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Abstract

Periplasmic flagella are essential for the distinct morphology and motility of spirochetes. A

flagella-specific type III secretion system (fT3SS) composed of a membrane-bound export

apparatus and a cytosolic ATPase complex is responsible for the assembly of the periplas-

mic flagella. Here, we deployed cryo-electron tomography (cryo-ET) to visualize the fT3SS

machine in the Lyme disease spirochete Borrelia burgdorferi. We show, for the first time,

that the cytosolic ATPase complex is attached to the flagellar C-ring through multiple spokes

to form the “spoke and hub” structure in B. burgdorferi. This structure not only strengthens

structural rigidity of the round-shaped C-ring but also appears to rotate with the C-ring. Our

studies provide structural insights into the unique mechanisms underlying assembly and

rotation of the periplasmic flagella and may provide the basis for the development of novel

therapeutic strategies against several pathogenic spirochetes.

Author summary

Type III secretion systems are widely utilized by gram-negative bacteria to assemble fla-

gella or to transport virulence effectors into eukaryotic cells. The central component is

known as a type III secretion machine, which consists of a membrane-bound export appa-

ratus and a cytosolic ATPase complex. Powered by the proton motive force and ATP

hydrolysis, the secretion machine is responsible for substrate recognition and export.

Here, we use the Lyme disease spirochete B. burgdorferi as a model system to unveil

unprecedented structural details of the intact flagellar secretion machine by high-through-

put cryo-electron tomography (cryo-ET) and subtomogram averaging. We provide the

first structural evidence that the cytosolic ATPase complex is attached to the flagellar C-

ring through multiple spokes to form the “spoke and hub” structure in B. burgdorferi. The
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novel architecture of the ATPase complex not only strengthens the flagellar C-ring but

also enables an optimal translocation of substrates through the ATPase complex and the

export apparatus.

Introduction

A group of bacteria named spirochetes can cause serious human diseases such as Lyme disease

(Borrelia or Borreliella species), syphilis (Treponema pallidum subsp. pallidum), and leptospi-

rosis (Leptospira interrogans and other Leptospira species). Spirochetes are easily recognized

by their distinctive wave-like or helical morphology and unique modes of motility. Recent

genetic studies indicate that their motility is crucial for host infection and/or bacterial trans-

mission [1–6]. Spirochetal motility is driven by periplasmic flagella, which reside and rotate

between the outer membrane and the peptidoglycan layer. Mutant B. burgdorferi cells that lack

their periplasmic flagellar filaments are nonmotile and rod shaped [1,2,7–9].

Similar to the flagella in the model organisms Escherichia coli and Salmonella enterica, peri-

plasmic flagella are composed of the flagellar motor, the hook, and the filament. However, the

periplasmic flagella are noticeably different from other bacterial flagella in several aspects. The

spirochetal flagellar motor is significantly larger than those in E. coli and S. enterica (approxi-

mately 80 nm versus approximately 45 nm in diameter). A periplasmic “collar” contributes sig-

nificantly to the motor structures observed in B. burgdorferi [10,11] and all other spirochetes

characterized to date [12–15]. The large flagellar motor from B. burgdorferi appears to produce

the highest torque (approximately 4,000 pN nm) observed in bacteria [16]. Furthermore, spi-

rochetes have unusual flagellar hooks in which the hook proteins are cross-linked by a covalent

bond, which is required to transmit the torque from the motor to the filament [17]. Those spi-

rochete-specific features enable the spirochetes to bore through viscous environments in their

animal hosts.

The filament is the largest component of the periplasmic flagella. Multiple filaments arising

from both poles form flat ribbons that wrap around the spirochete cell body in a right-handed

fashion [7]. The flagella filament is assembled by the flagellar-specific type III secretion system

(fT3SS), which is conserved across different bacterial species [14,18]. Additionally, the fT3SS is

evolutionally related to the virulence T3SSs (vT3SSs) that promote bacterial virulence by deliv-

ering effector proteins into eukaryotic cells [19,20]. The fT3SS is powered by proton motive

force [21–23] or sodium motive force [24], with additional involvement of ATP hydrolysis

[25–27].

The fT3SS consists of a membrane-bound export gate complex made up of six membrane

proteins (FlhA, FlhB, FliO, FliP, FliQ, and FliR) and a large cytosolic ATPase complex formed

by three cytoplasmic proteins (FliH, FliI, and FliJ). The ATP complex promotes the export

process by binding and delivering substrates to the export apparatus [28,29]. FliI is an ATPase

and shows structural similarity with the α and β subunits of the FOF1–ATP synthase [30]; it

exhibits its full ATPase activity when it self-assembles into a homohexamer [27,31]. FliH prob-

ably acts as a negative regulator of the FliI ATPase, and FliJ has chaperone-like activities

[28,32]. FliH, FliI, and FliJ coordinately deliver a chaperone–substrate complex to the export

gate by binding to the docking platform of the fT3SS for substrate export [33]. FliH2 binds to

the FliI ATPase and localizes FliI to the bottom of the flagellar motor through the interaction

with FliN on the C-ring [34,35]. FlhA is required for stable anchoring of the FliI6 ring to the

gate [36]. FliP, FliQ, and FliR form an export gate complex with helical symmetry [37]. Cryo-

electron tomography (cryo-ET) studies have revealed the overall structures of the fT3SS
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machines in intact flagella [11–15,38–40]. However, those studies have not yet provided suffi-

cient details on stoichiometry or architecture to fully understand the components of the

ATPase complex and its interactions with other proteins of the flagellar motor.

B. burgdorferi is the best-studied spirochete model system. Recent breakthroughs in genetic

manipulations allow the production of well-defined mutations without imposing any second-

ary alterations [2,10,39,41]. The small cell diameter and the highly ordered array of multiple

flagellar motors at cell poles make B. burgdorferi an excellent system for in situ structural anal-

ysis of the periplasmic flagella and their fT3SS machines by cryo-ET. Our previous structural

analysis of wild-type (WT) cells and several rod mutants of B. burgdorferi revealed the sequen-

tial assembly of the flagellar rod, hook, and filament [39]. Furthermore, disruption of the fliH
and fliI genes by transposon mutagenesis was found to disrupt the assembly and placement of

the cytoplasmic ATPase complex and to greatly inhibit flagellar filament formation, which

were largely restored by genetic complementation [42].

In this study, we used cryo-ET and subtomogram averaging to reveal novel features of the

ATPase complex in the WT B. burgdorferi periplasmic flagellar motor. The ATPase complex is

attached to the C-ring by spokes, and without the spokes, the C-ring became more flexible and

elliptical in shape. Furthermore, we resolved the symmetry mismatching between the stators and

spokes in class averages, showing that the ATPase complex and C-ring rotate as a rigid body with

respect to the stators and collar. Comparing these results with recent studies of the T3SSs in external

flagella and evolutionarily related injectisomes provides new insights into these nanomachines that

are structurally and functionally different while sharing a common evolutionary origin [40,43,44].

Results

In situ B. burgdorferi flagellar motor reveals novel structure of the ATPase

complex

We utilized high-throughput cryo-ET and sophisticated subtomogram classification [45] to study

the structure of B. burgdorferi flagellar motors. By analyzing 7,242 intact motor structures

extracted from tomographic data collected on a direct detection device (DDD), we generated an

asymmetric reconstruction that not only revealed the previously observed 16-fold symmetry of

the collar and stator structures [10,11,39] but also disclosed a novel spoke-like structure under-

neath the C- and MS-rings (S1 Fig and S1 Movie). There are 23 spokes in most WT B. burgdorferi
flagellar motors, albeit this number is varied from 21 to 24 in some rare instances (see S2 Fig).

The spoke-like densities extend from a hexagonal “hub” to the bottom of the C-ring (S1 Fig and

S1 Movie). We selected the class averages exhibiting 23 spokes, combined them, and did further

image alignment with focus on the region of the “hub” and the C-ring (Fig 1A, 1B and 1C). The

spokes extend from the central hub to the C-ring with 46-fold symmetry (Fig 1B).

FliI, FliH, and FliJ are known to form a large ATPase complex that was previously proposed

to be centered on the FliI6 hexamer [25–27] and to correspond to the density underlying the

FlhA ring based on analysis in Campylobacter jejuni [14] and in B. burgdorferi [42]. We specu-

late that the FliI6–FliJ complex forms the hexagonal hub and FliH is responsible for the spoke

(Fig 1A, 1B and 1C). Indeed, our structures derived from fliH and fliI mutants [42] show that

both the hub and the spokes are absent (Fig 1G), confirming that the distinct “hub and spoke”

structure is dependent upon the presence of both FliI and FliH.

The ATPase complex has profound impact on the C-ring structure

Our data showed that the ATPase complex is directly connected to the C-ring in the WT flagel-

lar motor. The C-ring from the WT motors mostly maintained the round shape, with the
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aspect ratio ranging from 1.005 to 1.048 (S3A Fig). In contrast, the C-ring density in the fliI
mutant is often more elliptical, with the aspect ratio ranging from 1.075 to 1.206 (S3B Fig).

Among the fliI mutant motors, 49.9% have elliptical C-rings with aspect ratios�1.129, and

19.3% have more ellipse-shaped C-rings with aspect ratios�1.206. Therefore, we propose that

the FliI–FliH complex plays an essential role in stabilizing the round-shaped C-ring structure.

Without the support from the ATPase complex, the C-ring would lose the rigidity and become

more flexible.

Fig 1. Cryo-ET reveals a novel ATPase complex structure in B. burgdorferi. (A) A central section of a flagellar motor structure from WT cells. The structure

was generated after alignment of the ATPase complex region, classification of the spoke region (see S2 Fig), and image refinement on the C-ring and ATPase

complex region. (B) A cross-section of the C-ring and spoke region. There are 23 spokes connecting the ATPase complex to the C-ring and 46 units at the bottom

of the C-ring. (C) A cross-section of the ATPase region, showing the hexagonal “hub” densities. (D and F) Surface rendering of the WT flagellar motor from side

and bottom, respectively. (F) A schematic model of the B. burgdorferi flagellar motor based on the averaged structure showed in (A). (G) A central section of the

flagellar motor structure from a fliI mutant. The C-ring density from the fliI mutant is not well resolved compared to that from the WT (A). (H) A cross-section

of the C-ring from approximately 50% of the fliI mutant shows an ellipse-like structure, which is very different from the C-ring in the WT flagellar motor in (B).

(I) A schematic model of the flagellar motor structure in the fliI mutant. cryo-ET, cryo-electron tomography; WT, wild-type.

https://doi.org/10.1371/journal.pbio.3000050.g001
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Molecular architecture of the ATPase complex in B. burgdorferi
To better understand the interactions between the ATPase complex and the C-ring in the

intact B. burgdorferi flagellar motor, we constructed a model of the ATPase complex and its

surrounding C-ring complex based on the available homologous structures. The crystal struc-

tures of FliI and FliJ from Salmonella [30,46] fit well into the central hub (Fig 2D and S4 Fig).

The N- and C-termini of FliJ insert into the middle of six FliI subunits, while the middle part

of FliJ inserts into the middle of the nonameric FlhAC ring (Fig 2D and S4 Fig).

A FliH dimer (FliH2) is known to form a stable complex with the FliI ATPase [46,47]. The

C-terminal domain of FliH is involved in binding to FliI, while a small central region of FliH is

essential for formation of the FliH2 [48]. The N-terminal domain is important for FliH–FliN

interactions [34, 35]. In our map, there are three or four spokes extending from each FliI

monomer to the C-ring, although only one FliH2 binding site on each FliI was reported in a

crystal structure of the FliI–FliH complex [46]. Therefore, we speculate that the first FliH2

Fig 2. Proposed molecular architecture of the ATPase complex in the flagellar motor. Atomic structures of FliH, FliI, and FliJ were fitted into the cryoET-

derived density map of the large hexametric complex attached to the C-ring protein FliN through the FliH spokes. As the C-ring shows 46-fold symmetry, 46

copies of the FliN tetramer as well as 46 copies of the FliGMC–FliMM complex were placed into the C-ring. (A) A side view of the structure of the WT flagellar

motor with the assembled C-ring (FliG, FliM, and FliN) and the ATPase complex (FliH, FliI, and FliJ). (B) A bottom-up view of the C-ring and the ATPase

complex. (C) A top-down view of the assembled C-ring and the ATPase complex. (D) A sliced, enlarged view of the ATPase complex and its interactions with

FlhA and FliN. (E) An enlarged, bottom view of the assembled C-ring and the ATPase complex. The hydrophobic surface (formed by Val-128, Val-129, and Val-

130) of FliN interacts with the FliH spoke (yellow). (F) A close-up, top-down view of the assembled ATPase complex in which six FliI monomers form the “hub”

and at least 23 FliH dimers form the spokes. cryo-ET, cryo-electron tomography; WT, wild-type.

https://doi.org/10.1371/journal.pbio.3000050.g002

Novel ATPase complex structure in periplasmic flagella

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000050 November 9, 2018 5 / 15

https://doi.org/10.1371/journal.pbio.3000050.g002
https://doi.org/10.1371/journal.pbio.3000050


dimer directly binds to one FliI monomer, while others bind to adjacent FliH2 dimers in a par-

allel fashion (S5 Fig); since FliI forms a monomeric hexamer, six bundles of FliH2 are attached

to the central FliI hexamer in our model (Fig 2E and 2F, S5 Fig). The hydrophobic patch (L85,

T110, V128, V130, F135) at the C-terminus of FliN has been reported to interact with FliH

[34]. Our data indicate that the FliH2 spoke is indeed attached to FliN at bottom of the C-ring

(Fig 2E), in which the atomic models of FliG, FliM, and FliN [49] were fitted into the C-ring

density. With an additional rotation of approximately 10˚ from the initial model [49], the

hydrophobic residues of FliN (labeled red in Fig 2D and S2 Movie) are located at the interface

between FliN and the FliH spoke.

The C-ring rotates with the ATPase complex

The C-ring is thought to rotate together with the MS-ring and the flagellar filament, although

the rotation of the C-ring has never been directly visualized. Here, because FliH spokes con-

nected to the C-ring are visible, they can be utilized to track the rotation of the C-ring. Indeed,

classification of the spoke region resulted in multiple structures, in which the ATPase complex

apparently adopts different spin rotation with respect to the collar and the stator (see Fig 3 and

S3 Movie). In the four classes shown in Fig 3, the cross-section view on collar and stator shows

that those from four classes are in a similar orientation (Fig 3A); however, the cross-section

view on the ATPase complex shows the spokes in classes 03, 05, and 08 rotate about 7˚, 13˚,

and 20˚ from class 00 (Fig 3B), respectively. As the small angular change is difficult to discern,

the class averages were analyzed by rotational cross correlation, and the coefficient was plotted

(Fig 3D), showing the angular differences (7˚, 13˚, 20˚) between class 00 and class 03, 05, and

08. As the spokes are attached to the C-ring, we propose that the C-ring and the ATPase can

rotate together as a rigid body (see also in S3 Movie). Although the class average structures in

Fig 3 were arranged as counter-clockwise (CCW) from left to right, the rotation can be either

CCW or clockwise (CW).

Discussion

T3SSs in bacterial flagella and injectisomes are highly conserved and evolutionally related. The

flagella are elaborate self-assembling machines that serve as the main organelles for bacterial

motility. The injectisomes are specialized nanomachines deployed by many important human

pathogens such as Salmonella spp., Shigella spp., and Pseudomonas to deliver virulence effec-

tors into eukaryotic cells. Our previous studies revealed key intermediates of fT3SS-mediated

assembly in B. burgdorferi [39] and overall architectures of the vT3SS machines in Shigella and

Salmonella [43,44]. Here, we focus on in situ structure of the fT3SS machine in periplasmic fla-

gella and compare it with external flagella and vT3SS machines. The overall organization of

the fT3SS machine in the B. burgdorferi periplasmic flagella shares many similar features

observed with the fT3SS machine in the E. coli external flagella [50] and the vT3SS machines in

Shigella and Salmonella [40,43,44] (Fig 4). However, the ATPase complex of the B. burgdorferi
periplasmic flagella is noticeably different from those observed in the Salmonella injectisome

(Fig 4) and the E. coli/Salmonella external flagellum [40,50]. We observed 23 spokes and one

hub in the ATPase complex of the B. burgdorferi periplasmic flagella. In contrast, no spoke has

been observed in E. coli/Salmonella external flagellum. Only six spokes and one hub were

observed in the Salmonella injectisome. The spokes are considerably longer in the B. burgdor-
feri flagellar basal body than in the Salmonella injectisome (6 nm versus 3 nm), consistent with

the observation that the C-ring is much larger than the six “pods” (62 nm versus 36nm in

diameter) (see Fig 4). Previous studies provided evidence that OrgB (a FliH homolog) forms

the spoke-like structure and interacts with the ATPase complex and SpaO (a FliN homolog) of
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Fig 3. The ATPase complex adopts a different spin rotation in respect to the collar and the stators. (A) Sections of four class averages at the level of the 16

circumferential stator densities. Note that the stator densities exhibit very similar patterns on spin rotation. (B) Sections of the same class averages shown in panel

A but taken at the level of the FliI/FliH assembly and the C-ring. The sections show the ATPase complex in slightly different orientations. There are different

rotations in classes 03, 05, and 08 relative to class 00. (C) Cytoplasmic views of the ATPase complexes from the four class averages, corresponding to the cross-

sections in panel B, respectively. (D) CCC plotting of the class averages. Note that the peak of the CCC for class 00 happens at 0˚ (without any in-plane rotation).

The CCC peak for class 03 is located at approximately 7˚; the CCC peak for class 05 is at approximately 13˚, whereas the CCC peak for class 08 is at 20˚. CCC,

cross correlation coefficient.

https://doi.org/10.1371/journal.pbio.3000050.g003
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the Salmonella injectisome [43]. In the B. burgdorferi flagellar motor, the spoke between the

ATPase and C-ring is likely formed by multiple FliH2 molecules. FliH of B. burgdorferi is sig-

nificantly larger (305 amino acid residues) than its homolog in Salmonella (170 residues) (S6

Fig). Thus, the ATPase complex in the B. burgdorferi periplasmic flagella not only facilitates

substrate recruitment and secretion but also supports the integrity of the C-ring, which under-

goes rotation and switches between CW and CCW.

We observed many different orientations of the ATPase complex relative to the periplasmic

structures of the motor, suggesting that the C-ring and the ATPase complex rotate together

with the MS-ring. The rotation of the C-ring is driven by 16 stators that surround the C-ring

and a spirochete-specific periplasmic collar [10]. In contrast, although OrgB and SpaO likely

undergo high turnover with a cytoplasmic pool, the pods found in Salmonella injectisomes do

not appear to rotate. The differences between the flagellar motor and injectisome underline

the distinct mechanisms involved in their assembly and function.

Recent studies using fluorescence recovery after photobleaching showed the copy number

of the C-ring protein FliN varies with the direction of flagellar rotation [51]. It was estimated

in E. coli that there are 114 ± 17 FliN molecules in motors that rotated only CW and 144 ± 26

FliN in CCW motors [51]. Our multivariate statistical analysis results suggested that the FliH

spoke numbers vary from 21 to 24 in the B. burgdorferi motor, and the spokes are distributed

Fig 4. Comparison of the fT3SS from B. burgdorferi and the vT3SS from Salmonella. (A) A central section from the B. burgdorferi motor. (B) The fT3SS in the

spirochete motor consists of the ATPase complex (orange) and the export apparatus (purple) underneath the MS-ring. (C, D) The vT3SS from Salmonella
injectisome is modeled in a similar color scheme. The difference between the two T3SSs is striking in a comparison of the cross-sections of their ATPase

complexes. Note that the C-ring from the B. burgdorferi motor is a continuous ring with approximately 46 copies of FliN tetramer. There are 23 visible FliH

spokes (E, F). There are six pods in Salmonella injectisome. Only six spokes of the FliH homolog OrgB connect the ATPase complex to the SpaO molecules that

compose the pod of the injectisome. fT3SS, flagella-specific Type III secretion system; vT3SS, virulence T3SS.

https://doi.org/10.1371/journal.pbio.3000050.g004
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evenly along the C-ring (S1 Fig). If there are 46 FliN tetramers when there are 23 FliH spokes,

there could be 42 FliN tetramers and 48 FliN tetramers when the spoke number is 21 and 24,

respectively. Considering the C-ring in B. burgdorferi is relatively larger than the E. coli motor

(57 nm versus 44 nm in diameter) [50], our estimation on FliN tetramers copies fall into a rea-

sonable range compared with the observation from the E. coli motor. Yet further study on the

ATPase complexes from the motors locked in CW or CCW rotation will be needed for a better

understanding of the mechanisms underlying the C-ring proteins turnover and rotation.

In conclusion, our study reveals unprecedented details about the intact flagellar motor and

its T3SS machine in the Lyme disease spirochete B. burgdorferi. We present the direct struc-

tural evidence that the flagellar ATPase complex is attached to the C-ring through multiple

spokes likely comprised of FliH. The novel architecture of the ATPase complex not only

strengthens the C-ring but also enables an optimal translocation of substrates through the

ATPase complex and the export apparatus. Remarkably, the ATPase complex together with

the C-ring can adopt variable orientations, implying that the fT3SS machine undergoes rota-

tion with the flagellar C-ring. Together, our studies not only provide a structural framework

for a better understanding of the fT3SSs but also underscore the striking differences between

flagella and their evolutionally related bacterial injectisomes.

Materials and methods

Bacterial strains and growth conditions

High-passage B. burgdorferi strain B31A (WT) were grown at 35˚C in BSK-II liquid medium

supplemented with 6% rabbit serum or on semisolid agar plates in the presence of 2.5% carbon

dioxide, as previously described [39,52].

Frozen hydrated EM sample preparation

The frozen hydrated specimens were prepared as previously described [11]. Briefly, B. burgdorferi
cultures were centrifuged at 5,000 × g for 5 min, and pellets were suspended in 1.0 ml phosphate

buffered saline (PBS). The cells were centrifuged again and suspended in approximately 50–80 μl

PBS. The cell suspensions were mixed with 10 nm colloidal gold and were then deposited onto

freshly glow-discharged, holey carbon grids for 1 min. Grids were blotted with filter paper and

then rapidly frozen in liquid ethane using a homemade gravity-driven plunger apparatus.

Cryo-electron tomography

Frozen hydrated specimens were imaged at −170˚C using a Polara G2 electron microscope

(FEI) equipped with a field emission gun and a Gatan K2 Summit DDD. SerialEM was used to

collect tilt series from WT cells in the dose fractionation mode [53]. The microscope was oper-

ated at a magnification of 15,400×, resulting in an effective pixel size of 2.5 Å without binning

and a cumulative dose of approximately 60 e−/Å2 distributed over 61 stacks. Each stack con-

tains eight images. Tomoauto was utilized to facilitate the automation of cryo-ET data process-

ing [44]. The main executables include the following: drift correction of dose-fractionated data

using Motioncorr [54] and assembly of corrected sums into the tilt-series, alignment of tilt-

series and CTF correction by IMOD [55], and reconstruction of tilt-series into tomograms by

TOMO3D [56].

3D image processing and subtomogram averaging

In total, we extracted 7,242 motors from 780 tomograms on WT cells. The subtomogram anal-

ysis was implemented as previously described [11,39,57]. Briefly, the initial orientation of each
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motor was estimated by the center coordinates of the flagellar C-ring and the collar, thereby

providing two of the three Euler angles. To accelerate image analysis, 4×4×4 binned subtomo-

grams (64×64×64 voxels) were used for initial alignment. Then, the original subtomograms

(256×256×256 voxels) were utilized for further image analysis. Multivariate statistical analysis

and hierarchical ascendant classification were then applied to analyze the intact motor

[45,58,59]. Relevant voxels of the aligned subvolumes were selected by specifying a binary

mask of the motor. Class averages were computed in Fourier space, so the missing wedge prob-

lem of tomography was minimized. All class averages were further aligned with each other to

minimize differences in motor orientation.

Because the symmetric feature of the collar and stators is predominant, initially, the aver-

aged structure of motors showed the 16-fold symmetry of those regions, while the structure of

the ATPase complex is not well resolved. Classification on the ATPase complex yielded several

class averages with 6-fold symmetry. The class averages with obvious 6-fold symmetry were

selected for further analysis. The 5,076 subtomograms in this data set were aligned on the

ATPase complex region by spin alignment with step size of 22.5˚ (360˚/16). As a result, in the

global average, the “hub” showed evident features with 6-fold symmetry, while the periplasmic

features maintained 16-fold symmetry.

The average structure of the spokes from WT cells was generated as follows: (1) the 5,076

selected subtomograms that give 16-fold symmetry in the stator and collar regions and 6-fold

symmetry in the “hub” region of the average structure were classified based on the spoke

region. This analysis generated four class averages, three of which showed spokes. One of

those three class averages is presented in S1 Movie, illustrating the 3D distribution of the

16-fold symmetry at collar and stator regions, 23-fold symmetry of the spokes, and 6-fold sym-

metry of the “hub.” The structure in S1 Movie shows that three regions with different symme-

try can be resolved in one averaged structure from real data. (2) Classification on the spoke

region was carried out using eigenimages one to 18 to generate four class averages (see S2 Fig).

The first 40 eigenimages of the data set indicate the presence of different symmetries of the

spoke region (see Results).

To define the rotation angles, the previously aligned subtomograms were classified on the

collar and stator regions. The new class averages that showed symmetry of the collar and stator

regions were selected and aligned by the collar and stator regions with spin alignment only.

The spin rotation angles were recorded and compared.

3D visualization and modeling

UCSF Chimera [60] was used for 3D visualization of flagellar motors. The crystal structure of

MxiAC (PDB: 4A5P) was fitted directly into the tomographic density map of the FlhA region.

The FliI/FliJ model based on two crystal structures from Salmonella [30,46] was fitted into the

hexagonal “hub.” The atomic structure of FliI–FliH2C (PDB:5B0O) was initially fitted into the

segmented density by rigid fitting. As there is extra density for FliH2 in the tomographic map

and three to four spokes extend from the “hub,” three more FliH2 were placed adjacent to the

first FliH2; they were fitted into the density map using MDFF [61] (see S2 Movie).

The crystallographic structure of E. coli FliN is organized in doughnut-shaped tetramers

[62]. Combined with a recent crystal structure FliMM–FliGMC complex from Thermotoga mar-
itima (PDB:4FHR) [49], the FliN–FliMM–FliGMC complex fits well into the bulge density at

the bottom of the C-ring (S2 Movie). As V111, V112, and V113 (E. coli) are in the hydrophobic

patch and interaction with FliH [63], we speculate that those three valine residues face toward

the FliH2 spoke. Those three valines correspond to V128, V129, and V130 in T. maritima [63].

As a result, when we fit the FliN tetramer ring, we have V128, V129, and V130 (See S2 Movie
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shown in red) facing toward the FliH2 spoke. There are 46 copies of FliG–FliM–FliN, and they

fit reasonably well into the B. burgdorferi C-ring density.

Supporting information

S1 Fig. Asymmetric reconstruction of the flagellar motor from B. burgdorferi. (A) A central

section of the averaged structure. (B–F) Different cross-sections show variable symmetries

from the top to the bottom of the flagellar motor, respectively. The location of each cross-sec-

tion is shown in panel A.

(JPG)

S2 Fig. Main eigenimages for the classification on the spoke region. The first 40 eigenimages

of the data set show different symmetry of the spoke region. Eigenimages 01 and 02 exhibit

23-fold symmetry. Eigenimages 04 and 07 exhibit 22-fold symmetry. Eigenimages 08 and 09

exhibit 21-fold symmetry. Eigenimages 10 and 11 exhibit 24-fold symmetry.

(JPG)

S3 Fig. Comparison of the flagellar C-ring from WT and fliI mutant. B. burgdorferi flagellar

motors from WT and fliI mutant were aligned and classified on the C-ring. (A) Top: cross-sec-

tions of four averages from WT. Bottom: the red circle superimposed on the C-ring measures

the aspect ratio of each class average. The ratio and the percentage of motors in each class are

shown below the class averages. (B) Top: cross-sections of four class averages from the fliI
mutant. Bottom: the red circle superimposed on the C-ring measures the aspect ratio of each

class average. The ratio and the percentage of motors in each class are shown below the class

averages. WT, wild-type.

(JPG)

S4 Fig. The modeling of the ATPase complex. (A) The segmentation of the bell-shaped den-

sity shows multiple spokes (yellow) and six symmetric densities (orange) around one extra

density in the middle (light green). (B) A model of the FliI–FliJ complex based on two crystal

structures of FliI (PDB:5B0O) and FliJ (PDB:3AJW) from Salmonella fitted well into the seg-

mented map, although the corresponding density of FliJ covers only its small fraction. (C) A

side view of the segmented map and (D) the model after the fitting. PDB, Protein Data Bank.

(JPG)

S5 Fig. A model of the FliI–FliJ–FliH complex in periplasmic flagella. (A) The crystal struc-

ture of FliI–FliH complex (PDB:5B0O). (B) Another FliHC2 (FliHC2-2) could bind to the first

FliHC2 (FliHC2-1). (C) Charge–charge interaction between the two FlHC2. One side of FliHC-A

is positively charged with amino acid R179. The complimentary surface of FliHc-C is nega-

tively charge with E161, D214, and D216. Additionally, one side of FliHC-D is positively charge

with R104. The complementary surface of FliHC-B is negatively charged with D175, D198,

E181, and E182. (D) The interaction surface between FliHC2-1 and FliHC2-2. (E) Hydrophobic

surface (yellow) between the two FlHC2. FliHc-C and FiHC-D binds to the C1 α-helix of

FliHC-B (L215 to C227) through hydrophobic interaction. The hydrophobic groove was

formed by α1b, α1a’, and α1b’ (see C). The hydrophobic residues include I123, I127, and A131

of FliHC-C and A118, L119, V122, V123, V124, L127, M130, A134, I154, L157, L158, L163,

F164, L229, and A230 from FliHC-D. (F) A model of FliI–FliHC complex including one FliI

and four FliHC2. (G) A model of the ATPase complex. PDB, Protein Data Bank.

(JPG)

S6 Fig. Modeling of FliI–FliH complex. (A) The distance between P100 on FliH to V130 on

FliN is approximately 20 nm. Using sequence alignment, we found P100 from FliH of
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Salmonella (CAD05719.1) is aligned with K170 from FliH of B. burgdorferi (AAA8612.1).

There are 170aa of the B. burgdorferi FliH that could build the gap between K170 on FliH and

V130 on FliN.

(JPG)

S1 Movie. Asymmetric reconstruction of the B. burgdorferi flagellar motor reveals a

16-fold symmetric feature at collar and stator regions, 23 spokes, and a hexagonal hub.

The left is the side view with yellow line slicing through; the right is the cross-section view cor-

responding to the yellow line. The movie shows distinct symmetries within the B. burgdorferi
flagellar motor.

(MP4)

S2 Movie. Surface rendering and modeling of the B. burgdorferi flagellar motor. The B.

burgdorferi C-ring model was built based on a homology model from Thermotoga maritime
(Vartanian and colleagues, 2012), with the hydrophobic patch of FliN tetramer facing the

spokes. The B. burgdorferi ATPase complex was built based on two homologous structures

from Salmonella (PDB:5B0O and PDB:3AJW). The FlhA cytoplasmic complex was built based

on the structure from the homolog MxiA (PDB:4A5P). PDB, Protein Data Bank.

(MOV)

S3 Movie. Multiple structures of the ATPase complex are assembled together to show the

rotation of the ATPase complex and the C-ring relatively to the stator, which is known to

be anchored to the cell wall.

(MPEG)
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