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ABSTRACT 

Respiratory protective equipment is recommended as one method to diminish exposure to 

airborne pollutants, including volatile organic compounds (VOCs). Activated carbon fiber (ACF) 

has a potential use as an alternative adsorbent in respirators for VOCs. The advantages of ACF 

as an alternative absorbent include larger surface areas, higher adsorption capacities, thinner 

critical bed depth, higher number of micropores, faster heat and mass transfer properties, and its 

fabric form. When its saturation capacity is reached, the adsorbent is no longer effective for 

removing pollutants. To recover the ability to capture gaseous pollutants, carbon adsorbents 

typically are regenerated. The ACF’s ability to be regenerated makes it a more cost effective, 

energy efficient and environmentally sustainable option to aid in certain purification processes. 

The purpose of this study was to investigate the effects of thermal regeneration on the adsorption 

characteristics of activated carbon fiber (ACF) in respirator cartridges for toluene and also to 

investigate the extent to which regeneration decreased the ACF’s adsorption capacity and 

breakthrough time (BT). Results showed that the 10% and 50% BTs for the two tested ACF 

types (ACF 210 and ACF 605) were not significantly different (P = 0.06).  However, the 

differences in 10% and 50% BT between the two toluene concentrations (200 and 500 ppm) 

were significant (P < 0.01) but the differences in 10% and 50% BT among the regeneration 



events were not statistically significant (P = 1.00). Consequently, ACF performed consistently 

well in adsorbing toluene to its full capacity even after multiple regenerations. The ACF’s 

performance in this study displays its potential to serve as an alternative adsorbent to granular 

activated carbon (GAC) in respirators. Effective adsorbents in respirators need to consistently 

adsorb VOCs to their full capacity even after multiple regenerations. Additionally, they must 

have no loss in breakthrough times regardless of the concentration exposures to VOCs. These 

particular requirements allow ACF to be a potentially effective adsorbent in respirators.   
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I. INTRODUCTION 

 

Exposure to volatile organic compounds (VOCs) can lead to serious effects on public 

health. Studies have shown an increase in a person’s risk of developing respiratory diseases, such 

as asthma, lung cancer, bronchitis, and chronic obstructive pulmonary disease when exposed to 

VOCs, in general (Fukakusa et al., 2011). In today’s society, the use of respirators is important 

in certain work environments due to increased use of VOCs, which could be detrimental to the 

health and safety of workers in these specific work fields. Respiratory protective equipment is 

recommended as one method to diminish the risk of exposure to airborne pollutants. However, 

many studies have shown that workers, in many cases, are not compliant with respiratory 

protection guidelines, especially with the use of respirators as protection (Baig et al., 2008; 

Fukakusa et al., 2011). One of the reasons behind this trend is that respirators can be heavy, 

causing discomfort for the workers (Baig et al., 2008). Most respirators are designed to use 

granular activated carbon (GAC) and, while it has various advantages, the GAC’s properties 

contribute to the respirator’s bulkiness. Research is being conducted to find alternatives to reduce 

discomfort for workers required to use respirators, and one of the breakthroughs is the possibility 

of replacing GAC with a different form of adsorbent, which is the activated carbon fiber (ACF) 

(Balanay et al., 2016). 

 

  



	

 
II. LITERATURE REVIEW 

 

Volatile Organic Compounds 

Volatile organic compounds (VOCs) are pollutants frequently encountered in the 

workplace and common sources are building materials, office equipment, graphics and craft 

materials including glues and adhesives (U.S. Environmental Protection Agency [EPA], 2017). 

Common VOCs encountered in the workplace include toluene, benzene, and tetrachloroethylene. 

VOCs have the potential to cause health problems ranging from eye, nose, and throat irritation to 

more serious health effects such as mutations in humans, which can lead to oncogenesis (EPA, 

2017). Workers chronically exposed to higher concentrations of VOCs have higher risks of 

chronic respiratory symptoms (Jang et al., 2007). Such VOC exposure includes emissions from 

chemical manufacturing plants, associated with increased rates of chronic respiratory symptoms 

that are characteristic of reactive airways (Jang et al., 2007). Ways to reduce exposure to VOCs 

include increasing ventilation when using products that emit VOCs, as well as the use of 

respirators. A common method for removing VOCs in respirators is by adsorption onto GAC.  

 

Toluene as a VOC 

A common VOC found in the workplace is toluene. Toluene is an organic solvent found 

in commercially available products such as gasoline, paint, adhesives, glue, and various 

industrial solvents (Yoon et al., 2016). Toluene can become distributed throughout the body, 

accumulating in tissues with high lipid content and affecting organs such as the liver, lungs, 

kidneys, and brain (Yoon et al., 2016). The central nervous system (CNS) is the primary target 

organ for toluene toxicity in both humans and animals for acute (short-term) and chronic (long-

term) exposures. Symptoms frequently observed in humans acutely exposed to elevated airborne 
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levels of toluene are fatigue, sleepiness, headaches, and nausea. Chronic inhalation exposure of 

humans to toluene also causes irritation of the upper respiratory tract and eyes, sore throat, 

dizziness, and headache (EPA, 2012). Occupational exposures to toluene can be found in 

industrial and construction workplaces. Workers using toluene-containing products (e.g., paints, 

varnishes, glues and adhesives, rust preventives or industrial solvents) may be exposed to 

toluene. Toluene may enter a person’s body by inhalation, ingestion, or contact via skin or eyes. 

The recommended level of toluene a person breathes over a work day is determined by the 

concentrations in the air, also known as permissible exposure limits (PELs) (Occupational Safety 

and Health Administration [OSHA] 2014). Workers tolerate concentrations ranging up to 200 

ppm for 6 to 8 hours daily with no demonstrable ill effects; concentrations between 200 to 500 

ppm for 6 to 8 hours will cause clinical symptoms in workers; concentrations greater than 500 

ppm for 1 to 3 hours can cause serious acute damage to worker health due to high concentration 

exposure (OSHA, 2014).	

 

VOC Adsorption on Activated Carbon 

Adsorption is the adhesion of molecules (e.g., gases, solutes, or liquids) to the surfaces of 

solids or liquids with which it comes into contact. In adsorption, gaseous pollutants are removed 

from an air stream by transferring the pollutants to the solid surface of an adsorbent (EPA, 2017). 

The two basic forms of adsorption are physical and chemical adsorption. Chemical adsorption 

occurs when there is a formation of chemical bonds between the adsorbate and the adsorbent. 

This process requires activation energy and results in unimolecular layer. This process is 

considered to be irreversible.  In contrast, physical adsorption, or physisorption, involves 

attractive forces between the adsorbent surface and adsorbate molecules that are relatively weak 

and is governed by van der Waals’ and electrostatic forces (Ramaswamy et al., 2013). Hence, it 
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is also called van der Waals’ adsorption. Low temperature promotes physical adsorption, while 

high temperatures decrease the rate of adsorption. This process is considered reversible, is 

exothermic, and requires no activation energy.  

Activated carbon is the most commonly used adsorbent, although zeolites, polymers, and 

other adsorbents may be used. Limitations exist in the amount the adsorbent can collect. When 

the limit is reached, the adsorbent is no longer effective in removing pollutants. To recover the 

ability to capture gaseous pollutants, adsorbents typically are regenerated. The maximum 

capacity the adsorbent can hold is the saturation capacity. However, before reaching saturation 

capacity, there is a breakthrough capacity. Breakthrough capacity is the amount of pollutant that 

can be adsorbed before a significant pollutant concentration exits, or breaks through, the bed. 

Heel capacity is the amount of pollutant that remains in the bed after it has been regenerated. 

Working capacity is the difference between breakthrough capacity and heel capacity, and 

represents the amount of material that can be adsorbed in each working cycle (EPA, 2017). 

 

Granular Activated Carbon (GAC) vs Activated Carbon Fiber (ACF) 

The usual method of purifying VOCs from breathed air in the workplace involves using 

respirators that adsorb the VOCs onto granular activated carbon (GAC). GAC is currently the 

most common adsorbent used in respirators for protection against gas phase contaminants, such 

as the VOCs. However, the use of GAC has its drawbacks. For example, using GAC requires the 

use of a cartridge or canister to contain the granules, which can present issues with increasing 

weight and bulkiness of respirators, contributing to discomfort of the wearer and lowering the 

probability of respirator use (Balanay et al., 2016). Other drawbacks of GAC include the attrition 

of the granular material and particle entrainment (Pang et al., 2005).   

ACF is an alternative carbon adsorbent that can overcome some of the drawbacks of 
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GAC. ACF is attained from the carbonization and activation of polymeric fibers from various 

precursors, such as viscose rayon, phenolic resin, polyacrylonitrile, and pitch (Suzuki, 1994). 

The unimodal narrow pore size distribution of the ACF is due to its small diameter which allows 

for the homogeneous activation of the fibers (Feng et al., 2005). Two of the current applications 

for ACF, other than in respirators, include air pollution control (Lorimier et al., 2005) and 

wastewater treatment (Wang et al., 2007). ACF has been used in air pollution control and 

wastewater treatment to remove acidic gases (ACID), benzene, butanol, toluene, undecane, and 

other harmful gases and chemicals (EPA, 2017).  

Some of the advantages of ACF as an adsorbent over GAC include larger surface area, 

higher adsorption capacity, thinner critical bed depth, higher number of micropores, and faster 

heat and mass transfer properties (Tsai et al., 2008; Balanay et al., 2011).  A study by Balanay et 

al. (2011) found that ACF, both in cloth and felt forms, with similar or greater surface area 

(1,500 – 2,000 m2/g) than the GAC has higher adsorption capacity for toluene and, thus, may 

provide greater protection against toluene when used in a respirator. Another advantage is that 

ACF can be manufactured in fabric forms (e.g., cloth, felt), making it more versatile to use 

compared to the GAC (Lorimier et al., 2005). ACFs are a more affordable and versatile option 

for the adsorption of VOCs in respirators (Wang et al., 2007). These advantages make the ACF a 

great candidate to serve as an alternative adsorbent to GAC in the design of a respirator that is 

thinner and lighter, and provides efficient protection against exposure to VOCs (Balanay et al., 

2011).  

 

Adsorption Capacity of Activated Carbon Fibers for Toluene  

Others have investigated the adsorption capacity of ACF for various VOCs. Tsai et al. 

(2008) showed that the ACF’s high surface area and smaller fiber diameter increased the 
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adsorption capacity compared to other ACF forms and sludge-derived adsorbent for VOCs. 

Previous studies also investigated the adsorption capacity of various ACF forms, such as cloth 

and felt, for VOCs. These two ACF forms are distinct in terms of physical characteristics.  For 

example, the ACF cloth is composed of woven bunch of twisted fibers while the ACF felt is 

composed of non-woven, randomly distributed fibers (Balanay et al., 2014). Consequently, this 

makes a single layer of ACF cloth thinner and denser than a layer of ACF felt, which is spongier 

in nature (Balanay et al., 2011).		Balanay et al. (2011) found ACFs to be good adsorbents for 

toluene, with ACF in cloth form with 2000 m2/g surface area having the highest adsorption 

capacity (595-878 mg/g) for toluene compared to the ACF in felt form (221-616 mg/g). In a 

study conducted by Lorimier et al. (2005), the adsorption capacity of toluene onto ACF cloth and 

felt was investigated. Findings showed no major differences between adsorption capacities at 

saturation (and breakthrough time) between either forms at low toluene concentration (10 ppm), 

but appeared to be slightly higher for felts (616 and 430 mg/g) than for cloths (549 and 270 

mg/g) at a higher toluene concentration (80 ppm). Additionally, the toluene concentration 

influenced the adsorption capacity at saturation which was found to be greater for felts than for 

cloths (Lorimier et al., 2005). Another study analyzed the behavior and kinetics of toluene 

adsorption and desorption on activated carbons with varying pore structures (Yang et al., 2017). 

The same study showed that adsorption force, the force required to release the adsorbate from the 

surface, increased as pore size decreased. This leads to adsorption occurring first in the 

micropores, where the adsorption was high. It was also found that when the relative pressure was 

low, the adsorption capacity increased, and slowed in the increase at its neared saturation. In a 

study conducted by Lin et al. (2013), the oxidation and adsorption of toluene onto ACFs at high 

concentration and adsorption temperatures was investigated. Results indicated that the 

breakthrough time decreased with an increase in toluene concentrations, and the adsorption 
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capacity of toluene increased when the concentration of toluene increased. Additionally, the data 

showed a decrease in breakthrough time and adsorption capacity with increasing adsorption 

temperature (Lin et al., 2013). In a study that investigated the effects of composition of fibrous 

filter on toluene adsorption, it was concluded that composition of fibrous filters strongly 

influenced the structural and mechanical properties (Rochereau et al., 2008). The ACF ratio and 

beating of cellulose fiber as parameters compromise the adsorption and filtration performances 

done on the ACF (Rochereau et al., 2008). Beating, or refining, of cellulose fibers is the 

mechanical action that causes fibers to become more flexible and conformable and their specific 

surface area to increase, but it makes fiber surfaces to become frayed and fibers to be shortened 

and swell (Rochereau et al., 2008). 

 

Pressure Drop across ACF Respirators Cartridges   

The difference in static pressure between two pressure points located before and after an 

air-cleaning media, which is a function of flow rate and face velocity, is defined as pressure drop 

(Balanay et al., 2016). The National Institute for Occupational Safety and Health (NIOSH) has 

standard testing procedures (STPs) that set maximum resistances in mmH2O for air-purifying 

respirators. The maximum allowable resistance requirement for chemical cartridge respirators 

other than single-use vinyl chloride respirators is 20 mmH2O for exhalation resistance (NIOSH, 

2014a), and 40 mmH2O for inhalation resistance (NIOSH, 2014b). It is important that respirators 

have a low pressure drop so workers do not experience any negative effects in work performance 

(Baig et al, 2008). When there is an increase in inhalation and exhalation resistances across 

respirators, workers experience decreased performance. 

A study conducted by Balanay et al. (2016) demonstrated that ACF can be configured in 

respirator cartridges to have acceptable pressure drop based on the NIOSH maximum inhalation 
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resistance of 40 mmH2O (NIOSH, 2014b). In the same study, pressure drop measurements were 

conducted across ACF cartridges containing various types and combinations of ACF forms (e.g., 

100% ACF cloth, 100% ACF felt, combination of ACF cloth and felt). Results showed that 

cartridges filled with 100% ACF cloth had unacceptable pressure drop of 85.47 mmH2O (i.e., 

more than twice the NIOSH limit) while those filled with 100% ACF felt had acceptable values 

(23.71 – 39.93 mmH2O), which is likely attributed to the difference in fiber organization (woven 

vs. non-woven) between the ACF cloth and felt (Balanay et al., 2016). Therefore, although 

shown to have higher adsorption capacity than the ACF felt in previous studies, the ACF cloth 

was not recommended for use in respirators if used by itself due to its unacceptably high pressure 

drop (Balanay et al., 2016).  Thus, the current study focuses on only the use of ACF felt forms in 

respirator cartridge in investigating their adsorption characteristics. 

 

Regeneration of Activated Carbon 

Regeneration is the process of desorbing accumulated adsorbates and restoring the 

original porous structure with little or no damage (Ramaswamy et al., 2013). Activated carbon 

(AC) can be regenerated via thermal regeneration, which can be done by using steam, 

microwaves, embedded heaters, and heated nitrogen (Yue et al., 2017). Thermal regeneration is 

more practical when VOC have lower vapor pressures. To maximize solvent recovery, and 

elimination of contamination of VOCs by steam, a vacuum regeneration system may be used. 

Vacuum regeneration uses a vacuum pump to lower the pressure in the adsorbent below the 

vapor pressure of the adsorbed VOC, which causes the VOC to boil off at the temperature that is 

ambient within the adsorbent (Ramaswamy et al., 2013).  

Thermal regeneration involves the processes of drying, vaporization, pyrolysis, and 

selective oxidation of the pyrolyzed residue. Drying eliminates the highly volatile adsorbates; 
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vaporization of volatile adsorbates and decomposition of unstable adsorbates form volatile 

fragments; pyrolysis of non-volatile adsorbates causes deposition of carbonaceous residue on the 

surface of activated carbon; and selective oxidation of the pyrolyzed residue is conducted by 

steam, carbon dioxide, and other oxidizing agents (Yue et al., 2017). The regeneration of 

activated carbon is important because it is a more cost effective, energy efficient, and 

environmentally sustainable option to aid in processes, such as wastewater treatments and air 

pollution controls (Yue et al., 2017). Yue et al. (2017) conducted a study on electrochemical 

regeneration, which is considered a promising technology to regenerate exhausted ACFs. They 

found this to be important due to the high cost of raw materials for activated carbon (AC) and 

high energy consumption. This method would save in the cost for transporting ACs between 

water treatment facilities and AC regeneration units, and decreases the energy consumption 

associated with high temperature operation of thermal regeneration. The study also found that 

regenerated ACFs can effectively remove various VOCs from the air, but the average diameter 

of the spun fibers of the ACF was reduced to ∼10 μm (with most fibers originally with 7-15 μm 

diameter) (Yue et al., 2017). In a study using Joule heating regeneration technique, ACF cloth 

was rapid and efficient in removing the low initial loading of toluene. Additionally, after 

continuous adsorption/regeneration cycles (over 300 heating and cooling cycles), the ACF cloth 

showed excellent durability and adsorption capacity (Yao et al., 2009). Johnsen and Rood (2012) 

conducted a study on temperature control during regeneration of ACF cloth and any resistance 

feedback that could be experienced. ACF cloth resistance that was modeled based on its physical 

properties was within 10.5% of the measured resistance values during electrothermal heating. 

After 2 min of heating, the temperature of the adsorbent with isobutane was 13% less than the 

adsorbent without isobutene, and it decreased to 2.1% in difference after 9 min of heating, 

showing desorption of isobutane. An ACF cloth cartridge was heated to 175 °C for 900 cycles. 
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Its resistance and adsorption capacity values were within 3% and 2%, respectively. The study 

demonstrated that the electrothermal heating method provides a simple, cost-efficient, and long-

term regeneration technique for electrothermal swing adsorption (ESA) systems (Johnsen and 

Rood, 2012). 

 

Knowledge Gap in Thermal Regeneration of ACF 

Since physical adsorption occurs between the activated carbon (adsorbent) and VOCs 

(adsorbate), activated carbon can be regenerated via thermal, vacuum or electrochemical 

regeneration, making it a more cost effective, energy efficient and environmentally sustainable 

option to aid in certain purification processes (e.g., wastewater treatment, air pollution control) 

(Lorimier et al., 2005). However, additional studies should investigate the effects of thermal 

regeneration on the adsorption characteristics of the ACF used in respirator cartridges. A study 

found that the regeneration process reduces the average diameter of the ACF’s spun fibers (Yue 

et al., 2017). Is it possible that such fiber diameter reduction occurs and happens to the same 

extent every time the ACF is regenerated? Will this result to the decrease in the ACF’s 

adsorption capacity and breakthrough time when used in a respirator cartridge? Another factor 

that needs to be studied is if the breakthrough time would decrease at a higher concentrations of 

VOCs overtime after several regeneration cycles. There are significant gaps in the knowledge of 

the ACF’s capability to be regenerated for long-term use. There is insufficient data available at 

the present time to answer these questions, warranting additional studies to address these issues. 

  



	

	 	
	
	
	

 
III. SPECIFIC AIMS OF THE STUDY 

The main objective of this study is to investigate the effects of thermal regeneration on 

the adsorption characteristics of ACF in respirator cartridges for toluene.  The specific aims of 

the study are to: 

1. Compare the breakthrough times of toluene across ACF respirator cartridges by toluene 

concentration (200 and 500 ppm) 

2. Compare the breakthrough times of toluene across ACF respirator cartridges by ACF felt 

type based on density and layer thickness 

3. Compare the breakthrough times of toluene across ACF respirator cartridges by number 

of thermal regeneration events. 

 

 

 

 

 

 

 

 

 

 

 

 

 



	

	 	
	

	
	

 

IV. HYPOTHESES 

 

Hypothesis 1:  The percent reduction in breakthrough times of toluene across the ACF respirator 

cartridge after consecutive regeneration events will be greater in a higher toluene concentration 

(500 ppm) compared to a lower toluene concentration (200 ppm). 

Justification 1: Previous studies have demonstrated that breakthrough times of toluene decrease 

as the toluene concentration increases. In a study conducted by Lin et al. (2013), the oxidation 

and adsorption of toluene onto ACFs at high concentration and adsorption temperatures was 

investigated, and results indicated that the breakthrough time decreased with an increase in 

toluene concentrations, and the adsorption capacity of toluene increased when the inlet 

concentration of toluene increased. I hypothesize that regenerated ACFs that are exposed to a 

higher toluene concentration (compared to a lower toluene concentration) will have a bigger 

reduction in breakthrough times after consecutive regenerations because of higher heel capacity, 

which is the amount of adsorbate that remains in the ACF adsorbent after it has been 

regenerated. 

 

Hypothesis 2:  The percent reduction in breakthrough times of toluene across the ACF respirator 

cartridge after consecutive regeneration events will be lower for thicker and denser ACF 

materials compared to a thinner and less dense ACF materials. 

Justification 2: In a study that investigated the effects of composition of fibrous filter on toluene 

adsorption, it was concluded that composition of fibrous filters strongly influences the structural 

and mechanical properties. I hypothesize that thicker and denser ACF, after regeneration, will 

undergo a lesser extent of degradation (e.g., reduction in fiber diameter) and structural  
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modification compared to thinner and less dense ACF, and thus resulting in lower reduction in 

breakthrough times. 

 

Hypothesis 3:  The breakthrough time of toluene across the ACF respirator cartridge will be 

reduced as the number of thermal regeneration events is increased. 

Justification 3: Breakthrough time decreases with continuous adsorption/ regeneration cycles. In 

a study conducted by Yao et al. (2009), a single-layer of ACF cloth was tested for the adsorption 

and regenerative properties using toluene as the indoor contaminant for filtration of air pollution. 

It was tested for breakthrough times and its effectiveness after regeneration for adsorption of 

VOCs. Results showed that ACF cloth had excellent durability and adsorption capacity. 

However, after numerous regenerations, the breakthrough time for the ACF decreased. This 

finding was deduced due to the reduction in the thickness of fibers, resulting in less adsorbent 

mass and surface area to which adsorbates may be collected. 

 

 

 

 

 

 

 

 

 

 

 



	

	

V. SIGNIFICANCE OF THE STUDY 

In today’s society, the use of respirators is important in certain work environments due to 

increased use of volatile organic compounds (VOCs), which could be detrimental to the health 

and safety of the workers. Respiratory protection may help diminish the risk of exposure to 

gaseous contaminants in the workplace. However, breakthroughs in finding an alternative 

adsorbent (e.g., ACF) for GAC, due to its recognized disadvantages, can be a promising option 

to improving respiratory protection and compliance in its use in the future. Advantages that come 

with the use of ACF as an alternative absorbent include larger surface areas, higher adsorption 

capacities, thinner critical bed depth, higher number of micropores, faster heat and mass transfer 

properties, and its fabric form which allow for the fabric form to heat more quickly; due to its 

higher number of microspores at its surface area. This makes ACF a great candidate to serve as 

an alternative adsorbent to GAC in the design of a thinner, lighter, and efficient respirator for 

protection against exposure to VOCs.  

The regeneration of carbonaceous materials is common, and its practice allows for the 

reuse of these materials. The regeneration of AC is important because it is a cost-effective, 

energy efficient, and environmentally sustainable option to aid in processes, such as wastewater 

treatments and air pollution controls (Yue et al., 2017). Hence, it is important to investigate the 

effects of thermal regeneration on the effectiveness of ACF as an adsorbent for VOCs in 

respirators. It is essential to know if regeneration decreases the ACF’s adsorption capacity and 

breakthrough time, and to know the extent for such decrease, if at all present. Another factor that 

will be investigated in this study is the effect of toluene concentration on ACF’s adsorption 

characteristics after regeneration. If thermal regeneration has insignificant effects on ACF’s 

adsorption characteristics, ACF will have a greater promise on the design of a regenerable, 

thinner, lighter and more efficient respirator than is currently on the market. However, there are 
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\currently significant gaps in the knowledge of the ACF’s capability to be regenerated for long-

term use. This study contributes significant knowledge on an under-investigated topic on ACF 

regeneration for respiratory protection application. There is insufficient data available at the 

present time to answer these questions, warranting for further research to help provide data on 

this gap to encourage further investigations into the effectiveness and durability of ACF after 

regeneration.  

 

  



	

	 	
	

 
VI. METHODOLOGY 

 

Materials 

Two types of ACF felt materials (American Technical Trading, Inc., Pleasantville, NY) 

with varying thickness and density were tested (Table 1). Three-inch diameter ACF discs (Figure 

1) that were previously exposed to toluene were treated overnight in a laboratory oven at 200°C, 

and then placed in a desiccator cabinet to cool down the ACF while preventing moisture 

adsorption. The ACF discs were then placed, layer by layer, on top of each other and sealed in a 

typical respirator cartridge (3-inch [7.62 cm] internal diameter, 1-inch [2.54 cm] bed depth) 

(Figure 2). Cartridges were filled with 100% of each ACF felt type with pressure drop values of 

<40 mm H2O based on previous study findings on pressure drop (Balanay et al., 2016). 

Polypropylene sheets (Pall Life Sciences, Port Washington, NY) were cut into 3-inch diameter 

discs and placed on both sides such that the ACF disc bed would be sandwiched between the 

polypropylene sheets to prevent the inhalation of carbon particulates from the ACF cartridge 

when used in a respirator.  

 

Table 1. Activated Carbon Fiber (ACF) Structural Properties by ACF Type 

ACF Type Thickness (cm)* Density (g/cm3) Number of Layers 

per Cartridge 

ACF 210 0.24 0.043 10 

ACF 605 0.50 0.070 5 
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Figure 1. Activated carbon fiber (ACF) felt discs: ACF 210 (left) and ACF 605 (right) 

 

  

Figure 2. Respirator cartridge with 3-inch internal diameter and 1-inch bed depth: a) 

uncovered showing the ACF discs; b) covered 

 

Breakthrough Determination 

ACF respirator cartridges were challenged with 2 concentrations (200 and 500 ppm) of 

toluene in a customized cylindrical test chamber. Using an Aladdin-1000 programmable syringe 

pump (World Precision Instruments, Sarasota, FL), liquid toluene was injected continuously at a 

specific rate into pre-conditioned air at constant temperature (25°C), relative humidity (50%) and 
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air flow (32 LPM) creating the desired challenge concentration of toluene in vapor form. Dry, oil-

free air was supplied by an air compressor equipped with air filtering units and pre-conditioned 

using a Miller-Nelson Model HCS-501-100 instrument (Assay Technology, Livermore, CA). 

The temperature and relative humidity in the test chamber were monitored using a HOBO Model 

U14-002 temperature and relative humidity data logger (Onset Computer Corp., Pocasset, MA). 

Breakthrough curves were obtained for each ACF cartridge configuration at different toluene 

concentrations by continuous monitoring of the effluent (i.e., downstream of the ACF cartridge) 

using a VOC-TRAQ II photoionization detector (PID) (MOCON Baseline Series, Lyons, CO). 

The influent (i.e., upstream of the ACF cartridge) was also monitored continuously in the same 

manner using another PID to confirm the influent gas concentration. The exposure system was 

calibrated before and after every exposure run while using the PID monitors in the same manner 

as the breakthrough experiments. The time in minutes when Cx/C0 = 0.1 (referred as the 10% 

breakthrough time) and Cx/C0 = 0.5 (50% breakthrough time), were determined for each 

breakthrough curve, and compared for each ACF cartridges tested. Repeat measurements (n=2) 

were performed to characterize variability of results. The ACF materials were thermally treated 

in a Precision Compact Model 665 oven (Thermo Scientific, Marietta, OH) at 200°C overnight 

prior to testing to desorb any volatile impurities and remove excess moisture on the adsorbent 

materials. This was done to regenerate the material for the next sequence of testing for the 

breakthrough determination of regenerated ACF. Each ACF disc was placed on the oven rack as 

single layers during regeneration to facilitate efficient desorption of toluene. The ACF materials 

underwent 4 regeneration/exposure events to determine its effects on adsorption characteristics. 

Figure 3 shows the schematic diagram of the experimental setup for breakthrough determination. 
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Figure 3. Experimental setup for breakthrough determination 

Data Analysis 

Line graphs were created to visualize breakthrough curves using Microsoft Excel.  Means 

and standard deviations for breakthrough times (10% and 50%) were determined and organized 

in tables. Percent reductions in breakthrough times, which is defined as the percent change in 

toluene breakthrough times by comparing the breakthrough times for new (i.e., never used) ACF 

with those for regenerated (i.e., previously used) ACF, were calculated using the following 

equation: 

"#$%#&'	%ℎ*&+#	(%) = "Never	used"	ACF	BT	 − "Regenerated"	ACF	BT
"Never	used"	ACF	BT × 100 
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The purpose of the percent reduction calculation is to demonstrate the extent of the change in 

breakthrough times of toluene across the ACF respirator cartridges as the effect of consecutive 

regeneration events. The Statistical Package for the Social Sciences (SPSS version 20, IBM, 

New York, NY) was used to analyze the data. One-way analysis of variance (ANOVA) was used 

to evaluate differences in 10% breakthrough times by ACF type, toluene concentration, and 

number of regeneration. P <0.05 were considered statistically significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	

	 	 	 	

VII. RESULTS 

The main objective of this study was to investigate the effects of thermal regeneration on 

the adsorption characteristics of activated carbon fiber (ACF) in respirator cartridges for toluene.  

Two types of ACF materials underwent 4 regeneration/exposure events (R1 to R4) at 2 toluene 

concentrations, resulting in a total of 32 regenerations and chemical challenges (Table 2). The 

average baking time for regeneration was 18 hours and 1 minute ± (standard deviation [SD] = 

10.8 minutes) (range: 17 hours and 30 minutes to 18 hours and 22 minutes).  

 

Table 2. Number of Breakthrough Runs by ACF Type, Toluene Concentration and 

Number of Regenerations (N = 32) 

ACF Type 

Toluene Concentration 

200 ppm 500 ppm 

R1 R2 R3 R4 R1 R2 R3 R4 

ACF 210 2 2 2 2 2 2 2 2 

ACF 605 2 2 2 2 2 2 2 2 

R1 – R4 – 1st to 4th regeneration 

 

Effect of Toluene Concentration on Breakthrough Time 

The 1st specific aim of the study was to compare the breakthrough times (BT) of toluene 

across ACF respirator cartridges between 200 and 500 ppm as toluene challenge concentrations 

to which the ACF cartridges were exposed. Table 3 shows the average 10% BT and 50% BT for 

2 ACF types (ACF 210 and ACF 605) at 2 toluene concentrations (200 and 500 ppm). Results 

show that differences in 10% BT and 50% BT between the two concentrations (200 ppm and 500 

ppm) were significant (P < 0.01) (Appendix B1). The average 10% BT for 200 ppm toluene 



	

	 	
	

concentration (91.4 ± 15.7 min) was significantly higher (F = 196.8, P < 0.01) than that for 500 

ppm concentration (37.2 ± 4.9 min). On the other hand, the 50% BT for 200 ppm toluene 

concentration (106.4 ± 16.8 min) was significantly higher (F = 218.7, P < 0.01) than that for 500 

ppm concentration (43.1 ± 6.9 min) (Table 3). Figure 4 compares the breakthrough curves 

between 200 and 500 ppm toluene concentrations for ACF 210 (Figure 4A) and ACF 605 

(Figure 4B), showing that breakthrough times occurred at a later time at a lower concentration 

(i.e., 200 ppm) for both ACF types. 

In relation to the BT comparison between toluene concentration, the 1st hypothesis of this 

study states that the percent reduction in breakthrough times after regeneration will be greater at 

a higher toluene concentration (500 ppm) compared to a lower one (200 ppm). Figure 5 shows 

the trend in percent reduction in 10% (Figure 5A) and 50% (Figure 5B) BT after regeneration 

events by toluene concentration and ACF type. As the number of regenerations increases, the 

percent reductions in either 10% or 50% BT times fluctuate and does not seem to have either a 

decreasing or increasing trend. Table 4 shows the percent reduction in 10% and 50% BTs of 

toluene across the ACF respirator cartridge after consecutive regeneration events by toluene 

concentration. The average percent reduction in 10% BT for 200 ppm toluene concentration (-3.7 

± 9.4 %) was not significantly different (F = 0.21, P = 0.65) from that of the 500 ppm 

concentration (-2.1 ± 2.5 %). Similarly, the 50% BT for the 200 ppm toluene concentration (0.6 

± 4.5 %) was not significantly different, though marginally, (F = 4.44, P = 0.05) from that of the 

500 ppm concentration (-3.2 ± 2.4 %) (Table 4, Appendix B4).   
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Effect of ACF Type on Breakthrough Time 

The 2nd specific aim of the study was to compare the breakthrough times of toluene 

across ACF respirator cartridges between ACF 210 and ACF 605 as ACF felt types with 

different density and layer thickness. Table 3 shows that both the 10% BT and 50% BT for ACF 

605 (73.4 ± 32.8 and 85.5 ± 37.5 min, respectively) are higher (p = 0.07 and 0.06, respectively) 

than those for ACF 210 (55.2 ± 23.9 and 62.0 ± 28.5 min, respectively) (Appendix B2). Figure 6 

compares the breakthrough curves between ACF 210 and ACF 605 for 200 ppm (Figure 6A) and 

500 ppm (Figure 6B) toluene concentrations, showing that the BTs occur later for ACF 605 for 

both toluene concentrations.   

In relation to the BT comparison between ACF types, the 2nd hypothesis of this study 

states that the percent reduction in BTs after regeneration will be lower for thicker and denser 

ACF 605 compared to thinner and less dense ACF 210. Table 5 shows the percent reduction in 

10% and 50% breakthrough times of toluene across the ACF respirator cartridge after 

consecutive regeneration events by ACF type to compare if there was a difference between 

thicker and denser ACF materials (ACF 605) and a thinner and less dense ACF materials (ACF 

210). There were slight changes in percent reduction but these differences were very small after 

each regeneration of either material. Consequently, thick/dense ACF and thin/less dense ACF 

performed within the same level of adsorption, regardless of the number of regenerations. The 

average percent reduction in 10% BT for ACF 605 (0.0 ± 4.1 %) was not significantly different 

(F = 3.42, p = 0.09) from that of ACF 210 (-5.8 ± 7.8 %). Moreover, the 50% BT for ACF 605 (-

0.5 ± 4.8 %) was not significantly different (F = 3.79, p = 0.07) from that of ACF 210 (-3.1 ± 2.0 

%) (Table 5, Appendix B5).   
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 Table 3. Average (±SD) 10% and 50% Breakthrough Times (BT, minutes) by ACF Type 

and Toluene Concentration 

ACF Type 10% BT 50% BT 

200 ppm 500 ppm Average by 

ACF Type 

200 ppm 500 ppm Average by 

ACF Type 

ACF 210 77.7 

(±8.6) 

32.8 

(±1.5) 

55.2 (±23.9) 91.3 

(±6.3) 

36.7 

(±1.0) 

62.0 (±28.5) 

ACF 605 105.1 

(±4.8) 

41.7 

(±1.9) 

73.4 (±32.8) 121.6 

(±6.9) 

49.4 

(±3.0) 

85.5 (±37.5) 

Average by 

Concentration 

91.4 

(±15.7) 

37.2 

(±4.9) 

--- 106.4 

(±16.8) 

43.1 

(±6.9) 

--- 

SD – Standard Deviation 
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R0 – no regeneration; R1-R4 – 1st to 4th regeneration 

 

Table 4. Percent Reduction in 10% and 50% Breakthrough Times by Toluene 

Concentration  

10% BT 

ACF Type 200 ppm 500 ppm 

R0 R1 R2 R3 R4 R0 R1 R2 R3 R4 

ACF 210 0 -22.7 -5.8 -5.2 -9.9 0 1.5 1.5 -3.0 -3.0 

ACF 605  0 5.9 2.9 0.5 4.4 0 -1.2 -3.5 -4.7 -4.7 

Mean --- -3.7 ± 9.4 --- -2.1 ± 2.5 

50% BT 

ACF Type 200 ppm 500 ppm 

R0 R1 R2 R3 R4 R0 R1 R2 R3 R4 

ACF 210 0 .5 -5.3 -3.2 -4.8 0 -2.6 -2. -5.3 -1.3 

ACF 605 0 3.0 6.0 4.3 4.3 0 -1.0 -7.8 -3.9 -1.0 

Mean. --- 0.6 ± 4.5 --- -3.2 ± 2.4 
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Table 5. Percent Reduction in 10% and 50% Breakthrough Times by ACF Type  

10% BT 

Toluene  

Concentration 

ACF 210 ACF 605 

R0 R1 R2 R3 R4 R0 R1 R2 R3 R4 

200 ppm 0 -22.7 -5.8 -5.2 -9.9 0 5.9 2.9 0.5 4.4 

500 ppm 0 1.5 1.5 -3.0 -3.0 0 -1.2 -3.5 -4.7 -4.7 

Mean --- -5.8 ± 7.8 --- 0.0 ± 4.1 

50% BT 

Toluene  

Concentration 

ACF 210 ACF 605 

R0 R1 R2 R3 R4 R0 R1 R2 R3 R4 

200 ppm 0 .5 -5.3 -3.2 -4.8 0 3.0 6.0 4.3 4.3 

500 ppm 0 -2.6 -2.6 -5.3 -1.3 0 -1.0 -7.8 -3.9 -1.0 

Mean --- -3.1 ± 2.0 --- 0.5 ± 4.8 
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Figure 4. Comparison of Toluene Breakthrough Curves for ACF 210 (4A) and ACF 605 

(4B) by Toluene Concentration and Number of Regenerations 
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Figure 5. Percent Reduction in 10% (5A) and 50% (5B) Breakthrough Times After 

Thermal Regeneration by Toluene Concentration and ACF Type 
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Figure 6. Comparison of Toluene Breakthrough Curves for 2 ACF Types at 200 ppm (6A) 

and 500 ppm (6B) Toluene Concentrations 
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Effect of Regeneration on Breakthrough Time 

The 3rd specific aim of the study, which is also addressed by the 3rd hypothesis, was to 

compare the BTs of toluene across ACF respirator cartridges by the number of thermal 

regeneration events. Figures 4 and 5 show that the breakthrough curves after 4 consecutive 

regeneration events, regardless of the toluene concentration and/or ACF type, remained the 

same. The breakthrough curves were consistent throughout regenerations in terms of 

breakthrough times. Comparing the 10% and 50% BTs by number of regenerations, the 

differences in either 10% BT or 50% BT were not statistically significant (P = 1.0) (Appendix 

B3).  

 

 

 

 

 
 
 
 
  



	

		
	

 
VIII. DISCUSSION 

 

Toluene Concentration Effects on Breakthrough Times 

 The first aim of this study was to compare the BTs of toluene across ACF respirator 

cartridges by toluene concentration (200 and 500 ppm). It was found that the average 10% and 

50% BT for 200 ppm toluene was significantly higher than the 10% and 50% for 500 ppm. This 

could be because lower concentrations require more time to saturate the ACF than higher 

concentrations, potentially leading to higher BTs. Previous studies have demonstrated that BTs 

of toluene decreased as the toluene concentration increased, which supports the results of this 

study. In a study conducted by Lin et al. (2013), the oxidation and adsorption of toluene onto 

ACFs at high concentration and adsorption temperatures was investigated, and results indicated 

that BT decreased with an increase in toluene concentrations, and the adsorption capacity of 

toluene increased when the inlet concentration of toluene increased.  

 

Comparison of Percent Reduction between Toluene Concentrations 

The initial hypothesis was that the percent reductions in BTs of toluene across the ACF 

respirator cartridge after consecutive regeneration events would be greater in a higher toluene 

concentration (500 ppm) compared to a lower toluene concentration (200 ppm) because of higher heel 

capacity. Heel capacity is the amount of pollutant that remains in the bed after it has been regenerated 

(EPA, 2017). The higher the toluene concentration, the higher the amount of pollutant will be left on the 

ACF after each regeneration cycle (Lin et al., 2013). This implies that the ACF exposed to 500 ppm 

toluene would have higher heel capacities compared to 200 ppm toluene concentrations and, thus, 

resulting to a less available surface area for VOC adsorption and a shorter BT. However, the results 

showed that the percent reductions in both 10% and 50% BT of toluene across the ACF respirator 
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cartridge after consecutive regeneration events are not significantly different between the 2 toluene 

concentrations. A possible explanation for this is that the heel capacity may have ended to be equal and 

insignificant in amount for both concentrations due to the relatively long regeneration time, allowing all 

previously adsorbed toluene to effectively desorb and consequently freeing all possible adsorption sites. 

Thus, this resulted in no significant differences in percent reductions in BTs. However, heel capacity 

was not directly measured in this study and may be investigated in future studies. 

 

ACF Type Effects on Breakthrough Times 

 The second aim of this study was to compare the BTs of toluene across ACF respirator 

cartridges by ACF felt type based on density and layer thickness. The study found that the 

average 10% and 50% BTs between ACF 210 and ACF 605 were not significantly different. 

These findings contradict those in some other published studies. For example, in a study 

conducted by Yao et al. (2009), a single-layer of ACF cloth was tested for the adsorption and 

regenerative properties using toluene as the indoor contaminant for filtration of air pollution. It 

was tested for BTs and its effectiveness after regeneration for adsorption of VOCs. The same 

study showed that ACF cloth had excellent durability and adsorption capacity. However, after 

numerous regenerations, the BT for the ACF decreased. This finding was deduced due to the 

reduction in the thickness of fibers, resulting in less adsorbent mass and surface area to which 

adsorbates may be collected. The reason for this contradiction in findings could be due to the 

thicker and denser ACF after regeneration that did not undergo any loss in surface area or 

thickness of fibers resulting in no significantly different averages in the 10% and 50% BTs 

between ACF 210 and ACF 605. The changes in fiber morphology and surface characteristics 

may be further investigated and confirmed in future studies by examining the adsorbent material 
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under a scanning electron microscope (SEM) and/or analyzing the surface area using a 

physisorption analyzer. 

 

Comparison of Percent Reduction between ACF Types 

 The second hypothesis made was that the percent reduction in BTs of toluene across the 

ACF respirator cartridge after consecutive regeneration events would be lower for thicker and 

denser ACF materials compared to a thinner and less dense ACF materials. However, this study 

found that the percent reductions in both 10% and 50% BT of toluene across the ACF respirator 

cartridge after consecutive regeneration events are not significantly different between ACF 210 

and ACF 605. This found the hypothesis made to be incorrect. These findings were contradicted 

by another study that investigated the effects of composition of fibrous filter on toluene 

adsorption (Rochereau et al., 2008). The study concluded that composition of fibrous filters 

strongly influences the structural and mechanical properties. The ACF ratio and beating of 

cellulose fiber parameters compromise the adsorption and filtration performances done on the 

ACF (Rochereau et al., 2008). The same study indicated that thicker and denser ACF after 

regeneration would undergo a lesser extent of degradation (e.g., reduction in fiber diameter) and 

structural modification compared to thinner and less dense ACF, and thus resulting to lower 

reduction in BTs. However, this was not the case in the current study. This is likely due to 

thicker and denser ACF not undergoing less degradation (e.g., reduction in fiber diameter) and 

structural modification compared to thinner and less dense ACF after regeneration. Thus, this 

resulted in no differences in reduction percentages in BTs. A reason for observing no 

degradation in the ACF in the current study was possibly due to the way the ACF was handled, 

with consistent baking times and consistent temperature for approximately an average of 18 

hours, compared to a high temperature for short periods of time in previous studies (Yao et al., 
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2009), affecting both the thick and thin ACF equally. Additionally, the way that the material was 

oriented in the oven, as well as it being laid individually instead of stacked could have 

contributed to these different findings. 

 

Comparison of Breakthrough Times after Consecutive Regenerations 

The third aim of this study was to compare the BTs of toluene across ACF respirator 

cartridges by the number of thermal regeneration events. Specifically, the aim was to determine 

the extent to which BTs of toluene across the ACF respirator cartridges would be reduced as the 

number of thermal regeneration events increased. This study found that the average 10% and 

50% BTs among regeneration events were not significantly different, regardless of toluene 

concentration and ACF type. This contradicted the findings of others that BTs decreased with 

continuous adsorption/ regeneration cycles. For example, in a study conducted by Yao et al. 

(2009), a single-layer of ACF cloth was tested for the adsorption and regenerative properties 

using toluene, after numerous regenerations, the BTs for the ACF decreased. Investigators of the 

same study hypothesized this occurred due to a reduction in the thickness of fibers, resulting in 

less adsorbent mass and surface area. The baking temperature and time used in Yao et al. (2009) 

experiment was 200°C for 5 hours while 200°C for an average of 18 hours 1 min was used in the 

current study. This could have contributed to differences in results, due to our study having more 

baking time to allow for more VOCs to be desorbed from the ACF compared to those in the Yao 

et al. (2009) experiment. It may be possible that the ACF fibers may have reduced thickness but 

the longer regeneration time may have also created more pores for more adsorption sites (e.g., by 

pyrolizing residues in previously unavailable pores, by creating new micropores on the fiber 

surface). However, this was not confirmed by further analysis in this study.  
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In the current study, there were no significant differences in the average 10% and 50% 

BTs among regeneration events, regardless of toluene concentration and ACF type. This could 

be due to ACF’s ability to effectively be saturated to its full capacity, even as the regeneration of 

the ACF increased. This finding is significant due to the ACF’s potential to be used in respirators 

as an alternative form of adsorbent for VOCs. When using a respirator in the workplace, the 

amount of regenerations for which an adsorbent experiences should not affect its ability to be 

saturated completely by VOCs. If it does, it could potentially compromise the worker’s safety. 

For example, if a worker uses a respirator utilizing a regenerated adsorbent that provides shorter 

BT and lower adsorption capacity, this could leave a worker exposed to inhaling harmful VOCs 

which have the potential to cause health problems ranging from eye, nose, and throat irritation to 

more serious health effects such as mutations in humans, which can lead to oncogenesis (EPA, 

2017). These findings showcase the ACF’s potential as a good adsorbent. Also, results showing 

that there were no significant differences in BTs in relation to concentrations (high or low) also 

supports ACF’s potential as a good adsorbent of VOCs, because VOC concentrations in the 

workplace can vary and the ability to use a respirator that can absorb at different concentrations 

is very important for worker safety.   

 

Strengths and Limitations 

A strength found in this study was providing more knowledge on the effectiveness of 

ACF as an alternative VOC adsorbent in respirators, specifically after multiple regenerations. 

This information was of particular importance due to its link to ACF’s potential to become an 

alternative form of adsorbent in respirators, which is understudied, leaving a gap in knowledge 

for its potential. The current study provided essential information to the knowledge of 

regeneration and the ACF’s BT, finding no statistically significant decrease in BTs and also 
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showing that thermal regeneration had statistically insignificant effects on its adsorption 

characteristics of ACF after regeneration. Both of these key parameters add significant 

information to an under-investigated topic. This adds knowledge to ACF’s potential promise on a 

design of a regenerable, thinner, lighter and efficient respirator, which would help workers 

reduce complaints related to wearing respirators in the workplace.   

Limitations that were found throughout the collection of data was the inability to examine 

the ACF materials under a high power microscope (e.g. SEM) to visually determine if 

degradation of the fibers of the ACF materials occurred. This study is limited to the drawing of 

conclusions based on differences in BTs and percent reduction in BTs after consecutive 

regeneration events, leaving some gray area in reference to the ACF’s adsorption characteristics 

based on mass and surface area. Another possible limitation was not allowing the toluene to 

remain saturated on the material for an extended period of time before thermal regeneration, 

which could have resulted to the lack of difference in BT reductions or percent reductions 

between each regeneration. Due to these limitations, findings from this study may have differed 

from other studies that found a small extent of material degradation and reduction in BT. 

 

  



	

		

 
IX.   CONCLUSION 

Exposure to VOCs can lead to serious effects on a person’s health. Studies have shown an 

increase in a person’s risk of developing respiratory diseases, such as asthma, lung cancer, bronchitis, 

and chronic obstructive pulmonary disease when exposed to VOCs, in general (Fukakusa et al., 2011). 

In today’s society, the use of respirators is important in certain work environments due to increased use 

of VOCs, which could be detrimental to the health and safety of the workers in these specific work 

fields. Respiratory protective equipment is recommended as one method to diminish the risk of exposure 

to airborne pollutants. The usual method of purifying VOCs from breathed air in the workplace involves 

using respirators that adsorb the VOCs onto GAC, but ACF is an alternative carbon adsorbent due to its 

advantages over GAC.  Results of this study showed that ACF has performed consistently well in 

adsorbing toluene to its full capacity even after multiple regenerations. This implies that ACF is 

excellent in durability even after being exposed to toluene and consequently regenerated multiple times. 

No decrease in BTs after each regeneration was found, regardless of the toluene concentration the ACF 

was exposed to after each regeneration. For both ACF types, the BTs remained consistent, and did not 

decrease regardless of the concentration, indicating the ACF’s capability to adsorb toluene and 

potentially other VOCs consistently. It was demonstrated that thermal regeneration has insignificant 

effects on the ACF’s adsorption characteristics under the conditions of the current study, indicating ACF 

may have promise in being an alternative form of adsorbent for VOCs and in being used to design a 

regenerable, thinner, lighter and efficient respirator. There are still significant gaps in the knowledge of 

the ACF’s capability to be regenerated for long-term use. More studies should be conducted to help 

determine the ACF’s regeneration capabilities and limitations as applied to respiratory protection.  
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Appendix A: Master Table of Breakthrough Times by Toluene Concentration, ACF Type and Number of Regeneration  

Table A1. Breakthrough Times (min) at 200 ppm Toluene Concentration by ACF Type and Number of Regeneration 

ACF 

Type 

R0 Set 1 Set 2 Average of 2 sets (n=2) Overall 

Ave. R1 R2 R3 R4 Ave. R1 R2 R3 R4 Ave. R1 R2 R3 R4 Ave. 

10% Breakthrough Times 

ACF 210 86 74 75 79 74 75.5 59 87 84 81 77.8 66.5 81.0 81.5 77.5 76.6 77.7 

ACF 605 102 106 103 95 104 102.0 110 107 110 109 109.0 108.0 105.0 107.0 106.5 105.5 105.1 

Ave. 94.0 90.0 89.0 87.0 89.0 88.8 84.5 97.0 97.0 95.0 93.4 87.3 93.0 94.3 92.0 91.1 91.4 

50% Breakthrough Times 

ACF 210 94 88 84 84 85 85.3 101 94 98 94 96.8 94.5 89.0 91.0 89.5 91.0 91.3 

ACF 605 117 109 120 119 118 116.5 132 128 125 126 127.8 120.5 124.0 122.0 122.0 122.1 121.6 

Ave. 105.5 98.5 102.0 101.5 101.5 100.9 116.5 111.0 111.5 110.0 112.3 107.5 106.5 106.5 105.8 106.6 106.4 

	
Table A2. Breakthrough Times (min) at 500 ppm Toluene Concentration by ACF Type and Number of Regeneration 

ACF 

Type 

R0 Set 1 Set 2 Average of 2 sets (n=2) Overall 

Ave. R1 R2 R3 R4 Ave. R1 R2 R3 R4 Ave. R1 R2 R3 R4 Ave. 

10% Breakthrough Times 

ACF 210 33 33 32 32 34 32.8 34 35 32 30 32.8 33.5 33.5 32.0 32.0 32.8 32.8 

ACF 605 43 40 40 41 39 40.0 45 43 41 43 43.0 42.5 41.5 40.0 41.0 41.5 41.7 

Ave. 38.0 36.5 36 36.5 36.5 36.4 39.5 39.0 36.5 36.5 37.9 38.0 37.5 36.0 36.5 37.1 37.2 

50% Breakthrough Times 

ACF 210 38 36 36 36 36 36.0 38 38 36 36 37.0 37.0 37.0 36.0 36.0 36.5 36.7 

ACF 605 51 48 45 47 47 46.8 53 49 51 54 51.8 50.5 47.0 49.0 50.5 49.3 49.4 

Ave. 44.5 42.0 40.5 41.5 41.5 41.4 45.5 43.5 43.5 45.0 44.4 43.8 42.0 42.5 43.3 42.9 43.1 

 



	

	

Appendix B: Statistical Analysis Output Using ANOVA Tests 

 
Appendix B1. Comparison of 10% and 50% Breakthrough Times by Toluene Concentration 
 
 

Report II 
Conc 10%BT 50%BT 

200 Mean 91.39 106.44 

N 18 18 

Std. Deviation 15.655 16.822 

500 Mean 37.22 43.22 

N 18 18 

Std. Deviation 4.870 6.778 

Total Mean 64.31 74.83 

N 36 36 

Std. Deviation 29.749 34.461 

 
 

ANOVA Table II 
 Sum of Squares df Mean Square F Sig. 

10%BT * Conc Between Groups (Combined) 26406.250 1 26406.250 196.484 .000 

Within Groups 4569.389 34 134.394   

Total 30975.639 35    

50%BT * Conc Between Groups (Combined) 35973.444 1 35973.444 218.740 .000 

Within Groups 5591.556 34 164.458   

Total 41565.000 35    
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Appendix B: Statistical Analysis Output Using ANOVA Tests 

 
Appendix B2. Comparison of 10% and 50% Breakthrough Times by ACF Type 
 
 
	

Report I 
ACFtype 10%BT 50%BT 

210 Mean 55.22 64.17 

N 18 18 

Std. Deviation 23.859 28.299 

605 Mean 73.39 85.50 

N 18 18 

Std. Deviation 32.835 37.459 

Total Mean 64.19 74.83 

N 36 36 

Std. Deviation 29.749 34.461 

 
ANOVA Table I 

 Sum of Squares df Mean Square F Sig. 

10%BT * ACFtype Between Groups (Combined) 2970.250 1 2970.250 3.606 .066 

Within Groups 28005.389 34 823.688   

Total 30975..639 35    

50%BT * ACFtype Between Groups (Combined) 4096.000 1 4096.000 3.717 .062 

Within Groups 37469.000 34 1102.029   

Total 41565.000 35    
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Appendix B: Statistical Analysis Output Using ANOVA Tests 

 
Appendix B3. Comparison of 10% and 50% Breakthrough Times by Number of Regeneration 
 
 

Report III 
Regeneration 10%BT 50%BT 
0 Mean 66.00 75.00 

N 4 4 
Std. Deviation 33.237 36.833 

1 Mean 62.62 75.63 
N 8 8 
Std. Deviation 31.140 36.547 

2 Mean 65.25 74.25 
N 8 8 
Std. Deviation 31.372 37.297 

3 Mean 64.25 74.50 
N 8 8 
Std. Deviation 31.185 36.735 

4 Mean 64.25 74.88 
N 8 8 
Std. Deviation 31.927 35.763 

Total Mean 64.31 74.83 
N 36 36 
Std. Deviation 29.749 34.461 

 

ANOVA Table III 

 
Sum of 
Squares df 

Mean 
Square F Sig. 

10%BT * 
Regeneration 

Between 
Groups 

(Combined) 41.264 4 10.316 .010 1.000 

Within Groups 30934.375 31 997.883   

Total 30975.639 35    

50%BT * 
Regeneration 

Between 
Groups 

(Combined) 8.750 4 2.188 .002 1.000 

Within Groups 41556.250 31 1340.524   

Total 41565.000 35    
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Appendix B: Statistical Analysis Output Using ANOVA Tests 

 
Appendix B4. Comparison of Percent Reductions in 10% and 50% Breakthrough Times by 
Toluene Concentration 
 
 

Report IV 
Conc 10%BT 50%BT 
200 Mean -3.74 .60 

N 8 8 
Std. Deviation 9.450 4.484 

500 Mean -2.14 -3.19 
N 8 8 
Std. Deviation 2.502 2.393 

Total Mean -2.94 -1.29 
N 16 16 
Std. Deviation 6.729 3.985 

 
 

ANOVA Table IV 

 
Sum of 

Squares df 
Mean 

Square F Sig. 
10%BT * 
Conc 

Between 
Groups 

(Combine
d) 

10.240 1 10.240 .214 .651 

Within Groups 668.878 14 47.777   

Total 679.118 15    

50%BT * 
Conc 

Between 
Groups 

(Combine
d) 

57.381 1 57.381 4.443 .054 

Within Groups 180.789 14 12.913   

Total 238.169 15    
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Appendix B: Statistical Analysis Output Using ANOVA Tests 

 
Appendix B5. Comparison of Percent Reductions in 10% and 50% Breakthrough Times by ACF 
Type 
 

Report V 
ACFtype 10%BT 50%BT 
210 Mean -5.82 -3.07 

N 8 8 
Std. Deviation 7.792 2.045 

605 Mean -.05 .49 
N 8 8 
Std. Deviation 4.152 4.753 

Total Mean -2.94 -1.29 
N 16 16 
Std. Deviation 6.729 3.985 

 

ANOVA Table V 

 
Sum of 

Squares df 
Mean 

Square F Sig. 
10%BT * 
ACFtype 

Between 
Groups 

(Combine
d) 

133.402 1 133.402 3.422 .086 

Within Groups 545.715 14 38.980   
Total 679.117 15    

50%BT * 
ACFtype 

Between 
Groups 

(Combine
d) 

50.766 1 50.766 3.792 .072 

Within Groups 187.404 14 13.386   
Total 238.169 15    
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Appendix B: Statistical Analysis Output Using ANOVA Tests 

 
Appendix B6. Comparison of Percent Reduction in 10% and 50% Breakthrough Times by 
Number of Regeneration 
 

Report VI 
Regeneration 10%BT 50%BT 
1 Mean -4.13 -.03 

N 4 4 
Std. Deviation 12.724 2.381 

2 Mean -1.23 -2.43 
N 4 4 
Std. Deviation 4.105 6.005 

3 Mean -3.10 -2.03 
N 4 4 
Std. Deviation 2.578 4.306 

4 Mean -3.30 -.70 
N 4 4 
Std. Deviation 5.913 3.753 

Total Mean -2.94 -1.29 
N 16 16 
Std. Deviation 6.729 3.985 

 

ANOVA Table VI 

 
Sum of 

Squares df 
Mean 

Square F Sig. 
10%BT * 
Regeneration 

Between 
Groups 

(Combine
d) 

18.003 3 6.001 .109 .953 

Within Groups 661.115 12 55.093   
Total 679.118 15    

50%BT * 
Regeneration 

Between 
Groups 

(Combine
d) 

15.107 3 5.036 .271 .845 

Within Groups 223.063 12 18.589   
Total 238.169 15    

 


