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Rotating quark-gluon plasma in relativistic heavy-ion collisions
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We study the rotational collective motion of the quark-gluon plasma in relativistic heavy-ion collisions using
the widely adopted a multiphase transport (AMPT) model. The global angular momentum, the average vorticity
carried by the quark-gluon plasma, and the locally defined vorticity fields are computed for Au + Au collisions,
with detailed information of their time evolution, spatial distribution, as well as the dependence on beam energy
and collision centrality.
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I. INTRODUCTION

In relativistic heavy-ion collisions a hot deconfined form of
QCD matter, the quark-gluon plasma (QGP), has been created
[1,2]. In such collision experiments at the Relativistic Heavy
Ion Collider (RHIC) and the Large Hadron Collider (LHC),
the QGP is found to undergo strong collective expansion as a
relativistic fluid with extremely small dissipation [3–5].

Recently, there has been significant interest in the rotational
aspects of the QGP collective motion, particularly regarding
possible observable consequences of such rotation. Indeed,
in the noncentral heavy-ion collisions, there is a nonzero
total angular momentum J ∝ b

√
sNN (with b as the impact

parameter) carried by the system of two colliding nuclei.
Note that the beam energy

√
sNN is the nucleon-nucleon

center-of-mass energy. After the initial impact, most of this
total angular momentum is carried away by the so-called
“spectators,” but there is a sizable fraction that remains in
the created QGP and implies a nonzero rotational motion in
the fluid [6,7]. It was proposed a while ago that such rotation
may affect the spin polarization of certain hadron production
[8,9]. More recent ideas concern possible anomalous transport
effects in a chiral QGP (for reviews and further references on
this topic, see, e.g., [10–12]). The initial interest focused on
effects induced by external electromagnetic fields [13] such
as the well-known chiral magnetic effect, chiral magnetic
wave, etc. [14–20]. It was later pointed out [15] that fluid
rotation bears a lot of similarity to an external magnetic field
and can also induce similar anomalous transport effects. One
example is the chiral vortical effect [15,21,22] which predicts
a baryon current induced along the fluid rotation axis that
can be measured via baryon separation across the reaction
plane. Another example is the chiral vortical wave [23–26],
which predicts a baryonic charge quadrupole formed along the
fluid rotation axis that can be measured via baryon/antibaryon
elliptic flow splitting. Active experimental efforts are under
way to detect possible signals of these effects, and it is of
great phenomenological importance to quantify the rotational
motion of the QGP in these collisions.

In this paper, we will present the quantification of QGP
rotation in the relativistic heavy-ion collisions, utilizing the
tool of a multiphase transport (AMPT) model simulations. We

will report our results for the QGP global angular momentum,
the average vorticity carried by the QGP, and the locally
defined vorticity fields with detailed information of their
time evolution, spatial distribution, and the dependence on
beam energy and collision centrality. The rest of the paper is
organized as follows. We give some general discussions on the
fluid rotation in Sec. II. A brief discussion is given in Sec. III on
our method of extracting rotational motion from AMPT, and
we further present results for the QGP angular momentum. We
report results for the vorticity fields and the fireball-averaged
vorticity in Sec. IV. Finally, a summary is given in Sec. V.

II. DISCUSSIONS ON THE FLUID ROTATION

A. Angular momentum and vorticity

The global rotation of a fluid can be quantified by the
total angular momentum. For a many-body system of discrete
classical (quasi)particles, one could calculate the total angular
momentum �J unambiguously by summing each particle’s
contribution together,

�J =
∑

i

�ri × �pi, (1)

with �ri and �pi the position and momentum of each particle
in given reference frame. For a large-enough system after
proper coarse graining (e.g., like the fluid being made of
many fluid cells), it can be considered as a continuous
medium characterized by a series of locally defined quantities
like momentum density, energy density, and particle-number
density �p(�r), ε(�r) and n(�r), respectively. One then could
rewrite the total angular momentum as

�J =
∫

d3r�r × �p(�r). (2)

The fluid vorticity �ω is a more subtle quantity that is locally
derived from local velocity field �v(�r). In the above coarse-
graining picture, one may define the velocity field through
the momentum and energy densities as �v(�r) = �p(�r)/ε(�r) at
each point/cell. To avoid ambiguity, we will adopt the familiar
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nonrelativistic definition as

�ω = 1
2∇ × �v. (3)

In the case of a rigid-body rotation with a global angular
velocity around an axis, the above nonrelativistic definition
implies that the vorticity is identical to the rotational angular
velocity. Of course, a rotating fluid is quite different from a
rigid body and, in general, the vorticity field is not constant
across the fluid. It may be noted that in the relativistic
hydrodynamic framework, a number of different quantities
related to vorticity are often discussed in the literature [27,28],
such as the relativistic vorticity ωμ = − 1

2εμρστω
ρσ uτ , the

T vorticity, and the thermal vorticity. To the leading-order
nonrelativistic expansion in fluid velocity, they all carry the
same information as the above-defined �ω.

The relation between angular momentum and the vorticity,
in general, is rather complicated, and many factors could
contribute to the angular momentum. For example, the
inhomogeneous distribution of energy density (i.e., inertia)
could be a cause of nonzero angular momentum. Consider,
for example, a situation with the whole system moving at
the same velocity but with more matter located on one side
than the other: The angular momentum will be nonzero indeed
even without vorticity. However, what we are interested in is
the angular momentum associated with a nonzero vorticity. Let
us use a simple example to examine the relation between the
two. Consider a fluid (in some volume V ) with a nonzero
constant vorticity �ω (along certain rotation axis) and the
corresponding flow field �v = �ω × �r . Noting that �p = ε�v, the
angular momentum carried by the bulk of this fluid owing to
vorticity is given by �J = ∫

V
d3r�r × �p = ∫

V
d3rε(�r) �r × �v =∫

V
d3rε(�r)�r × ( �ω × �r) = ∫

V
d3rε(�r)[�r2 �ω − ( �ω · �r)�r]. If the

system is symmetric around the rotational axis ω̂, then the
expression can be further simplified into �J = ∫

V
d3rε(�r)[�r2 −

(ω̂ · �r)2] �ω = ∫
V

d3r[ρ2ε(�r)] �ω, where ρ2 = [�r2 − (ω̂ · �r)2] =
r2[1 − (ω̂ · r̂)2] is the distance squared of point �r from the
rotational axis. Clearly, the combination [ρ2ε(�r)] plays the
role of a sort of measure for the local fluid “moment-of-inertia”
density.

In a noncentral heavy-ion collision it is easy to see that the
total angular momentum and the average vorticity (over event
average) is along the out-of-plane direction. Following usual
convention we denote the beam direction as ẑ axis, the impact
parameter direction as x̂ axis, and the out-of-plane direction
as ŷ axis. A very useful quantity, which may be more directly
related to the global rotation, is the fluid-averaged vorticity
component along the ŷ axis, which can be defined as

〈ωy〉 =
∫

d3�r [W(�r)] ωy(�r)∫
d3�r [W(�r)]

. (4)

Note that in the above average we need proper local weighing
function W(�r), for which we have chosen to use W(�r) =
ρ2ε(�r) (with ρ the distance of point �r to the ŷ axis): This
choice is motivated by the role of [ρ2ε(�r)] as a sort of
moment-of-inertia density. Of course, a different choice of
the weighing function would lead to a different value for the
average vorticity, and we have investigated such uncertainty in
this study.

B. Results from a simple hard-sphere model

To get a qualitative and intuitive idea of the rotational aspect
of heavy-ion collisions, let us use the simplest model, the
hard-sphere model, to estimate the total angular momentum.
In this model, one treats two heavy ions as two uniform
three-dimensional hard spheres (highly Lorentz contracted
along beam axis) and calculate the angular momentum which
remains in the overlapping zone (that supposedly represents
the fireball created in such collisions). In this model, the
nucleus in its rest frame is a sphere of radius R with
homogenous number density. The radius can be estimated
by R = R0 A1/3, with R0 = 1.1 fm. For a point (x,y) on
transverse plane in the overlapping zone, let us denote its
distance to the two nucleus centers as r± ≡

√
y2 + (x ± b/2)2,

respectively, where b is the impact parameter of the collision.
Thus, the angular momentum along the y axis is given by

Jy = A
√

sNN

4πR3/3

∫
xdxdy�(R − r−)�(R − r+)

×[
√

R2 − r2− −
√

R2 − r2+]. (5)

Note that the integration is performed only over the over-
lapping zone of the two nuclei. The sign of Jy depends on
the specific setup of coordinate axes and carries no specific
meaning: For simplicity, we take the convention such that the
Jy is positive.

In this simple hard-sphere model, the angular momentum
Jy grows linearly with beam energy. Its dependence on the
impact parameter is nonlinear: With increasing b, the distance
between momentum-carrying nucleons and the center would
increase (implying more contribution to angular momentum),
while, alternatively, the overlapping zone shrinks. One would
expect a nonmonotonic behavior for the Jy dependence on b,
with certain optimal impact parameter where the Jy would be
the largest. Obviously this model is quite an oversimplified
one. For example, the uniform density distribution is a rather
crude approximation. Also, the scatterings (especially that for
spectators) are totally ignored. Therefore, one may expect
the hard-sphere model to provide a qualitative, albeit not
quantitatively accurate picture for the rotation. We will use it
as a useful “baseline” for comparison with results from more
quantitative and realistic simulations.

Before presenting detailed results, let us mention in
passing a number of studies on fluid rotation of heavy-ion
collisions in the literature. In Ref. [9] angular momentum
has been studied with both the hard-sphere model and an
intuitive hydrodynamical model. It has been found that a
more realistic distribution, the Woods-Saxon distribution, for
nuclei would enhance the fireball’s angular momentum. The
vorticity and angular momentum’s effects on the emitted
hadrons’ polarization have also been discussed. Some more
detailed hydrodynamical simulations on the vorticity have
been done in Refs. [26–29]. Using the particle-in-cell method,
it was found that for Pb-Pb collisions at

√
sNN = 2.76 TeV

and b = 11 fm the averaged vorticity will start from around
0.14 fm−1 and drop to 0.015 fm−1 at around 7 fm/c time.
Using the ECHO-QGP numerical code in Ref. [28] the√

sNN = 200-GeV Au-Au collisions have been studied and
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found to have a vorticity of the order of some 10−2 fm−1 at
freeze-out. In the rest of this paper, we will report quantitative
and detailed studies for angular momentum, as well as vorticity
by using a quite different simulation tool, namely, the AMPT
model.

III. ANGULAR MOMENTUM FROM AMPT-MODEL
CALCULATIONS

A. Setup of the AMPT model

Simulations of heavy-ion events in this study were per-
formed with the AMPT model [31]. The string-melting version
of the AMPT model [31,32] includes the initial particle
production right after the primary collision of the two incoming
nuclei, an elastic parton cascade, a quark coalescence model
for hadronization, and a hadronic cascade. Because our focus
is the rotation of the quark-gluon plasma, we study the partonic
matter with the string-melting version of AMPT, while effects
of hadronization and hadron cascade on the rotation are
not considered. The string-melting version of the AMPT
model converts initial hadrons that would be produced from
the excited strings into their valence quarks and antiquarks;
therefore, currently gluons are not included in the parton matter
in this model. A parton that is unformed at a given time is
considered to be residing in the initial hadron parent; unformed
partons are nevertheless included in the angular-momentum
calculation so that the total angular momentum is conserved at
all times. Also note that the total four-momentum is conserved
from the initial state throughout the evolution of the parton
matter. We use the same parameters as a previous study
[33], where it was shown that those parameters reasonably
reproduced the yields, transverse momentum spectra, and v2

data for low-pT pions and kaons in central and midcentral
Au + Au collisions at

√
sNN = 200 GeV. In particular, the

parameters include the Lund string fragmentation parameters
(aL = 0.55, bL = 0.15/GeV2), strong coupling constant αs =
0.33 for the parton cascade, a parton cross section of 3 mb
(i.e., a parton Debye screening mass μ = 2.265/fm), and an
upper limit of 0.40 on the relative production of strange to
nonstrange quarks.

The AMPT model defines the impact parameter axis as the
x axis and the beam axis as the z axis, where the incoming
nucleus centered at x = b/2 > 0 (x = −b/2 < 0) has positive
(negative) longitudinal momentum; this then creates an initial
total angular momentum mostly along the (out-of-plane) y
direction. A fraction of this angular momentum resides in
the partonic matter created in the overlap region, while the
rest of the angular momentum is essentially all attributable
to spectator nucleons and is not included in the results
shown in this study. Note that all partons, regardless of their
formation times, are included in calculating the fireball angular
momentum or velocity field at a given time; this way the total
angular momentum of the fireball is conserved throughout the
fireball evolution.

An advantage of the AMPT model is that one could
explicitly track every parton or hadron’s position and momen-
tum at any given time. Figure 1 shows a schematic particle
distribution at a certain time, where an arrow represents

FIG. 1. Schematic picture for an AMPT event.

the particle’s momentum direction. To obtain a continuous
momentum profile, we first chose a proper volume, which is
large enough to contain all of the particles and not too large to
have too many vacant areas. Then we divided it into small cells
with proper size. Using too-large cells will conceal details,
while using too-small ones will enlarge the fluctuation in the
finite differential process. The position of each cell, which
could be treated as a fluid element, is indexed by the center,
while its momentum and energy are defined by summing those
of all the particles in it. This way we obtained the energy and
momentum distribution for each event at a fixed time. Each
event in the AMPT simulation would generate thousands of
particles. This amount is still not large enough to generate a
smooth momentum and energy distribution. It is necessary to
generate thousands of events with the same collision energy
and impact parameter. Finally, we would get much smoother
distributions by averaging these thousands of events.

Once we get distributions of momentum and energy, the
velocity field could be defined as their ratio �p/ε for each
cell. The angular momentum can be computed from directly
summing over contributions from each individual cell. One
could calculate the vorticity in Eq. (3) with finite differential
method. For those vacant cells we would set their velocity as
zero. This would generate large fluctuations for vorticity at
the edge of the system (the interface between cells with a few
particles and vacant cells). Such fluctuations are suppressed
when computing the average vorticity because we adopt the
energy density as the averaging weight as in Eq. (4). In our
calculation we chose the whole volume as 20 × 20 fm on
the transverse plane over a spatial rapidity span of 8 units.
Each cell’s size is 0.8 × 0.8 fm on the transverse plane over a
rapidity slice of 0.4 unit. We have chosen the time step to be
0.2 fm/c for the vorticity analysis, and we analyze the parton
matter up to the time of 9 fm/c in the center-of-mass frame.
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FIG. 2. Angular momentum from the AMPT model at b = 7 fm
and

√
sNN = 200 GeV.

B. Angular momentum of the QGP: Its dependence
on time, energy, and centrality

We now present the results from AMPT for the angular
momentum carried by the QGP fireball with detailed infor-
mation on its time evolution, as well as beam energy and
collision centrality dependence. Again the sign of Jy depends
on the specific setup of coordinate axes and carries no specific
meaning: While the raw results from AMPT (owing to its
particular choice in the code) have negative sign, for simplicity
we will just show results for the magnitude of Jy .

Let us first examine the time dependence of all the angular
momentum components Jx,y,z for given collision energy and
centrality; see Fig. 2. The results confirm the intuitive picture
that the dominant component is Jy (which is larger by orders
of magnitude than Jx,z), i.e., the QGP global rotation is indeed
around the out-of-plane axis. We also note that the Jy carried
by the QGP fireball is about 10%–20% of the total angular
momentum of the whole colliding system J = Ab

√
sNN/2.

Last, Jy is essentially a constant in time as it should be, which
serves as a check of the simulation’s precision. These features
are found to be the case for all other centralities as well as
beam energies in our calculations.

We next take a look at the dependence of Jy on the
collision energy and impact parameter in comparison with
the results from the simple hard-sphere model. Figure 3 shows
a nonmonotonic dependence of Jy on b as expected, with
a maximum around b–4 fm, which is also consistent with
[34,35]. Figure 4 shows an approximately linear growth of
Jy with increasing

√
sNN , again as expected. In both figures,

the Jy from AMPT is about 2–3 times that from the hard
sphere model. Also note that the b value corresponding to
the peak in Jy is also bigger from the AMPT model. This
can be understood from two factors. First, compared with
the hard-sphere model with sharp edges, the actual incident
nuclear profile (Woods-Saxon in AMPT) is more extensive,
thus making the overlapping zone (where fireball is created)
bigger, with more momentum carriers further away from the
rotational axis at the center. Second, in the hard-sphere model

FIG. 3. Angular momentum Jy as a function of b from the AMPT
model and the hard-sphere model at

√
sNN = 200 GeV.

the momentum carried outside the overlapping zone is not
counted, while in actual collision (as captured by AMPT) the
nucleons outside the geometric overlapping zone would still
have probability to experience collision and become part of
the fireball, thus contributing more to the angular momentum.

IV. VORTICITY FROM THE AMPT MODEL

A. Local vorticity distribution

Once the velocity distribution is obtained as described
above, we can then use the finite differential method to calcu-
late the vorticity numerically. We will focus on the vorticity
along the out-of-plane direction, ωy . As this is a local quantity
determined on each point/cell of the three-dimensional space,
we will first examine its distribution patterns over these spatial
coordinates, with x,y being transverse coordinates and η
the longitudinal spatial rapidity. All results in this section
are for the case of Au + Au collisions at b = 7 fm and√

sNN = 200 GeV at t = 1 fm/c time. We have checked that
computations performed with other parameters show the same
patterns.

FIG. 4. Angular momentum Jy as a function of
√

sNN from the
AMPT model and the hard-sphere model at b = 7 fm.
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FIG. 5. ωy (in the unit of fm−1) profile at y = 0 and t = 1 fm/c,
with b = 7 fm and

√
sNN = 200 GeV.

Figure 5 shows ωy on the reaction plane (i.e., y = 0).
A qualitative pattern is observed to be as follows: Around
the center of the fireball (x 	 0 or η 	 0), the ωy is nearly
vanishing; on the positive and negative sides of x or η axes,
the ωy shows opposite sign; i.e., the vorticity is roughly an odd
function of x and η. A similar pattern has also been seen in
hydrodynamic simulations, e.g., in Ref. [28]. Such a pattern
for the sign of ωy could be qualitatively explained with a
similar kinematic argument as that in Ref. [30] for the rapidity
dependence of directed flow.

Figures 6 and 7 show the profile of vorticity on the
transverse plane, at forward and backward rapidity η = ±1,
respectively. These two profiles again demonstrate the ωy as

FIG. 6. ωy profile at η = 1 and t = 1 fm/c, with b = 7 fm and√
sNN = 200 GeV.

FIG. 7. ωy profile at η = −1 and t = 1 fm/c, with b = 7 fm and√
sNN = 200 GeV.

roughly an odd function of x and η. The dependence of ωy on
y appears rather mild and roughly symmetric between positive
and negative y directions. An important observation is that the
region at large x values has the biggest ωy .

Finally, in Figs. 9 and 8 we show the vorticity profile on
the y-η plane for x = ±1 fm. Again one sees a pattern that is
consistent with what we have seen from the plots of x-y and
x-η profiles.

Given these observed patterns, it is tempting to ask the
following: What is the origin of these particular patterns, and
how are they related (or unrelated) to the global rotation that
we are interested in? As we already pointed out in the previous
section, a locally nonzero vorticity is not directly linked with

FIG. 8. ωy profile at x = 1 fm and t = 1 fm/c, with b = 7 fm
and

√
sNN = 200 GeV.
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FIG. 9. ωy profile at x = −1 fm and t = 1 fm/c, with b = 7 fm
and

√
sNN = 200 GeV.

a global angular momentum. Indeed, as it turns out, most of
these patterns could be understood simply from the underlying
radial flow that is unrelated to the rotational motion. To see
this, let us consider a radial flow profile �v that can be well
parameterized in the form

�v(ρ,φ,η) = êρv0(ρ,η)[1 + 2c2(ρ,η) cos 2φ], (6)

where êρ is the unit vector along the transverse radial
direction and ρ and φ are transverse radial and azimuthal
coordinates, respectively. Figure 10 shows the transverse radial
velocity profile that we have extracted from the same AMPT
simulations. We have checked that the velocity along �eφ is
negligibly small as compared with the radial component. One

FIG. 10. Radial velocity profile at η = 1 and t = 1 fm/c, with
b = 7 fm and

√
sNN = 200 GeV.

can compute the local vorticity ωy resulting solely from the
above velocity profile using the definition in Eq. (3):

ωy = ∂vρ

∂z
cos φ

= 2

t
(chη)2 ∂η(v0 + 2v0c2 cos 2φ) cos φ

= 2

t
(chη)2

(
x

ρ

)
∂η

[
v0 + 2v0c2

(
2
x2

ρ2
− 1

)]
. (7)

As many hydrodynamic simulations assume, and as indeed
confirmed in our AMPT simulations, the coefficients v0 and
c2 are both even functions of η to a very good approximation.
As such, both terms, ∂ηv0 and ∂η(v0c2), are odd functions of
η. Therefore, the sole contribution to ωy from radial flow is
indeed approximately an odd function of both x and η. The
dependence of ωy on y is only through ρ =

√
x2 + y2, which

is, indeed, an even and mild function of y. Therefore, we
see that most of the qualitative patterns of the ωy profiles
from AMPT computations can be reasonably understood from
the radial flow contribution. Furthermore, we have checked
quantitatively that indeed the values of ωy are dominated by
such contributions.

So what does that imply? It suggests that, to extract
the component of local vorticity that is truly associated
with the global rotation, one needs to perform an average
over the fireball. Upon such averaging, the background flow
contributions to local vorticity would cancel out, and what
remains can be attributed to the rotational motion.

B. Averaged vorticity for the QGP

In this section we present our key results: the properly
averaged vorticity 〈ωy〉 that encodes information on the global
rotation of the fireball. For the averaging process, we will
use the weighing function as given in Eq. (4) for the fireball
over the full transverse plane and a spatial rapidity span of
η ∈ (−4,4).

Let us first present the centrality dependence of 〈ωy〉 at
given beam energy

√
sNN = 200 GeV; see Fig. 11. The 〈ωy〉

briefly increases with time, which is most likely attributable to
parton scatterings during the early stage (when the transverse
radial expansion is not developed yet) that in a certain way
decrease the fluid moment of inertia. The averaged vorticity
reaches peak value at an almost universal time around 1 fm/c
and then follows a steady decrease with time. The decrease is
attributable to the system’s expansion, which increases total
moment of inertia at the price of reduced vorticity owing
to the constraint of constant angular momentum. The results
also clearly demonstrate that the averaged vorticity increases
from central to peripheral collisions; this trend is different
from the angular momentum. Such difference again can be
understood as follows: While the vorticity increases with
b, the fluid moment of inertia (pertinent to rotation) in the
fireball decreases with b; thus, the angular momentum shows
a nonmonotonic behavior owing to the two competing trends.

We next show the beam-energy dependence of 〈ωy〉 at given
impact parameter b = 7 fm; see Fig. 12. Similar time-evolution
patterns are observed at all energies. We notice that the
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FIG. 11. Averaged vorticity 〈ωy〉 from the AMPT model as a
function of time at various impact parameter b for fixed beam energy√

sNN = 200 GeV. The solid curves are from a fitting formula (see
text for details).

averaged vorticity increases with decreasing beam energy, in
quite the opposite trend to the angular momentum. This may
be understood as follows: With increasing beam energy, the
fluid moment of inertia (pertinent to rotation) increases more
rapidly than the decrease of vorticity; thus, the total angular
momentum is still increasing. We have numerically checked
that this is indeed the case.

Finally, we present a parametrization of averaged vorticity
as a function of time, centrality, and beam energy, which
provides comprehensive and very good fit to the numerical
results of Au + Au collisions from AMPT. This is given by

〈ωy〉(t,b,
√

sNN ) = A(b,
√

sNN )

+B(b,
√

sNN )(0.58t)0.35e−0.58t , (8)

FIG. 12. Averaged vorticity 〈ωy〉 from the AMPT model as a
function of time at varied beam energy

√
sNN for fixed impact

parameter b = 7 fm. The solid curves are from a fitting formula
(see text for details).

FIG. 13. Averaged vorticity 〈ωy〉, with spatial rapidity span η ∈
(−1,1) and η ∈ (−4,4), respectively, from the AMPT model as a
function of time at

√
sNN = 200 GeV for fixed impact parameters

b = 7,9 fm.

with the two coefficients A and B given by

A = [e−0.016 b
√

sNN + 1] × tanh(0.28 b)

×[0.001 775 tanh(3 − 0.015
√

sNN ) + 0.0128],

B = [e−0.016 b
√

sNN + 1] × [0.023 88 b + 0.012 03]

×[1.751 − tanh(0.01
√

sNN )].

In the above relations,
√

sNN should be evaluated in the unit
of GeV, b in the unit of fm, t in the unit of fm/c, and ωy

in the unit of fm−1. The solid curves in Figs. 11 and 12 are
obtained from the above formula, in comparison with actual
AMPT results. As can be seen, the agreement is excellent and
we have checked that in all cases the relative error of the above
formula is, at most, a few percent. Such parametrization could
be conveniently used for future studies of various vorticity-
driven effects in QGP.

C. Study of uncertainties

In this last part, we investigate a number of uncertainties in
quantifying the averaged vorticity.

One uncertainty is related to the choice of volume in per-
forming the average. In the previous section we have chosen to
average over the spatial rapidity span of η ∈ (−4,4). However,
when it comes to certain specific vorticity-driven effects and
the pertinent final hadron observables, it is not 100% clear what
is precisely the relevant longitudinal volume. To get an idea
of this uncertainty, we have computed the 〈ωy〉 for different
choices of spatial rapidity span; see Fig. 13 for results from
η ∈ (−1,1) in comparison with those from η ∈ (−4,4), and see
Fig. 14 for results from η ∈ (−2,2) in comparison with those
from η ∈ (−4,4). As one can see from the comparison, at early
to not-so-late time, the results differ by about a factor of two
between η ∈ (−1,1) and η ∈ (−4,4), but differ by about 30%
percent or so between η ∈ (−2,2) and η ∈ (−4,4). At late time
the results with η ∈ (−4,4) are significantly larger than the
others. Clearly, the contributions to the averaged vorticity from

044910-7



YIN JIANG, ZI-WEI LIN, AND JINFENG LIAO PHYSICAL REVIEW C 94, 044910 (2016)

FIG. 14. Averaged vorticity 〈ωy〉, with spatial rapidity span η ∈
(−2,2) and η ∈ (−4,4), respectively, from the AMPT model as a
function of time at

√
sNN = 200 GeV for fixed impact parameters

b = 7,9 fm.

large spatial rapidity region become dominant at late time.
In the modeling of vorticity-driven effects, such uncertainty
needs to be carefully considered. For the convenience of future
applications, we also provide here the parametrization for
averaged vorticity computed with a spatial rapidity span of
η ∈ (−1,1),

〈ωy〉(t,b,
√

sNN )

= A(b,
√

sNN ) + B(b,
√

sNN )(0.65t)0.3e−0.65t , (9)

where

A = tanh(0.35 b)

×[0.001 43 tanh(1.5 − 0.015
√

sNN ) + 0.002 71],

B = [0.0123 b + 0.0261] × [1.42 − tanh(0.008
√

sNN )].

Again in the above relations,
√

sNN should be evaluated in the
unit of GeV, b in the unit of fm, t in the unit of fm/c, and ωy

in the unit of fm−1.
Another uncertainty is related to the weighing function

W(�r) used in the averaging process; see Eq. (4). While our
choice of W(�r) = ρ2ε(�r) is well motivated, one may still
wonder to what extent the results for 〈ωy〉 may be specific
to such choice. For comparison, we have computed the
〈ωy〉 with three other choices for the weighing function, see
Fig. 15: W → ρ2n(�r), W → n(�r), and W → ε(�r) [where
n(�r) is simply the local parton number density in AMPT].
One observes a factor of 2–3 variation among these different
choices, and our original choice of W → ρ2ε(�r) gives
the largest averaged vorticity. This comparison provides a
reasonable idea of the degrees of uncertainty associated with
the averaging process. It may be mentioned that there exist
calculations of the averaged vorticity, albeit with different
weighing procedures (see, e.g., [27,29]), and those results are
also in line with the present work.

Finally, it may be pointed out that the Lund parameters aL

and bL in the AMPT model should, in principle, be optimized

FIG. 15. Averaged vorticity 〈ωy〉 from the AMPT model as a
function of time at

√
sNN = 200 GeV for fixed impact parameter b =

7 fm, with four different choices of weighing functions in performing
the average (see text for details).

for describing bulk data at each collisional beam energy, while
they are given fixed values (optimized for AuAu 200 A GeV)
in our computations. For example, at the lowest collision beam
energy (39 A GeV) [33] that we study, the optimized parame-
ters would be aL = 2.0 (instead of aL = 0.55) and the same bL

(0.15/GeV2). We have compared simulations between these
two choices of parameter and find a rather minor difference on
the order of few percent for the averaged vorticity values.

V. SUMMARY

In summary, we have used the AMPT simulations to model
relativistic heavy-ion collisions and extract information on
the rotational motion of the created quark-gluon plasma. In
a general noncentral collision, there is obviously a nonzero
global angular momentum Jy ∝ b

√
sNN . While the majority

of this angular momentum is carried away by the spectator
nucleons, our computations have shown that a considerable
fraction (about 10%–20%) of Jy remains carried by the QGP
in the collision zone and is essentially conserved in time. This
implies a relatively long time duration of the global rotation
that may drive interesting phenomena such as the chiral
vortical effect and the chiral vortical wave. Apart from event-
by-event fluctuations, this angular momentum is, on average,
pointing in the out-of-plane direction. We have also computed
the local vorticity field ω in the QGP fireball and analyzed its
distributions over the transverse plane and spatial rapidity. We
have identified the patterns of ω that come from the usual back-
ground collective flow (without rotation) and have quantified
properly averaged out-of-plane vorticity that is associated with
the collective rotational motion. Detailed results for these im-
portant quantities’ time evolution as well as their dependence
on beam energy and collision centrality have been reported.

Parameterizations for the numerical results of 〈ωy〉 as a
function of time t , impact parameter b, and beam energy√

sNN are provided, which could be a convenient tool for future
modelings of vorticity-driven effects in heavy-ion collisions.
To conclude, we expect this study to provide crucial input for
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efforts in the near future to quantify observable effects associ-
ated with the rotational motion of the quark-gluon plasma.
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