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Abstract

In most ecological studies, within-group variation is a nuisance that obscures patterns of interest and reduces statistical
power. However, patterns of within-group variability often contain information about ecological processes. In particular,
such patterns can be used to detect positive growth autocorrelation (consistent variation in growth rates among individuals
in a cohort across time), even in samples of unmarked individuals. Previous methods for detecting autocorrelated growth
required data from marked individuals. We propose a method that requires only estimates of within-cohort variance
through time, using maximum likelihood methods to obtain point estimates and confidence intervals of the correlation
parameter. We test our method on simulated data sets and determine the loss in statistical power due to the inability to
identify individuals. We show how to accommodate nonlinear growth trajectories and test the effects of size-dependent
mortality on our method’s accuracy. The method can detect significant growth autocorrelation at moderate levels of
autocorrelation with moderate-sized cohorts (for example, statistical power of 80% to detect growth autocorrelation r2 = 0.5
in a cohort of 100 individuals measured on 16 occasions). We present a case study of growth in the red-eyed tree frog.
Better quantification of the processes driving size variation will help ecologists improve predictions of population dynamics.
This work will help researchers to detect growth autocorrelation in cases where marking is logistically infeasible or causes
unacceptable decreases in the fitness of marked individuals.
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Introduction

Ecologists and evolutionary biologists have long been interested

in growth in body size. Studies of growth typically focus on

differences among means of populations or treatment groups,

striving for low variability around the mean to increase statistical

power; variation within groups is often treated as noise obscuring

the phenomena of interest. However, ecological studies are

increasingly considering among-individual variation as either a

treatment or a response variable [1–6]. These studies have shown

that variation among individuals is itself the result of important

biological processes and that population dynamics are sensitive to

among-individual variation [7–12]. These studies have also

highlighted challenges for quantifying and explaining the mech-

anisms underlying observed variation among individuals in a

population or cohort [1,3]. Here, we present a new method that

allows the separation of among- and within-individual variation in

growth rates based on data from individuals within cohorts

measured several times over the course of their ontogeny. In

contrast to existing methods, individual organisms need not be

marked or otherwise identifiable. By expanding the range of

organisms and experimental designs where among-individual

variation can be estimated, this method will enable researchers

to better understand sources of variation in body size data.

Many ecological and evolutionary processes depend on body

size [13–17]. Because the body size at which individuals undergo

life history transitions is correlated with fitness [18], one branch of

life history theory has focused on predicting the size and timing of

these transitions [19–23]. Among-individual variation in growth

rates, largely neglected in this field, can modulate the expected

patterns. For example, individuals are known to face a tradeoff

between the risk of predation incurred by an aggressive foraging

strategy and the risk of desiccation when temporary ponds dry,

incurred by the slow growth and development due to a more

conservative foraging strategy [24]. The optimal strategy may vary

across individuals depending on their genotype and previous

foraging success, with fast-growing individuals opting for a riskier

strategy. Such growth-mortality risk tradeoffs can lead to flat or

bimodal fitness curves that maintain variation in populations [25].

Among-individual variation also modifies population and

community dynamics [10,11,26,27]. For example, among-indi-

vidual variation in developmental rates changes the amplitude and

periodicity of population cycles in host-parasitoid models [28]. In

population viability analyses, neglecting among-individual varia-

tion in survival probability leads to overestimation of extinction
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risk [29] and underestimation of the population’s asymptotic

growth rate [30], while neglecting variance in fecundity among

individuals may either over- or underestimate the population

growth rate [29]. Because survival probabilities and fecundity rates

are closely linked to individual body size, variation in individual

growth rate may drive changes in demography. Thus, incorpo-

rating growth autocorrelation in models may allow more accurate

predictions of population size structure [8].

Three main growth processes lead to growth depensation

(increasing size variation within a cohort through time): within-

individual variation in growth rate, among-individual variation in

growth rate (i.e., positive growth autocorrelation), and size-

dependent growth (Figure 1A) [1].

N Within-individual variation in growth rate occurs when

environmental heterogeneity causes uncorrelated temporal

variation in individuals’ growth rates through time. Here, we

take the pattern of growth depensation caused by within-

individual variation to be the null expectation.

N Among-individual variation in growth rate, or positive growth

autocorrelation, is defined as positive temporal correlation in

the growth rate of individuals. Many ecological processes can

generate positive growth autocorrelation. The proactive and

reactive behavior types discussed above generate permanent

autocorrelation (autocorrelation that applies throughout the

entire life stage), as individuals consistently express the same

behavior pattern [31,32]. In tree populations, variation in liana

load generates permanent autocorrelation [27], while growth

autocorrelation driven by extra light availability near treefall

gaps is temporary, acting only until an individual near the gap

grows up to fill it. In this paper, we focus on growth

autocorrelation that persists throughout the time period of

interest, although our methods could in principle be adapted to

detect temporary autocorrelation.

N Size-dependent growth, where larger individuals have higher

expected growth rates, can result from size-dependent gape

limitation or size-dependent range size in animals. In plants,

size-dependent growth often results from size-dependent

resource uptake and asymmetric competition [13]. While

size-dependent growth is important, and has frequently been

suggested as a mechanism of positive growth autocorrelation

[4], it is not our main focus here, although we do discuss below

how to control for size-dependent variation when using our

method.

These three classes of mechanisms lead to different patterns of

variation among individuals in a cohort through time (Figure 1B).

Because size-dependent and autocorrelated growth persist through

time, they typically lead to larger growth depensation than within-

individual variation in growth rates.

Because methods to separate the contributions of all three

mechanisms acting simultaneously would be both complicated and

data-hungry, we focus on the relative contribution to growth

depensation of within- and among-individual variation in growth.

We thus assume that individual growth rates are independent of

size, or equivalently that a cohort’s mean body size grows linearly

through time. Although this assumption may seem restrictive,

many organisms grow approximately linearly in size over some

window in their ontogeny [33,34]. More generally, our method

will apply whenever body size data can be transformed to be a

linear function of time. For example, if organisms grow

exponentially with time (a common pattern early in ontogeny:

[33–35]), then the solution is particularly easy: log-transforming

the data automatically makes our method applicable. More

generally, as long as we can fit a nonlinear growth curve to the

data, we can invert the estimated growth curve and use it to

linearize the data: we give an example of this approach in the case

study below.

In the past, teasing apart the relative importance of within- and

among-individual variation in growth for growth depensation has

required scientists to mark individuals and follow each individual’s

growth pattern [3,36], or to create distinct size classes in a starting

cohort and monitor the intermixing of size classes [4]. In many

ecological systems, neither of these approaches is feasible. Marking

individuals can bias results by reducing survival and reproduction

[37,38], leading to ethical concerns [39]. Marking also requires

extra time and effort that limits the scope of studies. There’s a

tradeoff between the quantity and detail of data that researchers

can collect with a given amount of effort; this method makes it

possible to use data containing less detail, but requires more of it.

Lavine et al. (2002) [40] describe a method to estimate seedling

mortality without marking individuals, using only observations of

the numbers of old and new seedlings through time. Our method

for quantifying among-individual variation is similar, fitting a

model of the expected changes in variance through time to

repeated measures of a cohort’s variance.

Data

Simulated growth data
Our first ‘‘data’’ set is simulated growth data for a range of

experimental designs (number of evenly spaced sampling times,

number of individuals sampled across times) and growth

parameters (increase in variance, s2
g, and strength of growth

autocorrelation, r2; all other parameters can be set to 1.0 without

Figure 1. Simulated growth of individuals: growth parameters
are the same across panels except for the assumptions: (left)
uncorrelated variation among individuals, (center) autocorre-
lated variation, (right) positively size-dependent growth. A -
Patterns of growth rate Growth rates of five individuals are represented
in each graph by five separate lines. B - Patterns of size variation
Average cohort variance in 2000 cohorts of 50 indviduals: mean (solid
line) and 2.5% and 97.5% quantiles (grey ribbons).
doi:10.1371/journal.pone.0076389.g001
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loss of generality). The increase in variance (s2
g) was set to 4, 16,

32, 64, 128, and 256; this range includes values observed in

empirical studies on tadpoles [3]. The growth autocorrelation

parameter r ranged from 0.1 to 0.9 by increments of 0.1.

Observations were sampled at nt = 6, 8, 16, or 32 evenly spaced

time steps for cohorts composed of 8, 16, 32, 64, 128, 256, and 512

individuals.

Growth autocorrelation was simulated by assigning each

individual a normally distributed mean growth rate with mean g

and variance r2s2
gdt where dt = 1/(nt21). (Scaling the growth

variance by dt was done to make the total change in variance over

the simulation independent of the number of time steps.) Within-

individual variation was simulated for each individual at each time

step by choosing random deviates with mean 0 and variance

1{r2
� �

s2
gdt. We simulated 1000 replicates for each combination

of parameters in order to get precise estimates of power and

coverage. For the purposes of testing our new method, we ignored

individual ID, but we retained the information for the purposes of

quantifying the power loss due to unidentifiability of individuals

(Repeated Measures Section).

Red-eyed tree frog data
We also analyzed data from an experiment designed to quantify

density dependent growth for red-eyed treefrogs (Agalychnis

callidryas) with either pulsed or gradual resource inputs (Appendix

S1). The experiment was conducted between June and August

2008 at the Smithsonian Tropical Research Institute in Gamboa,

Panama. The data include a total of 5609 individual body size

measurements, spread across 6 time steps (every 5 days from

hatching until 25 days old) in 10 tanks within 5 density treatments

(5 to 100 individuals per tank) crossed with two resource levels

(pulsed vs. gradual); the experiment was run in 4 replicate blocks.

Body size was measured as total length, in millimeters.

Ethics Statement
Permission to conduct this research in Panama was granted by

Autoridad Nacional del Ambiente de Panamá (permiso no. SE/A-

41-08) and the Smithsonian Tropical Research Institute (STRI).

This research was conducted under Boston University Institutional

Animal Care and Use Comittee (IACUC) protocol 08-011 and

STRI’s IACUC protocol 2008-04-06-24-08.

Methods

We first derive the equations for the changes in cohort variance

over time as a function of average growth rate, total variance in

growth rate, and level of growth autocorrelation (non-technical

readers can safely skip this section). We then discuss our protocol

for simulating cohort growth dynamics to test the statistical power

of our approach and summarize the practical aspects of the

estimation procedure for researchers interested in applying the

method to their own data. We compare our method to standard

repeated measures methods that are available only when

individuals are marked. Finally, we add size-dependent mortality

to the data simulations and describe its effects on parameter

estimates.

Derivation
Suppose that individuals in a cohort grow linearly with mean

growth rate g per time step dt. Each individual, with index i,

consistently deviates from this average growth rate by ei, a normal

deviate with mean 0 and variance r2s2
g. (Assuming normality is

convenient for statistical inference on the parameters, but the

derivation depends only on the mean and variance of this and

other values.) At each time step, each individual’s growth rate also

has an uncorrelated deviation ei,t with mean 0 and variance

1{r2
� �

s2
gdt. Then an individual’s size changing through time can

be modeled as

Si(tzdt)~Si(t)zdtgzdteizei,t: ð1Þ

Modeling an individual’s growth in this way is equivalent to using

two normal distributions with unrelated variances; parameterizing

the model in terms of s2
g and r aids interpretation.

The cohort’s size variance increases quadratically through time

when r2.0:

s2
s tzdtð Þ~s2

s tð Þzdt
2r2s2

gzdt(1{r2)s2
gz2tdtr

2s2
g: ð2Þ

Appendix S2 gives a more detailed derivation.

Without loss of generality, we scale the units of t so that t ranges

from 0 to 1 during the period of observation, so that s2
g is the total

increase in cohort variance during the period of observation; set

average growth rate g (which does not appear in the variance

equation (2)) to 1.0; and set the initial variance s2
0 to 1.0,

equivalent to setting the units of size – this also redefines s2
g as the

relative increase in variance over the observation period.

Model Fitting
Because our model assumes only process and not measurement

error, we fit the parameters by step-ahead prediction, equivalent

for a normal response to fitting the between-step changes in

variance as independent and normally distributed values with

mean [41]

s2
s tzdtð Þ{s2

s tð Þ~dt
2r2s2

gzdt(1{r2)s2
gz2tdtr

2s2
g: ð3Þ

Inspection of eq. 3 shows that the one-step change in variance is a

linear function of t. As long as the maximum likelihood estimates

(MLEs) of r and s2
g are within the interior of their feasible ranges

(i.e., 0,r̂r,1 and ŝs2
g.0), we can fit a linear regression model for

the change in variance as a function of time and use the estimated

intercept and slope to solve for r̂r and ŝs2
g. However, we still need to

use nonlinear maximum likelihood estimation (1) in cases where

the MLEs lie on the boundary (which is common when working

with small, noisy data sets) and (2) in order to find reliable,

likelihood profile confidence intervals for the parameters. We

developed R code to compute starting values from linear

regression as described above (constraining the starting values to

lie on the boundaries of the feasible region where necessary) and

using AD Model Builder [42,43] or the bbmle package [44] in R

to refine the estimates of the MLE where necessary and generate

95% likelihood profile confidence intervals on r (bbmle version

1.0.5.2, ADMB version 11.1, R2admb version 0.7.4, R version

2.15).

For our simulated data sets, we used the basic approach above

and calculated statistical power (fraction of the time that the null

hypothesis of r = 0 could be rejected based on the 95% confidence

intervals) and coverage (proportion of simulations in which the

95% confidence intervals contained the true value of r).

Our red-eyed treefrog data showed clearly nonlinear (and

decelerating) patterns of increasing size over time, We fitted a

saturating-exponential model (size = c(12exp(2(b+dt)) to the data

aggregated at the level of tank averages, and used the linearizing

Detecting Growth Autocorrelation
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transformation 2log(12size/ĉ ) before applying the method above.

The linearizing transformation fails when individuals have sizes

greater than the estimated asymptotic size, ĉ; this was common for

the higher-density treatments (75 and 100 individuals per tank), so

we discarded these treatments completely, while discarding

measurements larger than ĉ individually from the rest of the data

set.

Procedures
A step-by-step protocol for quantifying growth autocorrelation

with our method is as follows: (1) Confirm that the mean growth

rates of the cohort are roughly independent of the mean body size

(or equivalently that growth is approximately linear), transforming

the data (e.g. by taking logarithms, or fitting a growth model and

applying the inverse growth-curve function as described above) if

necessary. (2) Calculate the cohort’s variance at each time step and

take the differences to find the change in variance at each time

step. (3) Estimate r from the data and the equation for change in

size variation [3]. (4) Use likelihood profiling to find 95%

confidence intervals for r. We have developed an R package,

unmarkedAutocorrelation, that implements steps 2–4 (Appen-

dix S3).

Repeated Measures
When it is possible to mark individuals, more traditional

repeated measures analyses can be used to estimate growth

autocorrelation. To compare our method to repeated measures

methods we fit a linear mixed model (LMM) to individual growth

rates with a random effect of individual, using the same simulated

data described above. We fit the model using lmer from the R

package lme4 version 0.999999-0 [45]. We estimated r2 from the

variance of the random effect of individual and the residual

variance of the fitted model:

r2
estimate~

nt{1ð Þs2
individual

nt{1ð Þs2
individualzs2

residual

: ð4Þ

To test if individual growth rates varied significantly (equivalent to

testing the null hypothesis r = 0), we did an exact restricted

likelihood ratio test on the random effect of individual using the

function exactRLRT from the R package RLRsim version 2.0-10

[46].

Size Dependent Mortality Simulations
Our model assumes that all individuals survive throughout the

experiment. However, this assumption may be violated in

experimental and especially in observational studies. The worst-

case scenario is when individual mortality rates depend on size; we

tested our method’s performance in this scenario, specifically

assuming that smaller individuals have a higher mortality rate

(Appendix S4). Each individual survived according to a Bernoulli

trial at each time step, with a probability equal to a logistic

function of its size at time t scaled by the duration of the time step:

Figure 2. Estimates of growth autocorrelation r2. Estimates of r2 (solid lines), true values of r2 (dashed horizontal lines) and 95% confidence
intervals (gray ribbons), averaged over 1000 replicates for each parameter combination. Number of time points nt = 16.
doi:10.1371/journal.pone.0076389.g002

Figure 3. Number of individuals needed to detect positive
growth autocorrelation. The line represents the minimum number
of individuals in a cohort needed to statistically detect that r2 is greater
than 0 at least 80 percent of the time, based on the 95% confidence
intervals of 1000 simulations with s2

g = 16 and nt = 16 (see Simulating
growth data section for details). When r2,0.36, more than 512
individuals are needed, beyond the simulated range.
doi:10.1371/journal.pone.0076389.g003
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dt

1zexp {r Si tð Þ{x0ð Þð Þ : ð5Þ

We used r = 0.4 and x0 = 210, 29, 28, and 27. For each value of

x0 and combination of parameters specified above, we estimated r
for 1000 replicate simulations.

Results and Discussion

Simulation results
Sampling more individuals improved point estimates and

narrowed confidence intervals (Figure 2). Sampling more time

points (in the range 6 to 32) had negligible effect on point estimates

of r. Fewer time points gave slightly narrower (undercovering)

confidence intervals (the confidence intervals for r2 were 0.07 to

0.13 units narrower for 6 time points compared to 32 time points).

In simulations with 6 or 8 time points, confidence intervals

contained the true value of r slightly less than 95% of the time, but

always gave above 90% coverage. When fewer than 50 individuals

were sampled, 95% confidence intervals contained the true value

of r more than 95% of the time (i.e. overcoverage). Thus, we

recommend sampling a minimum of 50 individuals on more than

8 occasions. Increases in variation, s2
g, had no effect on bias or

confidence interval width.

Our simulation results can be used to guide experimental

designs for detecting growth autocorrelation in cohorts of

unmarked individuals. Preliminary growth data from pilot lab or

field studies, or data from the literature, can be used to guess an

approximate r2. Given this information, researchers can use

Figures 2 and 3 to make decisions about feasible precision and

necessary sample sizes.

At a minimum, researchers will want to confirm whether

observed growth depensation is the result of growth autocorrela-

tion (i.e., to test the null hypothesis that r = 0 versus the alternative

that r.0). The number of measured individuals needed for 80%

power to detect r greater than zero depends strongly on the true

value of r (Fig. 3). For example, at a true value of r2 equal to 0.64,

only 30 individuals are needed for 80% power (although with

fewer than 50 individuals, estimates of r2 may be biased: Fig. 2).

For true values of r2 = 0.36 and s2
g = 16, then 240 individuals are

needed for 80% power. For the simulated experiments, only values

of r2 greater than 0.36 were ever distinguishable from zero with

80% power, regardless of sample size.

Comparison of variance-pattern and repeated-measures
approaches

When individuals of the study species can be marked, traditional

repeated-measures analyses can be used to estimate growth

autocorrelation. As more individuals are sampled, both variance-

pattern and repeated measures methods approach 100% power,

although repeated measures power is always higher and increases

more rapidly (Fig. 4). Nevertheless, variance-pattern power never

has more than 40% less power in the range of scenarios we

examined. Both methods are more powerful when detecting larger

true values of r2.

Bias due to size-dependent mortality
In simulations incorporating size-dependent mortality, estimates

of r were biased downwards. The strength of the bias increased

with the proportion of individuals that died. Estimates of s2
g were

also biased downward with increasing magnitude as a larger

proportion of individuals died. Because smaller individuals were

Figure 4. Power comparison with repeated-measures approaches. Our method for detecting growth autocorrelation (dotted line) is less
powerful than exact restricted likelihood ratio tests on linear mixed models fit to data on marked individuals (solid line).
doi:10.1371/journal.pone.0076389.g004

Figure 5. Data on red-eyed tree frogs: size (total length) in mm
vs. time in days. Points represent tank means; red lines are estimated
Michaelis-Menten growth curves; blue dotted lines are estimated
asymptotic sizes.
doi:10.1371/journal.pone.0076389.g005
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selectively removed, the cohort’s variance increased by less than

the nominal amount, s2
g. With less final variance, the cohort’s

change in variance through time followed a more linear, less

quadratic pattern than predicted in the absence of mortality.

Mortality rates were higher in simulations with larger values of s2
g,

and hence bias increased, because the larger cohort variance

resulted in more individuals falling within the high-mortality size

range determined by equation 5. For a given value of x0, realized

mortality varied greatly; realized mortality is a better predictor of

bias, as well as being more directly related to ecological

information that would be available to empirical researchers. Fits

of r to simulated data with less than 5% mortality were biased by

2.11 on average; 5–10% mortality caused average bias of 2.17;

10–20% mortality caused average bias of 2.27; 20–30% mortality

caused average bias of 2.37. For a figure of simulation results and

simulation code with mortality, see the online supplement: Figure

S1 and Appendix S4.

Red-eyed treefrog case study
While we were successful in linearizing the growth curves for the

red-eyed treefrog data (Figure 5 and Appendix S1), the data set

was by and large too small to resolve information about growth

autocorrelation (Figure 6). Given that the treefrog data consisted of

5—50 individuals measured at 6 time points, our power curve

(Figure 3) suggests that we would only expect to detect

autocorrelation at levels of r2.0.7 at best. When we fitted the

model at the level of individual tank replicates (i.e. for each of 4

block-tank combinations in each resource-density combination),

we found the confidence regions generally spanned the entire

range of autocorrelation. In three cases (one replicate each at

densities of 5, 25, and 50 per tank in the good-resource treatment)

the 95% lower bound was greater than 0 (r2.0.35, 0.77, and 0.63

respectively), and in each of the cases the MLE was at r2 = 1.0.

When we pooled the data either to the level of the treatment

(density:resource combination), or to a single overall data set, we

were unable to make any definitive statements about growth

autocorrelation despite the larger effective sample size, probably

due to the variation within and among treatments. In principle it

would be possible to try to fit random effects models to try to

squeeze slightly more information out of the data set without

pooling, but with only 4 replicates per treatment we suspect the

data set would still be insufficient to make any definitive

conclusions.

Conclusion

Previous methods for detecting autocorrelation in individual

growth trajectories require the marking of individuals, which is

logistically or ethically infeasible in many ecological systems. We

have shown that, with a large enough sample, one can detect

growth autocorrelation observationally by analyzing the patterns

of increasing variance in body size over time. This new technique

allows researchers to choose how to best allocate their effort: they

can sample more individuals without marking them (a cheaper and

faster design) or mark fewer individuals (a design that gains more

information per individual).

Our method does have some limitations – it is reliable only

where mortality is relatively low (,5% based on simulations in

Appendix S4 and Figure S1) or size-independent, and applies

when the growth trajectory of individuals is linear (or can be

transformed to linearity) over the course of the study. While

designed in the context of a closed population in a controlled

laboratory study, it should be applicable to open populations as

long as conditions are homogeneous across the super-population

being sampled, and as long as individuals can be clearly identified

as belonging to an even-aged (but not equally sized) cohort. Future

extensions could allow for the influences of nonlinear growth and

size-dependent mortality, although teasing these different effects

apart may be challenging.

In circumstances where large numbers of organisms can easily

be sampled and measured at repeated intervals through time, but

the same individuals cannot be recovered or identified, our

method should provide a reasonably powerful method for

quantifying growth autocorrelation. Better quantification of the

patterns and genesis of size variation will help improve manage-

ment through better predictions of population dynamics as well as

furthering ecologists’ basic understanding of ecological systems.

Figure 6. Estimated scaled variance per tank over time in different treatment combinations. Color scale represents the fraction of
individual measurements dropped because they exceeded the estimated asymptotic size for the treatment combination (and hence could not be
used in our linearizing transformation).
doi:10.1371/journal.pone.0076389.g006
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Supporting Information

Figure S1 Each panel contains results of fitting the
model to data sets with different amounts of growth
autocorrelation (r2 = 0.25, 0.49, 0.81). Realized mortality

rate (the proportion of individuals that died by the end of the

experiment) is plotted on the x-axis. Estimated values of r2 for

each simulation are plotted as grey dots. Red lines represent the

true value of r2. Blue lines summarize the simulations grouped by

the total increase in size variation that would have been realized

without mortality (s2). Smooth functions were fit with B-splines

with five degrees of freedom.

(TIFF)

Appendix S1 Case Study. Using the R package provided in

Appendix S4, we apply our method to a data set that requires

linearization.

(PDF)

Appendix S2 Model Derivation. Here we present equations

describing how a cohort’s variance in body size will change

through time based on our assumptions.

(DOCX)

Appendix S3 R package. This appendix contains an R package

called unmarkedAutocorrelation. It can be used to simulate

growth data, fit our model to data, and estimate parameter values

and confidence intervals. To install the package, change your

working directory to the location of the downloaded appendix and

type install.packages(‘‘Appendix S3 -unmarkedAutocorr_

0.1.1.tar.gz’’, repos=NULL, type=‘‘source’’).

(GZ)

Appendix S4 Mortality Code. This appendix contains R code

to simulate a cohort growing and experiencing size-dependent

mortality. The simulations are repeated 1000 times for each

combination over a range of parameter values that control

mortality and growth rates. Estimated parameters and realized

mortality are stored in an array.

(R)
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