

FRAMEWORK FOR DESIGN AND DEVELOPMENT OF BLOCKCHAIN

APPLICATION USING SMART CONTRACTS

By

Sumati Kulkarni

May 2020

Director of Thesis: Dr. Nasseh Tabrizi, PhD

Major Department: Computer Science

There is a lot of excitement around Blockchain technology and its ability to disrupt many

traditional industries and business practices. First invented as a part of Bitcoin’s underlying

infrastructure, Blockchain technology offers a platform for decentralized and transparent

transaction management between untrusting parties. Many believe this aspect of blockchain can

revolutionize traditional supply chain practices typically involving many untrusting entities from

the time raw material extraction to the final consumption of a finished product by the end

consumer. While there have been many claims regarding its obvious benefits in Supply chain

management, there are only few technical applications developed so far that are useful in real

world scenarios. In this thesis, we review different real-world implementations of block chain

technology in the supply chain domain, especially those that leverage smart contracts. Smart

contract is a computer protocol that facilitates, verifies, enforces performance of a contract

digitally using Blockchain technology. Since smart contracts are trackable, irreversible and allow

performance of credible transactions without third parties, it can be deployed effectively to replace

existing supply chain mechanisms that require working with an intermediate entity such as a bank

that often comes with a price tag for their services. In this thesis, we present a framework to enable

sale of goods between untrusting entities typically in different geographies leveraging smart

contract technology that can effectively replace the "letter of credit" payment mechanism. An

novel algorithm for dispute resolution is developed and a decentralized app (Dapp) is built and

deployed on Ethereum block chain using smart contracts developed in Solidity. Last, we discuss

the effectiveness of such a system, potential drawbacks or known security threats that may hinder

the adoption of such an app in the real world.

FRAMEWORK FOR BLOCKCHAIN BASED DECENTRALIZED ECOMMERCE

APPLICATION USING SMART CONTRACTS

A Thesis

Presented to The Faculty of the Department of Computer Science

East Carolina University

In Partial Fulfillment of the Requirements for the Degree

Master of Science in Computer Science

by

Sumati Kulkarni

May 2020

© Sumati Kulkarni, 2020

FRAMEWORK FOR DESIGN AND DEVELOPMENT OF BLOCKCHAIN

APPLICATION USING SMART CONTRACTS

by

Sumati Kulkarni

APPROVED BY:

DIRECTOR OF THESIS

 Nasseh Tabrizi, PhD

COMMITTEE MEMBER

 Mark Hills, PhD

COMMITTEE MEMBER

 Venkat Gudivada, PhD

CHAIR OF THE DEPARTMENT

OF COMPUTER SCIENCE Venkat Gudivada, PhD

DEAN OF THE

GRADUATE SCHOOL Paul J. Gemperline, PhD

TABLE OF CONTENTS

LIST OF FIGURES .. vi

CHAPTER 1: INTRODUCTION ... 1

 Motivation .. 1

 Thesis Objectives ... 1

 Thesis outline .. 2

CHAPTER 2: RELATED WORK .. 3

 Blockchain Technology ... 3

 History of Blockchain .. 3

 Working of Blockchain .. 4

 Types of Blockchain .. 5

 Blockchain vs. traditional database application ... 6

 Known issues with Blockchain technology ... 7

 Existing Blockchain Platforms .. 8

 Hyperledger.. 8

 Ethereum .. 9

 Stellar .. 10

 Comparison of Blockchain Platforms .. 10

 Smart contract technology ... 10

 Working of Smart Contracts .. 11

 Advantages and disadvantages .. 13

 Known issues with Smart contracts ... 14

 Potential countermeasures ... 15

 Supply chain management ... 16

 Supply chain management objectives .. 17

 Flows in Supply Chain ... 17

 Mapping Study of existing blockchain applications 18

 Results of mapping study ... 21

CHAPTER 3: DEVELOPMENT OF BLOCKCHAIN APPLICATION 22

 Developing Proof of concept ... 22

 Letter of Credit ... 22

 Proof of Concept: Decentralized Letter of Credit .. 23

 Design & development of decentralized application using solidity smart contracts . 25

 Requirements ... 25

 Proposed framework .. 25

 Metamask, Truffle Suite and Ganache ... 25

 Ethereum environment setup ... 28

 Solidity Smart contracts ... 29

 Buyer and Seller registration ... 31

 Implementation of sale transaction .. 32

 ADMIN selection and dispute resolution algorithm 33

CHAPTER 4: EVALUATION ... 36

 Implementation using AngularJS ... 36

 Results .. 43

CHAPTER 5: CONCLUSIONS AND FUTURE WORK ... 44

 Conclusion .. 44

 Future Work .. 44

BIBLIOGRAPHY .. 46

List of Figures

Figure 1: Comparison of Permisionless and Permissioned Blockchain platforms

Figure 2: Decision flowchart for selecting Blockchain vs. traditional database technology

Figure 3: Working of Smart contracts

Figure 4: Stages in a typical Supply Chain

Figure 5: Flows in Supply Chain

Figure 6: Included research work for mapping study

Figure 7: Analysis of Blockchain research in Supply chain by year and publishers

Figure 8: Analysis of Blockchain research in Supply chain by Industry

Figure 9: Analysis of implementation maturity of Blockchain applications in Supply chain

Figure 10: Comparison of features in popular blockchain platforms

Figure 11: Flows in supply chain with Letter-of-credit

Figure 12: Potential outcomes with decentralized purchasing

Figure 13: Proof-of-concept of decentralized letter of credit application

Figure 14: Working with Metamask

Figure 15: Coding smart contract in Solidity

Figure 16: Constructors and functions in Solidity

Figure 17: User registration function in Solidity

Figure 18: Implementing sale transaction in Solidity

Figure 19: Dispute resolution in Solidity

Figure 20: Dispute resolution at optimal time using algorithm

Figure 21: Letter of Credit DApp Homescreen

Figure 22: Letter of Credit DApp – Selecting Seller account

Figure 23: Letter of Credit DApp – Seller Products Page

Figure 24: Letter of Credit DApp – Seller Add Product

Figure 25: Letter of Credit DApp – 0.1 ETH GAS FEE & 1.0 ETH DISPUTE CLEARING FEE

from seller account when product is added to the list

Figure 26: Letter of Credit DApp – Logout from Seller account and login to Buyer account to

start transaction

Figure 27: Letter of Credit DApp – Buyer Purchase the product

Figure 28: Letter of Credit DApp – 0.1 ETH GAS FEE, 100.0 ETH PRODUCT COST, 1.0 ETH

DISPUTE CLEARING FEE from buyer

Figure 29: Letter of Credit DApp – Buyer bought the product

Figure 30: Letter of Credit DApp – Seller ships the Product

Figure 31: Letter of Credit DApp – Buyer does not confirm delivery

Figure 32: Letter of Credit DApp – Seller initiates dispute

Figure 33: Letter of Credit DApp – Disputed Items

Figure 34: Letter of Credit DApp – Admin1 votes seller

Figure 35: Letter of Credit DApp – Admin2 votes seller

Figure 36: Account balances in Ganache showing accurate working of algorithm

CHAPTER 1: INTRODUCTION

1.1 Motivation

Blockchain technology offers an innovative platform for decentralized and transparent transaction

management. Blockchain was first invented as part of Bitcoin’s underlying infrastructure in 2008

(Nakamoto, 2008). Blockchain uses a distributed, peer-to-peer network to make a continuous,

growing list of ordered records called blocks to form a digital ledger. Each transaction, represented

in a cryptographically signed block, is then automatically validated by the network itself. Despite

initial doubts about this technology, recently governments and large corporations have investigated

to adapt and improve this technology in various domains of applications, from finance, social and

legal industries to design, manufacturing, and supply chain networks. At the same time, there is an

on-going debate among researchers regarding the applicability of Blockchain technology to solve

real-world problems.

To provide some background on supply chain management and why it is being considered as a

potential application area for blockchain technology, we review some of its definitions and

fundamental concepts. Supply chain management (SCM) is defined as the active management of

supply chain activities to maximize customer value and achieve sustainable competitive

advantage. In commerce, the management of the flow of goods and services, involves the

movement and storage of raw materials, of work-in-process inventory, and finished goods from

point of origin to point of consumption (Chopra, 2013). Organizations increasingly find that they

must rely on effective supply chains, or networks, to compete in the global market and networked

economy. In new management paradigms (Drucker, 1998), this concept of business relationships

extends beyond traditional enterprise boundaries and seeks to organize entire business processes

throughout a value chain of multiple companies. However, with complicated interactions among

players, mistrust between players becomes a self-fulfilling prophecy leading to a lack of

visibility/transparency and ultimately reducing the value delivered to customers. Improving trust

and visibility across a Supply chain has proven to have a positive impact on all entities involved.

1.2 Thesis Objectives

Blockchain technology can address a critical aspect of the supply chain by enabling reliable,

accurate information sharing across multiple parties without trust. This can also eliminate multiple

“middlemen” currently used to conduct transactions between parties without trust. A typical

example of this would be during the import of high-value items from a supplier located in a distant

country. Due to a lack of trust between the two parties, it is common practice to take the assistance

of a financial institution such as a bank to mediate the purchase of goods and transfer of funds.

The bank for a small fee will ensure the transfer of funds is only conducted after ensuring the

physical transfer of goods. This process can effectively be managed by a blockchain application

that can ensure the release of funds only after obtaining proof of shipment from the supplier. There

are many other such applications which we will further explore in this thesis and identify good use

cases that can be developed into real-world blockchain applications. The objectives of this thesis

are:

2

• Perform a mapping study of blockchain as applied to supply chain management

• Create a framework for a blockchain-based letter of credit that addresses challenges with

using current techniques.

• Systematic review of technology to identify best set of tools

• Develop a novel algorithm to resolve disputes while executing smart contracts.

• Evaluate the effectiveness of this framework by creating a web application.

1.3 Thesis outline

This thesis is organized as follows: We start off understanding fundamental concepts of

Blockchain technology, existing blockchain platforms and Smart contracts in chapter 2. We also

introduce basic concepts of supply chain management to understand applications that would be

most beneficial in the real world. We then conduct a literature survey to understand the current

research landscape related to blockchain applications in the Supply chain. In chapter 3 we bring

all our learning together and propose a proof of concept application. We provide details of

development and implementation of decentralized applications using solidity smart contracts. We

also develop an algorithm for selecting ADMINs and dispute resolution which is unique to the

problem selected here and addresses several issues with existing Online dispute resolution (ODR)

systems. Finally, we conclude with details of complete implementation, results, and future work

in chapter 4.

CHAPTER 2: RELATED WORK

2.1 Blockchain Technology

Blockchain technology is an immutable ledger of transactions over a peer-to-peer network

(Nakamoto, 2008). It can be a decentralized distributed database that stores a time-stamped

immutable public ledger of all transactions. Through a consensus protocol, the peers can view and

validate transactions and are grouped into blocks that are linked using cryptography. Every new

entry is stored in a new block and tampering with any block impacts the whole chain. This is by

design and ensures chronological sequence and integrity of data. Validating new blocks is done

through a set of protocols and consensus obtained from every participant of the network before the

block is stored permanently on the chain. Pointers and linked list data structures are used to create

this chain with each block pointing to the previous block. Each block, in turn, contains multiple

transaction data along with timestamps and links to the previous block which is generated by a

secure hash algorithm (Krishnan, 2020).

In traditional client/server architecture, user access is typically controlled by administrators

through roles and responsibilities. In contrast, a public blockchain is a decentralized peer to peer

network where all participants have equal access to and can control the network (Herlihy, 2017).

While other types of blockchains exist that can be more restrictive, the main idea behind

blockchain technology is to carry out transactions in a secure auditable manner even in presence

of unknown untrusted parties without the need for an intermediary. As blockchain is a nascent

technology, it is evolving continuously, and many different variations of this technology can be

found which we will discuss later.

2.1.1 History of Blockchain

Early work on blockchain was pioneered by Stuart Haber and W. Scott Stornetta developed a

framework for a cryptographically secured chain of blocks in 1991 (Haber, 1991). Later they went

on to incorporate Merkle trees into their blockchain design to improve performance and scalability

by grouping several transactions on a single block (Bayer, 1993).

After many more attempts of creating a viable cryptocurrency and several years later, Blockchain

was invented by one or more people using the pseudonym Satoshi Nakamoto in 2008 to serve as

the public transaction ledger of the cryptocurrency bitcoin (Nakamoto, 2008). Bitcoin was the first

invention built on blockchain technology and was the first digital cryptocurrency to solve the

double-spending problem without the need for a trusted intermediary or central server. The

invention of the blockchain for bitcoin paved way for the development of several other

cryptocurrencies and decentralized applications leveraging blockchains that are widely available

for public use and review. One such application worth mentioning would be Ethereum including

their smart contract feature (Buterin, 2013). Smart Contracts are a set of executable code that can

directly run on top of the blockchain systems. Agreement between untrusted parties without the

requirement of a third party is enforced by this technology. Smart contracts can be used effectively

4

in a variety of applications and is not limited to financial transactions like Bitcoin (Bartoletti,

2017).

2.1.2 Working of Blockchain

Blockchain, as the name suggests, involves chaining a series of blocks consisting of data

transaction data along with some metadata to make the chain work. Each block has a pointer to the

immediately previous block which is essentially a value of the previous block. When users initiate

a transaction in the network, a block is created and broadcasted to all participants of the network.

In a blockchain, blocks are connected by referencing the hash value of the previous block. Since

every node of the network has a complete chain, the index of any new block being inserted must

be greater than the latest block. A hash value is computed using a combination of the previous

block hash and the new block’s transaction data. Participants then analyze and validate this block

using a consensus algorithm such as proof-of-work or proof-of-stake. Once a consensus is formed

in the network validating the block, it is added to the chain and becomes a permanent immutable

record accessible by all participants.

Since transactions are permanent and immutable on blockchains, it becomes clear that there needs

to be ample memory and computing power to be sustainable. This is where blockchain leverages

Merkle Tree, which is a way of structuring data so that large volumes can be verified quickly and

accurately. Furthermore, Merkle Trees help validate that later versions of a block include

everything from an earlier version. They ensure that data is recorded in chronological order and

can help verify that no prior records have been altered or tampered with. Merkle Tree works by

repeatedly using hashing functions such as MD5, SHA-3 and SHA-256 that take inputs and

generate unique output. First the entire volume of data is split into pairs. Every pair is repeatedly

hashed and stored until only one remains which is called the Merkle root that is used to verify

blocks on a blockchain (Asharaf, 2017).

Also, every time a new node is added to the block chain, a synchronization is needed to update the

blockchain to include the new node. This is done by exchanging messages with peers in the

network and updating local copies.

Lastly, there are different ways to validate and add new blocks to the blockchain. One of the very

first algorithms was Proof of Work which was used in Bitcoin cryptocurrency. This widely used

algorithm adds a block after miners can solve a difficult puzzle such as finding a hash that begins

with a certain number of zeroes. First miner to successfully find such a hash will be rewarded by

adding his block to the network and the miner collects the transaction fee. Other consensus

mechanisms are also being used such as Proof of Stake, Proof of activity, Proof of Burn time and

so on (Nguyen, 2018).

5

2.1.3 Types of Blockchain

While Blockchain maintains its integrity across a distributed network through a consensus

mechanism across all the participants of the network, who can participate in the network creates

different dynamics and widely different Blockchains.

Blockchains such as Bitcoin which is open to the public and can be accessed by anyone and does

not prohibit anyone from participating are as Public blockchains. In such blockchains anyone can

access the current state of the blockchain and add new blocks. There are also private blockchains

typically developed by large companies, access to which is granted through a centralized entity.

While this essentially strips the decentralized, transparent nature of a blockchain it still provides

immense value to business as the transaction records on a blockchain act as a single source of truth

across the organizations and entities using such a blockchain. Therefore, such blockchains systems

provide more privacy for transactions being recorded and in turn loses some transparency that is

seen in a public block chain.

Blockchains can be broadly classified into the following three categories (Buterin V. a., 2014):

Public Permission less Blockchain:

Public blockchains are designed to be fully decentralized, with no single entity controlling how

transactions are recorded in the blockchain or how they are processed. They offer full open access

to everyone and all transactions on such a blockchain can be verified by any participant. Public

blockchains are highly transparent and resistant to tampering.

Private Permissioned Blockchain:

Private blockchains are designed and developed primarily for enterprises who want to collaborate

and share data but do not trust each other completely enough to share more sensitive data. These

chains are more centralized and need not be transparent. The data collected on such blockchains

can also be tampered with using the power of central authority.

Figure 1: Comparison of Permisionless and Permissioned Blockchain platforms

6

Consortium or Hybrid Blockchain:

It is worth noting here that there is essentially a tradeoff between transparency and privacy that

results in the choice of public vs. private blockchain. Consortium or hybrid model of Blockchain

covers the remaining spectrum between Transparent to Private blockchain. Such blockchains are

controlled by a group of entities rather than a single entity. This is very similar to a private

blockchain but can be more decentralized based on the mix of entities controlling the blockchain

and how they are selected. This model is considered ideal for organizations with coopetition.

2.1.4 Blockchain vs. traditional database application

As we move from public Blockchain to private blockchain the line between traditional database

architecture and blockchain grows increasingly thin. Considering that we achieve immutability

and other desirable properties of blockchain even in a traditional database setting provided the

administrator is trusted. Furthermore, traditional databases are much faster compared to blockchain

transactions which require the consensus of a large group of people on the network. In the paper

‘Do you need a blockchain’ the author has conducted detailed study and provides a useful

flowchart to guide users on when it makes sense to build a blockchain application over a traditional

database (Wust, 2018).

Figure 2: Decision flowchart for selecting Blockchain vs. traditional database technology

As detailed in the flow chart, a permission less public blockchain makes sense when all participants

of the network are not known as is the case with well-known cryptocurrencies. When all the

7

participants are known but not trusted a Permissioned blockchain is recommended. Further, if

public verifiability is required for certain organizations then a public permissioned blockchain is a

viable option. In all other cases where all participants are known and trusted a simple database can

easily outperform blockchain.

Hence, we can conclude that choosing blockchain over traditional database for development of

any application only makes sense when the following hold true:

● multiple entities want to interact and change the state of a system

● mutually mistrusting

● not willing to agree on an online trusted third party

2.1.5 Known issues with Blockchain technology

Block chain technology has come a long way since its birth a decade ago. There have been many

issues and major failures, but the technology has evolved to come out stronger after each major

setback. Some of the major security issues in the past are as follows:

1. Fork Problems

Whenever a block chain software is upgraded, it affects all the blocks in the chain including

old ones that were created based on a different set of rules. If there is a new consensus

algorithm being implemented, there is always a chance that old nodes created until this

version behave differently and can lead to potential security issues. Furthermore, there are

two kinds of forking that could occur. A fork is termed ‘hard fork’ when the new version

is not compatible with old nodes. In such cases, all the old nodes must be upgraded to the

new version and there will essentially be a new chain for the new version and the old

version can continue on the old chain with the old version of software if desired. A ‘Soft

fork’ occurs when the new software is not incompatible with the old nodes, but blocks

mined by old nodes will never be approved. As such, both old and new nodes can continue

to work on the same chain while old nodes are upgraded gradually. However, this does

create some disparity between different nodes and can result in a potential security flaw

that could be exploited.

2. 51% Majority Attack

Since in a Proof of Work based consensus mechanism, the probability of mining a block

depends on the work done by the miner and incentivizes miners to band together to form

“mining pools”. If such Mining pools become large enough to hold 51% computing power

in a blockchain network, it can then take control of the entire blockchain. This is a serious

security issue because if someone manages to accumulate 51% computing power then they

can almost always find Nonce value quicker than others and in turn become the sole

authority to decide which block is added to the chain. This could result in a range of

problems and breaks the very foundations of a blockchain that is fair, immutable, and

permanent.

8

3. Other Attacks

The DAO attack was a contract implementing a crowd-funding platform which raised

$150M before being attacked. The attacker managed steam approximately $60M after

which a hard fork had to be made to nullify the effects of transactions involved in the attack.

There have also been many cases where bugs in the codes become public knowledge and

are exploited. For example, incorrect scoping of the constructor function in Rubixi let

anyone invoke the function and withdraw funds.

4. Scale of Blockchain

Since every node has a copy of the entire blockchain, as the blockchain grows, it will take

an enormous amount of resources to sustain the blockchain and keep it performing at an

acceptable level. There have been workarounds to this problem where in all data not

necessarily required to be stored in the blockchain is handled off-chain. There are also

algorithms or technologies that make verification faster and less resource intensive such as

‘Simplified Payment Verification’. Furthermore, the continuous improvement in storage

and computational technology can help us sustain a growing blockchain if the amount of

data stored and computational effort required to complete transactions are well thought

through.

5. Transaction Time

Blockchain transactions are known to be much slower than transactions on any application

working on a traditional database due to the decentralized consensus mechanism for

validating and confirming any transaction. Some consensus mechanisms like proof-of-

stake are better than others such as proof-of-work. Other potential solutions include

Lightning Network where in implementation of Hashed Time lock Contracts (HTLCs) with

bi-directional payment channels allows payments to be routed across multiple peer-to-peer

payment channels.

2.2 Existing Blockchain Platforms

To choose the right blockchain to develop POC of the decentralized application we review some

of the major options available as listed below:

2.2.1 Hyperledger

Hyperledger project was published by Linux Foundation in 2015 with the goal of providing a

blockchain-based open source technology through which companies will be enabled to build

robust and industry-specific systems for secure transaction processing (Burgwinkel, 2016). Many

different companies collaborate and contribute to the Hyperledger project and build frameworks.

The new version of the Hyperledger blockchain is called Fabric. Hyperledger is a permissioned

blockchain and does not provide a cryptocurrency. However, since the consensus mechanism is

based on a plug-in, it is possible to run the system with a cryptocurrency. Lastly, there is a

cryptographic plug-in, as Hyperledger does not define a specific cryptographic algorithm (like for

9

example the secure hashing algorithm SHA 256 for Bitcoin) and therefore depending on the plug-

in, different algorithms are used. Through the open plug-in architecture, the system can be adapted

to changes in the future (Burgwinkel, Blockchain technology: Einfuhrung fur business-und IT

manager, 2016). Fabric is primarily designed for integration projects where a Distributed Ledger

Technology is used, offering no user facing services other than an SDK for Node.js, Java and Go.

Fabric supports chaincode in Go, JavaScript and other languages such as Java that can be accessed

by installing corresponding modules. As such it is more flexible than other blockchain platforms

that only support a closed Smart Contract language.

Hyperledger has a consensus mechanism based on current implementation of practical byzantine

fault tolerance (PBFT) (Castro, 1999). It includes trust anchors to root certificate authorities as an

enhancement to the asymmetric cryptography and digital signature features with SHA3 and

ECDSA (Cachin, 2016). The permissioned nature of Hyperledger enhances security of the network

by preventing attacks involving unauthorized generation of malicious peers that can potentially

take over the network. Also, smart contract implementation in Hyperledger is based on chaincode,

which can self-execute conditions or resource transfers among peers in fraction of a second

(Samaniego, 2016), (Smith, 2016). Thus, by applying smart contracts based on chaincode and a

unique PBFT implementation which offsets computational overhead for increased networking

among peers, Hyperledger offers a well-rounded platform for applications for Internet-of-Things.

2.2.2 Ethereum

Ethereum is an open source public blockchain-based distributed computing platform and operating

system on which smart contracts can be deployed (Buterin V. , 2013). Ethereum was first

developed by Vitalik Buterin in 2013 and launched in 2015 after an online crowd sale that took

place in 2014 (Buterin V. a., 2014). Ethereum currently works on the proof-of-work mechanism

like bitcoin and Ether is the cryptocurrency generated. Ethereum began as an alternative

cryptocurrency solution to compete Bitcoin but further on things have changed. It has some special

characteristics, as it is an adaptable blockchain implementation with an implementation of smart

contracts and a derivative of proof-of-work consensus known as Ethash. This also applies to

directed acyclic graphs to manage probabilistic hash generation in matters that will prevent

potential abuse from specialized hardware where other proof-of-work algorithms are vulnerable to

(Natoli, 2016).

Ethereum contracts are executed on the Ethereum Virtual Machine (EVM), a decentralized virtual

machine. EVM can execute contracts using an external network of public nodes. The virtual

machine's instruction set is Turing-complete which makes it much more usable in the real world

without elaborate restrictions. A small fee called "Gas" is charged per transaction to mitigate spam

and allocate resources on the network (Wood, 2014).

In addition to implementing smart contracts, Ethereum transactions can also store custom data.

This allows use of Ethereum for several applications beyond cryptocurrency transactions. Due to

Ethash being based upon proof-of-work, Ethereum is very fast compared to Bitcoin’s Proof-of-

Work and may require between 10 to 20 seconds to produce a block. Still high frequency and time

https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Go_(programming_language)

10

sensitive IoT device operations may not support such delays. While Ethash prevents abuses from

potential specialized hardware, it does not necessarily enhance fault tolerance. At scale, IoT

devices would need to rely on trusted and computationally powerful peers to ensure fault handling.

Storage also presents another problem, as Ethereum requires all peers to store a blockchain that is

tens of gigabytes larger. IoT devices that normally do not have such storage capacity, will either

need to intercommunicate with a proxy server that will act as a peer in the Ethereum network or

accommodate large storage. Ethereum, as it is used longer than most distributed ledger

implementations, has IoT prototypes, such as handling tokens and contracts for electronic lock

sharing and supply chain assurance prototypes (Christidis, 2016).

To keep the increasing number of users and applications sustainable on Ethereum and to improve

transaction speed Ethereum 2.0 is being developed. It aims to introduce a proof-of-stake consensus

mechanism, which will eliminate the need for expensive proof-of-work mining. Also, Ethereum

2.0 plans to introduce sharding, which will improve the speed and throughput of ETH transactions

(Crypto, 2020).

2.2.3 Stellar

Stellar features a public blockchain with its own consensus algorithm which is like Practical

Byzantine Fault Tolerance (PBFT) (Castro, 1999) but uses elements from Social network

modeling. The difference is that a node agrees on a transaction if the nodes in its neighborhood

agree. Nodes in the neighborhood are more trustworthy than the others. When the transaction has

been accepted by a threshold number of nodes in the network, a cascading effect ensues due to

homophily and the transaction will be confirmed by the entire network with a high degree of

certainty. As such, this protocol requires much less computing power, as it does not require solving

of cryptographic puzzles. Unlike Ethereum, there is no specific language for smart contracts; it is

still possible to assemble some transactions and write them atomically within the block chain.

Stellar also features special accounts called multi-signature which essentially lets several owners

handle a single account. To perform operations from these accounts, a minimum level of consensus

must be reached among the owners. Transaction chaining and multi-signature accounts can be

combined to make more complex contracts (Mazieres, 2015).

2.2.4 Comparison of Blockchain Platforms

After considering and reviewing some of the popular blockchain platforms available we can list

(Wu, 2019) and compare their main difference in Figure 10.

2.3 Smart Contract Technology

As conceptualized by Nick Szabo, a smart contract is a computerized transaction protocol that

executes the terms of a contract (Szabo, 1994). The general objectives of smart contract design are

to satisfy common contractual conditions (such as payment terms, liens, confidentiality, and even

enforcement), minimize exceptions both malicious and accidental, and minimize the need for

trusted intermediaries. Related economic goals include lowering fraud loss, arbitration and

11

Figure 10: Comparison of features in popular blockchain platforms

enforcement costs, and other transaction costs (Szabo, Formalizing and securing relationships on

public networks, 1997). While the idea was conceptualized in 1994, it was not until the invention

of blockchain that such contracts could execute in a truly decentralized and autonomous manner.

Unlike legal contracts which are meant to be referred to and act as a guideline for execution, Smart

contracts perform the execution of contract terms themselves while ensuring it meets all the terms

agreed upon to begin with (Tjong Tjin Tai, 2017). Vending machines can be used as an analogy to

understand Smart Contracts. They are like smart contracts in that the machine operates based on

pre-written software code. When the required amount of coins is deposited in the machine and a

selection of items made, the vending machine dispenses this item along with any change that needs

to be returned. Smart contracts work in a similar fashion and perform tasks of contract only after

ensuring conditions of contract are met. This ensures trust and reliability as once the contract terms

are agreed upon and coded, neither party will have the ability to change the way it functions.

Furthermore, smart contracts on a blockchain provide even more security and trust as terms of the

contract code are always available to the public for scrutiny and all transactions are recorded

permanently and cannot be changed (Omohundro, 2014).

2.3.1 Working of Smart Contract

Smart contracts are executable programs (Buterin V. a., 2014). They are usually written in high-

level computer programming languages in order to represent business logic or predefined criteria

to trigger transfer of values. For a smart contracts engine to be effective in supporting a wide range

of use cases, the language needs to be Turing complete, that it can solve any computation problem.

Therefore, even though Bitcoin has its own scripting language, it is not considered to have smart

contracts. On the other hand, Ethereum smart contracts are Turing complete and have been used

to solve some of the most challenging problems in real-world (Le, 2018).

When a user submits transactions, smart contracts gets executed by the blockchain nodes to process

transactions. A blockchain transaction has a designated target smart contract function, a payload

12

that contains input values to the function call and is always signed by the submitter. A transaction

can be submitted to any node in the blockchain network, which broadcasts it to the entire network

so all the nodes will see the transaction. At some point, the transaction gets processed by each

individual node using the executable program in the target smart contract. If the transaction

execution is successful, the internal state of the blockchain will be updated. A smart contract may

also consider the input to be invalid and reject the transaction as failed, in which case the state is

not affected.

Smart contracts must be executed by a set of blockchain nodes independently. Unlike traditional

databases, blockchains are decentralized. As such, every node assumes others are potentially

malicious and never trusts states maintained by other nodes within the network. Instead each node

executes the transactions themselves using the smart contract code and maintains its own state.

Since all nodes have the identical beginning state, same input values and therefore the same

execution logic. If all three parts are identical, the top state is sure to be identical. The chain of

blocks with the linked hashes each representing the total list of transactions input and therefore the

starting state, play a critical role in forming consensus among the blockchain nodes. To ensure the

correct smart contract code is executed to process the transaction, Ethereum smart contract code

stores a copy of itself on the blockchain directly as state. In Hyperledger Fabric and Corda, contract

code is stored off-chain, and an on-chain hash is used to identify the correct version of the contract.

The main purpose of smart contracts is to take care of program states. State is an arbitrary piece of

knowledge that gets updated by executing a transaction. So, a blockchain can be conceptualized

as a database, although it is designed for data consistency and immutability and not for speed of

performance of queries. Most of the blockchain protocols are designed to follow a state transfer

conceptual model where each smart contract maintains its own set of states. Most transactions

submitted to a blockchain involve a contract, except for pure value transfers that do not involve

smart contracts. Whenever a transaction is executed, the state of the target smart contract is

updated. Good contracts can call another smart contract and question the downstream contract’s

state or update it. Smart contracts may be thought of as program functions: there are inputs, logic

to process the inputs, and output. Execution of smart contracts often ends up in updated states

(Zhang, 2019).

Figure 3: Working of Smart contracts

13

When smart contracts are executed only valid transactions will result in updated states. Invalid

transactions resulting from exceptions thrown by the smart contract are rejected by the network or

included as failed depending on the blockchain platform.

Smart contracts can also publish events that send notifications to the outside world when the block

containing the transaction gets committed to the blockchain on the node.

A smart contract may have multiple public functions that can be called by any transaction. These

functions could either result in a state change or simply return the latest state after performing

internal calculations. Some of common functions that update states are:

transfer(to, amount)

approve(delegate, amount)

transferFrom(from, to, amount)

mint(to, amount)

burn(from, amount)

Functions that only query the latest states for information and do not result in a state change:

balanceOf(account)

If a transaction calls a function that requires a state change, then it must be handled by a consensus

mechanism, so that the system ensures all the copies maintained by the blockchain network’s

participating nodes have identical records.

On the other hand, querying the latest state and retrieving information without updating state can

be done with the help of just one node. Since the consensus mechanism ensures all nodes have the

same information it does not matter which single node we query. Hence, we can conclude that

write operations on a blockchain are far more expensive than read only operations.

2.3.2 Advantages and disadvantages

Smart contracts offer several advantages over traditional contracts, some of which are listed below:

1. Lower cost: Even though each transaction requires a small fee, applications using smart

contracts require much less manual handling or verification and as such will reduce overall

costs/financial charges by a significant amount.

2. High Accuracy: Since these transactions are processed automatically without manual

intervention at any point, there are fewer errors resulting from human error.

3. Increased Speed: as smart contracts are essentially software codes that automate complex

tasks involving decision making, they can increase the speed of transactions as well as the

entire business process.

4. Lower Risk: Since smart contracts are stored and executed on the block chain, an

immutable and permanent record of transactions are stored, it would be virtually impossible

https://kaleido.io/consensus-algorithms-poa-ibft-or-raft/

14

to manipulate or cheat the system which reduces the overall risk associated with doing

business.

5. No Middlemen: Since smart contracts can function autonomously in a reliable manner, it

is often used to remove third party intermediaries whose sole purpose is to be a bridge

between two untrusting parties.

While Smart contracts provide many advantages, they are not without their fair share of

disadvantages as well (O'hara, 2017), (Mulligan, 2018) , (Raskin, 2016), (Giancaspro, 2017):

1. Privacy: Since smart contracts are executed on a blockchain, every transaction that needs

to be added to the blockchain needs to be broadcasted to the network of nodes to reach

consensus. So, any node participating in the blockchain can essentially deduce all the

information regarding any transaction. As such privacy is never guaranteed even when

some amount of information can be obfuscated.

2. Limited Scope: While many contracts existing today, particularly those relating to business

transactions are well suited to be converted to a smart contract, there are many others that

may include ethical and social issues that may be hard to do so.

3. Performance issue: Most blockchains have a high latency or low transaction speed

depending on the consensus mechanism used. This makes it inapplicable to many

applications that require instantaneous confirmation of transactions.

4. Governance: If blockchains are to be sustainable in the long run, serious consideration

should be given to ethics and framework for governance models. Nascency of the

technology coupled with pseudonymity of account holders and complexity of underlying

concepts make it prone to deception and fraud.

2.3.3 Known issues with Smart contracts

There are many known vulnerabilities in Smart contracts that can be exploited to perform certain

attacks that are provided below.

1. Out-of-gas: When a function is trying to transfer ether to another account, it is possible to

encounter an out-of-gas exception if the sender does not have sufficient gas to cover the

transaction. This may result in contract execution if not handled appropriately.

2. Invalid transfer: When sending ether, recipient address must be specified accurately. If

some ether is sent to an incorrect address, it could be lost forever. Even if the incorrect

address is valid and someone else did receive the ether, it may be hard to get it back. As

such it is important that the correct recipient addresses are used especially when retrieving

these from an array or other complex data types.

3. Exception handling: Solidity raises an exception when one the execution runs out of gas;

the call stack reaches its limit or when the command throw is executed. However, the way

Solidity handles different exceptions is not uniform and developers should be careful on

how these will be handled.

4. Reentrancy: Unlike some other programming languages, it is not guaranteed that when a

non-recursive function is invoked, it cannot be reentered before its termination. Due to the

fallback mechanism an attacker may be able to re-enter the caller function. This could cause

15

unexpected behaviors and loops which might end up draining all the gas before coming to

a stop throwing an out-of-gas exception.

5. Private fields: Again, unlike some common programming languages, privacy of private

fields is not guaranteed. Since every transaction is sent to miners and broadcasted on the

blockchain, elements of the transactions are available for anyone to inspect.

6. Call stack depth limit: Whenever a contract invokes another contract, the call stack

associated with the transaction increases by one frame. Since the call stack is limited to

1024 frames, an exception is thrown when an invocation is made beyond this limit. As such

it is highly recommended to avoid using recursive functions.

7. State: The state of a contract is determined by the value of its fields and balance. In general,

when a user sends a transaction to the network in order to invoke some contract, he cannot

be sure that the transaction will run at the same state as the contract was at the time of

sending that transaction. This may happen because, in the meanwhile, other transactions

have changed the contract state. Even if the user was fast enough to be the first one to send

a transaction, it is not guaranteed that such a transaction will be the first to run. Indeed,

when miners group transactions into blocks, they are not required to preserve any order;

they could also choose not to include some transactions.

8. Timestamp dependency: Timestamps should be avoided in critical parts of the code as the

miners can manipulate the timestamps.

Solidity also provides a list of known bugs with their corresponding severity level (List of Known

Bugs, 2016-2020).

2.3.4 Potential countermeasures

It is suggested that known vulnerabilities in smart contracts can be prevented and risk mitigated

by using tools (Mense, 2018) (Dika, 2017) such as listed below:

1. ZeppelinOS: is an operating system for smart contract applications developed by Zeppelin

Solutions that enables development of smart contracts by using already developed and

secure smart contracts.

2. HackThisContract: is a crowdsourcing experimental website where smart contracts

uploaded will be attacked and tried to be exploited for potential vulnerabilities by other

developers. This helps eliminate a lot of common issues and makes the smart contract more

secure before deployment.

3. Hard Fork: It is always recommended to upgrade the Ethereum platform adding

functionalities that can improve operational semantics and face security issues such as:

guarded transactions to deal with transaction ordering dependence (TOD), deterministic

timestamp and exception handling.

4. Oyente: This tool extracts the control flow graph from EVM bytecode of a smart contract

and executes it symbolically to detect vulnerability patterns. This tool identifies

vulnerabilities arising due to non-handling of possible exceptions such as not checking the

return code of call or issues with reentrancy.

16

5. Remix: is a web-based IDE that allows users to write, deploy and run Solidity smart

contracts. Remix includes an integrated debugger and a test-blockchain network. It can be

used to analyze the Solidity code and reduce coding mistakes by performing a security

analysis using deductive program verification and theorem provers.

6. Town Crier: TC acts as a high-trust bridge between existing HTTPS websites and the

Ethereum blockchain. It scrapes website data and delivers it to contracts on the blockchain

as concise pieces of data called datagrams. TC uses a combination of Software Guard

Extensions, Intel's recently released trusted hardware capability, and a smart-contract front

end. It executes its core functionality as a trusted piece of code in an SGX enclave that can

prove to remote clients that it is interacting with a legitimate, SGXbacked instance of the

TC code (Zhang F. a., 2016).

2.4 Supply Chain Management

A supply chain consists of all parties involved, directly or indirectly, in fulfilling a customer

request. The supply chain includes not only the manufacturer and suppliers, but also transporters,

warehouses, retailers, and even customers themselves. Within each organization, such as a

manufacturer, the supply chain includes all functions involved in receiving and filling a customer

request (Chopra, 2013). These functions include, but are not limited to, new product development,

marketing, operations, distribution, finance, and customer service. Each organization can be

thought of as a company buying from its suppliers and selling to its customers after adding some

value. Value addition in supply chain context can be any activity that increases value to the end

customer. As such, moving an item from supplier location A to manufacturer location B is

considered a value adding activity as it enables availability of goods at the point of use.

Figure 4: Stages in a typical Supply Chain

17

2.4.1 Supply chain management objectives

Objective of any supply chain would be to maximize the net value generated. Effective supply

chain management involves the management of supply chain assets and product, information, and

fund flows to grow the total supply chain surplus. A growth in supply chain surplus increases the

size of the total reward, allowing all contributing members of the supply chain to benefit. The net

value a supply chain generates is the difference between what the value of the final product is to

the customer and the costs the entire supply chain incurs in filling the customer’s request. This

difference is referred to as the supply chain surplus.

Supply Chain Surplus = Customer Value - Supply Chain Cost

Supply chain success should be measured in terms of supply chain surplus and not in terms of the

profits at an individual stage. For most profit-making supply chains, the supply chain surplus will

be strongly correlated with profits. Based on this formula, a sure way to increase Supply chain

surplus would be decrease supply chain cost while maintaining the same customer value.

2.4.2 Flows in Supply Chain

For the sake of understanding, let us consider the supply chain of a typical online retailer. When a

customer goes online and buys an item of interest, the retailer ships the item to the customer. In

the event the customer does not like the item they can typically return it for a refund.

Figure 5: Flows in Supply Chain

We can note here that there is exchange of information when the customer accesses the retailer’s

website and places an order. Also, there is exchange of product and funds between the two parties.

The exact timing of when funds are transferred and when the product is shipped and delivered to

the customer varies for each supply chain depending on the trustworthiness of supplier vs.

customer, cost of product, type of product and so on.

18

2.4.3 Mapping Study of existing blockchain applications

A mapping study involves searching literature to determine what sorts of studies addressing the

systematic review question have been carried out, where they are published in what databases they

have been indexed, what sorts of outcomes they have assessed, and in which populations

(Jorgensen, 2007). While this is like a literature survey, the data extracted is much broader and

involves the following steps:

i. Identification of research (searching)

ii. Selection of primary studies (inclusion/exclusion)

iii. Study quality assessment (bias/validity)

i. Identification of research

Considering that we are interested in looking at all research related to blockchain applications in

supply chain domain, we have searched for technical publications on scholar.google.com using the

following search terms:

“Supply chain” “blockchain”

While this resulted in 9240 results, we are unable to access records after the 1000th item. We have

considered the first 100 papers within this search result to represent the entire population. While

this is convenience sampling, we believe the “sort by relevance” feature within scholar.google.com

ensures that the first 100 papers result in a representative sample indicative of most important

research in this area.

We also repeated this using academic.microsoft.com terms and with search query provided below:

“logistics” “blockchain”

“Supply chain management” “blockchain”

These queries returned fewer results, although we did find a significant number of overlaps within

the first 100 papers further indicating the relevance of our sample.

ii. Inclusions/exclusions

Out of the 100 papers considered, we further exclude papers that are only related to either Supply

chain management or blockchain technology alone as these are not relevant to our study.

22 of the original 100 papers selected were related to Supply chain management alone and did not

mention applicability of blockchain technology. Another 2 were excluded as they were technical

papers related to block chain and did not mention any specific applications/relevance to Supply

chain management domain.

19

Excluded Included Excluded

Figure 6: Included research work for mapping study

iii. Bias/Validity

All the remaining 76 papers have been included and categorized by the publisher, published year,

overarching interest and a generic term for the aim of the paper.

Figure 7: Analysis of Blockchain research in Supply chain by year and publishers

Looking at the above charts, there seems to be significant interest in applying blockchain

technology to supply chain management areas. While most of these papers published in technical

journals were optimistic in the ability of blockchain to revolutionize supply chain there seems to

be a lack of similar interest from Supply chain management journals in leveraging Blockchain

20

technology. Also, there is disproportionate research that is optimistic about blockchain’s potential

to revolutionize supply chain management which could be a result of publication bias.

We then looked at the distribution of papers by industry to answer our last research question as

shown below. While much of the research is generic in nature and not limited to any industry, we

do see some industries such as Agriculture-Food and healthcare that seem to be keener on

leveraging blockchain technologies. These industries are particularly interested in tracking

provenance to ensure drugs/food consumed by end users are unquestionably safe and whose

quality has not been compromised in any way.

Figure 8: Analysis of Blockchain research in Supply chain by Industry

Lastly, we categorized the selected papers into the following four “implementation maturity”

categories ranging from discussions on whether blockchain technology can even be used to solve

supply chain problems to actual real-world implementations along with lessons learned for future.

Figure 9: Analysis of implementation maturity of Blockchain applications in Supply chain

21

2.4.4 Results of mapping study

This is a rather green field with a lot of unstructured approaches to applying blockchain technology

to solve supply chain management problems with a handful of application areas emerging.

While most of these papers fell into only one classification some papers spread across more than

one classification. In such cases, we have classified it under the heading that is most relevant or

prominent within the paper.

Based on our findings shared above, we now proceed to answer our initial research questions with

the assumption that the selected set of papers represent the overall body of research related to

blockchain applications in supply chain management domain.

1. What is the current state of research related to blockchain applications in the supply chain

management domain?

There seems to be considerable research in evaluating usage of blockchain applications to

solve supply chain management problems. While there has been considerable debate owing

to blockchain technologies' inability to offer any security in the physical world, there are

also many applications being developed along with stories of real-world implementation.

2. Is there significant evidence to suggest applicability/non-applicability of blockchain

technologies to the supply chain management domain?

While there is no clear answer to this question as blockchain technology has its strength

and weakness that may be more suitable to some supply chain than others, the fact that

many applications have been developed and successfully implemented increases the

likelihood that blockchain technology can be used to solve supply chain management

problems. Also, the developing nature of blockchain technology itself provides more

reasons to believe some of the roadblocks to successful development of block chain

applications may be overcome soon.

3. Which markets or focus areas within the supply chain domain are conducting more research

on using blockchain technologies?

Although much of the research work seems to be not industry specific, we certainly see

some clusters such as Agriculture-Food/Healthcare that have more industry specific

research related to blockchain applications than others. Provenance/Origin tracking seems

to be the primary motivator in both these cases.

CHAPTER 3: DEVELOPMENT OF BLOCKCHAIN APPLICATION

3.1 Developing Proof of concept

Let us consider the case of large retailers like Amazon or Walmart, customers typically transfer

funds first and the supplier ships the item afterwards. It is also not uncommon for the transfer of

funds to occur after delivery of a product especially in B2B (Business-to-Business) transactions.

In other words, either the buyer or the seller needs to have trust in the other party and transfer

goods or funds in good faith that the other party will hold their end of the deal. While there is

always legal recourse in the event one of the parties does not act as per the initial agreement, it

might be difficult to enforce legalities over international borders. When some product is only

available from a single source and outside the country limits, buyers would be at risk of losing

their funds with no legal recourse. Conversely, this situation could very well happen at the sellers’

end when they are selling to unknown buyers outside their country and expecting payment after

delivery of goods. To aid both parties in this situation, financial institutions such as banks have an

instrument to exchange goods and funds while absolving both parties from all risk associated with

the transfer. This instrument is called a ‘Letter of Credit’.

3.1.1 Letter of Credit

A letter of credit, or "credit letter" is a letter from a bank guaranteeing that a buyer's payment to a

seller will be received on time and for the correct amount. In the event the buyer is unable to make

a payment on the purchase, the bank will cover the full or remaining amount of the purchase

(KAGAN, 2020).

Figure 11: Flows in supply chain with Letter-of-credit

Now, the bank acts as an intermediary and ensures funds are transferred from Customer to Supplier

only after goods are delivered as agreed. While this process enables transactions between two

mutually untrusting parties, the bank charges a fee starting at 0.75% of the item being bought. In

case of expensive items these fees quickly add up to increase supply chain cost and reduce overall

supply chain surplus. Furthermore, adding an intermediary increases the time taken to complete a

transaction by introducing more touchpoints and handshakes in the process.

23

Such transactions would be a good candidate for a permissionless blockchain application as all the

actors are not known from start and transparency/public verifiability are essential to prevent

fraudulent activities.

3.1.2 Proof of Concept: Decentralized Letter of Credit

In this section we propose a decentralized marketplace application that can effectively replace a

letter of credit. Let us assume that a buyer wishes to purchase a specific item from an unknown

seller. For the sake of simplicity, we are assuming that there are no returns of products and no

partial shipment/refund being made. That is, the buyer is refunded the full amount* or pays the

full amount after successfully obtaining the item. While there are a myriad of supply chain issues

that can be inspected from the point an item is bought by the buyer to seller receiving payment,

we consider only the following four cases with either buyer or seller being fraudulent and provide

provisions within the decentralized app to resolve these efficiently.

Figure 12: Potential outcomes with decentralized purchasing

As can be seen here, the DApp needs to address cases either one of the actors are fraudulent as

when both are fraudulent, or both are not there is no issue to be fixed. Hence, the smart contract

based DApp should be able to issue funds to good sellers even when the buyer does not confirm

receipt of the item. Also, the DApp should be able to refund a legitimate buyer in the event they

do not receive an item as promised from a fraudulent seller. We are assuming all the details of

expected delivery would be agreed upon by the buyer and seller prior to the purchase.

Here we propose a decentralized marketplace application that would enable sellers to post their

items for sale along with terms and conditions. The buyers can negotiate these terms and once they

reach an agreement, they can purchase the item. At this stage, Ether is transferred from the buyer's

account to an escrow account by the smart contract. The money from the buyer will be held here

until successful completion of transition. This also triggers a notification to the Seller prompting

them to ship the item. Once the customer receives the goods as expected, they can ‘confirm receipt’

of the item causing the smart contract to release funds and record this transaction in a new block.

24

Proof-of-Concept: Decentralized Letter of Credit application

B
u

ye
r

Se
ll

er
Sm

ar
t

C
o

n
tr

ac
t

A
D

M
IN

Start

List items for
sale

Buy item

Send
Payment to

seller

Ship Item

Confirm
receipt?

Yes

End

Dispute?

No

Seller gets
money?

Yes

Pay correct
voters

Settle dispute
by voting

Hold funds in
escrow
account

x% of item cost

Refund Buyer

Yes

No

No

Yes

x% of item cost

Pay Item cost

PROCESS FLOW

DISPUTE/VOTING FEE FLOW

Figure 13: Proof-of-concept of decentralized letter of credit application

Now let us consider the cases where the buyer fails to confirm receipt after receiving an item as

detailed in the agreement before purchase. If the buyer does not confirm within the agreed number

of days, the marketplace website would provide the seller with an option to ‘dispute’ the

transaction. Once a seller requests for a dispute settlement, the transaction is shared with ADMINs

who can act as Jury. These ADMINs can then look at all the documents shared by the seller within

the stipulated amount of time along with historical transactions of buyers and sellers to decide if

buyer or seller are acting fraudulently. At the end of this stipulated time votes of all the ADMINs

are counted to determine if the buyer needs to be refunded or if the seller needs to be paid. Upon

receiving the judgement from ADMINs, the smart contract will issue a refund to the buyer or

process payment to the seller and the transaction is recorded on the blockchain. In order to ensure

ADMINs act as good jury and are not arbitrarily casting their vote, only those that voted for the

majority group will receive a fee for acting as jury.

Furthermore, the fee for settling a dispute is deducted directly from the buyer or seller’s account.

This discourages fraudulent behavior and encourages the parties to settle any minor

misunderstanding offline without necessarily starting disputes.

As the usage of this smart contract becomes widespread and a large number of ADMINs are

available to settle disputes, ADMINs can be provided increasingly better access to vote on

transactions with larger sums of money based on their history of correctly identifying the party

25

with majority votes. This will serve the dual purpose of incentivizing ADMINs to cast their votes

carefully while also penalizing ADMINs that vote arbitrarily just to receive a dispute settlement

fee. The number of transactions ADMINs can vote on can also be time phased so that any single

ADMIN cannot place many votes in a small period. Lastly, each transaction can have a max

number of votes that decays over time upon reaching which the decision will be made and a new

transaction written to the blockchain.

3.2 Design and Development of Decentralized Application Using Solidity Smart Contracts

3.2.1 Requirements

To develop a decentralized application that can effectively substitute a traditional letter of credit,

we would primarily need a website that acts as a marketplace for buyers and sellers. Here sellers

must be able to post their items for sale and buyers must be able to buy using Ether which should

be held by the smart contract until transaction completion. Once the item is delivered/service

rendered, the buyer must have the ability to confirm receipt of goods/services that should trigger

the smart contract to disburse funds to the seller. In the event the buyer does not confirm receipt

within a pre-agreed number of days, the seller should have an option to start a dispute and attach

necessary evidence. This dispute must then be broadcasted to admins accounts who act as jury and

settle the dispute in favor of either the buyer/seller by placing their votes. The contract must then

be able to transfer money to the winning party and pay the admins who voted for the majority

group as dispute settlement fee marking completion of contract. In the event no action is taken by

both parties after purchase for a long period of time then the buyer should receive a refund for the

amount paid for purchase of the goods/service.

3.2.2 Proposed framework

To meet these requirements, we can make use of Truffle suite that provides a framework with all

the necessary resources packaged and ready for the development and implementation of a

decentralized application. Metmask can be used to transact with digital currency. The smart

contract can be developed in Solidity and tested in remix IDE. Front end can be built using Angular

JS and Web3 which is also supported by Truffle Suite. Backend can be developed for offline

transaction handling using any supported database such as mongodb or sqlite. Lastly, the smart

contract can be developed and deployed on Ganache which emulates blockchain networks on local

machines. For testing and quality assurance, we could deploy the smart contract on the Ropsten

Ethereum test network which is a real time blockchain for testing new applications. Once the smart

contracts are tested and ready, they can be deployed on the main Ethereum network.

A decentralized letter of credit application as conceptualized in this section would likely be used

by unknown parties. Since all of them cannot be trusted it would be hard to accomplish this task

in a permissioned blockchain such as Hyperledger. Such a blockchain platform is more suitable

for enterprise level implementation where all participants are known and trusted. The application

conceptualized here would be deployed directly on the blockchain and needs to be accessible

across the globe. While Hyperledger provides high scalability in terms of performance, this

application should by its very nature not witness high volumes of transactions since letter of credit

26

is usually sought for high value goods/services that cannot be sourced quickly. Furthermore,

typical delivery lead times for such goods/times can range from a couple of weeks to several

months. In such cases, a few minutes or even hours of transaction time would not make much

difference. Transaction fee is not a concern either considering that the number of transactions for

any participants would be low and individual transactions values would be high. A higher

transaction fee may even help as it deters low value commodity sellers from choking the network

bandwidth. Security, reliability, and audit trail of transactions are crucial for such an application.

Lastly, since smart contract logic can get complicated quickly with changing business scenarios

the platform on which it is deployed needs to be turing complete.

Considering these features and implications as mentioned in section 2., we proceed with

developing our decentralized letter of credit application on Ethereum using Solidity language for

writing smart contracts. Even with a dispute settlement fee the overall cost incurred for a

transaction would be much less than going through a central agency such as a bank. Furthermore,

when there is no dispute there is no cost incurred by the buyer or sellers other than the nominal

transaction fee which would be insignificant compared to cost of the goods/service and the utility

it offers to both parties.

3.2.3 Metamask, Truffle Suite and Ganache

MetaMask is a plugin for browsers that allows users to manage accounts and their keys in a variety

of ways, while isolating them from the site context (Lee, 2019). This greatly improves security as

storing user keys on a single central server, or even in local storage, can lead to mass account

thefts. Also, this plugin lets developers interact with the globally available Ethereum API that

identifies the users of web3-compatible browsers and whenever a transaction signature is

requested, MetaMask will inform the users of the transactions. MetaMask helps retrieve data from

blockchain and lets users securely sign and manage transactions on blockchain. MetaMask

supports different networks including Ethereum main network, Ethereum test networks provided

by infura and Ganache local blockchain network.

Truffle Suite is a framework for building, testing, and deploying applications on the Ethereum

network that was founded by Tim Coulter. The Truffle Framework consists of three primary

development frameworks for Ethereum smart contract and decentralized application (dApp)

development called Truffle, Ganache, and Drizzle (Mohanty, 2018).

Truffle is a development environment, testing framework and deployment pipeline for Ethereum

dApps primarily. Truffle takes care of managing contract artifacts and includes support for custom

deployments, library linking and complex Ethereum applications. It also provides automated tests

for contracts in both JavaScript and Solidity. Last, Truffle provides an interactive console, which

includes access to all Truffle commands and contracts built.

Truffle can be used to bootstrap contracts and run a network-aware script. Truffle is operated in

the Terminal and has a range of handy commands that can be used at different stages of developing

a dApp. Using Truffle’s unbox command, we can download a pre-built boilerplate project to

https://golden.com/wiki/Ethereum
https://golden.com/wiki/Smart_contract_(blockchain)
https://golden.com/wiki/Decentralized_application_(dApp)
https://golden.com/wiki/Ganache-DDPVJG

27

Figure 14: Working with Metamask

bootstrap a dApp. These pre-built projects range from React with Truffle and Webpack boilerplate

to ERC20 smart contract examples and tutorials.

A project can be started from scratch by running truffle init in the root project directory. This will

create a bare bone structure for developing the dApp. After running this command, we can find a

folder structure within the root project directory including contracts/, migrations/ and tests/ along

with a truffle-config.js that acts as a configuration file for Truffle. These folders serve the

following purpose:

contracts/ — hosts all the Solidity (.sol) smart contract files. Contracts are developed within the

contracts folder, before being migrated onto a blockchain, and then tested using Truffle’s

automated testing capabilities. Contracts can be written, and IDEs such as Sublime Text provide

syntax styling for Solidity.

migrations/ — hosts all migration files that help deploy smart contracts onto an Ethereum

blockchain.

A migration is essentially just a set of instructions on how the smart contracts need to be deployed

and could look like the following:

var MyContract = artifacts.require("MyContract");

module.exports = function(deployer) {

 // deployment steps

 deployer.deploy(MyContract_1);

 deployer.deploy(MyContract_2);

...

};

28

Next, a blockchain must be selected where these contracts will be deployed. This could be the

mainnet, a testnet or a local private blockchain, which is also provided by Truffle Suite and is

called Ganache. Together Truffle and Ganache generate a blockchain on a local machine to test

and deploy smart contracts.

Also, for Truffle Migrations to work, a Migrations contract is required which provides an interface

for managing Truffle deployments. There is also an 1_initial_migration.js file available in the

migrations/ folder ready to deploy the contract. Truffle remembers which migrations have already

been run, and only re-runs every migration when the special --reset flag is used with truffle migrate.

Lastly, there is another folder generated as part of truffle init command which is tests/:

tests/ — is the directory for hosting unit tests for smart contracts. Tests can be written in Javascript,

Typescript and Solidity. In Javascript, Truffle uses the Mocha testing framework and Chai for

assertions, providing tried and tested tools for the job.

3.2.4 Ethereum environment setup

To deploy smart contracts on an Ethereum blockchain we can connect to it by using truffle-

config.js in the rool directory. By default, this file includes a development network that has already

been configured for localhost. We can expand this config file to include more networks, such as a

live mainnet.

module.exports = {

 networks: {

 development: {

 host: "127.0.0.1",

 port: 8545,

 network_id: "*" // Match any network id

 }

 }

};

Ganache provides a GUI for displaying blockchain state. Upon blockchain instantiation 10

accounts are created to aid in development and testing. This blockchain is assigned to a random

network ID and has no relation to real-world public Ethereum blockchains. A mnemonic is also

generated to uniquely identify this blockchain which is automatically instantiated and is accessible

via localhost:8545. The network itself may be configured within the settings section. By default,

Ganache speeds up transactions on blockchain, that is, blocks are auto mined, and transactions are

processed instantly. By default, Truffle is ready to communicate with Ganache out of the box.

Now, to deploy contracts on the live network, we can call migrate with the --network flag:

truffle migrate --network live

https://mochajs.org/
http://chaijs.com/

29

This allows us to define a range of networks and migrate to them as required, which is helpful

while moving from testing on local blockchains to deployment on live mainnet.

module.exports = {

 networks: {

 development: {

 ...

 },

 live: {

 host: "<host_ip_address>",

 port: 80,

 network_id: 1

 }

 }

};

Along with the folders, the front-end app folder will also be present in the root directory of the

Truffle project. For example, if a Create React App is employed with Truffle, the React app is

present within the root directory and resides in a separate web-app/ folder. Next, front must

communicate with our smart contracts, and this may be done via web3. Web3.js is a collection of

libraries that enables us to send Ether from one account to a different, read and write data from

smart contracts and build smart contracts. Web3.js talks to Ethereum Blockchain through JSON

RPC, which is a "Remote Procedure Call" protocol. Since ethereum is a peer-to-peer network of

nodes, it stores duplicates of all data and code on the blockchain. Web3.js allows us to request data

from a private Ethereum node using JSON RPC and write data to the network. It's quite like using

jQuery with a JSON API to read and write data with an internet server. By default, web3.js looks

for a web3 provider — a blockchain client or light node running that can handle contract

communication and transact on an Ethereum blockchain.

3.2.5 Solidity Smart contracts

Smart Contracts are written in a Solidity programming language. Solidity syntax is similar to

JavaScript language which supports inheritance, libraries and complex user-defined types. Solidity

is a high-level language used for creation of smart contracts. The Solidity integration of C++,

Python and JavaScript languages and it targets the Ethereum Virtual Machine (EVM) (Dannen,

2017).

A contract in the sense of Solidity is a collection of code (functions) and data (state) that resides

at a specific address on the Ethereum blockchain. All the code of the smart contract is visible to

the public, and we can allow anyone connected to the network to call functions on the smart

contract.

30

The pragma keyword is used to enable certain compiler features or checks. A pragma directive is

always local to a source file, so pragma needs to be added to all files if it needs to be available

across the whole project. If another file is imported, the pragma from that file does not

automatically apply to the importing file. As we are using Solidity 0.6.4 in this project, this contract

file would not compile with a compiler earlier than 0.6.4, and it also won’ work on a compiler

starting from version 0.7.0. As there will be no breaking changes until version 0.7.0, the code will

compile as intended.

Solidity is a statically typed language, so we must first specify the data type of variables as shown

below:

Figure 15: Coding smart contract in Solidity

Variables declared within the contract block are called a “state variable” as the value of this

variable is stored on the blockchain and is accessible to all functions of the contract.

Structs are custom defined types that can group several variables.

Enums can be used to create custom types with a finite set of ‘constant values.

Mapping types use the syntax mapping(_KeyType => _ValueType) and variables of mapping

type are declared using the syntax mapping(_KeyType => _ValueType) _VariableName. The

_KeyType can be any built-in value type, bytes, string, or any contract or enum type. Other user-

defined or complex types, such as mappings, structs or array types are not allowed. _ValueType

can be any type, including mappings, arrays and structs.

31

Mappings can be thought of as hash tables, which are virtually initialized such that every possible

key exists and is mapped to a value whose byte-representation is all zeros, a type’s default value.

However, the key data is not stored in a mapping, only its keccak256 hash is used to look up the

value. Because of this, mappings do not have a length, or a concept of a key or value being set,

and therefore cannot be erased without extra information regarding the assigned keys.

Functions are the executable units of code within a contract. Function Calls can happen internally

or externally and have different levels of visibility towards other contracts. Functions accept

parameters and return variables to pass parameters and values between them (Solidity

documentation, 2016-2020).

Figure 16: Constructors and functions in Solidity

3.2.6 Buyer and Seller registration

Here we have shown how a function can be used to validate and register new users who wish to

use this application.

Solidity uses state-reverting exceptions to handle errors. Such an exception undoes all changes

made to the state in the current call, all its sub-calls and flags an error to the caller. The convenience

functions assert and require can be used to check for conditions and throw an exception if the

condition is not met. We use the require function here to ensure that the user account is not already

registered as either a buyer or seller. User registration is bound to the user address as can be seen

from metamask and a user cannot have more than one role. We use require function here as assert

function is meant for testing internal errors and to check invariants only.

https://en.wikipedia.org/wiki/Hash_table
https://solidity.readthedocs.io/en/latest/control-structures.html#default-value
https://solidity.readthedocs.io/en/latest/control-structures.html#function-calls
https://solidity.readthedocs.io/en/latest/contracts.html#visibility-and-getters
https://solidity.readthedocs.io/en/latest/contracts.html#functions
https://solidity.readthedocs.io/en/latest/contracts.html#function-parameters-return-variables

32

Figure 17: User registration function in Solidity

We can retrieve the address of the account that’s calling the function with msg.sender. Solidity

provides this value inside the msg global variable that also lets us retrieve other account related

values such as current ether and other user defined variables.

3.2.7 Implementation of Sale transaction

To enable a sale transaction, we first let the supplier call a ‘ListProduct’ function and collect a

dispute settlement fee upfront as a percentage of the item cost. Each product is uniquely identified

by product ID ‘P_ID’ and retains the address of the seller and buyer once a buyer purchases the

item by calling the ‘BuyProduct’ function. We ensure there is enough ether available to complete

transactions using the require statements again.

Figure 18: Implementing sale transaction in Solidity

Other functions are added similar to list and buy products to enable smart contract to keep track of

product and payment when it’s shipped, and delivery confirmed. When a product is shipped and

delivery is confirmed by the buyer, payment needs to be processed to the suppliers and dispute

33

settlement is refunded to both parties. In the event the buyer does not confirm receipt of goods

after receiving it, the seller can start a dispute.

3.3 ADMIN selection and dispute resolution algorithm

When a dispute is started, ADMINs can see this transaction along with comments and proof of

delivery from the seller. The ADMINs can then act as jury and place their votes indicating if they

think the seller should receive payment or if the buyer should receive a refund. ADMINs will be

charged a small fee to ensure votes are not being placed arbitrarily. After dispute settlement, the

winning party gets full payment/refund including the dispute settlement fee paid upfront as a

deposit with the contract. The dispute settlement fee collected from the losing party along with the

voting fee collected from each ADMIN is then shared between the ADMINs voting for the winning

party equally. If all ADMINs voted for the same party the entire dispute settlement fee and voting

fee collected is split and distributed equally between the ADMINs.

Figure 19: Dispute resolution in Solidity

Success of this application hinges on dispute settlement and is already a major focus area in smart

contracts. Since disputes with any contract is inevitable there are several companies providing

online dispute resolution services some of which are listed below (Schmitz, 2019):

Kleros

An online crowdsourced arbitrator for smart contract dispute resolution in Ethereum. Kleros

system is built on game theory and discovering a “Schelling point” for resolving disputes.

Schelling point (or focal point) is a solution that people choose by default in the absence of

communication (Schelling, 1980). Kleros works by enlisting random admins as jury from around

the world based on the number of cryptocurrencies, they deposit to show their availability and

interest.

Aragon

Aragon is another crowdsourced ODR that creates flexible human-readable agreements that parties

can enforce via Ethereum by depositing collateral in the form of cryptocurrency. A party can

appeal by posting an even larger bond as the complaint moves up the process, and finally may

34

reach the Aragon "supreme court" judges-these judges are those with the highest success rates on

the network.

Jur.io

Jur is similar to Kleros in that disputing parties offer resolutions along with a number of tokens to

"stake" their proposals. Voters decide which proposal to uphold and a decision is rendered at the

end of time period chosen by the parties. Voters who vote against the majority are penalized by

losing tokens and is expected to encourage fair voting.

One of the key short comings in these approaches are that the number of voters are preselected

and fixed or the time period within which the voters can place their votes is fixed. While the

payment of a fee by the voters discourages votes places without due consideration of the

evidence, it would also decrease the number of voters available in the system to settle dispute.

There is again a trade off between quality and quantity of votes that can be obtained by tuning

the cost of voting fee.

Following are some issues that need to be addressed for proper functioning of this process:

1. Incorrect decision due to too few voters

2. Not sufficient votes collected in time

3. Trigger for dispute settlement. Time bound or based on total number of votes?

Considering the above we develop an algorithm that automatically balances between quality and

quantity of votes with a decaying function that determines the number of votes required to settle

dispute. Pseudocode for this algorithm is as shown below:

after every new vote and at predefined time intervals calculate:

maxvotes = f(p,t) {where p are transaction parameters, t is

time since dispute}

if total_votes > maxvotes then:

 if lastvote = buyer then:

 buyer_votes = buyer_votes - 1

 else :

 seller_votes = seller_votes - 1

 settle_dispute

 elseif total_votes == maxvotes then:

 settle_dispute

 else:

 if (vote = buyer) then

 buyer_votes = buyer_votes + 1

 else :

 seller_votes = seller_votes + 1

 total_votes = total_votes + 1

if total_votes == maxvotes:

 settle_dispute

f(p,t) is a decaying function over time that always results in an odd

number

35

In this algorithm, number of votes required to settle dispute is calculated based on transaction

parameters and is broadcasted to that many number of ADMINs selected randomly divided by a

factor α that represents historical percentage of votes received from the number of ADMINs

selected for voting. If all the ADMINs selected places their votes by paying their voting fee, then

the dispute is settled immediately. However, if the ADMINs are taking time to place their votes,

considering that time is of the essence in many of these contracts, the total number of votes required

to settle dispute reduces over time.

Figure 20: Dispute resolution at optimal time using algorithm

Considering that votes placed cannot be taken back or modified, it is safe to assume that the number

of votes placed increase continuously over time. Since the algorithm developed here reduces the

number of votes required to settle dispute over time, we can be assured that the algorithm will

terminate. Furthermore, as long as some votes are being place, the time take to resolve dispute will

be much less than the maximum dispute resolution time agreed by both parties at the beginning of

transaction. The algorithm detailed here will essentially result in an automatic dispute settlement

at an optimal time based on availability of ADMINs and time since dispute was started.

CHAPTER 4: EVALUATION

4.1 Implementation using AngularJS

Finally, we use AngularJS which is a JavaScript-based open-source front-end web framework that

helps in developing single-page applications for our front end (Jadhav, 2015). This website

includes pages for new user registration. Roles specific pages include adding new products and

creating a dispute for the seller, confirm delivery or claim refund for the buyer and dispute

settlement page for the ADMINs where all the disputed transactions are listed. Front end is started

after deploying the contract on a local blockchain network provided by Ganache.

Figure 21: Letter of Credit DApp Homescreen

Figure 22: Letter of Credit DApp – Selecting Seller account

https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Open-source
https://en.wikipedia.org/wiki/Web_framework

37

Figure 23: Letter of Credit DApp – Seller Products Page

Figure 24: Letter of Credit DApp – Seller Add Product

38

Figure 25: Letter of Credit DApp – 0.1 ETH GAS FEE & 1.0 ETH DISPUTE CLEARING FEE

from seller account when product is added to the list

Figure 26: Letter of Credit DApp – Logout from Seller account and login to Buyer account to

start transaction

39

Figure 27: Letter of Credit DApp – Buyer Purchase the product

Figure 28: Letter of Credit DApp – 0.1 ETH GAS FEE, 100.0 ETH PRODUCT COST, 1.0 ETH

DISPUTE CLEARING FEE from buyer

40

Figure 29: Letter of Credit DApp – Buyer bought the product

Figure 30: Letter of Credit DApp – Seller ships the Product

41

Figure 31: Letter of Credit DApp – Buyer does not confirm delivery

Figure 32: Letter of Credit DApp – Seller initiates dispute

42

Figure 33: Letter of Credit DApp – Disputed items

Figure 34: Letter of Credit DApp – Admin1 votes seller

Figure 35: Letter of Credit DApp – Admin2 votes seller

43

4.2 Results

Figure 36: Account balances in Ganache showing accurate working of algorithm

Here we have shown how a disruptive public decentralized application can be developed using

completely open source tools that can substitute established traditional instruments such as letters

of credit. We also develop an algorithm for dispute resolution that in theory will perform better

than other online dispute resolution solutions available. While users of this application may end

up spending some money on transaction fee this would still be much less than 0.75% of an

expensive item charged by the bank for a letter of credit. Since both parties benefit most when they

perform as per their agreement and do not dispute, this encourages ethical and professional

behavior. This should result in dispute settlements being exceptions rather than the norm.

Furthermore, users or traders holding their end of the bargain are always protected for the sum of

money they have invested and need not have to bear any risk. Over time as the usage in the network

grows and everyone is transacting fairly, the cost associated with obtaining a letter of credit can

be brought down to a few cents. Today, Letters of credit cover 12.5% (1.7%) of world trade, or

$2.3 trillion ($310 billion). This huge market can be captured by effective development and

implementation of this decentralized application. Lastly, from an ethics point of view, unlike

several other cryptocurrency transactions or decentralized applications that provide complete

anonymity allowing illegal transactions to take place, this application would always be subject to

review by the admins who would most certainly report concerned agencies if illegal trade activities

are found (Friederike Niepmann, 2016).

CHAPTER 5: CONCLUSIONS AND FUTURE WORK

5.1 Conclusion

To conclude, I have been able to achieve the objectives of this thesis set forth in section 1.2 as

listed below,

• Performed a mapping study of blockchain as applied to supply chain management

• Created a framework for a blockchain-based letter of credit that addresses challenges with

using current techniques.

• Systematically reviewed technologies to identify best set of tools

• Developed a novel algorithm to resolve disputes while executing smart contracts.

• Evaluated the effectiveness of this framework by creating a web application.

5.2 Future Work

While we have considered many issues related to purchase of high value to goods/services in

absence of trust, there are many more issues that could arise including but not limited to customs,

change of ownership, hazardous goods, force majeure events, insurance and fraud. The concepts

and framework provided in this thesis are meant to be a step in the right direction and in an effort

keep the idea simple, we leave a lot of the complexities to be handled by the admins. Fortunately,

we can always build upon this smart contract and carefully add new issues as they are found during

dispute settlement. Furthermore, in this proposal, admins can be any independent agents.

Success of this idea hinges on admins doing a good job of settling disputes. While implementation

shown here does incentivize only admins who have correctly voted for the majority player, this

system can be further strengthened by broadcasting higher valued transactions preferentially to

admins who have voted for the majority party consistently. If during any point in time an admin

who has always voted correctly starts voting incorrectly, then they should be penalized by only

having voting rights on lower value transactions. They can improve their credibility by voting

correctly and work their way up to higher valued transactions. This will also deter any fraudulent

activities or admins teaming up with each other to turn the case in favor of buyer or seller. The

number of votes required could initially be set based on the value of transaction, but it could

deteriorate slowly to allow for dispute settlement with fewer votes as time passes. These gamifying

mechanisms would go a long way in ensuring dispute settlement is done accurately. Furthermore,

voters do not have to work against each other as admins stand to benefit even if all voters pick the

same party. Lastly, to reduce chance of malpractice, the admins chosen to vote can be selected

randomly.

Considering that disputes can occur for various reasons and one of the parties need not necessarily

be at fault for any transaction. We can provide options for admins to decide on a partial payment

in case of delivery of goods/services was done but not up to the expectation of the buyer.

45

We could improve the structure of this application by letting the voting rights remain with all

blockchain participants through proof-of-stake. This way all blockchain participants are benefitted

even when there are few disputes and it also encourages the jury to review the disputes and vote

carefully. As incorrect voting over time will lead to deterioration in trust over the application and

could eventually lead to fewer transactions and usage. This is not desirable for stakeholders in the

blockchain. This framework would ultimately encourage all parties involved to act ethically and

professionally in a truly decentralized and democratic manner. An Ethereum token can also be

developed specifically for transactions of this nature and for use with this application that could

make this framework more robust.

Lastly, I believe that the framework developed here, is a novel approach to developing framework

for decentralized blockchain application. However, since I have not been able to conduct an

exhaustive search of all existing frameworks developed for this purpose, it would be worthwhile

to consider this task for future work.

Bibliography

Asharaf, S. a. (2017). Decentralized Computing Using Blockchain Technologies and Smart

Contracts: Emerging Research and Opportunities: Emerging Research and

Opportunities. IGI Global.

Bartoletti, M. a. (2017). An empirical analysis of smart contracts: platforms, applications, and

design patterns. International conference on financial cryptography and data security

(pp. 494--509). Springer.

Bayer, D. a. (1993). Improving the efficiency and reliability of digital time-stamping. In

Sequences Ii (pp. 329--334). Springer.

Burgwinkel, D. (2016). Blockchain technology: Einfuhrung fur business-und IT manager. In D.

Burgwinkel. Walter de Gruyter GmbH & Co KG.

Burgwinkel, D. (2016). Blockchain technology: Einfuhrung fur business-und IT manager. In D.

Burgwinkel. Walter de Gruyter GmbH & Co KG.

Buterin, V. (2013). Ethereum: The ultimate smart contract and decentralized application

platform. Libro blanco de Ethereum. Consultado en http://web. archive.

org/web/20131228111141/http://vbuterin. com/ethereum. html el.

Buterin, V. a. (2014). A next-generation smart contract and decentralized application platform.

Cachin, C. a. (2016). Architecture of the hyperledger blockchain fabric. Workshop on distributed

cryptocurrencies and consensus ledgers, (p. 4).

Castro, M. a.--. (1999). Practical Byzantine fault tolerance. OSDI, 173--186.

Chopra, S. a. (2013). Supply chain management: strategy, planning, and operation. Boston, MA:

Pearson.

Christidis, K. a. (2016). Blockchains and smart contracts for the internet of things. IEEE Access,

2292-2303.

Crypto, W. (2020). Ethereum 2.0: The One Tech Upgrade With The Biggest Potential Impact On

The Crypto Space. Benzinga Newswires.

Dannen, C. (2017). Introducing Ethereum and Solidity.

Dika, A. (2017). Ethereum smart contracts: Security vulnerabilities and security tools. NTNU.

DOCUMENTATION. (n.d.). Retrieved from Truffle Suite: https://www.trufflesuite.com/docs

Drucker, P. F. (1998). Management’s new paradigms. Forbes magazine, 98--99.

Friederike Niepmann, T. S.-E. (2016). VOX CEPR Policy Portal. Retrieved from Trade finance

around the world: https://voxeu.org/article/trade-finance-around-world

Giancaspro, M. (2017). Is a ‘smart contract’really a smart idea? Insights from a legal perspective.

Computer law \& security review, 825--835.

47

Haber, S. a. (1991). How to Time-Stamp a Digital Document. Crypto’90, LNCS 537, Springer.

Herlihy, M. (2017). Blockchains and the future of distributed computing. Proceedings of the

ACM Symposium on Principles of Distributed Computing, (pp. 155--155).

Jadhav, M. A. (2015). Single page application using angularjs. International Journal of

Computer Science and Information Technologies, 2876--2879.

Jorgensen, M. (2007). Forecasting of software development work effort: Evidence on expert

judgement and formal models. International Journal of Forecasting, Elsevier, 449--462.

KAGAN, J. (2020, April 14). Letter of Credit. Retrieved from Investopedia.com:

https://www.investopedia.com/terms/l/letterofcredit.asp

Krishnan, S. a. (2020). Handbook of Research on Blockchain Technology. Academic Press.

Le, T. C. (2018). Proving conditional termination for smart contracts. Proceedings of the 2nd

ACM Workshop on Blockchains, Cryptocurrencies, and Contracts, (pp. 57--59).

Lee, W.-M. (2019). Using the MetaMask Chrome Extension. Beginning Ethereum Smart

Contracts Programming, 93--126.

List of Known Bugs. (2016-2020). Retrieved from Solidity:

https://solidity.readthedocs.io/en/v0.6.6/bugs.html

Mazieres, D. (2015). The Stellar Consensus Protocol. A Federated Model for Internet-level

Consensus. Version July.

Mense, A. a. (2018). Security vulnerabilities in ethereum smart contracts. Proceedings of the

20th International Conference on Information Integration and Web-based Applications &

Services, (pp. 375--380).

Mohanty, D. (2018). Deploying smart contracts. Ethereum for Architects and Developers, 105--

138.

Mulligan, C. a. (2018). Blockchain beyond the hype: A practical framework for business leaders.

World Economic Forum, White Paper.

Nakamoto, S. (2008). A peer-to-peer electronic cash system. Bitcoin.--URL: https://bitcoin.

org/bitcoin. pdf.

Natoli, C. a. (2016). The blockchain anomaly. 2016 IEEE 15th International Symposium on

Network Computing and Applications (NCA) (pp. 310--317). IEEE.

Nguyen, G.-T. a. (2018). A Survey about Consensus Algorithms Used in Blockchain. Journal of

Information processing systems.

O'hara, K. (2017). Smart contracts-dumb idea. IEEE Internet Computing, 97--101.

Omohundro, S. (2014). Cryptocurrencies, smart contracts, and artificial intelligence. AI matters,

19--21.

48

Raskin, M. (2016). The law and legality of smart contracts.

Samaniego, M. a. (2016). Hosting virtual iot resources on edge-hosts with blockchain. 2016

IEEE International Conference on Computer and Information Technology (CIT) (pp.

116--119). IEEE.

Smith, B. a. (2016). IBM Blockchain: An enterprise deployment of a distributed consensus-based

transaction log. Proc. Fourth International IBM Cloud Academy Conference, (pp. 140--

143).

Solidity documentation. (2016-2020). Retrieved from Functions:

https://solidity.readthedocs.io/en/v0.6.6/structure-of-a-contract.html#functions

Szabo, N. (1994). Smart contracts. Unpublished manuscript.

Szabo, N. (1997). Formalizing and securing relationships on public networks. First Monday.

Tjong Tjin Tai, E. (2017). Formalizing contract law for smart contracts. Tilburg Private Law

Working Paper Series.

Wood, G. a. (2014). Ethereum: A secure decentralised generalised transaction ledger. Ethereum

project yellow paper, 1--32.

Wu, M. a. (2019). A comprehensive survey of blockchain: From theory to IoT applications and

beyond. IEEE Internet of Things Journal, 8114--8154.

Wust, K. a. (2018). Do you need a blockchain? Crypto Valley Conference on Blockchain

Technology (CVCBT) (pp. 45--54). IEEE.

Zhang, F. a. (2016). Town crier: An authenticated data feed for smart contracts. Proceedings of

the 2016 aCM sIGSAC conference on computer and communications security, (pp. 270--

282).

Zhang, J. (2019, October 1). What are Smart Contracts and How Do they Work? Retrieved from

kaleido.io: https://kaleido.io/how-do-smart-contracts-work/

