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A commentary on

Effect of Skeletal Muscle Native Tropomyosin on the Interaction of Amoeba Actin with Heavy

Meromyosin

by Eisenberg, E., and Weihing, R. R. (1970). Nature 228, 1092–1093. doi: 10.1038/2281092a0

Troponin-tropomyosin inhibits skeletal and cardiac muscle contraction at low Ca2+. Binding of
rigor-type myosin S1 to actin-tropomyosin-troponin, particularly at saturating Ca2+, produces
activation of myosin ATPase activity in excess of that seen in the absence of the regulatory proteins.
The binding energy of S1 can overcome the inhibitory activity of troponin (Bremel et al., 1972)
and may allow tropomyosin to move deep into the groove of actin. That particular arrangement
of actin, tropomyosin, and troponin is a much better activator of ATP hydrolysis than actin alone.
That active configuration of actin was called state 2 in the Hill model (Hill et al., 1980) and later
named the M state because of its requirement for tight myosin binding.

Eisenberg and Weihing found evidence that troponin itself can stabilize the active state of
actin in the absence of high affinity S1 binding (Eisenberg and Weihing, 1970). They showed that
troponin-tropomyosin enhanced the ability of amoeba actin to activate myosin S1 ATPase activity
at high Ca2+. That observation is often overlooked but may be an important clue to managing
some muscle disorders. Actin filaments containing the hypertrophic cardiomyopathy associated
114 mutation of TnT also enhanced S1 ATPase rates 2-3-fold higher than actin filaments without
bound regulatory proteins (Gafurov et al., 2004). Because small changes in the structure of actin
or troponin allow this increased activation to occur, the troponin complex must have a latent
ability to enhance actin activation of myosin ATPase activity. The 14 C-terminal residues of TnT
attenuate the ability of troponin to enhance actin activation. Troponin containing 114 TnT might
act by stabilizing tropomyosin in the M state position of the actin groove under saturating Ca2+

conditions.
The inactive state of actin-tropomyosin-troponin (state 1 or the B state) occurs at low free Ca2+

when the inhibitory region of TnI is bound to actin. Because of associations among the regulatory
proteins, tropomyosin is stabilized outside of the actin groove and there is little stimulation of
myosin ATPase activity. Removal of the 14 C-terminal residues of TnT prevents formation of the
B state. Compared with wild type actin filaments in EGTA, those containing 114 TnT exhibit
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TABLE 1 | C-terminal troponin T sequence comparison.

Human Cardiac TNT3 SK TRGK AKVT GRWK

Cow Cardiac TNNT2 SK TRGK AKVT GRWK

Pig Cardiac isoform 3 SK TRGK AKVT GRWK

Mouse Cardiac TNNT2 SK TRGK AKVT GRWK

Human Fast Skeletal TNN2 AG TPAK GKVG GRWK

Human Slow Skeletal TNN1 RK GAGK GRVG GRWK

Rabbit Fast Skeletal TNNT3 AG TTAK GKVG GRWK

Chicken Fast Skeletal TNNT3 KK AGAK GKVG GRWK

less cooperativity in equilibrium binding of myosin S1 (Gafurov
et al., 2004), and they do not exhibit the acrylodan tropomyosin
fluorescence increase under conditions favoring the inactive state
(Borrego-Diaz and Chalovich, 2010; Franklin et al., 2012).

Ca2+ binding to TnC opens a hydrophobic patch to which
the switch region of TnI can bind (Herzberg et al., 1986). Under
this condition, TnI is detached from actin and tropomyosin is
situated in the actin groove. Several lines of evidence indicate that
the major state formed with Ca2+ is a second inactive state with
tropomyosin partially in the actin groove (Trybus and Taylor,
1980; McKillop and Geeves, 1991; Lehman et al., 2001; Kimura
et al., 2002; Pirani et al., 2005; Poole et al., 2006). Full movement
into the groove to form the active M state requires rigor S1
binding or a structural change in troponin. In the Hill model of
regulation, Ca2+ binding to troponin was thought to create an
inactive state 1 with bound Ca2+. State 1 with bound Ca2+ may
be equivalent to the state intermediate between the B andM states
that is called the C state (because of its link to Ca2+). The level of
activation of ATPase activity at saturating Ca2+ is determined by
the amount of M state formed in its equilibrium with the C state.
The major state formed with 114 TnT containing actin filaments
at low Ca2+ is likely to be the C state as the B state cannot form.
The C state is also stabilized by a hypertrophic cardiomyopathy
causing mutation, R146G TnI. The R146G mutation in TnI gives
relative stabilization to the C state at low Ca2+ and the C state

is highly stabilized at saturating Ca2+(Mathur et al., 2009). An
analysis of ATPase rates of R146G TnI containing actin filaments
supported the idea that the C state is ineffective in stimulating
myosin ATPase activity.

Studying natural mutations and modifications of troponin
has given muscle researchers insights into the regulation of
contraction. Long term deviations from the normal distribution
of B, C, andM states of regulated actin seem to lead to progressive
cardiac dysfunction. The last 14 residues of human cardiac TnT
are critical for controlling the equilibria among the B, C, and M
states of regulated actin; they stabilize the B state at low Ca2+

and destabilize the M state at saturating Ca2+. Table 1 compares
the C-terminal sequences of several forms of troponin T. Note
the conservation of the four terminal residues and the pattern of
basic residues (bold). The regularly spaced basic residues suggest
the possibility of acidic target sites for controlling both the B and
M states.

The C-terminal region of TnT might function by directly
affecting movement of tropomyosin on the actin surface. The C-
terminal region could destabilize the active M state at saturating
Ca2+ by interfering with tropomyosin movement into the actin
groove. At low Ca2+, the C-terminal region of TnT could
participate in holding tropomyosin away from the actin groove.
The C-terminal 14 residues of TnT could also potentially alter
the pathway of transmission of information from Ca2+ binding
to TnC through the events leading to tropomyosin repositioning.
Deciphering the mechanisms of action of the C-terminal region
of TnT may lead to new therapies for cardiac disorders.
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