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1 Introduction

Fish bioacoustics is an interdisciplinary, specialized field of applied science focusing

on sound production, reception, and communication of fish; the effect of anthopro-

genic noise on fish; and active and passive acoustic technologies for fish population

monitoring[1, 2]. Acoustic methods for investigating population distributions of fish

are important because of the difficulties found in direct observation of species un-

derwater. These bioacoustic studies are of direct interest to biological scientists,

managers, conservationists, and commercial fishers [3], because of the significance of

fish within aquatic environmental networks, the importance of fish as a food source.

These studies seek to gather information about the types of fish species living in

various habitats, their quantity, and their behavior, including reproduction, feed-

ing, predator-prey relationships, and human-fish interactions. Ultimately bioacoustic

studies can be used to protect these species and their natural environment.

Because most of this work approaches solutions to problems regarding the char-

acterization of local fish populations from a conservationist angle, it is especially

important that the study itself poses as small an interference with fish as possible.

Passive acoustic surveys are an ideal way to investigate a habitat while not encroach-

ing on fish behavior. Passive acoustic monitoring, in contrast to implementing an

active acoustic system, depends entirely on sound produced by fish recorded using

a single hydrophone or many hydrophones configured in an array. Passive acoustic

methods are therefore a noninvasive way to collect data. This technique, however, is

limited to soniferous species of fish only.

Often, characterizing fish populations for a given habitat involves relating the

location of members of soniferous fish species within the habitat to other biological



or ecological variables, such as time of day, salinity, temperature, noise within the

environment, and the proximity within the habitat to other fish species. A survey

typically involves the use of one hydrophone. To locate a fish accurately within a

region of space involves the use of more than one hydrophone designed to operate in

concert as a sensor array. Techniques involving different configurations of sensors are

useful to many disciplines of science. In this application soniferous species of fish are

viewed as sources of acoustic energy.

Array signal processing concentrates on signals conveyed by propagating electro-

magnetic, acoustic, seismic, or gravitational wavefields. An array in this context refers

to an assortment of sensors configured in some geometry at distinct locations in a

domain of physical space. The sensor array transduces field energy into an electri-

cal signal by sampling the wavefield in time at the sensor locations. Each waveform

detected and output by individual sensors are combined and information about the

propagating signals is calculated. There are three primary motivations to array pro-

cessing: (1) to achieve a more desirable signal-to-noise ratio compared to that of a

single sensor (2) to characterize the field by quantifying the energy sources [4], lo-

calizing the energy sources, and reproducing the waveforms emitted from the energy

sources, (3) and to track the energy sources as they move through space [5, 6].

Much work has been done with source localization of talkers and sound source

level estimation for noise [7, 8]. Increasingly, arrays have been used to study aquatic

wildlife: to model acoustic wave propagations in oceans [9], to study black drum [10],

plainfin midshipman fish [11], and to locate oyster toadfish [12].The use of arrays

in bioacoustics to survey is still a developing field of research because of the many

variables that make field research with a microphone array challenging. For one, the
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array must be custom made and can be very expensive. To survey a large area, the

array must be quite large, which can be cumbersome in the field to transport, deploy

and recover.

The objective of this thesis is to implement such an array system to passively

survey a marsh creek and to extract population information about sound producing

fish species that reside or migrate through this habitat.

1.1 Spatial filtering

Spatial filtering allows for the enhancement of signals emanating from a source

positioned at an arbitrary observation point, while suppressing potential signals prop-

agating in other locations. Techniques that exploit the spatial filtering ability of an

array are colloquially classified as beamforming, and in this category of signal pro-

cessing there are distinguishing subordinate classes of specialized analyses. These

techniques share the ability to locate and track positions of signal sources, and the

use of adaptive algorithms to adjust the array’s focus accordingly to locate and track

source positions is known as steering. After a sensor array system has been used

to remotely acquire propagating signals, the signal analysis can be implemented in

real-time or as a post-process. This is achieved through the use of signal processing

techniques be it electronically or computationally.

Steering as a post-process has advantages and disadvantages. It offers great flexi-

bility in what is done to the signals for analysis as the process is the same but entirely

less automated, with greater control. The steering is done with computational tech-

niques applied to arrays and datasets by the surveyor, not electronic circuits with

predefined scripts and routines. On the other hand, depending on the acquisition

3



time the sensor array was deployed, there can be many bytes of data, and each signal

source is painstakingly analyzed on an individual basis. The usefulness of each option

is determined by the application. As it will be applied to sound producing fish in

estaurine environments, the post-process steering is desirable. When it comes to the

bioacoustics of fish, the acoustician is listening for anomalies in noisy environments

among days of audio recordings where it is “business as usual” for these animals. In-

teresting events can be analyzed on a singular basis using computational techniques

and conclusions drawn from results in this manner. For this to be effective, some

degree of automation is of course required and the algorithms must be designed and

coded to accept almost any size data entry of a few types of form.

1.2 Physical assumptions

The aquatic environment that was surveyed will be considered in the model as a

homogeneous quiescent medium. It is very shallow water, between 1 to 2 m, generally,

even at high tide, so the pressure will vary negligibly with depth, and the water is

slightly brackish but of constant density everywhere in space. The tidal patterns

do indicate a flow, some small initial velocity, but take place over long time scales,

so at any instant of analysis the tide’s effect on the flow velocity and/or density is

negligible.

For these reasons, it is ideal to assume the propagation of sound according to the

linear equations of acoustics which yield a linear wave equation [13]. This idealization

is adequate for the quantitative description of several acoustic phenomena. For this

assumption to be valid, the ambient state of pressure and velocity fields within the

medium must have certain characteristics.
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Acoustic disturbances can be regarded as small-amplitude perturbations to an

ambient state [13]. In a fluid, the ambient state is characterized by quantities (p0, ρ0,

v0) which are the pressure, density, and fluid velocity of the medium in absence of an

acoustic disturbance. The ambient-fluid variables themselves satisfy fluid-dynamic

equations, and superimpose with like parameters that describe the effect an acoustic

wave propagating will have on the medium:

p = p0 + p′ ρ = ρ0 + ρ′, (1.2.1)

where p and ρ describe the pressure and density fields of the medium and the ad-

ditional primed parameters describe the contribution from the acoustic wave to the

resultant pressure and density fields within the medium. The total velocity, ~v is the

sum of the fluid flow velocity, ~v0, and the particle velocity, ~v′, of the acoustic distur-

bance, ~v = ~v0 + ~v′. In the homogeneous medium, the ambient field quantities are

independent of position. This consequence implies that the speed of sound is con-

stant everywhere in the medium – that the medium is non-refractive. In the quiescent

medium, the ambient field variables are independent of time and the initial velocity

of the medium is zero.

The assumptions just made may not apply if the speed of sound does indeed

depend on the physical parameters of the medium (which are subject to change in

this environment even if only over long time scales). Physical properties of the aquatic

environmnet, specifically temperature, salinity and depth values will determine the

speed of sound used throughout the model for a given instant of analysis. The nine-
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term algorithm empirically developed by MacKenzie (1981)[14] was used:

c = 1448.96
m

s
+ 4.519

m

s
°C−1 T − 5.304× 10−2

m

s
°C−2 T 2 + 2.374× 10−4

m

s
°C−3 T 3

+1.340
m

s

g

kg

−1
(
S − 35

g

kg

)
+ 1.630× 10−2 s−1D + 1.675× 10−7 m−1 s−1D2

−1.025× 10−2
m

s
°C−1

g

kg

−1
T (S − 35)− 7.139× 10−13 m−2s−1 °C−1 T D3,

(1.2.2)

where c is speed of sound in sea water, T is the water temperature in ° C, S

is the salinity, and D is the water depth. The formula was originally developed

for the modeling of sound in oceans, but the waters in the marsh creeks surveyed

has characteristics which fall within our requirements [15]: 23 to 30 °C temper-

ature, 25 to 40 g/kg salinity, 0.6 to 2.0 m depth. This algorithm produces in

the result for sound speed a standard error of 0.07 m/s. During the time the

hydrophone array was recording, data was available for these parameters at the

North Inlet-Winyah Bay National Estaurine Research Reserve (data from http:

//www.northinlet.sc.edu/environmental-monitoring/) Clam Bank system wide

monitoring program (SWMP). This data is displayed in Appendix (A.1), and includes

a plot for the variation in sound speed in Figure 55. The maximum value calculated

for the sound speed was 1538 m/s and the minimum value calculated for sound speed

was 1528 m/s.

Further assumptions about the medium pertain to the acoustic sources within the

volume of space being surveyed. Soniferous invertebrates, such as snapping shrimp,

will be regarded as point sources of acoustic energy, whose radiation pattern is de-

scribed by spherical waves, regardless of the shape or size of the organism. This does

6
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not preclude the use of far-field theory. In general, far from the source, the curva-

ture of the wavefront decreases so that mathematically the propagating wave may

be treated as a plane wave. The sources are considered stationary. The source may

be in motion, but with speeds low compared to the speed of sound in water there

is no significant Doppler impact on the frequency. Furthermore, in a linear model

for sound propagation, it is assumed that the propagation speed does not vary with

frequency, so that the medium is nondispersive. Moreover, any attenuation that oc-

curs in wave amplitude is a consequence of the spherical wave solution to the linear

wave equation – the medium is otherwise lossless. In the occurrence of several waves

propagating simultaneously there is no interaction; the superposition principle ap-

plies, and the wavefield can be described as an addition of each sound wave. These

considerations allow, as a consequence, an array to distinguish these sources using an

array processing algorithm to spatiotemporally filter the received waveforms.

Despite banks of the channel serving as a boundary to the physical volume that

was surveyed, the propagation will be treated as if it were occurring in an infinite,

homogenous, isotropic medium. Sound in the free field travels in straight lines and

is entirely unimpeded [16]. In these conditions, waves propagate without interference

of boundaries: walls, sea-bottom, or other organisms. The environment that was

surveyed is sufficiently large (≈ 3200 m2) to suggest the use of the this model, which

describes the direct path propagation from an acoustic source to an acoustic receiver,

like a microphone or a hydrophone – even in reverberant environments, where acoustic

reflections interfere with the direct sound. By analogy, the model could be used to

study a sound source in an empty room with a microphone even with reverberant

walls.
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Beacuse recording of sound is nondeterministic, noise will be present in the recorded

signals. One can make a reasonable assumption about the noise at each sensor: (1)

that noise is independent of time and position, i.e. stationary [17, 18]; (2) that the

noise is ergodic, the average of all the noise at each sensor will be the same of a

single sensor; and (3) noise is isotropic [19]. The additive noise is considered, too,

a spatiotemporally propagating wavefield, propagating in all possible directions with

equal probability. Usually the noise is considered Gaussian, zero-meaned, statistically

independent, and uncorrelated, with the signal [20].

In this model of sound propagation, the obvious advantage to these numerous ide-

alizations is the inherent simplicity. Uncomplicated conditions only apply in restricted

situations, and the gross simplicity will effect the efficacy of the model overall. This

model, however, will be very useful in the development of a foundation for the general

approach to the localization of sound-producing fish within the aquatic environments

that our research team surveys.
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2 Background

In array processing the signals of interest depend on both position and time. Space

is considered three-dimensional within the context of the Cartesian coordinate sys-

tem, and time is considered a fourth dimension. A spatiotemporal signal is written

as s(x, y, z, t), where x, y, z are spatial coordinates and t is a time coordinate. Alter-

natively, a spherical coordinate system can be used. Figure 1 shows the International

Organization for Standardization (ISP ) convention to three-dimensional spherical

coordinates, where r is the distance from the origin located at (0, 0, 0), φ is the az-

imuthal angle measured from the positive x-axis, and θ is the altitude angle measured

from the positive z-axis.

r

z

x

y

Figure 1: The standard set of coordinates used for three-dimensional space.



They are related to the rectangular coordinates through,

x = r sin θ cosφ r =
√
x2 + y2 + z2

y = r sin θ sinφ θ =
z√

x2 + y2 + z2

z = r cosφ φ = arctan
y

x

(2.0.1)

Geometry and calculations will be treated as being in either of these physical domains,

depending on the physical situation.

2.1 Plane waves

Propagating acoustic wavefields are described by the wave equation,

∇2p− 1

c2
∂2p

∂t2
= 0, (2.1.1)

where p is the pressure, t is time , and c is the sound speed. The solution to the wave

equation that describes a plane wave is of the general form [13]

p = f(t− ~α · ~x) + g(t+ ~α · ~x). (2.1.2)

The arbitrary position is denoted by variable ~x, and ~α is the slowness vector [20];

the slowness vector is equivalent to ~α = ~k/ω, the wavenumber vector, ~k, divided by

ω the angular frequency, and |~α| = 1/c. The slowness vector defines not only the

direction of the propagating wavefield, because of its dependence on ~k, but also its

speed due to its magnitude. The functions f and g are aribtrary and are allowed

to take any form; there is a sign difference in their arguements, therefore, f and g
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describe waves moving in opposite directions. In many cases, there is one travelling

wave in a region of space, and either f or g is accordingly set to zero – only one of

these functions is required to detail the pressure in space and time. Typical solutions

for a constant-frequency plane wave are represented by [13]

s(~x, t) = A exp [iω(t− ~α · ~x)] . (2.1.3)

The symbol A, is a constant amplitude. Under a linear model for the wave equation,

two solutions s1(~x, t) and s2(~x, t) involved in a linear combination is also a solution.

In this way, more complicated solutions can be built as sums or integrals of complex

exponentials. For example the harmonic series,

s(~x, t) = s(t− ~α · ~x) =
n=∞∑
n=−∞

Sn exp [inω0(t− ~α · ~x)] , (2.1.4)

where ω0 is the fundamental frequency of the wave. The Fourier coefficients for an

arbitrary waveform s(u) with period T = 2π/ω0, are

Sn =
1

T

T∫
0

s(u) e−i n ω0 u du. (2.1.5)

this waveform propagates in the direction specified by ~α with speed c = 1/|~α|. It is

allowed to contain many frequency components ω = nω0, but with the constraint that

~k/ω = ~α. Wave functions built in this way are periodic, due to the angular frequencies.

This same approach can also be tackled in Fourier space where an integral of complex

exponential can express an aperiodic waveform:
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s(~x, t) = s(t− ~α · ~x) =
1

2π

∞∫
−∞

S(ω) exp{iω(t− ~α · ~x)}dω (2.1.6)

S(ω) =

∞∫
−∞

s(u)e−iωu du (2.1.7)

2.2 Spherical waves

Given no φ or θ dependence, the general spherical wave equation can be derived,

1

r

∂2

∂r2
( r p)− 1

c2
∂2p

∂t
= 0. (2.2.1)

Here, note the addition of r, which is the radial position. The solution to the wave

equation that describes a spherical wave whose far-field source is at the origin takes

the general form:

p(r, t) = r−1 f(t− |~α|r) + r−1 g(t+ |~α|r) (2.2.2)

Likewise, f is an arbitrary function describing a spherical wave emanating from the

origin, and g is a spherical wave converging to the origin. If a source is centered

at the origin, waves only move in the positive r direction away from the source and

consequently g = 0. In this case, however, the wave shape, although similar, is

altered and pressure is received differently at increasing radii with amplitude reduced

by a factor of 1/r. In addition, there is a shift in reception time of similar waveform

features of ∆r/c. Typical representations of single frequency spherical waves take the

form:

12



s(r, t) =
A

r
exp{i ω(t − |~α|r} (2.2.3)

Because of the linearity of the wave equation, more complicated solutions can be built

in a similar fashion as above:

s(r, t) =
1

2πr

∞∫
−∞

S(ω) exp{iω(t− |~α|r)} dω, (2.2.4)

where S(ω) is the Fourier transform of the signal produced by the source.

2.3 Direct path propagation

In the presence of sound-reflecting surfaces, the sound waves produced by a single

source propagate along acoustic multipaths. This produces the effects of reverbera-

tion; sounds reflect off objects and produce echoes. In the intertidal channel, reflec-

tions can occur off any boundary, especially the bottom and the surface in shallow

water conditions. The linearity of the medium ensures treatment of combining waves

through superposition, so the direct path component and the reflections are additive.

Localization algorithms can separate the direct path component from the multipath

components and parameterize the location of a sound producer. In any event, local-

ization will be performed using audio trimmed to include the first arrival of a sound

and some sustain, truncating before any echoes or interference. In Figure 2 is the

coordinate system used to describe direct-path propagation from a sound source to

a microphone. The axes are taken so that the positive z-axis is downward as is a

standard in underwater acoustics.
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Figure 2: Definition of vectors for first arrival wave propagation.

Consider an acoustic source located at ~x0 with respect to an origin from which a

wavefield will be propagating. A hydrophone located at ~xm records the signal. The

vector ~r0m is sourced at hydrophone m and points to the source location so that the

distance between the source and the hydrophone is,

r0m = |~x0 − ~xm|. (2.3.1)

In the treatment of soniferous fish as point sources of acoustic energy, a direct path

arrival of a waveform of arbitrary shape can be modeled according to equation 2.2.3,

s(r, t) = A r−1 f(t− r/c) (2.3.2)

Outside the region of initial excitation, the wave propagates as aforementioned, where

the attenuation depends inversely on the travel distance; furthermore, delayed, under
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the direct path assumption, by a time delay equal to the ratio of the travel distance

to sound speed,

τm = r0m/c. (2.3.3)

The wavefield at hydrophone m for a source located at ~x0 is given by:

f( ~xm, ~x0, t) =
A

r0m
f(t− τm), (2.3.4)

where the wavefield is inversely proportional to the travel distance r0m. Note this

is for purely a geometrical reason with the spherical coordinates in in the 3D space

and has nothing to do with the attenuation which could be altogether an additional

effect of absorption in murky water and/or hitting some objects such e.g., other fish.

2.4 Hydrophone model

In order to transduce acoustic field energy into electrical energy, piezoelectric

materials are applied within the hydrophone [21]; this type of material can change

its form and helps to generate electrical potential output in response to mechanical

or external pressure variations. The voltage created within the material when an

acoustic disturbance perturbs its structure is proportional to the acoustic pressure,

and it can be amplified, filtered, and then sampled to transform the information into

a digital signal for processing. The sound field f( ~xm, ~x
0, t), is sampled by M sensors,

denoted by index m ∈ {1, 2, ...,M} located at {~xm}M1 at time instants {tn}. Each

sensor m records a signal, ym(t) = s(t) + nm(t), where y(t) is the signal and nm(t) is
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an additive noise term at the m-th sensor location. Compared to the analog signal

whose domain is time, a digitally sampled signal has domain in samples n. In the

case of periodic sampling, tn = nT , where n ∈ Z, where Z denotes the set of integer

numbers, and T is the time interval between successive samples, or the sampling

period. The sampling rate, fs, is related by 1/T = fs (a typical sampling rate of

44.1 kHz, would give a sampling period of 2.2676 × 10−5 s). Through a variable

transformation, t → tn → nT , and with periodic sampling T is constant the digital

signal is represented:

ym [n] = s [n] + nm [n] . (2.4.1)

The energy is given by [18]:

E(t) = lim
L→∞

C

L∫
−L

|y(t)|2 dt E [n] = lim
N→∞

A
N∑

n=−N

|y [n]|2 , (2.4.2)

where C is a constant of proportionality and subsequently the signal’s power, P , can

be calculated by dividing the length of each audio dataset.

P (t) = lim
L→∞

C

2L

L∫
−L

|y(t)|2 dt P [n] = lim
N→∞

C ∗ fs
2N + 1

N∑
n=−N

|y [n]|2 , (2.4.3)

where fs is the sampling frequency. The signal-to-noise ratio for a single hydrophone

is then given by,

SNR =
Psignal

Pnoise

=
E [s2(t)]

E [n2
m(t)]

⇒ E [s2[n]]

E [n2
m[n]]

. (2.4.4)
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Note, assuming equal areas, the signal-to-noise ratio of powers is often expressed in

decibels as the difference the level of power between the signal and the noise:

SNR = βs − βn = 10
log E [s2[n]]

log E [n2
m[n]]

(2.4.5)

2.5 Direction of arrival (DOA)

The incidence in time of the first maximum of a waveform, barring any echoes, is

considered in this work, the time a sound-wave arrives to a microphone recording it –

this says nothing about the propagation time or ultimately the moment in time when

the sound was issued. In general, the exact moment a sound gets produced is unknown

a priori. This first maximum occurrence corresponds to the direct-path component

to the wave, representing sound that has traveled along a ray from the source to

microphone m. The direction from the source to the microphone is the direction of

propagation, and contrarily, the opposite direction is known as the direction of arrival

(DOA); therefore, a wave traveling from North to South has a southward direction of

propagation and a northward direction of arrival.

Figure 3, shows in general how the direction of arrival vectors look for direct

path propagation. If ~ζ0m is a unit vector describe the direction from a source to a

sensor, then each sensor measures a different direction of arrival from the source.

This is dependent, though, on the shape of the incoming wavefront. The shape of

the wavefront is determined by whether the source is located in the near-field or

far-field. The DOA works differently for near-field and far-field sources [22]. For

sources in the near-field, this works too under the assumption of a point-source, the
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Figure 3: Direction of propagation vectors from a source to a discrete sensor array.

wavefronts arrive as curved wavefronts with spherical symmetry, and each sensor will

measure DOA vectors as shown in Figure 3. In the case of wavefronts that arrive

as plane waves, the same direction vector ~ζ0 is measured by all sensors in an array.

The effect of this is that the location can only be resolved as precise as a direction,

many locations in space along the direction of that path of arrival will have the same

spatial-likelihood of being the true location of the source.

2.6 Pairwise time delay

A cornerstone to beamforming/steered-response algorithms is delay analysis. De-

lays are calculated iteravely between possible pairs of sensors and can be implemented

in such a way to achieve a position because time and position are related through

the speed of sound in the medium. The ability to resolve a position or at the very
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Figure 4: DOA with the far-field (left) and near-field (right).

least a direction depends on the field in which the source of the sound exists, and,

the calculation can be carried out beginning with a calculation for the delay itself or

choosing an estimated source location and working backwards to find the delay.

2.6.1 Plane waves

Consider a plane wave incident on a microphone pair m1 and m2 positioned at ~x1

and ~x2. The direction of the plane wave’s arrival is denoted by the unit vector, ζ̂0.

The relevant geometry is shown in Figure 5. When the wavefront reaches microphone

m1, the same pressure amplitude has yet to reach microphone m2; the distance the

wavefront must move to reach the second microphone is ~d = d ~ζ0. Using the simple

model, d = c∆t, in the form presented in equation (2.3.3):

τm = rm/c, (2.6.1)
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Figure 5: Description of plane wave arrival at a microphone pair.

where rm is the distance ~d the wavefront must travel to reach sensor m2 in the figure.

For the one dimensional case, an array aperture aligned on the x-axis, fundamental

trigonometry quickly reveals these delays can be related to the geometry through:

d = |~x2 − ~x1| sin θ = c τm. (2.6.2)

An array aperture not aligned with any particular axis would represent a two-dimensional

case, and for plane waves, delay calculation can be generalized to higher dimensions

through the use of the dot product,

τm =
ζ̂0 · (~x2 − ~x1)

c
=
|~x2 − ~x1| cosφ

c
(2.6.3)
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2.6.2 Spherical waves

In the near-field, and in general, the wavefronts from sources emitting acoustic

energy are curved and travel as spherical waves. Moreover, nothing is lost except

an opportunity for simplicity by always considering the wavefronts as curved, so an

attempt will be made to be more general. For an off-axis microphone pair consisting

of sensors m1 and m2, the vector geometry is presented in Figure 6. The source

position is described by vector ~x0, the microphone positions are given by ~x1 and ~x2,

and vectors ~x01 and ~x02 denote the distance between the source and each sensor.

m1 m2

d

Spherical Wavefront

Figure 6: Description of spherical wave arrival at a microphone pair.

The distance a curved wavefront arriving at microphone m1 must travel to arrive

at m2 is d, which is clearly the difference in the magnitudes of vectors ~x01 and ~x02.

Through vector subtraction, a relationship between the time delay between each

sensor in the pair, the source position, and microphone position can be established.
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τm =
|~x02| − |~x01|

c
(2.6.4)

τm =
|~x2 − ~x0| − |~x1 − ~x0|

c
(2.6.5)
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3 Apertures and array fundamentals

The field value at a sensor location ~xm is described by some arbitrary f(~xm, t),

which the sensor samples and produces an output ym(t). Ideally, the transformation

is linear and of infinite bandwidth. Although recorded signals never achieve an in-

finite bandwidth because every acquisition time scale is finite, the hope for a linear

transformation is not too misplaced. Linear devices are quite common, and, in this

case, the field and the signal differ by a constant.

Spatial regions that transmits or receives field energy over a finite area are referred

to as apertures. In the realm of acoustics examples for this are a microphone or

speaker. Transmitting apertures are known as active and receiving apertures are

known as passive. An array consists of a group of sensors combined to produce a

single output; sensor arrays fall under the category of sampled apertures.

Figure 7: An aperture is only capable of measuring the wavefield to a finite extent.
This is a continuous line aperture [23].



3.1 Finite continuous aperture

Figure 8: Geometry that describes a continuous linear array.

To describe an aperture, be it passive or active, a function, w(~x), called the aper-

ture function, is defined. The spatial extent of w reflects the size and shape of the

aperture. A common application of this function has w equal to 1 within the closed

region where the sensors are effective at sampling the field, and zero outside this

region. Fundamentally, an aperture is a window through which the field is observed.

In general, aperture functions take on real values between 0 and 1 inside the aper-

ture – values different from 1 allow for aperture weighting (shading, tapering, or

apodization), which represents the relative weighting of the field within the aperture.
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3.1.1 Aperture smoothing function

Treating the array aperture as a singular sensor, the output is defined as:

z(~x, t) = w(~x) f(~x, t), (3.1.1)

where f is a propagating acoustic wavefield. The aperture smoothing function is the

Fourier transform of the sensor’s weight, and to a large extent it describes how well

a wavefield sampled by an array can be reproduced. To get the aperture smoothing

function, calculate the space-time Fourier Transform of the sensor output, z. Real-

world application of this will have a dependence on t (in samples) and will not be

continuous but discrete. Because z is a multiplication of two functions that are being

transformed into Fourier space, the convolution theorem is used to determine the

resulting spectrum. From the convolution theorem:

F{f · g} = F{f}FF{g} = (f∗g)(t) ≡
∞∫

−∞

f(τ)g(t− τ)dτ. (3.1.2)

The three-dimension spatial to wave-number Fourier transform defined as:

F(~k) ≡ 1

(2π)3

∞∫
−∞

f(~x) exp{i~k · ~x}d~x (3.1.3)

The time to angular frequency Fourier transform is defined as:

F(ω) ≡ 1

2π

∞∫
−∞

f(t) exp{−iωt}dt (3.1.4)

Taking the Fourier transform each factor inside the signal function z,

25



F{w} = W (~k) =
1

(2π)3

∞∫
−∞

w(~x) exp{i~k · ~x}d~x (3.1.5)

F{f} = F (~k, ω) =
1

(2π)4

∞∫
−∞

∞∫
−∞

f(~x, t) exp{−i(ωt− ~k · ~x)} d~x dt (3.1.6)

The convolution will be over the variable common to both functions, ~k, the wavenum-

ber vector, reciprocal space-domain.

Z(~k, ω) =
1

(2π)3

∞∫
−∞

W (~k −~l) F (~l, ω) d~l, (3.1.7)

where ~l is an arbitrary vector in the same units as ~k in reciprocal space [1/m] that

represents a shift to the wavenumber vector. Z is the function z in the inverse domain.

W (~k) is called the aperture smoothing function, and one can see, that its effect in

Fourier space is that of a kernel. This is marginally analogous to blurring of images in

image processing, where the “true” image will be the unadulterated spectrum of the

wave-field and a filtered image post-application of a convolution matrix will represent

the array output of the sampled acoustic wavefield.

Despite the blurring effect of the smoothing kernel, all information concerning the

propagating signal can be recovered at the output of the array. Consider a plane

wave,

f(~x, t) = s(t− c−1 ~ζ0 · ~x), (3.1.8)
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that is propagating in direction ~ζ0. The wave-number frequency spectrum can be

calculated as before through the Fourier transform. There should be one spectral line

in the wavenumber spectrum for when an arbitrary wavenumber vector ~k = ~k0 =

ω~ζ0/c. The wavenumber-frequency spectrum of such a wavefield is

F (~k, ω) = S(ω)δ(~k − ω ~α0), (3.1.9)

where S(ω) is the Fourier transform of s(t) and δ(~k) is the three-dimensional Dirac-

delta function. To see the effect observing this wavefield through a finite aperture

has on the spectrum of the wavefield,

Z(~k, ω) =

∞∫
−∞

W (~k −~l)F (~l, ω)d~l (3.1.10)

Z(~k, ω) =

∞∫
−∞

W (~k −~l)S(ω)δ(~k − ω ~α0) (3.1.11)

Z(~k, ω) = S(ω)W (~k − ωc−1 ~ζ0). (3.1.12)

For values of the wavenumber vector that equal ωc−1 ~ζ0, Z(ωc−1 ~ζ0, ω) = S(ω)W (~0),

the output signal of the array is equal to the the propagating signal multiplied by

a constant. Therefore, all of the information concerning the propagating signal can

be interpreted by the output of the aperture. For other values of ~k the signal’s fre-

quency spectrum is multiplied by a frequency-dependent gain, W (~k − ωc−1 ~ζ0), that

filters the relative intensities and phases of the frequency components in the signal

spectrum. This result can be generalized to a superposition of traveling plane waves
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with different wavenumber vectors (traveling in all directions), so that this analysis

can be carried out on something mathematically similar to a wavefield it is expected

to measure with an array.

f(~x, t) =
∑
i

si(t− ~α0
i · ~x) (3.1.13)

F (~k, ω) =
∑
i

Si(ω)δ(~k − ω ~α0
i ) (3.1.14)

Z(~k, ω) =
∑
i

Si(ω)W (~k − ω ~α0
i ) (3.1.15)

The spectrum will be nonvanishing for any choice of ~k = ω ~α0
i , for a particular path

in wavenumber-frequency space, ~k = ω ~α0
j , where j is an index corresponding to one

of the propagating plane waves. The aperture’s output will be a linear combination

of the j term of the signal spectrum multiplied by a constant, Sj(ω)W (~0), and the

frequency components of the other planes waves in the superposition are distorted by

a frequency-dependent gain factor W (ω
[
~α0
j − ~α0

i

]
). The output spectrum then has

the form:

Z(ω ~α0
j , ω) = Sj(ω)W (ω

[
~α0
j − ~α0

i

]
) +

∑
i 6=j

Si(ω)W (ω
[
~α0
j − ~α0

i

]
) (3.1.16)

The aperture smoothing window W (~k − ω ~α0
i ) can be designed so the value

W (ω
[
~α0
j − ~α0

i

]
) << W (~0), and in this way directionally filter by allowing the
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passage of signals propagating from the desired direction, ~α0
j , and reject signals prop-

agating from other directions. This is the fundamental concept behind spatiotemporal

filtering.

The spatial extent or size of an array aperture determines the resolution with which

two plane waves can be separated. An aperture w(~x) with a large spatial extent has a

narrow aperture smoothing functionW (~k), which leads to minimal spectral smoothing

(a closer representation to the actual acoustic field the larger an array – The perfect

aperture smoothing function is infinitely narrow, δ(~k); this corresponds to an aperture

over all space, which is impractical.), and the more focused the aperture can be on

any specific direction. The main lobe can be considered the filter’s passband and the

side lobes as the stop band, because the side-lobes have decreasing amplitude.
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Figure 9: Aperture smoothing function for a continuous line array aligned with the
x-axis. L is the length of the continuous aperture.
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3.1.2 Resolution

To resolve plane waves propagating past an array, consider a wave-field of two

plane waves:

Z(~k, ω) = S1(ω)W (~k − ω ~α0
1) + S2(ω)W (~k − ω ~α0

2) (3.1.17)

The Rayleigh criterion is the generally accepted criterion for the minimum resolv-

able detail - limited when the first zero of one plane wave aperture smoothing function

coincides with a peak of the other plane wave. Each plane wave causes a replica of

the aperture smoothing function to appear in the wavenumber-frequency spectrum.

The resolution in this context is defined as the smallest wavenumber that produces

a zero in the aperture smoothing function. Resolution can be measured as the just

noticeable difference in direction of propagation, as ~k = 2π~ζ/λ, the directional reso-

lution is δζ ·λ/2π. In general, the Rayleigh resolution criterion requires two waves to

differ by at least one period over the aperture.

Figure 10: The Rayleigh criterion [24].
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3.1.3 Sidelobe height

Height of the highest sidelobe relative to the main sidelobe measures an aperture’s

ability to reject unwanted noise and signals; lower sidelobes mean less unwanted fre-

quencies in the spectrum and less noise. To get this ratio, differentiate the aperture

smoothing function, and maximize to get the location and height of the highest side-

lobe. Ratio is independent of length, a longer array does not give lower sidelobes.

3.1.4 Aperture ambiguities

In the case of symmetrical array apertures, waves propagating at the same speed

and different directions can yield the same output – the continuous linear array is only

sensitive to the x component of the wavenumber vector. A set of directions yielding

identical aperture response is termed an ambiguity set, which is the set of all ~α0 that

yield the same values for W (~k − ω ~α0), with a constraint that | ~α0| is fixed – that is,

the same value of magnitude, 1/c. A linear aperture is cylindrically symmetric, the

ambiguity set makes a cone around the aperture. Signals propagation from above

below or to the side of the linear aperture cannot be distinguished.

Figure 11: The cone of ambiguity [25].
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3.1.5 Apparent velocity in a planar array

The velocity of the wave across the array seems different to the array than its

propagation speed in reality. Illustration of this, consider the simplified case of an

array that lies in the x-y plane and a monochromatic plane wave traveling past it.

Consider a plane wave, f(~x, t) = exp{i(ω0t − ~k0 · ~x}, The usual parameters hold for

this plane wave: c = ω0/k with the slowness vector defined as, ~α0 = ~k0/ω0. The

direction across the array will be defined for a plane wave traveling in the z-direction

so that ~k0 =< 0, 0,−kz >.

Wavefronts are planes of constant phase. The points of equal field value, f(~x, t)

always form planes like this, so that the wave’s complex amplitude, which includes

the phase factor exp{iφ}. The amplitude changes value in time simultaneously at all

points in the aperture, and the wave appears to be everywhere simultaneously inside

the aperture. Since the slowness vector depends on the propagation vector, the x and

y components of the slowness vector are zero and therefore the speed in that direction

is infinite.

Consider again, the same plane wave, except with propagation direction +x,

~k0 =< kx, 0, 0 >. The velocity in the x-direction is c = 1/α = ω0/kx, it reaches

everywhere in the y in an instant (“infinite” speed), and there is no z component to

the array. Another way to think about this “infinite speed” is that, the apparent

magnitude of wave speed in the planar array simply won’t depend on the dimension

it is not in, and for propagation along the orthogonal basis vectors this term will

drop out. The x-y planar array will distinguish α0 =< α0
x, α

0
y, 0 >. In this event, the

magnitude of the slowness vector can be described as, 1/ca, where ca is the apparent

speed of the wave perceived by the array,
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√
(α0

x)
2 + (αy)2 = 1/ca (3.1.17)

ca =
1√

(α0
x)

2 + (αy)2
=

ω0√
(k0x)

2 + (ky)2
≥ ω0

k0
, (3.1.18)

which is greater than or equal to the actual speed of the wave.

3.2 Spatial sampling

In piratical application an array consists of sensors at discrete positions in space, so

it cannot be considered as a continuous aperture. Essentially, these sensors, located at

{~xm}, spatially sample the wavefield at certain time instants, {tn}. As an introduction

to this type of measurement and further analysis consider two questions: “What

effect does spatially sampling have on a propagating wavefield?” and “Can a true

representation of the wavefield signal be reconstructed under such conditions?”. Once

the analysis has been carried out in one dimension it can be easily generalized to higher

dimensions.

An arbitrary wavefield dependent on one spatial variable in time, f(x, t) exists,

propagating through space, to be recorded by a linear aperture of discrete sensors,

m ∈ {1, 2, 3, ...}, seperated with uniform interelement spacing, d. Temporal sig-

nals recorded at each sensor, m, will be denoted by set {ym}. Analgous to tem-

poral sampling, the signal recorded at each sensor is related to the wavefield by

ym(t) = f(md, t), where d is called the sampling interval. The wavefield will be ex-

amined at time instant, t0, an arbitrary observation time, so that the signal recorded

at the m-th signal is {ym(t0)}; with a fixed t the only sampling being considered is
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that due to the sampling in space a set of sensors positioned discretely in space does to

the wavefield. There are many parallels between spatial and temporal sampling; like

most discussions of sampling in time, and similarly here, ideal signals are bandlimited,

with spectrum components in inverse space hopefully defined within certain limits –

close fulfillment of this ideal will determine the ability of sampling to reproduce in-

formation of the continuous signal within the sampled signal. For spatial sampling,

k, the wavenumber, is the spatial frequency, and inverse domain for continuous po-

sition variable x. To see these requirements met, all the wavenumber components of

f(x, t0) will be located within the range |k| ≥ k0 and the sampling interval d is less

than or equal to π/k0. According the the sampling theorem, the continuous variable

function is represented by a sum over all samples (over each sensor sampling in lo-

cation space) of the sampled signal multiplied by a normalized sinc function whose

argument involves a difference of the continuous variable to the discrete variable mul-

tiplied by the sampling interval that is divided by the sampling interval, this yields

the Whittaker-Shannon interpolation formula [18]:

f(x, t0) =
∞∑

m=−∞

ym(t0)
sinπ

(
x
d
−m

)
π
(
x
d
−m

) (3.2.1)

Most of the information of interest is located within a signal’s spectrum. Can the

spectrum of the continuous signal be determined from spectrum of the spatially sam-

pled signal? For a continuous signal, sc(x), and its sampled representation, s(m), the

discrete-variable signal, the Fourier transform and the inverse Fourier transform are

defined:
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sc(x) =
1

2π

∞∫
−∞

sc(k) exp{−ikx}dk Sc(k) =

∞∫
−∞

sc(x) exp{ikx}dx

s(m) =
1

2π

π∫
−π

S(k̆) exp{ik̆m}dk̆ S(k̆) =
∞∑

m=−∞

s(m) exp{ik̆m}

(3.2.2)

Note the Fourier transform for discrete-variable signals is periodic with 2π, that is,

S(k̆) = S(k̆ + 2πl), for any integer value of l. The continuous wavevector number, k,

has units of radians/meter and equals 2π times the spatial frequency. The sampling

wavenumber magnitude, k̆, has a period of 2π, ranging from {−π, π} typically; the

units for this value are radians/sampling period.

The continuous signal sc, a given time instant t0, can be related to the discrete

representation of the real-world signal s, through sc(md) = s(m).

sc(x) =
1

2π

∞∫
−∞

sc(k) exp{−ikx} dk, (3.2.3)

Performing a change of variables, k̆ = kd, transforms the expression

s(m) = sc(md) =
1

2π

∫
−∞

∞sc(k) exp{−ikmd} dk (3.2.4)

s(m) =
1

2πd

∞∫
−∞

sc(
k̆

d
) exp{−ik̆m} dk̆ (3.2.5)

By decomposing this integral to many integrals over intervals of 2π it can be shown

that this equation fits the form of an inverse Fourier transform for discrete-variable
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signals.

s(m) =
1

2πd

∞∑
−∞

π+2πp∫
−π+2πp

Sc

(
k̆ − 2π

d

)
exp{−ik̆m} exp{i2πpm} dk̆ (3.2.6)

Taking a Fourier transform of this equation gives us a relation between the spectrum

of the continuous signal and the sampled signal.

S(k̆) =
1

d

∞∑
p=−∞

Sc

(
k̆ − 2πp

d

)
= S(kd) =

1

d

∞∑
p=−∞

Sc

(
k − 2πp

d

)
(3.2.7)

Basically, the conclusion to be drawn from this is that the sampled signal’s spec-

trum equals the sum of periodic replications of the continuous signals spectrum. If the

continuous signal has no frequency components outside the domain |k| ≤ π/d, there

is no overlap in the periodic replications of the spectrum in the spectrum of S(k̆). In

this ideal scenario, when the continuous signal is perfectly bandlimited, there is no

aliasing, and the spectrum for the continuous signal can be obtained easily from that

of the recorded signal,

S(kd) =
1

d
Sc(k), for |k| ≤ π/d (3.2.8)

When the continuous signal is not perfectly bandlimited, the periodic replication

of the spectrum overlap and there is aliasing. In other words, one period of the

sampled signal’s spectrum does not equal the continuous signal’s spectrum. Spectral

components of the continuous signal outside of the interval |k| ≤ π/d become spectral
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components of S(k̆) inside the interval |k| ≤ π/d.

Figure 12: Representations of the spectrum of the signal that has been sampled in
space. If the signal is perfectly bandlimited to |~k| = π/d the periodic replications of
the spectrum that occur due to sampling do not interfere and blend. If the space is
undersampled the spectrum begins to creep into other intervals and reproducing the
signal s(m) is reproduced from the blended spectrum resulting in a poorer reproduc-
tion of the original signal.

This domain can be represented in terms of wavelength rather than wavenumber.

In the event that k = ω/c→ 2πf/c, the requirement to avoid aliasing becomes [23]

d ≤ λ

2
, (3.2.9)

The interelement spacing, d, must less than or equal to half the wavelength. So,

in general, there is a limit to what signals can be reconstructed perfectly by an array

depending on this array parameter.

This can be generalized to higher dimensions very easily. The sampling theorem

can be applied to each dimension independently. In particular for two dimensions,

the interpolation formula is
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sc(x, y) =
∞∑

n=−∞

∞∑
m=−∞

s(m,n)
sin π

(
x
dx
−m

)
π
(
x
dx
−m

) ·
sin π

(
y
dy
−m

)
π
(
y
dy
−m

) (3.2.10)

And the Fourier transforms, therefore, are related by:

S(k̆x, k̆y) =
1

dxdy

∞∑
p=−∞

∞∑
q=−∞

Sc

(
k̆x − 2πp

dx
,
k̆y − 2πq

dy

)
(3.2.11)

To represent an infinitely long signal, an infinite number of samples is required.

The memory of any device used in digital signal acquisition and processing will never

have an infinite capacity. Eventually the signal must be cut short. In addition the

precision of the device is an issue, the signal information is represented by a finite

number of bits. As a result, this condition of a perfectly bandlimited continuous

signal is rarely achieved for finite time signals.

3.3 Arrays of discrete sensors

In application, spatiotemporal signals are sampled and recorded using arrays of

individual sensors placed at specific locations in space. These sensors can be placed

in regular or irregular patterns. Regular arrays have interelement spacings that are

periodic and irregular arrays have interelement spacings that are not necessarily pe-

riodic.

The benefits of using regular arrays should be self-evident. The aperture smooth-

ing functions of such arrays are nicely behaved and straight-forward to analyze. In this

case, if designed properly, the aliasing effects that occur would be the spatial aliasing
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associated with the array spacing and the time aliasing associated with sample rate.

Consider a wavefield, f(x, t) with a single spatial dimension x and time t being

sampled by an array with M sensors equally spaced d apart laying on the x-axis. The

set of signals to be recorded by this array is defined as {ym(t)} – these correspond

to the wavefield’s values sampled every d meters: ym(t) = f(md, t). The wave-field’s

wavenumber-frequency response representation is given by

F (k, ω) =

∫ ∞
−∞

∫ ∞
−∞

f(x, t)exp{−i(ωt− kx)}dxdt (3.3.1)

The spectrum of the sampled wavefield is given through

Y (k̆, ω) =
∞∑

n=−∞

∞∑
m=−∞

ym[n] exp{−i(ω n− kmd)} (3.3.2)

Using the relation established in the last section,

Y (k̆, ω) =
1

d

∞∑
p=−∞

F

(
k − 2πp

d
, ω

)
(3.3.3)

Implementing sensor weights, the output spectrum of the array as a whole is given

through

Z(k̆, ω) =
1

2π

π/d∫
−π/d

[
∞∑

p=−∞

F

(
l − 2π

d

)]
W (k − l)dl (3.3.4)

where the output of the array is a smoothed version of the source signal. The sum

in brackets defines what if any aliasing occurs. If the spacing condition is met there

is no spatial aliasing.
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3.3.1 Grating lobes

The effect of aliasing on the beampattern is the appearance of something like main

lobes appearing for different angles of arrival or wavevectors other than the desired

angle or wavevector the array has been steered to identify. Signals propagating from

directions corresponding to the spatial frequencies in the beampattern where the

grating lobes occur are indistinguishable from signals propagating from the direction

of the mainlobe. In the case of undersampled regular linear arrays and some regular

multidimensional arrays, spectral peaks emerge that the mainlobe values and are

periodic. In irregular arrays, grating lobes appear that do not have values equal to

the mainlobe and are not periodic. It is possible, but very difficult to determine

where they might occur, and do limit the spatial frequencies an array can uniquely

determine, though spatiotemporal filtering can overcome this slightly. By searching

for specific frequencies at specific time one can determine the distance through power

optimization techniques as long as the grating lobes are indeed less than the main

lobe.

An example of array analysis

A hypothetical discrete line array will be analyzed using the background in-

formation that has been presented. The proposed discrete line array will consist

of four sensors with an interelemental spacing of 2 m and will be positioned at

~xm = {(−3, 0, 0), (−1, 0, 0), (1, 0, 0), (3, 0, 0)}, see Figure 1. They will be imposed

with sensor weights wm = {1, 1, 1, 1}.

The sensors are arranged in a line and position symmetrically across the x-axis.
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Figure 13: In the array pattern of an aperture that spatial undersamples the field,
the mainlobe is centered, the side lobes, which determine the passband of the array,
are symmetric on either side for symmetric arrays. The visible region is the part of
the array pattern that falls in between |~k| = π/d. Grating lobes appear as mainlobes.
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Figure 14: The hypothetical discrete line array geometry plotted in two dimensions,
θ → π

2
. There are four equally spaced sensors, each with weight of 1.

Throughout this analysis the azimuth angle, φ will be shifted by π/2 radians, as

indicated by Figure 1, so that an angle of 0 radians corresponds to a direction per-

pendicular to the array.

Throughout this analysis the far-field assumption is made and all waves prop-

agating in the wavefield are monochromatic plane waves of an arbitrary constant
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frequency, ω = 2πf ,

f(~x, t) = s(t− ~α0 · ~x). (3.3.5)

In this representation of a monochromatic plane wave, which is dependent on

position, ~x, and time, t, we include the slowness vector ~α0 of a wave incident on the

array (any feature of an incident wave will be notated with a superscript 0). An

arbitrary slowness vector, ~α is defined as,

~α = ~k/ω = k/ωζ̂. (3.3.6)

The magnitude of the slowness vector is |~α| = 1/c, the inverse of the wave speed,

the sound speed in water – approximately c = 1531 m/s in this application. The

wavenumber vector is ~k, and has magnitude of |~k| = ω/c = 2π/λ. The unit vector, ζ̂

is defined normal to the wave front, and denotes the propagation of direction for an

arbitrary plane wave. The slowness vector contains 2 pieces of pertinent information

simultaneously: the speed and direction of the wave.

Analysis begins usually by determining what the array pattern for given frequency

of incident wave and arrival angle φ over several different frequencies. The array

pattern is synonymous with the aperture smoothing function because it determines

the amplitude and phase of the beamformed signal when the wavefield consists of a

single plane wave. It is given through,

W (~k) =
M−1∑
m=0

wm exp[i~k · ~xm] (3.3.7)

There are many ways to plot such a function. To plot it in real space, one may see
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<[W (~k)], |W (~k)|, |W (~k)|2, log |W (~k)| (dB), or 2 log |W (~k)| (dB). One may see this

given with an argument that represents an angle of arrival relative to the perpendic-

ular bisector of the array, and it is not uncommon to see in either a Cartesian plot or

a polar plot.

Figure 15 displays array patterns of a four element sensor array of spacing 2 m

for frequencies 100 Hz, 382.75 HZ, 500 Hz, 750 Hz, and 1000 Hz. Central maximum

in the array pattern are called main lobes and indicate a the array’s sensitivity to

a given direction of arrival. The smaller maxima are called sidelobes. The spatial-

filtering effect of the array sampling a signal in the position domain is not perfect,

and these sidelobes determine how sensitive to other angles of arrival a given array is.

In fact, the ratio of the height of the sidelobe to the height of the mainlobe serves as a

practical indicator of how effective an array is at discriminating directions of arrival.

Consequently, a plane wave incident on an array at the angle that corresponds to

the location of the main lobe will have its amplitude maximized, while plane waves

arriving from other directions will have their amplitude minimized according to the

array pattern. The space must be sampled sufficiently to avoid artifacts, and the

inter-element spacing requirement to avoid spatial aliasing completely is:

d ≤ λ/2, (3.3.8)

and perfect replication of the wavenumber spectrum is limited to the ratio of the

array spacing and the wavelength in space similar to the Nyquist sampling theorem.

For a discrete line array with 2 m interelement spacing, that means aliasing free

replication of the source signal and the spectrum of the source signal for planes

waves of frequency up to 382.75 Hz. Beyond this threshold, periodic replications of
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Figure 15: The array pattern |W (~k)|2 is plotted as a function of incidence angle for
several given frequencies. Notice the effect of higher frequency plane waves by the
appearance of grating lobes in the array pattern.

44



Figure 16: The hypothetical array’s directivity pattern.

the source signals spectrum in Fourier space begin to blend, distorting wavenumber

information. The effect of this on the array pattern is spurious mainlobes known

as grating lobes in the visible region, φ = {π/2, π/2}. The beam directivity pattern

extends the description of array pattern over frequency space, and a three dimensional

plot relating |W (~k|2 to either wavenumber or incident angle and to frequency is called

a directivity pattern. It can indicate the size, shape, and direction of the main beam

and side lobes, and also the structure of the array pattern that pertains to emerging

mainlobes for higher frequencies of propagating signals.

The directivity pattern of a four sensor array is plotted in Figure 16. The frequency

range of interest is 0 Hz to 5000 Hz because soniferous fish vocalize in this region of the

spectrum. The primary spectrum in the range |~k| ≤ π/d is polluted by the periodic

replications and grating lobe emerge, because of the wavenumber’s dependence on

temporal frequency, above 382.75 Hz. The grating lobes have values that equal the
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maximum value at the mainlobe, and waves of frequency higher than the threshold

that are incident on the array from a direction that coincides with one of these grating

lobes has its amplitude maximized in the same way as if it were incident on the array

at the angle that coincides with the true mainlobe.
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4 Beamforming

The objective of this research is to gather position and time information about

a propagating wavefield f(~x, t) by sampling the field at each sensor. This field will

include noise and signals from many sources. To analyze information about a single

source, such as a fish in a creek, the array must be designed to have the ability to

focus on selected signals. Any attempt to focus the array to a target should at least

include linear filtering through the use of bandpass filtering, and, in this way, signals

occupying different frequency bands can be examined separately. Furthermore, to

obtain position information about a source from any arbitrary acoustic wavefield,

an array must also have characteristics that allow for spatial filtering, which is an

advantage of arrays over a single omnidirectional sensor, which does not provide any

spatial filtering.

An array’s directional sensitivity is called its directivity pattern [17] – this is deter-

mined solely by the array’s design and physical construction. To steer the sensitivity

of the array the maximum of the directivity pattern must be steered so that it is

directed toward a desired angle of arrival. This directivity defines the bandwidth and

stopband of the spatial filter.

With large apertures, maintaining precision is difficult. Large apertures must be

designed to close tolerances to not be sensitive to aberrations of the recorded signal,

which was very difficult to achieve in this application. The steering, here, is achieved

through signal processing techniques, and the accumulation of error will affect the

resolution and results of any localization algorithm. Any type of signal processing

where these techniques are relevant is colloquially called beamforming.



4.1 Delay-and-sum beamforming

This is the oldest and simplest array signal processing technique for source local-

ization, and it is still abundantly relevant in present research. The underlying prin-

ciples are fairly simple: because sound travels at a finite speed within the medium, a

sound issued from a specific location at time t0 within an aperture will be recorded

at sensors m as occurring at different times {tm}. The delays in arrival of the sound

to each receiver are therefore {∆m} = {tm − t0}.

If a propagating signal is present in an array aperture, the sensor outputs delayed

by appropriate amounts, {∆m}, and summed, reinforce the signal with respect to the

noise and waves propagating in different directions. The delays that reinforce the

signal are directly related to the length of time (and distance d = ct) of propagating

between 2 sensors.

s(t)
x
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Figure 17: Definition of vectors for conventional delay-and-sum beamforming analysis.

Referring to Figure 17, ~x0 is a position vector pointing from the origin to the source,

Let s(t) be the time-dependent signal emitted at the source location, ~x0, that prop-

agates through the array, ~ζ0 is a unit vector in the direction of propagation (points

from ~x0 to O. For simplicity of notation, |~x0| ≡ r0. The overall sound field measured
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by the hydrophones, f(~x, t) can include the summation of contributions from any

number of sources. For an arbitrary array with an arbitrary array aperture function,

M sensors are located at {~xm}, m = 0, ...,M − 1. It is common for the array’s phase

center, defined by:

M−1∑
m=0

~xm = ~0, (4.1.1)

to be taken as the origin, although generally it does not matter. There need not be a

sensor located at the phase center, and any origin may be chosen at the investigator’s

discretion; all sensor positions {~xm} are defined relatively from this position, and axes

for a desired coordinate system can be chosen arbitrarily.

A delay-and-sum algorithm applies a delay ∆m and an amplitude weight wm to

the output of each sensor so that the output of an array designed to operate as a

delay-and-sum beamformer is:

z(t) =
M−1∑
m=0

wmym(t−∆m), (4.1.2)

where the waveform recorded at each sensor, ym, contains the signal and includes noise

present in the sensor recording. The application of amplitude weights, or shading,

enhances the beams shape, and reduces sidelobe levels. By allowing a summation

over differing delays the beam, the maximum in an array’s directivity pattern, can be

steered toward a desired direction, ~ζ0 or to a particular point ~x0. Note, two sensors

are required for directional steering, 3 sensors are required for point steering in two

dimensions, and four sensors are required for accurate steering in three dimensions.

Beamforming is a signal processing technique by which the main lobe of an aper-
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ture’s array pattern can be steered to be sensitive to other angles of arrival and

maximize any signal propagating from that direction. This is achievable by includ-

ing a delay term on individual sensor measurements before summing each channel

together at the output of the array. The delays are given through,

∆m = − ζ̂ · ~xm
c

= −~α · ~xm, (4.1.3)

where, the delays, ∆m, depend on the direction of arrival, ζ̂, the position of the hy-

drophones, ~xm, and the sound speed in water, c. The delays can also be chosen to be

−~α·~xm where the beamformer judicially discriminates incident plane waves that prop-

agate with slowness (direction and speed), ~α. The steered array pattern introduces

a delay into the domain, however this is equivalent to considering the beamformer

electing to accept plane waves with slowness vector ~α. In the case of a plane wave

incident on the array with slowness vector ~α0, if the array is steered to accept plane

waves such that ~α = ~α0, the output signal is an undistorted replica of the source sig-

nal. The speed of sound is calculated from environmental measurements, as is typical

in applications of sonar, so, comparing ~α to ~α0 one can conclude that the propaga-

tion direction the beamformer assumes and the propagation direction of the incident

wave are equal. Conversely, if ~α 6= ~α0 the array attenuates the source signal, and to

assess beamformer performance one examines the wavenumber-frequency response,

H(~k, ω) = W (ω~α−~k). This function can describe the performance of an array set-up

to operate as a beamformer in two slightly different ways. The beampattern describes

how the array pattern varies based off different choice of frequency and wavenumber

while the direction is held fixed. The steered response examines the array pattern

for varied propagation direction while holding the frequency, ω0, and wavenumber
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vector, ~k0, of the incident wave fixed. These two descriptions are equivalent for a

delay-and-sum beamformer. In terms of the delays imposed on the channels of the

array, the wavenumber-frequency response is:

W (ω0~α− ~k0) =
M−1∑
m=0

wm exp[−iω∆m] exp[−i~k · ~xm]. (4.1.4)

For the hypothetical discrete sensor array of four receivers and inter-element

spacing of 2, the beam pattern is plotted for assumed directions of propagation,

{π/6, π/4, π/3, π/2} radians In Figure 18. The array patterns displayed are plotted

versus incidence angle φ0. Both angles are measured from the perpendicular to the

array axis, and one can examine on each plot where φ = φ0 the main lobe occurs

meaning the array pattern is most sensitive to plane waves arriving at angles that

equal the assumed direction of propagation.

As of yet, the wavefield has been considered of consisting of a single constant

plane wave. In field recordings of fish this is not the case. In the case of plural waves

which can have arbitrary shape, care is important. Waves propagating to the array

from different directions can overlap in wavenumber-frequency space inflating the

grating lobes, and discriminating direction is not always enough to reject unwanted

signals. Even if the sound speed is constant and known, the various components of

the wave may have different frequencies ω = nω0 and wavenumber vectors ~k, but the

frequencies and wavenumber vectors together must satisfy the constraint ~k/ω = ~α.

For a discrete line array like the example given, i.e. one that is positioned in

totem on the x-axis, H(~k, ω) depends only on x coordinates. The previous expression

for W (ω~α− ~k) reduces to:
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Figure 18: The beampattern is plotted against incidence angle for frequencies 100
Hz, 382.75 Hz, 500 Hz, 750 Hz, and 1000 Hz.
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W (ω~α− ~k) =
sin M

2
(ωαx − kx)d

sin 1
2
(ωαx − kx)d

, (4.1.5)

where M = 4 and d = 2. The wavenumber-frequency response can be plotted on a

contour plot to examine the performance of the array and structure of the spectrum.

This is done for a hypothetical discrete line array of four sensors with inter-element

spacing of 2 m. The wavenumber-frequency response given in (4.4.5) is plotted for

αx = 1 and αx = 4 in Figure 19. In each case, the response’s main lobe extends

diagonally from the origin. It is angled with respect to the axis, because it is being

steered in the stated directions. Because of spatial aliasing the mainlobe is repeated

as a series of grating lobes, which appear in the plot as parallel ridges with the same

amplitude as the mainlobe. Based off Figure 19, the spectral response of the array is

considerably different when the array is steered to look in different directions. The

angle the main lobes and grating lobes make with the axis are increasingly steeper

for increasing values of αx. From Figure 20 it is obvious that while an array is steered

in direction αx = 4 that components of a wave propagating in direction αx = 1 do

not intersect with the main lobe of the beam pattern; however, higher frequency

components of the wave in direction αx = 1 do overlap with grating lobes in the

array’s beam pattern even though it has been steered, consequently polluting the

gratings lobes. This is not desirable. This scenario can be thwarted by concentrating

on a range of temporal frequencies, this achieved with a temporal filter designed to

pass frequencies of interest and filter those out which are undesirable.
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Figure 19: Two contour plots the first of which has been steered in direction αx = 1
and the second in αx = 4.
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Figure 20: On the left, the main lobe for slowness αx = 1 has been superimposed
over the wavenumber-frequency response of the array steered to look in direction αx
=4. The figure on the right shows the effect of temporal filtering. On the response
of the array.
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5 The array

The hydrophones used in this study were manufactured by High Tech, inc. (Long

Beach, MS), and the array was constructed by William Holland and Chris Bonnerup

at East Carolina University Department of Physics and consisted of seven omnidi-

rectional hydrophones (model HTI-96-MIN) for signal acquisition. Macartney, inc.

built the connectors and cables. Detailed specifications concerning the HTI-96-MIN

hydrophone have been organized into Table 1. The manufacturer reports average

sensitivity values of -164 dB, with a usual reference factor 1 V/ µ Pa. Hydrophone

calibration occurred on site at High Tech, inc. Individual characteristics of each hy-

drophone channel, including specific signal-to-noise and sensitivity data, are itemized

in Table 2. All hydrophones have sensitivities within 0.4 dB of the average value.

Specifications [26] :
Sensitivity w/ preamp: -164 dB ref: 1 V/ µ Pa
Frequency response: 2 Hz to 30 kHz
Preamplifier type: Voltage mode (3 wire: Power, Ground, Signal Out)
Operating Voltage: 5 VDC to 15 VDC
Connector: XLR
Maximum Operating Depth: 3,048 meters
Size: 2.50” length x 0.75” dia.

Table 1: Specifications of the HTI-96-Min hydrophone manufactured by High Tech,
inc.



Seven Channel Hydrophone Array:
Array Channel Hydrophone S/N Sensitivity (dB re 1 V/ µ Pa)

1 408001 -164.0
2 408009 -163.9
3 408006 -164.1
4 408007 -163.9
5 408002 -164.4
6 408004 -164.1
7 408008 -163.7

Table 2: Sensitivites and signal-to-noise characteristics of each hydrophone channel
[26].

The frequency response of each hydrophone is 2 Hz to 30 kHz; the segment of the

audio spectrum of interest for those surveying soniferous fish is typically 50 Hz to

5 kHz. With an operating voltage range of 5 V to 15 V, the power was supplied

by a convenient 12-V marine battery. An additional cable was custom ordered to a

length of ≈ 200 m to ensure an ample area of surveillance to achieve a broad aperture

window. Each hydrophone is rated for a maximum depth of 3 048 m, well in excess

to the conditions an estaurine environment of very-shallow water.

Audio was recorded with a ZOOM F8 field recorder, weatherproofed in a cus-

tomized PelicanTM case housing. An adapter prototyped by the East Carolina Uni-

versity Department of Physics’s electronics shop was fixed into the side of the housing

and converted output from the array to be compatible with the 8-channel input of

the ZOOM field recorder. Audio data was recorded at a resolution of 24-bits with a

sampling frequency of 44.1 kHz in 3600 s (1 h) long segments written to a removable

SD card.
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Figure 21: Slant forward image of the ZOOM F8 field recorder [27].

5.1 The array geometry and setting for deployment

The ZOOM F8 field recorder was stowed in the weatherproof PelicanTM case sta-

tioned on land away from the banks of the marsh creek partially concealed from open

view. The seven hydrophones were connected to seven of the eight tracks on the field

recorder and powered by a 12 V marine battery. With the aid of a small boat, the

loops of cable were unwound completely to their full length, and each of the HTI-96-

MIN hydrophones were zip-tied to a concrete cinder block and positioned at random

locations in an extensive line array that stretched from the bank into the middle of

the channel. Lengthy pieces of PVC pipe, which had been ruled, and wide flat sur-

faces of material, which were fastened atop, were used to construct a tool that served

to measure the water depth and as targets for the laser range finding device. The

entire system was deployed during low tide and stationed for 24 h at the Clam Bank

Monitoring site (latitude 33.335 and longitude -79.194) before recovery. To establish a

coordinate system, extensive field measurements were obtained by a portable GPS de-
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vice and a laser-range finding device, TruPulse 360 R, Laser technology, inc.,accurate

to ± 0.1 m in tandem. The measured positions of important markers and landmarks

are displayed in the data plot in Figure 3. The site contained a GPS reference station

which was used as first reference and origin of the coordinate system, labeled R1,

and GPS and distance relative to this origin were measured for other landmarks in

the neighboring area (R2, R3, R4). A tall target sign was planted at the site where

each hydrophone was deployed and both GPS position and distance relative to each

of the reference land marks recorded. Initial depth was recorded for each hydrophone

(the depth value changed based on tide conditions), and declination was measured

from the creek to the height of the target, so geometric calculation could obtain two

dimensional projections of the measured distances. Azimuth readings were corrected

for the magnetic declination by subtracting the declination value from the rangefinder

reading. Relevant data has been collected and presented in Tables 3 and 4.

Reference landmark coordinates:
Reference Lat. [°] Long. [°] x [m] y [m]

R1 33.33399257 -79.19289139 0.0 0.0
R2 33.33427748 -79.19282694 6.0 31.6
R3 33.33459035 -79.19201705 81.4 66.3
R4 33.33419092 -79.19191931 90.5 22.0

Table 3: Coordinates used for reference to measure distances to hydrophone position.
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Figure 22: Array plots of the hydrophone geometry at Clam Bank in the North
Inlet-Winyah Bay National Estaurine Research Reserve near Georgetown, SC. The
reference points are displayed as orange squares. The blue disks show the location of
each hydrophone in the array. The green diamonds are the location of the calibration
clanks. The reference points were very far away (left) and a plot excluding these
points has been supplied (right). GPS Locations were recorded and submitted into
Google Earth (bottom) The plots and map are credited to M.W. Sprague.
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Hydrophone Points:
Lat. [°] Long. [°] x [m] y [m] z [m]

HP1 33.3346119855189 -79.1919880492172 84.1 68.7 -0.83
HP2 33.3346228042941 -79.1918881552849 93.4 69.9 -1.35
HP3 33.3346832131291 -79.1918548566292 96.5 76.6 -0.89
HP4 33.3346994421037 -79.1918151136994 100.2 78.4 -1.32
HP5 33.3347418179877 -79.1917420724359 107.0 83.1 -1.37
HP6 33.3347337036447 -79.1917764446533 103.8 82.2 -1.07
HP7 33.3347553423149 -79.1917313309710 108.0 84.6 -0.86

Table 4: Coordinates for hydrophone positions based on field measurements.

5.2 Calibrating the array

Field measurements were admittedly difficult. The conditions under which they

were made were arduous; while the array was deployed by wading into the water

during low-tide, the measurements were made during a low-high tide transition, and

areas in the middle of the channel were increasing in depth – much of the research

team had difficulty maneuvering in the water as the water deepened. This limited

the time of deployment and hastened the efforts of researchers. Deployment form

was skillful and the research team performed with purpose so that each move was

carried out deliberately as planned in the briefing. In addition, the hydrophones

were weighted to the bottom of the channel, and were not visible to measurement.

Targets were lazed with a range-finding device in a competent manner, so a certain

degree of accuracy is safely assumed, and geometric calculations were double checked

so that there was good faith in the azimuthal components of the measurement. But,

GPS measurements with hand-held field devices have reasonable large tolerances for

position and the reported precision of the range-finding device was questionable,
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not spurious, but questionable. The rangefinder reported a resolution of ± 0.1 m;

however, for measurement greater than 100 meters it often reported integers – not

always, strangely enough, but most of the time. In the event that there is a low

quality target, the precision defaults to ± 1 m. With all of these factors combined,

and, with full premonitory awareness of these challenges, ahead of time it was decided

a method would be used to calculate sensor positions based on sound speed in the

medium; this would yield the acoustic positions of the sensors, and all localization

efforts would be carried out in this configuration space.

To this end, five calibration sounds were produced within the array, just beneath

the surface of the water. This was completed in a small boat, at high-tide, and all

measurements were made without any altitude angle to reference points in the land-

scape, using the laser range finder. One member of a two man team leaned over

the side of the small boat, placing their hands beneath the surface of the water and

striking two pipes together several times. The position and time for each calibra-

tion tone was recorded so that the array could be tested, and tweaked – that, these

measurements could be used to calculate the true positions of every sensor, so that

whichever algorithm was settled on would give accurate results calibrated to these

measurements.

The distance between an acoustic source and a hydrophone is given by the distance

formula:

ri,j =
√

(si,x − xj,x)2 + (si,y − xj,y)2, (5.2.1)

where i is an index denoting the calibration, i = {1, 2, 3, 4, 5}, and j is an index

denoting the sensor from which the distance is measured. The position for {x1,x, x1,y}
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Figure 23: The red point is the center of a circle of minimal area that encloses all the
intersection points for the system, and the green point is the spatial median.

is taken as {0, 0} for the calibration, and the results are translated back to the coor-

dinates of the measured space.

fs
c

(ri,j′ − ri,j) = τj′−j (5.2.2)

These delays, τj′−j, are calculated using the generalized cross-correlation method,

and are an integer number of samples. The resulting system of equations was then

solved numerically for the hydrophone positions, {xj,x, xj,y}. Total consistency is not

guaranteed, and measurement error and this approach using a whole number value of

samples often gives a collection of intersections which are solutions for {xj,x, xj,y}. A

multivariate spatial median method was used to determine a location that minimized

the distance to each intersection. For a set of points (xi, yi), where i = 1, 2, ..., n, the

spatial median be a choice µ̂ of µ = (µx, µy) that minimizes the function:

T (µ) =
n∑
i=1

(
(xi − µx)2 + (yi − µy)2

)1/2
(5.2.3)
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The specific choice of µ = (µx, µy) that satisfies

∂T

∂µx
=

∂T

∂µy
= 0 (5.2.4)

is µ̂, the spatial median, see Figure 23. It is useful in circumstances when an average

is taken so to be unaffected by magnitudes instead of residuals.
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6 Steered power response method

If a source’s location is unknown, an array set up as a beamformer may be steered

over a predefined region of space by adjusting delays, the output of a beamformer

when utilizing this method is known as the steered response [28]. The power of

the steered response is maximized when the delays implemented on the beamformer

match the propagation delays for a sound wave traveling to each sensor in the array.

Discovering which delays satisfy this condition make it possible to map the result

from delay space to location space, and ultimately provide the original location for

the sound source.

Consider a system of M hydrophones, following the convention that each sensor is

denoted by an index m = {0, 1, ...,M}. As previously discussed the discrete time sig-

nal recorded by each hydrophone is sm(n). Steered power method seeks to maximize

the power of a steered beam across the location space. In Cartesian coordinates, the

delay between a pair of hydrophones is given by:

fi,j(~x) =
1

c
[d0,i(~x)− d0,j(~x)] , (6.0.1)

where fi,j represents the delay between microphones mi and mj and d0,i is the distance

between the sound source and microphone mi.

The search grid will be defined by [29]:

G = Gx ×Gy ×Gz = {x0, x1, ..., xNx} × {y0, y1, ..., yNy} × {z0, z1, ..., zNz}, (6.0.2)



where Gx = {x0, x1, ..., xnx , xNx} is a set of x-dimension candidate locations with

cardinality |Gx| = Nx, Gy = {y0, y1, ..., yny , yNy} is a set of y-dimension candidate

locations with cardinality |Gy| = Ny, and Gz = {z0, z1, ..., znz , zNz} is a set of z-

dimension candidate locations with cardinality |Gz| = Nz. The number of candidate

positions is given by the cardinality of G, is given by |G| = NxNyNz. The indices

nx, ny, nz, refer to the position of each element inside of the corresponding set of

the given subscript. A specific coordinate that is an element of G will be denoted

gnx,ny ,nz .

The SRP is carried out not in location space, but in the delay space, defined at

each search location by fi,j, the delays calculated, in general, for all unique, order-

independent microphone pairs, given by set P . Whose cardinality is given by the

binomial,

|P | =
(
M

2

)
=
M(M − 1)

2
, (6.0.3)

For larger arrays, the cardinality of this set can be quite large, considering that an SRP

algorithm takes place for delays for each microphone pair for each candidate position

in G. This places some constraints on the other parameters of the computation. A

fine grid resolution is important for more precise localization; moreover, the SRP is

carried out using audio excerpts from each channel, and it is desirable to use longer

audio tracks for more accurate results, which is computationally costly even more so.

It can be possible to locate an acoustic source using less pairwise delays, sacrificing

a cleaner output. It is not that there is redundancy found in using greater amounts

of pairs, but that eventually after combing several pairwise calculations a location
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begins to emerge and involving higher pairs give the same result. In this application,

HP1 is used as a reference microphone for all pairwise calculations, and P will be

represented by:

P =



1 2

1 3

1 4

1 5

1 6

1 7


(6.0.4)

The set that denotes the delay space of pairwise delays for microphones mi and mj

is denoted Di,j. There is a set like this for each microphone pairing, and it takes the

form:

Di,j = {−τmaxi,j ,−τmaxi,j + 1, ...,−1, 0, 1, ..., τmaxi,j − 1, τmaxi,j)} (6.0.5)

The set Di,j in (5) represents the best attainable resolution in delay space. The

elements inside of this set are pairwise delays with the units of samples – the audio

being analyzed are discrete-time signals. A search grid G can only be defined with

a resolution up to a corresponding resolution of one sample in delay space. This is

because the time information embedded in each signal is only accurate to intervals

of the inverse of the sampling frequency, linear connections are filled in by the audio

recording device whilst writing the digital recording file. In general, the resolution in
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delay space will be determined by the spatial grid resolution, which is chosen at the

beginning of the algorithm. Finally the SRP seeks to maximize the power output of

a conventional beamformer. For a typical array the output signal is given by,

z[n] =
M∑
m=1

wmym[n− τm], (6.0.6)

where, z[n], is the array’s output, wm are amplitude weights applied to the output

of each sensor to taper the beampattern and reduce sidelobe levels, ym is the signal

recorded at each hydrophone m, and ∆m is some delayed applied to each signal to

steer the focus of the array on signals propagating from a particular direction ~ζ0 or

from a particular point in space, ~x0. The steered power response at an arbitrary

position ~x = {x, y, z} is expressed as [8]

P (~x) =
∑
n

∣∣∣∣∣
M∑
m=1

ym[n− τm[~x]]

∣∣∣∣∣
2

, (6.0.7)

Implementing this within the realm of the proposed search algorithm using grid points

in grid G,

P(~x) ≡
∑
n∈Z

∣∣∣∣∣
M∑
m=1

ym[n− τm[~gnx,ny ,nz ]]

∣∣∣∣∣
2

(6.0.8)

where, this represents the power of all channels summed after being delay by an

amount τm(~x), given by:

τm(~x) = bfs
|~x− ~x1| − |~x− ~xm|

c
e (6.0.9)

The sampling frequency fs is included, with the propagation speed c because time
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in this case has units of samples. The algorithm is limited to time units of sampling

period, and since they are whole numbers, the round operation, b·e is used.

Incidentally, this equation can be related to the cross-correlations between the signal

at each hydrophone [30].

P(~gnx,ny ,nz) =
1

2π

M∑
mi=1

M∑
mj=1

π∫
−π

Φmi,mj
(eiω)Ymi

(eiω)Y ∗mj
(eiω)eiωτmi,mj (~gnx,ny,nz )dω

(6.0.10)

where,

Rmi,mj
(τmi,mj

) ≡ 1

2π

π∫
−π

Φmi,mj
(eiω)Ymi

(eiω)Ymj
(eiω)eiωτmi,mj dω (6.0.11)

so,

P(~gnx,ny ,nz) =
M∑

mi=1

M∑
mj=1

Rmi,mj
(τmi,mj

(~gnx,ny ,nz)) (6.0.12)

To estimate source location, the maximum of this set is taken:

~x0 ≈ ~gnx,ny ,nz = argmax
x0∈ G

P(~gnx,ny ,nz) (6.0.13)

where the function argmax identifies the maximum of set P . The position of the

maximum power in set P yields the grid point ~gnx,ny ,nz ∈ G that corresponds to

the most likely location of the source ~x0. Note, this is only an approximate source

location; presumably the grid point that produces the maximum power is the closest
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location to the actual spot the source made the sound.

6.1 The steered-beamformer algorithm

1. Import the audio excerpt

The audio was recorded in 3600 s (1 h) segments. These are trimmed using a

Python program prior to analysis in Mathematica. There is much when it comes

to audio processing that Python surpasses Mathematica in ease and computation

timing. The length of time isn’t specific, but it has to include the sound one wishes

to locate.

Figure 24: Typical waveform plot of a source signal recorded on the seven hydrophone
channels.

2. Trim the audio even further

Only the arrival of the first maximum is of interest, the final clip should contain
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no echo and should be truncated before another sound is issued. The clip should be of

a reasonable length, so that it is more than just a few amplitudes. This is more of an

art than a science and is often very difficult to achieve a perfect length in this noisy

environment. Ideally, the target is to have as long an excerpt as the program allows;

computation timing increases dramatically for longer tracks, and if the datasets are

too long it becomes impractical – memory is filled up quickly, and processes can run

indefinitely until a crash occurs. Isolating a specific sound is very difficult in such

circumstances. The sounds of interest have amplitudes much less than the percussive

shrimp clicks, and the clip will be far less than can be perceived at a normal playback

rate.

3. Filter the audio

In an environment this noisy, filtering becomes extremely important. The shrimps

produce percussive sounds that dominate the full range of the spectrum. There are

countless of these creatures in the waters of the marsh, and several are clicking at

a given instant. Those near the microphone are recorded very loudly. Many times,

though, it is known at which frequency a fish emits its call and power spectra can

reveal the peak frequency of the call the fish makes.

The filter used is very rudimentary. It is a brick wall filter [31] with a very small

bandwidth that can be adjusted in width and central frequency, see Figure 26. If

there exists in the call higher harmonics, the filter can be altered to include this part

of the spectrum as well. In general, at higher harmonics, the sound from other sources

and noise dominates, so this was considered a reasonable approach.

4. Generate a grid of desired resolution over the physical domain

This is simply a set of ordered pairs that serve as candidate source locations [29].
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The level of resolution specified is a nuanced decision as well. A finer grid means longer

computation times. To overcome this restriction, the process can be cascaded so that

the localization occurs in stages with increasing grid resolution [32]. The resolution

for the first stage must be chosen carefully, because too broad of a spacing will distort

the location the algorithm reports. For longer audio clips, a broader resolution must

be used. Stage 1 was always implemented with a 1 m grid spacing and resolution was

increased from there. The grid is generated using a simple iterating method within

Mathematica.

x-position [m]

y
-

p
o

s
it

io
n
[m

]

Figure 25: A typical grid spacing for stage 1 of the localization algorithm.The filtered
spectrum is shown in red.
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Figure 26: The brick-wall filter’s response.The yellow region is the passband of the
filter. The filtered spectrum is shown in red.
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5. Calculate distance from each gridpoint and time delays

To implement the pair-wise time delay method outlined in the background sec-

tion requires the difference between the distance to the source and the distance to

each microphone. The sound speed of water is calculated from the water quality

data (salinity, depth, temp.) for the time of day it was when the recording was

made. The sample rate is used to get a time-delay in samples. This calculation

must be carried out for each gridpoint and each hydrophone pair being consid-

ered. Here, hydrophone one (H1) is treated as a reference hydrophone and pairs

{{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}} are considered only for simplicity and ease of com-

putation (it can be possible to locate with this few number of pairs). DO loops are

ideal for this purpose.

6. Implement the delays

Many options exist for the signal processor to impose the delays appropriately

on the audio clips, but only one was considered a feasible choice. Ultimately, a sum

between all channels is the destination of the delayed audio clips; therefore, it is

critical the amplitude datasets are of equal length. Through zero-padding, or the

addition an amount of zeros to the front and back of a dataset, the delay can be

achieved and the common length requirement met. It is important to pad each clip

with the same amount of zeros also to not artificially lessen the impact of any track

to the spectrum of the sum; this is important for the average power calculation. To

automate this process is important so that the same script can be carried out again for

each point in the grid. Depending upon where a soniferous fish is located within the

physical domain, there are three possibilities for how to pad the channels, and an IF

73



statement is used to distinguish between each case. What results from this process is

7 lists of length congruent with the number of grid points, so choosing an appropriate

grid resolution and clip length for stage 1 is very important. The elements of this list

represent how each clip would be recorded at each grid point in location space, and

an investigator can “listen” at each grid point if so desired.

7. Sum channels to find maximum average power

The process revealing the spatial maximum likelihood is one of the more straight-

forward sections of the algorithm. At each grid point, the channels are summed, and

the average power is taken for each grid point in location space. The maximum of this

list gives the point in location spatial grid where the power is highest, corresponding

to a zero-delay between all channels. The grid point that satisfies this condition is

retrieved and a density plot can show the effective average power for each grid-point

along the grid.

8. Implement a second stage

The resulting location from stage 1 can be used to generate a grid of smaller

domain and range around the grid-point with a finer resolution [33, 34]. In this way,

many successive approximations of location can be achieved to the desired resolution.

The limitation here, would be the resolution with which the landscape was surveyed

and measured, and reporting a location estimate of finer precision than is possible

with the surveying instruments.

The figures displaying sample outputs of the 2-stage localization algorithm re-

sulted from tests with an unfiltered exponentially decaying sinusoid – without any

Gaussian noise. The delays were implemented to suggest the source emanated from
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Figure 27: A sample output of the steered-beamformer algorithm after stage 1.

a point (101. m, 74. m) in location space, Figure 27. Under these perfect conditions,

the density plot is ideal in the second stage. While there is a very nice gradation in

color, the area of highest intensity is about 2 meters in breadth and 2 in height, and

a tighter focus can be achieved through bandwidth filtering.

6.2 Testing the algorithm

To make sure the algorithm itself operated as desired source signals were simu-

lated, delayed by amounts appropriate to seem as if they occurred from a pre-known

location, and then buried in different degrees of Gaussian noise. The test process

was carried out with exponentially decaying sinousoids and example real-world audio

data included with the Wolfram library.

75



Figure 28: A sample output of the steered-beamformer algorithm after stage 2.
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Figure 29: The sample sound used to text the extent of the beamformer algorithm.
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The delays for a given source location can be calculated regardless of the audio

clips; they depend only on the geometry of the array, the source position, and speed

of sound in the medium. The real-world audio clip used most extensively for testing

was a tone which indicates a service truck is driving in reverse accompanied by engine

and driving sounds.

Figure 30: Welch plot of the sample sound.

The frequency content of the clip is shown in a Welch plot, taken using a Hamming

window of 4096 bit with standard half-window width overlap. The peak frequency

is around 4,630 Hz, and the clip will be filtered with a bandwidth that includes all

spectra above 0 dB. With the added Gaussian noise, the spectrum itself is unrecog-

nizable.

The testing process was actually fairly extensive. Several positions were chosen to

investigate how the delays were related to positions in location space and to ensure

the algorithm was implementing the delays correcting in lag-space. Furthermore, a

single position was used while decreasing the signal-to-noise ratio of the simulated
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Figure 31: EXAMPLE: The filtered test sound without noise.

source signal to get an impression of how noise affected the algorithm.
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Figure 32: EXAMPLE: The filtered test sound with Gaussian noise.

The aforementioned real-world audio sample was delayed to be perceived as sourced

at position (90. m, 60. m) within the grid, woven with varying amounts of noise,

and filtered so that the algorithm only maximized power using frequency components
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within the appropriate bandwidth.
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Figure 33: EXAMPLE: The filtered test sound without noise.

To be sure the sound has been recovered, a revealing source of information is the

waveform and spectrum plots of the combined signal, which are both displayed in the

figure. Comparing both the waveform and spectrum that result to those of the original

reveals a couple of things. First, at least with a signal this ideally simple, the spectrum

that results is indicative of information in the spectrum of the unadulterated signal;

in fact, it is identical. For unknown signals, this fact is not guaranteed, although it

has been established previously that frequency content within the resulting signal will

be related. Notice in the waveform, which is virtually identical to the test signal in
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behavior, an increased amplitude, scaled up by a factor of 7. This is of course expected

in an example where seven channels are being summed, and it is conventional to shade

the outputs in such an algorithm by 1/M .

No algorithm is impervious to noise, and it becomes increasingly difficult when

multiple sources are present in the physical domain being surveyed. As in our survey,

the space was heavily populated with soniferous creatures, to such an extent that

at any given instant there were several vocalizations in the field emanating from

several locations. The algorithm itself seems very robust to noise; however, there

is definitely an extent. To what extent of noise the algorithm itself is sufficiently

robust has not been quantifiably determined. Several processes were run with the

test signal being buried in varying strengths of Gaussian noise, and localization was

consistently accurate up to a SNR of −13 dB. All things considered this is pretty

noisy, but the noise itself is spread flatly across the spectrum. In the case of multiple

sources; however, if all sources other than the one of interest are considered to be

noise, there would be high magnitude intensities at other frequencies as well, possibly

in the bandwidth of interest as well, which would have an affect on the algorithm

and the steered-response of the array designed to operate as a beamformer. What

would determine that case is how many of a certain species of fish are located in the

physical domain, as well as other species who make vocalizations in the same range

of the spectrum.
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Figure 34: Top left. Localization result of pure signal. Top right. Localization result
with 10 log SNR = 0 dB. Bottom left Localization result with 10 log SNR = -5 dB.
Bottom right. Localization result with 10 log SNR = -13 dB.
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7 Results

Array analysis and SRP was done with Wolfram Mathematica after processing in

Python was used to edit the audio tracks to a manageable length. Power spectra of

the array’s output were calculated by Mathematica and Audacity, the latter of which

proved very useful. Audacity is an open source audio analysis/editing program that

has a plethora of useful features including power spectra and spectograms. Although

it offered less control, the default options worked immensely well for producing power

spectrum, and Audacity allows the data to be exported and analyzed through other

avenues. Spectrograms were taken with Mathematica, Audacity, another open source

audio analysis option called Sonic Visualizer https://www.sonicvisualiser.org/,

and in Python. This program offered a variety of spectrogram options that were

extraordinarily convenient to implement; it didn’t suffer compared to other options,

and its efficacy was largely apparent while searching for vocalization features buried

in a noisy background. Due to the large number of sound producers in these waters,

this faculty of Sonic Visualizer was absolutely critical.

7.1 Array analysis

Analysis of the array is shown in the figures 35 and 36. The beampattern was

plotted for frequencies up to 400 Hz, and the directivity pattern was plotted for

frequencies up to 1000 Hz. The main lobe is distinct to about 500 Hz. After that,

grating lobes dominate. This means that the array geometry used can beamform

reliably up to 500 Hz, see Figure 37. A ratio comparison of the heights of the main

lobes to the tallest sidelobe in the beampattern is given in Table 5. This is adequate

https://www.sonicvisualiser.org/


Ratio of mainlobe height to height of the tallest sidelobe:
50 Hz 13.3
100 Hz 8.45
200 Hz 1.83
300 Hz 3.18
400 Hz 1.53
500 Hz 0.61

Table 5: This parameter shows the arrays ability to distinguish signals propagating
in at the angle of acceptance and reject waves coming in from other directions.

for a few sound producing fish species such as toadfish and certain species of drums

providing that the most of the energy in its vocalization is located below this frequency

range.

7.2 Calibration results

The results from the calibration were used to determine new hydrophone positions

in efforts to increase accuracy by using the acoustic position of the hydrophones

that may have shifted during deployment. To this end, analysis was carried out

as described in subsection 5.2. Data from field deployment and initial analysis is

organized in Table 6.

Calibration Sound Time Position
1 3:07 PM (81.4 m, 66.3 m)
2 3:12 PM (89.0 m, 81.0 m)
3 3:33 PM (90 m, 83.6 m)
4 3:41 PM (111.9 m, 90.9 m)
5 3:49 PM (112.6 m, 63.0 m)

Table 6: Field calibration data.

In Figure 38 are the results of the algorithm on the array output for the calibration
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Figure 35: The array pattern |W (~k)|2 is plotted as a function of incidence angle for
several given frequencies. The array pattern is aperiodic, and increasing chaotic for
higher frequencies.
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Figure 36: The Clam Bank array’s directivity pattern.
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Figure 37: The beampattern for waves with frequency 500 Hz. The sidelobes have
greater maximum here and suggest a diminishing ability to beamform accurately
above these frequencies.
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Figure 38: The results of the localization algorithm on the measured calibration tones.
Hydrophone positions were adjusted until distance from true position was as minimal
as possible using the spatial median.
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sounds. For this analysis the cross correlation provided the delay between microphone

pair which were used in a geometrical approach to triangulate the hydrophone posi-

tions. Overall, the solutions were inconsistent with each other, likely due to position

error, and the spatial median was used to approximate a position for where the so-

lutions would overlap. Incidentally, a least-squares method was implemented, among

others, but the spatial median produced the hydrophone positions that yielded results

closest to known measurements of the calibration sound positions. Limitations and

possibles sources of error are discussed in a future section.

7.3 Steered response power results

Analysis was carried out on recordings made at low tide 8:00 P.M. to 9:00 P.M.

on 06/01/17 by the hydrophone array at Clam Bank. The SRP algorithm will locate

a source in two dimensions, so an environment that provided a low z-component to

position fit best with the assumption of a two dimensional space. The recording at

8:00 PM was by far the most eventful compared to other low-tide recordings through-

out the twenty four hours of survey. Two oyster toadfish (Opsanus tau) were issuing

the unmistakable boatwhistle vocalization, along with snapping shrimp, and there is

a silver perch (Bairdiella chrysoura) producing the high pitched knocking sound used

to attract mates.

7.3.1 Oyster Toadfish

Oyster Toadfish are bottom dwelling species that reside amongst rocky substrate

or debris (see Figure 39.) which serves as shelter and nests for spawning, and which

usually happens during June and July [35]. These nests are discovered and made
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ready by the male of the species, and upon completion they will begin to call out with

its boatwhistle by contracting rapidly the muscles that surround the swim bladder

[36, 35]. Previous research has determined the dominant frequency of this call to be

around 240 Hz. This behavior is meant to encourage the female of the species to

come lay eggs. The male will guard the eggs until they hatch.

Figure 39: Photo from NOAA, Credit: Andrew David, NOAA/NMFS/SEFSC
Panama City; Lance Horn, UNCW/NURC – Phantom II ROV operator

During this recording there are two distinct toadfish boatwhistles occurring peri-

odically. The first toadfish is interesting; its call is unmistakable because an overtone

is produced around 500 Hz in addition to the first harmonic at 240 Hz. The second

specimen is located more central to the array, and so its boatwhistle arrives more

clearly, at higher sound level. The results of the SRP algorithm are plotted in Figure

40, the most likely source location is {107 m, 65 m} from the first reference landmark

that served as the origin for the physical domain. This is a position central to the

channel. It is highly likely this fish has made a habitat of the derelict oyster reef that
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comprises most of the rocky bottom in the creek.

Figure 40: SRP analysis of the first Toadfish.

The waveform is still dominated by spikes due to randomly summed shrimp clicks.

Low frequency oscillations are apparent. There are many sound producers, mainly

snapping shrimp, and these concerns will be addressed in Section 8.

A power spectrum, displayed in Figure 41, was taken with a 1024-sample wide

Hanning window reveals the dominant frequency around 240 Hz and the presence of

its overtone at 500 Hz. A logarithmic scale has been used to emphasize the width of

the lower frequencies as opposed to the noise and undesired signal energy at higher

frequencies, as this broadens the axes.

The sonogram in Figure 42 shows the spectrum of the array’s output in time.

The two lighter shade creases of -15 dB are the fundamental and harmonic of the first

toadfishes boatwhistle.

The second toadfish is located central to the array, (92 m,74 m), see Figure 43.

It is located in a region of some ambiguity; in addition, several maxima occur in the
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Figure 41: Power Spectrum of the array output of the first toadfish taken with a 1024
sample width window.

0 1 2 3 4 5
Time (s)

0

250

500

750

1000

1250

1500

1750

2000

Fr
eq

ue
nc

y 
(H

z)

80

85

90

95

100

Po
we

r S
pe

ct
ra

l D
en

sit
y 

(d
B)

Figure 42: Sonogram plot of the array output of the first toadfish. Taken with a 1024
sample window that overlaps by 512 samples.

steered-response because the dominant frequency, being so prevalent in this recording,

has been isolated so well. A sonogram taken of the array’s output reveals this is a

good choice for a likely position.
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Figure 43: SRP analysis of the second Toadfish.
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Figure 44: A sonogram of the array’s output during the time the second toadfish
makes its boatwhistle taken with a 1024 sample wide window that overlaps by 512
samples.
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Figure 45: A power spectrum of the array’s output of the toadfish with the delays
implemented appropriately from the SRP algorithm. The power spectrum is taken
with a 1024 samples wide Hamming window.

Further analysis reveals a very prominent peak around the dominant frequency of

the boatwhistle approximately 240 Hz to 260 Hz, see Figure 45. The waveform plot is

dominated by shrimp clicks, for sustained calls this is almost always an issue. Figure

44 contains the spectrogram of the array’s output.

7.3.2 Silver Perch

The silver perch is a drum and makes the stacatto sounds associated with many

fish of these type [37, 38]. It is commonly found on the Atlantic coast from New

York all the way to Florida and in the Gulf of Mexico. It is a coastal fish, typically

found over soft bottom areas. Silver perch are common to intertidal creeks, but can

be found in deeper channels, tolerating a broad range of salinities. Spawning occurs

in shallow coastal waters, where the juvenile migrates upstream to fresher water to

grow and development [39]; adult silver perch will return to the coast after growth

[35]. Figure 47 contains the localization results. This localization was carried out on
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Figure 46: A silver perch. Brandi Noble/NOAA NMFS SEFSC Pascagoula Labora-
tory.

a silver perch drum 5 seconds into the recording. The silver perch is located in the

very middle of the channel approaching the array to the northeast. Many silver perch

continued to called continuously in short bursts throughout the recording.

7.4 Tracking a Silver Perch

A silver perched was observed drumming 0.5 seconds into the record at low-tide

around 9:00 PM, and a silver perch was observed drumming later at around 30 seconds

into the recording. The result of the localization placed the two results within 11.7 m

of each other. With recording time lapsing approximately 40 s; this gives an estimated

.4 m/s travel speed for the silver perch, which is within reasonable limits. Nominal

speeds for silver have been reported up to 2.0 m/s [40]. Tracking is possible; however,

it is not built directly into the algorithm. In order to achieve this, the vocalizations

of many fish must be analyzed, and positions considered carefully. The results of the
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Figure 47: SRP analysis of the silver perch recorded at 5 s.

algorithm are displayed in Figure 50, and the distances from each hydrophone to the

source are given in Table 7.

H1 H2 H3 H4 H5 H6 H7
Toadfish 1 23.2 m 15.8 m 17.1 m 13.2 m 14.91 m 15.9 m 17.8 m
Toadfish 2 9.5 m 4.5 m 3.2 m 8.3 m 15.6 m 12.6 m 17.1 m
Silver Perch 1 37.7 m 35.68 m 41.95 m 41.21 m 45.44 m 48.14 m 48.1 m
Silver Perch 2a 32.2 m 25.05 m 19.9 m 14.6 m 7.29 m 10.43 m 6.3 m
Silver Perch 2b 33.07 m 25.22 m 23.22 m 17.51 m 13.22 m 16.41 m 14.9 m

Table 7: The calculated distances of each fish from the hydrophone array.
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Figure 48: A power spectrum of the array’s output of the silver perch with the delays
implemented appropriately from the SRP algorithm. The power spectrum is taken
with a 1024 samples wide Hamming window.

0.0 0.1 0.2 0.3 0.4 0.5
Time (s)

0

200

400

600

800

1000

1200

1400

Fr
eq

ue
nc

y 
(H

z)

90

92

94

96

98

100
Po

we
r S

pe
ct

ra
l D

en
sit

y 
(d

B)

Figure 49: A sonogram during the time the silver perch’s drumming taken with a
1024 sample wide window that overlaps by 512 samples.
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Figure 50: Another silver perch was localized (top) a 0.5 s into the recording, and
then located 32 seconds (bottom into the recording having moved 11.7 m away.
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8 Discussion

In conclusion, a seven channel hydrophone array was deployed at Clambank in

Hobcaw Barony, SC in an intertidal creek located at the North Inlet-Winyah Bay

Nature Reserve. Our objective was to locate sound producing species of fish. The

biggest challenges were the field measurements and the amount of noise in the waters.

The array performed adequately, but more work could be done to fully unlock its

potential. The promise of this technique to future research and the capabilities the

array has to study fish is important to us and should be researched more extensively.

Reported instrument precision was concerning, and the true accuracy with which

the surrounding area in clam bank is questionable. Most likely, due to the breadth

of the space that was being surveyed, the laser range-finding device rounded to the

nearest meter. Regardless of what the measurement device claimed as its precision, it

did not perform over this mark consistently enough to be trusted to the 0.1 m reported

precision value. Ultimately, the hydrophone was unobserved beneath the water where

we deployed it, and cautious attempts were made to measure carefully, and calculate

a true position of the hydrophone. This was done through correlation analysis of

audio tracks which contained a calibration sound played after deployment from known

positions. A geometric approach was used considering the distance formula, and the

spatial median was used to estimate a location of hydrophones 1 through 7 for SRP

analysis. The results of the calibration were a bit tenuous. The localization algorithm

did not return the exact location we had measured each calibration to occur. Being

off as much as several meters on a single coordinate as is the case for calibrations 2,

4, and 5. There are a few possible reasons for this. The two person team in the small

boat consisted of one researcher to make the calibration sound and one researcher



to measure the distance from the reference landmarks to the small boat with the

laser range finder. This means that there was a little over a meter distance between

the measurement recorded and the researcher producing the calibration sound. This

distance was considered negligible; however, the angle the small boat was making with

respect to the array and which side of the small boat the sound was produced would

have introduced variations from what was actually measured. Also, analysis was

implemented in two dimensions and the hydrophone depth was not considered. The

calibration was done at high tide with depths of at most two meters, that distance

may have impacted the results of the beamformer algorithm more than expected.

Also, calibration occurred over an hr, where moving about in the creek and putting

sounds into the environment may have made the waters noisier. This is supported

by the steered response power calibration results. The first calibration sound came

through very cleanly, and in the recording there is noticeably more shrimp during

later calibrations.

Apart from the wealth of soniferous fish in the waters at Clam Bank to survey,

which would have been no trouble to separate and identify in this analysis, there were

thousands upon thousands of snapping shrimp. The animals dominate the recording

in the time domain, where close to the hydrophone and far away there is irregular

but constantly occurring shrimp pops. These animals dominate the spectrum of the

signal as well producing a sound that has intensity at all audible wavelengths (20Hz-

20kHz). The pops from shrimp to shrimp are essentially identical, and this masked

many fish calls, which were of lower amplitude and buried in a frequency range where

shrimp sound still was the dominate form of acoustic energy. Cross correlations and

steered-response were affected by them and they never ceased their snapping. This
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made localization of calls with any sustain very difficult. Many times a portion of the

waveform had to be used that was in between pops from shrimp that were located in

the array. This was arduous to do. The attack of a sound is often the most interesting

part with the unique structure and features that would be ideal to correlate. As such,

staccato calls of fish are likely to perform much better under this type of analysis.

Those calls that do coincide with silence from the shrimp can be isolated and used

for localization effectively.

The array was a random sparse array. Our goal was to aim for placement of the

hydrophones in a line and attempt to replicate array geometries that were known

sparse arrays with coarrays that would allow for us to push the array’s capabili-

ties past those predicted by the spatial sampling theorem. The space was vastly

undersampled, but we were successful in part because the beam pattern produces

a prominent mainlobe located at an angle of arrival of zero degrees up to 500 Hz.

Toadfish make sounds in this region and there are components of silver perch sounds

in this region too, so that through temporal filtering there was assurance of some

ability to beamform at these frequency ranges. A sparse array to achieve this was

not found. Random arrays and sparse arrays are designed based of a hypothetical

regular where the sensors are placed randomly on a grid that represents the idealized

array or removed randomly from a grid of regularly placed sensors. The requirement

for proper sampling of location space d/2 ≤ λ does not relate any information about

how many sensors a surveyor is using. With enough hydrophones, there begins to

be redundancy [41]. Sparse arrays are based on replicating beam patterns of arrays

with as few microphones as possible. There are a few known sparse arrays one sees,

and that are used frequently in analysis. We were not able to achieve a sparse array
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that would allow us to do this. That does not mean it is impossible. There are other

techniques that push the array’s capabilities further, like the use of co-prime arrays

[42], which is basically a composite array with two arrays designed to act in tandem,

whose combined output is a desired beampattern. All of this basically happens in the

design phase. Future research would involve the exploration of such analyses.
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9 Conclusion

Microphone arrays allow for a more extensive survey of an environment, providing

the ability to locate sound producing species of animals, and they are a viable option

to bioacousticians that wish to know more about the population density in a given

habitat. It is relatively noninvasive and convenient to deploy an array that will

remained stationed there for an amount of time. Species can be identified based off

vocalization, and analysis can be done some time after deployment as a post-process.

Any drawbacks in portability of the heavy array equipment are outweighed by the

arrays ability to study species that would be very difficult to observe otherwise like

nocturnal species or those who stayed hidden within the environment. Another benefit

is the arrays ability to study more than one animal at once. The array samples the

entire wavefield in the region near the array. The call and response of many animals

can be studied. Once position data is known, sound analysis can be done, as well as

further analysis with the beamformer. Counting the number of organisms of sound-

producing species and tracking species movement is also possible [4] and can reveal

even more about the relationships between animals in the ecosystem. Arrays are

highly useful and much can be learned about fish by using them.
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A Physical water quality data from Clam Bank

monitoring site
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Figure 51: Depth measurements [m] for three days of monitoring.
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Figure 52: Dissolved oxygen measurements [mg/L] for three days of monitoring.
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Figure 53: pH measurements for three days of monitoring.

Figure 54: Salinity measurements [g/kg] for three days of monitoring.

109



05/31/17 06/01/17 06/02/17

0 10 20 30 40 50 60 70

24

25

26

27

Time (h)

T
e
m

p
e
ra

tu
re

(°
C
)

Figure 55: Temperature measurements [°C]for three days of monitoring.
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Figure 56: The sound speed (m/s) as it varied over the 72 hours of observation.
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B HTI-96-MIN

Figure 57: Mechanical outline of HTI-96-MIN hydrophones used for the seven sensor
array deployed at Clam Bank [26]
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