-1 (Insulin-like growth factor) (Evans and Somero 2008, Whitehead 

et al. 2011b, 2012). Conversely, other genes like VCAN (versican – associated with water 

retention) and SBC (spermine binding protein – a polyamine regulator) are down regulated 

(Evans and Somero 2008). In addition to genes that regulate osmotic responses, gene expression 

pathways and proteins associated with cellular stress responses (e.g. HSP-60 (heat shock 

protein), HSP-70, Aldehyde reductase, etc.) are reliable indicators that organisms are 

approaching thresholds of tolerance limits, which we might also expect to differ among 

populations (Kültz 2005, Kassahn et al. 2009, Evans and Hofmann 2012).  

 

Methods  

Study System -- Here we focus on the American green treefrog (Hyla cinerea), a frog species 

common in wetlands in the Southeastern United States. This species has been observed in 

saltmarsh habitats in coastal North Carolina in salinities reaching 23 parts per thousand (ppt) 

which is approximately 3.8-fold higher than the lethal salinity reported for this species (McNab 

2002, Hillyard et al. 2009a, Albecker and McCoy 2017). Subsequent common-garden studies 

strongly suggests that coastal H. cinerea populations are locally adapted to higher salinities 

(Albecker and McCoy 2017), Chapter 2 - Albecker and McCoy, in prep). We conducted these 

studies in eastern North Carolina, USA. North Carolina’s coast is predicted to be among the most 

significantly impacted by sea level rise due to low-lying, gently sloped coastal plains and 

continual coastal subsidence (-1 mm ± 0.15 mm/yr.) (Titus and Richman 2001, Craft et al. 2009, 

Kemp et al. 2009, Williams 2013, Kopp et al. 2015). Coastal North Carolina is already 
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experiencing increased saltwater intrusion into coastal lowlands making it an important location 

for investigating the impacts of increasing salinities on coastal animal communities (Parkinson 

1994, Michener et al. 1997, Morris et al. 2002, Day et al. 2008, Kopp et al. 2015). 

 

Experimental Methods – We conducted a common-garden experiment between May 23, 2017 

and July 17, 2017. We collected two pairs of breeding frogs (amplexed pairs) from four coastal 

populations (i.e., populations chronically exposed to saltwater) and four inland populations (i.e., 

populations chronically exposed to freshwater) (N = 8 pairs from each location). Each of the four 

pairs was randomly assigned into a plastic Sterilite® shoebox (length x width x height = 33 x 

20.32 x 12.7 cm) that contained 2 liters (L) of either freshwater (<0.5ppt), or 4ppt saltwater. We 

used Greenville municipal tap water treated with API® Tap Water Conditioner (Chalfont, PA) 

with salinities prepared by mixing treated tap water with InstantOcean Sea Salt® (Blacksburg, 

VA). Pairs were left in the containers overnight with lids attached and allowed to deposit eggs. 

After completing oviposition, the parents were released at the site of capture, and the egg 

clutches were transported back to the laboratory. 

 

Hyla cinerea, like many north American frog species, lay eggs in large, gelatinous masses that 

swell by absorbing water from the environment to provide each embryo with a protective jelly 

coat. Because the water contacts the egg directly contemporaneously with fertilization, the 

quality of the water can impact developmental pathways occurring within the embryo and alter 

phenotypes across development. By placing pairs into a container holding an experimental 

concentration of saltwater or freshwater, hereafter referred to as “egg environment”, we can 
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determine the extent that early life exposure contributes to genetic and phenotypic responses 

later in development.  

 

At the laboratory, eggs were counted via non-invasive image analysis and then left undisturbed 

to develop and hatch. Image analysis involved photographing eggs against white background, 

and using ImageJ software to quantify eggs (Schneider et al. 2012). Approximately two days 

post-hatching, hatchlings transition from yolk absorption to active foraging (Gosner stage 25) 

(Gosner 1960). At this time, we subsampled 250 hatchlings from each clutch. The subsampled 

individuals were divided into 5 groups of 50 individuals and placed in a 400 mL glass container 

with water matching the salinity of the egg environment. Dividing the clutches allows us to 

control for genetic relatedness or maternal effects within clutches (Räsänen and Kruuk 2007, 

Merilä and Hendry 2014). Each of the five groups was randomly assigned to either a freshwater 

(<0.5ppt), or 4ppt, 6ppt, 8ppt, or 12ppt saltwater tadpole environment treatment. Several studies 

have indicated that acclimatizing anurans to elevated salinities reduces mortality (Gordon and 

Tucker 1965, Gordon and Tucker 1968, Hsu et al. 2012). Therefore, to mimic natural conditions, 

we gradually increased, decreased, or maintained the salinity over 6 days until the specified 

target salinity was reached. For example, tadpoles from a 4ppt egg environment assigned to the 

6ppt tadpole treatment experienced salinity increases of 0.33ppt per day, while tadpoles from the 

4ppt egg environment transitioning into freshwater tadpole treatment underwent salinity 

decreases of 0.67 ppt per day. Prior to water changes each day, we recorded tadpole survival in 

each container and removed deceased individuals. Hatchlings were fed Spirulina fish food flakes 

(Ocean Star International, Coral Springs, FL) ad libitum each day following water changes. 
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On day 6, final survival was recorded. At this time, we haphazardly subsampled 10 individuals 

from each cup for physiological assays and euthanized individuals via 2% MS-222 immersion 

(pH adjusted to 7.0). Of those 10 individuals, 5 from each container were staged, weighed, and 

measured, placed into 37ºC incubator for three hours and dry weight recorded. The remaining 

five tadpoles were dabbed dry using paper towels, placed into 2ml tubes, homogenized using 

mechanical mortar and pestle, and centrifuged for 2 minutes. Whole body plasma from the 

homogenate was pipetted into a test tube and plasma osmolality was measured using a Fiske 

210 osmometer from Advanced Instruments® (Norwood, MA).  

 

For RNA-seq, a single individual was randomly selected from the following four treatments: 1) 

freshwater egg/freshwater tadpole treatment, 2) freshwater egg/6ppt tadpole treatment, 3) 4ppt 

egg/4ppt tadpole treatment, and 4) 4ppt egg/6ppt tadpole treatment. These four treatments were 

specifically chosen to set up specific comparisons to understand differences according to 

differences in saltwater exposure at the egg stage (freshwater:6ppt vs. 4ppt:6ppt), differences 

following saltwater exposure at just the tadpole stage (freshwater:freshwater vs. 

freshwater:6ppt), and differences if salt exposure occurred during both egg and tadpole stages 

(freshwater: freshwater vs. 4ppt:4ppt). Although it would be best to excise gills for the genetic 

assays, at this early stage of development the tadpoles and their gills are extremely small. 

Previous attempts to dissect gill baskets at this size have indicated a high risk of dissection error 

that might outweigh the benefits of tissue specificity. Therefore, we removed the tail and 

intestines of each tadpole, and preserved the remaining tissues in 500µl RNALater®. Samples 

were stored at -20ºC until RNA extractions (described below). These protocols were repeated for 

each of the four populations from inland locations and each of the four populations from the 
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coastal locations, thus producing four samples to be used for RNA-seq for each treatment and 

location combination.  

 

Tadpole statistical analyses – We quantified tadpole survival over the 6-day acclimation period, 

as well as total length, mass, and whole-body plasma osmolality of tadpoles on day 6. All 

analyses on tadpole phenotypes were conducted in the R statistical programing environment 

version 3.5.0 (Team 2018).  

 

For the data collected on day-6 of the acclimation period including survival, mass, length, and 

osmolality, we used a model comparison approach using generalized linear mixed effects models 

to estimate parameters using package “lme4” (Bates et al. 2015) and likelihood ratio tests 

(Burnham and Anderson 2003) to determine levels of support for different models. We consider 

the salinity of the egg and tadpole environments and location (inland versus coast) as fixed 

effects and treat the different populations within each location as random effects. We also 

include the cup in which tadpoles were reared over the 6-day acclimation as a random effect to 

account for any non-target variation due to shared housing. For these models, we treat egg 

salinity as a factor, but tadpole environment as a continuous variable. In all cases, we determine 

support for various models ranging from the most complex (i.e., full two-way interaction 

between egg environment, tadpole environment, and location) to simpler (additive model) and no 

effects models. Because tadpole length and mass are continuous data, we assume log-normal 

error distributions, while with osmolality, we assume Poisson error because it is an integer 

(Bolker et al. 2009). We analyzed survivorship using two different approaches: First, we test 

whether there are differences in the proportion of individuals surviving to day 6 using 
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generalized mixed effects models with a binomial error family. Second, we test for differences in 

risk of mortality through time using Kaplan-Meier survival analysis with the R package 

“survival” (Therneau 2015). Survival curves were plotted using package “survminer” 

(Kassambara and Kosinski 2018). The first approach tells us how overall survival differed, while 

the second approach uncovers whether there were differences in rates of survival through time.  

 

RNA extraction and Sequencing -- RNA was extracted using a standardized Trizol protocol and 

cleaned with DNAse and RNAsin. RNA was further purified using Qiagen RNeasy mini kit, 

quantitated using Qubit Fluorometer, and quality checked using Agilent BioAnalyzer 2100`. One 

sample from the coastal freshwater/freshwater treatment had low quantity and quality RNA, so 

this sample was excluded from sequencing, resulting in a total of 31 samples (N = 31: 4 

populations x 2 location (coastal, inland) x 4 egg:tadpole treatments (fw:fw, 4ppt:4ppt, fw:6ppt, 

4ppt:6ppt).   

 

RNAseq libraries were prepared with Illumina's TruSeq Stranded mRNAseq Sample Prep kit 

(Illumina®, San Diego, CA). Libraries were pooled, quantitated by qPCR, and sequenced on one 

lane for 76 cycles from each end of the fragments on a HiSeq 4000 using a HiSeq 4000 

sequencing kit version 1 at University of Illinois’ Roy J. Carver Biotechnology Center. Resulting 

Fastq files were generated and demultiplexed with bcl2fastq v2.17.1.14 Conversion Software 

(Illumina). Reads were 75 base pairs in length and sequenced to a depth of approximately 12 

million reads per sample.  
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Transcriptome assembly – To assemble a trancriptome for H. cinerea, we concatenated both 

forward and reverse direction reads into two single reads. We randomly subsampled 50 million 

reads from each of these concatenated read datasets using seqtk (https://github.com/lh3/seqtk). 

The subsampled reads comprised 7% of our overall dataset and were used to assemble the 

transcriptome using Oyster River Protocol (ORP) version 1.1.1. The ORP is a pipeline that 

constructs multiple transcriptomes using different, well-vetted assemblers and then merges them 

together to form a single higher quality transcriptome (MacManes 2017). By taking advantage of 

the strengths and weaknesses of different approaches, the ORP improves the likelihood of 

building a high quality, de novo transcriptome (MacManes 2017). The ORP uses the four 

assemblers; Trinity version 2.4.0 (Grabherr et al. 2011), Shannon version 0.0.2 (Kannan et al. 

2016), and SPAdes assembler version 3.11 with a kmer length of 35, and SPAdes assembler with 

a different kmer length of 55 (Bankevich et al. 2012). The transcriptomes generated from each 

technique were then merged together using OrthoFuser (MacManes 2017) and corrected for 

initial errors using RCorrector 1.01 (Song and Florea 2015). Using trimmomatic version 0.36 

(Bolger et al. 2014), we removed any adaptors that remained on transcripts using aggressive 

adaptor removal and performed gentle quality trimming at a Phred score of ≤ 2 (MacManes 

2014). The quality of our final transcriptome was evaluated using BUSCO version 3.0.1 (Simão 

et al. 2015) and TransRate  version 1.0.3 (Smith-Unna et al. 2016). BUSCO scores provide a 

quantitative assessment of the quality of the assembled transcriptome based on the appropriate 

representation of conserved genes expected to be present across all eukaryotic cells. The 

Transrate quality metric is based on an analysis of contigs to determine if they are accurate, 

complete, and non-redundant, and provides an optimal score for “good” well supported contigs. 
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RNA statistical analyses – We annotated our transcriptome using the peptide databases 

corresponding to three available frog genomes. We use Diamond version 0.9.10 (Buchfink et al. 

2015) to annotate our transcriptome using available information based on Xenopus tropicalis 

(Coordinators 2016), Nanorana parkeri (Sun et al. 2015), and Rana catesbeiana (Hammond et 

al. 2017). We also use the UniRef90 database (Consortium 2018) to match sequences that 

correspond to known peptides in non-amphibian taxa. We quantify transcript abundance based 

on pseudo-alignments for each sample using Kallisto (version 0.43.0) (Bray et al. 2016) and 

import these data into the R statistical environment for downstream analyses, version 3.5.0 

(Team 2018).  

 

To explore differential expression between location and egg/tadpole salinity, we used the R 

packages “pcaExplorer” (Marini 2018) and “DESeq2” (Love et al. 2014). For these analyses, 

location and egg/tadpole salinity were considered fixed effects with alpha values set at 0.05. We 

used Panther classification system version 13.1 to perform gene ontology (GO) enrichment 

analyses (Huaiyu et al. 2016) and use the results of the GO-enrichment to identify proteins 

within certain groups to identify functionally important genes across locations and salinities 

(Huaiyu et al. 2013).  

 

Results 

Tadpole Survival – Tadpole survival on the final day of acclimations during which tadpoles were 

gradually transitioned into their respective tadpole salinity was driven by the three-way 

interaction between egg salinity, tadpole salinity, and location (𝜒29 = 26.998; p < 0.001) (Fig. 1). 

We also found significant differences in survivorship through time (𝜒219 = 44.8; p < 0.001) with 
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high survivorship in all treatments except the 12ppt treatment (Fig. 2). Within the 12ppt 

treatment, the coastal individuals hatched from the freshwater egg environment had the highest 

survival through day 6, with lower survival among coastal tadpoles hatched from 4ppt, inland 

tadpoles hatched from 4ppt, and inland tadpoles hatched in freshwater. 

 

Tadpole Measurements -- The mass of tadpoles that survived to the final day of the 6-day 

acclimation period was best described by an additive model. Mass was only impacted by the 

salinity of the tadpole environment (𝜒27 = 70.38; p < 0.0001) and was not significantly impacted 

by egg salinity or location (egg environment: 𝜒27 = 0.72; p = 0.39; location: 𝜒27 = 0.56; p = 0.45) 

(Fig. 3). In the freshwater treatments, individuals weighed approximately 0.20g (95% 

Confidence Interval (C.I.) 0.015-0.023g), while tadpoles in the 12ppt treatments weighed 

approximately 0.02g (C.I. 0.0069 – 0.011). An additive model also best described tadpole length. 

Specifically, there were no effects of the egg environment (𝜒27 = 0.60; p = 0.43), and only a 

weak effect of location (𝜒27 = 3.43; p = 0.063) as well as a difference in length due to tadpole 

salinity (𝜒27 = 57.26; p < 0.0001) (Fig. 4). In freshwater tadpole treatments, inland tadpoles were 

slightly longer than coastal tadpoles with an approximate length of 11.2mm (C.I. 10.5-12.1mm) 

compared to the coastal length of 10.3mm (C.I. 9.7-10.2mm). In the 12ppt treatments, inland 

tadpoles were approximately 8.7mm (C.I. 8.2-9.4mm) in length, compared to an average length 

for coastal individuals of 8.0mm (C.I. 7.4-8.6mm).  

 

Consistent with these patterns, plasma osmolality was also affected by the additive effects of 

location (𝜒27 = 5.92; p = 0.015) and tadpole salinity (𝜒27 = 58.13; p < 0.0001) (Fig. 5). In general, 

coastal tadpoles had higher plasma solute concentrations than inland tadpoles across all 
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salinities. In freshwater, coastal tadpoles had internal solute concentrations of approximately 275 

milliOsmoles per liter (mOsm/L) (C.I. 260-294 mOsm/L) compared to 255 mOsm/L (C.I. 239-

272 mOsm/L) within inland tadpoles in freshwater. In the 12ppt treatments, coastal tadpoles had 

an approximate plasma osmolality of 465 mOsm/L (C.I. 435-497 mOsm/L) while inland tadpoles 

held internal concentrations of approximately 430 mOsm/L (C.I. 401-462 mOsm/L). 

 

Transcriptome Assembly – After filtering our original transcriptome produced by the Oyster 

River Protocol for “good” contigs based on the transrate metric, the assembled transcriptome 

consisted of 126,042 total transcripts and 55,631 aligned reads. The updated transrate score on 

the filtered dataset was 0.49, improved from the original transrate score of 0.30. Our BUSCO 

score was 96.4%, indicating that our filtered dataset contains the majority of conserved genes 

expected in eukaryotic cells. We annotated 24,533 transcripts (44.1%) within the aligned 

transcriptome.  

 

Gene Expression – From the Deseq2 analysis, we found 1,924 genes that were differentially 

expressed between coastal and inland tadpoles after accounting for the effects of the salinity 

treatments (Fig. 6 & 7). We contrast the freshwater egg/freshwater tadpole treatment against the 

freshwater egg/6ppt tadpole treatment to determine how tadpole salinity affects gene expression 

and found 108 genes that are differentially expressed (Fig. 8). We contrast the freshwater egg/ 

6ppt tadpole treatment against the 4ppt egg/6ppt tadpole treatment to determine how saltwater 

exposure during the egg stage affects gene expression in tadpoles (Fig. 8) and found differential 

expression of 79 genes as a result of the egg environment. Finally, we compare the freshwater 

egg/freshwater tadpole treatment against the 4ppt egg/4ppt tadpole environment to determine 
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overall differences in gene expression due to salinity and find 80 differentially expressed genes 

(Fig. 8).  

 

Location Gene Ontology – Panther’s Gene Ontology classified 458 of the annotated genes that 

emerged as differentially expressed between coastal and inland populations into known 

molecular functional groups) (Fig. 9). Of these, 174 genes (37.6%) were classified as binding 

genes (GO:0005488), which refers to genes that regulate interactions of molecules between cells. 

There were 187 genes (40.4%) identified that regulate catalytic activity (GO:0003824), which 

regulate biochemical reactions and often encode enzymes. Thirty-one differentially expressed 

genes (6.7%) were identified that encode transporter activity (GO:0005215), which allow for 

movement of substances in and out of cells. Fifteen genes (3.2%) encode signal transducer 

activity (GO:0004871), which convey signals across cells to trigger cellular signals. Twenty 

genes (4.3%) encode receptor activity (GO:0004872), which combined with signal transducers to 

initiate changes in cell activity, and 28 genes (3.9%) contribute to structural molecule activity 

(GO:0005198) which help maintain cellular structure. Finally, 3 genes (0.6%) contributed to 

antioxidant activity (GO:0016209), which typically are components that limit oxidation reactions 

that could lead to cellular damage. 

  

When classified more broadly into biological functions, 992 differentially expressed genes 

between coastal and inland populations could be matched to biological processes. Three hundred 

genes (30.2%) encoded cellular processes (GO:0009987) which is a general description of a 

variety of processes carried out at a cellular level and can include cell communication, cell cycle, 

gene silencing, intercellular transport, or protein folding among others. Two hundred and fifty-



 

 142 

six genes (25.8%) regulate metabolic processes (GO:0008152) which encapsulates cell-growth 

related processes like DNA repair and replication, protein synthesis, etc. Eighty-six genes (8.7%) 

contribute to biological regulation (GO:0065007) which is another broad category that 

encapsulates proteins that regulate cellular activity. One hundred and four genes (10.5%) 

contribute to cellular component organization (GO:0065007) which concerns the assembly or 

disassembly of cellular components. Sixty-six genes (6.7%) contribute to cellular response to 

stimuli (GO:0050896), and 61 genes (6.1%) contribute to localization processes within cells 

(GO:0051179). Forty-five genes (4.5%) contribute to developmental processes (GO:0032502), 

with another 45 genes (4.5%) regulating multicellular organismal processes (GO:0032501) 

which encapsulates a variety of processes including larval behavior, keratinization, circadian 

regulation of gene expression and translation, organ growth, etc. Nine genes (0.9%) are related to 

immune system processes (GO:0002376), 7 genes (0.7%) contribute to reproduction 

(GO:0000003), 8 genes (0.8%) toward biological adhesion (GO:0022610), and 3 genes (0.3%) 

contribute to locomotion (GO:0040011) (Fig. 9). 

 

Salinity Gene Ontology – For the freshwater egg/freshwater tadpole vs. 4ppt egg/4ppt tadpole 

salinity contrast, there were only 53 differentially expressed genes with known molecular 

functions (Fig. 10). Twenty-two of those genes (41.5%) encoded binding activity, while 19 genes 

(35.8%) encoded catalytic activity. Two genes (3.8 %) encoded translation regulation activity 

(GO:0045182), which are involved in protein synthesis and modification, and 6 genes (11.3%) 

contribute to structural molecule activity, 2 additional genes (3.8%) encode transporters, and 2 

genes (3.8%) encode signal transducer activity. When classified into biological processes, we 

found 96 annotated genes with known biological processes. Twenty-nine genes (30.2%) 
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contribute to cellular processes, 28 genes (29.2%) denote metabolic processes, 10 genes (10.4%) 

contribute to cellular component organization, 3 genes (3.1%) denote developmental processes, 3 

genes (3.1%) encode multicellular organismal processes, 9 genes (9.4%) contribute to biological 

regulation, 8 genes (8.3%) encode responses to stimuli, and 6 genes (6.3%) denotes localization 

processes (Fig. 10).  

 

Of the annotated genes that were differentially expressed due to the tadpole environment (e.g., 

freshwater egg/freshwater tadpole vs. freshwater egg/6ppt tadpole contrast), 39 could be 

categorized to a molecular function (Fig. 11). Sixteen genes (41%) contribute to binding, 15 

genes (38.5%) contribute to catalytic activity, 2 genes (5.1%) contributing structural molecular 

activity, and 6 genes (10.5%) the encode transporters. Within this same contrast, 90 genes could 

be classified into a biological process (Fig. 11). Of those, 29 genes (32.2%) contribute to cellular 

processes, 25 genes (27.8%) toward metabolic processes, 6 genes (6.7%) encode responses to 

stimulus, 2 genes (2.2%) denote developmental processes, 8 genes (8.9%) encode cellular 

component organization, 11 genes (12.2%) contribute to biological regulation, 2 genes (2.2%) 

denoting multicellular organismal processes, and 7 genes (7.8%) contributing to localization.  

 

For the genes that emerged as different according to egg environment (e.g., freshwater egg/6ppt 

tadpole vs. 4ppt egg/6ppt tadpole contrast), only 17 annotated genes could be classified to a 

molecular function (Fig. 12). Eight genes (47.1%) encoded different binding activity, and seven 

genes (41.2%) denote different catalytic activity. One gene (5.9%) were expressed in the 

structural molecule activity and transporter categories each. However, 38 annotated genes could 

be classified into a biological process (Fig. 12). Thirteen genes (34.2%) contribute to cellular 
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processes, 12 genes (31.6%) denote metabolic processes, three genes (7.9%) each denote cellular 

component organization, localization, and response to stimulus. Two genes (5.3%) contribute to 

biological regulation, while one gene (2.6%) encodes multicellular organismal processes and 

developmental processes each.  

 

Discussion  

Adaptive evolution occurs when natural selection causes a genetic change within a population. 

To firmly demonstrate that adaptive evolution has occurred in a population, studies must 

establish a genetic basis for a phenotypic change, contest alternative mechanisms that can 

produce phenotypic differences across populations (e.g., plasticity), and link responses to a 

causal agent (Gienapp et al. 2008, Merilä and Hendry 2014). In this study, we show that there is 

differential gene expression following saltwater exposure across coastal and inland frog 

populations. And finally, we provide a mechanistic link between multiple genetic and phenotypic 

responses in response to a specific environmental driver – salinity. Thus, our study provides 

strong evidence that observed differences in the distribution, habitat selection, and life history 

traits (e.g. chapters 1 and 2) between coastal and inland populations of American green tree frogs 

are the result of adaptive evolution to tolerate saltwater. 

 

Differences in Gene Expression Across Locations: After accounting for salinity effects, there 

were 1,924 differentially expressed transcripts between coastal and inland frog populations (Fig. 

7), which accounts for 3.5% of the aligned genes in our transcriptome. The differentially 

expressed genes classified according to molecular function show that the majority of 

differentially expressed genes are involved in catalytic activity and cellular binding (Fig. 9). 
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Broadly, catalytic genes encode enzymes and proteins that contribute to molecular functioning 

by facilitating biochemical reactions, while genes that contribute to binding are important for 

interactions between molecules or cells (Huaiyu et al. 2013). The binding gene with the greatest 

increase in expression in coastal populations compared to inland populations is fgg (Fig. 13), 

which encodes a component of fibrinogen. Fibrinogen is a glycoprotein that circulates within the 

body of vertebrates and is often converted into fibrin to create blood clots following injury. 

Fibrinogen can also contribute to tissue revascularization and repair by mediating capillary tube 

formation and angiogenesis (Mosesson 2005). The upregulation of these components in coastal 

individuals may contribute to higher blood plasma osmolality in coastal tadpoles (Fig. 5) or 

possibly contribute to the maintenance and development of vasculature given the higher osmotic 

pressure in coastal tadpoles due to greater plasma osmolality. The two transporters that were the 

most upregulated in coastal populations were mfsd14a (1663.5-fold increase) and slc20a1(250.7-

fold increase) (Fig. 13). Mfsd14a is a member of the large major facilitator superfamily (MFS) 

which broadly transport small solutes across membranes in response to chemiosmotic gradients 

(Pao et al. 1998), but the specific solute transported by this particular protein is unknown. 

Slc20a1, on the other hand, is a sodium-dependent phosphate co-transporter. The primary 

function of this house-keeping protein is to maintain internal balance of inorganic phosphate, a 

key electrolyte, so that signal transduction, cell membrane production, and energy exchange can 

function properly.  Phosphate can become imbalanced given malnutrition or if internal plasma 

concentrations become thin via over-hydration or over-dialysis, and upregulation of this protein 

suggests that coastal frogs experience an imbalance of internal phosphate concentrations, 

possibly due to altered internal water balance (Beck et al. 2010, Miyamoto et al. 2011). 
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We also observed differences in gene expression in genes that constitute physiological pathways 

that are upregulated in response to stress. Oxidative stress and inflammation can be produced by 

increases in internal toxins, pathogens, or solute concentrations, and up-regulation of stress-

related pathways are good diagnostic features of inflammation. In tadpoles, we observed that 

components of the chemokine and cytokine signaling inflammation pathway, the oxidative stress 

response pathway, the p53 pathway, and vasopressin synthesis pathway are differentially 

expressed across coastal and inland populations. Chemokines and cytokines interact in a 

complex network to mediate internal inflammation (Turner et al. 2014), and we observed 9 genes 

within this pathway with differential expression (Fig. 14). We observed a similar pattern of 

expression in the more general oxidative stress pathway in which coastal frogs up-regulate two 

genes, but down regulate a third (Fig. 14). The p53 pathway is well known for its role in human 

cancers, but it is a conserved (but complex) pathway across vertebrates that functions broadly to 

ensure proper DNA replication and cell division in cells disrupted by internal stressors (Harris 

and Levine 2005). In frogs in this study, we observed the upregulation of 4 genes from the p53 

pathway in coastal populations (Fig. 14). Finally, the vasopressin pathway constructs the anti-

diuretic hormone vasopressin, which regulates internal water balance by adjusting blood serum 

osmolality via cellular cascades (Lu et al. 2007) and we observed an upregulation of two genes 

within this pathway in coastal frogs (Fig. 14).  

 

Contribution of Phenotypic Plasticity -- It is possible that early life exposure to salt stress could 

alter genetic and phenotypic pathways to generate differences across coastal and inland 

populations that mimic adaptive evolution. Indeed, plasticity is increasingly implicated as the 

driver of differences across populations in response to environmental change rather than genetic 
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divergence (Urban et al. 2014, Hendry 2015, Cattau et al. 2018). To understand how much 

environment influences outcomes, we exposed eggs to either freshwater or 4ppt water from the 

moment of fertilization and after hatching gradually transferred them into either freshwater, 4ppt, 

6ppt, 8ppt, or 12ppt saltwater. If the egg environment largely impacted development, we 

expected to see large differences due to salinity treatment in both gene expression as well as with 

the physical condition of tadpoles following the 6-day acclimation. However, we see little impact 

of egg environment in the physical condition assays including mass (Fig. 3), length (Fig. 4), or 

osmolality (Fig. 5). Importantly, location significantly affected the survival (Fig. 1 & 2), length 

(Fig. 4), and osmolality (Fig. 5) of tadpoles, which supports the hypothesis that genetic 

differences rather than environmentally induced plasticity drive differences between coastal and 

inland frogs.  

 

For each of the contrasts on gene expression between the different treatments, we found 108 

differentially expressed genes between the freshwater egg/freshwater tadpole and freshwater 

egg/6ppt tadpole treatments, 79 differentially expressed genes in the freshwater egg/ 6ppt tadpole 

and 4ppt egg/6ppt tadpole treatment, and 80 differentially expressed genes in the freshwater 

egg/freshwater tadpole treatment against the 4ppt egg/4ppt tadpole environment (Fig. 8). Across 

the four different salinity treatments, the amount of differential expression is much lower than 

the differences in gene expression that emerged between coastal and inland populations, and only 

accounts for 0.02%, 0.01%, and 0.01% of the aligned transcripts, respectively. These results 

strongly suggest that divergence among locations is the key driver of observed differences in 

responses to salinity rather than environmentally induced plasticity. 
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Despite the limited influence of environment on gene expression, there were some notable 

differences in gene expression according to salinity. Interestingly, in the treatments that 

compared eggs laid in freshwater vs 4ppt (e.g., fw egg/6ppt vs. 4ppt egg/6ppt treatments), the 

only transporter protein that was differentially expressed is a chloride transporter (clic5) that was 

downregulated in the individuals hatched from 4ppt water (Fig. 8). This finding went against our 

expectation that early exposure to saltwater would increase transcripts that code for chloride or 

sodium transporters. In the freshwater egg/freshwater tadpole treatment vs. 4ppt egg/4ppt tadpole 

contrast, adrm1-b emerged as the most up-regulated gene (362-fold increase) in the 4ppt/4ppt 

treatment. This gene is a component of proteasomes that break down proteins tagged for 

destruction by ubiquitin (Stone and Morris 2014). Within that same salinity contrast, AQP5 is the 

second most highly upregulated gene (41-fold increase) (Fig. 8) and is involved in water 

reabsorption for cells and tissues experiencing water loss (Suzuki et al. 2015). This water 

channel protein has been immuno-located in the apical membrane of epithelial cells in the 

bladder of adult Xenopus frogs (Suzuki et al. 2015), and is upregulated in frogs in response to 

dehydration (Shibata et al. 2014). Indeed, this family of proteins (AQPs) was a-priori expected 

to be differentially expressed because it is a key protein in the maintenance of water balance 

among vertebrates (Takata et al. 2004, Uchiyama and Konno 2006, Suzuki et al. 2007, Suzuki 

and Tanaka 2009, Ogushi et al. 2010, Pandey et al. 2010a, Saitoh et al. 2014, Shibata et al. 

2014). Additionally, we also observed an 8.5-fold increase in AQP5 expression in the individuals 

from the freshwater egg/6ppt tadpole treatment compared to the freshwater egg/freshwater 

tadpole treatment (Fig. 8).  
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Missing Candidate Genes – We hypothesized that other AQP isoforms, vcan, sos1, crhbp, 

mapkap1, nkain, and hsp isoforms would all be differentially expressed across 

locations/salinities because they have been shown to contribute to either stress responses or 

maintaining osmotic balance in other taxa. Interestingly, none of these emerged as differentially 

expressed among treatments or locations, although they were all present in the transcriptome.  

 

A recent paper investigated how gene expression differs between a salt-specialist frog species, 

Fejervarya cancrivora, and a closely related, salt intolerant species Fejervarya limnocharis 

(Shao et al. 2015). Although the Shao et al. study demonstrates transcriptomic differences that 

encode mechanisms that regulate ionic balance, we did not see any overlap with the genes 

expressed in Hyla cinerea and the genes reported within that paper. There are three possible 

reasons why: First, the Shao et al. paper compares genes expressed in the kidneys and skin of 

adult frogs. In addition to the fact that each tissue is expected to respond differently to osmotic 

stress, it is likely that responses to salt exposure differ between tadpoles and adults, as tadpoles 

typically osmoregulate similar to teleosts and also lack a well-developed kidney (Hillyard et al. 

2009b). Second, Fejervarya cancrivora is perhaps the most salt-tolerant frog species known and 

have been found in marine habitats with salinities exceeding seawater (Gordon et al. 1961, 

Gordon and Tucker 1965, Wygoda et al. 2011, Wu et al. 2014). F. cancrivora persist in seawater 

by increasing (and tolerating) blood plasma solute concentrations to such a degree that the 

internal solute concentrations remain hypertonic to the environment (Gordon et al. 1961, Gordon 

and Tucker 1965, Gordon and Tucker 1968, Balinsky 1981, Uchiyama and Yoshizawa 1992). 

Although we do see increases in plasma osmolality in coastal H. cinerea (Fig. 5), plasma 

osmolality in coastal tadpoles does not exceed the solute concentrations in the high salinity 
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treatments (e.g., 8 or 12ppt) which suggests that key differences in saltwater tolerance strategies 

exist across the anuran phylogeny. Third, the Shao et al. study highlights only a few up-regulated 

genes that contribute to known osmotic functions. It is possible there is some overlap in gene 

expression between species, but these genes were simply not reported in the paper.  

 

Three important considerations that we do not include in our study are transgenerational 

epigenetics, maternal effects, and post-transcriptional regulation, each of which may influence 

the ability of populations to adapt to novel environments. Epigenetic modification produces 

heritable changes to gene expression through methylation, histone modification, and non-coding 

RNA (e.g., small interfering RNA) rather than through allelic changes within the genome 

(Jaenisch and Bird 2003). To be clear, differences in gene expression across populations 

certainly confirm a genetic basis for trait differences among populations, but do not confirm that 

trait differences are due to changes in the frequency of adaptive alleles across populations. If 

epigenetic modification explains the adaptive responses, we should expect the genomes between 

coastal and inland frogs to remain highly conserved, and instead see greater differences in the 

transcriptome. Frog genomes are notoriously difficult to sequence, but future studies should use 

transcriptomes to understand the role of epigenetics in producing differences in gene expression 

that may facilitate adaptive responses to environmental changes. Secondly, maternal effects are a 

blend of plasticity and genetics whereby the phenotype of an organism is not only determined by 

its own genotype and environment, but also by the genotype and environment experienced by its 

mother (Kirkpatrick and Lande 1989, Marshall and Uller 2007, Räsänen and Kruuk 2007). 

Maternally affected traits are expected to increase in prevalence when the environment 

experienced by the mother and offspring matches (Kirkpatrick and Lande 1989). By passing 
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necessary mRNA and proteins to offspring through the egg, maternal effects may explain up to 

96% of the variation in improved offspring fitness in stressful environments (Chirgwin et al. 

2016). Finally, post-transcriptional processes including microRNA or other RNA-binding 

proteins can divest or amplify expressed mRNA thus distorting our ability to make appropriate 

conclusions about actual cellular function (Evans 2015). Further, it is possible that several 

candidate genes that contribute to osmotic balance were not differentially expressed in our 

dataset simply because the response occurred previously in development and the mRNA is no 

longer being expressed. An upcoming study on tadpole proteomes will provide clues about the 

impact of post-transcriptional regulation by quantifying protein abundance and correlating 

protein abundance to gene expression.  

Conclusions -- Adult anurans are sensitive to water quality due to permeable skin used for 

osmoregulation (Bentley and Yorio 1979), and a limited capacity to concentrate solutes and 

tolerate hyperosmotic body fluids (Balinsky 1981, Hillyard et al. 2009b). However, as shown in 

this study, some species such as Hyla cinerea, have evolved modest levels of salt-tolerance and 

can inhabit brackish, coastal habitats. Although there is evidence suggesting that coastal, 

chronically salt-exposed populations of H. cinerea are diverging from inland, salt-naïve H. 

cinerea populations, we had yet to characterize whether phenotypic differences across coastal 

and inland populations have a genetic basis and what genes underpin salt tolerance in coastal 

frog populations. In this study, we show that despite exposing frogs to different salinities during 

the environmentally sensitive egg stage, the largest differences in gene expression emerge 

between coastal and inland H. cinerea populations. Several of these differentially expressed 

genes encode proteins that are likely contributing to enhanced salt tolerance in coastal 
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populations. These findings strongly support the hypothesis that coastal populations of H. 

cinerea along the North Carolina coast have locally adapted to rising salinity. 
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Figures and tables 

Figure 4-1. Tadpole survival on the final day of acclimations according to final salinity. The 

light blue line refers to coastal tadpoles that were laid in freshwater, the dark blue line refers to 

coastal tadpoles that were laid in 4ppt water, the light green line denotes inland tadpoles that 

were laid in freshwater, and the dark green line indicates inland tadpoles that were laid in 4ppt 

water. The vertical line occurs at 8ppt to highlight differences in survival. At 8ppt, 91% (C.I. 86-

94%) of coastal tadpoles from FW egg environment survived, compared to 73% (C.I. 66-78%) of 

coastal tadpoles hatched in 4ppt water. If laid in freshwater, 80% (C.I. 75-85%) of inland 

tadpoles survived while 77% (C.I. 70-83%) of inland tadpoles survived if laid in 4ppt water.  
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Figure 4-2. Survival through time according to the target salinity on the final day of the 

acclimations. Panels indicate the target salinity. All four treatments are shown on each panel 

through time in days. The light blue line refers to coastal tadpoles that were laid in freshwater, 

the dark blue line refers to coastal tadpoles that were laid in 4ppt water, the light green line 

denotes inland tadpoles that were laid in freshwater, and the dark green line indicates inland 

tadpoles that were laid in 4ppt water. 
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Figure 4-3. Wet mass of tadpoles according to environmental salinity on the final day of the 

acclimations. Lines are fitted means with dots depicting offset raw data points. The light blue 

line refers to coastal tadpoles that were laid in freshwater, the dark blue line refers to coastal 

tadpoles that were laid in 4ppt water, the light green line denotes inland tadpoles that were laid in 

freshwater, and the dark green line indicates inland tadpoles that were laid in 4ppt water. 
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Figure 4-4. Length of tadpoles according to environmental salinity on the final day of the 

acclimations. Length is the tip of the snout to the tip of the tail in millimeters. Lines are fitted 

means with dots depicting offset raw data points. The light blue line refers to coastal tadpoles 

that were laid in freshwater, the dark blue line refers to coastal tadpoles that were laid in 4ppt 

water, the light green line denotes inland tadpoles that were laid in freshwater, and the dark green 

line indicates inland tadpoles that were laid in 4ppt water. 
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Figure 4-5. Plasma osmolality (mOsm/L) of tadpoles from different environmental 

salinities on the final day of the acclimations. Lines are fitted means with dots depicting raw 

offset data points. The light blue line refers to coastal tadpoles that were laid in freshwater, the 

dark blue line refers to coastal tadpoles that were laid in 4ppt water, the light green line denotes 

inland tadpoles that were laid in freshwater, and the dark green line indicates inland tadpoles that 

were laid in 4ppt water. 
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Figure 4-6. Principal Components Analysis showing differential expression patterns 

between coastal and inland populations. Green denotes coastal populations, while blue denotes 

inland. PC1 explains 10.25% of the variance, while PC2 explains 8.12%. Ellipses represent 95% 

confidence ellipse. 
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Figure 4-7. Heatmap showing differentially expressed genes between coastal and inland 

populations. The left panel shows genes that were the most upregulated in coastal populations 

relative to inland populations. The right panel shows genes that were the most downregulated in 

coastal populations compared to inland populations. The gene names are available in the 

supplementary material.  
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Figure 4-8. Heatmap showing differentially expressed genes between the three salinity 

contrasts. Gray space indicates that gene was not differentially expressed in that treatment. The 

first panel shows log2-fold change in gene expression in the 4ppt egg/4ppt tadpole vs. FW 

egg/FW tadpole treatment, the second panel shows log2-fold change in gene expression in the 

FW egg/FW tadpole vs. FW egg/6ppt tadpole treatment, and the third panel shows log2-fold 

change in gene expression in the 4ppt egg/6ppt tadpole vs. FW egg/6ppt tadpole treatment. In 

this plot, the log2-fold change is relative to the second treatment. For example, the gene adrm1-b 

is purple, which indicates that it is upregulated in the 4ppt egg/4ppt tadpole compared to the FW 

egg/FW tadpole treatment.  
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Figure 4-9. Gene Ontology of differentially expressed annotated genes between coastal and 

inland populations.  The top panel shows the number of genes classified into different 

molecular functions, while the bottom panel shows the genes that were classified into biological 

processes. Sometimes the same genes could be categorized into both molecular functions and 

biological processes. 
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Figure 4-10. Gene Ontology of differentially expressed annotated genes between FW 

egg/FW tadpole vs. 4ppt egg/4ppt tadpole contrast.  The top panel shows the number of genes 

classified into different molecular functions, while the bottom panel shows the genes that were 

classified into biological processes. Sometimes the same genes could be categorized into both 

molecular functions and biological processes. 
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Figure 4-11. Gene Ontology of differentially expressed annotated genes between FW 

egg/FW tadpole vs. FW egg/6ppt tadpole contrast.  The top panel shows the number of genes 

classified into different molecular functions, while the bottom panel shows the genes that were 

classified into biological processes. Sometimes the same genes could be categorized into both 

molecular functions and biological processes. 
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Figure 4-12. Gene Ontology of differentially expressed annotated genes between FW 

egg/6ppt tadpole vs. 4ppt egg/6ppt tadpole contrast.  The top panel shows the number of 

genes classified into different molecular functions, while the bottom panel shows the genes that 

were classified into biological processes. Sometimes the same genes could be categorized into 

both molecular functions and biological processes. 
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Figure 4-13. Differentially expressed genes that contribute to binding and transporter 

activity between coastal and inland populations. The top panel shows the log2-fold change in 

genes classified into binding functions, while the bottom panel shows the log2-fold change in 

genes classified as transporter genes. Log2-fold changes reflect expression in coastal populations 

compared to inland populations.  
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Figure 4-14. Differentially expressed genes that contribute to stress pathways between 

coastal and inland populations. The top panel shows the log2-fold change in genes classified 

into binding functions, while the bottom panel shows the log2-fold change in genes classified as 

transporter genes. The top left plot shows the genes involved in the cytokine/chemokine 

inflammation pathway. The top right plot shows genes involved in constructing vasopressin 

hormone. Bottom left shows genes involved in the oxidative inflammation pathway, and the 

bottom right shows the genes involved in the p53 pathway. In each of these plots, a number 

above zero (horizontal line) indicates these genes were upregulated in coastal populations 

relative to inland.  
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Supplementary Material:   

4S-1: List of most upregulated genes in coastal populations.  This data is meant to assist in 

the interpretation of the left-hand panel in Figure 7, in which the gene names and values may be 

too small to interpret.  

Gene 

Log2- Fold 

Change 

aacs 2.51612961 

acan 3.14156541 

acot13 4.64053824 

ADAM17 5.99707333 

AL590867.1 2.34053523 

ARRDC3 6.22478525 

atraid 1.05259307 

AXL 1.03680187 

B4GALT3 2.5199182 

Bahcc1 1.47303159 

BCLAF1 3.21555883 

BLVRA 10.2101753 

C14orf102 1.31391481 

C17orf61 2.06462859 

c1ql1 1.38737028 

C20orf7 2.5028449 

C2orf40 1.60687376 

C3orf17 2.35892487 

Capg 5.83948463 

CDH23 1.08147831 

cdk2 1.75260823 

CHAC1 1.29645433 

chac2 6.65805672 

chordc1 1.74177628 

chst12 1.23735167 

cnih4 5.75980783 

COG8 1.55225685 

creld2-b 2.11311301 

DAP3 2.93387416 

dcaf10 2.69384576 

ddx19b 1.03526976 
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dgat2 2.12144593 

DKEY-71L1.7-001 3.91460264 

dnm2 1.58845931 

Ech1 1.63850649 

elp3 10.6605819 

env 2.43216722 

ERVW-1 2.96345885 

exoc3 1.8309241 

Exosc5 3.26779939 

extl2 1.13011251 

f13b 10.7000484 

FAM180A 1.0061252 

fam192a 2.38895734 

FAM194A 1.21535986 

fgg 4.78913012 

foxc1 8.37939084 

gchfr 3.49099932 

GDI2 1.43613093 

GDPGP1 1.74002556 

Gga3 2.18638075 

GIN1 2.02235764 

gpc4 5.48679327 

Grhpr 2.6536008 

GRN 1.29222933 

gsr 2.03922516 

GSX1 1.53938395 

GTPBP4 2.69612064 

hba4 7.62764638 

hdac1 1.10794736 

herc4 4.01815133 

hibadh 4.93738592 

hmgcr 1.78336237 

hnrpdl 4.15458082 

hsp90aa1.1 1.12142111 

IDH1 13.9944005 

IDI1 5.46243756 

ik 1.11575375 

Imp3 1.03754903 

ISCA1 5.36948315 

itpr1 1.0322663 
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KCNE5.1 1.24582137 

KIAA1468 3.447632 

L1td1 1.76461867 

lancl1 8.76907201 

lig3 2.32335137 

LIN7B 1.08616626 

LPL 1.69187195 

mad2l2 11.329642 

mcrip2 1.63431377 

med22 8.55062546 

med6 1.51565764 

mfsd14a 10.7335217 

MGC145244 5.43206982 

MGC145685 2.10561458 

MGC147314 1.0159904 

mib2 3.65978475 

Mllt4 8.31368925 

MMAA 1.12404296 

MN1 1.61145389 

mpv17 2.70967735 

MRPL32 1.95378706 

MRPL9 9.79497179 

Mvan_2161 1.0102758 

MVK 2.47556243 

Myst1 1.36635836 

ncdn 1.42409162 

NDUFC1 2.52495495 

nr0b1 2.7472029 

nvl 1.65115374 

opa3 3.29704098 

OR10AD1 1.97973856 

pbdc1 1.12812664 

pdlim4 1.19435613 

Pol 1.22816742 

ppp2r5c 5.11345765 

Prpf38b 1.83230536 

psma7 1.36728532 

RFESD 1.24111549 

rnf121 2.39746408 

rpl36 1.40117505 
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rpl7a 1.28240121 

rpp30 1.87758291 

rps2 6.38018722 

rps5 1.03952157 

rrh 1.26967115 

Sepx1 2.40231475 

SERPINI1 1.83080398 

SGCG 3.82160696 

SH3GL2 1.04006792 

slc20a1 7.96506141 

smn2 1.14572415 

ssbp3 1.11069088 

STOM 2.65458747 

TACO1 1.21621389 

TAF13 3.53234636 

Taldo1 2.42590059 

tardbp 8.0355647 

tek 5.69103387 

telo2 1.31789698 

Tf2-1 2.36937456 

Tfr2 1.08996481 

TGas113e22.1 1.50643664 

Tm9sf4 1.91012545 

TM9SF4 1.3958438 

TMEM167A 2.44008415 

top1.1 1.03715353 

TRIM27 1.12724259 

trmu 1.36215114 

tspan31-b 1.07092677 

TTLL12 2.78823321 

TYMS 2.19026618 

u2surp 1.8496272 

vstm2l 5.7454443 

XB-GENE-992854 3.01605048 

ZCCHC3 1.39495897 

zcchc7 4.3766589 
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4S-2: List of most downregulated genes in coastal populations.  This data is meant to assist in 

the interpretation of the right-hand panel in Figure 7, in which the gene names and values may be 

too small to interpret. 

Gene 

Log2-Fold 

Change 

2210411K11Rik -1.2510059 

ABCA1 -0.8429979 

acacb -1.2775975 

ACHE -1.0904211 

Adpgk -1.1413101 

AGRN -1.1863814 

ankrd9 -1.5793013 

ANKRD9 -1.4516239 

arg2 -0.8993904 

asb13 -0.9069456 

atp5s -0.806364 

bbs2 -1.1419002 

BSG -1.2973577 

C10orf122 -0.9905566 

C14orf159 -1.2276128 

calm1 -1.3297101 

Camkk2 -0.9882067 

CFLAR -0.9445586 

CHGA -0.7695686 

cited2 -0.9098547 

CKM -1.2983423 

cnppd1 -1.3431869 

COL6A3 -1.0843009 

cox6a2 -1.1979806 

CRYBG3 -0.9334174 

ctdsp2 -0.7765466 

Ctf1 -0.9280479 

CYP2G1 -1.1015109 
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dnajc27-a -0.9069536 

Dusp27 -1.2352115 

efhc2 -0.7680114 

EGLN2 -2.2285547 

ELMOD1 -0.8096248 

EML5 -1.6366439 

epb41 -0.772942 

fam134b -1.147164 

Fars2 -1.3813702 

fbxo18 -0.7675386 

Fbxw10 -1.1152266 

Foxk1 -0.7832894 

furin -1.035493 

glul -0.9515384 

gm2a -0.988407 

GTF2IRD1 -0.7584103 

HDAC5 -0.7719614 

IRGC -0.8221606 

KIAA0831 -0.9064932 

kidins220 -0.9341514 

KIDINS220 -0.9151966 

LKAP -0.7680964 

lmbr1 -0.789469 

LRP12 -0.9065498 

LRRFIP1 -0.8566742 

MAN2A1 -0.7878125 

mapk7 -1.6864217 

mctp2 -0.7713278 

mea1 -0.9108787 

mllt10 -0.8105211 

msh3 -0.8961391 

Mx2 -0.9831257 

MYO18B -0.8973417 

MYPN -1.0847344 

Necap2 -1.0481207 
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NLRP12 -1.4206728 

pacs1 -0.936577 

Pdk2 -1.2490639 

PF10_0343 -0.8457786 

phf21a -0.8608986 

Pik3c2a -1.0927038 

PIK3C2A -0.8540177 

PITX1 -0.7977413 

pkhd1l1 -1.2871075 

pmp22 -1.6723768 

PPP1R9A -0.854675 

Prodh -1.4144988 

rpl35a -1.1133154 

samhd1 -0.7938661 

sbno2 -1.3930407 

slc2a2 -1.3450419 

slc3a1 -0.9893694 

Sned1 -1.1152505 

sptbn2 -0.8106318 

Sqstm1 -0.7688743 

srrt-a -1.815642 

SYT1 -0.9379786 

tbk1 -0.7948916 

TCF20 -0.7953846 

TESK2 -0.8490179 

thdl18 -1.6837015 

TICRR -1.0846027 

TMEM66 -0.7819218 

TMEM8A -0.8794118 

Tmprss9 -1.0174708 

TNFSF10 -1.0142705 

TRIM25 -0.908048 

Trpv6 -1.0889467 

ubr4 -0.8455087 

Ugt2a2 -1.5888467 
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UNC5D -1.073869 

XB-GENE-5768835 -1.0415724 

Yipf1 -0.8317193 

ZNF649 -0.8099827 

 

  

 

 

 

 

 

 



 

CONCLUSION 

This dissertation integrated theoretical, empirical, computational, and next generation genomic 

techniques to address fundamental questions in evolutionary ecology about the ability of species 

to evolve and occupy a new habitat type. We show that chronically salt-exposed, coastal frog 

populations are diverging from salt-naïve, inland frog populations in response to saltwater 

exposure across life stages. We find differences between locations in adults during reproduction 

and oviposition site choice behavior (Chapter 1), egg hatching (Chapters 1 & 4), early-stage 

tadpole survivorship (Chapters 1 & 4), as well as survivorship and growth rates throughout larval 

development (Chapter 3), and size at and time to metamorphosis (Chapter 3). We also identify a 

suite of genetic mechanisms (Chapter 4) that likely contribute to the enhanced ability of coastal 

populations of this species to persist in saline habitats. Finally, we examine the influence of a 

variety of biological processes on a species’ adaptive potential in a changed environment 

including life history strategy (Chapters 2 & 3), density dependence (Chapter 3), phenotypic 

plasticity (Chapter 2), and genetic variation (Chapter 3). Although this dissertation has answered 

many questions and accomplished many of the goals established at the outset of this work, this 

research has also revealed new and additional questions. After five years of thinking about 

evolution, environmental change, and frogs, I have three main lingering questions that remain 

unanswered:  

 

1) Determining the rate of evolution that allowed these frogs (or any freshwater organism) to 

occupy and persist in saline marshes. Although we can certainly make general estimations about 

the rates of evolutionary change based on our model (Chapter 3), at this point such estimates 
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would be largely conjecture. Indeed, given that a primary motivation for this research has been to 

understand whether evolution can keep pace with the rates of contemporary environmental 

change, this is a particularly noticeable gap in this dissertation and in our understanding of 

adaptive processes in general. Nevertheless, we can glean some insights about the minimum 

rates of evolutionary change for coastal frogs. The last glacial maximum occurred approximately 

21,000 years before present. Phylogeographic analyses suggest that during that ice age, 

Holoarctic frogs (including Hyla cinerea) occupied refugia in Florida and Texas, and following 

the recession of glaciers, expanded northward along the coast to their current range (Barrow et 

al. 2017). Around the same time, Pamlico Creek was being progressively inundated, destined to 

become the drowned river Albemarle/Pamlico estuary system (Riggs and Ames 2003, Pre et al. 

2011). Thus, it may be that the earliest possible time that frogs could have occupied coastal, 

saline habitats was approximately 20,000 years before present. Future work may use different 

genomic techniques than those discussed in Chapter 4 to plumb additional information hidden 

within our transcriptomic data to better predict rates of evolutionary change.  

 

2.) Will Hyla cinerea, or another amphibian species, ever become fully marine? More 

specifically, are there limits to saltwater adaptation for frogs or any freshwater animal, or will 

frogs continue to evolve to tolerate increased osmotic stress until they are capable of tolerating 

and inhabiting full-strength seawater? It may be possible, since there is at least one species of 

frog (Fejervarya cancrivora) that has evolved to live and breed in marine mangrove forests that 

fringe the Java Sea (Gordon et al. 1961, Gordon and Tucker 1968, Shao et al. 2015).  
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3.) What is happening with other frog species regarding salt-tolerance? Will all frogs be able to 

respond adaptively to increased exposure to saltwater? We use H. cinerea because this species 

has successfully hurdled evolutionary barriers that prevent saltwater tolerance, and as a result, 

much can be learned about evolutionary transitions. Although not included in this dissertation, I 

conducted a project in which I duplicated the experiments conducted in Chapter 1 on two 

additional species in the same genus as H. cinerea; Hyla chrysoscelis and Hyla squirrella, with 

the purpose of exploring whether other frog species show similar responses to saltwater as Hyla 

cinerea. Both frogs’ ranges overlap with H. cinerea with two important differences. First, H. 

chrysoscelis has not been observed in a wetland within 20 miles of the coast, although is 

sympatric otherwise. Second, although H. squirrella is found in coastal and inland wetlands, this 

species is observed exclusively in freshwater wetlands at the coast. The results from that project 

show three distinct responses across these three species. Coastal Hyla squirrella tadpoles 

actually appear to be maladapted to saltwater exposure compared to inland populations, possibly 

due to an ecological trap occurring with oviposition site choice behaviors. Hyla chrysoscelis 

tadpoles have high survivorship that matches coastal Hyla cinerea survivorship, but none of the 

eggs hatch if salinities exceed 2ppt. Thus, it could be high embryonic sensitivity that excludes 

Hyla chrysoscelis from inhabiting coastal wetlands.  

 

In fact, it appears that Hyla cinerea is unique in its ability to demonstrate adaptive differences 

among even closely related species, suggesting that adaptation to saltwater exposure very well 

may be the exception rather than the norm (which is corroborated by work by Brady (2013), 

Brady (2017)). Therefore, to understand likelihoods of evolution, we also need to better 

understand the different factors that slow or constrain evolution in species that do not appear to 
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be able to adapt, such as those occurring in Hyla squirrella or Hyla chrysoscelis. Questions of 

this nature are often unanswered because the species that could not evolve have gone extinct and 

are no longer available for study. But if we can identify locations/populations facing intensified 

selective pressures prior to major losses, we may be able to identify traits associated with 

adaptation or maladaptation and examine how these traits interact with contemporary selective 

pressure from environmental change to affect adaptive responses (Urban et al. 2016).  
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