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The rapid loss of Submerged Aquatic Vegetation (SAV) across the globe has prompted 

state and federal agencies to conduct SAV inventories and develop monitoring programs, which 

are vital to the conservation and management of ecosystems. Due to advances in optical remote 

sensing technologies, the distribution and status of SAV in higher salinity, less turbid regions 

have been better documented than in turbid, low-salinity waters. Hence, much less is known 

about the status and trends of low-salinity SAV. The objectives of this dissertation were to 

document SAV abundance, distribution, and temporal variation in Albemarle Sound (AS), so 

scientists and managers can detect SAV changes through time and develop adequate 

management strategies. In 2014, I sampled the AS, North Carolina shoreline utilizing a single-

beam sonar system. The AS rapid assessment survey (RAS), guided me to identify three large 

SAV beds (>10 km in length) and smaller intermediate size beds (<10 km in length) throughout 

the Sound, most beds shallower than 2 m. The initial RAS allowed me to establish 10 permanent 

sentinel sites (SS) in the Sound. The purpose of establishing these sites was to examine SAV’s 



 

 

spatial and temporal variation at regional (sound-wide) and local (site) scales at different depths, 

and to examine intra-annual variation of SAV to determine the optimal SAV sampling time. I 

sampled the SS for two consecutive years (2015, 2016), in the spring and fall each year. SAV 

abundance in AS was highly asynchronous sound-wide and by site. 

The biological surveys were complemented by a social science study that utilized Local 

Ecological Knowledge (LEK) to study SAV stakeholders’ perception about SAV and to assess 

their historical SAV distribution knowledge in western AS. Often, biological surveys do not go 

far back in time, so historical information (e.g., social surveys, interviews with fishers) can help 

expand our habitat knowledge beyond data collected during traditional surveys. I carried out 

open-ended interviews and written surveys with coastal residents, commercial fishers, and 

fisheries managers. The three groups had unique perspectives about SAV’s ecological value and 

the effect of development on SAV. The LEK historical SAV distribution closely agreed with 

biological distribution data.  
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INTRODUCTION 

Background 

Submerged Aquatic Vegetation (SAV) are rooted angiosperms and are considered 

valuable ecosystems that provide habitat for invertebrates and fish (Rozas and Odum 1988; Hitch 

et al. 2011; Mormul et al. 2011). SAV can also help reduce shoreline erosion, improve water 

quality, connect various habitats (Barbier et al. 2011; Orth et al. 2017), and sequester carbon 

(Fourqurean et al. 2012). Furthermore, SAV are both foundational species and indicator species 

(Lirman et al. 2008; Orth et al. 2017). Unfortunately, this habitat has been under threat due to 

increasing human population growth in coastal areas across the world. Human activity has a 

direct and indirect impact on SAV through upland development, dredging, water quality 

degradation, propeller scaring, and increased sedimentation (Orth et al. 2006). It is estimated that 

since 1980, marine SAV have been disappearing globally at a rate of 110 km2 every year 

(Waycott et al. 2009). Evidence suggests that SAV in the Chesapeake Bay, likely one of the most 

studied SAV resources in the world, has declined (Orth et al. 2010a), as well as other areas in the 

North Atlantic, like in Massachusetts (Costello and Kenworthy 2011). North Carolina (NC) 

anecdotal reports indicate a 50% SAV loss on the mainland side of the coastal sounds of the 

Albemarle and Pamlico sounds (Moorman et al. 2014; NCDEQ 2016). The global trend in SAV 

decline, coupled with a growing understanding of their ecological value, have prompted 

scientists and managers to be more interested in monitoring and managing this resource. As an 

effort to protect valuable coastal ecosystems, from the negative impacts of human activity, 

managers in the United Sates (US) have assigned SAV and other habitats the status of Essential 

Fish Habitat (EFH). Through the Magnuson–Stevens Fishery Conservation and Management 
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Act, SAV have become a habitat of high management priority to various federal and state 

agencies. In NC, SAV are of great interest, as they are not only considered  EFH, they are also 

one of the six critical coastal habitats in the state (NCDEQ 2016). 

SAV inventory programs provide management agencies the necessary information to 

determine the status and trends of this critical resource in order to develop management 

strategies. The Chesapeake Bay Program is an exemplary case study, where after several large-

scale SAV loss events, states instituted an SAV monitoring program in the 1970s (Moore et al. 

2009). Through this program, management agencies have been able to identify some of the 

threats that SAV faced and assessed its status and trends. However, many coastal regions still 

need to establish routine monitoring programs, particularly in low-salinity estuaries, where 

estuaries tend to be more turbid and SAV are more ephemeral, making monitoring more 

challenging.  

SAV species composition in coastal areas shifts along a salinity gradient (Orth et al. 

2010b; Orth et al. 2017). Estuaries, like the Chesapeake Bay, can be stratified into different 

salinity regimes, known as the Venice system of classification of marine waters (Oertli 1964), 

where three zones are classified as: polyhaline (18-25 psu); mesohaline (5-18 psu); and 

oligohaline (0.5-5 psu). Each of these zones is characterized by a unique SAV species 

composition. Other estuaries, like in NC, show a similar pattern. NC has higher salinity SAV, 

more commonly referred to as seagrasses, with both temperate and tropical species. Most of the 

documentation for the abundance and distribution of SAV in NC comes from synoptic aerial 

surveys; however, these surveys have been restricted to the relatively higher salinity regions with 

good water visibility (NCDEQ 2016; Carpenter 2017). Low-visibility waters in NC tend to occur 
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in oligohaline and mesohaline areas of estuaries where freshwater delivery, colored dissolved 

organic matter (CDOM) and sediments, as well as wind driven sediment resuspension limit water 

transparency (Copeland et al. 1984). Hence, estuarine areas of low-visibility have been routinely 

under-sampled in NC and in many other low-salinity estuarine regions. 

The largest and densest cover of high salinity SAV meadows documented in NC occur on 

the shallow back barrier shelves in the eastern margins of Albemarle, Pamlico, Core, Back, and 

Bogue Sounds with sparse cover along the inland shores of the estuarine systems (NCDEQ 2016; 

APNEP 2019). As the systems become more riverine, lower salinity tolerant SAV become more 

abundant (Ferguson and Wood 1989; Davis and Brinson 1990; Moorman et al. 2014), but their 

status has been understudied (NCDEQ 2016; Moorman et al. 2014). The salinity in these areas is 

generally <18 psu (Appendix C.), and turbidity increases near the rivers (Ferguson and Wood 

1990). The low-salinity SAV species are highly diverse (approximately 10 species; Table 1) 

compared to their higher salinity counterparts. Additionally, the low-salinity SAV species are 

characterized by diverse morphological structures (canopy forming or meadow), morphological 

plasticity among species, and the intense competition with invasive species (e.g., Hydrilla 

verticillata and Myriophyllum spicatum) (Barko et al. 1984; Koch 2001). Kenworthy et al. 

(2012) indicated that the SAV in these areas are more ephemeral and exhibit a greater temporal 

and spatial variation than their higher salinity counterparts, which make these species difficult to 

monitor. However, there have been some attempts in the past to complete inventories of these 

areas.  

In response to the apparent demise of SAV in the Pamlico River, Davis and Brinson 

(1990) sampled several SAV beds in Albemarle Sound (AS) between 1985 and 1988. Davis and 
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Brinson (1990) aimed to determine the distribution of SAV in the lower Back Bay, Currituck 

Sound, and western Albemarle-Pamlico system with ground surveys utilizing underwater 

viewers and rake samples along predetermined transects. The authors sampled various tributaries 

and identified monospecific and mixed species beds throughout the Sounds. Unfortunately, they 

also identified M. spicatum, a non-native species to the AS and North America, which has been 

documented to replace native species affecting the local ecology by modifying vertebrate and 

invertebrate species assemblages (Keast 1984; Orth and Moore 1984). 

In 1990, Ferguson and Wood (1994) surveyed AS for SAV with color aerial photography 

and in-water sampling during August and September, which is the documented SAV maximum 

biomass period in this region. Aerial photography revealed a total of 11,962.5 ha of SAV in AS, 

but Ferguson and Wood (1994) pointed out that the SAV signature in the photographs was low-

quality due to reflection and distortion of white caps, sediments, and sun light; furthermore, beds 

were frequently identified, but in many cases it was not possible to determine their extent due to 

the poor SAV signatures in the imagery. These surveys identified SAV beds throughout AS, 

suggesting that SAV have been a persistent underwater feature in the Sound for at least two 

decades; however, both surveys were limited as aerial photographs failed to capture SAV’s 

signature and in-water samples were only concentrated in a few stations. Davis and Brinson 

(1990) sampled transects with rakes along the upper, lower, and middle of 10 tributaries and 

embayments in AS. Ferguson and Wood (1994) visually sampled 89 stations along AS, each 

covering approximately 370 m radius. 

The 2010 NC Coastal Habitat Protection Plan (CHPP) estimated the acreage of mapped 

SAV between 1981 and 2008 in AS, Currituck Sound, and Chowan River. Based on the 
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aforementioned studies and other projects completed by the NC Division of Marine Fisheries and 

partner organizations, they estimated there were 8,732 ha of SAV in this area (Deaton et al. 

2010). 

Quible and Associates (2011) completed the most detailed long-term SAV monitoring 

survey in AS. At 17 stations, they sampled twice annually in June and September for five 

consecutive years (2007-2011). The stations were established along the town of Edenton’s 

shoreline at 1.6 km intervals. SAV were present at all sites at some point during their surveys. 

Only five sites which showed SAV initially did not show SAV in the last year of sampling, and 

SAV abundance increased at most of the sites during the five years of monitoring. The most 

dominant species were N. guadalupensis and V. americana; however, M. spicatum, R. maritima, 

and P. perfolatus were present as well. According to this study, peak SAV biomass in the AS 

region varied with seasonal climate trends; however, this study and others (Ferguson and Wood 

1994; Kenworthy et al. 2012) suggest that peak abundance of SAV in the area is between July 

and September. The peak biomass reported for NC low-salinity SAV were similar to other 

reports in low-salinity regions, like the late-summer peak in the Chesapeake Bay (Moore et al. 

2000). 

Sampling during maximum SAV abundance has become a standard for several 

monitoring programs to ensure reliable bed detection (Orth and Moore 1983; Moore et al. 2009; 

Quible and Associates 2011; Christiaen et al. 2017). However, currently there are no permanent 

monitoring programs to document low-salinity SAV in NC despite its known historical extent 

and abundance (Ferguson and Wood 1989; Davis and Brinson 1990; Deaton et al. 2010). 
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Furthermore, AS has been nominated as one of two estuaries for a pilot study to expand the 

National Water Quality Monitoring Network (Moorman et al. 2014). 

To establish an SAV monitoring protocol for NC, Kenworthy et al. (2012) suggested that 

the NC low-salinity coastal region could be classified into five different strata: 1) Currituck 

Sound, 2) Albemarle Sound, 3) Inner Banks of Western Pamlico Sound, 4) Pamlico River, and 5) 

Neuse River (Appendix C). Kenworthy et al. (2012) also suggested that monitoring should be 

initiated with a synoptic along-shore survey of the different strata to detect SAV extent. The 

synoptic surveys could be considered reconnaissance surveys, as they pave the way in 

identifying SAV extent and selecting intense sampling sites. Identifying intense sampling sites 

(i.e. sentinel-sites) is crucial, as it is extremely difficult to conduct repeated synoptic surveys due 

to the large extent of these waterbodies and poor SAV signal detection utilizing conventional 

SAV synoptic methods (i.e., aerial remote sensing). The sentinel-site approach would ensure the 

routine monitoring of these large and not easily accessible regions. 

Sentinel sites are defined as specific locations selected to conduct intensive and repeated 

observations to detect changes in the system they represent (Jassby 1998). Sentinel sites have 

been used in other SAV monitoring programs, and they have been effective in detecting change 

when it is not feasible to regularly and repeatedly sample an entire system regularly (Jassby 

1998; Christiaen et al. 2017). Due to their unique biophysical characteristics, NC low-salinity 

coastal region strata (Kenworthy et al. 2012) designate the various salinity regimes in APNES, 

and they may require different monitoring approaches. The high-salinity regions in NC are 

dominated by ocean tides and characterized by marine-like conditions with the clearest water; 

whereas, the low-salinity areas are subject to wind-driven tides, freshwater discharges from 
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rivers and creeks, and relatively poorer water transparency. Albemarle Sound, the Pamlico River, 

western Pamlico Sound, Currituck Sound, and the Neuse River represent the low-salinity 

regions. Each of these regions have unique environmental conditions, so it is crucial to know the 

systems and determine the monitoring technique that will better address monitoring needs. 

SAV Monitoring Tools 

Remote sensing techniques such as aerial photography and satellite imagery have been 

increasingly used due their ability to cover large areas with high resolution. Aerial photography 

has been the preferred technique, as it can overcome some of the temporal constraints inherent to 

satellite imaging, as flights can be executed when conditions are favorable (i.e., sun angle, tide, 

wind, and water clarity) (Lathrop et al. 2006). Although aerial image can cover a large area, and 

it is relatively inexpensive; aerial imaging acquisition is limited by several environmental 

factors: e.g., weather and water clarity (Madsen and Wersal 2017). Further, even if data 

acquisition is feasible, automated interpretation of aerial imaging requires the development of 

spectral signatures particular to specific areas and signature detection is severely limited by 

water clarity and depth (Sawaya et al. 2003). Additionally, automated signature analysis software 

is proprietary making it costly. 

Underwater video is another technique that has been used to survey, map, and monitor 

SAV (Schultz 2008; Christiaen et al. 2017). However, this method has some severe limitations in 

turbid water, and it can be time consuming and costly to cover large areas (Kenworthy et al. 

2012; Eulie et al. 2013). 

Hydroacoustic sampling methods, both single-beam and multi-beam sonar technologies, 

have also been used to survey and monitor SAV. Single-beam sonar has been used to monitor 
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SAV for several years and has proven its utility in several applications (McCarthy 1997; Sabol et 

al. 1998; McCarthy and Sabol 2000; Sabol et al. 2002; Valley and Drake 2005; Winfield et al. 

2007; Wilson and Dunton 2009; Kenworthy et al. 2012; Barrell and Grant 2013; Valley et al. 

2015; Bučas et al. 2016; Helminen et al. 2019). Single-beam sonar can cover large areas in a 

short period of time and there are commercially available tools (e.g., Biobase and Biosonics) that 

automate the analysis at a relatively low cost, making this tool both practical and economically 

viable. Furthermore, sonar is not limited by water clarity, so it is extremely useful in low-

visibility estuaries and deep water, where other remote sensing techniques are not feasible 

(Bučas et al. 2016). In addition, this remote sensing technique has been shown to be reliable at 

detecting SAV when compared to in-water samples (Sabol et al. 2002) and underwater video 

(Kenworthy et al. 2012; Valley et al. 2015; Winfield et al. 2015).  

Sonar does have some limitations, such as its inability to differentiate between SAV 

species, its restrictions to depths > 0.5 m, and a narrow sampling swath. Furthermore, the 

accuracy of the system must be thoroughly tested and therefore does require some manner of in-

water sampling to verify the acoustic signatures. Thus far, single-beam sonar’s ability to detect 

SAV’s acoustic signature has been thoroughly established; however, few studies report signal 

verification. In this dissertation, I report verification estimates. 

The multi-beam echosounder has many of the positive characteristics of the single-beam, 

and it can compensate for the small swath, with a larger swath. However, the multi-beam sonar 

currently does not have a commercially-available SAV automated analysis tool, so the analysis 

must be completed manually or by in-house classification algorithms (Kruss et al. 2008). Manual 

analysis can be time consuming, so proponents of the multi-beam techniques suggest that this 
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technique can be complementary to the single-beam, not a stand-alone technique. Each of these 

techniques has its own pros and cons, and the decision to use a technique or an array of 

techniques should be determined by the characteristics of the area under study as well as the 

overall monitoring goals.  

Aerial imaging may be adequate for large-scale monitoring in shallow clear-water 

estuaries, but single-beam sonar may be more appropriate for turbid environments. Although 

single-beam sonar can be fast and effective at large-scales, it would be cost prohibitive to sample 

with single-beam sonar at the same resolution and scale as with aerial imaging or multi-beam 

sonar. Therefore, the sentinel-site approach along with single-beam sonar offer the best 

opportunity for scientists and managers to study and monitor the current and future distribution 

of SAV in low-visibility areas at a large-scale. However, it is not until recently that single-beam 

sonar SAV automated analysis has become available.  

Single-beam sonar SAV automated analysis has opened the door to managers and 

scientists to develop monitoring strategies that can help determine current and future SAV 

distributions. Although knowing current and future SAV distribution is crucial to adequately 

manage this important coastal resource, knowing past SAV distributions is also essential in 

establishing appropriate baseline abundances (McClenachan et al. 2012). In ecology and 

conservation, baseline abundances are often used as reference when setting restoration targets; 

however, in many coastal ecosystems, past distribution data is often lacking. Hence, historical 

information (e.g., narratives, archival documents, and interviews) is increasingly being used by 

scientists and managers to estimate past natural resources’ abundance (Maynou et al. 2011; 

Ames 2004; Schuegraf 2004) and set restoration targets based on historic conditions, not just 
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recent ones. Disciplines like social science can be used to collect information about the past per 

individuals’ knowledge through an array of tools and techniques that have been used by 

sociologist and anthropologists for many years. 

SAV and Coastal Communities  

People have memories, and social science can be used to draw information from what 

people remember to gather data that is unavailable through biological sampling. Coastal 

residents may offer a window to the past distribution of SAV by utilizing social science 

techniques, like Local Ecological Knowledge (LEK). This knowledge can help managers create 

historically relevant management and restoration goals. Coastal residents, such as fishers and 

water-front property owners, develop LEK about the coastal ecosystem. Most knowledge of 

SAV comes from scientific data and is referred to as Scientific Ecological Knowledge (SEK). 

However, LEK can help bridge some of the knowledge gaps that exist regarding SAV in NC. 

Commercial fishers and local residents are familiar with the environment they work and 

live in. They have observed the local environment for many years, as the majority of commercial 

fishers have been working in their area since childhood (Aguilar-Perera 2006). This LEK guides 

the decisions they make about their livelihoods. Fishers’ knowledge can be useful in 

understanding distribution of natural resources, species richness, and condition of the ecosystems 

(Berkes et al. 2000). Deaton et al. (2010) summarized anecdotal reports by fishers and citizens of 

the NC coast on the distribution of SAV. Some of the reports indicated “…elderly fishermen and 

fishermen’s journal accounts from late 1800’s describing extensive beds of such vegetation 

[SAV] in many embayments along the mainland where it’s now absent” (Davis and Brinson 

1990). In 2007 and 2008, DMF biologists reported extensive SAV growth throughout the 
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estuarine system (attributed primarily to drought conditions and lack of major storm events)” 

(Deaton et al. 2010). Observations like this can bridge the gap and tell us important information 

about the habitat suitability for SAV growth. A glimpse into SAV’s past distribution through 

LEK can be especially useful in areas where scientific surveys and monitoring have not been 

regularly conducted. 

LEK was shown to be useful in identifying the historical abundance of herring in Alaska 

prior to the Exxon Valdez oil spill (Huntington 2000). Similarly, Schuegraf (2004) studied the 

decline of seagrass beds in Pearl Lagoon, Nicaragua, with a combination of LEK and direct 

visual census to determine that seagrass had declined in the lagoon. LEK allowed the author to 

estimate seagrass bed abundance for the last 30 years, information that was not available through 

SEK data. Likewise, LEK may be useful in understanding the historical distribution of SAV in 

NC; as well as a tool for coastal resources managers to identify the value that different social 

groups attribute to natural resources (e.g., SAV). The latter could be useful in facilitating 

management decisions by helping identify common ground between stakeholders and minimize 

conflicts when developing management policies. 

Purpose of this Project: Objectives and Hypotheses 

AS is a large and not easily accessible, low-salinity estuary where there is insufficient 

knowledge about SAV distribution to properly manage this resource. Therefore, the overall 

purpose of this study was to conduct a shore-parallel reconnaissance survey for the presence and 

absence of SAV and identifying suitable location for establishing long-term sentinel monitoring 

sites. Routine monitoring at sentinel sites would help understand the distribution and temporal 

changes in SAV at AS, which has seldomly been documented. This dissertation focused on two 
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questions: 1) what is the spatial and depth distribution of SAV in AS, and 2) what is the inter- 

and intra-annual variation in the AS over a two-year period? To address these questions, I had 

the following objectives and hypotheses: 

1. Complete a large-scale reconnaissance survey of the distribution and abundance of SAV 

in the Albemarle Sound, NC. [Chapter 1] 

2. Establish permanent sentinel sites in Albemarle Sound, NC. [Chapter 1]. 

3. Quantitatively characterize SAV depth distribution and the temporal (inter- and intra-

annual) and spatial variation in SAV the Albemarle Sound, NC. [Chapters 1 and 2]. 

Hypothesis 1 (H1): Mean percent SAV occurrence at all sentinel sites will be greater in 

2015 than 2016. 

Hypothesis 2 (H2): Mean percent SAV occurrence at all sentinel sites will be more 

abundant in the fall than the spring. 

4. To evaluate the perceptions of the ecological value and the distribution of SAV in the AS 

through LEK. [Chapter 3] 

Hypothesis 3 (H3): Participants will agree on basic concepts about the value and 

ecology about SAV (e.g., the cultural belief that SAV are important for the ecosystem 

and fisheries dependent on it). 

Hypothesis 4 (H4): Commercial fishers, coastal residents, and fishery managers will 

have different beliefs about more specific issues rather than the general ecological value 

of SAV (e.g., SAV abundance trends and factors affecting SAV distribution). 

Initial results from the H4 informed the development of more specific hypotheses: 
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Hypothesis 4a (H4a): Commercial fishers, coastal residents, and fishery managers 

will have different beliefs about SAV value. 

Hypothesis 4b (H4b): Commercial fishers, coastal residents, and fishery 

managers will have different beliefs about SAV abundance trend. 

Hypothesis 4c (H4c): Commercial fishers, coastal residents, and fishery managers 

will have different beliefs about the Sound’s water quality. 

Hypothesis 4d (H4d): Commercial fishers, coastal residents, and fishery 

managers will have different beliefs about the effect of seasons on SAV 

abundance. 

Hypothesis 4e (H4e): Commercial fishers, coastal residents, and fishery managers 

will have different beliefs about the effect of storms on SAV abundance. 

Hypothesis 4f (H4f): Commercial fishers, coastal residents, and fishery managers 

will have different beliefs about the effect of development on SAV abundance. 

Significance of this Study 

The effort in this dissertation is unique, as it completed the first large-scale survey for a 

low-visibility estuary in NC utilizing single-beam sonar. In addition, it established long-term 

sentinel monitoring sites to help understand SAV depth distribution and the spatial and temporal 

variation in SAV abundance in AS. The work done in this dissertation can be used by 

management agencies in NC for their SAV monitoring and assessment programs in low-salinity 

regions. 
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Additionally, this study aimed to address some of the potential conflict that coastal 

managers may encounter while managing SAV in AS.  I utilized LEK to understand the 

perceptions that various stakeholders have about SAV in AS. At the same time, this social 

science study was applied to further understand the historical distribution of SAV from the 

stakeholder’s perspective. This is the first study to use LEK in AS to evaluate perception and 

historical distribution SAV patterns in AS.  
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Tables 

Table 1. SAV species found in low salinities in North Carolina. An asterisk indicates the species 

was identified during my sentinel site sampling (Chapter 2). 

Scientific Name  Common Name  Reference 

Ruppia maritima*  Widgeon grass  Ferguson and Wood 1994; Davis and 

Brinson 1990; Quible and Associates 

2011 

Stuckenia pectinata  Sago pondweed  Ferguson and Wood 1994; Davis and 

Brinson 1990 

Vallisneria americana*  Wild celery  Ferguson and Wood 1994; Quible and 

Associates 2011 

Myriophyllum spicatum*  Eurasian watermilfoil  Ferguson and Wood 1994; Davis and 

Brinson 1990; Quible and Associates 

2011 

Potamogeton perfolatus  Redhead grass  Davis and Brinson 1990 

Hydrilla verticillata*  Hydrilla  Quible and Associates 2011 

Najas guadalupensis*  Bushy pondweed  Ferguson and Wood 1994; Davis and 

Brinson 1990; Quible and Associates 

2011 

Zannichellia palustris  Horned pondweed  Davis and Brinson 1990 

Potamogeton foliosus  Leafy pondweed  Davis and Brinson 1990 

Potamogeton perfoliatus*  Clasping-leaved 

pondweed 

 Quible and Associates 2011 

     



 

 

 

 

CHAPTER 1: Benthic hydroacoustic surveys of Submerged Aquatic Vegetation (SAV) in a 

large, low-visibility estuary, Albemarle Sound, North Carolina USA 

Abstract 

SAV are recognized worldwide for providing a wide range of ecological and economic 

services. However, SAV have declined globally; it is estimated that since the late 1980s more 

than 90,000 ha have been lost. Changes in SAV distribution have been attributed to both natural 

(e.g., storms and herbivores) and anthropogenic activities, such as upland development, 

dredging, propeller scaring, and nutrient loading. The recognized importance of SAV, the 

reported global declines, and the modest evidence of recovery have motivated scientists and 

resource management agencies to consider routine quantitative and synoptic monitoring of SAV 

distribution and abundance. However, SAV monitoring can be difficult in low-visibility regions, 

where optical remote sensing methods are inadequate. The objective of this study was to conduct 

a synoptic SAV survey in AS in order to develop an SAV inventory and establish permanent 

monitoring sites. Scientists and resources managers can use these sites to detect changes in SAV 

abundance and make informed resources management decisions, if protection and restoration are 

needed. As an alternative to optical remote sensing, I sampled a low-visibility coastal lagoon 

estuary, Albemarle Sound, North Carolina, utilizing single-beam sonar. Further, I used the data 

generated from this survey to establish permanent sentinel sites in the Sound for long-term SAV 

monitoring. I completed the sampling in a single season between August and October 2014 and 

surveyed approximately 400 km of shoreline. Three large SAV beds (>10,000 m in length) were 

identified in Edenton, Kitty Hawk Bay, and East Lake, with various intermediate size beds 

(<10,000 m in length) and smaller patches scattered throughout the sound. Most of the SAV 

were present above the 1.7-m isobath. I concluded that single-beam is an effective and efficient 
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SAV surveying tool, as I was able to survey a large length of shoreline in only three months. 

Further, this method requires minimal equipment and post-processing compared to in-water 

surveys or other remote sensing methods. The single-beam sonar along with Biobase, an 

automated cloud-based SAV signal interpretation platform, has a quick signature interpretation 

and data processing turnaround time compared to other remote sensing and in-water sampling. 

The project resulted in the identification of ten candidate sentinel monitoring sites for assessing 

SAV abundance and distribution. These sites can help managers make better informed decisions 

regarding the conservation and restoration of this resource. 

Keywords 

Sonar, underwater video, remote sensing, sentinel sites, and long-term monitoring. 
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Introduction 

SAV are recognized worldwide as important foundation species because of the many 

ecosystem services they provides, as well as their economic value to humans (Thayer et al. 1984; 

Orth et al. 2006). SAV provide foraging and nursery habitats for fish (Rozas and Odum 1988; 

Flaherty-Walia et al. 2015), shellfish (Heck and Thoman 1984; Dealteris et al. 2004), sea turtles 

(Lutcavage and Musick 1985), marine mammals (Thayer et al. 1984), birds (Lantz et al. 2010), 

and invertebrates (Voigts 1976; Hovel et al. 2002). SAV methods also help reduce erosion and 

sediment re-suspension (Madsen et al. 2001), connect other habitats (e.g., salt marshes. oyster 

reefs, coral reefs, and mangroves; Micheli and Peterson 1999), recycle nutrients (Romero et al. 

2006), and sequester carbon (Fourqurean et al. 2012). Scientists and resource managers are also 

routinely using SAV as bio-indicators of environmental quality; the plants are especially 

sensitive to changes in temperature, salinity, sedimentation, nutrient loading, and water clarity 

(Dennison et al. 1993; Orth et al. 2006; Orth et al. 2017). 

Human populations have rapidly increased in coastal regions, driving anthropogenic 

changes in aquatic environments that are responsible for declines in SAV distribution and 

abundance locally, on the Atlantic coast of the United States (US) (e.g., Chesapeake Bay, 

Massachusetts, and Florida), and worldwide (Orth and Moore 1983a; Short and Wyllie-

Echeverria 1996; Orth et al. 2006; Waycott et al. 2009; Orth et al. 2010; Costello and Kenworthy 

2011; Orth et al. 2017; Lefcheck et al. 2018). These declines have motivated scientists and 

resources management agencies to develop sampling protocols and establish routine monitoring 

programs to identify the status and trends of SAV distribution and abundance. The information 

derived from these monitoring programs is being used for conservation and restoration of SAV 
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coastal ecosystems both nationally and globally (Orth et al. 2010; Costello and Kenworthy 2011; 

Christiaen et al. 2017). 

Although SAV are present across various salinities in estuaries around the world, most of 

the SAV monitoring programs are not as spatially and temporally comprehensive as the 

monitoring conducted in the Chesapeake Bay. Most of the monitoring programs have focused 

more on the high- and intermediate-salinity species, or seagrasses (Kenworthy et al. 2012). Many 

estuaries are turbid and poor water transparency limits the ability to regularly utilize remote 

sensing technologies (e.g., aerial photography and satellite sensors) to detect submerged bottom 

features (Orth and Moore 1983b; Finkbeiner et al. 2001; Vis et al. 2003; Winfield et al. 2007). 

Transparency gradients in coastal water bodies are common and closely coincide with salinity 

gradients (Ferguson and Wood 1990; Adair et al. 1994; Orth et al. 2010; Jia and Li 2012), such 

that the submerged deeper portions of SAV meadows in the upper reaches of estuaries are rarely 

visible to aerially deployed optical sensors. Additionally, the human effort required to monitor 

sub-tidal environments and the cost of spatially comprehensive and temporally frequent in-water 

sampling has restricted the implementation of synoptic long-term monitoring programs in low-

salinity SAV habitats that cannot be reliably detected by airborne sensors (Davis and Brinson 

1976; Ferguson and Wood 1989; Ferguson and Wood 1990; Finkbeiner et al. 2001; NCDEQ 

2016; Madsen and Wersal 2017). 

Despite NC having the second largest lagoonal estuary in the continental United States 

(Luettich et al. 2002), a significant portion of the SAV resource located in turbid, lower-salinity 

regions has not been comprehensively mapped or routinely monitored (Davis and Brinson 1976; 

Ferguson and Wood 1990; Kenworthy et al. 2012; NCDEQ 2016). The Albemarle-Pamlico 

Estuary System (APES) has eight major sounds and six major river basins with an estimated 
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7,530 km2 of open water and a well-defined salinity gradient extending from east to west 

(Appendix C). The relatively shallow clear waters located over the back-barrier shelves just 

behind the islands are an ideal environment for high salinity SAV to thrive (Thayer et al. 1984; 

Ferguson et al. 1993; Ferguson and Wood 1994; NCDEQ 2016). Periodic remote sensing and 

mapping of large portions of the eastern region of APES, beginning in 1983 up to as recent as 

2013, indicate an estimated maximum extent of seagrass on the order of 130,000 acres (52,609 

ha) (Carraway and Priddy 1983; Ferguson and Wood 1989; Ferguson and Wood 1990; Ferguson 

and Wood 1994; NCDEQ 2016; APNEP 2019). Just this eastern margin of APES alone has 

approximately five times the acreage of SAV than reported for a large neighboring mid-Atlantic 

estuary, the Chesapeake Bay (Lefcheck et al. 2018). 

The remaining western margin of APES, including Pamlico Sound, the upper reaches of 

Currituck Sound, AS, and the Neuse and Pamlico Rivers have thousands of km of shoreline 

adjoining relatively shallow open water known to be potential SAV habitat (NCDEQ 2016). 

Based on historical data and observations reported from sub-segments of this portion of the 

estuary, all these waterbodies are known to either have had SAV in the past, or are currently 

documented to support diverse SAV communities (Davis and Brinson 1976; Davis and Brinson 

1990; Ferguson and Wood 1994; Quible and Associates 2011; Carpenter and Dubbs 2012; 

Kenworthy et al. 2012; NCDEQ 2016). For AS alone, recent estimates have suggested there may 

be as much as 36,880 acres (14,925 ha) of submerged bottom suitable as potential SAV habitat 

(Carpenter and Dubbs 2012; Kenworthy et al. 2012; Moorman et al. 2014; NCDEQ 2016). 

However, previous efforts to remotely detect and comprehensively map and monitor these 

extensive, relatively lower salinity SAV regions of the estuary have been unsuccessful. Drainage 

from three large coastal watersheds and the numerous rivers and tributaries associated with these 
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watersheds deliver substantial quantities of freshwater laden with suspended particulate material, 

CDOM, and nutrients into this shallow and productive region of APES (Li et al. 2007; Jia and Li 

2012). Physically isolated from tidal inlets and subjected to both continuous and episodic 

freshwater discharges and wind driven resuspension of bottom sediments, water transparency is 

highly variable and frequently limiting visibility of the benthos throughout the SAV growing 

season. Given the well-documented global (Orth et al. 2006; Waycott et al. 2009), regional (Orth 

et al. 2010) and local threats to this resource, the recognized ecological services provided by 

SAV, and the well-established economic value of this habitat to fisheries, wildlife, and human 

society (NCDEQ 2016); there is a critical need to develop and implement alternative mapping 

and monitoring tools to assess the status of this vital resource (APNEP 2012). 

The use of optical methods such as underwater photography, videography, and acoustic-

based remote sensing are alternative methods for locating, mapping, and monitoring SAV 

(Kenworthy et al. 2012). Underwater videography and photography have been used successfully 

in some large-scale monitoring programs, for example, in Puget Sound, Washington, US, where 

the water visibility is suitable (Norris et al. 1997; Christiaen et al. 2017). However, due to poor 

visibility these optical approaches are neither practical nor reliable for large-scale monitoring in 

turbid water, like what occurs in the low-salinity estuarine environments in NC (Kenworthy et al. 

2012). Alternatively, for waters with poor transparency, acoustic methods, such as single-beam 

(Sabol et al. 2002; Vis et al. 2003; Valley et al. 2015), multi-beam (Komatsu et al. 2003), and 

side-scan (Pasqualini et al. 2000; Merkel and Associates 2014) sonar technologies have been 

used to remotely detect SAV in broad scale SAV mapping and monitoring programs. 

Single-beam sonar has been shown to effectively and efficiently identify SAV in fresh 

and coastal waters (Sabol and Burczinski 1998; Sabol et al. 2002; Jarosław et al. 2003; 
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Godlewska et al. 2004; Valley and Drake 2005; Kruss et al. 2008; Sabol et al. 2009; Tseng 2009; 

Kenworthy et al. 2012; Bučas et al. 2016). Initially, SAV sonar estimates were generated through 

manual interpretation of acoustic echograms (Maceina and Shireman 1980; Maceina et al. 1984; 

Stent and Hanley 1985; Duarte 1987). However, SAV acoustic signal interpretation gained 

significant momentum with the military’s need to understand SAV sonar signal interference with 

mine detection (McCarthy and Sabol 2000). Through a military project, McCarthy (1997) used 

acoustic tanks, mesocosms, and field experiments to document the backscatter created by the gas 

pockets (or lacunae) in Zostera marina when targeted with sonar. The author’s results indicated 

that SAV have a clearly defined backscatter, and that single-beam sonar could be used to 

distinctly identify SAV. Once the sonar’s ability to detect SAV was established (Hermand et al. 

1998; Wilson and Dunton 2009), along with advances of GPS, Sabol et al. (2002) developed an 

automated system for SAV acoustic signal interpretation (i.e., SAVEWS). Their research 

indicated that the SAV sonar automated signal interpretation and field samples had a close 

agreement (r2 = 0.98), and sonar could effectively estimate SAV beds in varying substrates and 

salinities. The sonar’s SAV detection capabilities were further confirmed by Valley and Drake 

(2005) when they compared sonar SAV estimates not only for averaged field measurements, but 

also SAV detection at the individual plant level. They concluded that sonar and actual plant 

heights did not differ significantly. As sonar established itself as a reliable SAV remote sensing 

survey method, affordable automated systems have been developed and are now widely used in 

lake and estuary surveys (e.g., Biobase and Sonar5-Pro), which have produced several research 

studies  (Spears et al. 2009; Tseng 2009; Kenworthy et al. 2012; Radomski and Holbrook 2015; 

Winfield et al. 2015; Bučas et al. 2016; Valley 2016; Helminen et al. 2019; Heuvel et al. 2019; 

Howell and Richardson 2019). 
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Currently, sonar is the most viable technology to complete synoptic surveys in low-

visibility regions where aerial optical remote sensing is not feasible due to water clarity 

limitations. Sonar significantly reduces sampling times compared to other methods that are not 

limited by water clarity (Sabol et al. 2002; Tseng 2009). Given the size and geographic 

complexity of APES, it is neither economically nor logistically feasible to map and monitor SAV 

along the entire shoreline on a regular basis. However, using acoustics, it is possible to routinely 

obtain several ecologically relevant metrics of SAV habitat; including percent cover, canopy 

height, and plant bio-volume (Sabol et al. 2002; Valley et al. 2015; Winfield et al. 2015; Bučas et 

al. 2016), which could be repeatedly measured at permanent sentinel monitoring stations to 

determine the status and trends of SAV.  

Fixed station sampling, following a “sentinel site monitoring” approach, can draw upon 

historical knowledge of SAV distribution, recent status and trends assessments where available, 

and vulnerability of existing SAV to known stressors (e.g., impaired water quality). In this study, 

I defined sentinel sites as a subset of representative and readily accessible fixed locations in the 

estuary that have the capacity for intensive monitoring and sustained long-term observations to 

detect and understand changes in the ecosystems they represent (Jassby 1998; Christian and 

Mazzilli 2007). Three critical factors govern the scientific rationale behind the selection of 

representative sentinel sites: 1) the sites should have key physical and biological attributes that 

represent the larger ecosystem and are representative of the region; 2) the sites should have 

significant ecological value associated with the presence of key species that are knowingly 

important to ecosystem function (e.g., SAV); and 3) there is a high likelihood of detecting 

change. The sentinel sites approach has been used in several SAV monitoring programs in Puget 
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Sound, Chesapeake Bay, and the Florida Keys National Marine Sanctuary (Fourqurean et al. 

2001; Orth et al. 2010; Christiaen et al. 2017). 

The specific objectives of this study were to; 1) conduct a large-scale reconnaissance 

survey of the distribution and abundance of SAV in AS, and 2) to locate and establish permanent 

sentinel sites for long-term monitoring of SAV status and trends. 

Material and Methods 

Study Site 

I conducted the study in AS; a representative sub-estuary located in the northwestern 

region of APES (Appendix C). AS is a shallow (mean depth = 5.3 m), wind-driven, microtidal 

estuary, isolated by distance from the Atlantic Ocean with a water residence time of 45 days, 

high turbidity, poor water transparency, and persistently low salinity. (Giese et al. 1985; 

Moorman et al. 2014; NCDEQ 2016). With a surface area of 2,330 km, 800 km of shoreline and 

the receiving waterbody for three major river drainages (Roanoke, Chowan, and Pasquotank 

rivers) and numerous other small tributaries, AS is characteristic of the environmental conditions 

throughout the western APES region. The tributaries of AS are brown-water rivers that drain 

peatland and swamp forests, farmland, upstream urban and silviculture areas, which create a 

turbid and optically complex system. The maximum color units for the Chowan River, an AS 

tributary, has been measured at 320 (Giese et al. 1985). Furthermore, the relatively long water 

residence time persistently diminishes water clarity, which has limited our ability to optically 

detect SAV with airborne sensors typically used in submerged habitat monitoring programs. 

However, both historical data (Davis and Brinson 1976; Ferguson and Wood 1989; Ferguson and 
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Wood 1994; Quible and Associates 2011) and local knowledge indicate that SAV have been an 

important component of this estuarine system (NCDEQ 2016). 

SAV Field Survey 

Sonar 

I conducted a rapid assessment survey (RAS) for detecting SAV presence and absence 

along the shore of AS between August 5th and October 3rd, 2014, using single-beam sonar and 

underwater video for SAV presence verification. I divided the AS shoreline into 46, 10-km 

segments; I used these segments to establish transects parallel to the shore (alongshore) at the 1-

m isobath. Given the limited knowledge of SAV depth distribution in AS (Quible and Associates 

2011), the transects followed the 1-m isobath to maximize SAV bed detection. Using an 

echosounder, at the start of each transect, I located the 1-m isobath by navigating from the pre-

determined start of the transect just offshore towards the shoreline. Once the isobath was located, 

the sonar sampling was initiated, the boat always aimed to follow the 1-m isobath; however, the 

depth varied perpendicular to the shore, which required constant maneuvering to maintain the 

target depth. Some transects were shorter than 10-km long due to boat access limitations in 

shallow creeks and to avoid underwater obstructions (9 transects were shorter than 10-km). 

Sixteen transects were longer than 10-km, as I extended these transect’ boundaries to include 

SAV beds outside our pre-establishing sampling route. 

The sonar data was collected with a Lowrance/Biobase system, utilizing a Lowrance 

HDS-5 Gen 2 fishfinder/chartplotter with a 200-kHz frequency transducer with a 20° beam angle 

(Navico 2014). The Lowrance system has a mapping grade high-sensitivity internal GPS+WAAS 

antenna for logging latitude and longitude with a positional error of ± 3 m; the HDS-5 Gen 2 
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does not have a GPS GDOP or HDOP threshold. The transducer was mounted on the side of the 

boat approximately 0.3 m under the water surface (Figure 1). The sonar ping rate was set at 15 

pings per second. The GPS data and acoustic signal were stored in sl2 file format in SD memory 

cards, and each 10-km transect was saved in a separate file. 

Underwater Video 

A low-light sensitivity Sartek (model #SDC-MSS) underwater camera was used to collect 

video data to verify SAV presence or absence. I obtained video samples every 330 m along each 

10-km transect, yielding approximately 30 video samples per transect. This sampling frequency 

was chosen due to time limitations. Additionally, preliminary data indicated that SAV beds in the 

area have a 424 m mean maximum patch size, and beds can be as large as 1,000 m (Kenworthy 

et al., 2012), so by sampling every 330-m, it was like to detect most larger beds. The latitude and 

longitude coordinates of each video point was recorded into the memory of the Lowrance HDS-5 

echosounder. 

Data Processing and Statistical Analysis 

Sonar  

The memory card’s files with the sonar data were uploaded to the Biobase SAV mapping 

data analysis and long-term storage cloud (www.cibiobase.com). Biobase is a software platform 

that automates the analysis of the acoustic and GPS signal from the echosounder, to generate 

SAV present-absent data (Valley et al. 2015). 

The Biobase automated signal-processing algorithm estimates bio-volume which is 

defined as the percent of water column occupied by plant matter (Navico 2014). Bio-volume is 

derived from the ratio between plant height, defined as the difference between the sediment 
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surface and the top of the plant canopy, and bottom depth. The bottom usually returns as sharper 

clearly defined echo with limited changes in depth compared to the SAV canopy echo (Sabol et 

al. 2002). The GPS position of each ping was recorded approximately every second (15 pings per 

second), and a bottom feature (i.e., plant height) was estimated based on the signal return. The 15 

different GPS positional reports were then averaged for each data point displayed in the final 

report. Note that the distance covered by each set of 15 pings varied with the boat’s speed. The 

average boat speed was 8 km·h-1; therefore, every 15 pings covered a distance of approximately 

two meters. To generate each report, the pings went through a quality test to determine if a 

feature (i.e., SAV) could be extracted from the pings. If a feature could be extracted, the data was 

sent to the feature algorithm detection (Navico 2014), which generated the bio-volume data. 

Finally, I converted the bio-volume output data generated by Biobase to a binary variable; SAV 

present (1) or SAV absent (0). 

Biobase has a few safeguards against false positive detection as well as some limitations. 

To avoid false positives, the Biobase system did not consider plant heights from pings within a 

coordinate point that were shorter than 5% the water depth. Hence, in the SAV maximum depth 

for the AS (approximately 2.4 m) (Ferguson and Wood 1994), the plants had to be at least 12 cm 

to be considered SAV in the Biobase algorithm. This height threshold set in the algorithm would 

likely lead to SAV underestimates in deep waters that have short SAV (<12 cm), which can 

affect SAV bed’s maximum extent estimates. To further avoid false vegetation detections at 

depths well beyond the deepest rooting depth of vegetation, Biobase discarded 2% of the deepest 

coordinate points registering vegetation. The maximum depth SAV detection for the sonar 

depends on the transducer’s settings, based in the transducer I used, the maximum detection 

could be in the tens of meters (Biobase 2019). Due to the low visibility in AS, a substantial 
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amount of SAV is likely to occur at depths shallower than the sonar method can be used 

(Kenworthy et al. 2012; Bučas et al. 2016). However, the single-beam sonar’s nearfield (the 

distance in front of the transducer where the acoustic cone has not yet formed, and a return signal 

cannot be adequately analyzed) limits its ability to detect SAV at depths shallower than 0.5 m 

because the (Navico 2014; Radomski and Holbrook 2015).  

After converting the bio-volume data to binomial data, I created a kriging layer from the 

binomial data utilizing the indicator kriging method in ArcGIS (ESRI 2011). I chose this method 

as indicator kriging has been used in SAV mapping for its capability to handle non-normally 

distributed data (Heuvel et al. 2019). In the final kriging layer, I only retained values with a 

probability of having SAV greater than 50%. This probability percentage threshold is arbitrary, 

and in some cases it may not yield the highest accuracy; however, previous studies that 

investigated SAV sonar classification mapping and evaluated different probability threshold 

values suggested that the 50% threshold may be an acceptable value, especially when conducting 

binary mapping (i.e. SAV presence and absence) (Osborne et al. 2001; McIntyre et al. 2018). 

Valley et al. (2005) documented that sonar kriging interpolation yields high accuracy when 

compared to in-water diver surveys. Nonetheless, I only used the kriging layer to display graphic 

representations of SAV covered areas. The actual sonar swath at 1-m depth was approximately 

10 cm, which was too small to represent in a sound-wide or regional map. In addition, the raw 

sonar data with each sonar point was cumbersome and difficult to display on a map. I did not use 

the kriging data to generate any statistics, except to compare the 2014 survey linear distance 

covered by SAV to historical records of SAV distribution in AS, hereafter referred to as the 

Maximum Extent Layer. 

Maximum Extent Layer (MEL) and 2014 RAS comparison 
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The Maximum Extent of Reported SAV Presence Layer in AS (MEL) was compiled by 

NC Division of Marine Fisheries (NCDMF) (2008) comprising observations between 1987 and 

2008 (Figure 2). NCDMF utilized various observation methods, such as aerial photography and 

in- and on-water observations to generate the SAV distribution layer. In this study, the MEL was 

used as a proxy for historical SAV presence data to compare with the 2014 RAS. To make this 

comparison, I compared the length of the two layers (2014 RAS vs MEL). However, to 

standardize the comparison, I excluded areas in the MEL that were not sampled during the 2014 

RAS. 

SAV Presence Verification 

Sonar has been used to effectively identify SAV beds in various aquatic environments 

(Sabol et al. 1998; Valley et al. 2015; Bučas et al. 2016). However, sonar, like other remote 

sensing techniques, requires signature verification, as the unique water quality and substrate 

characteristics of each estuary can affect the signal interpretation (Sabol et al. 2002). In this 

study, I verified the sonar signal interpretation by comparing underwater video nearest to specific 

sonar reports.  

The video data was analyzed by determining SAV presence-absence using a binomial 

code (1=SAV present, 0=SAV absent) (Kenworthy et al. 2012). The GPS location of each 

underwater video point was recorded and later compared to the sonar data in ArcGIS (ESRI 

2011). The Spatial Join tool in ArcGIS (ESRI 2011) was utilized to select the nearest sonar point 

to the video samples with a 10-m threshold matching distance where video points that were 

located  > 10 m from a sonar point were discarded. Preliminary analysis indicated that percent 

agreement between sonar and video did not significantly vary at distances less than 10 m 

(Appendix B).  
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To verify the sonar’s signal interpretation, two metrics were estimated: SAV present 

verification percent (Equation 1) and SAV absent verification percent (Equation 2) where: 

SAV present verification percent =  
𝑇𝑜𝑡𝑎𝑙 𝑆𝐴𝑉 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑣𝑖𝑑𝑒𝑜 𝑝𝑜𝑖𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑆𝐴𝑉 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑣𝑖𝑑𝑒𝑜 𝑝𝑜𝑖𝑛𝑡𝑠 
 𝑋 100            (1) 

 

SAV absent verification percent =  
𝑇𝑜𝑡𝑎𝑙 𝑆𝐴𝑉 absent 𝑣𝑖𝑑𝑒𝑜 𝑝𝑜𝑖𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑆𝐴𝑉 absent 𝑣𝑖𝑑𝑒𝑜 𝑝𝑜𝑖𝑛𝑡𝑠 
 𝑋 100                (2) 

Sentinel Site Selection 

One of the main objectives of the RAS, was to identify areas where ten permanent 

sentinel monitoring sites (SS) could be established. To select the SS, ArcGIS 10.4.1 (ESRI 2011) 

was used to delineate the 2014 RAS transects with a shapefile layer. The shapefile contained 

1,000-m by 500-m rectangles (bins) that followed the AS shoreline. Each of these bins 

represented potential SS with their corresponding dimensions. A total of 600 bins were created, 

but only 88 met the selection criteria: 1) SAV present in the MEL, 2) SAV present in 2014 sonar 

survey, and 3) SAV present in 2014 video survey. A number was assigned to each of the 88 bins, 

and the “runif” function in R (R Core Team 2014) was used to randomly select ten SS.  

Results 

SAV Distribution in Albemarle Sound 

A total of 46 transects covering approximately 478 km (60%; Moorman et al. 2017) of 

the AS shoreline and tributaries were sampled in the AS (Figure 3). All the transects detected 

some SAV present in the sonar survey. The median (or 50th quartile) sampling depth was 1.34 m, 

the minimum depth 0.77 m, and the maximum depth 5.78 m (Figure 4). The depth 25th and 75th 

quartiles were 1.15 and 1.68m, respectively, and the sonar sampling depth was not normally 
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distributed (Kolmogorov-Smirnov, p<0.05). The median depth for areas with SAV present was 

1.27 m, and the 25th and 75th SAV present quartiles were 1.08 and 1.67 m, respectively. The 

maximum depth for SAV present was 4.66 m and minimum 0.77 m. Whereas, for areas surveyed 

with no SAV the median depth was 1.36 m, and the 25th and 75th SAV absent quartiles were 1.17 

and 1.69 m, respectively (Figure 5). 

To further explore the data at depths were SAV were most abundant, I applied a 2.5 m 

cut-off to the data, rounded from the 2.4 m SAV maximum depth for the area documented by 

Ferguson and Wood (1994). With the cut-off point, median depth at which SAV were present 

was 1.26, and the 25th and 75th quartiles were 1.08 and 1.59 m, respectively; whereas, median 

depth at which SAV were absent was 1.34 m, and the 25th and 75th quartiles were 1.16 and 1.63 

m, respectively. 

The RAS indicated there were three distinct shoreline areas with relatively large SAV 

beds (> than 10 km in length) located along 1) the westside of the Sound at Sandy Shores area 

near the town of Edenton, 2) the eastside of the Sound in Kitty Hawk Bay, and 3) the southeast 

side of the Sound, near the mouth of the Alligator River, at East Lake (Figure 6). Several smaller 

beds (<10 km) were identified across the Sound and its tributaries (Figures Figure 7, Figure 8, 

and Tables 

Table 2). I define an SAV bed in the SAV maps as distinct polygons generated from the 

kriging layer. 

Comparison Between 2014 RAS to the Historical Maximum Extent Layer (MEL) 

The total vegetated linear distance for SAV coverage indicated by the MEL was 211.72 

km while the linear SAV vegetated distance on the sonar kriging map in the 2014 RAS was 
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114.35 km. The difference between the MEL and the 2014 survey was 97.27 km, a difference of 

54%. SAV has persisted in some areas while there were both losses and gains with no clear 

regional pattern (Figure 9). The Kitty Hawk Bay and Edenton beds were persistent when 

compared to the MEL; whereas, the bed in the Batchelor Bay area, near the mouth of the 

Chowan River, appears to have been lost. On the other hand, East lake had not been reported to 

have SAV in the past, but SAV were present in the 2014 survey (Figure 9). 

Sonar Verification with Underwater Video 

A total of 1311 underwater video points were obtained during the RAS, but only 871 met 

the distance matching criteria (<10 m between sonar and video points). For those that met the 

distance criteria, 237 points were verified in sonar as SAV present (37.2%). Video verification of 

SAV absence in sonar was 92.15%. SAV presence was verified on video at the most extensive 

(Edenton, Kitty Hawk, and East Lake) (Figure 10). 

Sentinel Site Selection 

The RAS transects bin delineation yielded approximately 600 bins, but only 88 bins met 

the three-point site selection criteria. Ten sentinel sites were selected randomly. Only one site 

was selected manually, as the south shore of the Sound was underrepresented. I chose a random 

sentinel site selection, so the sites could be considered representatives of the sound. Fortuitously, 

the sites are widely distributed across the sound and expose to a diverse range of environmental 

and anthropogenic condition (Appendix D). 

Discussion 

Coastal management requires accurate inventories and information on the status and 

trends of resources to implement knowledge-based management decisions. Hence, there is a 
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great need for reliable and standardized natural resources monitoring among federal and state 

agencies. This study addressed this need for low-salinity SAV in NC. The results constitute the 

first attempt to conduct a synoptic sound-wide survey of SAV in AS and portions of the 

adjoining tributaries using a hydroacoustic detection method. Encouraged by several studies that 

demonstrated both the practical utility and quantitative capabilities of sonar for assessing the 

distribution and abundance of SAV in both freshwater and seawater (McCarthy 1997; Sabol et 

al. 2002; Winfield et al. 2007; Bučas et al. 2016),  provided an alternative to other traditional 

mapping and monitoring approaches (e.g., airborne remote sensing, in-water sampling) (Madsen 

1993). Here, single-beam sonar was used primarily as a reconnaissance tool for detecting the 

presence or absence of SAV and was designed to optimize detection by endeavoring to sample at 

the 1.0 m isobath where previous studies in AS suggested a high likelihood of SAV occurrence 

(Davis and Brinson 1976; Ferguson and Wood 1994; Deaton et al. 2010; Quible and Associates 

2011). 

The transect survey assessed the presence-absence of SAV along 478 linear km of 

submerged bottom, or approximately 60% of the AS shoreline (800 km). Although the scope of 

the survey was initially planned to cover the entire Sound and portions of the tributaries, 

numerous obstructions to navigation and shallow water depths prevented the survey from gaining 

access to the entire submerged bottom area. The median sampling depth (1.34 m) showed how 

challenging it was to consistently navigate the vessel along the prescribed 1.0 m isobath. 

Maintaining the small vessel’s course in the wind and in areas with rapid and frequent changes in 

bathymetry resulted in a lag time between course corrections and reacquisition of the 1.0 m 

contour. This resulted in a skewed non-normal deviation from the intended sampling depth with 

less than 25% of the sampling was shallower than the 1-m isobath (1.14 25th depth quartile). 
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Fortuitously, an unintended consequence of this navigation problem provided an opportunity to 

evaluate several aspects of SAV depth distribution in the Sound. The median depth of SAV 

presence (1.27 m) closely coincided with the optimum survey depth (1.0 m) drawn from 

historical observations in the Sound (Davis and Brinson 1990; Ferguson and Wood 1994; Quible 

and Associates 2011; NCDEQ 2016), while the absolute frequency of SAV presence was 

relatively constant between 0.77 m and 1.3 m. The distribution of the presence data suggests 

SAV can grow to depths well beyond 1.3 m, but the frequency dropped precipitously with 

increasing water depths. Moreover, the frequency of absence detections initially increased 

rapidly between 0.77 m and 1.3 m indicating that the maximum SAV coverage occurred at 

depths < 1.3 m. At deeper depths the meadows were relatively sparse, and occurrence was rare.  

Maximum depth of SAV growth and changes in the deep edge distribution of SAV 

meadows are being routinely used in monitoring programs as one of the primary response 

indicators for assessing water quality conditions in estuarine environments (Dennison et al. 1993; 

Kenworthy and Fonseca 1996; Li et al. 2007; Orth et al. 2010; Kenworthy et al. 2014; Greening 

et al. 2016; Orth et al. 2017). SAV are sensitive to fluctuating optical properties of the water 

(transparency) and there is a very robust correspondence between SAV maximum depth 

distribution and optical water quality driven by the concentrations of chlorophyll (chl), total 

suspended solids (TSS), and colored dissolved organic matter (CDOM) (Dennison et al. 1993; 

Gallegos 2001; Biber et al. 2008). The sonar data for SAV presence suggested that neither the 

maximum nor the median depths of SAV alone adequately represented the main distinguishing 

characteristics of SAV depth distribution in AS. However, the sonar makes it possible to 

simultaneously measure depth and SAV presence-absence, whereby the distributional properties 

of these variables (i.e., proportion of SAV presence vs. absence, quartiles, slope of change) could 
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be used to quantitatively characterize the deep edges of SAV meadows and provide a more 

sensitive, informative,  and robust indicator for diagnosing changes in SAV depth distribution 

and responses to environmental quality. In this study, I chose to report the 25th, 50th, and 75th 

quartiles, as these quartiles describe at what depth SAV were concentrated. 

Except for the notable absence of SAV along the southern shoreline (between the 

Chowan and Alligator Rivers) in the video verification, meadows were present along most 

shorelines from the westernmost location at Edenton east to Kitty Hawk Bay. The SAV beds 

were confined to a narrow band along the shore and comprised of relatively variable sized 

patches, ranging in length from the most extensive beds covering more than 10,000 m of 

shoreline (Edenton, Kitty Hawk, and East Lake) to less extensive meadows (<10,000 m, a few 

100 m, or smaller). The three most extensive beds were concentrated in shallow areas protected 

from wind fetch (e.g., sound tributaries and embayments), particularly the strong winter storm 

northeasterly winds capable of affecting SAV distribution (Short and Wyllie-Echeverria 1996; 

Cabello-Pasini et al. 2002). This was noticeable in other locations in AS because the mainstem of 

the Sound had relatively fewer SAV beds compared to the tributaries, which are protected from 

exposure to strong winds and excessive wave energy by reduced wind fetch. 

It was evident from the RAS in 2014, the historical layer in the MEL, and other 

observations that SAV in AS has been a persistent benthic habitat for more than three decades. 

However, SAV distribution has experienced substantial fluctuations. When comparing the 2014 

RAS to the MEL, SAV were more abundant in some areas in the historical layer than in 2014, 

for example, Batchelor Bay. In two other regions, Edenton and East Lake, SAV were more 

abundant in 2014 than in the MEL. In the 1990’s, Davis and Brinson (1990) and Ferguson and 

Wood (1994) completed some of the most extensive surveys of AS prior to the 2014 RAS. The 
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older surveys identified beds that were not detected in 2014 and vice versa. The SAV bed in 

Edenton was one of the most extensive in the 2014 RAS and in the period between 2005 and 

2010 (Quible and Associates 2011). Yet, Ferguson and Wood (1994) did not report a large bed at 

this location, though they sampled the Edenton area in the 1990’s. Similarly, in East Lake, where 

one of the most extensive beds was identified in 2014, Ferguson and Wood (1994) did not report 

a meadow. On the other hand, Ferguson and Wood (1994) reported extensive beds in most of the 

Perquimans River littoral; however, the only significant bed identified in this study was in 

Halsey Bay. Similarly, David and Brinson (1990) indicated that Little River had relatively high 

area coverage and biomass of SAV, but Ferguson and Wood (1994) found no evidence of SAV 

in Little River except on the southwest shore near the entrance to AS. In the 2014 RAS survey in 

Little River, only a small patch of SAV were confirmed by video. Kitty Hawk has been the most 

persistent extensive bed, as it was documented in the 2014 RAS, as well as in Davis and Brinson 

(1990) and Ferguson and Wood (1994). 

Based on anecdotal evidence, it has been reported that as much as 50% of low salinity 

SAV in NC has been lost during the past century (NCDEQ 2016). This isn’t unprecedented; 

similar scales of SAV loss have been reported in other western Atlantic coastal systems, 

including neighboring bays and lagoons both north and south of NC (Orth and Moore 1983a; 

Lefcheck et al. 2018; Morris et al. 2018). Given the spatial and temporal fluctuations of SAV 

suggested by a comparison between the 2014 RAS and the historical surveys, it is tempting to 

draw some inferences from similarities in the anecdotal claim of 50% SAV loss and the 54% 

difference between the 2014 RAS estimate of SAV presence distance and the MEL. However, 

the linear distance comparison between the two layers are rough estimations given the 

differences in sampling methodologies. Additionally, the RAS layer was created with an 
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indicator kriging method set with a 50% probability threshold, which in some instances may 

incorrectly classify SAV presence-absence. Nonetheless, the RAS offers a sense of real SAV 

distribution (McIntyre et al. 2018) in 2014, and previous studies indicated that the 50% 

probability threshold is adequate in binary (i.e. SAV presence-absence) classification mapping 

(Osborne et al. 2001; McIntyre 2019). Therefore, it seems plausible to infer that SAV are 

declining in AS; however, since it is difficult to assign a level of confidence for either of these 

estimates, the empirical weight of evidence inferring SAV status and the potential declines of 

SAV in AS are not sufficiently robust, leading to the second objective of this study. 

Based on the sound-wide survey results, the second objective of this study was to identify 

potential long-term SS in AS. These SS will be incorporated into a larger coast-wide SAV 

monitoring program in NC and serve as a baseline for assessing future status and trends of SAV 

in the Sound (APNEP 2012), while providing critical indicators of SAV health and condition 

during the establishment of a pilot site for the National Monitoring Network (NMN) (Moorman 

et al. 2014), as well as the implementation of the North Carolina Nutrient Criteria Development 

Plan (NCDP) for estuarine waters (North Carolina Department of Environmental and Natural 

Resources 2014). The ten sites that met the prescribed selection criteria span the entire 

geographic range of the Sound and its salinity gradient, and include shorelines associated with; 

1) both high and low wind and wave exposure, 2) the most rural regions of the watershed 

dominated by wetlands, 3) shorelines and associated drainages affected by agriculture and 

forestry activities, 4) large river mouths, 5) relatively smaller tributaries, and 6) modestly 

urbanized shorelines in proximity to Edenton and the highly developed tourist community at 

Kitty Hawk. The distribution of these sites should provide an opportunity to evaluate many of the 

most important environmental and anthropogenic stressors potentially affecting the distribution, 
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abundance, and survival of SAV in AS (Orth et al. 2010; Orth et al. 2017; Lefcheck et al. 2018). 

Furthermore, these strategically located sites can be sampled frequently and at much higher 

resolution by sonar to evaluate the characteristics of the SAV spatial and depth distributions and 

both the inter- and intra-annual variation in SAV coverage and abundance. 

Benefits and Limitations of the Sonar SAV Survey Method 

Practically speaking, as a substitute for other survey approaches, the Lowrance/Biobase 

system demonstrated the capability to cover extensive areas in a relatively short period of time. 

More than 400 km of shoreline were surveyed, nearly continuously, in less than three months 

with a single boat. It is not feasible to achieve this level of resolution at such a large scale with 

in-water sampling. And since the detection of SAV by high altitude airborne sensors in optically 

poor waters like AS has not been reliable, sonar can provide a reasonable substitute with the 

added benefit of a much faster turnaround time for signature interpretation and data processing 

compared to other remote sensing methods and in-water sampling techniques.     

One of the major constraints of sonar is the limitation to water depths deeper than 0.5 m 

(Navico 2014). Besides the difficulty of navigating a power vessel at shallow depths without 

severely disturbing the habitat, sonar cannot reliably distinguish the bottom signature from the 

vegetation signature and may overestimate SAV abundance in shallow water (Radomski and 

Holbrook 2015). The 2014 RAS avoided this problem by restricting all the sonar detections, both 

presence and absence, to depths ≥ 0.77 m. Previous studies indicate that SAV regularly occur at 

depths < 0.77 m in AS (Davis and Brinson 1990; Ferguson and Wood 1994; Quible and 

Associates 2011; Kenworthy et al. 2012), so it is possible that some of the transects dominated 

by absence detections may have had relatively more SAV in shallower water closer to shore, and 

this survey technique underestimated the linear distance of shoreline occupied by SAV.  
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Clearly, there is a need to improve the scope and accuracy of the survey by adopting 

some method of sampling perpendicular to shore in order to confirm the presence-absence of 

SAV in relatively shallower water where the sonar cannot be applied. One practical and cost-

effective option would be to complement the sonar survey with aerial imagery acquired by flying 

a low-altitude (400 ft) drone parallel and inshore of the sonar track. Flying at low altitude and 

relatively slow speed, the imagery acquired by a quad-copter drone that pauses for each 

photograph can avoid many of the inherent water penetration issues, as well as some of the 

logistical problems, typically encountered with high altitude airborne sensors (e.g., fixed wing 

aircraft and satellites). Affordable drone and high-resolution camera technologies are readily 

available with programmable software to plot precise flight lines and produce geospatially 

articulated imagery that could complement the sonar data by filling the SAV information gaps 

between the sonar transects and the shoreline. Future survey efforts should consider investigating 

the potential for combining sonar with drone technologies to evaluate whether a combination of 

these two survey tools can improve the capability for monitoring the status and trends of SAV in 

low-salinity estuaries. 

Signal verification in remote sensing is a necessity, and bottom signal misclassifications 

is a common problem for remote sensing methods (Congalton 1991). Certain substrates can have 

a similar acoustic signature to that of SAV, making it difficult for the sonar algorithm to 

discriminate and classify the substrate correctly; for example, sonar can confuse submerged tree 

stumps, debris or detritus, and flocculent substrate as SAV (Sabol et al. 2002; Helminen et al. 

2019). These and other bottom features may lead to “false positive” classifications of SAV 

signatures and suggest the need for some level of signature verification (ground truthing) to 

accompany the acquisition and interpretation of the sonar. As an alternative to in-water sampling 
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by snorkeling or scuba diving, researchers have employed a low-light sensitive video drop 

camera as the signature verification method (Kenworthy et al. 2012). However, underwater video 

as a verification method should be used with caution. The limitations of underwater video as a 

verification tool can be found in Appendix B of this dissertation. 

Conclusion 

SAV are considered a sentinel species group due to their responsiveness to changes in 

environmental conditions (Orth et al. 2017). The APES has been experiencing increased 

pollution due to increased urbanization in the areas (Lin 2007); hence, it is essential to start 

taking steps to ensure the health of the SAV community by frequently monitoring SAV in the 

Sound. In my study, I confirmed that SAV in AS is confined to a narrow band along the 

shallower portions of the shore; more than 75% of the SAV detection were shallower than 2-m. 

The shallow distribution of SAV and their proximity to the shore, point to SAV’s susceptibility 

to shoreline and water quality changes in AS (Orth et al. 2010). Fortunately, sonar SAV 

monitoring has the added benefit of providing fine-scale depth information along with SAV 

presence, which can be very valuable when characterizing SAV beds and detecting change. 

Changes in SAV beds’ deep edge (the transition zone between vegetated and unvegetated 

substrate along a downward slope) often indicate changes in water quality, like those changes 

caused by human activity (e.g. nutrient loading, increased sedimentation) (Kenworthy et al. 

2014). SAV presence and depth distribution data reported as quartile (50th and 75th) could be 

adopted as way to characterize beds’ edge in the Sound. However, changes in beds’ deep edge 

should be carefully analyzed, as depth limits may be affected by shifts in species composition 

(Orth and Moore 1988). 
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SAV in the Sound is susceptible to other emerging stresses like changing climate and 

rising sea level. Interestingly, in my study, the largest SAV beds in the Sound were in areas 

protected from strong wind action, likely due to SAV’s vulnerability to storms. With an 

uncertain future climate and the possibility of increasing storm activity (Boyles and Raman 

2003) many of these beds could be severely affected. Storms are known to play a major role in 

shaping SAV abundance and distribution. The largest documented SAV loss in the Chesapeake 

Bay was followed by Hurricane Agnes in 1972 (Orth 2010). Moreover, two of the largest beds 

were near urbanized areas (Edenton and Kitty Hawk Bay); urbanized areas tend to have modified 

shorelines and that can minimize the beds’ resilience to sea level changes by inhibiting their 

ability to migrate up, as sea level changes (Orth et al. 2017). Therefore, there is a heightened 

need for SAV monitoring and understanding the factors that affect SAV abundance, particularly 

in relation to water quality, shoreline modification, and climate change. However, identifying 

factors of change will likely proof difficult due to the SAV’s high spatial and temporal 

variability. Nonetheless, the sentinel sites proposed in this study pave the way to begin 

understanding SAV status and trends in the Sound.  



47 

 

References 

Adair, S.E., J.L. Moore, and C.P. Onuf. 1994. Distribution and status of submerged vegetation in 

estuaries of the upper Texas coast. Wetlands 14: 110–121. doi:10.1007/BF03160627. 

APNEP. 2012. Comprehensive conservation and management plan 2012-2022. Raleigh, North 

Carolina. 

APNEP. 2019. Submerged Aquatic Vegetation Maps. https://apnep.nc.gov/our-

work/monitoring/submerged-aquatic-vegetation-monitoring. Accessed 9 September 2019. 

Biber, P.D., C.L. Gallegos, and W.J. Kenworthy. 2008. Calibration of a bio-optical model in the 

North River, North Carolina (Albemarle-Pamlico Sound): A tool to evaluate water quality 

impacts on seagrasses. Estuaries and Coasts 31: 177–191. doi:10.1007/s12237-007-9023-6. 

Biobase. 2019. EcoSound FAQs. 

Boyles, R.P., and S. Raman. 2003. Analysis of climate trends in North Carolina (1949-1998). 

Environment International 29: 263–275. doi:10.1016/S0160-4120(02)00185-X. 

Bučas, M., A. Šaškov, A. Šiaulys, and Z. Sinkevičienė. 2016. Assessment of a simple 

hydroacoustic system for the mapping of macrophytes in extremely shallow and turbid 

lagoon. Aquatic Botany 134: 39–46. doi:10.1016/j.aquabot.2016.06.009. 

Cabello-Pasini, A., C. Lara-Turrent, and R.C. Zimmerman. 2002. Effect of storms on 

photosynthesis, carbohydrate content and survival of eelgrass populations from a coastal 

lagoon and the adjacent open ocean. Aquatic Botany 74: 149–164. doi:10.1016/S0304-

3770(02)00076-1. 

Carpenter, D.E., and L. Dubbs. 2012. 2012 Albemarle-Pamlico ecosystem assessment, 

Albemarle-Pamlico National Estuary Partnership. Raleigh, North Carolina. 

Carraway, R.J., and L.J. Priddy. 1983. Mapping of submerged grass beds in Core and Bogue 

Sounds, Carteret County, North Carolina by conventional aerial photography. Morehead 

City, NC. 

Christiaen, B., L. Ferrier, P. Dowty, J. Gaecle, and H. Berry. 2017. Puget Sound seagrass 

monitoring report monitoring year 2015. Olympia, Washington. 

Christian, R.R., and S. Mazzilli. 2007. Defining the coast and sentinel ecosystems for coastal 

observations of global change. Hydrobiologia 577: 55–70. doi:10.1007/s10750-006-0417-4. 

Congalton, R.G. 1991. A review of assessing the accuracy of classifications of remotely sensed 

data. Remote Sensing of Environment 37: 35–46. 

Costello, C.T., and W.J. Kenworthy. 2011. Twelve-year mapping and change analysis of 

Eelgrass (Zostera marina) areal abundance in Massachusetts (USA) identifies statewide 

declines. Estuaries and Coasts 34: 232–242. 

Davis, G.J., and M.M. Brinson. 1976. The submerged macrophytes of the Pamlico River Estuary, 

North Carolina. Raleigh, NC. 



48 

 

Davis, G.J., and M.M. Brinson. 1990. A survey of submersed aquatic vegetation of the Currituck 

Sound and the western Albemarle-Pamlico estuarine system. Greenville, North Carolina. 

Dealteris, J.T., B.D. Kilpatrick, and R.B. Rheault. 2004. A comparative evaluation of the habitat 

value of shellfish aquaculture gear, submerged aquatic vegetation and a non-vegetated 

seabed. Journal of Shellfish Research 23: 867–874. 

Deaton, A.S., W.S. Chappell, J. O’Neal, K. Hart, and B. Boutin. 2010. North Carolina Coastal 

Habitat Protection Plan. Morehead City, North Carolina. 

Dennison, W.C., R.J. Orth, K.A. Moore, J.C. Stevenson, V. Carter, S. Kollar, P.W. Bergstrom, 

and R.A. Batiuk. 1993. Assessing water quality with submerged aquatic vegetation: Habitat 

requirements as barometers of Chesapeake Bay health. BioScience 43: 86–94. 

doi:10.2307/1311969. 

Duarte, C.M. 1987. Use of echosounder tracings to estimate aboveground biomass of 

submberged plants in lakes. Canadian Journal of Fisheries and Aquatic Sciences 44: 732–

735. 

ESRI. 2011. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research 

Institute. 

Ferguson, R.L., and L.L. Wood. 1989. Submerged aquatic vegetation in the Albemarle-Pamlico 

estuarine systems. Beaufort, North Carolina. 

Ferguson, R.L., and L.L. Wood. 1990. Mapping submerged aquatic vegetation in North Carolina 

with conventional aerial photography. Federal Coastal Wetland Mapping Programs. 

Washington, District of Columbia. 

Ferguson, R.L., and L.L. Wood. 1994. Rooted vascular aquatic beds in the Albemarle-Pamlico 

estuarine system. Beaufort, North Carolina: National Marne Fisheries, National Oceanic 

and Atmospheric Administration. 

Ferguson, R.L., L.L. Wood, and G.J. Davis. 1993. Monitoring spatial change in seagrass habitat 

with aerial photography. Photogrammetric Engineering and Remote Sensing 59: 1033–

1038. 

Finkbeiner, M., B. Stevenson, and R. Reaman. 2001. Guidance for benthic habitat mapping: An 

aerial phographic approach. Charleston, South Carolina. 

Flaherty-Walia, K.E., R.E.J. Matheson, and R. Paperno. 2015. Juvenile Spotted Seatrout 

(Cynoscion nebulosus) habitat use in an eastern Gulf of Mexico estuary: The effects of 

seagrass bed architecture, seagrass species composition, and varying degrees of freshwater 

influence. Estuaries and Coasts 38: 353–366. 

Fourqurean, J.W., C.M. Duarte, H. Kennedy, N. Marbà, M. Holmer, M.A. Mateo, E.T. 

Apostolaki, et al. 2012. Seagrass ecosystems as a globally significant carbon stock. Nature 

Geoscience 5: 1–5. 

Fourqurean, J.W., A. Willsie, C.D. Rose, and L.M. Rutten. 2001. Spatial and temporal pattern in 

seagrass community composition and productivity in South Florida. Marine Biology 138: 

341–354. doi:10.1007/s002270000448. 



49 

 

Gallegos, C.L. 2001. Calculating optical water quality targets to restore and protect submerged 

aquatic vegetation: Overcoming problems in partitioning the diffuse attenuation coefficient 

for Photosynthetically Active Radiation. Estuaries 24: 381–397. doi:10.2307/1353240. 

Giese, G.L., H.B. Wilder, and G.G.J. Parker. 1985. Hydrology of major estuaries and sounds of 

North Carolina. Alexandria, Virginia. 

Godlewska, M., A. Świerzowski, and I.J. Winfield. 2004. Hydroacoustics as a tool for studies of 

fish and their habitat. Ecohydrology and Hydrobiology 4: 417–427. 

Greening, H., A. Janicki, and E.T. Sherwood. 2016. Segrass recovery in Tampa Bay, Florida 

(USA). In The Wetland Book I: Structure and Function, Management, and Methods, ed. C. 

M. Finlayson, 1st ed. Springer. doi:10.1007/978-94-007-6173-5. 

Heck, K.L.J., and T.A. Thoman. 1984. The nursery role of seagrass meadows in the upper and 

lower reaches of the Chesapeake Bay. Coastal and Estuarine Research Federation 7: 70–

92. 

Helminen, J., T. Linnansaari, M. Bruce, R. Dolson-Edge, and R.A. Curry. 2019. Accuracy and 

precision of low-cost echosounder and automated data processing software for habitat 

mapping in a large river. Diversity 11: 1–18. doi:10.3390/d11070116. 

Hermand, J.P., P. Nascetti, and F. Cinelli. 1998. Inversion of acoustic waveguide propagation 

features to measure oxygen synthesis by Posidonia oceanica. Oceans Conference Record 

(IEEE) 2: 919–926. doi:10.1109/oceans.1998.724372. 

Heuvel, M.R., J.K. Hitchcock, M.R.S. Coffin, C.C. Pater, and S.C. Courtenay. 2019. Inorganic 

nitrogen has a dominant impact on estuarine eelgrass distribution in the southern Gulf of St. 

Lawrence, Canada. Limnology and Oceanography: 1–15. doi:10.1002/lno.11185. 

Hovel, K.A., M.S. Fonseca, D.L. Myer, W.J. Kenworthy, and P.E. Whitfield. 2002. Effects of 

seagrass landscape structure, structural complexity and hydrodynamic regime on 

macrofaunal densities in North Carolina seagrass beds. Marine Ecology Progress Series 

243: 11–24. 

Howell, A.W., and R.J. Richardson. 2019. Correlation of consumer grade hydroacoustic 

signature to submersed plant biomass. Aquatic Botany 155. Elsevier: 45–51. 

doi:10.1016/j.aquabot.2019.02.001. 

Jarosław, T., N. Gorska, and Z. Klusek. 2003. Statistical analysis of acoustic echoes from 

underwater meadows in the eutrophic Puck Bay (southern Baltic Sea). Aquatic Living 

Resources 16: 215–221. doi:10.1016/S0990-7440(03)00015-9. 

Jassby, A.D. 1998. Interannual variation at three inland water sites: Implications for sentinel 

sites. Ecological Applications 8: 277–287. doi:10.1890/1051-

0761(1998)008[0277:IVATIW]2.0.CO;2. 

Jia, P., and M. Li. 2012. Circulation dynamics and salt balance in a lagoonal estuary. Journal of 

Geophysical Research 117: 1–16. doi:10.1029/2011JC007124. 

Kenworthy, W.J., C.A. Buckel, D.E. Carpenter, D.B. Eggleson, D. Field, C.S. Krahforst, and J.J. 

Luczkovich. 2012. Development of submerged aquatic vegetation monitoring protocols in 



50 

 

North Carolina. Morehead City, North Carolina. 

Kenworthy, W.J., and M.S. Fonseca. 1996. Light requirements of seagrasses Halodule wrightii 

and Syringodium filiforme derived from the relationship between diffuse light attenuation 

and maximum depth distribution. Estuaries 19: 740–750. doi:10.2307/1352533. 

Kenworthy, W.J., C.L. Gallegos, C.T. Costello, D. Field, and G. di Carlo. 2014. Dependence of 

eelgrass (Zostera marina) light requirements on sediment organic matter in Massachusetts 

coastal bays: Implications for remediation and restoration. Marine Pollution Bulletin 83: 

446–457. doi:10.1016/j.marpolbul.2013.11.006. 

Komatsu, T., C. Igarashi, K. Tatsukawa, S. Sultana, Y. Matsuoka, and S. Harada. 2003. Use of 

multi-beam sonar to map seagrass beds in Otsuchi Bay on the Sanriku Coast of Japan. 

Aquatic Living Resources 16: 223–230. doi:10.1016/S0990-7440(03)00045-7. 

Kruss, A., P. Blondel, J. Tegowski, J. Wiktor, and A. Tatarek. 2008. Estimation of macrophytes 

using single-beam and multibeam echosounding for environmental monitoring of arctic 

fjords (Kongsfjord, West Svalbard Island). The Journal of the Acoustical Society of America 

123: 3213. doi:10.1121/1.2933397. 

Lantz, S.M., D.E. Gawlik, and M.I. Cook. 2010. The effects of water depth and submerged 

aquatic vegetation on the selection of foraging habitat and foraging success of wading birds. 

The Condor 112: 460–469. doi:10.1525/cond.2010.090167. 

Lefcheck, J.S., R.J. Orth, W.C. Dennison, D.J. Wilcox, R.R. Murphy, J. Keisman, C. Gurbisz, et 

al. 2018. Long-term nutrient reductions lead to the unprecedented recovery of a temperate 

coastal region. Proceedings of the National Academy of Sciences 115: 3658–3662. 

doi:10.1073/pnas.1715798115. 

Li, X., D.E. Weller, C.L. Gallegos, T.E. Jordant, and H.-C.C. Kim. 2007. Effects of watershed 

and estuarine characteristics on the abundance of submerged aquatic vegetation in 

Chesapeake Bay subestuaries. Estuaries and Coasts 30: 840–854. 

doi:10.1007/BF02841338. 

Lindquist, N.L., and S.R. Fegley. 2016. Development of a comprehensive North Carolina salinity 

database to facilitate management and restoration of critical fish habitats. North Carolina 

Coastal Recreational Fishing License Final Report: 2013-H-015. 

Luettich, R.A., S.D. Carr, J. V. Reynolds-Fleming, C.W. Fulcher, and J.E. McNinch. 2002. 

Semi-diurnal seiching in a shallow, micro-tidal lagoonal estuary. Continental Shelf 

Research 22: 1669–1681. doi:10.1016/S0278-4343(02)00031-6. 

Lutcavage, M., and J.A. Musick. 1985. Aspects of the Biology of Sea Turtles in Virginia. Copeia 

1985: 449–456. 

Maceina, M.J., and J. V. Shireman. 1980. The use of a recording fathometer for determnation of 

distribution and biomass of Hydrilla. Journal of Aquatic Plant Management 18: 34–39. 

Maceina, M.J., J. V. Shireman, K.A. Langeland, and D.E.J. Canfield. 1984. Prediction of 

submerged plant biomass by use of a recording fathometer. Journal of Aquatic Plant 

Management 22: 35–38. 



51 

 

Madsen, J.D. 1993. Biomass techniques for monitoring and assessing control of aquatic 

vegetation. Lake and Reservoir Management 7: 141–154. 

doi:10.1080/07438149309354266. 

Madsen, J.D., P.A. Chambers, W.F. James, E.W. Koch, and D.. Westlake. 2001. The interaction 

between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 

444: 71–84. doi:10.1023/A. 

Madsen, J.D., and R.M. Wersal. 2017. A review of aquatic plant monitoring and assessment 

methods. Journal of Aquatic Plant Management 55: 1–13. 

McCarthy, E.M. 1997. Acoustic characterization of submerged aquatic vegetation. In 

SACLANTCEN Proceedings Series CP-45, High Frequency Acoustics in Shallow Water, ed. 

N. G. Pouliquen, E. Bergem, and A. P. Lyons, 362–369. Lerici, Italy: NATO SACLANT 

Undersea Research Centre. 

McCarthy, E.M., and B.M. Sabol. 2000. Acoustic characterization of submerged aquatic 

vegetation: Military and environmental monitoring applications. In OCEANS 2000 

MTS/IEEE Conference and Exhibition. Conference Proceedings, 1957–1961. Providence, 

Rhode Island: IEEE. doi:10.1109/OCEANS.2000.882226. 

McIntyre, K., K. McLaren, and K. Prospere. 2018. Mapping shallow nearshore benthic features 

in a Caribbean marine-protected area: Assessing the efficacy of using different data types 

(hydroacoustic versus satellite images) and classification techniques. International Journal 

of Remote Sensing 39. Taylor & Francis: 1117–1150. doi:10.1080/01431161.2017.1395924. 

Merkel and Associates, I. 2014. Southern California Bight Regional Eeglrass Surveys: Alamitos 

Bay, San Grabriel River, Anaheim Bay/Huntington Harbour, Agua Hedionda Lagoon, 

Batiquitos Lagoon, and San Dieguito. San Diego, CA. 

Micheli, F., and C.H. Peterson. 1999. Estuarine vegetated habitats as corridors for predator 

movements. Conservation Biology 13: 869–881. doi:10.1046/j.1523-1739.1999.98233.x. 

Moorman, M.C., S.A. Fitzgerald, L.N. Gurley, A. Rhoni-Aref, and K.A. Loftin. 2017. Water 

quality and bed sediment quality in the Albemarle Sound, North Carolina, 2012–14. Open-

File Report 2016-1171. Reston, Virginia. doi:10.3133/ofr20161171. 

Moorman, M.C., K.R. Kolb, and S. Supak. 2014. Estuarine monitoring programs in the 

Albemarle Sound study area, North Carolina. Reston, Virginia. 

Morris, L., L. Hall, R.H. Chamberlain, and C. Jacoby. 2018. Summary report for the Northern 

Indian River Lagoon. St. Petersburg, Florida. doi:10.13140/RG.2.2.12366.05445. 

Navico, I. 2014. User reference guide. Minneapolis, MN. 

Norris, J.G., S. Wyllie-Echeverria, T. Mumford, A. Bailey, and T. Turner. 1997. Estimating 

basal area coverage of subtidal seagrass beds using underwater videography. Aquatic 

Botany 58: 269–287. doi:10.1016/S0304-3770(97)00040-5. 

NCDENR. 2014. North Carolina nutrient criteria development plant. Raleigh, North Carolina. 

NCDEQ. 2016. North Carolina Coastal Habitat Protection Plan Source Document. Morehead 



52 

 

City, North Carolina. 

NCDMF. 2008. Inventory of SAV maps and survey work in coastal North Carolina (1981-2008). 

Morehead City, North Carolina. 

Orth, R.J., T.J.B. Carruthers, W.C. Dennison, C.M. Duarte, J.W. Fourqurean, K.L.J. Heck, A.R. 

Hughes, et al. 2006. A global crisis for seagrass ecosystems. Bioscience 56: 987–996. 

Orth, R.J., W.C. Dennison, J.S. Lefcheck, C. Gurbisz, M. Hannam, J. Keisman, J.B. Landry, et 

al. 2017. Submersed aquatic vegetation in Chesapeake Bay: Sentinel species in a changing 

world. BioScience 67: 698–712. doi:10.1093/biosci/bix058. 

Orth, R.J., and K.A. Moore. 1983a. Chesapeake Bay: An unprecedented decline in submerged 

aquatic vegetation. Science 222: 51–53. doi:10.1126/science.222.4619.51. 

Orth, R.J., and K.A. Moore. 1983b. Submerged vascular plants: Techniques for analyzing their 

distribution and abudance. Marine Technology Society Journal 17: 38–52. 

Orth, R.J., and K.A. Moore. 1988. Distribution of Zostera marina L. and Ruppia maritima L. 

sensu lato along depth gradients in the lower Chesapeake Bay, U.S.A. Aquatic Botany 32: 

291–305. doi:10.1016/0304-3770(88)90122-2. 

Orth, R.J., M.R. Williams, S.R. Marion, D.J. Wilcox, T.J.B. Carruthers, K.A. Moore, W.M. 

Kemp, et al. 2010. Long-term trends in submersed aquatic vegetation (SAV) in Chesapeake 

Bay, USA, related to water quality. Estuaries and Coasts 33: 1144–1163. 

doi:10.1007/s12237-010-9311-4. 

Osborne, P.E., J.C. Alonso, and R.G. Bryant. 2001. Modelling landscape-scale habitat use using 

GIS and remote sensing: A case study with great bustards. Journal of Applied Ecology 38: 

458–471. doi:10.1046/j.1365-2664.2001.00604.x. 

Pasqualini, V., P. Clabaut, G. Pergent, L. Benyoussef, and C. Pergent-Martini. 2000. 

Contribution of side scan sonar to the management of mediterranean littoral ecosystems. 

International Journal of Remote Sensing 21: 367–378. doi:10.1080/014311600210885. 

Quible and Associates. 2011. A compensatory mitigation plan requierement for The Fund for 

Sandy Point North Carolina, LLC. Kitty Wawk, North Carolina. 

R Core Team. 2014. R: A language and environment for statistical computing. Vienna, Austria: 

R Foundation for Statistical Computing. 

Radomski, P., and B. V. Holbrook. 2015. A comparison of two hydroacoustic methods for 

estimating submerged macrophyte distribution and abundance: A cautionary note. Journal 

of Aquatic Plant Management 53: 151–159. 

Romero, J., K.-S. Lee, M. Pérez, M.A. Mateo, and T. Alcoverro. 2006. Nutrient dynamics in 

seagrass ecosystems. Seagrasses: Biology, ecology and conservation. Springer: 227–254. 

Rozas, L.P., and W.E. Odum. 1988. Occupation of submerged aquatic vegetation by fishes: 

Testing the roles of food and refuge. Oeco 77: 101–106. doi:10.1007/BF00380932. 

Sabol, B.M., and J. Burczinski. 1998. Digital echosounder for characterizing vegetation in 

shallow water environments. In Proceedings of the Fourth European Conference on 



53 

 

Undewater Acoustics, 165–168. Rome, Italy: CNR-IDAC. 

Sabol, B.M., J. Kannenberg, and J.G. Skogerboe. 2009. Integrating acoustic mapping into 

operational aquatic plant management: A case study in Wisconsin. Journal of Plant 

Management 47: 44–52. 

Sabol, B.M., R.E.J. Melton, R. Chamberlain, P. Doering, and K. Haunert. 2002. Evaluation of a 

digital echosounder system for detection of submersed aquatic vegetation. Estuaries 25: 

133–141. doi:10.1007/BF02696057. 

Sabol, B.M., R.E. Meltona, and R.. Kasul. 1998. Method and apparatus for hydroacoustic 

detection of submersed aquatic vegetation. Washington, District of Columbia: U.S. Patent 

Office. 

Short, F.T., and S. Wyllie-Echeverria. 1996. Natural and human-induced disturbance of 

seagrasses. Environmental conservation 23: 17–27. 

Spears, B.M., I.D.M. Gunn, L. Carvalho, I.J. Winfield, B. Dudley, K. Murphy, and L. May. 

2009. An evaluation of methods for sampling macrophyte maximum colonisation depth in 

Loch Leven, Scotland. Aquatic Botany 91: 75–81. doi:10.1016/j.aquabot.2009.02.007. 

Stent, C.J., and S. Hanley. 1985. A recording echo sounder for assessing submerged aquatic 

plant populations in shallow lakes. Aquatic Botany 21: 377–394. 

Thayer, G.W., K.A. Bjorndal, J.C. Ogden, S.L. Williams, and J.C. Zieman. 1984. Role of large 

herbivores  in seagrass communities. Estuaries 7: 351–376. 

Tseng, Y.-T. 2009. Recognition and assessment of seafloor vegetation using a single beam 

echosounder. Curtin University of Technology. 

Valley, R.D. 2016. Spatial and temporal variation of aquatic plant abundance: Quantifying 

change. Journal of Aquatic Plant Management 54: 95–101. 

Valley, R.D., and M.T. Drake. 2005. Accuracy and precision of hydroacoustics estimates of 

aquatic vegetation and the repeatability of whole-lake surveys: Field tests with a 

commercial echosounder. Minnesota Department of Natural Resources Investigational 

Report. 

Valley, R.D., M.T. Drake, and C.S. Anderson. 2005. Evaluation of alternative interpolation 

techniques for the mapping of remotely-sensed submersed vegetation abundance. Aquatic 

Botany 81: 13–25. doi:10.1016/j.aquabot.2004.09.002. 

Valley, R.D., M.B. Johnson, D.L. Dustin, K.D. Jones, M.R. Lauenstein, and J. Nawrocki. 2015. 

Combining hydroacoustic and point-intercept survey methods to assess aquatic plant species 

abundance patterns and community dominance. Journal of Aquatic Plant Management 53: 

121–129. 

Vis, C., C. Hudon, and R. Carignan. 2003. An evaluation of approaches used to determine the 

distribution and biomass of emergent and submerged aquatic macrophytes over large spatial 

scales. Aquatic Botany 77: 187–201. doi:10.1016/S0304-3770(03)00105-0. 

Voigts, D.K. 1976. Aquatic invertebrate abundance in relation to changing marsh vegetation. The 



54 

 

American Midland Naturalist 95: 313–322. 

Waycott, M., C.M. Duarte, T.J.B. Carruthers, R.J. Orth, W.C. Dennison, S. Olyarnik, A. 

Calladine, et al. 2009. Accelerating loss of seagrasses across the globe threatens coastal 

ecosystems. Proceedings of the National Academy of Sciences of the United States of 

America 16: 12377–12381. doi:10.1073/pnas.0905620106. 

Wilson, P.S., and K.H. Dunton. 2009. Laboratory investigation of the acoustic response of 

seagrass tissue in the frequency band 0.5–2.5 kHz. The Journal of the Acoustical Society of 

America 125: 1951–1959. doi:10.1121/1.3086272. 

Winfield, I.J., C. Onoufriou, M.J. O’Connell, M. Godlewska, R.M. Ward, A.F. Brown, and M.L. 

Yallop. 2007. Assessment in two shallow lakes of a hydroacoustic system for surveying 

aquatic macrophytes. Hydrobiologia 584: 111–119. doi:10.1007/s10750-007-0612-y. 

Winfield, I.J., J. van Rijn, and R.D. Valley. 2015. Hydroacoustic quantification and assessment 

of spawning grounds of a lake salmonid in a eutrophicated water body. Ecological 

Informatics 30: 235–240. doi:10.1016/j.ecoinf.2015.05.009. 

 

  



55 

 

Figures 

 

Figure 1. Diagram: Lowrance HDS-5 Gen 2 down-scan mounted mid-way along the gunnel on the hull of the boat. 

 

Figure 2 Map of the Albemarle Sound, North Carolina. The shaded areas represent locations with SAV from the 

Maximum Extent Layer (MEL) along the same shoreline that was sampled in the 2014 RAS sonar survey. The MEL 

was created by the NCDEQ (NCDMF 2008) comprising observations of SAV presence collected between 1987 and 

2008. 

Transducer 

Transducer mount 
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Figure 3. Map of Albemarle Sound, North Carolina. The shaded area along the shore represents the area sampled 

during the 2014 SAV survey (RAS). Note that the width of the sampled area does not represent the sonar’s sampling 

swath, it only represents the linear distance covered by the sampling.  

 

Figure 4. Frequency histogram of sonar sampling depth (m) with SAV present (black) and absent (gray). 
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Figure 5. Boxplot showing the median depth (bar), interquartile range (box), and outer quartiles (whiskers) for the 

depth reported from the sonar between areas with Submerged Aquatic Vegetation (SAV) absent (1.36 m) and present 

(1.27 m). 
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Figure 6. Map showing the location of the three largest SAV beds detected in the 2014 RAS in Albemarle Sound, 

NC; Edenton (top-left), Kitty Hawk (top-right), and East Lake at the mouth of the Alligator river (bottom-right). The 

shaded areas represent areas with 50% or greater probability of having SAV based on the sonar data collected in 

2014. Note that the width of the polygons does not represent the sonar’s sampling swath, it only represents the 

linear distance covered by the sampling.  
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Figure 7. Map showing the location of SAV beds detected in the 2014 RAS in Albemarle Sound, NC; Edenton Bay 

and mouth of the Chowan River (top-left), Pasquotank River and Little River (top-right), and Perquimans River 

(bottom-left). The shaded areas represent 50% or greater probability of having SAV based on the sonar collected in 

2014. Note that the width of the polygons does not represent the sonar’s sampling swath, it only represents the 

linear distance covered by the sampling. 
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Figure 8. Map showing the location of SAV beds detected in the 2014 RAS in Albemarle Sound, NC; Alligator River 

and East Lake (top), and at North River (bottom). The shaded areas represent areas with 50% or greater probability 

of having SAV based on the sonar data collected in 2014. Note that the width of the polygon does not represent the 

sonar’s sampling swath, it only represents the linear distance covered by the sampling. 
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Figure 9. Edenton (top-left), where MEL and RAS overlap and East Lake (top-right), where MEL and RAS reveals 

areas of loss and gain
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Figure 10. Edenton (top-left), Kitty Hawk (top-right), and East Lake at the mouth of the Alligator river (bottom) 

were the three areas identified with the greatest abundance of Submerged Aquatic Vegetation (SAV) in AS in 2014. 

The shaded circles represent SAV positive video-points and the white circles represent SAV negative video-points. 
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Tables 

Table 2. SAV beds identified with sonar and video in the 2014 RAS. 

AS region 
# beds 

on sonar 

# beds 

verified 

(video) 

# beds in 

sonar 

and 

MEL 

Largest 

Bed 

Length 

(km) 

Fig. 

# 

Salinity 

range 

(psu) 

Temp. 

range (°C) 

Secchi 

range (m) 

Largest bed 

longitude 

(meters) 

Largest bed 

latitude 

(meters) 

Kitty Hawk Bay 3 3 3 30 7 2.25 - 8.76 23 - 27.2 0.38 - 0.73 906600.225 260476.766 

East Lake  10 4 9 12 7 2 - 4.2 26.5 - 29.47 0.22 - 0.64 891769.355 249224.275 

Main stem 24 4 14 17.1 7, 8 0.04 - 1.6 22.8 - 28.92 0.6 - 1.4 826071.882 255243.951 

Perquimans River 4 1 4 7.4 8 0.16 - 1.23 20.93 - 26.59 0.66 - 0.9 848879.011 265615.639 

Chowan River 3 2 3 2.4 8 0.04 - 0.05 25.69 - 27.57 0.6 - 0.91 818054.991 253047.905 

Pasquotank River 14 0 2 2.9 8 1.1 - 2.65 23.1 - 25.8 0.5 - 0.68 873909.661 279362.696 

North River 9 5 5 5.7 9 2.06 - 3.1 23.1 - 24.56 0.32 - 0.53 890475.956 273281.326 



 

 

 

 

CHAPTER 2: Intra- and inter-annual variation in the abundance of Submerged Aquatic 

Vegetation (SAV) at 10 sentinel monitoring sites in Albemarle Sound, North Carolina USA 

Abstract 

In natural resources management, long-term synoptic monitoring is needed to establish 

baseline status, understand spatial and temporal variability, and detect changes in resources. 

Monitoring data can help administrators and managers make better informed decisions about 

policy and conservation regarding the implementation of actions to address suspected drivers of 

change. Rarely is it possible to sample an entire resource, and a sentinel-site approach is 

sometimes used as an alternative by adopting a subset of strategically selected locations to 

represent the larger ecosystem. Due to limited resources, yet a pressing need to monitor SAV 

resources in low-salinity low-visibility estuaries in North Carolina, this study investigated SAV 

distribution and abundance at ten candidate sentinel sites in Albemarle Sound (AS) using single-

beam sonar and in-water quadrat sampling. Sampling was conducted twice annually (spring and 

fall) for two years (2015-2016) to document the inter- and intra-annual variation. I aimed to test 

two hypotheses; first, SAV would decline inter-annually across my sampling sites. I expected 

these results, as SAV losses have been reported across the globe and at nearby estuaries 

(Waycott et al. 2009; Orth et al. 2010). Second, SAV would be more abundant in the fall than the 

spring across all the sentinel sites. I expected a fall peak, as previous literature for NC low-

salinity regions indicated that SAV abundance would be higher in the fall than the spring (Quible 

and Associates 2011; Kenworthy et al. 2012). 

The surveys showed a wide range of SAV abundance (0 – 68% cover) and only three of 

the 10 sites appeared to have persistent and optimal conditions for SAV to thrive. Intra- and 
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inter-annual SAV variation was highly asynchronous at both regional (sound-wide) and local 

(site) scales, which makes establishing temporal trends and peak abundances for SAV in AS 

challenging. Three sites had abundant SAV (>20% SAV occurrence), and two of these sites were 

near urbanized areas (Edenton and Kitty Hawk Bay). Most sites had little SAV (<10% SAV 

occurrence). Sonar and quadrat sampling yielded unique temporal variation (inter- and intra- 

annual variation) results, suggesting that depth plays a factor on temporal SAV distribution. 

Based on this and a prior longer-term study of temporal variation at one of the sites, it will be 

necessary to continue monitoring the ten sentinel sites twice annually (spring and fall) for at least 

five years to improve our understanding of the variability in status and trends of SAV. Future 

surveys should be supplemented by in-water sampling to assess species composition, as species 

turnover may play an important role in affecting spatial and temporal changes. Given the 

minimum depth for sonar sampling (0.5 – 0.79 m), the sonar method under-samples SAV in 

relatively shallow water, so it will be necessary to adopt alternative methods (e.g., in-water, low 

altitude AUVs) to comprehensively monitor this resource.    

Keywords 

Hydroacoustics, sonar, underwater video, synoptic surveys, rapid assessment, low-salinity, North 

Carolina.  
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Introduction 

Coastal ecosystems are experiencing pressure from recent trends of increased global 

temperature, sea-level rise, and human population growth (Crowley 1990; Cohen 2005; Miller et 

al. 2005), and rates of change in coastal ecosystems are occurring at a fast pace (Orth et al. 2006; 

Barbier et al. 2011). To plan and implement conservation and restoration efforts, it is critical for 

natural resources management to first know current and past conditions, and the factors that 

influence change (McDonald et al. 2002). Rigorous and scientific-based monitoring programs 

are needed to differentiate between natural variability (i.e., intrinsic cycles) and external 

variability (e.g., anthropogenic factors) (Jassby 1998).  

Federal and state agencies, like EPA under the Clean Water Act, are committed to 

monitor and assess the condition of the nation’s aquatic ecosystem, so great effort has been 

allocated to developing long-term monitoring programs capable of detecting change and 

assessing environmental risk (McDonald et al. 2002). Through these monitoring programs, 

agencies responsible for resources management aim to implement informed management 

decisions. Monitoring efforts often focus on indicator species at landscape and regional levels. 

Aerial remote sensing methods have allowed agencies to monitor resources that cover large 

areas, relatively fast; however, these methods are not always adequate due to financial resources 

or methodological limitations. The sentinel-site approach, where a small number of locations are 

chosen for intense sampling, has been frequently adopted to identify background and external 

variability, when sampling an entire system is not feasible (Jassby 1998). This approach is 

particularly useful when there is previous knowledge about the intrinsic variability across a 

system. However, extrapolating from a few sites to an entire system can be challenging. 
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Nonetheless, the sentinel-site approach often delivers the first clues to change and provide some 

initial understanding about the mechanisms that drive the changes. Here, I used the sentinel-site 

approach to begin understanding the natural variability of SAV in AS; an important indicator 

species in coastal systems (Orth et al. 2017).  

SAV are one of the most productive and ecologically valuable aquatic habitats on earth. 

Hundreds of fish and wildlife species depend on SAV for nursery habitat, shelter, and 

nourishment (Heck and Thoman 1984; Murphey and Fonseca 1995; Barbier et al. 2011). Based 

on the analysis of 215 SAV studies across the globe, Waycott et al. (2009) reported that marine 

SAV have been declining at a rate of 110 km2 yr-1 since 1980. Many of the declines have been 

attributed to increased eutrophication and turbidity in coastal systems, largely the result of 

activities like watershed and coastal development, deforestation, and shoreline modification, 

which can impair the productivity, growth, and reproduction of SAV (Chang 2008; Williams et 

al. 2010; Landry and Golden 2017). The documented SAV losses (Kemp et al. 1983; Orth et al. 

2006; Deaton et al. 2010; Costello and Kenworthy 2011; Short et al. 2014; NCDEQ 2016) have 

encouraged federal and state agencies to become more concerned about the status and trends of 

SAV resources and the factors responsible for their decline. Despite this heightened awareness 

for SAV in NC, much of the research and surveys to date have focused on high-salinity estuarine 

regions, while low-salinity SAV distribution and temporal trends have not been as well 

documented (Thayer et al. 1984; Ferguson and Wood 1990; Orth et al. 2010; Kenworthy et al. 

2012; NCDEQ 2016). 

In order to make abundance and trends assessments, coastal managers need routine 

monitoring data to first identify SAV baseline distribution and temporal variation (Orth et al. 
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2010; Curran 2011). Low-salinity SAV have high inter-annual variation; therefore, beds need to 

be monitored for multiple growing seasons before assessing their status (Orth et al. 2010; Patrick 

and Weller 2015; Bolpagni et al. 2016). To optimize SAV detection, it is also common practice 

to sample during peak abundance to determine the maximum delineation of the resource’s 

distribution and abundance; hence, initial monitoring efforts should aim to identify the peak 

signature period for SAV in a waterbody. Understanding SAV’s seasonal variation and peak 

abundance can allow coastal resources managers to develop the most effective SAV monitoring 

protocols and sampling schedules in order to make informed management decisions. 

The distribution and abundance of SAV in low-salinity regions is poorly understood 

(Davis and Brinson 1990; Stanley 1992; Kenworthy et al. 2012). This is partly because low-

salinity SAV species are more taxonomically diverse, ephemeral, and exhibit a greater temporal 

and spatial variation than their higher salinity counterparts, the seagrasses (Orth et al. 2010; 

Quible and Associates 2011; Kenworthy et al. 2012). Seasonal and intra-annual variation in low-

salinity SAV are sensitive to several environmental factors, such as fluctuations in climate, 

precipitation, and river discharges; as well as indigenous and non-native species composition 

(Moore et al. 2000; Burkholder et al. 2004; Orth et al. 2010; Quible and Associates 2011; 

Kenworthy et al. 2012). 

Large-scale synoptic surveys and monitoring of SAV distribution and abundance trends 

have also focused more on high-salinity regions partially due to the effectiveness of airborne 

(aerial and satellite imaging) optical remote sensing methods (Ferguson et al. 1993; Orth et al. 

2010; Costello and Kenworthy 2011; APNEP 2012; APNEP 2019). However, low-salinity 

regions frequently have turbid waters resulting from freshwater inflow with higher 
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concentrations of organic matter, tannins, and suspended sediments (Giese et al.1985). These 

conditions result in poor water transparency and make it difficult to detect SAV with optical 

remote sensing methods that require clear water to delineate benthic signatures (Finkbeiner et al. 

2001; Madsen and Wersal 2017). Aerial remote sensing methods can cover large areas in a 

relatively short period of time; however, they are constrained by fluctuating water levels (tides 

and winds) and atmospheric weather conditions (Finkbeiner et al. 2001; Vis et al. 2003). Though 

aerial surveys have been attempted in low-salinity regions of NC, these surveys have been 

irregular and incomplete, and they underestimated both presence and general distribution of SAV 

(Ferguson and Wood 1989; Ferguson and Wood 1990; Kenworthy et al. 2012). Other in situ 

surveying methodologies, like in-water observations, can overcome water clarity issues, but they 

cannot easily, efficiently, and repeatedly cover large and not easily accessible areas, as they are 

labor intensive, time consuming, and cost prohibitive (Norris et al. 1997). 

Remote sensing methodologies like sonar and underwater video have been proposed as 

alternative methods to monitor SAV across several scales (Norris et al. 1997; Sabol et al. 2002; 

Schultz 2008). However, underwater video can be difficult to implement in turbid waters, as it 

takes too much time for the camera to focus at velocities needed to effectively cover large areas 

(Norris et al. 1997; Sabol et al. 2002; Lefebvre et al. 2009). Another alternative is the use of 

acoustic systems, such as single-beam sonar.  

Single-beam sonar has been shown to effectively detect SAV in various settings due to 

SAV’s unique acoustic signature generated by the air bubbles and tissue in its blades (McCarthy 

1997; Hermand et al. 1998; Wilson and Dunton 2009). Initially, sonar was used to map SAV at 

small-scales, as most of the signal analysis was done manually (Duarte 1987). After GPS was 
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available, Sabol et al. (2002) developed the first automated SAV sonar signal detection system 

(SAVEWS), which became the basis for newer more efficient automated detection systems that 

are currently available (e.g., Biobase and Biosonics). These systems can extract useful 

information from the SAV’s acoustic signal, such as SAV presence-absence, plant height, 

percent cover, and biovolume (Tseng 2009; Barrell et al. 2015). Hence, sonar has been 

successfully used in SAV surveys in fresh and marine waters (Vis et al. 2003; Riegl et al. 2005; 

Winfield et al. 2007; Zhu et al. 2007; Stevens et al. 2008; Guan et al. 2010; Barrell and Grant 

2013; Valley 2016), and its effectiveness has been thoroughly evaluated (Valley and Drake 2005; 

Radomski and Holbrook 2015; Valley et al. 2015; Bučas et al. 2016). Single-beam sonar, 

coupled with an SAV signal automated processing system, gives sonar the ability to cover long 

distances and sample large areas repeatedly in a relatively short period of time compared to in-

water methods, thereby increasing the possibility of higher frequency sampling at larger scales. 

AS is one of several large low-salinity sub-estuaries that make up the greater Albemarle-

Pamlico Estuarine System (APES) in eastern NC; one of the largest and most productive 

estuarine ecosystems in the US. (APNEP 2012; Moorman et al. 2014). A recent (2014) sound-

wide shore-parallel rapid assessment survey (RAS) of SAV presence at water depths between 

0.77 – 5.78 m determined that the distribution across the Sound was widespread but 

discontinuous (see Chapter 1). Relatively few locations had nearly continuous SAV detections 

and visible evidence of large and dense SAV beds, while there were extensive distances along 

the shore parallel transects and throughout the Sound where SAV were either completely absent, 

sparse, or very patchy. The RAS appears to corroborate what has been generally considered 

anecdotal information alleging that there have been large-scale declines in SAV habitat in AS 

over the past several decades (NCDEQ 2016).  
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To address the variability evident in the sound-wide distribution and better understand the 

temporal variation in SAV abundance, I adopted a sentinel site approach for monitoring and 

assessing SAV in the Sound. I sampled ten sentinel sites using a single-beam sonar detection 

method (see Appendix D for precise coordinates and code names for each site). The sentinel sites 

network approach has been proposed for monitoring ecosystems that are too large to frequently 

sample. Often, the objective of this approach is to repeatedly and intensely sample ecosystem 

features (e.g., SAV) and environmental parameters at a selected subset of sites to extrapolate the 

feature’s natural variability and responses to stressors at both the local and regional levels 

(Jassby 1998; Christian and Mazzilli 2007). However, deciding on the location for sentinel sites 

is difficult, as it requires extensive knowledge about a system’s features and its intrinsic 

dynamics (Jassby 1998). Further, to detect the effect of stressors (e.g., pollution, exotic 

invasions, coastal development), it is necessary to differentiate the signal (stressor driven 

variability) to noise (intrinsic variability) ratio, which is difficult, particularly in a highly 

dynamic system such as AS (Orth et al. 2010; Patrick and Weller 2015; Radomski and Holbrook 

2015). Nonetheless, this study is a first step in assessing  SAV spatial and temporal dynamics 

and essential for the development of a long-term monitoring program in AS (Southward 1995). 

The specific objectives of this study were twofold. First, I examined the spatial and 

temporal variation in SAV abundance at ten sentinel sites by analyzing SAV percent occurrence 

at regional (sound-wide) and local (site) scales, and at different water depths. Because of the 

large spatial extent of AS and the wide range of factors that might be affecting SAV abundance, I 

expected that regional variability would be greater than local variation and sentinel sites would 

be an appropriate long-term monitoring approach. I hypothesized that SAV would be declining 

from 2015 to 2016 across my sampling sites. Since there is a global consensus that SAV are 
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declining (Waycott et al. 2009). The second objective was to examine the intra-annual variation 

of SAV abundance at each of the sentinel sites in order to determine the optimum time (peak 

signature period) for detecting SAV during the year. For the second objective, I aimed to confirm 

two previous site-specific studies in low-salinity areas of NC which suggested that SAV 

abundance would be higher in the fall than the spring (Quible and Associates 2011; Kenworthy 

et al. 2012); hence, I hypothesized that SAV would be more abundant in the fall than the spring 

across all the sentinel sites. Overall, the objectives of this study aimed to provide a baseline for 

SAV distribution in the low-salinity, low-visibility waters of AS, so assessments about the status 

and trends of this resource can be determined in the future. 

Material and Methods 

Study Area 

The study was conducted in AS, NC, USA (Appendix C), a large (2,330 km2 low-salinity 

(0-23 psu) coastal plain estuary with a maximum depth of 5.3 m (Moorman et al. 2014; NCDEQ 

2016). AS is the receiving water for several large rivers (Chowan, Roanoke, Perquimans, and 

Pasquotank Rivers) and numerous smaller tributaries that regularly discharge fresh water, 

sediments, nutrients, and color dissolved organic matter (CDOM) into the system which have a 

demonstrable effect on optical water quality (Giese et al. 1985). Water levels in the Sound are 

driven primarily by wind-dominated tides that can vary from 30 to 122 cm on a matter of days. 

The wind driven tides help mix the water, minimize stratification, and affect the seasonal 

variability in salinity (Giese et al. 1985; Peng et al. 2004). The Sound is physically isolated from 

the Atlantic Ocean by a barrier island and two smaller waterbodies to the southeast, Roanoke and 
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Croatan Sounds, and with the closest oceanic inlet (Oregon Inlet) located approximately 20 km 

south, AS has a relatively long water residence time of 45 days (Moorman et al. 2014). 

Sentinel Site Selection and Sampling Design 

Ten rectangular shaped polygons (each 1.0 km parallel to shore by 0.5 km perpendicular 

to shore) were delineated as candidate sentinel sites (Appendix E and Figure 11). Site selection 

was based on four criteria; 1) locations were readily accessible for long-term monitoring in a 

small shallow draft vessel, 2) SAV had been present historically (based on NCDMF (2010) 

Maximum Extent Layer in Chapter 1), 3) SAV were present in sonar and video sampling in a 

2014 synoptic RAS, 4) sites were selected at random, so the sites could be considered 

representatives of the sound; and 5) the distribution of the sites provided comprehensive sound-

wide spatial coverage.  

Sampling at each site was conducted along 40 equally spaced (25 m apart) 0.5-km long 

transects aligned perpendicular to shore. For navigation purposes, the endpoint of each of the 

transects were loaded as waypoints into a WAAS vessel-mounted GPS. For the regional scale 

analysis (sound-wide), site was the experimental unit; whereas, in the local scale analysis (site 

level), each 0.5-km shore perpendicular transect was the designated experimental unit within 

each sentinel site. 

Sonar Sampling 

Each sentinel site was monitored for SAV percent occurrence using a boat-mounted 

Lowrance HDS-7 Gen 2 echosounder equipped with a 200-kHz frequency transducer having a 

20° beam angle. The echosounder (mounted approximately 30 cm underwater) recorded water 

depth and SAV presence-absence data simultaneously. Further, these data were geo-referenced 



 

74 

 

with the echosounder’s integrated GPS+WAAS antenna (± 3 m geo-location error). The sonar, 

GPS, and depth data for each transect was stored separately as sl2 files in an SD card. 

Sonar Verification with Underwater Video 

A low-light sensitive Sartek (model #SDC-MSS) underwater video camera was used to 

visually verify the presence or absence of SAV at each sentinel site. The camera was mounted 13 

cm above the end of a PVC pole to provide a 20 cm X 20 cm image frame. Video samples were 

obtained at 100 random points selected a priori within each of the ten sentinel sites (Figure 11). 

The coordinates of the video were recorded into the Lowrance HDS-5 echosounder and later 

downloaded. Whenever possible, the video samples were acquired immediately after completing 

the sonar transect sampling, aiming to complete both on the same day. During each camera drop, 

every effort was made to maintain the vessel in the same position; however, there were times 

when the wind, water currents, and lag in the GPS signal made it difficult to precisely co-locate 

the video point with the sonar. Once the camera was lowered, SAV presence or absence was 

recorded, and the video data were archived on Sony mini DV cassettes. 

Water Quality Sampling 

Water quality data, including surface water temperature, and salinity were obtained at 

each sentinel site, each year, and each season, with a CastAway CTD by SonTek. The samples 

were collected at the center of each sentinel site. Water clarity was measured using a 20 cm 

diameter Secchi disk lowered over the side of the vessel. 

In-water Quadrat Sampling 
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 In situ quadrat sampling at the sentinel sites followed similar methodology as described 

in Duarte and Kirkman (2001). At each site, ten transects were randomly selected from the 40 

transects monitored with sonar. At each randomly selected transect, three replicate samples at 

four different depths (0.25, 0.5, 0.75, and 1 m) were obtained (Figure 11). Three replicate 

quadrats at each depth were positioned along a line perpendicular to the transects by randomly 

selecting 3 distances between 0 and 25 m. At each sampling point, the 1x1-m quadrat with a 100-

cell grid was placed on the bottom, and the number of cells with SAV present were counted to 

estimate SAV percent cover.  

 In total, there were 120 quadrats per sentinel site (10 transects x 4 depths x 3 replicate 

quadrats at each depth) except for transect lines extending into areas deeper than 1 m or 

obstructed by structures. A total of 1481 quadrats were sampled (31% of the total planned), as 

some of the quadrats fell in areas where I could not sample due to stumps, fallen trees, 

bulkheads, and manmade structures. This mostly occurred at depths between 0.25 m and 0.5 m, 

where tree stumps were frequently encountered. 

SAV Species Composition 

Sediment core samples were obtained during sentinel surveys in 2016 at the sites where 

SAV were present to determine SAV species composition. The core samples were taken at four 

depths (0.25, 0.5, 0,75, and 1.0 m) with a 30-cm diameter PVC corer inserted as deep as 

necessary to ensure the collection of all the roots and rhizomes (ca. 20 cm). I aimed to take three 

replicate core samples at three of the ten randomly selected transects at each of the sentinel sites 

at each depth where I located SAV. Nevertheless, at various transects, I did not collect core 

samples due to high water level (>1.0m) (in some occasions due to periodic water level changes 
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and in others due to higher depths at certain portions of a site) or absence of SAV at the pre-

selected transects. Due to the low number of samples, I only reported a species list in this study. 

Sonar Data Processing 

The sonar data were analyzed with the cloud-based Biobase system 

(www.cibiobase.com). Biobase utilizes a mathematical algorithm to estimate SAV bio-volume, 

which is defined as the percent of water column occupied by the plant (Navico 2014). For my 

analysis, I transformed the Biobase’s acoustic reports into a binary variable: SAV presence (1) 

and SAV absence (0). Using the presence data, I estimated SAV percent occurrence for each of 

the 40 transects at each sentinel site (each year 2) and season (2). SAV percent occurrence was 

calculated as (Equation 1); 

𝑆𝐴𝑉 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑜𝑛𝑎𝑟 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑎 𝑡𝑟𝑎𝑛𝑠𝑒𝑐𝑡

𝑇𝑜𝑡𝑎𝑙 𝑝𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑜𝑛𝑎𝑟 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑎 𝑡𝑟𝑎𝑛𝑠𝑒𝑐𝑡
× 100               (1) 

Sonar Verification with Underwater Video  

First, the SAV presence and absence for the sonar and video data were digitized into 

ArcGIS 10.4.1 (ESRI 2011). Next, the Spatial Join tool in ArcGIS (ESRI 2011) was utilized to 

select the nearest sonar point to the video samples with a 10-m threshold matching distance, 

where points located >10 m from the sonar point were discarded. Preliminary analysis indicated 

that percent agreement between sonar and video did not vary at distances less than 10 m 

(Appendix B).  

 SAV presence or absence in the sonar data were compared to the SAV occurrence on the 

video data. To verify the sonar’s signal interpretation, two metrics were estimated: Present 

Verified Percentage (PVP) (Equation 2) and Absent Verified Percentage (AVP) (Equation 3). 
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PVP =  
𝑇𝑜𝑡𝑎𝑙 𝑆𝐴𝑉 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑣𝑖𝑑𝑒𝑜 𝑝𝑜𝑖𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑆𝐴𝑉 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑣𝑖𝑑𝑒𝑜 𝑝𝑜𝑖𝑛𝑡𝑠 
 𝑋 100                     (2) 

 

AVP =  
𝑇𝑜𝑡𝑎𝑙 𝑆𝐴𝑉 absent 𝑣𝑖𝑑𝑒𝑜 𝑝𝑜𝑖𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑆𝐴𝑉 absent 𝑣𝑖𝑑𝑒𝑜 𝑝𝑜𝑖𝑛𝑡𝑠 
 𝑋 100                     (3) 

Statistical Analysis 

SAV Percent Occurrence (Sonar) 

The sonar data were analyzed at two scales. For the regional scale (sound-wide), I 

designated the sites as the experimental units and utilized multilevel Linear Mixed Effects 

Models (LMEM) to analyze the temporal and depth effects on percent occurrence. LMEM is a 

flexible framework (Verbeke and Molenberghs 2000; McCulloch and Neuhaus 2005) that can 

handle the SAV’s temporal and spatial correlation (Lefcheck et al. 2018). Further, it is possible 

to detect variability within groups and between groups (i.e., sites). First, I examined the 

skewness and kurtosis (Hoffman 2015) to determine if the data met normality assumptions. SAV 

percent occurrence was transformed (log x+1) to meet normality assumptions. Next, I centered 

the depth values to make the model’s intercept meaningful (Heck et al. 2013), as SAV are not 

found at zero depth. To calculate the centered depth for each transect, the transects’ mean depth 

(2.06 m) was subtracted from each transects’ presence and absence mean depth (Equation 4). 

𝐶𝑒𝑛𝑡𝑒𝑟𝑒𝑑 𝑑𝑒𝑝𝑡ℎ 𝑓𝑜𝑟 𝑡𝑟𝑎𝑛𝑠𝑒𝑐𝑡 𝑖 = 𝑇𝑟𝑎𝑛𝑠𝑒𝑐𝑡 𝑖 𝑚𝑒𝑎𝑛 𝑑𝑒𝑝𝑡ℎ − 2.06          (4) 

To test for temporal and depth effects, I created an LMEM with site as a grouping 

variable. In the fixed and random models, I included year (2015 and 2016), season (spring (May-

June) and fall (September-October)) and centered depth to determine if any of these variables 
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explained transect variability (i.e., fixed effects) and between sites variability (i.e., random 

effects). I used a variance components covariance matrix in the random model, as I assumed that 

the predictor variables were independent. I kept the random model as simple as possible, by 

excluding interactions, to facilitate results interpretation (Heck et al. 2013). 

From the LMEM, year and season had a significantly different effect on SAV mean 

occurrence across sites, so each site was analyzed individually (i.e., local scale analysis). For the 

local scale analysis, Generalized Estimating Equations (GEE) were used to analyze each site, as 

GEE is an extension of GLM, and it accounts for repeated measures in data (Geys et al. 2002). In 

this analysis, transect was the experimental unit. I fit the model with year (2015 and 2016), 

season (spring and fall), and mean transect depth as predictor variables. I utilized the transformed 

percent occurrence (log x+1) as the response variable to meet normality assumptions. 

SAV Percent Cover (In-Water Quadrat Sampling) 

Analysis of percent cover was very similar to the sonar data. LMEM was utilized to 

analyze the data at the regional level, with site as the experimental unit. I also transformed SAV 

percent cover (log x+1) to meet normality assumptions and centered the depth for each mean 

percent coverer around the mean to make estimates more meaningful (Equation 5). 

𝐶𝑒𝑛𝑡𝑒𝑟𝑒𝑑 𝑑𝑒𝑝𝑡ℎ 𝑓𝑜𝑟 𝑡𝑟𝑎𝑛𝑠𝑒𝑐𝑡 𝑖 = 𝑇𝑟𝑎𝑛𝑠𝑒𝑐𝑡 𝑖 𝑚𝑒𝑎𝑛 𝑑𝑒𝑝𝑡ℎ − 0.68          (5) 

The initial fixed and random models were fitted with site (grouping variable), year (2015 

and 2016), season (spring and fall), and depth as predictor variables. In the random model, the 

intercept, year, season, and centered depth were included along with variance components for the 

variance matrix. 
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For the local scale analysis, a GEE model was used with year (2015 and 2016), season 

(spring and fall), and depth as predictor variables for the transformed percent cover, with transect 

as the experimental unit.  

Results 

Mean Percent Occurrence (Sonar Sampling) 

The spatial distribution and temporal abundance of SAV were highly variable both within 

and between sites (Table 3; Appendices E and F), with percent occurrence highest at site 4 in 

spring 2015 (68.33 %) and lowest at site 5 in fall 2015 (zero percent occurrence; Table 3 and 

Table 4). Site 4 had the widest range of SAV abundance among all the sites (10.43 - 68.33 %). 

Seasonal peaks were evident in only four of the sites, three of which had peaks in spring while 

generally the lowest abundance of SAV were more frequently observed in fall (7 out of 10 sites) 

(Table 4). There was no seasonal difference in 6 of the 10 sites (Table 3 and Table 4). 

In the regional analysis, when considering the variance across sites (i.e., random effects 

model), mean percent occurrence had unique temporal trends at each site (intercept variance; 

Estimate = 0.1849, Wald Z = 2.049, p < 0.05, Table 5). The slope variance for year and season 

were different across sites (Estimate = 0.0538, Wald Z = 1.981, p < 0.05; Estimate = 0.061, Wald 

Z = 1.968, p < 0.05, respectively, Table 5). The depth slope variance had a nearly significant p-

value (Estimate = 0.2374, Wald Z = 1.886, p = 0.06, Table 5), which would suggest that the 

effect of depth on percent occurrence varies across sites. It is important to note that even after 

adding three predictors to the model (year, season, and depth), there was still variance in the 

intercepts that could not be explained across the sites (residual variance; Estimate = 0.1274, 

Wald Z = 27.57, p < 0.05, Table 5). 
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The local scale analysis confirmed the findings from the random model, where mean 

percent occurrence had unique temporal trends at each site (Tables Table 3, Table 4, and Table 

6). Eight sites out of the 10 exhibited inter-annual percent occurrence variation (Table 3 and 

Table 6). Four sites had more SAV in 2016 than 2015 (1, 3, 6, and 10) while four sites had more 

SAV in 2015 than 2016 (2, 4, 7, and 8) (Table 3 and Table 6). Only four sites had intra-annual 

variation, with  sites 1, 4, and 5 having a greater SAV mean occurrence in the spring than the 

fall, while only site 8 had  greater SAV mean occurrence in the fall (Table 3 and Table 6). Sites 

2, 3, 6, 7, 9 and 10 displayed no intra-annual variation (Table 3 and Table 6). However, sites 7 

and 10 had a nearly significant seasonal variation (p=0.06), both more abundant in the spring. 

SAV Depth Distribution (Sonar Sampling) 

The median depth for all sonar sampling was 1.91 m, and SAV were concentrated at 

depths shallower than 1.79 m (75th percentile). Less than 5 percent (5th percentile) of the SAV 

present in the sonar data occurred deeper than 1 m, but only 2 percent of all the sampling was 

done at depths shallower than 1 m (Figure 12). The maximum sampled depth was 5.19 m, and 

SAV were detected at 4.96 m (site 4 spring 2016; Appendix E). The minimum depth sampled 

was 0.79 m, and SAV were present at that depth at several sites. Sites 1 and 4 had some of the 

most abundant SAV with median depths ranging from 1.75 m to 2.15 m at site 1, and from 1.37 

m to 1.91 at site 4 (Appendix E). Sites 5 and 10 had some of the lowest SAV values with median 

depths ranging from 2.4 m to 2.79 m at site 5, and 1.47 to 2.71 at site 10 (Appendix E). 

The depth profiles at the ten SS was very variable, some sites were mostly shallow (< 3 

m; sites 1 and 5), but some sites were deeper (site 6) (Figure 12 and Appendix F). Generally, the 

distribution of SAV detections was skewed toward relatively shallower depths with few 
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exceptions (e.g., site 6), and nearly all the sonar monitoring events over-sampled the deeper 

portions of the SS. Generally, SAV were absent at depths greater than 3 m (Figure 12). Overall, 

SAV were distributed over a wider depth range in the fall than the spring. The depth 50th and 75th 

percentiles for SAV present in the spring were 1.80 m and 2.41 m, respectively; and the depth 

50th and 75th percentiles for SAV present in the fall were 2.03 m and 2.65 m, respectively. 

Sonar Video Verification 

Out of the 4,000 planned video camera drops, 3,749 of the samples met the prescribed 

distance criteria where the sonar waypoint was within 10 m of the camera drop. The video 

camera drops verified SAV present at 45% of the positive sonar detections (PVP) and 91% of the 

SAV absence (AVP) detections. Sites 1, 4, and 8 had the most SAV present-verified video points 

(68%, 61%, and 49%, respectively; Table 7; Appendix G). Sites 2, 5, 6, 7, 9, and 10 had little to 

no SAV present-verified video points (Table 7).  

Percent Cover (Quadrat Sampling) 

SAV mean percent cover was highest at site 1 (73%) with a peak in spring 2015 

(95.52%) (Table 8). Sites 2, 6, and 10 had some of the lowest SAV cover (<15%). Sites 5 and 9 

did not have any SAV; these two sites also had the lowest SAV occurrence in the sonar data 

(Tables Table 8 and Table 9). Site 8 had large SAV cover fluctuations, for example, in the 2016 

spring, SAV cover was at the highest recorded at this site (62%) and by the fall the cover 

dropped to almost zero (0.69%) (Table 8 and Table 9). Site 4 had a large year to year variation, 

in 2015 the total cover was 30%, and it dropped to 6% the following year (Table 8 and Table 9). 

In the regional analysis (fixed effects), depth slope was positively correlated to percent 

cover (Estimate = 0.2503, p > 0.05; Table 10), which was opposite to the sonar’s depth slope. In 
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the quadrat data, the slope’s back-transformation revealed that for every unit of change from the 

mean depth, mean percent occurrence changed 3.46%. SAV declined from 2015 to 2016 (2.8%) 

and from spring to fall (3.56%) while controlling for other predictors; however, these differences 

were not statistically significant (p > 0.05; Table 10). 

When accounting for variation across the sites (random effects), season and depth had 

different slopes across sites (Estimate = 0.1872, Wald Z = 1.97, p < 0.05; Estimate = 0.4052, 

Wald Z = 1.977, p < 0.05, respectively, Table 10); however, year had a nearly significant random 

slope (Estimate = 0.1319, Wald Z = 1.867, p = 0.062, respectively, Table 10), which indicated 

that season and depth, and likely year, varied across sites.  

After examining each site individually, distinct temporal patterns were evident. Several 

sites displayed inter-annual variation, four sites had more abundant SAV in 2015 than 2016 (1, 2, 

4, and 10) (Table 8 and Table 11), and only site 3 had more abundant SAV in 2016 than 2015. 

Intra-annual variation was also evident, six sites (1, 2, 3, 4, 8, and 10) were more abundant in the 

spring (Table 11); however, site 7 had a nearly significant seasonal difference (p=0.6), with 

higher abundance in the fall. Depth slope was positively correlated with SAV cover at 4 sites (1, 

4, 8 and 10), which suggested that SAV were more abundant in deeper areas at these sites. Sites 

5 and 9 did not have any SAV during the quadrat sampling, so they were excluded from the GEE 

analysis. 

Core Samples; Species Composition 

Five SAV species were identified in the core samples from the sentinel sites (Table 8). 

Ruppia maritima was the only species found at multiple sites (1,3, and 8), while Myriophylum 

spicatum, Vallisnaria americana, Najas guadalupensis, and Potomogeton perfolatus were only 
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detected at one site each (1, 4, 4, and 8, respectively). Three of the four sites where SAV were 

sampled with the cores (1,4, and 8) had at least two SAV species. 

Discussion 

In natural resources management and conservation, it is crucial to understand intrinsic 

and external factors responsible for affecting baseline conditions and detecting changes in 

resources. Here, a sentinel site approach was applied to a large not easily accessible estuarine 

system as a first step in understanding the spatial and temporal dynamics of SAV. Through this 

approach, I confirmed that, like in other regions of North America, SAV abundance and 

distribution in AS is highly dynamic (Orth et al. 2010; Patrick and Weller 2015; Bolpagni et al. 

2016) and identifying intrinsic variability is challenging. It is only through discerning between 

intrinsic dynamics and external factors that we can begin to understand the effect that factors like 

climate change, sea level rise, increasing human populations, and water pollution have on natural 

resources. By monitoring SAV status at these sentinel sites, it is possible to begin formalizing 

our knowledge of this system. However, predicting habitat changes in association with 

environmental conditions requires monitoring environmental conditions as well.  

This study is the first sound-wide scale investigation of the spatial and temporal variation 

in the distribution and abundance of SAV in AS. Due to consistently poor optical water quality, 

attempts to synoptically map and monitor the status and trends of this resource using remotely 

deployed airborne sensors (photography and satellite) have been unsuccessful (Ferguson and 

Wood 1989; Ferguson and Wood 1994), while in-water monitoring has been restricted to 

relatively small areas (Davis and Brinson 1990; Quible and Associates 2011; Kenworthy et al. 

2012), resulting in a substantial gap in our understanding of the ecological function and status of 
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SAV in the Sound (Moorman et al. 2014). To begin to close this gap, single-bean sonar 

combined with Biobase analytical software, and in-water quadrat sampling were used to detect 

and analyze the distribution and abundance of SAV at ten pre-determined locations. The 

geographic distribution of the ten sites encompassed a wide range of environmental conditions 

(Table 2 and Appendix D) that SAV should normally encounter in AS (e.g., gradients of salinity, 

wind and wave energy, and substrate type); as well as the potential for exposure to many of the 

anthropogenic factors known to affect SAV in other comparable low-salinity estuaries, including 

regional and local watershed discharges, nutrient and sediment loading, land use patterns such as 

agriculture, silviculture and urban development, and wetland and shoreline modification (Li et al. 

2007; Orth et al. 2010; Patrick et al. 2014; Patrick and Weller 2015; Moorman et al. 2014; 

Lefcheck et al. 2018). 

One of the primary objectives of this study was to evaluate the 10 individual locations as 

candidates for “sentinel sites” where long-term monitoring of SAV distribution and abundance 

could be incorporated into several resource management programs including APNEP’s 

Comprehensive Conservation and Management Plan (APNEP 2012), the North Carolina Coastal 

Habitat Protection Plan (NCDEQ 2016), and the National Water Quality Monitoring Network for 

U.S. Coastal Waters (Moorman et al. 2014). Collectively, all three of these plans acknowledge 

the ecological and economic value of SAV in estuarine systems, but also recognize the existence 

of a large gap in our understanding of the status and trends of SAV resources in AS. 

The sonar sampling detected SAV at all 10 sites, but it showed that the sound-wide 

abundance of SAV varied significantly by location, much more so than either the intra- or inter-

annual variation. Three sites with the largest abundance of SAV (1, 4, and 8) stood apart from all 
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seven of the other locations which had sonar frequency of occurrence values generally < 20%, 

and several of which were < 10%. The large spatial differences and the relative patterns of 

abundance across the Sound were confirmed with the in-water quadrat sampling, including two 

sites with relatively low frequency of occurrence in the sonar sampling and no SAV detected in 

the quadrat sampling (sites 5 and 9).  

There were no apparent geographic patterns associated with SAV abundance. The two 

sites with the lowest abundance (sites 5 and 6), the other four sparsely vegetated sites (2,3 7, 9 

and 10), and the locations with the most abundant SAV (sites 1, 4 and 8) were distributed across 

the entire Sound suggesting that environmental conditions most favorable to SAV growth may 

be restricted to very specific locations in the estuary. Likewise, the distribution of sites 

throughout the Sound with relatively low abundance of SAV indicate that unfavorable growing 

conditions may be more widespread than expected for this primarily rural estuary. 

The spatial variability of SAV abundance in AS was comparable to the variability 

reported in many of the sub-estuaries of neighboring Chesapeake Bay and suggest that 

conditions operating at relatively small-scales within the Sound may be the most important 

factors influencing local SAV abundance (Li et al. 2007; Patrick and Weller 2015; Orth et al. 

2017). If SAV are going to be used as biological sentinels for distinguishing the effects of human 

activities and water quality impairment from natural environmental fluctuations, these results 

indicate there is a compelling need for monitoring multiple stations widely distributed across the 

Sound. The ten candidate sites selected for this study appear to encompass the full range of SAV 

abundance characteristics and can serve as a starting point for a long-term investigation of the 

factors responsible for impacting or enhancing SAV resources. 
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Ideally, if one of the goals of a monitoring program is to distinguish natural variation 

from human impacts, monitoring a resource with remote sensing methods should occur at the 

time of expected peak abundance when the SAV signature is at its maximum extent and least 

likely to be confused by other benthic signatures, and be frequent enough to accurately 

characterize the baseline and distinguish it from the stressor-response relationships, sometimes 

referred as the “signal to noise ratio.” Because there is a very limited amount of information 

characterizing the baseline of SAV in AS, and the timing and magnitude of the SAV stressor-

response relationship is expected to fluctuate, establishing the appropriate time to sample is 

paramount. Hence, one of the main goals of this study was to investigate, both, inter- and intra-

annual variation at the ten sentinel sites to help determine the baseline for SAV distribution and 

abundance and the appropriate signature monitoring period for each location. 

Based on the sonar surveys and pooling the data by year over the entire Sound, it was 

evident that each site had unique annual peaks. For the most part, the three sites with the 

relatively highest abundance in the sonar survey (1, 4, and 8) and the seven with the least SAV 

retained their relative abundance attributes inter-annually; stations with high SAV abundance 

remained relatively high and the low abundance stations remained low. 

When the sites were examined individually there were significant differences in SAV 

abundances between years at eight sites in the sonar sampling and at five sites in the quadrat 

sampling. However, there wasn’t complete agreement for the peak years of abundance between 

the two sampling methods. Nonetheless, inter-annual variation in absolute SAV abundance 

detected by both sampling approaches corroborates what was reported in a prior study in AS 

(Quible and Associates 2011). Quible and Associates (2011) monitored SAV abundance with in-
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water quadrat sampling during the month of September at 17 stations along a 25 km stretch of 

shoreline in northern AS for 5 consecutive years (2007-2011). At some stations SAV fluctuated 

up to 40 % inter-annually, along with shifts in species composition and SAV species dominance. 

Coincidently, the locations of two Quible and Associates (2011) monitoring stations, SS-5 and 

SS-6, corresponded with the location of sentinel site 4 in this study. At station SS-5 Quible and 

Associates (2011) reported that SAV increased every year between 2007 and 2011. In the final 

year of sampling there was 80-85% SAV cover, but the dominant species during four prior years 

of monitoring had shifted from Najas guadalupensis to a tall canopy forming invasive species 

Myriophyllum spicatum. Comparable quadrat sampling in fall 2015 and fall 2016 at site 4 in this 

study recorded SAV cover of 12.2% and 8.5%, respectively, substantially less than Quible and 

Associates (2011) last reported in September 2011. Nearby, at station SS-6 in the Quible and 

Associates (2011) survey, SAV increased every year from 2007 to 2010 before declining to 5-

10% in 2011, which was less than the cover originally recorded in 2007. The sonar survey at site 

4 in this study also found a significant inter-annual variation with greater abundance of SAV in 

2015 than 2016. Given the results of this study and the five-year Quible and Associates (2011) 

survey, meadows in the area of site 4 have persisted for at least a decade (2007 – 2016), but with 

substantial year to year variation in abundance and species composition. These results suggest 

that sentinel sites in AS will need to be monitored repeatedly for multiple years in order to 

reliably assess the magnitude of inter-annual variation and how that variation affects the 

determination of baseline reference conditions and the assessment of status and trends of SAV 

resources in the Sound. 

The intra-annual variation in SAV abundance at the individual sites showed more 

variability between sites in the sonar data than in the quadrat data. For sonar, there were no 
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seasonal differences at six sites, three sites peaked in spring, and only one site peaked in fall. For 

the quadrat survey, SAV were more abundant in the spring at six sites; the remaining sites that 

had SAV in sonar did not have SAV in the quadrats. One other comparison between the two 

sampling methods is also notable. First, sites 1 and 4 displayed explicit agreement between 

sampling methods for spring peaks, and these sites had some of the highest maximum values for 

SAV abundance. Otherwise, all the remaining disagreement between the two sampling methods 

indicate either a fall peak or no seasonal peak abundance in the sonar. Overall, the 

preponderance of spring peaks in both the quadrat and sonar samples and the sites with no 

detectable seasonal difference in the sonar suggests that spring could be considered the primary 

signature period for SAV abundance during the two years of sampling. This supposition 

contradicts a previous recommendation that fall should be the preferred season to monitor SAV 

in low-salinity regions of North Carolina (Quible and Associates 2011; Kenworthy et al. 2012), 

so I reject my original hypothesis where I expected a fall peak across sites. On the other hand, if 

sonar is the preferred sampling method, one could also argue that seasonal preference is site 

specific and further monitoring is needed before making any generalized recommendations. 

Fewer sites (4) showed intra-annual variability in the sonar; nonetheless, several sites (6) showed 

seasonal peaks in the quadrat data, all in the spring. Hence, there is compelling evidence 

supporting the need for both spring and fall sampling. Sampling during both seasons would 

ensure that any interpretation of inter-annual change is not confounded by shifts in the intra-

annual variability. 

Many of the low-salinity adapted SAV species are sensitive to small fluctuations in 

salinity that could result from changing patterns of precipitation, watershed modification, river 

discharges, and climate (Patrick and Weller 2015). Shifts in species composition and abundance 
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in response to these factors could result in different seasonal distribution and abundance. In lieu 

of the prospect that the predictions of future climate change in the AS region include altered 

patterns of precipitation, increasing storm activity, and the potential intrusion of seawater further 

into the Sound (Goldenberg et al. 2001; Boyles and Raman 2003; Henman and Poulter 2008; 

Poulter et al. 2009), there is a high likelihood of increasing intra- and inter-annual variability in 

the environmental factors affecting SAV, especially salinity. Generally, AS is a brackish water 

environment with a salinity gradient ranging from mostly freshwater conditions in the western 

region and the smaller tributaries (oligohaline) to mesohaline waters in the mid- and eastern 

locations of the Sound’ main body (Moorman et al. 2014). At times, however, during the two-

year monitoring period this gradient appeared to break down. Some stations (e.g., Site 1) 

exhibited intra- and interannual salinity variation, fluctuating between oligohaline and 

mesohaline conditions. SAV communities in low-salinity brackish water environments like AS 

are diverse and highly dynamic and typically display relatively large and sometimes 

asynchronous intra- and inter-annual variation in species composition and abundance in response 

to changes in water quality and salinity (Moore et al. 2000; Li et al. 2007; Patrick and Weller 

2015; Orth et al. 2017).  

In this study, five different SAV species were identified (Table 1); yet, four of the five 

species only occurred at one location. Further, each site had a unique species composition, 

suggesting that spatial and temporal variability in the acoustic data and quadrat sampling across 

sites could have been due to differences in species compositions across sites (Long and 

McKenzie 1998). SAV species composition is often a reflection of abiotic factors, like salinity, 

water level, and water clarity particular to an area (Adair el al. 1994; Madsen et al. 2001; 

Bolpagni et al. 2016), and SAV species tend to have unique growth and maximum extent periods 
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(Hudon et al. 2000; Kenworthy et al. 2012). Therefore, to better understand SAV abundance and 

distribution trends, it is essential that future SAV monitoring in AS includes SAV species 

composition and abiotic factors monitoring.  

Water depth also has a significant influence on the distribution and abundance of SAV. 

Meadows growing in shallow water adjacent to shorelines are the first to experience the direct 

impacts from land use (e.g., stormwater discharges, sediment and nutrient loading, shoreline 

modification, etc.) (Landry and Golden 2017). These factors, along with waterfowl grazing, 

exposure to waves, and periodic fluctuations in water levels due to wind and tides can limit the 

upper depth distribution and abundance of SAV. Depth is important in limiting the amount of 

light reaching submerged plants, restricting the spatial distribution of SAV meadows to water 

depths meeting the species intrinsic light requirements (Dennison and Alberte 1985; Dennison et 

al. 1993; Kenworthy and Fonseca 1996; Koch 2001). Since the light requirements of many SAV 

species are generally known (Duarte 1991; Dennison et al. 1993), depth is an important variable 

to acquire in a resource monitoring program. Unfortunately, the spatial resolution and precision 

of the existing bathymetry information in many shallow water estuaries, including AS, is 

insufficient and cannot be readily applied to SAV monitoring programs without acquiring 

supplemental depth data. Acoustic sonar monitoring offers the dual benefits of detecting SAV 

presence-absence while simultaneously recording depth, such that the bathymetry of each of the 

sentinel sites can be mapped along with the depth distribution of the plants. Given the operating 

restrictions of the sonar to depths > 0.5 - 0.79 m, this approach cannot be reliably used to 

monitor SAV at the upper depth limit; however, it can be used to determine the maximum depth 

of SAV growth, and with long-term monitoring it can be used to examine changes in this 

important metric (Kenworthy and Fonseca 1996; Kemp et al. 2004; Kenworthy et al. 2014). 
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However, as the characterization of both the deep and shallow edges is crucial to understanding 

SAV abundance and distribution changes, sonar sampling needs to be complemented with other 

methodologies (e.g., in-water, low-altitude AUV’s) to comprehensively monitor the resource.  

Worldwide, SAV are recognized as valuable and practical sentinels of coastal 

environmental quality and, more specifically, a biological indicator of water quality impairment 

or improvement (Dennison et al. 1993; Orth et al. 2006; Orth et al. 2017). A commonly used 

metric in coastal monitoring programs is to determine the maximum SAV depth distribution and 

monitor the deviations from this value against the expected depth while factoring in the species 

light requirements  (Kenworthy and Fonseca 1996; Kenworthy et al. 2014). As a more robust 

indicator, changes in the lower depth limit of SAV distribution can be coupled with routinely 

measured water quality parameters (e.g., chlorophyll, turbidity, CDOM) and calibrated with 

optical water quality models to identify potential stressors in the system and to set water quality 

targets for protection and restoration of SAV (Dennison et al. 1993; Gallegos 2001; Kenworthy 

et al. 2014). 

By design, the offshore edge of the permanently located rectangular polygons defining 

the perimeter of each of the sentinel sites was expected to exceed the lower depth distribution of 

SAV at each location. Effectively, the sonar transects were designed to “over-sample” in deeper 

depths to identify the threshold depth where SAV growth terminated, such that the expansion (or 

contraction) of SAV maximum depth distribution could be identified and tracked in future 

monitoring events. Generally, the sonar detected maximum depths of SAV growth in the Sound 

ranging between 1.5 and 2.5 m, depending on the site. These values are well within the range of 

maximum depths for SAV growth known for other neighboring low-salinity estuaries (Kemp et 
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al. 2004; Orth et al. 2010). Notably, the SAV depth distribution shifted to deeper regions in the 

fall (2.65 m depth 75th percentile) compared to the spring (2.41 m depth 75th percentile). This 

shift in depth distribution may be attributed to differences in light availability between the 

summer and fall due to different freshwater inflows during those seasons (Giese et al. 1985; Jia 

and Li 2012), fluctuating water levels or possibly differences in the SAV species composition.  

There were also a few extraordinary sonar detections exceeding 3.0 m. For example, at 

site 4 the maximum depths of SAV recorded in spring and fall of 2016 were 4.96 m and 4.29 m, 

respectively, and were substantially greater than the maximum depths recorded in 2015 (1.71 and 

2.98 m). These relatively deep detections may be partly explained by annual or intra-annual 

shifts in species dominance from low relief canopy taxa to taller canopy forming species able to 

compensate for low light levels at deeper depths by growing higher in the water column. 

Alternatively, some of the deeper detections could be false positive sonar readings due to the 

bottom characteristics of the site. In soft, flocculent substrates the surface sediments can return 

an echo that appears to be SAV (Kenworthy et al. 2012). Soft, flocculent sediments are not 

uncommon in estuaries and this methodological artifact could produce outliers that deserve 

special attention and require some additional verification of the signatures by either video or in-

water observations. 

Even though tidal effects are minimal in AS, water levels periodically and temporarily 

rise and fall in response to winds and tributary discharges (Giese et al. 1985). These fluctuations 

can be quite large and could result in erroneous estimates of the maximum depth of SAV growth. 

This was evident at several sites which had maximum sampling depths that fluctuated 0.5 to 1.0 

m between sampling events. These temporary water level fluctuations could lead to apparent 
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variability in SAV depth distribution and demonstrate the need for establishing fixed water level 

benchmarks at the sentinel sites in order to standardize the depth values recorded by the sonar 

during each sampling event. 

Summary and Recommendations 

 One of the main goals of any natural resource monitoring program is to develop the 

capability of distinguishing natural variation from variability due to unambiguous and 

manageable stressors (e.g., pollution) (Southward 1995; Christian and Mazzilli 2007; Orth et al. 

2010; Patrick and Weller 2015). Clearly, the numerous well-funded programs in neighboring 

Chesapeake Bay have demonstrated the value of several decades of monitoring by identifying 

many of the important relationships and applied this knowledge directly to the conservation and 

restoration of SAV (Orth et al. 2017; Lefcheck et al. 2018). Granted, the Chesapeake Bay estuary 

is far more urbanized than AS and, depending on location, the types of stressors and their 

magnitude can be very different. Yet, many of the important stressor-response relationships 

identified in the oligohaline and mesohaline SAV communities in Chesapeake Bay could be 

transferred to AS if there was enough monitoring data available. After more than a century of 

research and monitoring in AS there are still substantial data gaps, including very little 

information about the distribution and abundance of SAV. However, there are several important 

local, regional, and national monitoring activities striving to close the gaps through numerous 

enhancements (Moorman et al. 2014) including the establishment and evaluation of an SAV 

sentinel site monitoring program reported in this study. 

 AS is a large and biophysically diverse water body making it very difficult and expensive 

to synoptically and frequently monitor submerged benthic resources with traditional in-water 
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methods. Prior to this study, it was known that the poor water transparency characteristic of the 

Sound severely limited the use of airborne remote sensing to detect benthic habitat signatures. 

Although airborne sensors are regularly used in the Chesapeake Bay and elsewhere, conditions in 

AS are rarely suitable enough to allow these sensors to reliability and repeatedly penetrate 

through the water column and detect the deeper water SAV communities. As an alternative to 

some of the more traditional methods, the feasibility of a sentinel site approach combined with 

remote sensing of SAV presence-absence using boat-based sonar was investigated. Based on the 

design, a single site could be monitored, and SAV sonar signal verified with video in 

approximately two days, weather permitting. While allowing for intervals of data processing and 

travel logistics between sites, multiple locations can be surveyed over a period of several weeks 

in order to effectively capture conditions within specified seasonal windows. Another major 

advantage of the sonar method is the possibility of resampling without the need for costly re-

activation of in-water sampling teams or the deployment of aircraft. 

The ten locations investigated in this study were selected based on a consideration of 

three sentinel site selection criteria; 1) the key feature that is important to ecosystem function 

should be present (e.g., SAV); 2) the sites should have key physical and biological attributes that 

represent the larger ecosystem (e.g., a salinity gradient, presence of environmental and 

anthropogenic stressors) and; 3) there is a high likelihood of detecting change. Criteria 1 was 

satisfied; SAV were present at all sites. But there was significant spatial and temporal variation 

in SAV distribution and abundance across sites, which suggested that any attempt to characterize 

the SAV baseline by averaging sites across AS would be misleading. The evidence supporting a 

need for monitoring individual sentinel sites was compelling. 
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Criteria 2 was partially satisfied; the ten stations encompassed a salinity gradient, but 

again there was both substantial intra- and inter-annual salinity variation. Though the sites were 

randomly selected (Chapter 1); fortuitously, the sites are distributed widely across the Sound and 

are exposed to a range of environmental conditions and anthropogenic stressors. The variability 

in SAV abundance suggested that conditions at three of the sites were more optimal than the 

other seven locations. However, as an indicator of environmental quality (Orth et al. 2017), the 

relatively low abundance of SAV at seven locations distributed across the Sound may be 

signaling some problems that need resource managers’ immediate attention. As this sentinel site 

monitoring program proceeds and becomes integrated with other monitoring and assessment 

programs in AS (e.g., water quality), there will be an opportunity to identify and examine the 

specific factors responsible for influencing SAV abundance at the individual sites and across the 

Sound. Additionally, the spatial variability in local SAV abundance could be used as a guide to 

direct other monitoring efforts in their selection of metrics to be used for distinguishing between 

the effects of environmental and anthropogenic stressors on SAV and other resources. 

Based on the magnitude of the spatial and temporal variability of SAV abundance at the 

ten sentinel sites, it would be premature to declare that Criteria 3 was met by just two years of 

monitoring. The spatial and temporal asynchrony of the system makes it very difficult to 

determine whether the established sites are adequate for monitoring change due to the high signal 

to noise ratio. At some of the sites the intra-annual variability exceeded the inter-annual variation 

in abundance, leaving the determination of one optimal sampling period still unresolved, let 

alone the capability of detecting change. At best, without a reliable quantitative assessment of 

historical SAV abundance, one can only conclude that SAV have persisted at the 10 sentinel 

sites, and in one case (Site 4), nearly continuously for at least a decade. Based on the only other 
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monitoring program in AS that spanned multiple years (five), it is known that there can be 

significant inter-annual variation in SAV abundance that would not be detected in just two years 

of sampling (Quible and Associates 2011). In order to expect to have a reasonable understanding 

of the baseline of SAV abundance and develop the capability of detecting meaningful change it 

will be necessary to continue monitoring the 10 sentinel sites twice annually (spring and fall) for 

at least five years. 

SAV species composition is known to play an important role in inter- and intra-annual 

SAV abundance (Adair et al. 1994; Kenworthy et al. 2012); therefore, it is crucial to fill the 

information gap on the relationship between SAV species composition and its temporal patterns 

at the sentinel sites. SAV is dynamic by nature which makes identifying clear temporal patterns 

challenging (Orth et al. 2010; Patrick and Weller 2015; Bolpagni et al. 2016). This difficulty is 

exacerbated in low-salinity regions due to greater species diversity compared to high-salinity 

regions (Kenworthy et al. 2012). The benefit of adding rigorous species composition monitoring 

at the sentinel sites is twofold. First, SAV peak abundances, for a location, are often associated 

with the dominant species’ peak abundance (Kenworthy et al. 2012; Patrick and Weller 2017), so 

characterizing SAV species composition at the sentinel sites should help identify and predict 

peak abundances. The Chesapeake Bay has 13 oligohaline SAV species (Moore et al. 2000; Orth 

et al. 2010), yet the low-salinity sub-estuaries in the Bay are often dominated by only one or two 

species, which are often not the same across sub-estuaries, contributing to the SAV abundance 

asynchrony across the different waterbodies (Patrick and Weller 2017). In AS, we know very 

little about species dominance, but we know that there are approximately 10 different low-

salinity species in NC, with R. maritima, M. spicatum, and N. guadalupensis being the most 

frequently reported (Davis and Brinson 1990; Ferguson and Wood 1994; Quible and Associates 
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2011; Kenworthy et al. 2012; Table 8). Nonetheless, long-term species composition monitoring 

in the Sound should help understand species dominance and species phenology. Second, SAV 

species composition often reflects the local environmental conditions, so studying shift is species 

composition along with environmental parameters (e.g. light availability, salinity, sedimentation, 

storms) can help better discern SAV temporal variation in AS (Orth et al. 2010; Orth et al. 2017; 

Patrick and Weller 2017). Case studies in the Chesapeake Bay indicated that a reduction of 

point-source nutrient loading in the Bay led to increased SAV species diversity and the decline 

of invasive species (Ruhl and Rybicki 2010). After exploring the literature, Davis and Brinson 

(1990) reported a total of seven SAV species in AS; whereas, more recent reports by Quibble 

and Associates (2011) and my own study reported six and five species, respectively. The 

information from these reports is not sufficient to make conclusive statements about shifts in 

species composition through time; nonetheless, changes in species composition and diversity 

should be closely monitored, as they help discern SAV temporal patterns. Moreover, they may 

also serve as early warning of environmental degradation (Orth et al. 2017).  

In other to accurately detect change, ideally, the verification of SAV presence in the 

sonar should be high. Even though the sampling effort strived to minimize error as much as 

possible by acquiring 100 video verification points at each site and filtering the data so that video 

points were within 10 m of the sonar point, the percentage of sonar detections verified for SAV 

presence (PVP) was poor while the verification of absence (AVP) was very good. Given that the 

sonar’s capability of detecting SAV has been clearly established in several studies, the relatively 

low PVP can be attributed to a methods design problem. Poor sonar verification in this study was 

a technical problem associated with three potential sources of error; 1) GPS location error; 2) the 

co-location error associated with the position of the single camera drop and the position of the 
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sonar report; 3) and the difference in sampling “footprint resolution” between the sonar and the 

video. Depending on the wind conditions at the time of the camera drop, and the effect the 

vessel’s drift, the precise location of the camera, and the original sonar position can deviate 

substantially. Low verification of SAV presence could have been also be partly attributed to the 

sonar’s ability to detect smaller patches, due to its higher sampling rate. Similar sonar accuracy 

issues were ascribed to the co-location error in Puget Sound where accuracy was lower in areas 

with patchy SAV beds (Stevens et al. 2008). Sonar verification with video could be improved by 

using DGPS (Differential Global Positioning Systems) in place of standard GPS and more 

precisely co-locating the positions for the camera drops. These improvements will certainly add 

to the time and cost of sampling. 

Sonar sampling alone will not be enough to fully assess the status and trends of SAV at 

the sentinel sites. In-water species composition identification and monitoring the fluctuations in 

the species will be necessary to fully understand the condition of the meadows and their response 

to environmental changes and stressors. This was evident at the seventeen sites in proximity to 

site SS 4 where Quible and Associates (2011) found six species of SAV in total over the five 

years of sampling. Several stations had multiple co-occurring species, thirteen shifted species 

dominance, only four of the stations had one dominant species over the five-year sampling 

period and two stations had the non-native species M. spicatum. M. spicatum is an exotic species 

that has spread in North America (Nichols and Shaw 1986), and along with other exotic species 

(e.g., Hydrilla verticillata) that occur in low-salinity estuaries, it is known to reduce habitat 

suitability for fish and macroinvertebrates (Keast 1984) and outcompete local SAV species. 

Historically, M. spicatum was estimated to cover 162 hectares in Currituck and Albemarle 

sounds (North Carolina Division of Water Resources 1996) and has been present in the system 
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for more than 4 decades (Getsinger et al. 1982). Its presence and possible high abundance should 

be monitored, as invasive species can be stressors to already fragile systems (Ruiz et al. 1999). 

Hence, I cannot emphasize enough the importance of supplementing the sonar and video sentinel 

sites surveys with in-water species composition surveys.  
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Figures 

 

Figure 11. Example of the configuration of one of the Albemarle Sound sentinel sites showing the 40 sonar transect 

lines with sonar and 100 randomly selected underwater video points. In addition, a detailed inset of the quadrat 

sampling is shown as well. 
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Figure 12. Frequency histogram of SAV presence-absence by depth at the ten sentinel sites in spring and fall of 2015 and 2016. SAV presence are shown in black 

and SAV absence in grey. See Appendix E for summary statistics and Appendix F for geographic representation of the data. 
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Tables 

Table 3.Sentinel sites characteristics based on sonar and water quality data. SAV mean percent occurrence range (Mean % Occ. range), Peak Abundance (year), 

Peak Season (spring (S) and fall (F), SAV Median Depth Range, and SAV Maximum Depth Range. ND = no difference. 

Site 

Mean % 

Occ. range 

Peak 

Abundance 

Peak 

Season 

Sampling 

depth 

range (m) 

SAV 

median 

depth 

range (m) 

SAV 

maximum 

depth 

range (m) Salinity 

Range (psu) 

Secchi 

range 

Temp. range 

(°C) 

1 24.80 - 43.73 2016 S 0.79 - 2.83 1.37-1.54 1.83 - 2.73 0 - 5.89 0.6 - 0.86 23.75 - 25.38 

2 3.40 - 16.6 2015  ND 0.79 - 4.07 0.93 - 1.68 1.75 - 3.81 0 - 4.23 0.35 - 0.75 21. 4 - 28.88 

3 0.88 - 6.07 2016  ND 0.79 - 4.73 1.13 - 1.37 1.75 - 2.91 0 - 0.48 0.85 - 1.47 19.57 - 26.41 

4 10.43 - 68.33 2015 S 0.79 - 5.19 1.33 - 1.9 1.71 - 4.96 0 - 0.41 0.68 - 1.28 20.87 - 30.62 

5 0 - 2.84 ND S 0.79 - 3.23 1.18 - 2.22    1.5 – 2.79 0 - 0.07 0.77 - 1.5 19.2 - 28.03 

6 1.06 - 2.79 2016  ND 0.86 - 4.28 1.18 - 2.59 1.59 – 3.90 0 - 4.75 0.57 - 0.81 21.37 - 27.18 

7 3.91 - 10.29 2015 ND 0.79 - 2.27 1.3 - 1.76 1.67 – 2.07 0 - 1.95 0.61 - 1.3 24.53 - 27.83 

8 8.29 - 37.36 2015  F 0.82 - 2.98 1.15 - 1.62 1.96 – 2.93 0 - 1.43 0.37 - 0.57 23.85 - 30.1 

9 0.11 - 9.85 ND ND 1.04 - 2.58 1.41 - 2.05 1.81 – 2.88 0 - 0.06 0.38 - 1.3 21.5 - 24.73 

10 0.17 - 3.04 2016  ND 0.79 - 3.47 0.91 - 1.35 1.68 – 2.70 0 - 0.05 0.43 - 1.57 18.23 - 24.1 
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Table 4. Albemarle Sound Sentinel Sites SAV mean percent occurrence and standard deviation for each site based on sonar sampling. 

  Site 1  Site 2  Site 3  Site 4  Site 5 

Year/Season  N Mean ± SD  N Mean ± SD  N Mean ± SD  N Mean ± SD  N Mean ± SD 

2015 Spring  40 43.77±26.66  30 7.28±14.44  40 4.32±5.53  39 68.33±19.88  39 2.84±2.54 

2015 Fall  39 26.7±25.37  39 16.62±6.67  40 0.88±2.15  39 18.43±11.2  39 0.17±0.52 

2015 Total  79 35.34±27.25  69 12.56±11.64  80 2.6±4.51  78 43.38±29.79  78 1.5±2.26 

2016 Spring  38 24.8±21  38 8.46±8.13  40 6.07±6.06  39 29.7±20.58  39 2.02±2.68 

2016 Fall  37 34.39±18.23  40 3.4±4.24  40 5.54±6.9  39 22.04±9.28  39 0±0 

2016 Total  75 29.53±20.14  78 5.87±6.88  80 5.81±6.46  78 25.87±16.32  78 1.01±2.14 

Spring  78 34.53±25.75  68 7.94±11.27  80 5.19±5.83  78 49.01±27.96  78 2.43±2.62 

Fall  76 30.45±22.37  79 9.93±8.65  80 3.21±5.59  78 20.23±10.38  78 0.08±0.37 

Site Total  154 32.51±24.15  147 9.01±9.97  160 4.2±5.78  156 34.62±25.5  156 1.26±2.21 
  Site 6  Site 7   Site 8  Site 9  Site 10 

Year/Season  N Mean ± SD  N Mean ± SD  N Mean ± SD  N Mean ± SD  N Mean ± SD 

2015 Spring  39 2.46±3.11  40 9.92±4.97  39 15.82±10.09  40 0.92±1.57  39 0.21±0.63 

2015 Fall  40 1.06±1.71  40 4.26±3.9  40 37.36±7.97  39 9.85±9.29  39 0.17±0.68 

2015 Total  79 1.75±2.58  80 7.09±5.27  79 26.73±14.1  79 5.33±7.97  78 0.19±0.65 

2016 Spring  40 1.11±1.74  40 3.91±4.06  40 8.29±5.22  40 5.32±2.98  39 3.04±4.01 

2016 Fall  40 2.79±3.57  40 10.29±7.69  39 27.69±6.37  39 0.11±0.36  38 2.62±4.57 

2016 Total  80 1.95±2.91  80 7.1±6.9  79 17.86±11.34  79 2.75±3.37  77 2.83±4.27 

Spring  79 1.77±2.59  80 6.92±5.43  79 12±8.81  80 3.12±3.24  78 1.62±3.19 

Fall  80 1.92±2.91  80 7.27±6.77  79 32.59±8.67  78 4.98±8.17  77 1.38±3.45 

Site Total  159 1.85±2.75  160 7.09±6.12  158 22.3±13.51  158 4.04±6.23  155 1.5±3.31 
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Table 5. Linear Mixed Model parameters for the SAV percent occurrence (sonar data) regional analysis. 

Model for the Means (fixed) 

Model Parameters Estimate SD DF T Sig. 

95% CI 

Lower 

Bound 

95% CI 

Upper 

Bound 

Intercept 0.7135 0.14 9.09 5.14 < 0 .05 0.40 1.03 

Year 0.0098 0.08 9.26 0.13 0.90 -0.16 0.18 

Season 0.0258 0.08 8.88 0.32 0.76 -0.16 0.21 

Centered Depth (m) -0.3120 0.16 8.59 -1.92 0.09 -0.68 0.06 
        

Model for the Covariance (random) 

Model Parameters Estimate SD Wald Z Sig    

Residual Variance 0.1274 0.005 27.570 < 0 .05    

Random Intercept 0.1848 0.090 2.049 < 0 .05    

Year 0.0538 0.027 1.981 < 0 .05    

Season 0.0610 0.031 1.968 < 0 .05    

Centered Depth (m) 0.2373 0.126 1.886 0.06    
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Table 6. GEE Model analysis for sonar SAV percent occurrence (sonar data) at the local level. 95 % CI = 95% Confidence Interval Lower. LB = Lower Bound. 

UP = Upper Bound. Intc. = Intercept. Depth in meters. 

  Site 1  Site 2  Site 3  Site 4 

Parameter  Intc. Year Season Depth  Intc. Year Season Depth  Intc. Year Season Depth  Intc. Year Season Depth 

B  3.57 0.36 0.16 -1.36  18.1 -6.84 2.4 -3.51  1.92 0.25 -0.09 -0.64  2.22 -0.18 -0.21 -0.32 

SE  0.2 0.05 0.03 0.12  7.16 1.54 1.25 2.99  0.29 0.05 0.06 0.11  0.11 0.04 0.05 0.07 

95% CI LB  3.18 0.26 0.09 -1.6  4.06 -9.85 -0.05 -9.38  1.35 0.16 -0.21 -0.86  2 -0.25 -0.31 -0.45 

95% CI UB  3.96 0.46 0.22 -1.12  32.14 -3.82 4.86 2.36  2.49 0.34 0.02 -0.42  2.44 -0.1 -0.11 -0.19 

P  <0.05 <0.05 <0.05 <0.05  <0.05 <0.05 0.18 0.10  <0.05 <0.05 0.12 <0.05  <0.05 <0.05 <0.05 <0.05 

  Site 5  Site 6  Site 7  Site 8 

Parameter  Intc. Year Season Depth  Intc. Year Season Depth  Intc. Year Season Depth  Intc. Year Season Depth 

B  0.65 -0.1 -0.35 -0.09  1.11 0.15 0.12 -0.34  -0.46 -0.17 -0.11 0.84  1.98 -0.17 0.62 -0.54 

SE  0.31 0.05 0.05 0.14  0.2 0.06 0.07 0.08  0.32 0.07 0.06 0.21  0.22 0.04 0.04 0.14 

95% CI LB  0.05 -0.2 -0.45 -0.36  0.71 0.04 -0.01 -0.5  -1.1 -0.3 -0.22 0.42  1.55 -0.24 0.54 -0.81 

95% CI UB  1.26 0.01 -0.26 0.18  1.5 0.26 0.24 -0.19  0.18 -0.04 0 1.25  2.41 -0.1 0.7 -0.27 

P  <0.05 0.07 <0.05 0.52  <0.05 <0.05 0.07 <0.05  0.16 <0.05 0.06 <0.05  <0.05 <0.05 <0.05 <0.05 

  Site 9  Site 10           

Parameter  Intc. Year Season Depth  Intc. Year Season Depth           

B  1.46 0.11 0.06 -0.63  -0.04 0.3 -0.06 0.05           
SE  0.74 0.19 0.09 0.5  0.13 0.07 0.03 0.07      

 
    

95% CI LB  0.01 -0.26 -0.12 -1.6  -0.28 0.16 -0.12 -0.08      
 

    
95% CI UB  2.92 0.47 0.23 0.34  0.21 0.43 0 0.18      

 
    

P  0.05 0.57 0.54 0.2  0.78 <0.05 0.06 0.42      
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Table 7. Total number of video drops and the number of verified SAV present video drops at each sentinel site sampling event (2015 and 2016, spring and fall). 

  Site 1  Site 2  Site 3  Site 4  Site 5 

Year/Season 

 

Total 

video 

drops 

SAV 

verified 
 

Total 

video 

drops 

SAV 

verified 
 

Total 

video 

drops 

SAV 

verified 
 

Total 

video 

drops 

SAV 

verified 
 

Total 

video 

drops 

SAV 

verified 

2015 Spring  100 19  
100 8 

 
100 0 

 
100 33 

 
101 1 

2015 Fall  91 16  
65 0 

 
80 1 

 
89 9 

 
81 0 

2015 Spring  100 8  
100 0  100 4  108 19  100 0 

2016 Fall  100 25  
100 0 

 
100 0 

 
100 0 

 
100 0 

Total  391 68  365 8  380 5  397 61  382 1 

  Site 6  Site 7  Site 8  Site 9  Site 10 

Year/Season 

 

Total 

video 

drops 

SAV 

verified 
 

Total 

video 

drops 

SAV 

verified 
 

Total 

video 

drops 

SAV 

verified 
 

Total 

video 

drops 

SAV 

verified 
 

Total 

video 

drops 

SAV 

verified 

2015 Spring  99 0  58 0  100 20  100 0  100 0 

2015 Fall  79 0  89 0  80 18  79 0  50 0 

2015 Spring  100 0  100 0  100 1  100 0  100 0 

2016 Fall  100 0  100 0  100 10  100 0  100 0 

Total  378 0  347 0  380 49  379 0  350 0 
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Table 8. Sentinel sites characteristics based on quadrat and core data. Sites with NA species indicate that no SAV 

were found during core sampling. Spring (S,) and fall (F). No statistical difference (ND) 

Site 

Percent Cover 

Range Peak Year Peak Season Species (season) 

1 27.64 - 95.52 2015  S R. maritima (S, F) and M. spicatum (S, F) 

2 0 - 12.95 2015  S NA 

3 0 - 45.01 2016  S R. maritima (S) 

4 2.9 - 72.25 2015  S V. americana (S, F) and N. guadalupensis (S) 

5 0 all zero all zero NA 

6 0 - 0.08 ND ND NA 

7 17.55 - 38.76 ND ND NA 

8 0.69 - 62.08 ND  S R. maritima (S, F) and P. perfolialtus (S) 

9 0 all zero all zero NA 

10 0 - 0.19 2015  S NA 
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Table 9. Albemarle Sound Sentinel Sites SAV mean percent cover and standard deviation for each quadrat sampling. Mean PC = Mean Percent Cover. 

  Site 1  Site 2  Site 3  Site 4  Site 5 

Year/Season  N Mean ± SD  N Mean ± SD  N Mean ± SD  N Mean ± SD  N Mean ± SD 

2015 Spring  27 95.52±15.99  32 12.95±25.63  23 2.06±2.91  12 72.25±43.68  34 0 

2015 Fall  20 78.48±31.78  5 0  NA NA  28 12.27±30.88  40 0 

2015 Total  47 88.27±25.18  37 11.2±24.2  23 2.06±2.91  40 30.27±44.42  74 0 

2016 Spring  26 63.56±33.58  35 4.22±16.23  16 45.1±35.05  20 2.9±11.13  34 0 

2016 Fall  13 37.64±32.02  13 0  23 0±0  19 8.53±18.38  14 0 

2016 Total  39 54.92±34.91  48 3.08±13.93  39 18.5±31.46  39 5.64±15.17  48 0 

Spring  53 79.84±30.5  67 8.39±21.53  39 19.72±30.82  32 28.91±43.78  68 0 

Fall  33 62.39±37.35  18 0  23 0  47 10.76±26.37  54 0 

Site Total  86 73.15±34.16   85 6.61±19.39   62 12.4±26.15   79 18.11±35.38   122 0 

  Site 6  Site 7   Site 8  Site 9  Site 10 

Year/Season  N Mean ± SD  N Mean ± SD  N Mean ± SD  N Mean ± SD  N Mean ± SD 

2015 Spring  40 0.08±0.43  33 17.55±28.44  27 18.58±21.8  40 0  34 0.19±0.35 

2015 Fall  40 0  31 38.76±40.55  31 20.97±35.29  29 0  40 0 

2015 Total  80 0.04±0.3  64 27.83±36.17  58 19.86±29.56  69 0  74 0.09±0.25 

2016 Spring  40 0  39 23.35±29.4  31 62.08±47.55  37 0  34 0 

2016 Fall  40 0  37 31.17±33.98  24 0.69±2.4  31 0  40 0 

2016 Total  80 0  76 27.16±31.74  55 35.29±46.93  68 0  74 0 

Spring  80 0.04±0.3  72 20.69±28.91  58 41.83±43.42  77 0  68 0.09±0.26 

Fall  80 0  68 34.63±37.03  55 12.12±28.24  60 0  80 0 

Site Total  160 0.02±0.21  140 27.46±33.72  113 27.37±39.58  137 0  148 0.04±0.18 
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Table 10. Linear Mixed Model parameters for the SAV percent cover (quadat data) regional analysis. 

Model for the Means (fixed) 

Model Parameters Estimate SD DF T Sig. 

95% CI 

Lower 

Bound 

95% CI 

Upper 

Bound 

Intercept 0.4049 0.18 8.71 2.26 < 0 .05 0.00 0.81 

Year -0.0318 0.12 7.91 -0.27 0.80 -0.31 0.24 

Season -0.2695 0.14 8.55 -1.92 0.09 -0.59 0.05 

Centered Depth (m) 0.2503 0.21 9.10 1.20 0.26 -0.22 0.72 
        

Model for the Covariance (random) 

Model Parameters Estimate SD Wald Z Sig    
Residual Variance 0.2024 0.009 23.319 < 0 .05    
Random Intercept 0.2983 0.154 1.943 0.052    
Year 0.1319 0.071 1.867 0.062    
Season 0.1872 0.095 1.970 < 0 .05    
Centered Depth (m) 0.4052 0.205 1.977 < 0 .05    
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Table 11. GEE Model analysis for sonar SAV percent cover (quadrat data) at the local level. 95 % CI = 95% Confidence Interval Lower. LB = Lower Bound. 

UP = Upper Bound. Intc. = Intercept. Depth in meters. * Values were zero, so there was no statistical difference. Sites 5 and 9 had no SAV at any sampling 

event, so they there were excluded from GEE analysis.  

  
Site 1 

 
Site 2 

 
Site 3 

 
Site 4 

Parameter 
 

Intc. Year Season Depth 
 

Intc. Year Season Depth 
 

Intc. Year Season Depth 
 

Intc. Year Season Depth 

B 
 

1.77 -0.4 -0.31 0.34 
 

0.8 -0.31 -0.2 -0.42 
 

0.59 1.02 -1.37 -0.3 
 

0.24 -0.53 -0.43 1.2 

SE 
 

0.12 0.13 0.14 0.16 
 

0.25 0.13 0.08 0.21 
 

0.23 0.18 0.17 0.27 
 

0.2 0.14 0.16 0.25 

95% CI LB 
 

1.53 -0.65 -0.57 0.02 
 

0.32 -0.56 -0.34 -0.83 
 

0.13 0.67 -1.7 -0.83 
 

-

0.15 
-0.8 -0.74 0.72 

95% CI UB 
 

2 -0.16 -0.04 0.66 
 

1.28 -0.06 -0.05 0 
 

1.04 1.38 -1.03 0.22 
 

0.62 -0.25 -0.13 1.69 

P 
 

<0.05 <0.05 <0.05 <0.05 
 

<0.05 <0.05 <0.05 0.05 
 

<0.05 <0.05 <0.05 0.25 
 

0.22 <0.05 <0.05 <0.05 

  
Site 6 

 
Site 7 

 
Site 8 

 
Site 10 

Parameter 
 

Intc. Year Season Depth 
 

Intc. Year Season Depth 
 

Intc. Year Season Depth 
 

Intc. Year Season Depth 

B 
 

0.02 -0.01 -0.01 -0.01 
 

0.86 0.1 0.28 -0.26 
 

-0.03 -0.04 -0.78 1.64 
 

0.01 -0.03 -0.03 0.04 

SE 
 

0.01 0.01 0.01 0.01 
 

0.24 0.16 0.15 0.24 
 

0.16 0.11 0.11 0.24 
 

0.01 0.01 0.01 0.02 

95% CI LB 
 

-0.01 -0.02 -0.02 -0.02 
 

0.4 -0.22 -0.02 -0.73 
 

-0.34 -0.24 -1 1.16 
 

0 -0.05 -0.05 0.01 

95% CI UB 
 

0.05 0 0 0.01 
 

1.32 0.41 0.57 0.2 
 

0.28 0.17 -0.56 2.12 
 

0.03 -0.01 -0.01 0.07 

P 
 

0.18 0.14 0.14 0.46 
 

<0.05 0.55 0.06 0.27 
 

0.86 0.74 <0.05 <0.05 
 

0.06 <0.05 <0.05 <0.05 



 

 

 

 

CHAPTER 3: Perceptions of the distribution of Submerged Aquatic Vegetation (SAV) in a 

low-salinity estuary in North Carolina: A comparison of casual and expert observers. 

Abstract 

Coastal resources managers are charged with the task of monitoring and managing 

resources in order to make informed decisions about conservation and restoration. However, in 

many cases, though a resource may be already experiencing the negative effects from external 

pressures, managers do not have enough information about people’s perspectives about the 

resource. Further, they may not have enough historical information to develop successful 

management strategies that will address stakeholders’ issues, will minimize conflict, and set 

adequate conservation and restoration goals. Including historical data (e.g. archives, interviews, 

narratives, and zooarchaeological remains) in resources monitoring can help identify baselined 

distributions. Disciplines likes anthropology and social science already have the protocols to 

collect and analyze these types of data. The purpose of this phase of the study was to evaluate the 

effectiveness of Local Ecological Knowledge (LEK) to evaluate people’s perceptions about SAV 

and collect historical abundance and distribution information about an important resource. SAV 

are considered an indicator species in coastal systems, as they provide valuable ecosystem 

services and are highly responsive to environmental changes. Yet, their abundance has declined 

across the world due to increasing human populations along the coast. LEK is defined as the 

knowledge, practice, and belief held by a group of people about their local ecosystem. To study 

the effectiveness of LEK at identified people’s value and knowledge, I tested two hypotheses. 

The first hypothesis was that stakeholders (coastal residents, commercials fishers, and fishery 

managers) in a low-salinity region in North Carolina, the western Albemarle Sound (AS), will 

agree on the basic values of SAV. The second hypothesis was that different groups of 
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stakeholders will have different beliefs about specific issues related to SAV. The LEK data in 

this study were collected in two phases: oral interviews with key informants and a written mail-

in survey. In addition to using LEK to test these two hypotheses, the written survey was also 

utilized to assess the historical SAV distribution knowledge of the respondents for the western 

AS. Results indicated that commercial fishers and fishery managers have similar knowledge 

about SAV; however, coastal residents and the other two groups differed in their perceptions. 

Some important areas of disagreement between the three social groups are SAV’s ecosystem 

value and the effect of development on SAV. While the groups agree that there has been an 

increase in SAV distribution in the last decade in the AS, a surprising result in light of the 

reported SAV decline in AS and other areas. Areas of agreement and disagreement can be used 

by coastal resources managers to initiate communication with stakeholders and develop 

management policies that are more likely to be accepted when stakeholders participate in the 

policy-making process (Keeney et al. 1990). Further, stakeholders can have a sense of resource 

ownership (Tomasini and Theilade 2019). In addition, the results from the historical distribution 

map question in the survey revealed that the respondents’ knowledge about SAV distribution 

agreed with biological data collected in the region. 
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Introduction 

 Ecosystems provide different functions, and these functions depend on factors like 

temperature, salinity, water chemistry, and plant species composition, and these functions take 

place independently of humans (Costanza et al. 1997). However, humans and the natural 

environment may benefit from these functions, providing ecosystem services. Ecosystem 

services are value-centered as opposed to ecosystems functions - for example, a farmer may 

value a wetland downstream from their fields, as they help regulate flooding. This study focused 

on SAV, which is recognized worldwide for its many important ecosystem services and 

economic value to humans (Orth et al. 2006) 

Importance of SAV 

SAV are marine and freshwater angiosperm found in estuarine systems. SAV provide 

foraging and nursery habitat to fish, shellfish, sea turtles, birds, and invertebrates (Heck and 

Thoman 1984; Thayer et al. 1984). SAV can also reduce erosion (Madsen et al. 2001), connect 

habitats ( e,g., oyster reefs, coral reefs, and mangroves; Micheli and Peterson 1999), and aid in 

carbon sequestration (Fourqurean et al. 2012). SAV are frequently used as a water quality 

indicator, as they are responsive to changes in salinity, sedimentation, and nutrient loading 

(Dennison et al. 1993).  

As essential fish habitat, SAV are protected by the Magnuson–Stevens Fishery 

Conservation and Management Act, which make SAV a habitat of high management priority to 

state and federal management agencies. The management of SAV requires understanding their 

distribution, abundance, and fluctuations, along with the stressors responsible for the 

fluctuations. SAV frequently occur near the shore, so human activity has been linked to their 
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abundance and distribution (Patrick et al. 2014), with commercial fishers, coastal residents, and 

scientists among the most concerned or affected stakeholders. Therefore, managers also need to 

understand how SAV management decisions may affect or be perceived by SAV stakeholders. 

Problem Statement 

As human coastal populations have increased across the world, anthropogenic changes in 

the aquatic and marine environments have altered natural resources and created increased 

demand on coasts for leisure and recreation (Van Holt 2009). The increasing population and the 

variety of stakeholders in coastal areas make resource management ever more complex. 

Stakeholders come from different socio-economic groups, so they tend to assign different values 

to and possess varying knowledge about natural resources. All these complexities require coastal 

managers and decision-makers to have a broad understanding about their constituencies (Bennett 

et al. 2017). When user groups assign different values to natural resources, managing them 

becomes complex and conflict prone (Johnson and Pollnac 1989); hence, to minimize conflict, 

decision-makers need to be increasingly aware of the value and knowledge stakeholders have 

about costal resources (Rockloff and Lockie 2004). 

Many environmental decisions require making trade-offs, and frequently these trade-offs 

involve choosing between financial and environmental costs and benefits. Decision-makers make 

these decision behind closed doors (Gregory and Keeney 1994). However, the growing 

involvement of advocacy groups and a demand for transparency has forced decision-makers to 

involve different constituencies in the decision-making process through public hearings required 

by some legislation (Orbach 1989; NCDEQ 2016). Nonetheless, it has been difficult for 

decision-makers to involve stakeholders because these trade-offs can be difficult to explain, may 

appear unfair, and are seldom embraced by all stakeholders (Gregory and Keeney 1994). 
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Understanding the stakeholders’ values can allow policy-makers to create improved policy 

alternatives that may be more readily accepted by all groups (Gregory and Keeney 1994). 

According to Gregory and Keeney (1994), decision-makers need to know the values that each 

stakeholder group assigns to a resource, so they can identify all the stakeholders’ objectives, and 

devise policies that address many of the stakeholders’ goals and strike a balance between 

“winners” and “losers”. 

Johnson and Pollnac (1989) indicated that competing values or knowledge between 

stakeholders leads to conflict between users. Valdés-Pizzini (1990) documented the conflict that 

developed after resource managers introduced the idea of establishing a marine sanctuary in La 

Parguera, Puerto Rico. The objective of the proposed sanctuary was to protect the environment, 

as well as to provide recreational facilities for visitors and keep the area open for fishers’ 

activities. During the development process, the resource managers failed to clearly inform the 

fishermen on the objective and purpose of the sanctuary, so the fishers feared they were going to 

be alienated from their fishing resources and their fisheries collapse; hence, the fishers’ 

perceived their values opposed those of the resource managers. Though the resources managers 

included the fishers in an opinion poll, the resources managers failed to consult the fishers 

throughout the sanctuary’s management plan development. These compounding factors led the 

fishermen to lobby against the creation of the sanctuary, and successfully stalled its 

development. The conflict originated, in part, from misconceptions of the fishers, as resources 

managers failed to consider the social and cultural aspects in resources management. This case 

study highlights the importance of developing management steps that consider the knowledge 

and value of all stakeholders. After the confrontation between fishermen at La Parguera and 
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resource managers, the managers leaned valuable lessons; since then resource managers have 

requested the fishers’ involvement in developing a management plan (Valdés-Pizzini 1990). 

A more extreme example of social conflict over coastal resources is found in southeast 

Asia, where a large population depends on fisheries as their main source of protein. Violence 

surrounding fishing rights is common between Vietnam, Cambodia, Philippines, and China 

(Pomeroy et al. 2007). From these examples, it is evident that natural resource managers have a 

complex job, and they are tasked with developing strategies and policy that manage resources 

and minimize conflict. When conflict arises, managers can often ameliorate them by finding 

consensus between the users and implementing policies that are anchored in the agreements 

between user groups (Rockloff and Lockie 2004). Biological data is crucial during decision-

making. However, management decisions need to be made beyond biological data alone: 

managers need to identify areas of agreement and disagreement between users, and social 

scientists can provide this information. There is growing evidence that LEK can be used to 

identify users’ value and knowledge of a resource (Keeney et al. 1990; Gregory and Keeney 

1994). 

LEK as a Tool 

In social science various approaches have been used to identify user’s values and 

knowledge; among them, LEK has been increasingly used by social scientists and coastal 

resources mangers. LEK is defined as the knowledge, practice, and belief held by a group of 

people about their local ecosystem (Olsson and Folke 2001). LEK is a mixture of scientific and 

practical knowledge that is often embedded in socio-economic relations (Griffith 1999). García-

Quijano (2009) indicated LEK can provide information about natural resources in coastal 

systems, particularly those that are in constant change. In this study, LEK was especially useful, 
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as SAV’s abundance and distribution are in constant flux (Li et al. 2007; Patrick and Weller 

2015; Orth et al. 2017). Though, LEK has been described as an excellent tool for ecosystem 

management and conservation, it has been difficult to translate LEK into applicable ways for 

Western science (García-Quijano 2007). However, managers cannot afford to ignore the useful 

information it provides. Further, LEK has been used to create management strategies and 

contribute to scientific knowledge (Poizat and Baran 1997; Calheiros et al. 2000; Hunn et al. 

2003; García-Quijano 2009; Tomasini and Theilade 2019). Note that LEK is not to be confused 

with Traditional Ecological Knowledge (TEK); LEK differs from TEK where the ecological 

value of a resource has historical depth and cultural dimensions. Berkes et al. (2000) defined 

TEK as ”a cumulative body of knowledge and beliefs, evolving by adaptive processes and 

handed down through generations by cultural transmission, about the relationship of humans 

with one another and their environment.” 

Various tools have been used to collect LEK, including surveys, value elicitations, focus 

groups, and public involvement (Keeney et al. 1990). This study focused on utilizing LEK 

through a social survey to identify the value and beliefs that some of the stakeholders have in 

relation to SAV in AS , NC. Though SEK surveys have been limited and incomplete in the 

sound, extensive SAV beds have been already identified (Ferguson and Wood 1994; David and 

Brinson 1990; Quible and Associates 2011; Kenworthy et al. 2012; Chapters 1 and 2 in this 

dissertation) which make the Sound a potentially fish and wildlife habitat in the area. Literature 

indicates that LEK is useful in understanding stakeholder’s values and objectives, which can 

facilitate and legitimate natural resources management (Berkes et al. 2000; Olsson and Folke 

2001). Gregory and Keeney (1994) described how the opening of a coal mine in a pristine 

wilderness forest in Malaysia caused polarization between the various stakeholders (mine 
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company, Malaysian government, environmental groups, and representatives of social interests). 

These authors identified each group’s values and invited them to discuss and to generate 

alternative policies that addressed all the stakeholders’ objectives. Hence, these discussions 

opened the communication and negotiations between the stakeholders and policymakers. 

Similarly, managers in a Swedish rural community utilized LEK to create the framework for 

crayfish fisheries management  (Olsson and Folke 2001). Their study indicated that local users 

have a deep knowledge about the ecology of the system, and their knowledge was valuable in 

developing successful management strategies. These studies indicate that LEK can be useful in 

gathering important ecological knowledge to create management solutions and the co-

management of natural resources between users and managers is more successful than when 

users are not directly involved. LEK not only allows managers and social scientists to identify 

users’ values, but it can be also useful to biologists and ecologists, providing valuable ecological 

insight. 

LEK and Historical Information 

Most of our knowledge on SAV comes from biological scientific data, and many natural 

scientist are skeptical of incorporating LEK into their scientific methods, arguing it is biased and 

anecdotal (Calheiros et al. 2000). While LEK, undeniably is biased, it is based on repeated 

observations and often it has more time depth than scientific knowledge. Nonetheless, the 

integration of LEK with scientific knowledge can help create a better decision-making process 

for coastal resources management (Jacobs et al. 2005). Furthermore, LEK can help biologists and 

ecologists gain knowledge that would not otherwise be available through biological science 

(Olsson and Folke 2001; Schuegraf 2004). For example, Ambrose, et al. (2014) found that 

Inupiaq hunters and fishers of Kotzebue Sound, Alaska were able to describe near-shore marine 
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food webs in more detail than those available from biological studies. However, in most cases, 

they found close correspondence between Inupiaq and scientific knowledge.   

In Alaska, LEK was  useful in identifying the historical abundance of herring 

(Huntington 2000) and the relationships between changing ice cover and local food webs 

(Ambrose et al. 2014). Similarly, Schuegraf (2004) studied the historical decline of seagrass beds 

in Pearl Lagoon, Nicaragua with a combination of LEK and direct visual census. LEK allowed 

Schuegraf (2004) to estimate seagrass bed abundance for the last 30 years, information that 

would not be available otherwise by interviewing local people who lived or worked around the 

lagoon. To verify LEK information, Schuegraf (2004) took sediment cores at 64 different 

locations in the lagoon, and she found a strong correlation (92%) between seagrass presence 

(LEK responses) and the sediment cores (biological data). Based on the LEK information, the 

author concluded that seagrass coverage had declined 75% over the last three decades. 

Furthermore, the people she interviewed gave her important insight on the causes for the decline 

(e.g., hurricane disturbance, dredging, and sedimentation). The current study used LEK as a tool 

to understand the historical distribution of SAV in AS, NC.  

To manage a natural resource, it is vital for managers to know the resource’s status and 

how human activity affects it. Otherwise, it is not possible to determine what kind of 

management is needed. Managers are increasingly relying on scientific data to make 

management decisions (Lemos and Morehouse 2005), yet such data may be limited. This is 

particularly true for some large and difficult to access coastal areas with large SAV resources 

where there is a lack of historical information and synoptic biological surveys are not available. 

This paper focuses on the western AS, NC because of the potential importance of SAV resource 

in the area (Ferguson and Wood 1994; Deaton et al. 2010). It has been difficult to manage SAV 
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in the area because SAV in AS is considered “invisible.” In other words, it occurs in low-salinity 

areas, where water clarity is poor due to river inputs of dissolved organic matter and sediments 

(Fonseca et al. 1998; Kenworthy et al. 2012). The turbidity of the water has limited the ability of 

federal and state agencies to monitor SAV abundance and distribution with commonly used 

synoptic methods, such as aerial remote sensing (satellite or airborne). Therefore, management 

agencies lack a robust baseline for historical and present SAV abundance and distribution. This 

situation is common in other high-turbidity areas of the world like in the Curonian Lagoon in the 

Baltic sea (Bučas et al. 2016), in the upper reaches of the Chesapeake Bay, and other portions of 

NC estuaries (Dobson et al. 1995; Kenworthy et al. 2012). Monitoring SAV in regions with 

clearer waters has been more successful, like in parts of the Chesapeake Bay (Orth et al. 2010), 

where the SAV monitoring program has historical information going back the 1970’s. In AS, 

there is limited historical SAV distribution data (Davis and Brinson 1990; Ferguson and Wood 

1994; Deaton et al. 2010; Kenworthy et al. 2012), so I implemented LEK to not only help 

address the need to identify users’ values and knowledge, but to address the need for historical 

information about the distribution of the SAV. 

This study is unique in that it utilized LEK as a tool to understand SAV stakeholders’ 

knowledge in an area of NC that has been studied before with SEK, but SAV information 

remains incomplete. Additionally, this study is the first to generate a historical SAV maximum-

extent distribution map for the area, solely based on social knowledge. This map could be 

considered a steppingstone for finer-resolution, maximum-extent SAV distribution maps that 

describe past SAV distribution through LEK for the entire AS, including interviewing more 

people familiar with SAV. 

Goals and Hypotheses 
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The purpose of this phase of the study was to identify users’ values and beliefs about 

SAV through LEK, and to complement a larger study of the condition of SAV in the AS 

(Chapters 1 and 2). The objectives of the study were twofold. The first objective was to identify 

the value that users assign to SAV with a written survey. This information could be particularly 

useful to help scientists, managers, and stakeholders understand the historical distribution of 

SAV in western AS. In addition, the information can be used to gain insight into the potential 

causes for change in the SAV distribution and abundance. 

Initially, two hypotheses related to SAV cultural belief in the western Albemarle Sound 

were tested: 

Hypothesis 1 (H1): Participants will agree on basic concepts about the value and ecology 

of SAV (e.g., the belief that SAV are important for the ecosystem and fisheries dependent 

on it). 

Hypothesis 2 (H2): Commercial fishers, coastal residents, and fishery managers will 

have different beliefs about more specific issues.  

Initial results from the second hypothesis informed the development of more specific 

hypotheses: 

Hypothesis 2a (H2a): Commercial fishers, coastal residents, and fishery managers 

will have different beliefs about SAV value. 

Hypothesis 2b (H2b): Commercial fishers, coastal residents, and fishery 

managers will have different beliefs about SAV abundance trend. 



 

130 

 

Hypothesis 2c (H2c): Commercial fishers, coastal residents, and fishery managers 

will have different beliefs about the Sound’s water quality. 

Hypothesis 2d (H2d): Commercial fishers, coastal residents, and fishery 

managers will have different beliefs about the effect of seasons on SAV abundance. 

Hypothesis 2e (H2e): Commercial fishers, coastal residents, and fishery managers 

will have different beliefs about the effect of storms on SAV abundance. 

Hypothesis 2f (H2f): Commercial fishers, coastal residents, and fishery managers 

will have different beliefs about the effect of development on SAV abundance. 

Fishers, who depend on coastal resources for their livelihoods, and scientists, who study 

estuarine environments and SAV, are likely to understand the ecological value of SAV, 

including the ecological services SAV provides other, related natural resources. However, some 

coastal residents find SAV a nuisance, as it impedes their ability to swim and operate watercraft 

(Nichols and Shaw 1986; Sprecher et al. 1998). On the other hand, fishers and scientists in NC 

value SAV’s ecosystem services, as it provides nursery habitat to many fish and invertebrate 

species (Griffith 1999; Dealteris et al. 2004; Flaherty-Walia et al. 2015; Miller 2015) (Dealteris 

et al. 2004; Flaherty-Walia et al. 2015; Miller 2015). I expected fishers and scientists to have a 

positive belief about the value of SAV, but also expected that coastal residents would likely 

disagree with fishers and scientists. H2 arose from evidence that groups tend to disagree about 

specific concepts about natural resources (Johnson and Griffith 2010). Fishers, fishery managers, 

and coastal residents spend different amounts of time in the water, which are likely to generate 

different knowledge levels and beliefs; each of these groups is also likely to have different 

degrees of economic and environmental interest in SAV, which also has been shown to generate 
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different levels of knowledge (Griffith et al. 2013). These variations in knowledge levels are 

likely to produce differences in how stakeholders perceive factors that can affect SAV.  

Methods 

Study Area 

This study focused on western AS (Figure 13), which is part of the Albemarle-Pamlico 

Estuarine System (APES). APES is the largest lagoon system and the second largest estuary in 

the US. AS covers an area of about 480 m2, with a west to east distance of about 89-km. AS is a 

shallow sound (mean depth =3.5 m) where wind has a major influence on water levels and tides; 

astronomical tides are almost negligible. AS is a low-salinity estuary, as characterized by The 

Venice system (Oertli 1964); salinity is lowest in the western part of sound (<6 psu), and salinity 

increase eastward (6-18 psu). Turbidity increases near the rivers (Ferguson et al. 1990), as 

brown-water drains from the peatland and swamp forests (Giese et al. 1985). 

SAV in the Western AS 

Low-salinity SAV species (Table 1) present in AS are more ephemeral and exhibit a 

greater temporal and spatial variation than their higher salinity counterparts (Davis and Brinson 

1990; Quible and Associates 2011; Kenworthy et al. 2012). Synoptic SAV surveys of AS are 

difficult because aerial imaging cannot detect SAV in a low-visibility system, and it often 

underestimates SAV abundance and bed extent (Ferguson and Wood 1994; Davis and Brinson 

1990). Nonetheless, APNEP has monitored SAV in the western area of AS in the past and 

studies indicated there has been SAV in the area for at least the past 30 years (Quible and 

Associates 2011; Kenworthy et al. 2012; Chapters 1 and 2). 

Participants 
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I included fishers, fishery managers/experts, and coastal residents as respondents to the 

surveys. These groups were selected because they are major stakeholders in the management of 

SAV (Borsuk et al. 2001). Commercial fishers are defined as individuals who work full-time 

fishing and have a commercial license. Fishery managers/experts are defined as individuals 

whose primary responsibility is NC fisheries management or they are scientists knowledgeable 

about the SAV in the area. Coastal residents are defined as those permanent residents on the 

coast of AS, residing no more than 100 meters from the shore.  

The commercial fishers and expert groups were clustered into a single group, hereafter 

referred to as the “expert” group. The rational for clustering the two groups was twofold. First, 

commercial fishers and fishery managers are likely to be more knowledgeable about SAV than 

coastal residents, for two reasons: fishery managers in my sample were familiar with SAV from 

scientific studies and ongoing environmental monitoring of AS; and commercial fishermen 

depend on SAV for their livelihoods. While I acknowledge that their beliefs about SAV would 

not necessarily be in complete agreement, a factor that is often reflected in disputes over the 

management of fishery resources, literature comparing LEK with scientific knowledge suggests 

that they both constitute “expert” knowledge systems (Ambrose et al. 2014). In this survey, this 

was further supported by a comparison between means (Tukey Test), which revealed that the two 

groups had similar answers to my survey (p=0.213). Second, there was a very small sample for 

the fishery managers. In the AS, only a limited number of individuals work as fisheries managers 

or study SAV in the area. For example: three scientists at different divisions of North Carolina 

Department of Environmental Quality (NCDEQ), the technical members of APNEP, and two 

scientists at East Carolina University and NC State University. Finally, many studies that rely on 

LEK have small samples, assuming that cultural knowledge is widely shared and assessing 
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requires only a few individuals (Hunn et al. 2003; García-quijano 2007; García-Quijano 2009; 

Tomasini and Theilade 2019). 

The commercial fishers’ sample was obtained by intercepting fishers at landing sites and 

from a boat seller’s mailing list. The fishery manager group respondents were obtained by 

interviewing fisheries managers from the NC Division of Marine Fisheries and university 

affiliates. The coastal residents’ sample was obtained through the Chowan County Land Records 

Office. 

Phase 1: Semi-structed Interviews and Key Informants 

In the first phase of this study, oral interviews were conducted with twelve key 

informants, three from each social group: commercial fishers, scientists, and coastal residents. A 

key informant was defined as individuals exposed to information about SAV and AS based on 

their role in the community. These individuals were also knowledgeable about SAV and AS, and 

they were able and willing to communicate with interviewers, and tend to be unbiased (except 

for biases known to the interviewer) (Marshall 1996). The key informants were identified by 

contacting commercial fishers and fisheries managers known to Dr. Griffith at East Carolina 

University, who has worked for several years with commercial fishers in the area. I also asked 

some of the key informants if they could name individuals who were knowledgeable about SAV 

in the area, and I interviewed them as well.  

The information collected in the interviews was used to develop a survey instrument that 

was implemented during the second phase of the data collection. Semi-structured interviews 

were conducted in the fall and winter of 2017. The open-ended questions covered topics such as 

their opinion on SAV ecosystem services, the distribution of SAV in the western AS, and the 



 

134 

 

potential causes for change in SAV distribution and abundance. The oral interviews statements 

were reviewed by two researchers (Dr. Griffith and Hilde Speight) to identify the 33 most 

common statements, which were selected to be part of the written survey. 

Phase 2: Written Survey 

The second phase consisted of a written survey with the 33 statements, in which the 

respondents were asked to reply by indicating: strongly agree, somewhat agree, somewhat 

disagree, strongly disagree or don’t know statements (Likert Scale responses). I balanced the 

items (50% of the expected answers should be agree and 50% disagree) to limit potential 

agreement and disagreement biases (Johnson and Griffith 2010). 

In addition to the 33 items, the respondents were asked if they have lived in the western 

AS for less than 10 years, more than 10 years, or more than 20 years. Finally, a map of western 

AS was included in the survey instrument. In this section, the respondents were asked to select 

the areas where they have seen SAV in the past 10 years (Table 12 and Figure 13). The purpose 

of this map was to generate a composite map that would indicate the maximum extent of SAV in 

the western AS based on LEK. Note than all the respondents are not likely to have visited each 

possible grid, so there is an inherent bias to the data. Additionally, very few respondents are 

likely to be familiar with the entire area shown in the map. 

At least 15 respondents from the expert group and coastal residents were selected to 

respond to the survey. While this is too small a sample to statistically represent all commercial 

fishers and coastal residents on the AS, and certainly cannot be correlated with factors such as 

ethnicity, age, and socioeconomic status, it is not an uncommon sample size for studies of belief 

systems that are, like language, shared across populations (Romney et al. 1986; Bernard 2017). 
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In the same way that you only need a few speakers to understand an entire language, many 

studies only require a handful of informants to understand local belief systems. Because of the 

small number of fishery managers who answered the survey, and for other reasons noted above, I 

pooled them with the fisher/expert sample. Scientists were the only group with less than 15 

respondents because of the limited number of scientists in the areas. The small sample does not 

represent an issue, as social scientists indicate that LEK is widely shared by individuals that 

work with the same natural resources, which does not necessitate a very large or random sample. 

The surveys were mailed to most of the respondents, except for a few of the commercial fishers. 

Some of the fishers were intercepted at a landing center near the western AS (Full Circle Crab 

Company in Columbia, NC). A total of 97 surveys were mailed with a return rate of 43%, with 

similar studies reporting return rates lower than 40% (Johnson and Griffith 2010) 

Data Analysis 

All the data were analyzed using SPSS v25 (IBM Corp. 2017). Analysis of Variance 

(ANOVA) was used to determine the difference in beliefs between the groups. Beliefs for a 

given group was determined by the group’s mean response to a set of questions. Therefore, in 

ANOVA, the response variable used in the analysis was the mean responses across a set of 

questions made by each respondent. Consequently, the scale data, inherent to the Likert scale, 

can be considered continuous (Johnson and Creech 1983; Sullivan and Artino 2013). First, I 

compared the two groups’ answers (coastal resident and expert) to the entire survey as a whole. 

Next, I compared the two groups considering questions that related to general SAV ecology, and 

SAV value. Then, I compared the two groups questions, as they related to specific concepts 

about SAV ecology, and its value. Finally, I compared the two groups’ answers by grouping their 

answers into specific topics or concepts. These topics were: SAV value, trend, water quality, 
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seasonality, storms, and development. On four occasions, the questions were grouped in more 

than one topic category, as questions related to more than one topic (i.e., seasonality and water 

quality in questions 10 and 11, and development and water quality in question 21 and 22). Some 

of these topics are reflected in the following statements made by some respondents during the 

open-ended interviews: 

It [SAV distribution] changes every year 

In 2007 we had a tremendous bloom of SAV… the crabs that year were 

unbelievable… I’m sure it’s [great abundance and large size of blue crabs] directly 

tied to SAV…the next year wasn’t as extensive. 

During dry years you see a difference in the species composition than you do during 

extreme wet years. 

A year before [hurricane] Isabel … we saw SAV like we never seen before then 

things died out. 

One of the reasons it’s still profitable [to fish for crab] there [Alligator River] is no 

development. 

Results 

A total of 41 people were surveyed, 20 (49% of the total sample) of the respondents were 

experts (15 fishers and 5 fishery managers) and 21 (51% of the total sample) were coastal 

residents. The results revealed that the expert group and the coastal residents represent different 

subcultures. Each of the two groups differ in their general and specific beliefs and knowledge 

about SAV. When I compared the answers to the entire survey between the groups, I identified a 
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significant difference between the groups (df= 1, F= 11.59, p= 0.001). When I only compared 

general statements about SAV’s ecology and its value between the two groups, my original 

hypothesis (H1) was supported because both groups agreed on the generalities about the value of 

SAV (df=1, F= 0.091, p= 0.764; Table 13). When I compared the two groups’ answers to more 

specific issues (e.g., SAV abundance trends and factors affecting SAV distribution), I did not 

find evidence that supported my second hypothesis (H2) because the results indicated that the 

two groups did not significantly differ about specific issues (df= 1 F= 0.288, p= 0.595; Table 

13). 

As the comparison between groups in specific issues did not yield any significant 

difference, I further classified the specific questions of the survey into narrower ecological 

topics. I grouped the questions into six categories as they relate to SAV: SAV Value, Trend, 

Water Quality, Seasonality, Development, and Storms. Then, I compared each group again by 

each of these categories. 

SAV value, water quality, and development were the only topics that were significantly 

different between the two groups, while trend, seasonality, and storms were not significantly 

different (Table 13). Therefore, I accepted hypotheses H2a, H2c, and H2f, but accepted hypotheses 

H2b, H2d, and H2e,.When looking at the means for the questions used to evaluate SAV value 

between groups (Questions 23, 29, and 30;Table 12), experts assigned a greater ecological value 

to SAV as a fish and invertebrate habitat than the coastal residents (F=0.604, DF=1, P=0.0442); 

however, both groups value SAV as an important habitat. For the water quality topic, both 

groups responded that the overall water quality has declined in the last ten years; however, 

experts’ beliefs were stronger than the coastal residents’; in other words, the expert grouped had 

a stronger belief that water quality has declined compared to the coastal residents. Regarding 
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development, both groups think that development negatively affects SAV abundance, but, the 

expert group had a stronger belief than the coastal resident group. The two groups have several 

areas where their beliefs agree. Both groups agreed that SAV have increased within the last 10, 

20, and 50 years (F=0.463, DF=1, P=0.463; Table 12), and that storms have a major role in the 

distribution and abundance of SAV ((F=1.085, DF=1, P=0.304; Table 12). 

SAV Maximum Extent Map 

In the written survey, people were asked to shade areas where they had seen SAV in the 

past 10 years. (Figure 14). Respondents from all the groups agreed that there has been an 

extensive (>10 km in length) bed off the town of Edenton, especially on the eastern shore (Figure 

15). Respondents also agreed that there has been some SAV in the Chowan River and at the 

mouth of the Yeopim River (Figure 15). Very few people (less than 6 people) agreed that there 

has been SAV present on the southwestern shoreline of AS, except for the mouth of 

Scuppernong River. 

The NCDEQ created an SAV composite geographic layer (NCDMF 2008) that compiled 

SAV distribution data collected with various sampling methods between 1987 and 2008. A 

visual comparison between these data and LEK data showed that the SAV biological distribution 

data tends to agree with the social science data collected from the respondents. Areas where very 

few respondents reported the presence of SAV seemed to have very sparse SAV beds during 

biological surveys (MEL and RAS). 

Discussion 

While the sample size in this study does not warrant extrapolating this study to the entire 

population, whether fishers, managers, or coastal residents, this study provides a starting point, a 
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kind of pilot, for SAV managers to identify common interests between two major groups of SAV 

stakeholders: experts and coastal residents. In addition, the information reported here revealed 

some areas of potential disagreement between stakeholders. First, it is important to know that 

although residents and experts value SAV as a habitat for fish and invertebrates, the strength of 

their belief is significantly different. This result was expected, as anecdotal reports and research 

studies indicate that some coastal residents see SAV as a nuisance (Nichols and Shaw 1986; 

Kantrud 1990). Nonetheless, both groups value SAV as a habitat, which offers an important 

common ground for coastal managers when developing policies, as it shows that both groups 

could be interested in protecting the ecological function that SAV provides. 

Another important area of agreement was that both groups believe SAV have increased in 

last decades. However, before extrapolating these results to the entire Sound, it is important to 

highlight the possibility that the LEK data could be spatially biased. Most of the respondents are 

likely to reside near or within Edenton, NC, as that is the most densely populated area in western 

AS; additionally, most respondents were sourced from Edenton. Therefore, respondents can be 

assumed to be most familiar with SAV beds near Edenton, and they likely answered the survey 

according to their knowledge about SAV in reference to the Edenton area. This spatial bias could 

yield biased abundance perceptions, which make it difficult to extrapolate abundance findings to 

the entire sound. The perceived increased abundance could be because Edenton has one of the 

largest beds in the Sound, per recent biological survey (Quibble and Associates 2011; Kenworthy 

et al. 2011; Chapters 1 and 2); however, surveys in AS before the 1980’s did not document a 

large bed off the Edenton area (Davis and Brinson 1990; Ferguson and Wood 1994). 

Nonetheless, this seemed agreement could be a potential obstacle to coastal managers when 

developing policies that involve protection of SAV resources, as the two groups do not perceive 
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it as declining or endangered. Hence, these groups may not welcome policies that are perceived 

as unnecessary. Further, coastal managers need to consider potential areas of disagreement 

between groups. 

Biologists know that SAV abundance and distribution is significantly affected by water 

quality (Fourqurean et al. 2003; Williams et al. 2010) and land use (Patrick et al. 2014; Landry 

and Golden 2017). However, both groups have different believes about the effects of water 

quality and land use on SAV. Both groups believe that water quality in the Sound has declined 

and that affects SAV’s abundance, which seems contradictory to the perceived SAV increased in 

the Sound. Note that he strength of their beliefs is not the same. Experts tend to have stronger 

beliefs about the negative effect of different activities on water quality and SAV. For example, 

experts believe that lumbering (Question 20) and septic tanks (Question 21) have a negative 

effect on water quality; while residents do not have strong beliefs in these areas. Areas where the 

strength of agreement is different could cause potential conflict between the users depending on 

the regulations that are used to manage natural resources. For example, if coastal residents do not 

believe that SAV are affected by development, but experts do; coastal residents will oppose 

regulations that limit development as a measure to protect SAV. As previously noted, I found 

that experts were more likely to agree that septic tanks could be affecting SAV; whereas, resident 

did not agree with this statement. I would expect coastal residents to think that they have little 

influence on SAV, as they are likely to oppose regulation that limits their activities. 

Variation between the experts and coastal residents’ beliefs and values could be 

explained by two factors. First, though experts and coastal residents are frequently in contact 

with the Sound, the expert group have more pressing economic, environmental, and political 

interests in the health of the aquatic environment, including SAV. The expert group are likely to 
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have more uniform information about the Sound because either they are frequently in close 

proximity to the water, noticing changes in the environment over long time periods (in the case 

of fishers) or they are familiar with ongoing studies and monitoring of SAV (in the case of 

fishery managers). Second, although I did not ask respondents about their income, it may be that 

these two groups come from different socioeconomic backgrounds, with people living along the 

coast usually enjoying higher standards of living (due to high real estate value and property 

taxes) than either fishers or fishery managers (Bhat and Stamatiades, 2003). Johnson and Griffith 

(2010) and Griffith (2013) found that socioeconomic differences can lead to differences in 

beliefs in coastal social groups. The lack of consensus between social groups can lead to social 

conflicts, as regulation and policies are implemented to manage the resources (i.e., SAV). 

Finding areas of agreement can lay the ground for consensus building, something that is needed 

by managers to develop policies that will be effective and supported by different social groups.  

SAV Maximum Extent Map 

The LEK maximum extent map revealed that social science could potentially be a useful 

tool for looking into past natural resources distributions. This was especially evident when 

several respondents agreed that SAV were present, as there is evidence from biological data that 

SAV were present in similar locations. These results agreed with Schuegraf (2004), who also 

identified a high agreement between social surveys and biological samples of SAV. This study 

suggests that LEK could be useful in generating maps that extend beyond the time period 

covered by biological SAV survey data; suggested that LEK can go back as far as 100 years 

(Ambrose et al. 2014). Managers could use this information as a proxy for baseline distribution 

for SAV in the past. Nonetheless, it is important to caution managers that these LEK maps can 

only be considered as low-resolution maps. For example, the grid size respondents were asked to 
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shade if they remembered the presence of SAV represented an area of 3 x 3 km, but SAV beds in 

the area are seldomly larger than 1 km (Chapter 1). 

Success of using LEK 

LEK was used in this study for two purposes: 1) to identify SAV stakeholders’ values 

and beliefs; 2) to create a maximum extent SAV map based on LEK. LEK was used successfully 

to achieve both goals. This research revealed that both groups, experts and coastal residents find 

ecological value in SAV; however, there are differences between the groups, especially about the 

causes for change in SAV distribution and abundance. These results indicate that experts and 

coastal residents belong to different subcultures within the AS area, at least regarding their 

beliefs about SAV. These results are not different from what has been identified in other areas. 

For example, Grant and Miller (2004) used LEK to identify cultural groups in the Solomon 

Islands. Their results indicate than in fact there are two bodies of ecological knowledge within 

the area they sampled. Finding more than two cultures is common when studying coastal 

resources, as stakeholders often come from different socioeconomic backgrounds (Johnson and 

Pollnac 1989). 

Summary and Conclusions 

The experts and coastal residents in the sample have different values and beliefs about 

SAV; however, both groups agree, though to a different degree, that SAV are valuable habitat to 

fish and invertebrates. This important agreement between the two groups opens a great 

opportunity for dialog among managers and the two groups. Studying LEK identified several 

areas of agreement and disagreement between the two groups. Managers are encouraged to 
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further study areas of agreement and disagreement between the groups, and to consider 

developing policies that address all stakeholders’ concerns. 

As future steps, managers should utilize other tools such as focus groups and workshops 

to develop policies that will help manage SAV. There is evidence that focus groups can help 

develop alternative policies that address the different stakeholders’ concerns (Gregory and 

Keeney 1994; Prell et al. 2009). Gregory and Keeney (1994) suggest that managers can bring 

together stakeholders by first  pointing out the areas of agreements. These areas of agreement can 

be identified through LEK research. Methods like the one discussed in this paper can be used by 

managers to obtain LEK information, which can be used for framing the decision-making 

process.  

Regarding LEK and the historical distribution of SAV, managers and scientists should 

consider information from residents about the historical distribution of SAV as useful, especially 

when various respondents agree. Future studies should consider analyzing people’s knowledge 

about the SAV distribution in the past 20, 30, 40, and 50 years. Other areas in the world and the 

Atlantic have experienced SAV loses (Orth and Moore 1983; Orth et al. 2006); however, NC has 

limited historical information in low-salinity regions. LEK research could be a way of addressing 

this information deficiency. Additionally, this methodology could be utilized not only in AS, but 

other areas that do not have historical information about SAV and other natural resources. 
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Figures 

 

Figure 13. Western Albemarle Sound NC showing areas where respondents were asked about the presence of 

Submerged Aquatic Vegetation during the written survey. Each square in the grid represents areas of 3 x 3 km. Note 

that all the respondents are not likely to have visited each possible square. 
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Figure 14. Maximum extent SAV map in the western Albemarle Sound NC based on LEK. The green color gradient 

represents number of respondents that reported SAV present at a grid on the LEK survey. A total of 41 people 

responded to the survey. 21 coastal residents and 20 experts. The green squares do not represent patch sizes. It was 

an approximate location for SAV beds. 
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Figure 15. Maximum extent SAV map in the western Albemarle Sound NC based on LEK and SEK. The green color 

gradient represents number of respondents to a LEK survey. The numbers inside the grid are the number of 

respondents that confirmed SAV occurrence in that location. A total of 41 people responded the survey. 21 coastal 

residents and 20 experts. The squares do not represent patch sizes. It is an approximate location for SAV beds. The 

shaded areas represent areas with SAV on a maximum extent layer based on biological data. The NC Department of 

Environmental Quality (NCDEQ) created an SAV composite geographic layer (NCDMF 2008) that compiled SAV 

distribution data that were collected with various sampling methods between 1987 and 2008. In addition, it includes 

data collected by the East Carolina University SAV survey team in 2014. 
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Tables 

Table 12 Mean and SD table for the Likert scale responses for each question in the written survey. The results were 

grouped by experts and coastal resident. The topic(s) classification for each question is also provided: SAV Value 

(Value), SAV Trend (Trend), Water Quality (WQ), Seasonality (Season), Development (D), Storms, (Storm). NA 

indicates that the question was not grouped into a chategory.  

 

Questions 

Experts 

Coastal 

Residents 
Topic 

class   Mean S.D. Mean S.D. 

1 How long have you lived in the western 

Albemarle Sound (e.g., Edenton, Chowan 

River, Roanoke River, and Plymouth 

areas)? 

2.55 0.58 2.33 0.61 NA 

2 Overall SAV abundance has increased in 

the last 10 years 

2.55 1.1 2 0.85 Trend 

3 Overall SAV abundance has increased in 

the last 20 years 

1.9 1.2 1.24 0.91 Trend 

4 Overall there is not as much SAV as there 

used to be 50 years ago 

1.5 1.03 1.1 1.25 Trend 

5 SAV abundance changes all the time 2 1.03 1.76 0.87 Season 

6 SAV distribution does not change from 

year to year 

3.45 1.05 3.29 0.78 Season 

7 Depending on the year, SAV is present in 

some areas and absent in other areas 

1.75 0.97 1.62 0.92 Season 

8 The invasive species, Eurasian 

watermilfoil, was common in the past, but 

improved water quality has caused a 

decline in its abundance 

1.9 0.76 1.1 1.13 WQ 

9 Improved water quality causes an 

increase in the abundance of Eurasian 

watermilfoil 

2.15 0.75 0.81 1.17 WQ 

10 During wet years, different SAV species 

are present in the sound than during dry 

years 

2.15 1.04 0.95 0.47 WQ, 

Season 

11 Extremely dry years are associated with 

an increase in algal blooms 

2.15 1.1 1.76 1 WQ, 

Season 

12 Algal blooms do not inhibit SAV growth 2.45 0.8 2.62 0.62 
 

13 Anything that inhibits water clarity 

inhibits SAV growth 

1.65 0.92 1.48 0.64 WQ 

14 Turbidity is the primary factor hindering 

SAV growth 

2.2 0.96 1.48 0.67 WQ 

15 Turbidity is primarily affected by wind 

and wave action 

2.05 0.9 1.71 1.09 WQ 
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16 Turbidity is primarily affected by nutrient 

runoff 

1.9 0.83 1.57 0.97 WQ 

17 Overall, the water quality of the western 

Albemarle Region has declined in the last 

10 years 

1.9 0.91 1.9 0.86 WQ 

18 Excess nutrients in the water (i.e., 

nutrient loading) caused by nutrient 

runoff from farms does not have a 

negative effect on SAV abundance 

3.4 0.96 2.9 1.03 WQ 

19 Poor water quality in the sound is 

primarily caused by agricultural runoff 

2.1 0.85 2.14 0.96 WQ 

20 Poor water quality in the sound is 

primarily caused by lumbering 

3.05 0.92 2.52 1 WQ 

21 Septic tanks are polluting the sound’s 

water because they do not operate 

properly 

2.25 1.02 1.9 0.61 WQ, D 

22 Septic tanks do not have a negative effect 

on SAV abundance 

2.95 1.05 2.19 1.1 WQ, D 

23 SAV is an important habitat for juvenile 

and adult fish 

1.3 0.47 1.43 0.84 Value 

24 Excessive nutrients in the water do not 

cause algal blooms 

2.8 0.8 3.52 0.57 WQ 

25 Strong storms cannot uproot SAV 3.7 0.47 3 0.71 Storm 

26 Northeast winds during the winter do 

more damage to the SAV than the 

summer winds 

1.95 1.09 0.81 1.13 Storm 

27 SAV abundance fluctuates because of 

hurricanes 

1.8 0.94 2.05 0.8 Storm 

28 Wake from boats uproots SAV 2.5 1.12 1.9 0.63 NA 

29 SAV is not an important habitat for 

juvenile and adult crabs and other 

invertebrates 

3.5 1 2.86 0.45 Value 

30 Tremendous increase in SAV abundance 

is directly tied to larger crab catches 

1.7 1.28 1.57 1.22 Value 

31 Developed shorelines do not have a 

negative effect on SAV abundance 

3.15 1.14 2.67 0.85 D 

32 Development adversely affects SAV 

abundance 

2.25 1.25 1.95 0.76 D 

33 Sea Level Rise will cause SAV to decline 2.4 0.86 1.52 0.7 NA 

34 Sea Level Rise has caused SAV to 

decline in the past decade 

2.4 0.94 1.67 0.75 NA 
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Table 13 ANOVA's of SAV cultural knowledge by topic. 

Topic F df p 

Overall Survey 11.59 1 0.001 

General Statements 0.091 1 0.764 

Specific Statements 0.288 1 0.595 

SAV Value 0.604 1 0.0442 

SAV Trend 0.463 1 0.463 

Water Quality 9.036 1 0.0046 

Seasonality 2.867 1 0.0984 

Development 5.569 1 0.0234 

Storms 1.085 1 0.304 



 

 

 

 

CONCLUSION 

Summary of Findings 

The aim of this dissertation was to learn more about the temporal abundance and 

distribution of the SAV in AS by addressing two main questions: what is the distribution of SAV 

and what is its temporal variation in the AS? Furthermore, this study explored the use of social 

science through the implementation of LEK to understand stakeholder beliefs and knowledge 

about SAV and historical SAV distribution. The study intended to provide useful information to 

coastal resources managers, so they can make informed management decisions. 

This dissertation met its objectives by carrying out three types of surveys, two biological 

surveys, and one social science survey. The biological surveys provided information about the 

abundance and distribution of SAV in AS and demonstrated that single-beam sonar is an 

adequate method for monitoring this resource; however, more work is needed to develop a sonar 

signal verification method. The social science survey provided information about historical SAV 

distribution and people’s perception about this resource. Resources manages need both types of 

information (biological and social science) to make sound policy decisions. 

After surveying approximately 60% of the entire AS shoreline, the Rapid Assessment 

Survey (RAS) identified several SAV beds in the AS. Most beds were patchy and ranged from 

(10 to 20% SAV occurrence). The beds were scattered throughout the sounds’ larger tributaries, 

but three larger beds (>10 km) were located at the Edenton, Kitty Hawk, and East Lake areas. 

Further, the study confirmed that SAV are confined to a narrow band along the shore, as in the 

RA sampling more than 75% of SAV were concentrated in water shallower than 2 m. The RAS 

revealed that SAV have being a constant benthic feature in the AS for several years; however, its 
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distribution and abundance has changed through time. Some areas seemed to consistently have 

beds; whereas, other areas had lost or gained SAV beds. SAV abundance and temporal 

fluctuations became more evident after the Sentinel Site (SS) survey. 

After sampling 10 sites for two years (2014 and 2015) in the spring and the fall with 

sonar and in-water quadrat sampling, SAV beds at these sites were very dynamic, with temporal 

abundance and distribution changing through time and space. Further, I identified temporal 

trends at the site level, but because of the different temporal dynamics at each site, it was not 

possible to establish clear abundance and temporal patterns that could be generalized to the entire 

sound. However, these results are not unique to AS. In oligo- and meso-haline regions of the 

Chesapeake Bay, an estuary with similar characteristics as AS, researchers have also determined 

that SAV are highly dynamic (Orth et al. 2010; Patrick and Weller 2015). 

Though SAV were highly dynamic, I was able to identify some generalities. Through 

these biological surveys, I detected that depth played a major role in SAV distribution. The 

sentinel site survey revealed that SAV were most abound at depths between ~ 0.5 and 2 m and 

most frequently found in areas closer to the shore (less than 300 m). SAV’s proximity to the 

shore makes it especially susceptible to land use and population growth (Patrick et al. 2014; 

Gittman et al. 2016; Landry and Golden 2017). 

The social science study revealed that fishers and managers (experts) perceived that SAV 

had increased in the last decades, which was different than the high variability in abundance I 

identified in the biological survey. Further, I identified that there were some agreements and 

disagreement between the two social groups. Coastal resources managers can utilize the areas of 

agreement between social groups as starting points for management; however, the areas of 
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disagreement should be identified as potential areas of conflict, and managers need to develop 

strategies for minimizing them.  

Implications for SAV Management 

In NC, the human population in the AS water basin increased 19.0 % between 1990-2000 

(Carpenter and Dubbs 2012). NC has an estimated population of 10.4 million with a 1.1 % 

annual growth rate since 2017, and likely to continue (Tippett 2018) leading to increased 

pollution from urbanization in recent years (Lin et al. 2007). The deterioration of these system’s 

coastal waters is likely to have an effect on SAV abundance and distribution, as it has in the 

Chesapeake Bay, where SAV abundance has been impacted by nutrient and sediment loadings 

(Orth et al. 2010; Lefcheck et al. 2018). Considering increasing populations in NC, SAV will 

face new challenges. Hence, I urge resources managers to adopt the sentinel sites established in 

this dissertation. Currently, we are at the beginning stages of developing a monitoring program in 

low-salinity areas of NC that can identify SAV distribution and abundance changes; however, 

this monitoring program needs to mature towards differentiating between intrinsic variation and 

external variation. Understanding the factors that cause change in SAV should be the next 

priority, as it would help managers make evidence-based conservation and restoration decisions. 

Establishing water quality monitoring stations near the shore at the sentinel sites, not offshore or 

in channels, would immediately help address this need (Patrick and Weller 2015).  

The effect of human population on the sound’s water quality has been a problem for 

decades now (Moorman et al. 2017), so it is crucial to identify baseline SAV distributions as 

soon as possible, especially near the shore where coastal ecosystems are first impacted by coastal 

development. Though single-beam sonar is an excellent tool for monitoring SAV in AS at depths 

greater than 0.5 m., it is essential to implement SAV monitoring at shallower depths at the 
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sentinel sites. A practical and cost-effective method would be to complement the sonar surveys 

with aerial imagery acquired by flying a low altitude (400 ft) drone parallel and inshore of the 

sonar track. Together, sonar and drone surveys could be used to efficiently and consistently to 

create accurate high-resolution SAV maps which can help delineate SAV beds in the Sound and 

detect changes overtime. Further, sonar and drone surveys can also help obtain information on 

SAV’s depth preferences which can help develop maps for areas potentially available for SAV 

growth. Knowing SAV potential habitat can help create restoration targets (if restoration is 

necessary). 

 Historical information obtained apart from biological surveys can also assist in 

establishing conservation restoration targets, particularly when routine monitoring has not yet 

been established or it was recently established. McClenachan et al. 2012 suggested the use of 

archival documents, interviews with fishers and other resources’ users, and zooarchaeological 

remains to estimate baseline distributions prior to biological surveys. In this dissertation, I 

identified that LEK has the potential to be a reliable source for past SAV distribution in AS. It is 

likely that future LEK SAV historical distribution studies in the area going further back in time 

(> 50 years) than the available biological data will yield greater SAV abundances; McClenachan 

et al. 2012 suggested that historical data tend further detail the effect of human activity on 

natural resources. Therefore, implementing LEK to study past SAV distributions may cause a 

shift in SAV baseline distributions.  

The inclusion of stakeholders in natural resources management through LEK can also 

help managers minimize conflict, especially in a system that is going to experience increased 

stress due to increased populations. Increasing populations can lead to greater social conflict 

(Grimble and Wellard 1997), which can make natural resources management more complex and 
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challenging. Larger populations tend to have more social groups, each with unique 

characteristics, interests, and perceptions. Resources managers are challenged to develop policies 

that are more in tune with a dynamic system and address the linkage between society and coastal 

systems (Olsson and Folke 2001). 

Human activity and natural resources are interwoven; hence, there has been an increase in 

awareness to monitor natural resources in a multidisciplinary approach, which consider human 

dimensions (Rosenberg et al. 2015). Orth et al. (2017) described many useful steps to ensure the 

health, productivity, and endurance of the SAV community in the Chesapeake, a system that has 

been thoroughly studied for several decades, and it is a leading example for estuarine systems 

like AS. Hence, many of these steps can also be implemented to the AS, which is only at its 

infancy for routine SAV monitoring. Some of these steps include continued SAV monitoring and 

identification of the factors that affect its abundance and distribution, improved water quality 

monitoring programs, and addressing emerging issues, like climate change and sea level rise. 

However, it is also crucial to design research that can have a direct application to management 

policies. Social aspects of society, such as demographics, economics, land use, and cultural 

perspectives shape natural resources (Dale et al. 2000), as ecosystems do not exist in isolation. 

Therefore, natural resources managers require biological science along with other disciplines to 

develop adequate policies that can adapt to new information. 

Future Research Suggestions 

In face of rapid land use changes and the increasing population in NC, managing natural 

resources is challenging, with many possibilities for conflict. Natural resources managers are 

required to quickly learn about the natural environment and adapt to the human dimensions of 

natural resources; therefore, with a sense of urgency, I encourage resources managers to focus 
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their research at the sentinel sites established in this study. Future work at the sentinel sites 

should focus on characterizing the potential stressors associated with these sites to ensure that 

these sites represent a wide range of conditions and are representative of the Sound. These 

studies can help assess if these sites should continue to be regularly monitored or if it is 

necessary to select different sites to ensure that a wide range of conditions across the Sound are 

being captured.  

Advanced time series analysis, like the one carried out by Patrick and Weller (2015), can 

help further describe the complex SAV temporal patterns in the AS in conjunction with the effect 

of multiple environmental factors. Further, research is also necessary to improve the sonar’s 

signal verification method (i.e., underwater video). Additionally, I recommend more intensive 

species composition sampling at the sentinel sites, as well as the application of other remote 

sensing methods in shallow areas, like drone surveys. 

Finally, the reliable of LEK data could be evaluating by developing methods to assess 

confidence in the data. Other studies have linked biological data (e.g. zooarchaeological remain, 

mollusk biological data) to stakeholders’ knowledge; hence, they were able to monitor change 

quantitatively using LEK (Schuegraf 2004; Ambrose et al. 2014).  

  



 

161 

 

References 

Ambrose, W.G., L.M. Clough, J.C. Johnson, M. Greenacre, D.C. Griffith, M.L. Carroll, and A. 

Whiting. 2014. Interpreting environmental change in coastal Alaska using traditional and 

scientific ecological knowledge. Frontiers in Marine Science 1: 1–15. 

doi:10.3389/fmars.2014.00040. 

Carpenter, D.E., and L. Dubbs. 2012. 2012 Albemarle-Pamlico ecosystem assessment, 

Albemarle-Pamlico National Estuary Partnership. Raleigh, North Carolina. 

Dale, V.H., S. Brown, R.A. Haeuber, N.T. Hobbs, N. Huntly, R.J. Naiman, M.G. Turner, and 

T.J. Valone. 2000. Ecological principles and guidelines for managing the use of land. 

Ecological Applications2 10: 639–670. 

Gittman, R.K., S.B. Scyphers, C.S. Smith, I.P. Neylan, and J.H. Grabowski. 2016. Ecological 

consequences of shoreline hardening: a meta-analysis. BioScience 66: 763–773. 

doi:10.1093/biosci/biw091. 

Grimble, R., and K. Wellard. 1997. Stakeholder methodologies in natural resource management: 

A review of principles, contexts, experiences and opportunities. Agricultural Systems 55: 

173–193. doi:10.1016/S0308-521X(97)00006-1. 

Landry, J.B., and R.R. Golden. 2017. In situ effects of shoreline type and watershed land use on 

submerged aquatic vegetation habitat quality in the Chesapeake and Mid-Atlantic coastal 

bays. Estuaries and Coasts. Estuaries and Coasts: 1–13. doi:10.1007/s12237-017-0316-0. 

Lefcheck, J.S., R.J. Orth, W.C. Dennison, D.J. Wilcox, R.R. Murphy, J. Keisman, C. Gurbisz, et 

al. 2018. Long-term nutrient reductions lead to the unprecedented recovery of a temperate 

coastal region. Proceedings of the National Academy of Sciences 115: 3658–3662. 

doi:10.1073/pnas.1715798115. 

Lin, J., L. Xie, L.J. Pietrafesa, J.S. Ramus, and H.W. Paerl. 2007. Water quality gradients across 

Albemarle-Pamlico estuarine system: seasonal variation and model application. Journal of 

Coastal Research 231: 213–229. doi:10.2112/05-0507.1. 

McClenachan, L., F. Ferretti, and J.K. Baum. 2012. From archives to conservation: Why 

historical data are needed to set baselines for marine animals and ecosystems. Conservation 

Letters 5: 349–359. doi:10.1111/j.1755-263X.2012.00253.x. 

Moorman, M.C., S.A. Fitzgerald, L.N. Gurley, A. Rhoni-Aref, and K.A. Loftin. 2017. Water 

quality and bed sediment quality in the Albemarle Sound, North Carolina, 2012–14. Open-

File Report 2016-1171. Reston, Virginia. doi:10.3133/ofr20161171. 

Olsson, P., and C. Folke. 2001. Local ecological knowledge and institutional dynamics for 

ecosystem management: A study of Lake Racken watershed, Sweden. Ecosystems 4: 85–

104. doi:10.1007/s100210000061. 

Orth, R.J., W.C. Dennison, J.S. Lefcheck, C. Gurbisz, M. Hannam, J. Keisman, J.B. Landry, et 

al. 2017. Submersed aquatic vegetation in Chesapeake Bay: Sentinel species in a changing 

world. BioScience 67: 698–712. doi:10.1093/biosci/bix058. 



 

162 

 

Orth, R.J., M.R. Williams, S.R. Marion, D.J. Wilcox, T.J.B. Carruthers, K.A. Moore, W.M. 

Kemp, et al. 2010. Long-term trends in submersed aquatic vegetation (SAV) in Chesapeake 

Bay, USA, related to water quality. Estuaries and Coasts 33: 1144–1163. 

doi:10.1007/s12237-010-9311-4. 

Patrick, C.J., and D.E. Weller. 2015. Interannual variation in submerged aquatic vegetation and 

its relationship to water quality in subestuaries of Chesapeake Bay. Marine Ecology 

Progress Series 537: 121–135. doi:10.3354/meps11412. 

Patrick, C.J., D.E. Weller, X. Li, and M. Ryder. 2014. Effects of shoreline alteration and other 

stressors on submerged aquatic vegetation in subestuaries of Chesapeake Bay and the Mid-

Atlantic coastal bays. Estuaries and Coasts 37: 1516–1531. doi:10.1007/s12237-014-9768-

7. 

Rosenberg, A.A., W.J. Bolster, K.E. Alexander, W.B. Leavenworth, A.B. Cooper, and M.G. 

McKenzie. 2005. The history of ocean resources: Modeling cod biomass using historical 

records. Frontiers in Ecology and the Environment 3: 84–90. doi:10.2307/3868514. 

Schuegraf, M.J. 2004. Establishment of seagrass decline and causative mechanisms in Pearl 

Lagoon, Nicaragua through use of traditional ecological knowledge, sediment coring and 

direct visual census. York University. 

Tippett, R. 2018. 2018 marks third straight year of 100K+ population gains for NC. Carolina 

Demography. 



 

 

 

 

APPENDIX A. IRB APPROVAL LETTER 



 

 

 

 

APPENDIX B. EVALUATING THE ACCURACY OF THE SINGLE-BEAM SONAR AS 

A MONITORING TOOL FOR SUBMERGED AQUATIC VEGETATION (SAV) IN A 

LOW-VISIBILITY ESTUARINE SYSTEM, THE ALBEMARLE SOUND, NC. 

Introduction 

Different methodologies have been used to monitor and map SAV in coastal habitats. 

Aerial remote sensing methods like aerial photography and satellite imagery are some of the 

most widely used methodologies to monitor SAV; however, their use is limited by water clarity 

and atmospheric conditions (Dobson et al. 1995; Moore et al. 2009; NCDEQ 2016), making 

these methodologies unsuitable for surveying SAV in turbid low-salinity estuaries. Low-salinity 

estuaries are characterized by large freshwater inputs that carry sediments, colored organic 

matter, tannins, and detritus, which severely affect water transparency. Sonar and underwater 

video have been suggested as alternative technologies to monitor these systems (Sabol et al. 

2002; Valley et al. 2015; Christiaen et al. 2017); however, sonar is considered to be a more 

efficient method, as underwater video is more time consuming when trying to cover large areas 

in turbid waters. 

Though, sonar has been successfully used to identify SAV, its accuracy has seldomly 

been thoroughly evaluated during large-scale surveys. In the past, accuracy evaluations of remote 

sensing data have been limited due to restricted financial and time resources (Goodman et al. 

2013); however, accuracy assessments are necessary, as they expresses the degree of correctness 

of a map classification (Foody 2002), and it aids the user understand how well the remote 

sensing method depicts reality. According to Goodman et al. (2013), out of 80 peer-reviewed 

studies on benthic habitat mapping, only 38 included accuracy assessments, with overall 
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accuracy, kappa, and tau being the most common measures. Further, the authors indicated that 

most studies had missing information on the sampling design and accuracy assessment, which 

can lead to accuracy misinterpretations. Hence, the authors suggested that studies that include 

remote sensing components, should incorporate detailed descriptions of the sampled area and the 

sampling design. Also, they advised that these studies should explain the reason for the chosen 

accuracy measures and validation methods. 

In remote sensing methods, accuracy assessments should be common practice to evaluate 

signal interpretation (whether optic or acoustic) by comparing it to in situ samples; especially if 

the data generated is going to be used by resources managers to detect change and make policy 

decisions; otherwise, management decisions may not be appropriate (Green et al. 1996). To 

address the lack of accuracy assessments and to standardize sonar remote sensing accuracy 

reports for SAV identification utilizing single-beam sonar, this document was generated. This 

study focused on evaluating the accuracy of the Lowrance/Biobase single-beam sonar system 

along with underwater video as a signal verification method. The Biobase system is an 

automated cloud-based SAV signal detection method. To evaluate the sonar’s accuracy, 

underwater video was obtained simultaneously with the sonar samples. This analysis is based on 

data collected during a monitoring project in Albemarle Sound (AS). 

Sonar technology utilizes the characteristics of sound as it propagates through water to 

produce useful information. The application of sonar for SAV detection was first well 

documented by McCarthy (1997), where the author documented that the air bubbles and the 

tissue in the Zostera marina leaves had a unique acoustic return signal (echo). These findings 

were further affirmed by Wilson and Dunton (2009), where they confirmed the ability of the 
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sonar to detect a unique acoustic signature from various SAV species. The use of sonar in SAV 

monitoring advanced further after Sabol et al. (1998) developed the first SAV automated sonar 

signal detection  system (SAVEWS). Since this development, sonar has been used to map SAV 

beds in lakes and estuaries (Sabol et al. 1998; Sabol et al. 2002; Tseng 2009; Kenworthy et al. 

2012; Barrell et al. 2015; Valley et al. 2015; Bučas et al. 2016; Howell and Richardson 2019). 

There are different ways to directly or indirectly evaluate the accuracy of a method. 

Overall accuracy is a common accuracy analysis in remote sensing; it evaluates how often a map 

producer correctly classified a habitat, and it is often reported as a percentage. Though widely 

used, overall accuracy lacks information about potential sources of error, which are necessary to 

thoroughly evaluate a remote sensing technology (Congalton and Green 2008). A more refined 

accuracy analysis includes confusion or error matrices. Congalton (1991) suggested that error 

matrices should be a standard reporting convention for remotely sensed data. An error matrix is a 

square array which shows the sampling points assigned to a category (e.g., SAV present or SAV 

absent) as verified with in situ samples (Table 14). It also provides information about errors of 

inclusion (commission errors) and errors of exclusion (omission errors) present in the 

classification. From the error matrix, it is possible to calculate producer’s and user’s accuracy. 

The producer’s accuracy describes how well a category is classified. In the example from 

Table 14, the sonar algorithm was very effective at classifying SAV present (83.33%) but not 

very good as classifying SAV absent (60%). User’s accuracy or reliability indicates the 

probability that a classification represents an actual category on the ground. The producer’s and 

user’s accuracies are valuable for habitat maps, as they can help assess the accuracy of a method 

at classifying certain habitat types (i.e., SAV). 
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Other accuracy assessments have been proposed; for example, area under the curve 

(AUC), kappa coefficient (KHAT), and tau; however, these metrics have flaws. AUC is more 

commonly used for medical purposes to evaluate the accuracy of a diagnostic test and does not 

identify sources of error (Kumar and Indrayan 2011). The kappa coefficient (KHAT), developed 

by Cohen (1960), incorporates off-diagonal elements in an error matrix. Additionally, it tests 

whether the results in the error matrix are better than a random result. In other words, kappa 

accounts for correct classification due to chance (Rosenfield and Fitzpatrick-Lins 1986). 

However, research indicates that kappa may not completely reflect the reality of the data 

(Rodericks 2016), as kappa values and overall accuracy values tend to disagree when many 

zeroes are present in the data. In SAV sonar sampling, the data frequently has many zeros (i.e., 

SAV absent), so kappa would not be a good fit for SAV surveys. Additionally, Stehman (1997) 

caution the use of kappa, as it draws heavily on the margin proportions of the error matrix; 

rather, he suggested reporting the overall accuracy and the error matrix with user’s and 

producer’s accuracy as a standard. Tau accuracy, developed by Ma and Redmond (1995), is 

easier to interpret than kappa; however, Smits and Dellepiane (1999) suggested that this metric 

may not be very useful, as it is necessary to know sampling probabilities before analyzing the 

data. Based on this evidence, I concluded that overall accuracy, an error matrix, and user’s and 

producer’s accuracies were the most adequate accuracy assessment for this study. 

The purpose of this study was to evaluate the accuracy of the Lowrance/Biobase single-

beam sonar at detecting SAV in AS by calculating overall accuracies, error matrices, including 

producer’s and user’s accuracies. Further, I explored how accuracy could be affected by the 

distance between the sonar and video samples, and by SAV abundance. Finally, I evaluated the 
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adequacy of the underwater video as a sonar verification method. This study was based on data 

collected at 10 sentinel sites in AS in two different seasons for two years (Chapter 2). 

Materials and Methods 

In the spring and fall of 2015 and 2016, I conduced SAV surveys at 10 established 

sentinel sites (SS) in AS (Appendix D). Chapters 1 and 2 in this dissertation addressed the 

importance and characteristics of the AS. The SS were monitored using sonar and video, as 

described in Chapter 2. Each of these SS were monitored with 40 transect lines, 25 m apart, 

perpendicular to the shore. The lines were selected a priori using the systematic approach 

described in (Kenworthy et al. 2012). One hundred randomly selected video points were chosen 

as a SAV sonar signal verification method. 

The video data was classified as SAV present (1) or absent (0) and digitized in ArcGIS 

(ESRI 2011). Next, each video point was matched to the nearest sonar point; however, to assess 

whether the distance between the sonar and video points affected the sonar verification, I 

matched each video to sonar points at four different distance thresholds (1, 3, 6, and 10 m). If 

two or more sonar points with opposing SAV classifications were within a given distance 

threshold, only the closest sonar point to the video point was retained. Then, the SAV present 

verification percent (i.e., present user’s accuracy) (Equation 6) and the SAV absent verification 

percent (i.e., absent user’s accuracy) (Equation 7) were calculate for each of the distance 

thresholds for each sampling event (2 years and 2 season) at each SS. I chose the SAV present-

absent verification percent to assess the effect of distance and percent occurrence on accuracy, as 

this measure can be used to identify potential sources of errors as opposed to overall accuracy. 

SAV present verification percent =  
𝑇𝑜𝑡𝑎𝑙 𝑆𝐴𝑉 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑣𝑖𝑑𝑒𝑜 𝑝𝑜𝑖𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑆𝐴𝑉 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑣𝑖𝑑𝑒𝑜 𝑝𝑜𝑖𝑛𝑡𝑠 
 𝑋 100            (6) 
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SAV absent verification percent =  
𝑇𝑜𝑡𝑎𝑙 𝑆𝐴𝑉 absent 𝑣𝑖𝑑𝑒𝑜 𝑝𝑜𝑖𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑆𝐴𝑉 absent 𝑣𝑖𝑑𝑒𝑜 𝑝𝑜𝑖𝑛𝑡𝑠 
 𝑋 100                (7) 

I expected that SAV percent occurrence (bed density proxy) would affect accuracy; 

hence, I estimated percent occurrence at each sentinel site for each sampling event (Equation 8). 

I used Microsoft Excel to estimate the verification and occurrence percentages. 

SAV percent occurrence =  
Total sonar positive points

Total sonar points 
 𝑋 100                                                    (8) 

I selected the linear regression function in SPSS (IBM 2012) to examine the effect that 

distance and percent occurrence had on SAV present-absent varication percentages (present-

absent user’s accuracy). 

The overall percent accuracy was estimated by Equation 9: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 % =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑜𝑖𝑛𝑡𝑠+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑜𝑖𝑛𝑡𝑠 

𝑉𝑖𝑑𝑒𝑜 𝑃𝑜𝑖𝑛𝑡𝑠
× 100                      (9) 

True positive points were points where both, the sonar signal and the video, agreed on the 

presence of SAV, and true negative points were where both, the sonar signal and the video, 

agreed on SAV absence. Total video points were, the total in situ points taken. 

The overall accuracy was calculated utilizing the ‘caret’ package for R (Kuhn 2016). 

Error matrixes like the example in Table 14 were created partially with information obtained 

from the ‘caret’ package for R (Kuhn 2016), but user’s and producer’s (Equations 10 and 11) 

accuracies were calculated in Excel spreadsheets. For all accuracy metrics, I chose to compare 

the sonar to video at the 10-m threshold, as the distance between video and sonar was not 

significant (p > 0.05), and the 10-m threshold would allow me to include the most sampling 

points. 
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𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑆𝐴𝑉 𝑝𝑟𝑒𝑠𝑒𝑛𝑡) =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑜𝑖𝑛𝑡𝑠

False Positive 𝑃𝑜𝑖𝑛𝑡𝑠
 𝑥 100               (10) 

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑆𝐴𝑉 𝑎𝑏𝑠𝑒𝑛𝑡) =  
𝑇𝑟𝑢𝑒 𝐴𝑏𝑠𝑒𝑛𝑡 𝑃𝑜𝑖𝑛𝑡𝑠

False 𝐴𝑏𝑠𝑒𝑛𝑡 𝑃𝑜𝑖𝑛𝑡𝑠
 𝑥 100                (11) 

Results 

A total of 3,749 video-verification samples were taken at the 10 SS during the 2015 and 

2016 spring and fall samplings. Though, distance between the video and sonar did not have a 

significant effect (p > 0.05) on SAV present-absent verification percent, SAV present 

verification percent increased with increasing SAV presence (B=1.36, DF=1, p<0.05; Figure 16). 

Almost a mirror-image with a negative slope, SAV absent percent verification decreased with 

increasing percent occurrence (B=-0.78, DF=1, p<0.05; Figure 17). The total SAV present 

verification percentage was 38.51%; whereas, the total SAV absent verification percentage was 

92.59% at the 10-m distance threshold. 

The overall accuracy was 85.62% (Table 15). The user’s accuracy was very high for SAV 

absent with 91.06% of the data correctly classified as absent; however, only 43.46% was 

correctly classified as SAV present. A complete error matrix and producer’s and user’s accuracy 

matrices for each site and each sampling event is provided in Appendix G. 

Discussion 

Single-beam sonar has been successfully used to monitor SAV in low-visibility regions, 

where optical (satellite and aerial photography) survey methods are not feasible. The ability of 

the sonar to detect SAV has been clearly established in lab settings (McCarthy 1997; Wilson and 

Dunton 2009) and field surveys (Valley and Drake 2005; Winfield et al. 2007; Tseng 2009; 

Kenworthy et al. 2012; Bučas et al. 2016; Helminen et al. 2019), but rigorous accuracy 
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assessments for sonar SAV surveys are seldomly reported; yet, accuracy reporting is essential in 

any remote sensing project (Congalton 1991). In this study, I compared sonar SAV signal 

interpretation to underwater video from data collected at 10 SS. As expected, overall accuracy 

was high (85.62%); however, this accuracy measure failed to provide a true picture about the 

accuracy of the sonar, and the video’s ability to works as the sonar’s verification method. 

Accuracy measurements were highly affected by bed density. This was first evident in the 

strong relationship between SAV occurrence and absent-present verification percentages. 

Further, SAV present verification percent (present producer’s accuracy) was only 38.51% and 

SAV present user’s accuracy was 43.46%; whereas, areas with no SAV tended to have higher 

accuracy: SAV absent verification percent (absent producer’s accuracy) was 92.59%, and absent 

user’s accuracy was 91.06%. Due to the vast literature that has clearly established the sonar’s 

ability to detect SAV in various fresh and saltwater habitats (McCarthy 1997; Sabol et al. 2002; 

Valley and Drake 2005; Winfield et al. 2007), the low accuracy dependence on bed density is 

likely due to a methodological issue rather than the sonar’s misclassification. These classification 

errors can potentially be attributed to a combination of three factors; 1) a co-location error, 2) 

different sampling rates between the sonar and the camera, and 3) differences in instrument 

footprint. 

Re-acquiring a waypoint for SAV presence determined from the sonar was imprecise. 

The WAAS-GPS used in this survey had an accuracy ± 3.0 m, making it very difficult to return 

to the exact position of the sonar detection point, especially in windy conditions. Theoretically, 

the two positions could be as much as 6 m apart. The survey frequently encountered 

discontinuous and patchy SAV distribution, so small deviations between the positions of the 
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sonar and the camera drop can lead to a preponderance of “false negative” classifications where 

SAV presence is expected based on the sonar, but not detected in the video. However, co-

location is likely not a major issue, as the analysis revealed that the distance between the sonar 

and video did not significantly affect verification percentages. Therefore, the difference in 

sampling rates may play a more significant role. The sonar’s higher sampling rate (~every 2 m) 

makes it more likely to detect small SAV patches that may be difficult to relocate precisely with 

a single drop of the camera. This argument was supported by the decreased verification in SAV 

presence as percent occurrence decreased (i.e., patchier sites). On the other hand, false negative 

detections were much less of a problem when SAV coverage was low, hence there was better 

agreement between the sonar and the camera in detecting the absence of SAV. Other studies 

have encountered similar issues, Stevens et al. (2008) compared sonar to video agreement in the 

Puget Sound, and they also found high agreement between the sonar and video in bare (91.6%) 

and dense SAV beds areas (76.4%), but the agreement was very low in patchy areas (43.5%). 

Although, video and sonar disagreements were likely overestimated due to methodology 

errors; these low accuracies can be concerning, as it’s difficult to have a clear understanding 

about the sonar’s detection true margin of error. Knowing margins of error is especially 

important when these surveys are intended to identify changes in inter- and intra-annual SAV 

distribution and make policy decisions. Kenworthy et al. (2012) initially developed the NC SAV 

monitoring protocol, which was the guideline I used for these surveys, with the objective of 

detecting at least 10% inter-annual change. However, if the margin of error is larger than 10%, I 

cannot confidently determine if SAV abundance changes are due to true changes or due to 

methodological errors. Schultz (2008) indicated that resources managers need precise 
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quantification of SAV losses before the losses become too large. Therefore, uncertainty about 

SAV presence classification complicates the ability of the surveys to detect change. 

 Possible solutions to the “verification” dilemma include, one or some of the following 

options; 1) improving the accuracy of positioning by incorporating real time kinematic GPS 

(RTK-GPS) into the survey equipment, 2) modifying the camera drop method to intensify the 

sampling frequency either by increasing number of drops or deploying the camera in a series of 

drift transects around the sonar point, 3) in-water samples directly on the sonar’s footprint. The 

first two modifications to the verification method could possibly improve the agreement between 

the sonar and video. However, these will be accompanied by increasing costs and longer survey 

time, thus reducing the overall efficiency and benefits of the sonar method as a viable SAV 

survey and monitoring option. Additionally, I am not confident that the first two options would 

greatly increase SAV presence-absence verification, as this study indicated that distance between 

the sonar and video did not significantly improved verification. A more robust, yet more time 

consuming option, would be to take in-water signal verification samples directly in the sonar’s 

foot print (area covered by the sonar’s acoustic cone), similar to the method described by 

McCarthy (1997) and Valley (2005). The latter option is likely to yield higher agreement 

between the sonar and this verification method but add both time and cost. 

Conclusions and Recommendations 

With any remote sensing methodology, it is important to verify the signal interpretation, so 

the data collected, and the method can have scientific credibility. The sonar remote sensing 

community has not been effective at reporting detailed verification assessments or determining a 

standardized accuracy reporting. Hence, I carried out this sonar signal accuracy study for the 
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sentinel sites at AS. After searching the literature for sonar accuracy and its reliability in 

detecting SAV, it is clear that sonar is effective at detecting SAV under various environmental 

conditions; however, this study unearthed low SAV-presence accuracy values. After taking a 

closer look to the data, it is evident that the low values are likely due to a methodological issue, 

rather than true sonar misclassifications; nonetheless, these low values may raise a flag in the 

sonar’s ability to reliably detect change. The sonar’s reliability is of importance, especially as 

these data may be used by state and federal agencies to make management policy decisions. 

Hence, it is of utmost importance to reassure state and federal agencies about the reliability of 

the sonar at detecting SAV through rigorous sonar accuracy assessments in low-salinity regions 

in NC. 

It is possible to immediately improve sonar accuracy reporting and signal evaluation at the 

sentinel sites through some minor modifications to the methodology described in this study. If 

the objective at the sentinel sites is to assess SAV abundance and trends, accuracy verification 

efforts should be focused on areas with SAV, rather than bare areas. Based on the data reported 

in this dissertation, we now have a better understanding of SAV beds distribution at the sentinel 

sites, so stratified random sampling with a special focus on SAV beds should be possible. 

Stehman and Czaplewski (1998) recommended stratified random sampling over random or 

systematic sampling for verification sampling in remote sensing, as this approach would increase 

verification sampling at the feature of interest (i.e., SAV) and increase accuracy. 

Other improvements to sonar accuracy reporting and signal evaluation will take more effort 

and require additional studies; however, these studies are necessary to reassure agencies about 

the sonar’s reliability. Laboratory and field experiments evaluating the sonar’s system (i.e. 
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Lowrance-Biobase system) should be conducted. Field experiments should directly sample 

within the sonar’s footprint. Similar studies have been conducted in other coastal habitats 

(McCarthy 1997) and lake (Valley and Drake 2005). These studies will likely yield increased 

sonar accuracy, which will help more accurately detect change in NC low-salinity regions. 
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Figures 

 

Figure 16. Percent SAV occurrence and SAV present percent verification at the 10 sentinel sites, in the 2015 and 

2016 spring and fall with video to sonar distance as a factor. Raw data available in Appendix I. 
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Figure 17. Percent SAV occurrence and SAV absent percent verification at the 10 sentinel sites, in the 2015 and 

2016 spring and fall with video to sonar distance as a factor. Raw data available in Appendix H. 
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Tables 

Table 14. Example of an error matrix. Biobase algorithm classification for sonar data and verified by underwater 

video.. 

 
Verification Data (underwater video data)  

Sonar Classification SAV 

Absent 

SAV 

Present 

Row 

Total 

User's Accuracy 

SAV Absent 3 1 4 75 

SAV Present 2 5 7 71.43 

Column Total 5 6 
  

Producer's Accuracy 60.00 83.33 
  

Overall Accuracy 72.73 
   

 

Table 15. Error matrix with overall accuracy and user’s and producer’s accuracies for all the data collected during 

the ten sentinel sites in the spring and fall of 2015 and 2016 in the Albemarle Sound, NC. Biobase algorithm 

classification for sonar data. 

 Verification Data (underwater video data)  

Classification 
SAV 
Absent 

SAV 
Present Row Total User's Accuracy 

SAV Absent 3024.00 297.00 3321.00 91.06 

SAV Present 242.00 186.00 428.00 43.46 

Column Total 3266.00 483.00   

Producer's Accuracy 92.59 38.51   

Overall Accuracy 85.62    



 

 

 

 

APPENDIX C. NORTH CAROLINA COASTAL REGION WITH SALINITY 

CONTOURS 

Contour lines for salinity zones obtained from the Salwise salinity data for North 

Carolina. Salwise is a database developed by a UNC-IMS team (N. Lindquist, S. Fegley, and R. 

Guajardo) with support from the NC Division of Marine Fisheries Coastal Recreational Fishing 

License grant program (Lindquist and Fegley 2016). Also, the proposed NC low-salinity coastal 

region classification strata: 1) Currituck Sound, 2) Albemarle Sound, 3) Inner Banks of Western 

Pamlico Sound, 4) Pamlico River and 5) Neuse River per (Kenworthy et al. 2012). 

 



 

 

 

 

APPENDIX D. ALBEMARLE SOUND SENTINEL SITES LOCATION AND CODE NAMES 

Map of the Sentinel Sites in the Albemarle Sound, along with the coordinates for the Albemarle Sound SAV sentinel sites 

along with their code names. Coordinate system: NAD 1983 HARN State Plane North Carolina FIPS 3200. 
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Site # Site Code Site Name Vertix X1 Vertix Y1 Vertix X2 Vertix Y2 Vertix X3 Vertix Y3 Vertix X4 Vertix Y4 

1 AS_SS_01 Kitty Hawk 906569.48 260058.4 906161.89 260348.01 906741.12 261163.18 907148.71 260873.56 

2 AS_SS_02 Pasquotank 873726.42 279167.97 873821.62 279658.82 874803.33 279468.41 874708.12 278977.56 

3 AS_SS_03 Perquimans 845643.9 266551.25 845643.9 266551.25 845198.22 266324.62 844744.95 267215.99 

4 AS_SS_04 Edenton 827834.15 252933.25 827837.8 253433.23 828837.77 253425.95 828834.13 252925.96 

5 AS_SS_05 Batchelor's Bay South 815994.47 248087.88 815365.84 247310.18 814976.99 247624.49 815605.61 248402.2 

6 AS_SS_06 Mann's Harbor 899884.52 247376.4 899655.41 246931.98 898766.57 247390.22 898995.69 247834.63 

7 AS_SS_07 North River 893288.95 264977.79 893597.4 265371.3 894384.43 264754.38 894075.97 264360.87 

8 AS_SS_08 Little River 861418.48 266026.62 861166.67 265594.66 860302.75 266098.28 860554.56 266530.24 

9 AS_SS_09 Mackey's Landing 825546.43 245998.51 826520.6 246224.33 826633.51 245737.25 825659.34 245511.43 

10 AS_SS_10 Batchelor's Bay North 817546.68 249054.49 817200.18 249414.96 817921.12 250107.96 818267.62 249747.49 

 



 

 

 

 

APPENDIX E.  DEPTH UNIVARIATE STATISTICS BY SAV OCCURRENCE 

Depth univariate statistics by SAV Occurrence: SAV absent (0) and SAV present (1) for 

the Albemarle Sound Sentinel Sites based on sonar reports.  

Site Year Season SAV Median Mean SD Min. Max. 

AS_SS_01 2015 Spring  0 1.84 1.85 0.27 0.87 2.5    
1 1.44 1.41 0.3 0.79 1.83    

Total 1.75 1.67 0.35 0.79 2.5   
Fall 0 1.84 1.86 0.24 1 2.41    

1 1.37 1.37 0.23 0.83 2.14    
Total 1.79 1.75 0.32 0.83 2.41  

2016 Spring  0 1.9 1.92 0.25 0.86 2.53    
1 1.54 1.48 0.3 0.79 1.97    

Total 1.84 1.81 0.32 0.79 2.53   
Fall 0 2.22 2.23 0.26 0.92 2.83    

1 1.77 1.74 0.4 0.82 2.73 

      Total 2.15 2.06 0.39 0.82 2.83 

AS_SS_02 2015 Spring 0 1.91 1.86 0.55 0.79 3.15    
1 0.93 0.99 0.15 0.8 1.75    

Total 1.89 1.82 0.57 0.79 3.15   
Fall 0 2.29 2.27 0.7 1.09 4.07    

1 1.68 1.97 0.76 1.11 3.81    
Total 2.25 2.22 0.72 1.09 4.07  

2016 Spring 0 1.95 1.93 0.59 0.82 3.23    
1 1.29 1.34 0.31 0.82 2.43    

Total 1.9 1.88 0.59 0.82 3.23   
Fall 0 2.03 1.98 0.7 1.03 3.49    

1 1.23 1.28 0.22 1.03 3.12 

      Total 1.99 1.95 0.7 1.03 3.49 

AS_SS_03 2015 Spring 0 2.63 2.35 0.74 0.79 4.17    
1 1.13 1.16 0.28 0.79 2.73    

Total 2.59 2.3 0.76 0.79 4.17   
Fall 0 2.89 2.67 0.8 1.1 4.73    

1 1.2 1.25 0.21 1.03 1.75    
Total 2.88 2.65 0.81 1.03 4.73  

2016 Spring 0 2.67 2.42 0.67 0.85 4.23    
1 1.37 1.42 0.37 0.82 2.91    

Total 2.62 2.36 0.7 0.82 4.23   
Fall 0 2.67 2.44 0.64 0.96 4.23 
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1 1.33 1.37 0.25 0.97 2.71 

      Total 2.63 2.38 0.67 0.96 4.23 

AS_SS_04 2015 Spring 0 1.61 2.51 1.31 0.83 4.7    
1 1.33 1.3 0.18 0.79 1.71    

Total 1.37 1.71 0.96 0.79 4.7   
Fall 0 1.93 2.14 0.79 1.08 5.19    

1 1.82 1.77 0.26 1.09 2.98    
Total 1.91 2.08 0.74 1.08 5.19  

2016 Spring 0 1.87 2.16 0.87 0.85 5.15    
1 1.71 1.71 0.48 0.87 4.96    

Total 1.82 2.03 0.81 0.85 5.15   
Fall 0 1.89 2.13 0.85 1.04 5.15    

1 1.9 1.9 0.27 1.05 4.29 

      Total 1.89 2.08 0.76 1.04 5.15 

AS_SS_05 2015 Spring 0 2.4 2.27 0.48 1.04 3.08    
1 2.22 2.12 0.49 1.05 2.79    

Total 2.4 2.26 0.48 1.04 3.08   
Fall 0 2.49 2.38 0.41 0.96 2.95    

1 1.3 1.29 0.11 1.11 1.5    
Total 2.49 2.38 0.42 0.96 2.95  

2016 Spring 0 2.41 2.28 0.44 0.84 2.9    
1 1.18 1.21 0.18 0.79 1.63    

Total 2.4 2.26 0.46 0.79 2.9   
Fall 0 2.78 2.68 0.36 1.43 3.23 

      Total 2.78 2.68 0.36 1.43 3.23 

AS_SS_06 2015 Spring 0 2.62 2.51 0.69 1.08 3.77    
1 2.59 2.48 0.5 1.08 3.15    

Total 2.62 2.51 0.68 1.08 3.77   
Fall 0 2.76 2.66 0.61 0.86 3.79    

1 1.18 1.19 0.16 0.87 1.59    
Total 2.75 2.64 0.62 0.86 3.79  

2016 Spring 0 2.84 2.76 0.64 1.15 3.97    
1 1.5 1.5 0.15 1.22 1.81    

Total 2.84 2.75 0.65 1.15 3.97   
Fall 0 3.27 3.19 0.65 1.06 4.38    

1 1.99 2.16 0.55 1.09 3.9 

      Total 3.25 3.17 0.67 1.06 4.38 

AS_SS_07 2015 Spring 0 1.61 1.59 0.2 0.82 2    
1 1.32 1.31 0.25 0.79 1.81    

Total 1.59 1.56 0.22 0.79 2 
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Fall 0 1.56 1.55 0.18 1.08 1.92    

1 1.3 1.31 0.15 1.08 1.81    
Total 1.55 1.54 0.18 1.08 1.92  

2016 Spring 0 1.53 1.54 0.18 0.8 1.91 

   
1 1.32 1.31 0.13 0.96 1.67    

Total 1.52 1.53 0.19 0.8 1.91   
Fall 0 1.91 1.9 0.18 1.04 2.27    

1 1.76 1.72 0.18 1.12 2.07 

      Total 1.9 1.88 0.19 1.04 2.27 

AS_SS_08 2015 Spring 0 1.67 1.7 0.36 0.88 2.46    
1 1.15 1.2 0.19 0.82 1.96    

Total 1.59 1.62 0.38 0.82 2.46   
Fall 0 2 2.03 0.35 1.12 2.98    

1 1.71 1.77 0.38 1.12 2.93    
Total 1.92 1.93 0.38 1.12 2.98  

2016 Spring 0 1.73 1.78 0.25 1.19 2.47    
1 1.36 1.36 0.11 1.1 2.01    

Total 1.69 1.74 0.27 1.1 2.47   
Fall 0 1.9 1.91 0.35 1.09 2.73    

1 1.62 1.63 0.31 1.11 2.44 

      Total 1.85 1.83 0.36 1.09 2.73 

AS_SS_09 2015 Spring 0 1.51 1.5 0.18 1.04 2.03    
1 1.41 1.42 0.15 1.11 1.81    

Total 1.51 1.5 0.18 1.04 2.03   
Fall 0 1.67 1.66 0.19 1.09 2.11    

1 1.61 1.56 0.19 1.1 1.85    
Total 1.66 1.65 0.19 1.09 2.11  

2016 Spring 0 1.86 1.86 0.15 1.07 2.28    
1 1.76 1.74 0.16 1.09 2.18    

Total 1.85 1.85 0.15 1.07 2.28   
Fall 0 1.99 1.99 0.16 1.34 2.58    

1 2.05 2.06 0.03 2 2.11 

      Total 1.99 1.99 0.16 1.34 2.58 

AS_SS_10 2015 Spring 0 1.47 1.84 0.85 0.79 3.24    
1 1.13 1.28 0.42 0.8 2.37    

Total 1.47 1.84 0.85 0.79 3.24   
Fall 0 2.69 2.38 0.71 0.85 3.34    

1 0.91 1.27 0.64 0.9 2.7 
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Total 2.69 2.38 0.71 0.85 3.34  

2016 Spring 0 2.49 2.22 0.8 1.03 3.31    
1 1.23 1.27 0.16 1.04 1.68    

Total 2.42 2.19 0.81 1.03 3.31   
Fall 0 2.75 2.46 0.78 1.04 3.47    

1 1.35 1.37 0.17 1.09 1.78 

      Total 2.71 2.43 0.79 1.04 3.47 

Total   0 1.98 2.14 0.69 0.79 5.19 

   1 1.50 1.57 0.42 0.79 4.96 

   Total 1.91 2.07 0.69 0.79 5.19 

 



 

 

 

APPENDIX F. SONAR REPORT FROM BIOBASE ANALYSIS FOR ALL SENTINEL 

SITES 

 

Sonar reports from the Biobase analysis for all sentinel sites. The larger green points 

represent the sonar SAV present reports; whereas, the smaller black points represent sonar SAV 

absent reports. Depth contours are also displayed. spring 2015 (A), fall 2015 (B), spring 2016 

(C), and fall 2016 (D).
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APPENDIX G. ERROR MATRICES WITH OVERALL ACCURACY AND USER’S AND 

PRODUCER’S ACCURACIES FOR EACH SENTINEL SITE 

Site: AS_SS_01_Spring2015    Site: AS_SS_01_Fall2015    

 Verification Data (underwater video data)    Verification Data (underwater video data)  

Classification Absent Present 

Row 

Total 

User's 

Accuracy  Classification Absent Present 

Row 

Total 

User's 

Accuracy 

Absent 43.00 26.00 69.00 62.32  Absent 63.00 3.00 66.00 95.45 

Present 12.00 19.00 31.00 61.29  Present 9.00 16.00 25.00 64.00 

Column Total 55.00 45.00    Column Total 72.00 19.00   
Producer's 

Accuracy 78.18 42.22    
Producer's 

Accuracy 87.50 84.21   

Overall Accuracy 62.00     
Overall 

Accuracy 86.81    

           

Site: AS_SS_01_Spring2016    Site: AS_SS_01_Fall2016    

 Verification Data (underwater video data)    Verification Data (underwater video data)  

Classification Absent Present 
Row 
Total 

User's 
Accuracy  Classification Absent Present 

Row 
Total 

User's 
Accuracy 

Absent 62.00 23.00 85.00 72.94  Absent 57.00 7.00 64.00 89.06 

Present 7.00 8.00 15.00 53.33  Present 11.00 25.00 36.00 69.44 

Column Total 69.00 31.00    Column Total 68.00 32.00   
Producer's 

Accuracy 89.86 25.81    
Producer's 

Accuracy 83.82 78.13   

Overall Accuracy 70.00     
Overall 

Accuracy 82.00    

           

Site: AS_SS_02_Spring2015    Site: AS_SS_02_Fall2015    

 Verification Data (underwater video data)    Verification Data (underwater video data)  

Classification Absent Present 
Row 
Total 

User's 
Accuracy  Classification Absent Present 

Row 
Total 

User's 
Accuracy 

Absent 90.00 0.00 90.00 100.00  Absent 54.00 0.00 54.00 100.00 

Present 2.00 8.00 10.00 80.00  Present 11.00 0.00 11.00 0.00 

Column Total 92.00 8.00    Column Total 65.00 0.00   
Producer's 

Accuracy 97.83 100.00    
Producer's 

Accuracy 83.08 #DIV/0!   

Overall Accuracy 98.00     
Overall 

Accuracy 83.08    

           

Site: AS_SS_02_Spring2016    Site: AS_SS_02_Fall2016    

 Verification Data (underwater video data)    Verification Data (underwater video data)  

Classification Absent Present 
Row 
Total 

User's 
Accuracy  Classification Absent Present 

Row 
Total 

User's 
Accuracy 

Absent 92.00 0.00 92.00 100.00  Absent 88.00 0.00 88.00 100.00 

Present 8.00 0.00 8.00 0.00  Present 12.00 0.00 12.00 0.00 

Column Total 100.00 0.00    Column Total 100.00 0.00   
Producer's 

Accuracy 92.00 #DIV/0!    
Producer's 

Accuracy 88.00 #DIV/0!   

Overall Accuracy 92.00     
Overall 

Accuracy 88.00    
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Site: AS_SS_03_Spring2015    Site: AS_SS_03_Fall2015    

 Verification Data (underwater video data)    Verification Data (underwater video data)  

Classification Absent Present 
Row 
Total 

User's 
Accuracy  Classification Absent Present 

Row 
Total 

User's 
Accuracy 

Absent 80.00 12.00 92.00 86.96  Absent 79.00 0.00 79.00 100.00 

Present 8.00 0.00 8.00 0.00  Present 0.00 1.00 1.00 100.00 

Column Total 88.00 12.00    Column Total 79.00 1.00   
Producer's 

Accuracy 90.91 0.00    
Producer's 

Accuracy 100.00 100.00   

Overall Accuracy 80.00     
Overall 

Accuracy 100.00    

           

Site: AS_SS_03_Spring2016    Site: AS_SS_03_Fall2016    

 Verification Data (underwater video data)    Verification Data (underwater video data)  

Classification Absent Present 

Row 

Total 

User's 

Accuracy  Classification Absent Present 

Row 

Total 

User's 

Accuracy 

Absent 70.00 23.00 93.00 75.27  Absent 93.00   93.00 100.00 

Present 3.00 4.00 7.00 57.14  Present 7.00 0.00 7.00 0.00 

Column Total 73.00 27.00    Column Total 100.00 0.00   
Producer's 

Accuracy 95.89 14.81    
Producer's 

Accuracy 93.00 #DIV/0!   

Overall Accuracy 74.00     
Overall 

Accuracy 93.00    

           

Site: AS_SS_04_Spring2015    Site: AS_SS_04_Fall2015    

 Verification Data (underwater video data)    Verification Data (underwater video data)  

Classification Absent Present 

Row 

Total 

User's 

Accuracy  Classification Absent Present 

Row 

Total 

User's 

Accuracy 

Absent 24.00 43.00 67.00 35.82  Absent 28.00 50.00 78.00 35.90 

Present 0.00 33.00 33.00 100.00  Present 2.00 9.00 11.00 81.82 

Column Total 24.00 76.00    Column Total 30.00 59.00   
Producer's 

Accuracy 100.00 43.42    
Producer's 

Accuracy 93.33 15.25   

Overall Accuracy 57.00     
Overall 

Accuracy 41.57    

           

Site: AS_SS_04_Spring2016    Site: AS_SS_04_Fall2016    

 Verification Data (underwater video data)    Verification Data (underwater video data)  

Classification Absent Present 

Row 

Total 

User's 

Accuracy  Classification Absent Present 

Row 

Total 

User's 

Accuracy 

Absent 46.00 30.00 76.00 60.53  Absent 61.00 25.00 86.00 70.93 

Present 13.00 19.00 32.00 59.38  Present 14.00 0.00 14.00 0.00 

Column Total 59.00 49.00    Column Total 75.00 25.00   
Producer's 

Accuracy 77.97 38.78    
Producer's 

Accuracy 81.33 0.00   

Overall Accuracy 60.19     
Overall 

Accuracy 61.00    
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Site: AS_SS_05_Spring2015    Site: AS_SS_05_Fall2015    

 Verification Data (underwater video data)    Verification Data (underwater video data)  

Classification Absent Present 
Row 
Total 

User's 
Accuracy  Classification Absent Present 

Row 
Total 

User's 
Accuracy 

Absent 99.00 1.00 100.00 99.00  Absent 79.00 0.00 79.00 100.00 

Present 0.00 1.00 1.00 100.00  Present 2.00 0.00 2.00 0.00 

Column Total 99.00 2.00    Column Total 81.00 0.00   
Producer's 

Accuracy 100.00 50.00    
Producer's 

Accuracy 97.53 #DIV/0!   

Overall Accuracy 99.01     
Overall 

Accuracy 97.53    

           

Site: AS_SS_05_Spring2016    Site: AS_SS_05_Fall2016    

 Verification Data (underwater video data)    Verification Data (underwater video data)  

Classification Absent Present 

Row 

Total 

User's 

Accuracy  Classification Absent Present 

Row 

Total 

User's 

Accuracy 

Absent 100.00 0.00 100.00 100.00  Absent 100.00 0.00 100.00 100.00 

Present 0.00 0.00 0.00 #DIV/0!  Present 0.00 0.00 0.00 #DIV/0! 

Column Total 100.00 0.00    Column Total 100.00 0.00   
Producer's 

Accuracy 100.00 #DIV/0!    
Producer's 

Accuracy 100.00 #DIV/0!   

Overall Accuracy 100.00     
Overall 

Accuracy 100.00    

           

Site: AS_SS_06_Spring2015    Site: AS_SS_06_Fall2015    

 Verification Data (underwater video data)    Verification Data (underwater video data)  

Classification Absent Present 

Row 

Total 

User's 

Accuracy  Classification Absent Present 

Row 

Total 

User's 

Accuracy 

Absent 94.00 3.00 97.00 96.91  Absent 76.00 0.00 76.00 100.00 

Present 2.00 0.00 2.00 0.00  Present 3.00 0.00 3.00 0.00 

Column Total 96.00 3.00    Column Total 79.00 0.00   
Producer's 

Accuracy 97.92 0.00    
Producer's 

Accuracy 96.20 #DIV/0!   

Overall Accuracy 94.95     
Overall 

Accuracy 96.20    

           

Site: AS_SS_06_Spring2016    Site: AS_SS_06_Fall2016    

 Verification Data (underwater video data)    Verification Data (underwater video data)  

Classification Absent Present 

Row 

Total 

User's 

Accuracy  Classification Absent Present 

Row 

Total 

User's 

Accuracy 

Absent 100.00 0.00 100.00 100.00  Absent 98.00 0.00 98.00 100.00 

Present 0.00 0.00 0.00 #DIV/0!  Present 2.00 0.00 2.00 0.00 

Column Total 100.00 0.00    Column Total 100.00 0.00   
Producer's 

Accuracy 100.00 #DIV/0!    
Producer's 

Accuracy 98.00 #DIV/0!   

Overall Accuracy 100.00     
Overall 

Accuracy 98.00    
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Site: AS_SS_07_Spring2015    Site: AS_SS_07_Fall2015    

 Verification Data (underwater video data)    Verification Data (underwater video data)  

Classification Absent Present 
Row 
Total 

User's 
Accuracy  Classification Absent Present 

Row 
Total 

User's 
Accuracy 

Absent 48.00 3.00 51.00 94.12  Absent 85.00 0.00 85.00 100.00 

Present 7.00 0.00 7.00 0.00  Present 4.00 0.00 4.00 0.00 

Column Total 55.00 3.00    Column Total 89.00 0.00   
Producer's 

Accuracy 87.27 0.00    
Producer's 

Accuracy 95.51 #DIV/0!   

Overall Accuracy 82.76     
Overall 

Accuracy 95.51    

           

Site: AS_SS_07_Spring2016    Site: AS_SS_07_Fall2016    

 Verification Data (underwater video data)    Verification Data (underwater video data)  

Classification Absent Present 

Row 

Total 

User's 

Accuracy  Classification Absent Present 

Row 

Total 

User's 

Accuracy 

Absent 100.00 0.00 100.00 100.00  Absent 94.00 0.00 94.00 100.00 

Present 0.00 0.00 0.00 #DIV/0!  Present 6.00 0.00 6.00 0.00 

Column Total 100.00 0.00    Column Total 100.00 0.00   
Producer's 

Accuracy 100.00 #DIV/0!    
Producer's 

Accuracy 94.00 #DIV/0!   

Overall Accuracy 100.00     
Overall 

Accuracy 94.00    

           

Site: AS_SS_08_Spring2015    Site: AS_SS_08_Fall2015    

 Verification Data (underwater video data)    Verification Data (underwater video data)  

Classification Absent Present 

Row 

Total 

User's 

Accuracy  Classification Absent Present 

Row 

Total 

User's 

Accuracy 

Absent 38.00 20.00 58.00 65.52  Absent 36.00 7.00 43.00 83.72 

Present 22.00 20.00 42.00 47.62  Present 19.00 18.00 37.00 48.65 

Column Total 60.00 40.00    Column Total 55.00 25.00   
Producer's 

Accuracy 63.33 50.00    
Producer's 

Accuracy 65.45 72.00   

Overall Accuracy 58.00     
Overall 

Accuracy 67.50    

           

Site: AS_SS_08_Spring2016    Site: AS_SS_08_Fall2016    

 Verification Data (underwater video data)    Verification Data (underwater video data)  

Classification Absent Present 

Row 

Total 

User's 

Accuracy  Classification Absent Present 

Row 

Total 

User's 

Accuracy 

Absent 89.00 8.00 97.00 91.75  Absent 69.00 7.00 76.00 90.79 

Present 2.00 1.00 3.00 33.33  Present 14.00 10.00 24.00 41.67 

Column Total 91.00 9.00    Column Total 83.00 17.00   
Producer's 

Accuracy 97.80 11.11    
Producer's 

Accuracy 83.13 58.82   

Overall Accuracy 90.00     
Overall 

Accuracy 79.00    
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Site: AS_SS_09_Spring2015    Site: AS_SS_09_Fall2015    

 Verification Data (underwater video data)    Verification Data (underwater video data)  

Classification Absent Present 
Row 
Total 

User's 
Accuracy  Classification Absent Present 

Row 
Total 

User's 
Accuracy 

Absent 92.00   92.00 100.00  Absent 70.00 0.00 70.00 100.00 

Present 8.00   8.00 0.00  Present 9.00 0.00 9.00 0.00 

Column Total 100.00 0.00    Column Total 79.00 0.00   
Producer's 

Accuracy 92.00 #DIV/0!    
Producer's 

Accuracy 88.61 #DIV/0!   

Overall Accuracy 92.00     
Overall 

Accuracy 88.61    

           

Site: AS_SS_09_Spring2016    Site: AS_SS_09_Fall2016    

 Verification Data (underwater video data)    Verification Data (underwater video data)  

Classification Absent Present 

Row 

Total 

User's 

Accuracy  Classification Absent Present 

Row 

Total 

User's 

Accuracy 

Absent 92.00 0.00 92.00 100.00  Absent 100.00 0.00 100.00 100.00 

Present 8.00 0.00 8.00 0.00  Present 0.00 0.00 0.00 #DIV/0! 

Column Total 100.00 0.00    Column Total 100.00 0.00   
Producer's 

Accuracy 92.00 #DIV/0!    
Producer's 

Accuracy 100.00 #DIV/0!   

Overall Accuracy 92.00     
Overall 

Accuracy 100.00    

           

           

Site: AS_SS_10_Spring2015    Site: AS_SS_10_Fall2015    

 Verification Data (underwater video data)    Verification Data (underwater video data)  

Classification Absent Present 

Row 

Total 

User's 

Accuracy  Classification Absent Present 

Row 

Total 

User's 

Accuracy 

Absent 97.00 0.00 97.00 100.00  Absent 50.00 0.00 50.00 100.00 

Present 3.00 0.00 3.00 0.00  Present 0.00 0.00 0.00 #DIV/0! 

Column Total 100.00 0.00    Column Total 50.00 0.00   
Producer's 

Accuracy 97.00 #DIV/0!    
Producer's 

Accuracy 100.00 #DIV/0!   

Overall Accuracy 97.00     
Overall 

Accuracy 100.00    

           

Site: AS_SS_10_Spring2016    Site: AS_SS_10_Fall2016    

 Verification Data (underwater video data)    Verification Data (underwater video data)  

Classification Absent Present 

Row 

Total 

User's 

Accuracy  Classification Absent Present 

Row 

Total 

User's 

Accuracy 

Absent 97.00 0.00 97.00 100.00  Absent 97.00 0.00 97.00 100.00 

Present 3.00 0.00 3.00 0.00  Present 3.00 0.00 3.00 0.00 

Column Total 100.00 0.00    Column Total 100.00 0.00   
Producer's 

Accuracy 97.00 #DIV/0!    
Producer's 

Accuracy 97.00 #DIV/0!   

Overall Accuracy 97.00     
Overall 

Accuracy 97.00    



 

 

 

APPENDIX H. SAV PRESENT-ABSENT VERIFICATION PERCENT AT EACH 

SENTINEL SITE SAMPLING 

Site Year Season 
% 

Occurrence 
% 

Verification 
Verification 

Type 

Video to 
Sonar 

distance (m) 

AS_SS_01 2015 Spring 44 72.73 Absent 1 
AS_SS_01 2015 Spring 44 100 Present 1 

AS_SS_01 2015 Spring 44 71.43 Absent 3 
AS_SS_01 2015 Spring 44 50 Present 3 
AS_SS_01 2015 Spring 44 58.82 Absent 6 
AS_SS_01 2015 Spring 44 57.69 Present 6 

AS_SS_01 2015 Spring 44 62 Absent 10 
AS_SS_01 2015 Spring 44 61 Present 10 
AS_SS_01 2015 Fall 27 87.5 Absent 1 
AS_SS_01 2015 Fall 27 50 Present 1 
AS_SS_01 2015 Fall 27 94.44 Absent 3 
AS_SS_01 2015 Fall 27 45.45 Present 3 

AS_SS_01 2015 Fall 27 91.94 Absent 6 
AS_SS_01 2015 Fall 27 65 Present 6 
AS_SS_01 2015 Fall 27 95 Absent 10 
AS_SS_01 2015 Fall 27 64 Present 10 
AS_SS_01 2016 Spring 25 100 Absent 1 
AS_SS_01 2016 Spring 25  Present 1 
AS_SS_01 2016 Spring 25 96 Absent 3 
AS_SS_01 2016 Spring 25 40 Present 3 
AS_SS_01 2016 Spring 25 92.31 Absent 6 
AS_SS_01 2016 Spring 25 44.44 Present 6 

AS_SS_01 2016 Spring 25 73 Absent 10 

AS_SS_01 2016 Spring 25 53 Present 10 
AS_SS_01 2016 Fall 34 100 Absent 1 
AS_SS_01 2016 Fall 34 75 Present 1 
AS_SS_01 2016 Fall 34 100 Absent 3 
AS_SS_01 2016 Fall 34 69.23 Present 3 
AS_SS_01 2016 Fall 34 94 Absent 6 
AS_SS_01 2016 Fall 34 71.88 Present 6 
AS_SS_01 2016 Fall 34 89 Absent 10 
AS_SS_01 2016 Fall 34 69 Present 10 

AS_SS_02 2015 Spring 7 100 Absent 1 
AS_SS_02 2015 Spring 7 0 Present 1 
AS_SS_02 2015 Spring 7 100 Absent 3 
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AS_SS_02 2015 Spring 7  Present 3 
AS_SS_02 2015 Spring 7 94.87 Absent 6 
AS_SS_02 2015 Spring 7 0 Present 6 
AS_SS_02 2015 Spring 7 100 Absent 10 
AS_SS_02 2015 Spring 7 80 Present 10 
AS_SS_02 2015 Fall 17 100 Absent 1 
AS_SS_02 2015 Fall 17 0 Present 1 
AS_SS_02 2015 Fall 17 100 Absent 3 
AS_SS_02 2015 Fall 17 0 Present 3 
AS_SS_02 2015 Fall 17 100 Absent 6 

AS_SS_02 2015 Fall 17 0 Present 6 
AS_SS_02 2015 Fall 17 100 Absent 10 
AS_SS_02 2015 Fall 17 0 Present 10 
AS_SS_02 2016 Spring 8 100 Absent 1 
AS_SS_02 2016 Spring 8 0 Present 1 
AS_SS_02 2016 Spring 8 100 Absent 3 
AS_SS_02 2016 Spring 8 0 Present 3 
AS_SS_02 2016 Spring 8 100 Absent 6 
AS_SS_02 2016 Spring 8 0 Present 6 

AS_SS_02 2016 Spring 8 100 Absent 10 
AS_SS_02 2016 Spring 8 0 Present 10 
AS_SS_02 2016 Fall 3 100 Absent 1 
AS_SS_02 2016 Fall 3  Present 1 
AS_SS_02 2016 Fall 3 100 Absent 3 
AS_SS_02 2016 Fall 3 0 Present 3 
AS_SS_02 2016 Fall 3 100 Absent 6 
AS_SS_02 2016 Fall 3 0 Present 6 
AS_SS_02 2016 Fall 3 100 Absent 10 
AS_SS_02 2016 Fall 3 0 Present 10 

AS_SS_03 2015 Spring 4 100 Absent 1 
AS_SS_03 2015 Spring 4 0 Present 1 
AS_SS_03 2015 Spring 4 84 Absent 3 
AS_SS_03 2015 Spring 4 0 Present 3 
AS_SS_03 2015 Spring 4 86.05 Absent 6 
AS_SS_03 2015 Spring 4 0 Present 6 
AS_SS_03 2015 Spring 4 87 Absent 10 
AS_SS_03 2015 Spring 4 0 Present 10 
AS_SS_03 2015 Fall 1 100 Absent 1 
AS_SS_03 2015 Fall 1 100 Present 1 

AS_SS_03 2015 Fall 1 100 Absent 3 
AS_SS_03 2015 Fall 1 100 Present 3 
AS_SS_03 2015 Fall 1 100 Absent 6 
AS_SS_03 2015 Fall 1 100 Present 6 
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AS_SS_03 2015 Fall 1 100 Absent 10 
AS_SS_03 2015 Fall 1 100 Present 10 
AS_SS_03 2016 Spring 6 100 Absent 1 
AS_SS_03 2016 Spring 6  Present 1 
AS_SS_03 2016 Spring 6 89.29 Absent 3 
AS_SS_03 2016 Spring 6 50 Present 3 
AS_SS_03 2016 Spring 6 84.44 Absent 6 
AS_SS_03 2016 Spring 6 33.33 Present 6 
AS_SS_03 2016 Spring 6 75 Absent 10 
AS_SS_03 2016 Spring 6 57 Present 10 

AS_SS_03 2016 Fall 6 100 Absent 1 
AS_SS_03 2016 Fall 6 0 Present 1 
AS_SS_03 2016 Fall 6 100 Absent 3 
AS_SS_03 2016 Fall 6 0 Present 3 
AS_SS_03 2016 Fall 6 100 Absent 6 
AS_SS_03 2016 Fall 6 0 Present 6 
AS_SS_03 2016 Fall 6 100 Absent 10 
AS_SS_03 2016 Fall 6 0 Present 10 
AS_SS_04 2015 Spring 68 33.33 Absent 1 

AS_SS_04 2015 Spring 68 100 Present 1 
AS_SS_04 2015 Spring 68 38.46 Absent 3 
AS_SS_04 2015 Spring 68 100 Present 3 
AS_SS_04 2015 Spring 68 45.45 Absent 6 
AS_SS_04 2015 Spring 68 100 Present 6 
AS_SS_04 2015 Spring 68 36 Absent 10 
AS_SS_04 2015 Spring 68 100 Present 10 
AS_SS_04 2015 Fall 18 60 Absent 1 
AS_SS_04 2015 Fall 18  Present 1 
AS_SS_04 2015 Fall 18 37.5 Absent 3 

AS_SS_04 2015 Fall 18 83.33 Present 3 
AS_SS_04 2015 Fall 18 39.58 Absent 6 
AS_SS_04 2015 Fall 18 69.23 Present 6 
AS_SS_04 2015 Fall 18 36 Absent 10 
AS_SS_04 2015 Fall 18 82 Present 10 
AS_SS_04 2016 Spring 30 80 Absent 1 
AS_SS_04 2016 Spring 30 50 Present 1 
AS_SS_04 2016 Spring 30 50 Absent 3 
AS_SS_04 2016 Spring 30 35.71 Present 3 
AS_SS_04 2016 Spring 30 64.44 Absent 6 

AS_SS_04 2016 Spring 30 72.73 Present 6 
AS_SS_04 2016 Spring 30 61 Absent 10 
AS_SS_04 2016 Spring 30 59 Present 10 
AS_SS_04 2016 Fall 22 62.5 Absent 1 
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AS_SS_04 2016 Fall 22 100 Present 1 
AS_SS_04 2016 Fall 22 60.61 Absent 3 
AS_SS_04 2016 Fall 22 0 Present 3 
AS_SS_04 2016 Fall 22 75.41 Absent 6 
AS_SS_04 2016 Fall 22 35.29 Present 6 
AS_SS_04 2016 Fall 22 71 Absent 10 
AS_SS_04 2016 Fall 22 0 Present 10 
AS_SS_05 2015 Spring 3 100 Absent 1 
AS_SS_05 2015 Spring 3  Present 1 
AS_SS_05 2015 Spring 3 100 Absent 3 

AS_SS_05 2015 Spring 3  Present 3 
AS_SS_05 2015 Spring 3 98.36 Absent 6 
AS_SS_05 2015 Spring 3 0 Present 6 
AS_SS_05 2015 Spring 3 99 Absent 10 
AS_SS_05 2015 Spring 3 100 Present 10 
AS_SS_05 2015 Fall 0 100 Absent 1 
AS_SS_05 2015 Fall 0  Present 1 
AS_SS_05 2015 Fall 0 100 Absent 3 
AS_SS_05 2015 Fall 0  Present 3 

AS_SS_05 2015 Fall 0 100 Absent 6 
AS_SS_05 2015 Fall 0 0 Present 6 
AS_SS_05 2015 Fall 0 100 Absent 10 
AS_SS_05 2015 Fall 0 0 Present 10 
AS_SS_05 2016 Spring 2 100 Absent 1 
AS_SS_05 2016 Spring 2  Present 1 
AS_SS_05 2016 Spring 2 100 Absent 3 
AS_SS_05 2016 Spring 2  Present 3 
AS_SS_05 2016 Spring 2 100 Absent 6 
AS_SS_05 2016 Spring 2  Present 6 

AS_SS_05 2016 Spring 2 100 Absent 10 
AS_SS_05 2016 Spring 2  Present 10 
AS_SS_05 2016 Fall 0 100 Absent 1 
AS_SS_05 2016 Fall 0  Present 1 
AS_SS_05 2016 Fall 0 100 Absent 3 
AS_SS_05 2016 Fall 0  Present 3 
AS_SS_05 2016 Fall 0 100 Absent 6 
AS_SS_05 2016 Fall 0  Present 6 
AS_SS_05 2016 Fall 0 100 Absent 10 
AS_SS_05 2016 Fall 0  Present 10 

AS_SS_06 2015 Spring 2 100 Absent 1 
AS_SS_06 2015 Spring 2  Present 1 
AS_SS_06 2015 Spring 2 100 Absent 3 
AS_SS_06 2015 Spring 2 50 Present 3 
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AS_SS_06 2015 Spring 2 97.5 Absent 6 
AS_SS_06 2015 Spring 2 0 Present 6 
AS_SS_06 2015 Spring 2 97 Absent 10 
AS_SS_06 2015 Spring 2 0 Present 10 
AS_SS_06 2015 Fall 1  Absent 1 
AS_SS_06 2015 Fall 1  Present 1 
AS_SS_06 2015 Fall 1  Absent 3 
AS_SS_06 2015 Fall 1  Present 3 
AS_SS_06 2015 Fall 1  Absent 6 
AS_SS_06 2015 Fall 1  Present 6 

AS_SS_06 2015 Fall 1 100 Absent 10 
AS_SS_06 2015 Fall 1 0 Present 10 
AS_SS_06 2016 Spring 1 100 Absent 1 
AS_SS_06 2016 Spring 1  Present 1 
AS_SS_06 2016 Spring 1 100 Absent 3 
AS_SS_06 2016 Spring 1 0 Present 3 
AS_SS_06 2016 Spring 1 100 Absent 6 
AS_SS_06 2016 Spring 1 0 Present 6 
AS_SS_06 2016 Spring 1 100 Absent 10 

AS_SS_06 2016 Spring 1 0 Present 10 
AS_SS_06 2016 Fall 3 100 Absent 1 
AS_SS_06 2016 Fall 3  Present 1 
AS_SS_06 2016 Fall 3 100 Absent 3 
AS_SS_06 2016 Fall 3  Present 3 
AS_SS_06 2016 Fall 3 100 Absent 6 
AS_SS_06 2016 Fall 3 0 Present 6 
AS_SS_06 2016 Fall 3 100 Absent 10 
AS_SS_06 2016 Fall 3 0 Present 10 
AS_SS_07 2015 Spring 10 100 Absent 1 

AS_SS_07 2015 Spring 10  Present 1 
AS_SS_07 2015 Spring 10 100 Absent 3 
AS_SS_07 2015 Spring 10 0 Present 3 
AS_SS_07 2015 Spring 10 100 Absent 6 
AS_SS_07 2015 Spring 10 0 Present 6 
AS_SS_07 2015 Spring 10 94 Absent 10 
AS_SS_07 2015 Spring 10 0 Present 10 
AS_SS_07 2015 Fall 4 100 Absent 1 
AS_SS_07 2015 Fall 4 0 Present 1 
AS_SS_07 2015 Fall 4 100 Absent 3 

AS_SS_07 2015 Fall 4 0 Present 3 
AS_SS_07 2015 Fall 4 100 Absent 6 
AS_SS_07 2015 Fall 4 0 Present 6 
AS_SS_07 2015 Fall 4 100 Absent 10 
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AS_SS_07 2015 Fall 4 0 Present 10 
AS_SS_07 2016 Spring 4  Absent 1 
AS_SS_07 2016 Spring 4  Present 1 
AS_SS_07 2016 Spring 4  Absent 3 
AS_SS_07 2016 Spring 4  Present 3 
AS_SS_07 2016 Spring 4  Absent 6 
AS_SS_07 2016 Spring 4  Present 6 
AS_SS_07 2016 Spring 4 100 Absent 10 
AS_SS_07 2016 Spring 4  Present 10 
AS_SS_07 2016 Fall 10 100 Absent 1 

AS_SS_07 2016 Fall 10 0 Present 1 
AS_SS_07 2016 Fall 10 100 Absent 3 
AS_SS_07 2016 Fall 10 0 Present 3 
AS_SS_07 2016 Fall 10 100 Absent 6 
AS_SS_07 2016 Fall 10 0 Present 6 
AS_SS_07 2016 Fall 10 100 Absent 10 
AS_SS_07 2016 Fall 10 0 Present 10 
AS_SS_08 2015 Spring 16 87.5 Absent 1 
AS_SS_08 2015 Spring 16  Present 1 

AS_SS_08 2015 Spring 16 75 Absent 3 
AS_SS_08 2015 Spring 16 66.67 Present 3 
AS_SS_08 2015 Spring 16 72.09 Absent 6 
AS_SS_08 2015 Spring 16 75 Present 6 
AS_SS_08 2015 Spring 16 66 Absent 10 
AS_SS_08 2015 Spring 16 48 Present 10 
AS_SS_08 2015 Fall 37 100 Absent 1 
AS_SS_08 2015 Fall 37 100 Present 1 
AS_SS_08 2015 Fall 37 87.5 Absent 3 
AS_SS_08 2015 Fall 37 60 Present 3 

AS_SS_08 2015 Fall 37 79.31 Absent 6 
AS_SS_08 2015 Fall 37 44 Present 6 
AS_SS_08 2015 Fall 37 84 Absent 10 
AS_SS_08 2015 Fall 37 49 Present 10 
AS_SS_08 2016 Spring 8 100 Absent 1 
AS_SS_08 2016 Spring 8  Present 1 
AS_SS_08 2016 Spring 8 93.88 Absent 3 
AS_SS_08 2016 Spring 8 50 Present 3 
AS_SS_08 2016 Spring 8 92.96 Absent 6 
AS_SS_08 2016 Spring 8 40 Present 6 

AS_SS_08 2016 Spring 8 92 Absent 10 
AS_SS_08 2016 Spring 8 33 Present 10 
AS_SS_08 2016 Fall 28 80 Absent 1 
AS_SS_08 2016 Fall 28 0 Present 1 
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AS_SS_08 2016 Fall 28 78.57 Absent 3 
AS_SS_08 2016 Fall 28 33.33 Present 3 
AS_SS_08 2016 Fall 28 84.78 Absent 6 
AS_SS_08 2016 Fall 28 33.33 Present 6 
AS_SS_08 2016 Fall 28 91 Absent 10 
AS_SS_08 2016 Fall 28 42 Present 10 
AS_SS_09 2015 Spring 1 100 Absent 1 
AS_SS_09 2015 Spring 1  Present 1 
AS_SS_09 2015 Spring 1 100 Absent 3 
AS_SS_09 2015 Spring 1 0 Present 3 

AS_SS_09 2015 Spring 1 100 Absent 6 
AS_SS_09 2015 Spring 1 0 Present 6 
AS_SS_09 2015 Spring 1 100 Absent 10 
AS_SS_09 2015 Spring 1 0 Present 10 
AS_SS_09 2015 Fall 10 100 Absent 1 
AS_SS_09 2015 Fall 10  Present 1 
AS_SS_09 2015 Fall 10 100 Absent 3 
AS_SS_09 2015 Fall 10 0 Present 3 
AS_SS_09 2015 Fall 10 100 Absent 6 

AS_SS_09 2015 Fall 10 0 Present 6 
AS_SS_09 2015 Fall 10 100 Absent 10 
AS_SS_09 2015 Fall 10 0 Present 10 
AS_SS_09 2016 Spring 5 100 Absent 1 
AS_SS_09 2016 Spring 5  Present 1 
AS_SS_09 2016 Spring 5 100 Absent 3 
AS_SS_09 2016 Spring 5  Present 3 
AS_SS_09 2016 Spring 5 100 Absent 6 
AS_SS_09 2016 Spring 5 0 Present 6 
AS_SS_09 2016 Spring 5 100 Absent 10 

AS_SS_09 2016 Spring 5 0 Present 10 
AS_SS_09 2016 Fall 0 100 Absent 1 
AS_SS_09 2016 Fall 0  Present 1 
AS_SS_09 2016 Fall 0 100 Absent 3 
AS_SS_09 2016 Fall 0  Present 3 
AS_SS_09 2016 Fall 0 100 Absent 6 
AS_SS_09 2016 Fall 0  Present 6 
AS_SS_09 2016 Fall 0 100 Absent 10 
AS_SS_09 2016 Fall 0  Present 10 
AS_SS_10 2015 Spring 0  Absent 1 

AS_SS_10 2015 Spring 0  Present 1 
AS_SS_10 2015 Spring 0  Absent 3 
AS_SS_10 2015 Spring 0  Present 3 
AS_SS_10 2015 Spring 0  Absent 6 
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AS_SS_10 2015 Spring 0  Present 6 
AS_SS_10 2015 Spring 0 100 Absent 10 
AS_SS_10 2015 Spring 0 0 Present 10 
AS_SS_10 2015 Fall 0 100 Absent 1 
AS_SS_10 2015 Fall 0  Present 1 
AS_SS_10 2015 Fall 0 100 Absent 3 
AS_SS_10 2015 Fall 0  Present 3 
AS_SS_10 2015 Fall 0 100 Absent 6 
AS_SS_10 2015 Fall 0  Present 6 
AS_SS_10 2015 Fall 0 100 Absent 10 

AS_SS_10 2015 Fall 0  Present 10 
AS_SS_10 2016 Spring 3 100 Absent 1 
AS_SS_10 2016 Spring 3  Present 1 
AS_SS_10 2016 Spring 3 100 Absent 3 
AS_SS_10 2016 Spring 3  Present 3 
AS_SS_10 2016 Spring 3 100 Absent 6 
AS_SS_10 2016 Spring 3  Present 6 
AS_SS_10 2016 Spring 3 100 Absent 10 
AS_SS_10 2016 Spring 3 0 Present 10 

AS_SS_10 2016 Fall 3 100 Absent 1 
AS_SS_10 2016 Fall 3  Present 1 
AS_SS_10 2016 Fall 3 100 Absent 3 
AS_SS_10 2016 Fall 3 0 Present 3 
AS_SS_10 2016 Fall 3 100 Absent 6 
AS_SS_10 2016 Fall 3 0 Present 6 
AS_SS_10 2016 Fall 3 100 Absent 10 
AS_SS_10 2016 Fall 3 0 Present 10 

 

 



 

 

 

 


