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Catalysis occurring in a multifunctional enzyme at spatially and functionally discrete active sites 

is controlled by an array of factors, including enzyme structure, ligand binding, and productive 

interaction of substrates to facilitate turnover. Completion of the catalytic cycle partially depends 

upon the ability of these active sites to communicate with one another, as well as with any 

allosteric regulatory regions of the enzyme. Such long-range communication typically manifests 

measurable effects on substrate binding or product release. In the case of pyruvate carboxylase 

(PC), pyruvate binding to the carboxyl transferase (CT) domain induces translocation of the 

biotin carboxyl carrier (BCCP) domain and subsequently increases the rate of Pi release in the 

biotin carboxylase (BC) domain. While the kinetic mechanism and structural arrangement of the 

PC tetramer have been elucidated, the source of intermolecular signals required to facilitate 

catalysis between active sites remains unclear. The BC and CT domain active sites necessary to 

produce one oxaloacetate are located on separate polypeptide chains, while binding of acetyl-

CoA, the essential allosteric activator, is required for stimulation of the overall catalytic rate. In 

metabolic regulatory enzymes such as PC, it is essential to understand not only the overall 



 

mechanism of intersubunit communication, but also the thermodynamic driving forces behind 

ligand relationships to piece together the amino acid network and subunit domains that are 

responsible for the dramatic stimulatory response elicited upon binding of acetyl-CoA. 

Ultimately, this would allow for elucidation of the molecular regulatory mechanism of PC and 

for development of therapeutic strategies to target the chronic hyperglycemia associated with its 

uncontrolled activity in Type 2 diabetics. 

 

To address the impact of pyruvate occupancy in the CT domain on behavior of other domains, 

we generated mixed hybrid tetramers using mutants of the catalytically relevant residues E218 

(in the BC domain) and T882 (in the CT domain) to measure pyruvate carboxylation and Pi 

release activities. Our results, which compared the apparent Ka pyruvate for pyruvate-stimulated Pi 

release catalyzed by the T882S:E218A(1:1) hybrid tetramer to that of the wild-type and the T882S 

homotetramer, were consistent with an intermolecular communication mechanism, whereby 

pyruvate binding at the E218A CT domain was responsible for inducing translocation of the 

T882S BCCP domain within the same face of the tetramer. We also determined the 

thermodynamic-linkage of each ligand of PC, that is, the extent to which the presence of one 

bound ligand influences enzyme turnover in the presence of variable concentrations of another. 

The ability of either MgATP or pyruvate to increase the affinity of PC for the other is observed 

in the presence of acetyl-CoA, while this relationship is entirely lost in its absence. Thus, PC’s 

spatially distinct active sites, even in the presence of the preferred substrates, cannot 

communicate or coordinate productive catalytic coupling in the absence of the activator. Long-

term implications of this proposal include determination of the consequences of imbalanced 

metabolic flux on the regulatory mechanism and catalytic activity of PC in the liver. 
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INTRODUCTION 

 

Enzyme Structure and Function. Pyruvate carboxylase (PC) is a biotin-dependent enzyme that is 

responsible for the MgATP-dependent conversion of pyruvate to oxaloacetate in the presence of 

the essential allosteric activator, acetyl-CoA, in a variety of tissues throughout the body (Fig. 1) 

(1, 2). PC is a critical anaplerotic enzyme in glucose metabolism, serving to replenish 

oxaloacetate consumed by the TCA cycle (1, 3). Previous crystallographic studies identified four 

distinct domains contained within the PC monomer, namely the biotin carboxylase (BC), biotin 

carboxyl carrier (BCCP), carboxyl transferase (CT), and allosteric domains. Each domain has 

been functionally characterized via steady-state kinetics and site-directed mutagenic studies of 

catalytically relevant residues (4-7). PC is found in a variety of species in both α4β4 and α4 forms, 

though α4β4 PCs are primarily found in archaea and some bacteria. In α4 PCs, such as those found 

in Rhizobium etli and Staphylococcus aureus, all functional domains are contained on a single 

~130 kDa molecular weight polypeptide chain and the overall tetrameric arrangement of the 

holoenzyme creates two catalytic faces (Fig. 2) (2, 8). This tetramer is a dimer of dimers, in 

which each face is composed of a dimer of monomers arranged antiparallel to one another (8). 
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FIGURE 1. Pyruvate carboxylation occurs in a two-step mechanism at two spatially distinct 
active sites. The first step (A), which takes place in the BC domain, involves carboxylation of the 
ureido ring on BCCP-tethered biotin, which is ATP-dependent and uses bicarbonate (HCO3

-) as 
the CO2 donor. At this point, the carboxybiotin intermediate has been formed, and the BCCP 
domain moves away from the BC domain. The second step (B) occurs in the CT domain active 
site upon BCCP translocation. The carboxybiotin intermediate serves as the CO2 donor, and is 
then decarboxylated in order to carboxylate pyruvate and produce oxaloacetate. Figure generated 
using ChemDraw Professional (v15.0.0, Perkin Elmer). 
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FIGURE 2. Crystal structure of PC (PDB file 2QF7) (8). depicting one single monomer (A) and 
the general tetrameric structure (B). Each monomer possesses a biotin carboxylase (BC) domain, 
an allosteric domain, a carboxyltransferase (CT) domain, and a biotin carboxyl carrier protein 
(BCCP) domain. BC domains are represented in blue, allosteric domains in green, CT domains 
in yellow, and BCCP domains in red. The BCCP domain contains a terminal, conserved Lys 
residue (K1119 in RePC numbering) at which biotin is covalently attached. In the tetrameric 
structure, the top and bottom faces, each made up of a pair of monomers oriented antiparallel to 
one another, are arranged perpendicularly to each other, such that significant residue interactions 
occur between faces at both the BC domains and CT domains. These BC—BC and CT—CT 
interactions serve to stabilize the tetramer. Catalysis occurs intermolecularly within a single face, 
whereby the BCCP domain swings between the BC domain of its own polypeptide chain and the 
CT domain of the opposing polypeptide chain. Structures generated using PyMOL Molecular 
Graphics System (v1.8, Schrödinger, LLC). 
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The biotin carboxylase domain, which is the site of MgATP-cleavage and carboxylation of the 

biotin cofactor by HCO3
-, is found on the N-terminal end of the PC monomer, and is composed 

of three distinct sub-domains: the N-terminal A-domain, the B-subdomain lid, and the C-domain 

(9). The A- and C-domains together make up the substrate binding region of the BC domain, 

while the B-subdomain rotates to enclose the active site and the disordered, flexible T-loop, 

which connects two β strands within the B-subdomain, becomes ordered upon ATP binding to 

facilitate the closing motion of the B-subdomain (9). The biotin moiety of PC is covalently 

attached to a conserved lysine residue at the C-terminal end of the BCCP domain, and interacts 

with the BC domain in order to form the carboxylated intermediate. The BCCP domain serves as 

a flexible linker arm (~ 16 Å in length) that is capable of translocating biotin away from the BC 

domain on its own polypeptide chain to the CT domain on an opposing polypeptide chain (10). 

However, given that the distance between the BC domain and the CT domain on an opposing 

polypeptide within a face averages 55 – 85 Å across biotin-dependent carboxylases such as PC, 

propionyl-CoA carboxylase (PCC), and 3-methylcrotonyl-CoA carboxylase (MCC), it is possible 

that the BCCP domain itself must also translocate during catalysis (10-14). The extent to which 

the BCCP domain actually moves remains unclear, based on recent crystallographic structural 

studies showing PC isoforms adopting a range of symmetrical and asymmetrical quaternary 

conformations (14). In a symmetric structure, it is essential to the intermolecular kinetic 

mechanism that the BCCP domain translocates, as the distance between the BC and CT domain 

active sites is ~75 Å; however, in an asymmetric structure, the distance between the active sites 

is significantly different (~65 Å in the top layer as opposed to ~80 Å in the bottom layer), such 

that the BCCP domain would not necessarily be required to move dramatically in the top face. 

Until BCCP domain translocation is observed directly, it is not possible to confirm the extent to 
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which the BCCP domain moves, but evidence from the literature is suggestive of BCCP domain 

translocation in response to pyruvate binding in the CT domain (11-14). 

The BC domain active site contains several catalytically relevant amino acid residues (Fig. 3, 4), 

which are involved in MgATP-cleavage (Glu218 and Lys245), HCO3
- deprotonation (Glu305 

and Arg301), and biotin enolization (Arg353); of these, a catalytic triad is formed between 

residues Glu218, Lys245, and Glu305, serving to generate a hydrogen-bonded bridging network 

between the MgATP and HCO3
- binding pockets within the active site. Glu305 and Lys245 act 

together to deprotonate HCO3
-, properly align the terminal γ-phosphate group of MgATP in the 

binding pocket, and initiate nucleophilic attack on the γ-phosphate by HCO3
- (6). The position of 

Glu218 allows for formation of a low barrier hydrogen bond between itself and Glu305, serving 

to partially stabilize the carboxyphosphate intermediate formed prior to generation of the 

carboxybiotin intermediate (Fig. 1, 3). 

 

Upon formation of the carboxybiotin intermediate in the BC domain, the BCCP domain is 

precluded from the BC domain active site as a protective mechanism against abortive 

decarboxylation and uncoupling of ATP hydrolysis from pyruvate carboxylation (5). In order to 

complete the second half-reaction of pyruvate carboxylation, the carboxybiotin-tethered BCCP 

domain must translocate a distance of approximately 60 Å between the BC domain of its own 

polypeptide chain and the CT domain of the opposing polypeptide chain within a face. The 

carboxybiotin intermediate form of PC is relatively stable in the absence of substrates, but is 

rapidly decarboxylated in the CT domain upon binding of a CT domain ligand in its active site. 
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FIGURE 3. The catalytic mechanism of MgATP-cleavage and biotin carboxylation in the BC 
domain. Adapted from Zeczycki et al., 2011. Figure generated using ChemDraw Professional 
(v15.0.0, Perkin Elmer). 
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FIGURE 4. The BC domain active site, and catalytically relevant residues therein. Glu218 
(pink), Glu305 (white), and Lys245 (blue) comprise the catalytic triad that is required for 
electrostatic stabilization of MgATP binding in the active site, as well as subsequent hydrolysis 
and Pi release (shown: ATP-γ-S, a non-hydrolyzable analog of ATP, which was used in 
crystallization of RePC – PDB ID 2QF7). Arg301 (green) assists Glu305 in deprotonation of 
HCO3

-.  Structures generated using PyMOL Molecular Graphics System (v1.8, Schrödinger, 
LLC). 
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The CT domain active site contains a central α8β8 triose phosphate isomerase (TIM) barrel fold 

with a long, C-terminal funnel, made up of nine α-helices, leading into the active site (8, 10, 15). 

A coordinated divalent metal cation is also conserved in the active site to serve as a Lewis acid 

and stabilize pyruvate binding, enolization, and carboxylation; in RePC and SaPC, this cation is 

Zn2+. Asp590 and Tyr628 (using residue numbering from R. etli) are conserved in the active sites 

of CT domains found in various forms of PC, as well as in homologous biotin-dependent 

enzymes. Pyruvate binding in the CT domain causes a conformational change in a flexible loop 

near the active site, stabilizing the loop and creating a more closed conformation to allow salt 

bridge formation between the pyruvate carboxyl moiety and the guanidinium group of Arg621 in 

RePC (5). Tyr628 is particularly notable in terms of its importance for catalysis, creating a 

sulfur-aromatic interaction between its π-electron cloud and the sulfur atom in the thiophene ring 

of biotin, thus stabilizing the interaction of biotin with the CT domain (Fig. 5).  

 

Several other residues in the CT domain have also been previously identified as being 

catalytically relevant for the carboxyl group transfer between the tethered carboxybiotin and 

bound pyruvate (Fig. 6, 7). In particular, Arg548 and Gln552 have been proposed to facilitate 

pyruvate binding in the active site through hydrogen bonding stabilization; the amide group of 

Gln552 is located only 2.9 Å from the carboxyl oxygen of pyruvate and 3.5 Å from the carbonyl 

oxygen of pyruvate, while the guanidinyl group of Arg548 also assists in hydrogen bonding with 

the carbonyl oxygen, offering assistance during enolization (16). Additionally, there is a strictly 

conserved threonine residue in CT domain active sites across PC forms, numbered Thr882 in the 

RePC primary sequence, which is critical to completion of the pyruvate carboxylation reaction. 

Thr882, which has a pKa of ~13, is protonated at physiological pH, and its hydroxyl group is 
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arranged such that there is only a 3.9 Å distance between itself and the methyl group of bound 

pyruvate. This proximity allows Thr882 to act in its essential proton shuttling role, first serving 

as a general acid in the active site and protonating biotin at its N1 position following 

decarboxylation before acting as the general base to abstract a proton from pyruvate and generate 

the enol-pyruvate intermediate (7, 16). From there, carboxylation can occur and the oxaloacetate 

product is formed (Fig. 1, 6). 

 

Acetyl-CoA, the essential allosteric activator of PC, binds in the allosteric domain located 

between the BC and CT domains in the primary enzyme structure, specifically in a binding 

pocket formed between the allosteric and BC domains (Fig. 8) (8). Kinetically, its presence has 

been shown previously to have a significant stimulatory effect on the BC domain reaction, while 

only slightly affecting the CT domain reaction and resultant oxaloacetate (4). RePC residues 

Arg427 and Arg472 serve to bind and orient acetyl-CoA in the pocket via interaction with the 3’-

phosphate and 5’-α-phosphate, respectively, contributing to the structural stabilization and 

general allosteric regulation of the enzyme (Fig. 8).  
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FIGURE 5. Arrangement of the biotin cofactor in the CT domain such that Tyr628 is capable of 
stabilizing the thiophene ring through interaction with its aromatic π-electron cloud. Figure 
generated using ChemDraw Professional (v15.0.0, Perkin Elmer). 
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FIGURE 6. Catalytic mechanism of proton shuttling by Thr882 in the CT domain active site to 
facilitate carboxylation of pyruvate and form oxaloacetate. Adapted from Lietzan and St. 
Maurice, 2013. Figure generated using ChemDraw Professional (v15.0.0, Perkin Elmer). 
 
 
 
 
 
 
 
 
 
 



 12 

 
FIGURE 7. In the CT domain active site, Thr882 (light purple) is responsible for proton 
shuttling within the active site, which is crucial to the transfer of the carboxyl group from the 
biotin intermediate to pyruvate. Arg621 (magenta), Arg548 (pink), and Gln552 (blue) are 
responsible for stabilizing pyruvate (not shown) within the active site. Asp590 (teal) and Tyr628 
(dark purple) serve to stabilize the carboxylated biotin cofactor upon translocation into the active 
site. The active site TIM barrel is visible immediately behind the highlighted residues. 
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FIGURE 8. Acetyl-CoA binding pocket formed between the allosteric and BC domains. Ethyl-
CoA (crystallized with RePC, PDB ID 2QF7). Adapted from Adina-Zada et al., 2012. Structures 
generated using PyMOL Molecular Graphics System (v1.8, Schrödinger, LLC). 
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Pathological relevance. Because of its critical role in the regulation of glucose metabolism (Fig. 

9), aberrant pyruvate carboxylase activity contributes to the pathogenesis of Type 2 Diabetes 

Mellitus as the major cause of elevated hepatic gluconeogenesis. Insulin resistance due to obesity 

has been observed in a variety of biological tissues, including skeletal muscle, liver, and white 

adipose (WAT) (17). In adipose tissue, insulin resistance is manifested as a failure to regulate 

free fatty acid (FFA) release and subsequent β-oxidation; thus, FFA levels are elevated in 

diabetic and obese individuals. It is thought that plasma FFA levels, when sufficiently elevated, 

inhibit insulin-stimulated glucose uptake. This is further supported by the observation that 

physiological levels of plasma FFAs stimulate secretion of insulin in nondiabetic individuals 

(18). Ectopic lipid accumulation in the liver and muscle prompts infiltration of macrophages into 

WAT, resulting in increased rates of lipolysis. Because of this high lipid supply and increased 

rate of β-oxidation, acetyl-CoA production and release into the plasma is enhanced, thus 

chronically upregulating hepatic PC activity leading to chronic fasting hyperglycemia and 

ultimately contributing to the development of obesity-induced insulin resistance (Fig. 10) (2, 19). 
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FIGURE 9. Positioning of pyruvate carboxylase in the regulation of glucose metabolism. PC 
catalyzes the first committed step of the gluconeogenesis pathway, producing oxaloacetate which 
is then converted to phosphoenolpyruvate (PEP) and eventually to glucose. Gluconeogenesis is 
upregulated in the fasting state, when plasma glucose levels are relatively low. Alternatively, in 
the fed state, plasma glucose levels are elevated, which promotes cellular glucose uptake and 
flux through the glycolytic pathway. In this state, PC serves an anaplerotic role, utilizing 
pyruvate produced from glycolysis to replenish intermediates of the citric acid cycle, ultimately 
leading to increased flux through the electron transport chain in the inner mitochondrial 
membrane and increased ATP production. Figure generated using ChemDraw Professional 
(v15.0.0, Perkin Elmer). 
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FIGURE 10. PC activity in healthy (left) and Type 2 Diabetic (right) individuals. Insulin 
signaling is known to stimulate cellular glucose uptake, as well as to inhibit the rate of lipolysis 
and β-oxidation occurring in adipose tissue (shown in yellow). Regulation of lipolysis controls 
the level of acetyl-CoA, the essential allosteric activator of PC, produced from β-oxidation, 
limiting pyruvate carboxylation activity in the liver (shown in red) and controlling the rate of 
gluconeogenesis relative to existing plasma glucose concentrations. In the case of Type 2 
Diabetes, however, systemic insulin resistance results in the failure of tissues to take up glucose, 
as well as the inability to regulate the rate of lipolysis occurring in adipose tissue. Persistent 
upregulation of lipolysis then leads to an elevated concentration of circulating acetyl-CoA, 
resulting in upregulated pyruvate carboxylation activity and excess production of glucose in 
hepatocytes. Upregulated PC activity as a result of insulin resistance thus contributes to the 
persistent fasting hyperglycemia phenotype characteristic of Type 2 Diabetes. 
 
 
 
 
 
 
 
 
 
 



 17 

Proposed Research and Hypothesis. While much about the kinetic mechanism of pyruvate 

carboxylation and the quaternary structural arrangement of monomers has been elucidated, the 

source of the intermolecular signals required to facilitate catalysis between distinct active sites in 

this multifunctional, multisubunit enzyme remains unclear. Thus, the primary purpose of this 

study has been to attempt to gain greater insight into both the kinetic and thermodynamic 

communication mechanisms coordinating catalytic events in the discrete active sites of PC. 

Ultimately, we propose that pyruvate occupancy in the CT domain is the primary governing 

force over BCCP domain translocation within the tetramer, and that the presence of the activator, 

acetyl-CoA, is required in order for bound pyruvate to elicit its stimulatory effect on the 

MgATP-cleavage reaction occurring in the BC domain. 

 

Of particular interest to us is the mechanism by which acetyl-CoA regulates and promotes 

catalysis within the tetramer, and the human body’s loss of control over this regulatory 

mechanism that occurs along with metabolic dysfunction in obese and diabetic individuals. Here, 

we present insights into the kinetic signaling mechanism of pyruvate carboxylase, which we 

studied by exploiting PC’s tendency to dissociate into monomers when diluted below 2 mg/mL 

in solution and to rehybridize into functional tetramers in the presence of acetyl-CoA (20). Our 

results are consistent with an intermolecular signaling mechanism, whereby pyruvate binding in 

one CT domain induces translocation of the BCCP domain on a different polypeptide chain 

rather than on the same polypeptide chain. Additionally, we have examined the extent to which 

the presence of one ligand (pyruvate, MgATP, or acetyl-CoA) affects the binding and turnover of 

another to better elucidate the nature of thermodynamic forces underlying allosteric regulation of 

the enzyme by acetyl-CoA. Taken as a whole, these results are instrumental in our efforts to 
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define the thermodynamic, kinetic, and structural features of communication pathways within 

and between subunits in the PC tetramer. 
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CHAPTER 1 – PYRUVATE OCCUPANCY IN THE CARBOXYL TRANSFERASE DOMAIN 

OF PYRUVATE CARBOXYLASE FACILITATES PRODUCT RELEASE FROM THE 

BIOTIN CARBOXYLASE DOMAIN THROUGH AN INTERMOLECULAR MECHANISM 

 

While the kinetic mechanisms for both the BC and CT domains have been well defined in 

previous studies, the specific mechanisms underlying coordination of catalysis between the two 

spatially distinct active sites remain unclear. The dependence of catalysis on substrate binding, 

namely pyruvate occupancy of the CT domain active site, has been established for the release of 

inorganic phosphate (Pi) upon completion of the HCO3
- dependent MgATP-cleavage reaction in 

the BC domain (11, 21, 22). While Pi release is observed in the absence of pyruvate, pyruvate 

occupancy of the CT domain stimulates translocation of the BCCP domain away from the BC 

domain and significantly enhances the rate of Pi release. This suggests that the presence of 

pyruvate in the CT domain initiates some degree of conformational changes or 

thermodynamically linked binding events that ultimately coordinate the reactions occurring in 

the BC and CT domains (23). 

 

It has been established that catalysis occurs through an intermolecular mechanism within a single 

face of PC, whereby the BCCP domain of one polypeptide chain, upon carboxybiotin 

intermediate formation in the BC domain, is translocated to the active site of the CT domain on 

the opposing polypeptide chain to carboxylate the bound pyruvate and release oxaloacetate (12-

14, 24). However, the method by which CT domain occupancy triggers this translocation and, 

more specifically, which CT domain within the face communicates with a given BCCP/BC 

domain has not been addressed. Previous studies have demonstrated that Pi release occurs as a 
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function of pyruvate occupancy in the CT domain, with the rate rising dramatically in its 

presence versus its absence. This dependence on pyruvate offers an indirect method by which to 

measure BCCP domain translocation, as well as to examine the ability of specific CT domain 

mutants to trigger this same movement. 

 

In order to determine whether BCCP domain movement is controlled by an intramolecular or 

intermolecular signaling mechanism (that is, whether pyruvate binding on the same polypeptide 

chain or on the opposing polypeptide chain signals and initiates translocation), we have 

generated hybrid tetramers (Fig. 11) using two specific mutations of catalytically relevant 

residues (Fig. 4, 7). Thr882, which is found in the active site of the CT domain and is known to 

be essential to proton shuttling between the carboxybiotin intermediate and bound pyruvate, was 

mutated to Ser and characterized in this study. This mutant exhibits a drastically reduced affinity 

for pyruvate binding while retaining 3-5% wild-type activity in the CT domain and full wild-type 

activity in the BC domain. Glu218, a member of the catalytic triad in the MgATP binding pocket 

of the BC domain, was characterized in a previous study and mutated to Ala, such that BC 

domain activity was abolished and the CT domain possessed wild-type affinity for pyruvate but 

reduced activity (Fig. 11). 

 

Based on the predicted orientation of the two mutant monomers within a tetramer (Fig. 11), we 

were able to distinguish between intramolecular and intermolecular signaling mechanisms of 

BCCP translocation through measurement of kcat and Km pyruvate for the full-forward pyruvate 

carboxylation reaction, as well as the apparent Ka pyruvate for the pyruvate-stimulated Pi release 

half-reaction. Here, we report initial rates of oxaloacetate formation and Pi release as a function 
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of increasing concentrations of pyruvate for the PC wild-type, T882S homotetramer, and hybrid 

tetramers. For the majority of combinations of hybrid tetramers generated, the observed kcat for 

both pyruvate carboxylation and pyruvate-stimulated Pi release were consistent with predicted 

values, which confirmed that rehybridization of monomers occurred in a statistically random 

fashion. Our data suggests an intermolecular signaling mechanism, whereby pyruvate binding in 

the CT domain influences translocation of the BCCP domain on the opposing polypeptide chain. 

These results are of high importance in beginning to define the physical and thermodynamic 

nuances of pyruvate carboxylase communication pathways. 
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FIGURE 11. Schematic depicting formation of, and orientation of monomers within, RePC 
hybrid tetramers. In the T882S homotetramer (top left), the BC domain with wild-type activity is 
shown in light blue and the CT domain with dramatically reduced pyruvate affinity is shown in 
dark yellow. In the E218A homotetramer (top right), the defunct BC domain is represented in 
dark blue, and the CT domain with wild-type pyruvate affinity is in light yellow. Due to the 
antiparallel orientation of monomers within a single face of PC, the inactive BC domain of 
E218A and the low-activity CT domain of T882S are paired together, while the functional BC 
and CT domains are still capable of catalytic turnover (bottom).  
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MATERIALS AND METHODS 

 

Chemicals and Reagents 

IPTG, biotin, ampicillin, and chloramphenicol were purchased from Research Products 

International Corp. (Mt. Prospect, IL). 7-methyl-6-thioguanosine was obtained from Berry and 

Associates (Dexter, MI). Ni2+-Profinity IMAC resin was obtained from Bio-Rad. Pyruvate 

sodium salt was obtained from Fisher Scientific. Acetyl-CoA trilithium salt was purchased from 

Crystal Chem, Inc. (Downers Grove, IL). Malate dehydrogenase was purchased from Calzyme 

(San Luis Obispo, CA). All other reagents and coupling enzymes were obtained at the highest-

grade purity from Sigma-Aldrich and used without further manipulation. 

 

Plasmid Stock Preparation 

Electrocompetent Escherichia coli TOP10 cells were transformed with the pET-17b plasmid 

(encoding for RePC) or the pET-28a plasmid (encoding for SaPC) and the pCY216 plasmid 

(encoding for biotin protein ligase) and incubated in SOC bacterial growth media at 37°C for 1 

hour with constant shaking (200 rpm). Transformed cells were plated on LB agar containing 

ampicillin (for RePC) or kanamycin (for SaPC) and chloramphenicol (for biotin protein ligase) 

and incubated overnight at 37°C. Individual colonies were selected and used to inoculate 5 mL 

cultures of LB media supplemented with antibiotics. Inoculated media was incubated at 37°C for 

6 – 8 hours with constant shaking (200 rpm). PC plasmids were purified from bacterial lysate 

using the GeneJET Plasmid Miniprep Kit (Thermo Scientific) and stored at -20°C until use. 
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Growth and Overexpression of PC 

Electrocompetent E. coli BL21 Star (DE3) cells were transformed with the pET-17b plasmid or 

pET-28a plasmid, as well as pCY216. T882S and E218A RePC mutant forms were generated 

using the QuikChange II XL Site-Directed Mutagenesis Kit protocol (Agilent Technologies). 

 

All PC forms were overexpressed in 12 L cultures of LB media supplemented with 1 mg biotin, 

ampicillin (100 mg/L final concentration) for RePC or kanamycin (50 mg/L final concentration) 

for SaPC, and chloramphenicol (35 mg/L final concentration) for plasmid maintenance. The 

media was inoculated with a 1 L overnight culture of transformed BL21 Star (DE3) cells. 

Cultures were grown at 37° C with constant shaking (200 rpm) until an OD600 of 0.8 – 1.0 was 

reached. Arabinose (30.5 mM final concentration) was added to the flasks, which were then 

chilled on ice until an internal temperature of 16° C was reached (~30 min). IPTG (1 mM final 

concentration) was added, and the flasks were incubated at 16° C for 16 – 20 hr with constant 

shaking (200 rpm). Bacteria were harvested by centrifugation at 12,000 x g for 20 min. Cell 

paste was flash-frozen in liquid nitrogen and stored at -80° C. Harvesting yielded a total of 75 – 

100 g cell paste per 12 L growth. 

 

Protein Purification Protocol 

30 g of cell paste were thawed at 4° C with continuous stirring in 300 mL of lysis buffer 

containing 20 mM HEPES, 10 mM imidazole, 10 mM MgCl2, 200 mM NaCl, 1 mM TCEP, 200 

µg/mL lysozyme, and 1 mM PMSF serine protease inhibitor. Cells were then lysed via 

sonication (Branson Digital Sonifier, 6 min, max temp 10 °C, 80% amplitude, pulse 59.9 s, pulse 

off 30 s). All purification steps were performed at 4° C. The lysate was clarified via 
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centrifugation (12,000 x g for 15 min). The lysate was loaded at 1.5 mL/min onto 25 mL of 

ProfinityTM IMAC Ni2+ Charged Resin (Bio-Rad) that was equilibrated with 5 CV of wash buffer 

containing 20 mM HEPES (pH 8.0), 10 mM MgCl2, 20 mM imidazole, 200 mM NaCl, and 1 

mM TCEP. After sufficient washing, the protein was eluted using a 100 mL linear imidazole 

gradient (10 mM – 300 mM). Fractions containing PC were identified using SDS-PAGE, pooled 

and dialyzed overnight against 2 L of dialysis buffer (2 x 1 L, 10 mM HEPES, 10 mM MgCl2, 50 

mM NaCl, and 1 mM TCEP). The dialyzed protein was then loaded at 1.5 mL/min onto 25 mL 

of Q SepharoseTM Fast Flow Resin (GE Healthcare) that was equilibrated with 5 CV of wash 

buffer containing 20 mM HEPES, 10 mM MgCl2, 50 mM NaCl, and 1 mM TCEP. The protein 

was then eluted using a 100 mL linear NaCl gradient (50 mM – 1 M). Fractions containing PC 

were identified using SDS-PAGE and dialyzed overnight against 2 L of dialysis buffer (2 x 1 L, 

10 mM HEPES, 10 mM MgCl2, 50 mM NaCl, 1 mM TCEP, and 1 mM NaN3). The purified 

enzyme was then concentrated to ~ 3 mg/mL using a pressure-based concentration cell (EMD 

Millipore), flash-frozen in 250 µL aliquots, and stored at -80° C until used. Purity was estimated 

from SDS-PAGE (>98%) and total protein concentration was determined using a BCA Protein 

Assay Kit (Pierce). 

 

SDS-PAGE Analysis 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to visualize 

purified PC based on molecular weight. SDS gels were composed of a 5% acrylamide stacking 

buffer (0.5 M Tris-HCl, pH 6.8) and a 9% acrylamide running buffer (1.5 M Tris-HCl, pH 8.8). 

Protein samples were taken from fractions collected during the elution phase of the purification 

protocol, mixed in a 1:2 ratio with SDS loading buffer (0.5 M Tris-HCl, pH 6.8; 25% v/v 
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glycerol; 2% w/v SDS; 0.01% w/v Bromophenol Blue; 5% v/v ß-mercaptoethanol), and boiled 

on a hot plate at 95°C for 5 min. Boiled samples were loaded into wells in the gel stacking 

buffer, and current was applied with constant voltage (200 V) for 60 min in SDS running buffer 

(25 mM Tris base, 0.2 M glycine, 3.5 mM SDS). Electrophoresis was carried out using the Mini-

Protean Tetra System (Bio-Rad). Gels were then incubated in Coomassie Blue R-250 protein dye 

(Bio-Rad) and destained at 4°C overnight before visualization. 

 

Generation of Hybrid Tetramer Forms of RePC 

Concentrated wild-type RePC, and T882S and E218A mutant forms of the enzyme were diluted 

with 100 mM Tricine (pH 7.6) to a final concentration of 1 mg/mL. The diluted enzymes were 

individually incubated at room temperature for 30 min to allow for complete dissociation of the 

tetramers.(20) To generate the WT:E218A(1:1) hybrid tetramers, equal volumes of diluted wild-

type and the E218A mutant form were combined together at a final concentration of 1 mg/mL 

(Fig. 11). Acetyl-CoA (0.24 mM final concentration) was added in order to promote 

rehybridization. The protein mixture was then incubated for 30 additional min at room 

temperature to allow for complete rehybridization into tetramers (13). Similarly, the 

WT:T882S(1:1), WT:E218A(1:1), and E218A:T882S(1:1) were generated by mixing equal volumes 

of the diluted wild-type, T882S, and E218A enzyme solutions. The T882S:E218A(4:1) and 

T882S:E218A(1:4) tetramers were generated by mixing the diluted T882S and E218A enzyme 

solutions in a 4:1 and 1:4 ratio, respectively. The hybrid enzymes were used without any further 

purification or manipulation. 
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Steady-State Enzyme Activity Assays 

The initial rates of pyruvate carboxylation and HCO3
- dependent MgATP-cleavage were 

determined spectrophotometrically using coupled assay systems. All reactions were performed at 

25° C in 1 mL reaction volumes and 100 mM Tricine (pH 7.6). Assays were carried out using the 

Shimadzu UV-1800 Spectrophotometer, CPS-240A Cell Positioner, and 6 Cell-Thermoelectrical 

Temperature Controller. 

 

Determination of the Initial Rates of Pyruvate Carboxylation 

The ability of the WT, mutant, and hybrid tetramer forms of PC to catalyze the carboxylation of 

pyruvate was determined using the malate dehydrogenase coupled assay system, monitoring the 

concomitant oxidation of NADH to NAD+ at 340 nm (ε340 = 6220 M-1 cm-1). The initial rates of 

oxaloacetate formation were measured at variable concentrations of pyruvate (0.25 – 40 mM) 

and saturating concentrations of all other substrates. Reactions contained: 100 mM HCO3
-, 2.5 

mM MgATP, 2.5 mM MgCl2, 0.25 mM acetyl-CoA, 0.25mM NADH, and malate dehydrogenase 

(12 units). Reactions were initiated with the addition of ~1.5–800 µg of PC.  

 

Determination of the Initial Rates of Pi Release from the BC Domain 

The initial rates of Pi release from the HCO3
- dependent cleavage of MgATP in the presence of 

varying concentrations of pyruvate (0 – 40 mM) were determined using the purine nucleoside 

phosphorylase (PNP) coupled assay system(25, 26) and monitoring the concomitant formation of 

2-amino-6-mercapto-7-methylpurine from 7-methyl-6-thioguanosine (MESG) at 360 nm (ε360 = 

6300 M-1 cm-1). Reactions contained: 100 mM HCO3
-, 2.5 mM MgATP, 5 mM MgCl2, 0.25 mM 
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acetyl-CoA, 0.2 mM MESG, and purine nucleoside phosphorylase (10 units), and were initiated 

with ~1.5–350 µg of PC. 

 

Data Analysis 

 

Probability Analysis of Monomer Distribution in Rehybridized Tetramers. We determined the 

probability of relative distribution of mutant or wild-type monomers for the homogenous 

population of the WT:E218A(1:1), WT:T882S(1:1), T882S:E218A(1:1), T882S:E218A(1:4), and 

T882S:E218A(4:1) hybrid tetramers (Fig. 12-14). The rehybridization of two different PC 

monomers gives rise to four different combinations of monomers on a single face and 16 unique 

tetramers, regardless of the relative ratio in which the mutants were mixed. To determine the 

probability and relative contribution of any unique combination of monomers to the observed 

catalytic rate, we made four simplifying assumptions, namely that (1) all four positions within 

the tetramer are equally and independently populated by either monomer type; (2) the 

positioning of one monomer within the tetramer does not significantly reduce the population of 

remaining monomers in solution; (3) the activity of a monomer is independent of the activities of 

the surrounding three monomers within a tetramer; and (4) monomers within a rehybridized 

mixed tetramer maintain similar activity and apparent Km or Ka values as their parent 

homotetramers. For a mixture containing a 1:1 ratio of T882S and E218A monomers, for 

example (Fig. 12B, all combinations, row 1), the probability (p) that a T882S mutant monomer 

would fill any of the four positions in the tetramer is given in equation (1), in which n and m are 

the relative ratios of T882S and E218A in solution, respectively. 
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Similarly, the probability (q) of an E218A mutant monomer filling any position in the tetramer in 

a 1:1 mixture of mutants is given in equation (2). 
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Because the numbers of T882S and E218A monomers in solution are very large, these 

probabilities do not change when a monomer is recombined within one tetramer. Therefore, the 

probability (P) for forming any one of the 16 unique tetramers is determined by equation (3), in 

which k is the number of T882S monomers in the configuration (i.e., 0-4) and p and q are the 

probabilities of T882S or E218A occupying any position in the tetramer, respectively. 
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In the 1:1 mixture of T882S and E218A monomers, the probability of generating a hybrid 

tetramer containing a T882S monomer in all four positions (Fig. 12B, combination 1) is given in 

equation (4): 
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In this same mixture, the probability for an E218A monomer occupying all four positions (Fig. 

12B, combination 2) within a single tetramer is given in equation (5): 
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Similar reasoning can be used to determine the probability of distribution for 1:4 and 4:1 

mixtures of T882S and E218A mutant monomers. For example, the probability (p) of positioning 

a T882S monomer in any position of the tetramer in a 1:4 mixture of T882S and E218A is: 
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The probability (q) of positioning the E218A mutant within the tetramer in the same solution is: 
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Combining equations (6) and (7) with equation (3) yields the probability (P) of generating a 

mixed hybrid tetramer with all T882S monomers (Fig. 12B, combination 1) in a 1:4 mixture, 

which is:  
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By contrast, the probability of generating a mixed hybrid tetramer with all E218A monomers 

(Fig. 12B, combination 2) in a 1:4 mixture is: 
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To determine the contribution of a particular configuration to the overall observed rate of 

pyruvate carboxylation, we used the relative positioning of the monomers within the 

configuration to determine unique intermolecular BC—CT domain interactions that would give 

rise to catalytic activity. There are four possible catalytically relevant interactions within a single 

tetramer (BC1—CT2, BC2—CT1, BC3—CT4 and BC4—CT3). For example, in configurations 3-6 

(Fig. 12), each tetramer contains three T882S monomers and one E218A monomer, giving rise 

to two catalytic interactions between a T882S BC and CT domain (BCT882S—CTT882S), one 

T882S BC domain interaction with an E218A CT domain interaction (BCT882S—CTE218A), and 

one E218A BC domain interaction with a T882S CT domain (BCE218A—CTT882S). Based on the 

relative activities determined for the parent homotetramers, we can assign these interactions with 

a relative percent activity (i.e., the BCT882S—CTT882S interaction produces 1.6% of wild-type 

activity, the BCT882S—CTE218A interaction produces 3-5% of wild-type activity, and the 

BCE218A—CTE218A interaction is inactive). Moreover, because of the finite sample space and the 

independence of the individual configurations, the probability of any event is the sum of the 

probability of its elements. In this way, we can combine the probability of distribution with the 

relative rates of each interaction within the configuration to determine the extent to which the 

configuration contributes to the overall kcat and determine predicted kcat values for pyruvate 

carboxylation for the 1:1, 1:4 and 4:1 T882S:E218A hybrid tetramers (Fig. 12B). Similar 
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probability analysis and predicted rates are given for the WT:E218A(1:1) (Fig. 13) and the 

WT:T882S(1:1) (Fig. 14) hybrid tetramers.  

 

These methods were also used to predict rates for pyruvate-stimulated release of inorganic 

phosphate (Pi) catalyzed by the T882S:E218A(1:1) (Fig. 15), WT:T882S(1:1) (Fig. 16), and 

WT:E218A(1:1)  (Fig. 17) hybrid tetramers. Probability distribution was determined as above, but 

in this case, the relative rate contribution was determined based on either an intramolecular or an 

intermolecular interaction. Were the mechanism intramolecular in nature, the rate of Pi release 

from the active T882S BC domains in the presence of saturating concentrations of pyruvate 

would be solely controlled by the T882S CT domains on the same monomers. For example, in 

configurations 3-6, three of the four PC monomers in the hybrid tetramer will exhibit activity 

consistent with the BC domain activity of the T882S holoenzyme (1.2% of wild-type activity), 

regardless of the identity of, or interactions with, other monomers in the tetramer. The single 

E218A BC domain in this configuration would be controlled by its own CT domain. 

Alternatively, if we were to assume an intermolecular mechanism, pyruvate binding in the CT 

domain of an opposing polypeptide chain would stimulate the BC domain reaction, and we 

would see that the calculated rate of Pi release for the same configuration is dependent upon two 

T882S CT domain interactions (BCT882S—CTT882S, 1.2% of wild-type activity) and one E218A 

CT domain interaction (BCT882S—CTE218A, 3-5% of wild-type activity) with any of the three 

catalytically active T882S BC domains. Again, since the events occur independently, the 

probability and overall calculated kcat is the sum of all events. 
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FIGURE 12. Probability analysis for rehybridization of T882S and E218A mutants in a 1:1, 1:4, 
or 4:1 ratio, and predicted pyruvate carboxylation activity for each possible tetramer 
combination. (A) Rehybridization of the T882S and E218A mutant monomers of PC yields four 
unique combinations of monomers within a single face of the tetramer. Faces in which both 
monomers are T882S or E218A are predicted to exhibit 1.6% and 0% pyruvate carboxylation 
activity relative to the wild-type, respectively. (B) Statistically random rehybridization of T882S 
and E218A monomers produces 16 possible tetramers with unique compositions. Probability of 
each configuration is denoted in rounded brackets, and overall catalytic contribution of each 
configuration is denoted in squared brackets. 
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FIGURE 13. Probability analysis for rehybridization  and predicted pyruvate carboxylation 
activity of wild-type and T882S mutants in a 1:1 ratio. (A) Rehybridization of the wild-type and 
T882S monomers of PC. Faces in which both monomers are T882S are predicted to exhibit 1.6% 
pyruvate carboxylation activity relative to the wild-type. (B) 16 possible tetramer compositions 
upon statistically random rehybridization of wild-type and T882S monomers. 
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FIGURE 14. Probability analysis for rehybridization and predicted pyruvate carboxylation 
activity of wild-type and E218A mutants in a 1:1 ratio. (A) Rehybridization of the wild-type and 
E218A monomers of PC. Faces in which both monomers are T882S are predicted to exhibit 0% 
pyruvate carboxylation activity relative to the wild-type. (B) 16 possible tetramer compositions 
upon statistically random rehybridization of wild-type and E218A monomers. 
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FIGURE 15. Predicted activity for intra- or intermolecularly controlled pyruvate-stimulated Pi 
release by T882S:E218A(1:1) hybrid tetramers. For the intramolecular mechanism, the rate of Pi 
release would be controlled by the CT domain on the same monomer; in this hybrid tetramer, the 
rate of Pi release would be due solely to the T882S monomers in the tetramer, given that the BC 
domain of E218A is inactive. Alternatively, for the intermolecular mechanism, the rate of Pi 
release would be influenced by the CT domain on the opposing polypeptide chain; in this case, 
the CT domain of E218A would affect the activity when paired with a BC domain of a T882S 
monomer. 
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FIGURE 16. Predicted activity for intra- or intermolecularly controlled pyruvate-stimulated Pi 
release by WT:T882S(1:1) hybrid tetramers. For the intermolecular mechanism, the CT domain of 
the wild-type would have an effect on activity and contribute to the catalytic rate when paired 
with a T882S BC domain. 
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FIGURE 17. Predicted activity for intra- or intermolecularly controlled pyruvate-stimulated Pi 
release by WT:E218A(1:1) hybrid tetramers. For the intermolecular mechanism, the CT domain of 
the E218A monomer would have an effect on activity and contribute to the catalytic rate when 
paired with a wild-type BC domain. 
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Pyruvate Carboxylation Activity. Vmax and (V/K)pyruvate values were determined by fitting initial 

velocity plots to the Michaelis-Menten equation (equation 10) using nonlinear regression 

analysis. In this equation, Vmax represents the maximum achievable initial rate, vi represents the 

initial rate at a given concentration of pyruvate, and Km is the Michaelis-constant. Error bars are 

the standard deviation from the mean of three individual determinations. All fits were performed 

using GraphPad Prism (v. 6).  

 

€ 

vi =
Vmax[pyruvate]
Km + [pyruvate]

10( )  

 

Determination of Initial Rates of Pi Release from the BC Domain. Initial velocity data were fitted 

to equation (11), in which k0 (sec-1) represents the rate of Pi release occurring in the absence of 

pyruvate and Ka is the apparent Km of pyruvate for Pi release. Error bars are the standard 

deviation from the mean of three individual determinations. 

 

€ 

vi = k0 +
Vmax[pyruvate]
Ka + [pyruvate]

11( ) 

 
 
 
 
 
 
 
 
 



 40 

RESULTS 

 

Comparison to Previously Reported Data for Pyruvate Carboxylation. 

In previous work, the kcat and Km pyruvate were determined for wild-type RePC and reported to be 

7.1 ± 0.9 min-1 and 0.47 ± 0.04 mM, respectively (11). These results were obtained in the 

presence of the substrate HCO3
- with a concentration of 15 mM, which is sub-saturating, as the 

Km HCO3 is 10 mM (Table 1). When this concentration was used, an increase in Km pyruvate to 0.54 

± 0.08 mM was observed, which is a 2.5-fold increase from the Km pyruvate obtained at 40 mM 

HCO3
- (0.22 ± 0.3 mM). Also under these previous conditions, a hyperbolic 1:1 coupling ratio 

between the rates of oxaloacetate production in the CT domain and inorganic phosphate release 

from the BC domain (OAA/Pi) was observed.  The kcat OAA/kcat Pi release ratio produced in this 

study demonstrated a linear dependence on pyruvate concentration rather than hyperbolic, which 

was observed at 15 mM HCO3
-. The implications of this reduced substrate concentration will be 

discussed, and for the purposes of the experiments performed in this study, we have modified the 

experimental design to include saturating (40 mM) concentrations of HCO3
-. 

 

Pyruvate Carboxylation Activity and Oxaloacetate Formation. 

The kcat (sec-1) and kcat/Km pyruvate (sec-1 mM-1) for pyruvate carboxylation were measured by 

determining the initial rates of oxaloacetate formation for the wild-type, T882S mutant, and 

hybrid tetramer forms of RePC (Fig. 18, 19). Oxaloacetate formation was measured at varying 

concentrations of pyruvate (0.25 – 40 mM) and saturating concentrations of the BC domain 

substrates, MgATP and HCO3
-, and the activator, acetyl-CoA, through conversion to malate via 
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malate dehydrogenase. All forms of the enzyme and the hybrid tetramers exhibited normal 

Michaelis-Menten type responses across increasing concentrations of the substrate pyruvate.  

 

The Glu218 residue is one of three comprising the catalytic triad of the MgATP and HCO3
- 

binding pockets in the BC domain, along with Lys245 and Glu305, and is required in order for 

MgATP-cleavage to occur (Fig. 10) (6). Mutation of Glu218 to Ala (E218A), which was 

characterized previously, completely abolished BC domain activity, preventing use of the mutant 

as a homotetramer for measurement of pyruvate carboxylation. However, the mutant retained 

wild-type affinity for pyruvate binding in its CT domain and 3-5% of wild-type activity, and thus 

was recognized as ideal for studying the effects of individual domains on overall coordination of 

catalysis. 

 

Also demonstrated previously was the critical nature of the strictly conserved Thr882 residue 

(Fig. 8), which is located in the pyruvate binding site of the CT domain and required for proton 

shuttling between the biotin enolate and bound pyruvate to form oxaloacetate (7, 15). By 

mutating Thr882 conservatively to Ser (T882S), the hydroxyl functional group required for 

proton shuttling was conserved in the active site, though in an altered position relative to the 

biotin enolate and pyruvate, causing significant impairment of the mutant’s catalytic activity 

(Fig. 18). Relative to the wild-type, the T882S mutation, which was characterized in the present 

study (Table 1), exhibited a 62-fold decrease in kcat (0.166 ± 0.005 s-1) and a 360-fold decrease 

in kcat/Km (0.13 ± 0.02 s-1 mM-1). The T882S mutant also exhibited a 6-fold increase in Km pyruvate 

(1.3 ± 0.2 mM) for the pyruvate carboxylation reaction relative to the wild-type (0.22 ± 0.03 

mM) mM). This discrepancy in the Km made the T882S mutant also an ideal candidate for use in 
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generating hybrid tetramers. Hybrid tetramers were first generated using the wild-type and 

mutant forms of PC, mixed in equal ratios (WT:T882S(1:1) and WT:E218A(1:1)). The 

WT:T882S(1:1) hybrid tetramer mixture was initially generated as a control to compare against 

the wild-type form (10.3 ± 0.2 s-1) and the T882S mutant homotetramer, exhibiting a 3-fold 

decrease relative to the wild-type and 20-fold increase in activity relative to the T882S 

homotetramer (3.26 ± 0.06 s-1), respectively (Table 1). This pyruvate carboxylation activity was 

lower than predicted, which we attributed either to insufficient rehybridization of the monomers 

or failure of the tetramer to completely couple MgATP-cleavage with oxaloacetate formation. 

Were this rate reduction due to failure of the monomers to rehybridize in solution once mixed, 

our entire methodology would be flawed, as we would not be able to reliably attribute any 

reduction in the rate to signaling effects observed between monomers of different activities and 

substrate affinities. Alternatively, if the hybrid tetramer was truly failing to couple the BC and 

CT domain reactions, then our methodology would be sound and the reduction in pyruvate 

carboxylation activity could be reconciled by the T882S CT domain’s drastically impaired ability 

to associate with pyruvate in a significant enough manner to prompt BCCP domain egress from 

the BC domain active site, or to remain associated with pyruvate long enough for the opposing 

polypeptide chain’s BCCP domain to complete translocation. 

 

The WT:E218A(1:1) hybrid tetramer was then generated and its pyruvate carboxylation activity at 

40 mM pyruvate was measured. This hybrid tetramer again exhibited a 3-fold reduction in rate 

(3.23 ± 0.01 s-1) relative to the wild-type; however, when predicted activity was determined for 

this mixture of monomers based on the probability of monomer arrangements within the tetramer 

and the relative contribution of each monomer’s activity to the overall catalytic rate, the 
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calculated kcat was 3.32 ± 0.02 s-1, which is comparable to the reduced observed rate. Based on 

this calculation, we considered the methodology of rehybridization sound and attributed the 

reduced rates to coupling efficiency rather than to insufficient rehybridization of monomers. 

Furthermore, we will present results from analysis of additional combinations of hybrid 

tetramers which confirm that the reduced catalytic rate relative to expected values is due to a 

reduction in coupling efficiency of MgATP-cleavage and oxaloacetate formation. 
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TABLE 1. Initial rates of pyruvate carboxylation activity for the wild-type at subsaturating (15 
mM) and saturating (40 mM) concentrations of HCO3

-, as well as the T882S homotetramer and 
the WT:T882S(1:1), WT:E218A(1:1), and T882:E218A (mixed in ratios of 1:1, 4:1, and 1:4) hybrid 
tetramers. For each of the hybrid tetramer mixtures, the kcat was calculated based on the 
probability analysis of possible monomer arrangements within each tetramer, as well as the 
relative contribution to the rate of pyruvate carboxylation of each type of monomer. 
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FIGURE 18. Initial rates of pyruvate carboxylation (!) and pyruvate-stimulated Pi release (") 
for the wild-type (A) and T882S homotetramer (B) as a function of increasing pyruvate 
concentrations. Coupling ratios for the initial rates of oxaloacetate formation and Pi release for 
the wild-type (C) and T882S (D) half-reactions are also shown as a function of pyruvate 
concentration.  
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We next generated hybrid tetramers consisting of the T882S and E218A mutant forms of PC by 

mixing the mutants in a 1:1 ratio (Fig. 19).  The T882S:E218A(1:1) hybrid tetramer exhibited a 

kcat of 0.075 ± 0.002 s-1, which was about half of the activity predicted (0.143 ± 0.003 s-1), and a 

Km,pyruvate (0.20 ± 0.03 mM) that was 6.5-fold lower than that of the T882S homotetramer (Table 

1). Given that the significant reduction in rate relative to predicted values was also observed in 

the WT:T882S(1:1) hybrid tetramer, we next considered the possibility that the T882S mutant 

itself could be hindering tetramerization of the enzyme, and generated hybrid tetramers of the 

T882S and E218A mutants mixed in 4:1 and 1:4 ratios to measure the rates of pyruvate 

carboxylation in excess of either mutant (Table 1). Observed activity of the T882S:E218A(4:1) 

mixture (0.165 ± 0.004 s-1) matched the predicted rate (0.152 ± 0.003 s-1), and the apparent Km 

pyruvate (0.8 ± 0.1 mM), which was 4-fold higher than that of the wild-type, can be attributed to the 

increased prevalence of T882S monomers within the rehybridized tetramers. The 

T882S:E218A(1:4) hybrid tetramers exhibited twice the activity of the predicted rate of pyruvate 

carboxylation (0.121 ± 0.006 s-1 observed versus 0.058 ± 0.001 s-1 predicted) with an apparent 

Km pyruvate nearly equivalent to that of the T882S homotetramer (1.6 ± 0.3 mM).  Based on these 

observed values relative to predicted rates, we believe that discrepancies are due to the impaired 

ability of the T882S monomers to retain control of coupling between BC and CT domain 

reactions. 
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FIGURE 19. Initial rates of pyruvate carboxylation (!) and pyruvate-stimulated Pi release (") 
for the T882S:E218A(1:1) hybrid tetramer form of RePC as a function of increasing pyruvate 
concentration.  
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FIGURE 20. Coupling ratios for the initial rates of oxaloacetate formation and Pi release for the 
T882S:E218A(1:1) hybrid tetramer form of PC. 
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MgATP-Cleavage and Inorganic Phosphate Release in the Presence and Absence of Pyruvate. 

The initial rates of MgATP-cleavage and Pi release, occurring within the BC domain, were 

measured in the presence (Table 2) and absence (Table 3) of pyruvate to determine the kcat (sec-

1) and kcat/Km pyruvate for the wild-type, mutant homotetramers, and mixed hybrid tetramers. While 

Pi release is largely stimulated by pyruvate occupancy in the CT domain, a level of pyruvate-

independent Pi release also occurs due to small, random motions of the BCCP domain and 

vibrations inherent in the enzyme structure which allow the biotin cofactor to transiently exit the 

BC domain binding pocket, thus releasing MgADP and Pi that is not productively utilized for 

oxaloacetate formation. The T882S homotetramer exhibited a 17-fold decrease in rate of Pi 

release (0.043 ± 0.006 s-1) relative to the wild-type (0.73 ± 0.09 s-1), and the E218A 

homotetramer yielded no measurable activity due to its defunct BC domain. 

 

The rate of Pi release in the WT:E218A(1:1) hybrid tetramer mixture (0.249 ± 0.009 s-1) was 34% 

lower than that observed for the wild-type; while this difference is significant, we had expected a 

50% reduction in activity due to half of the BC domains in this ratio being inactive. The 

WT:T882S(1:1) hybrid tetramer was 50% as active as the wild-type (0.33 ± 0.07 s-1), and higher in 

activity than the T882S homotetramer, as we anticipated. The T882S:E218A(1:1) hybrid tetramer, 

in a similar pattern as the WT:E218A(1:1), catalyzed Pi release at a 3-fold lower rate than the 

T882S homotetramer. 

 

Initial rates of Pi release were also measured in the presence of varying concentrations of 

pyruvate (0.25 – 40 mM) and saturating concentrations of all other substrates and activators. In 

this case, the apparent Ka pyruvate was taken to represent the ability of the CT domain to induce 
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BCCP domain translocation and not necessarily the ability to carboxylate pyruvate. In the 

presence of pyruvate, the T882S homotetramer yielded a 3.4-fold higher rate of Pi release (0.146 

± 0.005 s-1) than in its absence, and the apparent Ka was approximately 4-fold greater than the 

Km pyruvate observed for pyruvate carboxylation. The apparent Ka for the T882S homotetramer 

(5.4 ± 0.6 mM) was also 10-fold higher than that of the wild-type (0.56 ± 0.07 mM). Taken 

together, the larger Ka and reduction in kcat yield a 780-fold reduction in kcat/Km for the T882S 

homotetramer relative to the wild-type (0.027 ± 0.003 s-1 mM-1 versus 21 ± 3 s-1 mM-1), which is 

suggestive of the impaired ability of T882S RePC to induce BCCP translocation. 
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 kcat observed (s-1) % WT activity 
WT 0.73 ± 0.09 (100) 

T882S 0.043 ± 0.006 6 
E218A NA 0 

WT:E218A(1:1) 0.249 ± 0.009 34 
WT:T882S(1:1) 0.33 ± 0.07 45 

T882S:E218A(1:1) 0.0134 ± 0.002 2 
TABLE 2. Initial rate of inorganic phosphate release activity in the absence of pyruvate for the 
wild-type, T882S and E218A mutant homotetramers, and hybrid tetramer forms of PC. 
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kcat observed 

(s-1) 
% WT 
activity 

Ka, pyruvate 
(mM) kcat/Ka (s-1 mM-1) 

WT 12.1 ± 0.4 (100) 0.56 ± 0.07 21 ± 3 
T882S 0.146 ± 0.005 1.2 5.4 ± 0.6 0.027 ± 0.003 
E218A NA 0 — — 

WT:T882S(1:1) 6.6 ± 0.1 55 0.91 ± 0.07 7.3 ± 0.6 
WT:E218A(1:1) 3.78 ± 0.07 31 ND ND 

T882S:E218A(1:1) 0.118 ± 0.003 0.9 0.37 ± 0.05 0.32 ± 0.04 
TABLE 3. Observed initial rates of inorganic phosphate release activity in the presence of 
pyruvate for the wild-type; the T882S homotetramer; and the WT:T882S(1:1), WT:E218A(1:1), and 
T882S:E218A(1:1) hybrid tetramers. 
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The question still remained as to which CT domain within a face of the enzyme controls 

translocation of the BCCP domain, which led us to determine the rates of Pi release for hybrid 

tetramers combining the wild-type with the mutant forms, as well as combining both mutants 

together. Calculation of predicted rates that would correspond to intramolecular or 

intermolecular mechanisms (Table 4), and comparison of the observed rates of Pi release, 

allowed us to determine which of the two mechanisms of subunit communication is most likely 

occurring during the catalytic cycle of PC.  

 

The ability of the WT:E218A(1:1) hybrid tetramer to cleave MgATP was measured at 40 mM 

pyruvate and yielded an initial rate of 3.78 ± 0.07 s-1, which was approximately 15-fold higher 

than the rate in the absence of pyruvate. Upon examination of the arrangement of monomers 

within the WT:E218A(1:1) tetramer, it is possible to calculate the rate of Pi release relative to the 

wild-type for an intra- versus intermolecular mechanism. Due to the defunct BC domain of the 

E218A mutation, all observed BC domain activity must be due to the BC domains of the wild-

type subunits. Were the mechanism intramolecular in nature, binding of pyruvate to the CT 

domain of one polypeptide chain would induce movement of the BCCP domain on the same 

monomer, so all of the CT domains in the WT:E218A(1:1) hybrid tetramer would induce BCCP 

domain translocation only on the wild-type subunits; this would result in a rate of Pi release 

approximately half that of the wild-type homotetramer. Alternatively, were the mechanism an 

intermolecular one, pyruvate binding in the CT domain of one polypeptide chain would induce 

BCCP translocation of the opposing polypeptide chain, “pulling” the BCCP domain over to 

itself. In this case, pyruvate binding in either the wild-type or E218A CT domain could elicit 

BCCP translocation from an opposing chain, depending on arrangement of the monomers in the 
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tetramer (Fig. 21). Given that the E218A CT domain retains 3-5% of wild-type pyruvate 

carboxylation activity, this mechanism would result in Pi release at a rate of 26% of the wild-type 

activity. The observed rate of Pi release was 31% of that of the wild-type, which was consistent 

with the signaling mechanism being intermolecular in nature. 

 

The T882S:E218A(1:1) hybrid tetramer was also examined to further elucidate the signaling 

mechanism governing BCCP translocation and Pi release from the BC domain. Just as with the 

WT:E218A(1:1) hybrid tetramer, it is possible to predict the rate of Pi release for the 

T882S:E218A(1:1) hybrid tetramer under an intra- or intermolecular signaling mechanism. For an 

intramolecular control mechanism, the T882S CT domain would govern translocation of its own 

BCCP domain; in that case, we would expect apparent Ka pyruvate values similar to that of the 

T882S homotetramer and an initial rate of Pi release about 0.6% of that of the wild-type. For an 

intermolecular mechanism, the E218A CT domain would be responsible for translocation of the 

opposing T882S BCCP domain; this would yield an apparent Ka pyruvate significantly lower than 

that of the T882S homotetramer and a rate of 0.9% wild-type activity. The apparent Ka pyruvate for 

the T882S:E218A(1:1) hybrid tetramer (0.20 ± 0.03 mM) was 1.5-fold lower even than that 

observed for the wild-type, and 15-fold lower than that of the T882S homotetramer. These 

results are consistent with an intermolecular mechanism of subunit communication, in which 

pyruvate binding to the CT domain of the E218A mutant, which has wild-type affinity for 

pyruvate, is in control of inducing translocation of the BCCP domain on the T882S mutant. 
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kcat calculated, 

intermolecular (s-1) 
% WT 
activity 

kcat calculated, 
intramolecular (s-1) 

% WT 
activity 

WT — (100) — (100) 
T882S — — — — 
E218A — — — — 

WT:T882S(1:1) 6.1 ± 0.2 50.5 6.1 ± 0.2 50.5 
WT:E218A(1:1) 3.1 ± 0.1 26 6.0 ± 0.2 50 

T882S:E218A(1:1) 0.133 ± 0.004 1.1 0.073 ± 0.002 0.6 
TABLE 4. Calculated initial rates of inorganic phosphate release based on an intermolecular or 
intramolecular mechanism of BCCP domain control. Values were compared to initial rates 
obtained in Table 3 to determine whether data more closely matched one mechanism of control 
than the other. 
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FIGURE 21. Schematic of intra- and intermolecular mechanisms of signaling in RePC. Left: 
were the signal intramolecular in nature, pyruvate binding in one CT domain (arrow 1) signals 
carboxylation of the covalently attached biotin on its own BCCP domain (arrow 2) and 
translocation to the opposing polypeptide chain (arrow 3). Pyruvate binding causes the BCCP 
domain to be “pushed” to the opposing CT domain for catalysis. Right: for an intermolecular 
signaling mechanism, pyruvate binding in one CT domain (arrow 1) signals to the BCCP domain 
on the opposing polypeptide chain (arrow 2) and “pulls” the BCCP domain, containing the 
carboxybiotin intermediate, over to itself. 
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Coupling of BC and CT Domain Reactions. 

The extent of coupling between oxaloacetate formation following pyruvate carboxylation in the 

CT domain and inorganic phosphate release as a result of MgATP-cleavage in the BC domain 

was determined by measuring the formation of each under varying concentrations of pyruvate 

(0.25 – 40 mM) and otherwise identical conditions for the wild-type, T882S, T882S:WT(1:1), and 

T882S:E218A(1:1) tetramers (Table 5). A ratio of the kcat of oxaloacetate production to the kcat of 

inorganic phosphate release approaching one is indicative of complete coupling between the two 

domain half-reactions, meaning that MgATP-cleavage is efficient and productive, resulting in 

oxaloacetate formation. As the ratio decreases, coupling of the two reactions becomes 

incomplete, resulting in nonproductive MgATP-cleavage. The ratio also should not exceed one, 

as cleavage of at least one MgATP molecule is necessary to form one oxaloacetate molecule. At 

saturating concentrations of pyruvate, nearly complete coupling was exhibited by the wild-type, 

the T882S homotetramer, and the WT:E218A(1:1) hybrid tetramer (Fig. 18), whereas the ratios 

for the WT:T882S(1:1) and T882S:E218A(1:1) hybrid tetramers were approximately 0.5 – 0.6, 

indicating significant loss of coupling between the BC and CT domains upon introduction of the 

T882S mutant (Fig. 20).  

 

The ratio of rates of oxaloacetate formation to Pi release demonstrated linear dependence on 

pyruvate concentration for the wild-type, T882S homotetramer, and all mixed hybrid tetramers, 

which was surprising, given that a hyperbolic dependence was observed in previous work. 

However, we attribute this again to the subsaturating concentrations of HCO3
- used in those 

studies, especially because the concentration of HCO3
- has been shown here to have a significant 

impact on the Km pyruvate for pyruvate carboxylation activity of PC. 
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In all, these results serve to suggest that BCCP domain translocation is governed by an 

intermolecular signaling mechanism, whereby pyruvate binding in the CT domain of one 

monomer controls BCCP translocation on the opposing polypeptide chain. Additionally, mixed 

hybrid tetramers containing the T882S mutant form of RePC lost BC and CT domain coupling, 

leading to nonproductive MgATP-cleavage at a rate of nearly two MgATP cleaved per 

oxaloacetate formed. 
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kcat OAA formation / 

kcat Pi release 
kcat/Km OAA formation / 

kcat/Ka Pi release 
WT 0.85 ± 0.03 2.2 ± 0.4 

T882S 1.1 ± 0.9 4.8 ± 0.9 
WT:T882S(1:1) 0.49 ± 0.01 1.4 ± 0.2 
WT:E218A(1:1) 0.85 ± 0.02 ND 

T882S:E218A(1:1) 0.64 ± 0.02 1.2 ± 0.2 
TABLE 5. Coupling ratio of initial rates of oxaloacetate production to inorganic Pi release for 
RePC wild-type, the T882S mutant form, and the hybrid tetramer combinations shown. Km 
represents the Km pyruvate for pyruvate carboxylation activity, and Ka represents the apparent Ka 

pyruvate for Pi release activity. 
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DISCUSSION 

 

Previous studies have demonstrated that pyruvate binding in the CT domain has a significant 

stimulatory effect on translocation of the BCCP domain, specifically in the presence of acetyl-

CoA, thus promoting movement away from the BC domain and release of Pi.(6, 11, 13, 27) It has 

also been shown that the presence of increasing concentrations of pyruvate present in the CT 

domain decreases nonproductive cleavage of MgATP in the BC domain; that is, the proportion 

of MgATP cleavages occurring that result in formation of oxaloacetate increases (28). While 

pyruvate binding does not affect the global conformation of the enzyme, it does prompt 

structural alterations within the CT domain and near its active site, such that the required binding 

pocket for the carboxybiotin intermediate is formed (5). Together, these findings seem to 

indicate that the ability of pyruvate to coordinate catalysis is dependent on successfully inducing 

translocation of the BCCP domain, as well as remaining bound in the CT domain for long 

enough to interact with the carboxybiotin intermediate. 

 

Our studies have sought to answer the question of whether pyruvate binding at the CT domain of 

one polypeptide chain within a face facilitates translocation of the BCCP domain through an 

intra- or intermolecular communication mechanism, and generation of mixed hybrid tetramers 

has allowed us to distinguish between the two (Fig. 21). Only the T882S:E218A(1:1) hybrid 

tetramer allows observation of significant catalytic activity by determining the kcat and apparent 

Ka pyruvate for Pi release. In this equal mixture of mutant monomers, the activity of which was 

calculated through probability analysis of the possible monomer positions within the tetramer, 

only a combination of T882S and E218A monomers within a single face would produce catalytic 
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activity. In this case, an intramolecular communication mechanism would be under the control of 

the T882S CT domain, which has a dramatically reduced binding affinity for pyruvate 

(manifested as an apparent Ka pyruvate of Pi release that is 10-fold higher than that of the RePC 

wild-type). On the other hand, an intermolecular mechanism would be under the control of the 

E218A CT domain, which retains wild-type affinity for pyruvate, as demonstrated by its 

apparent Ka pyruvate of Pi release that is approximately half of that of the wild-type. 

 

Initially, we anticipated that PC would function via an intramolecular mechanism, whereby 

pyruvate binding at one CT domain would facilitate translocation of the BCCP domain on the 

same polypeptide chain, serving to “push” that BCCP domain to the opposing monomer to carry 

out catalysis. This possibility seemed to be the more intuitive, in that pyruvate binding would be 

able to induce conformational shifts within the enzyme through physically connected residue 

networks between the CT domain, the allosteric domain, and the swinging arm of the BCCP 

domain. Additionally, this intramolecular mechanism of communication would have accounted 

for PC’s 50% commitment to catalysis once bound to pyruvate, since the CT domain responsible 

for inducing movement of the BCCP domain (i.e., the CT domain of the T882S monomer, in the 

T882S:E218A(1:1) hybrid tetramer) would not be the same as the CT domain that is the site of 

oxaloacetate formation (i.e., the CT domain of the E218A monomer). However, our anticipation 

that this mechanism would be intramolecular was based largely on the assumption that a discrete, 

functional residue network between the two active sites not only exists, but is directly 

responsible for their communication, despite the fact that such a network has yet to be identified 

experimentally. Current views of allostery do not require direct residue interactions or 

subsequent conformational changes in order to coordinate catalysis, instead focusing on 
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thermodynamic characteristics of multifunctional enzymes as the most likely source of 

communication in allosteric effects. Given that, it becomes possible to conceive of an 

intermolecular mechanism occurring in PC, whereby communication for catalysis is propagated 

in the absence of significant conformational shifts through physical residue networks. 

 

Based on the steady-state kinetics analyzed in this study, we have determined that pyruvate 

binding in one CT domain induces BCCP translocation on the opposing polypeptide chain, 

consistent with an intermolecular mechanism of communication. An intermolecular mechanism 

would also explain the incomplete coupling observed between the BC and CT domain half-

reactions in the T882S:E218A(1:1) hybrid tetramer, given that both the CT domains of the T882S 

and E218A monomers, with different affinities for pyruvate, are controlling catalysis on each 

polypeptide chain. This also gives rise to the possibility of a mechanism involving half-sites 

reactivity, in which only one BC—CT domain pair on a single face is active at a time, or 

oscillating catalysis, in which alternating faces are active at a single time. 

 

These experiments do not differentiate between the effects seen within a face as opposed to 

effects caused by interactions between faces, so we cannot say for sure based on these findings 

whether the incomplete coupling observed in the hybrid tetramers containing T882S monomers 

was due to pyruvate binding within the same face or in a CT domain on the opposite face. 

Further study of additional molecular interactions within the tetrameric structure is needed to 

elucidate the nature of the mechanism by which PC controls BCCP translocation and the 

coordination of catalysis between the two spatially distinct active sites within a face. 
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Through generation of these functional hybrid tetramers using the T882S, with low CT domain 

activity relative to the wild-type, and E218A, with a defunct BC domain, mutant forms of PC, we 

have begun to address the method by which spatially separate domains within the tetramer sense 

pyruvate occupancy in the CT domain. The T882S:E218A(1:1) hybrid tetramer exhibited a near 

wild-type apparent Ka pyruvate for Pi release from the BC domain which was almost 10-fold lower 

than that of the T882S homotetramer. Also, the hybrid tetramer exhibited a loss of coupling 

between the initial rates of oxaloacetate formation and MgATP-cleavage, with the ratio of the 

two domain reactions remaining constant at 0.6 regardless of pyruvate concentration. These 

results collectively indicate a signaling mechanism that is intermolecular in nature, whereby 

pyruvate binding to one CT domain within a face of the PC tetramer signals BCCP domain 

translocation on the opposing polypeptide chain, “pulling” the carboxylated biotin cofactor over 

to itself. Given the complexity of this interaction and the minimal amino acid residue interactions 

that occur between monomers within a single face, these findings are suggestive of some type of 

thermodynamic stability as the driving force responsible for allosteric regulation and intersubunit 

communication in the PC tetramer. 
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CHAPTER 2 – THERMODYNAMIC LINKAGE ANALYSIS OF SUBSTRATE BINDING AT 

SPATIALLY DISTINCT ACTIVE SITES IN PYRUVATE CARBOXYLASE 

 

Interactions in the presence of varying concentrations of the substrates pyruvate and MgATP, as 

well as the essential allosteric activator, acetyl-CoA, have been previously studied kinetically, 

but the thermodynamic relationship between binding and turnover events at each ligand’s 

binding site has not yet been determined. Many attempts have been made in the study of 

allosteric regulatory mechanisms to glean the nature and source of the allosteric effects in a 

structure-function relationship based primarily on the enzyme structure itself; while this 

approach allows quantitative analysis of the effects of allosteric ligands, it does not properly take 

into account the full expanse of dynamic conformations through which a particular enzyme could 

pass during its catalytic cycle (29). Often, analyses of allosteric behavior are model-dependent 

and assume that an enzyme is capable of only two distinct conformational states, as described by 

the Monod-Wyman-Changeaux model of allosterism: a tense (T) state in the absence of a bound 

effector, yielding low affinity for substrates and reduced catalytic activity, and a relaxed (R) 

state, which has higher substrate affinity and enhanced activity, which work in concert to 

regulate enzyme activity (30). However, the structure of allosteric proteins is not so static in 

reality. The flexibility inherent in enzyme structures produces a fluctuating population of 

enzymes adopting any one of a variety of conformational states, some of which represent the R 

and T extremes of ligand affinity and catalytic competency, but most of which exhibit any of an 

intermediate range of states which differ only by subtle, much smaller-scale alterations in 

conformation (22). Thus, allosteric linkage analysis of binding events (that is, the quantification 

of how one ligand binds and is productively turned over in the presence or absence of a second 
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ligand) reveals the importance of fluctuations in enzyme function over the emphasis on changes 

in global structure alone and liberates the enzyme from a regulatory model that may or may not 

reflect the full complexity of its mechanism in actuality (29). Allosteric linkage analysis also 

allows quantification of the thermodynamic coupling between multiple substrates, as well as 

between a substrate and an effector (31, 32). 

 

In Fig. 22, the general reaction scheme of a single-substrate-single-modifier mechanism is 

illustrated to serve as a guide for understanding the general processes by which allosteric 

enzymes are regulated. The substrate, A, is capable of binding to the enzyme (E) and generating 

a product from the binary complex in the absence of the allosteric effector, X. However, when 

both A and X bind to the enzyme, the catalytic activity of the resultant ternary complex is 

different (either enhanced or depressed, depending on the stimulatory or inhibitory nature of the 

effector) than that of the binary complex. In terms of the kinetic mechanism of an enzyme, the 

order in which binding events occur matters; in the reaction scheme shown, the binding order of 

A and X influences the overall rate of the reaction. Thermodynamically, though, the interaction 

of an enzyme with multiple substrates to achieve a ternary or quaternary complex can occur in 

any order; that is, the energetic properties of the overall reaction will be equivalent, regardless of 

whether A or X is bound to the enzyme first (33). 

 

Regulated activity of PC produces oxaloacetate for utilization in glucose metabolism, whether 

through completion of the first committed step in the gluconeogenic pathway or through 

anaplerosis of TCA cycle intermediates for cellular energy production, and it accomplishes this 

by lowering the activation energy of the conversion of pyruvate to oxaloacetate through 
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stabilization of the reaction’s transition state. Given the activating and stabilizing effects that 

bound acetyl-CoA exerts on PC, and the resultant increases in BC domain activity and kinetic 

coupling of the BC and CT domain reactions, we have sought to determine the extent to which 

acetyl-CoA enhances the thermodynamic favorability of the catalyzed production of oxaloacetate 

by examining the activation energy of the reaction in the presence and absence of acetyl-CoA. 

By taking into account the emerging, more dynamic view of allostery described previously, it is 

possible to imagine a mechanism in which PC is better able to stabilize the transition state 

intermediates of each domain reaction due subtle alterations in active site chemistry or binding 

pocket conformation caused by the presence of acetyl-CoA, thus possibly reducing the activation 

energy of pyruvate carboxylation even further (4, 34, 35).  

 

We determined the thermodynamic-linkage of each ligand of PC, using the wild-type form of PC 

from S. aureus. We have measured the initial rate of pyruvate carboxylation by varying the 

concentration of two ligands simultaneously, while holding the third ligand at a constant 

saturating concentration. It also is essential to understand each individual interaction in order to 

piece together the network of amino acids and subunit domains that is ultimately responsible for 

the allosteric response elicited upon binding of acetyl-CoA (34). The task of measuring allosteric 

regulation in multifunctional, multisubunit enzymes such as PC is a complex one, given that 

catalysis must occur intermolecularly, and that the majority of electrostatic residue interactions 

occurs between faces rather than within a single face. As such, the BC and CT domain active 

sites necessary to produce one oxaloacetate are located on two separate polypeptide chains, while 

binding of acetyl-CoA in its pocket formed between the allosteric domain and the BC domain is 

required for stimulation of the overall catalytic rate. The results obtained from our lab describing 
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the communication signaling mechanism between PC subunits as occurring intermolecularly 

within a face lend credence to a possible allosteric regulatory mechanism involving 

thermodynamically favorable shifts in ligand domain conformations upon binding of pyruvate, 

MgATP, or acetyl-CoA, and which does not necessarily rely on a physical amino acid network 

connecting any two of the binding sites. 

 

In each ligand coupling interaction examined (i.e., pyruvate vs. MgATP, pyruvate vs. acetyl-

CoA, and MgATP vs. acetyl-CoA), comparison of the apparent Km at fixed-variable 

concentrations of one ligand for the full-forward pyruvate carboxylation reaction across 

increasing concentrations of a second ligand enabled us to calculate the Gibbs’ free energy of 

each binding and catalytic turnover relationship. The ability of either MgATP or pyruvate to 

increase affinity of PC for the other is observed in the presence of acetyl-CoA, while this 

relationship is entirely lost in its absence. These results have the potential to further elucidate the 

nature of intersubunit communication, in that the enzyme’s spatially distinct active sites, even in 

the presence of the preferred substrates, cannot communicate or coordinate productive catalytic 

coupling in the absence of the activator. We also demonstrate here that, despite acetyl-CoA’s 

critical role in coupling the BC and CT domains, establishing the communication network 

necessary for pyruvate occupancy to influence BCCP domain translocation, stabilizing the 

tetramer, and dramatically enhancing the rate of MgATP-cleavage, its thermodynamic and 

regulatory contributions are not reflected in the activation energy of the enzyme. 

 

 

 



 69 

 

FIGURE 22. Thermodynamic reaction scheme for an enzyme (E) with one substrate (A) and 
one effector (X). Binding events involving both the substrate and effector are required to form 
the ternary complex (EAX), from which point the reaction can proceed to product formation. 
Each addition of a ligand, or removal of a bound ligand, is defined by its own kinetic rate 
constant (k1 through k8). Kinetically, the order in which the two ligands bind with the enzyme 
determines the overall rate of the reaction and is essential knowledge for understanding the 
catalytic mechanism of that enzyme. In terms of thermodynamics, however, the pathway 
between the free enzyme (E) and the fully bound ternary complex (EAX), denoted by the 
diagonal set of arrows, requires an equivalent amount of energy regardless of which binding 
event occurs first; that is, k1 + k3 is energetically equivalent to k5 + k7. In the case of PC, the 
complex required for catalysis involves three substrates (pyruvate, MgATP, and HCO3

-) and one 
allosteric effector (acetyl-CoA), adding significant complexity to the reaction scheme. 
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METHODS 

 

Plasmid expression, protein overexpression, purification, and visualization were performed as 

described previously (refer to Chapter 1). 

 

Steady-State Enzyme Activity Assays 

The initial rates of pyruvate carboxylation and HCO3
- dependent MgATP-cleavage were 

determined spectrophotometrically using coupled assay systems. All reactions were performed at 

25° C in 1 mL reaction volumes and 100 mM Tricine (pH 7.6). Assays were carried out using the 

Shimadzu UV-1800 Spectrophotometer, CPS-240A Cell Positioner, and 6 Cell-Thermoelectrical 

Temperature Controller. 

 

Temperature Dependence of Acetyl-CoA Activation 

Specific activity of pyruvate carboxylation in the presence of saturating pyruvate (15 mM) and 

MgATP (2.5 mM) was determined for SaPC wild type across a range of temperatures (15 – 

55°C) in the presence and absence of saturating acetyl-CoA (250 µM). 

 

Thermodynamic Linkage Analysis of SaPC 

The initial rates of oxaloacetate formation were measured across variable concentrations of 

pyruvate (0.25 – 15 mM), MgATP (0.05 – 3 mM), and acetyl-CoA (0 – 250 µM); when the 

concentration of one ligand was varied, the second ligand was measured at fixed variable 

concentrations, and the third ligand was held constant at saturating concentrations. Reactions 

also contained: 100 mM HCO3
-, 5 mM MgCl2, 0.25mM NADH, and malate dehydrogenase (55 
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units). Reactions were initiated with the addition of ~0.01 – 1.36 mg of PC. Initial velocity data 

were fit to equation (10). 

 

Specific Activity in High-Viscosity Buffer 

Initial velocities of oxaloacetate formation and inorganic phosphate release by wild-type SaPC 

were determined in the presence of saturating substrates (15 mM pyruvate, 2.5 mM MgATP, and 

250 µM acetyl-CoA) and increasing concentrations of selected viscosigens. Reaction buffers 

contained one of glycerol (0 – 60% v/v), sucrose (0 – 60% w/v), or Ficoll 400 (0 – 50% w/v). 

Pyruvate carboxylation and MgATP-cleavage were measured as described previously using the 

malate dehydrogenase and purine nucleoside phosphorylase coupled assay systems, respectively. 

 

Data Analysis 

 

Temperature Dependence of Acetyl-CoA Activation. Data were fit to the Arrhenius equation 

(equation 12a), from which the slope was used to determine the activation energy of PC’s 

catalytic cycle (equation 12b) in the presence and absence of acetyl-CoA. 
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Thermodynamic Linkage Analysis of SaPC. Lineweaver-Burk secondary plots of SaPC 

thermodynamic-linkage data were generated and fit to a linear regression. The Lineweaver-Burk 

equation is a transformation of the Michaelis-Menten (equation 10). 
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Free energy values were determined by fitting secondary plots of apparent Km versus ligand 

concentration to equation (14) using nonlinear regression analysis (33). In this equation, Ko
app is 

equal to Kapp when ligand [B] = 0, Ko
ix/b is the dissociation constant for ligand B when ligand [A] 

= 0 when, Qax/b is the coupling constant between ligands A and B when ligand B is at saturating 

concentration, and [B] is the concentration of ligand B. For these experiments, ligands A and B 

can represent MgATP and acetyl-CoA, pyruvate and acetyl-CoA, or MgATP and pyruvate, 

whereby ligand [A] is varied, ligand [B] is held at fixed-variable concentrations, and the third 

ligand, [C], is held at saturating concentration. 
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The coupling constant determined in equation (14) was then used to relate the thermodynamic 

relationships between ligands to free energy using equation (15), in which ΔGax/b represents the 

coupling free energy between binding events of ligands A and B, R is the ideal gas constant (kcal 

mol-1 K-1),  and T is temperature (K): 
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RESULTS 

 

Activation Energy of PC is Not Lowered in the Presence of Acetyl-CoA. 

Pyruvate carboxylation activity of PC (kcat) was determined using the malate dehydrogenase 

coupled assay system to indirectly measure oxaloacetate formation, as described previously. This 

was carried out across a broad range of temperatures (15-55°C) in order to determine the 

activation energy of catalysis in the presence or absence of acetyl-CoA (Fig. 23). Given the 

structural importance of acetyl-CoA in promoting tetramerization and stabilizing the allosteric 

domain, we made the initial assumption that the presence of acetyl-CoA in the allosteric domain 

would lower the activation energy of PC-catalyzed carboxylation of pyruvate. Specific activities 

of pyruvate carboxylation at each temperature were analyzed as a function of inverse 

temperature (K-1) (eqn 12a). In the presence of acetyl-CoA, the slope, which is –Ea/R, was -8160 

± 290 K-1, and the corresponding activation energy was 16.2 ± 0.7 kcal mol-1. In the absence of 

acetyl-CoA, this slope was -8560 ± 310 K-1, which corresponded to an activation energy of 17.0 

± 0.6 kcal mol-1. Thus, the presence or absence of acetyl-CoA in the allosteric domain did not 

significantly alter the activation energy of catalysis for PC. 
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FIGURE 23. Arrhenius plot demonstrating activation energy of PC in the presence (!) and 
absence (") of acetyl-CoA. Initial rate is shown as a function of inverse temperature (K-1). 
Slope of each line represents –Ea/R, in which Ea is the activation energy of catalysis for PC and 
R is the ideal gas constant (1.986 x 10-3 kcal K-1 mol-1). 
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Rates of Pyruvate Carboxylation at Varying Ligand Concentrations. 

The kcat (sec-1) of pyruvate carboxylation was determined by measuring initial rates of 

oxaloacetate formation for the wild-type form of SaPC. Concentrations of pyruvate (0.25–15 

mM), MgATP (0.05–2.5 mM), and acetyl-CoA (0–250 µM) were individually manipulated to 

examine oxaloacetate formation as a function of the binding and catalytic turnover relationship 

between pyruvate and acetyl-CoA, MgATP and acetyl-CoA, and pyruvate and MgATP. For each 

pair of ligands examined, the concentration of the third was held constant at saturating levels. All 

rates exhibited Michaelis-Menten type responses as substrate concentrations were increased, and 

the fixed-variable concentrations of each ligand yielded both V-type and K-type effects on the 

rate of oxaloacetate production. 

 

Pyruvate carboxylation activity in the presence of varying concentrations of pyruvate and acetyl-

CoA (Fig. 25, A), as well as a constant, saturating MgATP concentration of 2.5 mM, exhibited a 

72-fold increase in the kcat between the absence (0.033 ± 0.002 s-1) and saturating presence (2.38 

± 0.05 s-1) of acetyl-CoA at 15 mM pyruvate (Table 7). The apparent Km pyruvate was determined 

to be 0.47 ± 0.05 mM in the presence of saturating acetyl-CoA, which was approximately 4-fold 

lower than the apparent Km pyruvate at 7 µM acetyl-CoA (1.9 ± 0.3 mM). When MgATP and 

acetyl-CoA concentrations were varied (Fig. 24), while pyruvate was held constant at 15 mM, a 

similar V-type effect was observed between the absence (0.037 ± 0.004 sec-1) and presence of 

saturating acetyl-CoA (2.55 ± 0.04 sec-1) at saturating MgATP. The apparent Km MgATP was 

modestly affected by increasing concentrations of acetyl-CoA, measuring 0.22 ± 0.04 mM at 

saturating acetyl-CoA compared to 0.6 ± 0.2 mM in the absence of acetyl-CoA (Table 6). 

Finally, when concentrations of pyruvate and MgATP were varied in the presence of saturating 
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acetyl-CoA (Fig. 26), a 3.7-fold decrease in kcat and a 3.3-fold increase in Km pyruvate was 

observed between the presence of saturating (2.5 mM) and subsaturating (0.05 mM) 

concentrations of MgATP (Table 8). 

 

It has been demonstrated that PC catalyzes the formation of oxaloacetate through a bi bi uni uni 

nonclassical ping-pong mechanism (36, 37), meaning that the first two substrates (MgATP and 

HCO3
-) bind to the BC domain and are converted to two released products (MgADP and Pi) prior 

to binding of the single substrate (pyruvate) to the CT domain active site and conversion to a 

single product (oxaloacetate). We sought to hone this mechanism further by examining the 

binding and turnover relationship between each pair of varied ligands (MgATP and acetyl-CoA, 

pyruvate and acetyl-CoA, and pyruvate and MgATP) through generation of double-reciprocal 

plots (Fig. 24-26, B) using equation (13). Generally, a Lineweaver-Burk plot of an enzyme 

following a classical ping-pong mechanism will yield a series of parallel lines at varying 

concentrations of the effector, while an enzyme controlled by a sequential mechanism will 

produce a Lineweaver-Burk plot with intersecting lines at varying effector concentrations. Each 

of the three ligand binding relationships examined yielded double reciprocal plots with 

intersecting lines, with both slope (Fig. 24-25, C) and y-intercept (Fig. 24-25, D) increasing as 

the effector concentration decreased. This pattern is suggestive of a random sequential enzyme 

mechanism under rapid equilibrium, whereby occupancy of both ligands in their respective, 

spatially discrete binding sites is necessary in order for pyruvate carboxylation activity to 

proceed. 
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FIGURE 24. (A) The initial rate of oxaloacetate formation by SaPC, in kcat (s-1), measured as a 
function of increasing MgATP concentration. MgATP is measured at varying concentrations (0 – 
3 mM) in the presence of saturating pyruvate (15 mM) at fixed-variable concentrations of acetyl-
CoA (0 – 250 µM). (B) Lineweaver-Burk double reciprocal plot of initial rates of pyruvate 
carboxylation. Inverse rate is represented as a function of the inverse concentration of MgATP. 
C-D: Secondary plots analyzing the slope (C) and y-intercept (D) of linear regression lines from 
the Lineweaver-Burk plot, represented as a function of the inverse concentration of acetyl-CoA. 
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[Acetyl-CoA] (µM) kcat (s-1) Km MgATP (mM) 
0 0.038 ± 0.004 0.6 ± 0.2 
1 0.149 ± 0.007 0.47 ± 0.07 
3 0.37 ± 0.02 0.52 ± 0.09 
5 0.68 ± 0.04 0.7 ± 0.1 
7 0.87 ± 0.02 0.44 ± 0.04 

10 0.98 ± 0.05 0.33 ± 0.06 
15 1.44 ± 0.08 0.40 ± 0.07 
20 1.59 ± 0.08 0.32 ± 0.06 
50 1.83 ± 0.05 0.20 ± 0.02 

100 2.00 ± 0.09 0.24 ± 0.04 
200 2.41 ± 0.07 0.28 ± 0.03 
250 2.6 ± 0.1 0.22 ± 0.04 

TABLE 6. Initial rate measurement of pyruvate carboxylation at variable concentrations of 
MgATP, fixed-variable concentrations of acetyl-CoA, 15 mM pyruvate, and 100 mM HCO3

-. 
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FIGURE 25. (A) The initial rate of oxaloacetate formation by SaPC, in kcat (s-1), measured as a 
function of increasing pyruvate concentration. Pyruvate is measured at varying concentrations (0 
– 15 mM) in the presence of saturating MgATP (2.5 mM) at fixed-variable concentrations of 
acetyl-CoA (0 – 250 µM). (B) Lineweaver-Burk double reciprocal plot of initial rates of pyruvate 
carboxylation. Inverse rate is represented as a function of the inverse concentration of pyruvate. 
C-D: Secondary plots analyzing the slope (C) and y-intercept (D) of linear regression lines from 
the Lineweaver-Burk plot, represented as a function of the inverse concentration of acetyl-CoA. 
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[Acetyl-CoA] (µM) kcat (s-1)  Km pyruvate (mM) 
0 0.033 ± 0.002 0.9 ± 0.2 
1 0.108 ± 0.004 1.3 ± 0.2 
3 0.44 ± 0.01 1.5 ± 0.2 
5 0.52 ± 0.01 1.5 ± 0.1 
7 0.85 ± 0.04 1.9 ± 0.3 

10 1.04 ± 0.05 1.4 ± 0.2 
15 1.04 ± 0.05 0.8 ± 0.2 
20 1.57 ± 0.04 0.91 ± 0.08 
50 1.65 ± 0.07 0.51 ± 0.09 

100 1.83 ± 0.06 0.46 ± 0.08 
200 1.93 ± 0.07 0.43 ± 0.07 
250 2.38 ± 0.05 0.47 ± 0.05 

TABLE 7. Initial rate measurement of pyruvate carboxylation at variable concentrations of 
pyruvate, fixed-variable concentrations of acetyl-CoA, 2.5 mM MgATP, and 100 mM HCO3

-. 
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FIGURE 26. (A) The initial rate of oxaloacetate formation by SaPC, in kcat (s-1), measured as a 
function of increasing pyruvate concentration. Pyruvate is measured at varying concentrations (0 
– 15 mM) in the presence of saturating acetyl-CoA (250 µM) at fixed-variable concentrations of 
MgATP (0 – 2.5 mM). (B) Lineweaver-Burk double reciprocal plot of initial rates of pyruvate 
carboxylation. Inverse rate is represented as a function of the inverse concentration of pyruvate. 
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[MgATP] (mM) kcat (s-1) Km pyruvate (mM) 
0.05 0.66 ± 0.03 1.6 ± 0.2 
0.1 1.01 ± 0.04 1.6 ± 0.2 

0.25 1.17 ± 0.05 0.8 ± 0.1 
0.5 1.92 ± 0.06 1.3 ± 0.1 

0.75 2.12 ± 0.05 1.21 ± 0.09 
1 2.24 ± 0.05 0.90 ± 0.07 

1.5 2.23 ± 0.03 0.67 ± 0.04 
2 2.26 ± 0.03 0.55 ± 0.03 

2.5 2.42 ± 0.04 0.49 ± 0.04 
TABLE 8. Initial rate measurements of pyruvate carboxylation at variable concentrations of 
pyruvate, fixed-variable concentrations of MgATP, 250 µM acetyl-CoA, and 100 mM HCO3

-. 
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Thermodynamic Linkage Analysis of Acetyl-CoA and Substrates. 

In order to identify whether the energetic coupling of interactions in the BC, CT, and allosteric 

domains contributes to regulation of PC’s catalytic mechanism, we also examined the energetic 

coupling of binding and catalytic turnover between pyruvate, MgATP, and acetyl-CoA. The 

initial rates of oxaloacetate formation were measured as described previously at variable 

concentrations of pyruvate and MgATP, each with fixed-variable concentrations of acetyl-CoA 

and saturating concentrations of the third ligand, and apparent Km pyruvate and apparent Km MgATP 

were determined between the absence and saturating presence of acetyl-CoA (Fig. 27). The data 

were fit to equation (14), which relates the apparent Km of a substrate in the presence and 

absence of a bound activator. As the allosteric activator concentration was varied, the Km pyruvate 

fell from 1.6 ± 0.1 mM at 0 µM acetyl-CoA to 0.5 ± 0.1 mM at 250 µM acetyl-CoA, reflecting a 

3.2-fold increase in the affinity of the enzyme for pyruvate binding as saturation of acetyl-CoA 

was reached. The apparent Km MgATP followed a similar pattern with a 2.2-fold decrease in 

MgATP binding affinity, being the highest in the absence of acetyl-CoA (0.53 ± 0.07 mM) and 

the lowest in its saturating presence (0.24 ± 0.05 mM).  

 

From the maximum and minimum apparent Km for pyruvate and MgATP, we then determined 

the apparent free energy coupling constant (Qax), which was described in equation (14), for each 

substrate (Table 9). This term allowed us to quantitatively describe the thermodynamic 

consequences on substrate binding and turnover in the reaction mechanism of PC due to the 

concentration of the allosteric activator (29). Qax was calculated as the quotient of the apparent 

Km of each substrate in the absence of the activator and the apparent Km in the saturating 

presence of the activator. In order to determine the thermodynamic coupling of catalysis between 
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binding of ligands at spatially separate active sites, the Qax value for each ligand binding 

relationship was then substituted into equation (15) to calculate the Gibbs’ free energy value of 

coupling (Table 10). The Gibbs’ free energy of coupling between pyruvate and acetyl-CoA was 

calculated to be -0.65 ± 0.09 kcal mol-1, while the value for the relationship between MgATP and 

acetyl-CoA was about 28% lower in magnitude (-0.47 ± 0.08 kcal mol-1).  

 

Thermodynamic Linkage Analysis of Pyruvate and MgATP 

By comparing the binding and turnover of either pyruvate or MgATP to acetyl-CoA binding, we 

have been able to determine that acetyl-CoA directly affects the ability of PC to bind either 

substrate, though it more dramatically influences the binding and catalytic turnover of pyruvate 

in the CT domain. However, we also were interested to investigate whether MgATP or pyruvate 

occupancy in their respective domain active sites thermodynamically affected the binding of one 

another (Fig. 28). We have examined the relationship between MgATP binding in the BC 

domain and pyruvate binding in the CT domain, both in the presence and absence of saturating 

acetyl-CoA bound in the allosteric domain, and calculated the apparent Km, pyruvate across 

increasing concentrations of MgATP. 

 

Initial rates of oxaloacetate formation were measured as described previously, varying pyruvate 

between 0.25 – 15 mM and MgATP between 0.1 – 3 mM, at 0 µM and 250 µM acetyl-CoA. The 

apparent Km pyruvate in the presence of acetyl-CoA was the highest at low concentrations of 

MgATP (1.6 ± 0.2 mM), steadily decreasing as MgATP concentrations were raised to saturating 

(2.5 mM) to achieve a minimum apparent Km pyruvate of 0.49 ± 0.04 mM, a 3.3-fold increase in 

binding affinity. The initial rate was also measured at 3 mM MgATP, which is supersaturating, 
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and significant substrate inhibition of oxaloacetate formation, along with an increase in the Km 

pyruvate to 0.8 ± 0.2 mM, was observed as expected. Substrate inhibition at high MgATP 

concentrations is likely due to nonproductive binding in the BC domain, possibly because of 

several MgATP molecules attempting to access a single active site simultaneously.48 

Interestingly, in the absence of acetyl-CoA, the apparent Km pyruvate remained constant, at 1.7 ± 

0.3 mM, regardless of the concentration of MgATP. 

 

The thermodynamic coupling constant, Qax, was again calculated from the determined apparent 

Km pyruvate values (Table 9). At 250 µM acetyl-CoA, a Qax value of 2.5 ± 0.2 was calculated, 

while at 0 µM acetyl-CoA, the invariance of Km pyruvate across saturating and subsaturating 

concentrations of MgATP resulted in a coupling constant of 1.0 ± 0.2. Substituting the coupling 

constants again into equation (15), we were able to calculate the Gibbs’ free energy of coupling 

between pyruvate and MgATP with and without the aid of the allosteric activator (Table 10). ΔG 

in the presence of acetyl-CoA was determined to be  -0.5 ± 0.1 kcal mol-1, suggesting that either 

pyruvate or MgATP occupancy in the CT or BC domain binding pockets, respectively, elicits 

thermodynamic consequences on the binding of the other when acetyl-CoA is present to 

facilitate catalysis. However, when acetyl-CoA is not present in the allosteric domain, the Gibbs’ 

free energy of coupling is 0 kcal mol-1, which indicates a complete absence of thermodynamic-

linkage between the BC and CT domain active sites on the same monomer.  
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FIGURE 27. Apparent Km pyruvate (") and Km MgATP (!) plotted as a function of increasing 
concentrations of acetyl-CoA.  
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FIGURE 28. Apparent Km pyruvate as a function of increasing concentrations of MgATP. The 
thermodynamic relationship between pyruvate and MgATP is shown both in the presence of 250 
µM (!) and 0 µM (") acetyl-CoA. The increase in Kapp pyruvate in the presence of acetyl-CoA is 
due to substrate inhibition that occurs above saturating concentrations of MgATP (> 2.5 mM). 
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 Kia
o (mM) Kia

∞ (mM) Qax 
Pyruvate vs. Acetyl-CoA 1.5 ± 0.1 0.5 ± 0.1  3 ± 0.1 
MgATP vs. Acetyl-CoA  0.53 ± 0.07  0.24 ± 0.05 2.208 ± 0.06  

Pyruvate vs. MgATP, 250 µM 
Acetyl-CoA 1.5 ± 0.3 0.6 ± 0.1 2.5 ± 0.2 

Pyruvate vs. MgATP, 0 µM 
Acetyl-CoA  1.7 ± 0.3 1.7 ± 0.2 1.0 ± 0.2 

TABLE 9. Determination of the free energy coupling constant, Qax, from initial rates of 
oxaloacetate formation measured with each combination variable-concentration ligands. Kiaº 
represents the apparent Km of the first listed ligand (of each pair) in the absence of the second 
listed ligand, while Kia

∞ represents the apparent Km of the first ligand in the saturating presence 
of the second ligand. Qax is the quotient of these two values. 
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  Qax ΔG (kcal mol-1) 
Pyruvate vs. Acetyl-CoA  3 ± 0.1 -0.65 ± 0.09 
MgATP vs. Acetyl-CoA 2.21 ± 0.06   -0.47 ± 0.08 

Pyruvate vs. MgATP, 250 µM 
Acetyl-CoA 2.5 ± 0.2  -0.5 ± 0.1 

Pyruvate vs. MgATP, 0 µM 
Acetyl-CoA 1.0 ± 0.2  0.0 ± 0.0 

TABLE 10. Gibbs’ free energy of coupling determined from initial rates of oxaloacetate 
concentration across varying concentrations of substrates, pyruvate and MgATP, and the 
allosteric activator, acetyl-CoA. Qax values determined for each ligand pair examined were 
substituted into equation (15), at 298 K and with an ideal gas constant (R) of 1.985×10-3 kcal K-1 
mol-1, to calculate the thermodynamic binding and turnover relationship between the binding 
sites of each ligand. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 91 

Pyruvate Carboxylation as a Function of Solution Viscosity. 

The initial rate (s-1) of pyruvate carboxylation was determined for wild-type SaPC in solutions of 

increasing viscosity using either glycerol (0 – 60% v/v), sucrose (0 – 60% w/v), or Ficoll PM 

400, which is a 400 kDa polymer of sucrose and epichlorohydrin  (0 – 40% w/v) (Fig. 29). In all 

three cases, the initial velocity in the presence of saturating substrates increased at low viscosity, 

peaking at 25% glycerol (1.095 µmol min-1 mg-1), 10% sucrose (1.026 µmol min-1 mg-1), and 5% 

Ficoll PM 400 (0.908 µmol min-1 mg-1); after these points, the rate of catalysis decreased linearly 

with respect to increasing percentage of viscosigen in solution. Glycerol had the greatest 

suppressive effect on the rate of pyruvate carboxylation, with the slope of the rate decrease 

following 25% glycerol being -0.031 ± 0.002 µmol min-1 mg-1 (percent glycerol)-1; sucrose had 

the least effect on the rate, with a rate of decrease of -0.0168 ± 0.0006, and Ficoll had an 

intermediate effect (-0.021 ± 0.002). 

 

Calculated viscosities of glycerol, sucrose, and Ficoll solutions at 25ºC, at which our rate 

measurements were recorded, have been published in the literature, and offer some insight into 

the rate at which each solution depresses the specific activity of PC (Fig. 29; Table 11). Glycerol 

is the smallest (92.1 g/mol) and least viscous of the three viscosigen molecules, reaching only 8.8 

cP at 60% w/v, the maximum concentration used in this study. Sucrose is considerably larger 

(342.3 g/mol) and creates a significantly more viscous solution than glycerol at the same percent 

(w/v) concentration. Ficoll 400, as its name suggests, has a molecular weight of 400 kDa, and 

while it is relatively similar in size to sucrose, it maintains a highly branched, mesh-like structure 

in solution which yields a dramatically higher viscosity than sucrose does at the same percent 
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concentration. Ficoll could only be measured to 40% (w/v), due to the solution becoming so 

viscous beyond that point that the resulting initial rates were indistinguishable. 

 

In the case of all three viscosigens, an initial increase in the rate of pyruvate carboxylation was 

observed as lower percent concentrations (less than 25% w/v) were introduced into the reaction 

buffer, and was eventually followed by a linear decrease in the rate as the percent of each 

viscosigen in solution was further elevated. There are several possible explanations that could 

account for this initial rise in the rate of oxaloacetate formation. One of the most likely is that, 

given the flexibility and general disorder of the BCCP domain inherent to the functionality of a 

swinging arm domain, introducing a low concentration of a viscosigen could minimize 

“wobbling” of the domain as it translocates back and forth within a face of the tetramer without 

causing a significant enough frictional force to hinder the rate of arm translocation. If this were 

the case, the low percentage of viscosigen in solution would be prohibiting the BCCP domain 

from deviating away from its optimal binding positions in either the BC or CT domains, thus 

enhancing the rate of catalysis. Another possibility relates to the concentration-dependent nature 

of PC tetramerization: since PC dissociation into monomers tends to occur at concentrations 

below 2 mg/mL, it is imperative that the enzyme be maintained in a high enough concentration 

for catalysis to occur reliably. By introducing additional molecules into the reaction buffer, it is 

possible that the enhanced specific activity at low percentages of glycerol, sucrose, and Ficoll 

400 is due to a greater proportion of the monomers in solution being pushed together, thus 

promoting greater tetramerization in the slightly more viscous solution than in a buffer 

equivalent to water in terms of viscosity. 
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Viscosity (cP) % 
Viscosigen Glycerol Sucrose Ficoll 400 

0 0.893 0.893 0.893 
5 1.010 — — 

10 1.153 1.130 3.900 
15 1.331 — 7.500 
20 1.542 1.695 14.200 
25 1.810 2.118 26.800 
30 2.157 2.735 — 
35 2.600 3.670 — 
40 3.181 5.164 — 
50 5.041 12.40 — 
60  8.823  44.03 — 

TABLE 11. Solution viscosity at 25ºC containing increasing percentages (by volume) of 
glycerol (38), sucrose (39, 40), or Ficoll 400 (41). Units are Centipoises, which are equivalent to 
mPa•s. 
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FIGURE 29. (A) kcat of the full-forward pyruvate carboxylation reaction of SaPC wild-type in 
the presence of increasing percentages of glycerol (!), sucrose ("), or Ficoll 400 (!) dissolved 
in solution. (B) Viscosity, in cP, of glycerol (!), sucrose ("), and Ficoll 400 (!) solutions from 
the literature. Values are shown in Table 11. (C) Specific activity (µmol min-1 mg-1) of pyruvate 
carboxylation as a function of the viscosity of solutions containing glycerol (!), sucrose ("), or 
Ficoll 400 (!). 
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DISCUSSION 

 

Acetyl-CoA has already been shown to play an integral role in allosteric regulation of the kinetic 

mechanism of PC, positively influencing formation and maintenance of the catalytically active, 

tetrameric structure while also enhancing the rate of both half-reactions in the catalytic cycle. 

Our results, presented here, show that the presence of acetyl-CoA in the allosteric domain 

increases PC’s affinity for both pyruvate and MgATP, though it thermodynamically affects the 

affinity for pyruvate to a greater extent than for MgATP. This is evident through determination 

of the Gibbs’ free energies of coupling between pyruvate and acetyl-CoA, as well as between 

MgATP and acetyl-CoA. This was surprising, given the essential role of acetyl-CoA in allosteric 

activation of oxaloacetate formation and its role in stabilizing PC as a tetramer, and we had 

anticipated that its presence would enhance the reduction in activation energy for catalysis. 

These data suggest that, while acetyl-CoA does promote formation of oxaloacetate through 

allosteric activation of the enzyme and contribution of structural stability to the PC tetramer, its 

presence does not play a role in chemically altering the BC or CT domain active sites, thereby 

not further enhancing the thermodynamic favorability of the catalyzed production of 

oxaloacetate inherent to PC. 

 

We did not anticipate that the presence of acetyl-CoA bound in the allosteric domain would have 

a more dramatic effect on pyruvate carboxylation than on MgATP-cleavage, because it has been 

demonstrated previously that acetyl-CoA binding asserts a greater stimulatory kinetic effect on 

reactions occurring in the BC domain than on those occurring in the CT domain (4, 35). 

Additionally, from a structural perspective, it would have seemed more plausible to assume that 
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acetyl-CoA would have a greater thermodynamic influence on MgATP-cleavage than on 

pyruvate carboxylation because of the location of its binding site: in crystal structures of PC, the 

effector is housed in a binding pocket formed largely between the allosteric domain and 

interactions with the BC domain, while minimal contact with the CT domain is made 

comparatively. These results suggest that CT domain occupancy by pyruvate has a greater 

influence on the thermodynamic forces underlying allosteric regulation by acetyl-CoA than does 

the MgATP-cleavage event occurring in the BC domain. When taken with the previous finding 

that pyruvate binding in the CT domain is essential in order to prompt BCCP—biotin release 

from the BC domain, it is possible to envision that the enthalpy and/or entropy associated with 

acetyl-CoA binding is propagated throughout the conformational ensemble to promote pyruvate 

binding in the CT domain as the thermodynamically favorable driving force behind the catalytic 

mechanism of PC. 

 

Our data also show that acetyl-CoA, as the essential allosteric activator for PC, is responsible for 

mediating the thermodynamic-linkage between MgATP and pyruvate binding events in their 

spatially distinct active sites. The ability of either MgATP or pyruvate to increase affinity of PC 

for the other is observed in the presence of acetyl-CoA, while this relationship is entirely lost in 

its absence. Acetyl-CoA binding may possibly facilitate the correct position of the tethered biotin 

cofactor in the BC domain binding pocket such that it can interact with Arg353 (in RePC 

sequence numbering), the BC domain residue responsible for biotin enolization, as well as 

position Arg353 such that it is capable of forming a salt bridge in order to obstruct the binding 

pocket, prevent reentry of carboxybiotin, and reduce the incidence of abortive decarboxylation. 

These results carry important implications for the nature of communication during catalysis 
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between the active sites within a single polypeptide chain, within a single face, and throughout 

the enzyme tetramer, in that the binding pockets of the enzyme’s spatially distinct active sites, 

even in the presence of the preferred substrates, are incapable of communicating with one 

another to facilitate catalysis in the absence of the allosteric activator. This also supports the 

current view that acetyl-CoA binding somehow activates the enzyme through induction of a 

series of subtle conformational shifts in the overall tetrameric architecture, and could promote 

conformations within either or both of the BC and CT domain binding pockets to render binding 

and turnover thermodynamically favorable. 

 

By studying the behavior of PC in elevated-viscosity reaction buffer, we have been able to gain 

valuable insight not only into the nature of the BCCP translocation step of the catalytic cycle as 

partially rate-limiting, but into the physiological milieu in which PC occurs naturally. 

Intracellular environments are highly crowded by dissolved substrates, macromolecules, 

cytoskeletal components, and organelle structures, rendering the cytosolic fluid much more 

viscous than pure water (42). Several research groups have analyzed the viscosity of cytosol 

through use of rotational mobility measurements (43), NMR relaxation times (44), and parallel-

acquisition Fourier transform microfluorimetry in conjunction with small-molecule fluorophores 

(45), and all yielded average measurements between 1.0 – 3.0 cP, depending on the cell type and 

relative location in the cytosol from which measurements were taken (i.e., near the plasma 

membrane versus nearer to the cell’s center). In this study, initial rates of pyruvate carboxylation 

peaked at approximately 25% glycerol, 10% sucrose, and 5% Ficoll, which yield solution 

viscosities of 1.81, 1.13, and ~2 cP, respectively. The fact that the maximal specific activities of 

pyruvate carboxylation for all three viscosigens occurred within the estimated viscosity range of 
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the cytosol of intact cells suggests that the relative crowding of PC monomers together due to the 

presence of countless other proteins, solutes, and macromolecules in the cytosol serves to 

promote localized “pockets” of concentrated PC that promotes tetramerization and stabilizes the 

structure to enhance its catalytic activity. 
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CONCLUSIONS 

 

Through generation of functional hybrid tetramers using mutant forms of PC, we have begun to 

address the method by which spatially separate domains within the tetramer sense pyruvate 

occupancy in the CT domain. The hybrid tetramer’s low apparent Ka pyruvate relative to the T882S 

homotetramer and its loss of domain coupling, relative to the complete domain coupling 

observed in both the wild-type and the T882S homotetramer, indicate a signaling mechanism that 

is intermolecular in nature, whereby pyruvate binding to one CT domain within a face of the PC 

tetramer signals BCCP domain translocation on the opposing polypeptide chain. The fact that 

this mechanism of intersubunit signaling appears to be intermolecular in nature is suggestive that 

communication between spatially distinct active active sites is more complex than we had 

initially anticipated, and that there are likely significant thermodynamic, structural, and kinetic 

components to the exact nature of this mechanism. The fact that the binding pockets of the 

enzyme’s active sites, even in the presence of their preferred substrates, are incapable of 

communicating with one another to facilitate catalysis in the absence of the allosteric activator 

strongly supports the assumption that coordination of catalysis in PC is substantially driven by 

thermodynamic linkages between the substrates, and between each substrate and acetyl-CoA. 

Our results also support the possibility of acetyl-CoA binding structurally driving the 

coordination of intersubunit communication through of a series of small conformational shifts in 

the overall tetrameric architecture. 

 

From here, our lab will aim to examine these substrate-activator relationships further, with the 

goal of gaining greater understanding of the exact nature of acetyl-CoA’s role in facilitating the 
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thermodynamic-linkage observed between pyruvate and MgATP. We aim to determine exactly 

which CT and BC domains within the tetramer are communicating within a given catalytic cycle 

through a method of directed rehybridization of monomers, which utilizes irreversible cysteine 

residue crosslinkers bismaleimidoethane (BMOE) and bismaleimidohexane (BMH) to link dilute 

monomers at their allosteric domains. Residues Asp1043 and Gly1069 have been chosen based 

on their locations at the surface of the enzyme, mutated to cysteines via site-directed 

mutagenesis, and confirmed through sequence verification. From there, we will be able to 

perform steady-state kinetic analysis of different combinations of the rehybridized tetramers and 

compare their rates of pyruvate carboxylation and pyruvate-stimulated Pi release. Additionally, 

these experiments will allow us to determine whether PC’s mechanism involves obligatory 

oscillating catalysis, which would provide kinetic evidence to support the symmetric and 

asymmetric PC structures elucidated by other lab groups (12, 14, 24). 
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