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CHAPTER 1 INTRODUCTION 

“How long will it take for you to complete this project?” is a question dreaded by many software 

developers.  The Cone of Uncertainty as referenced in Figure 1, described by Steve McConnel 

illustrates the unlikelihood of answering this question accurately at a project’s inception.  This is 

due to the variability of multiple factors. 

Since the question is unavoidable, how do you accurately respond without inflating the 

estimate to an unacceptable time?  Conversely, how do you respond without under estimating the 

project time and possibly missing the deadline?   Even for the experienced, software project 

effort estimation remains an art that is difficult to master. Out of all cancelled software projects, 

approximately 40% were due to failures in effort estimation (Rubens 2014).  Excluding the 

improvements reported in the Chaos Reports by the Standish Group, software estimation 

accuracy has not changed much since the 1990s (Jorgensen and Moløkken-Østvold 2006).   

Figure 1 Cone of Uncertainty



From the software developer’s point of view, estimation methods have not changed much 

either. In Boehm’s classification system, these methods were summarized into three categories: 

expert judgement, algorithmic estimation, and analogy based estimation (Li, Xie and Goh 2007).  

In spite of extensive research on formal estimation models, the dominating estimation methods 

are expert judgements derivatives (Jorgensen 2004).   

Conversely, there have been extensive technological advances since the 1990s in the way 

software applications are developed (Skwirzynski, Springer and Verlag 1986).  Low-code 

development is one innovation that has risen in popularity due to its faster delivery time 

(Skwirzynski 1986).  This project researched existing effort estimation concepts and determined 

their suitability for application to a low-code developed project.  The major contribution from 

this study is to highlight the deficiency of some existing methodologies and demonstrate the 

potential of other methodologies for estimating effort for low-code development projects.  

1.1 Background of the Study 

Clay Richardson, an analyst at Forrester Research, defines a low-code platform as one that 

enables fast application development and delivery “with a minimum of hand-coding and minimal 

upfront investment in setup, training, and deployment” (Rubens 2014).  As referenced in Figure 

2, there are four major practice changes accompanying low-code platforms.  Usually, low-code 

development solutions focus on testing and learning instead of standardized development 

methods such as waterfall.  They place funding emphasis on research instead of development and 

utilize minimal architecture practices.  Furthermore, success is measured by customer outcomes.  

By focusing on these practices, low-code platforms expedite application delivery by providing 

visual tools for the quick definition and assembly of forms.   
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In addition, they allow the rapid creation of multi-stage workflows (Rubens 2014).  

Michelle Tackabery noted in her blog “Low-Code” Development Explained (2014), the 

standardized tools used in low-code platforms allow developers to streamline the creation of 

forms and user experiences but also accommodate a single point of control for maintenance and 

updates. 

Although low-code solutions are traditionally seen as a method for allowing non-

technical business users with little or no programming skills to create process applications 

(Forbes 2016), an increasing number of organizations are adopting a bimodal application 

development approach.  Full-time developers, who might otherwise code in Java, .NET or C#, 

are utilizing the tools offered in low-code development to create applications (Tackabery 

2014)(Rubens 2014). As reported in The  Forrester Wave™: Low-Code Development Platforms, 

Q2 2016, low-code platforms are still in their infancy stage but are growing rapidly.   

Figure 2 Four Major Practice Changes Accompanying Low-Code Platforms
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The three dominant drivers for shaping the future of low-code platforms are:  the drive to expand 

and diversify the development talent pool by utilizing developers with nontraditional 

backgrounds, a desire to expand the low-code segment by offering support to the general purpose 

segment and an increase in funding that validates the marker for low-code platforms (Forrester 

Research, 2016). 

It is important to consider what a low-code platform is when talking about software 

estimation.  For the scope of this research, low-development is defined based on the criteria used 

by Forrester Research in The  Forrester Wave™: Low-Code Development Platforms For AD&D 

Professionals Q1 2019.  The platform:  offers declarative tools to define data, logic, flows, forms 

and other application artifacts without writing code; adoption for a very low cost without 

requiring formal paid training courses to build applications; supports a range of use cases 

including web, mobile, transactional database, event-processing, business reporting, process 

automation and analytical applications; primarily targets large enterprises. 

 When given the task for estimation, three major factors are considered:  size, effort and 

schedule. Size is normally calculated first because most effort or schedule equations require a 

size parameter.  The size parameter is normally in either LOC (Lines of Code) or function points 

(Umair 2013).  Since one characteristic of a low-code platform is the visual nature of the 

development process (either point-and-click or drag-and-drop tools (Rubens 2014)), the code 

behind the application is often inaccessible.  This limits the use of some traditional estimation 

methods which rely on lines of code. 
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1.2 Statement of the Problem 

Accurate software project size is one of the most desired goals of a successful software project 

manager.  Accurate size estimates assist the project manager with realistic estimates on the 

amount of time and resources needed to complete a project.  In addition, it allows the project 

manager to convey more accurate financial predictions to allow the stakeholder to make wise 

investments.  Although there are many methodologies available to help predict software size, 

lines of code remain the basis for the estimations.  As low-code development platforms increase 

in usage, the dearth of project estimation methodologies will have a direct impact on project 

success.  The focus of this research is the evaluation of existing methodologies to determine 

suitability for low-code project size estimation. 

1.3 Purpose of the Study 

1. To investigate the historical use of some existing software project size estimation

methodologies

2. To theoretically apply the methodologies to low-development platform project

3. To suggest a methodology to use for low-development projects (if one is found)

1.4 Definition of Terms 

The following terms are defined for clarification purposes: 

1. Function Point - The function point analysis determines the size of software development

project based on the size of the problem.  The basis of function point analysis is to count     

function points that can be classified into five broad categories:  External Input, External 

Output, Internal 5 



2. Logical Files, External Interface Files, and External Inquiry.

3. Lines of Code - The line of code is the oldest and one of the widely used techniques to

derive project estimates.  The size is calculated by estimating the total lines of code

(program length).  There is no widely accepted standard that specifies whether to include

the program comments when counting the lines of code.

4. Project Effort Estimation - An estimated in person days or person months that indicates

the total time that will be taken to complete the project.

1.5 Assumptions 

The low-development project estimation topic was selected because of the lack of information 

available when completing projects in this area.  Numerous searches were completed in 

academic literature related to low-development projects and were unsuccessful in locating 

plentiful information on this topic.  Additional searches were performed in the current body of 

knowledge for project estimation techniques for low-development platforms and were 

unsuccessful in locating anything related to the topic.  The possibility exists that proprietary 

models may be available for use within corporations; however, the information has not been 

published to the public.  Further internet searches were performed to include broader terms and 

still no information was found that specifically addressed the thesis topic. 

The following assumptions were made during this research: 

1. There is not a methodology currently in existence specifically for low-development

platforms.

2. It was assumed that current methodologies can be reasonably applied to a low-

 development platform project. 
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1.6  Limitations and Delimitations 

This research has the following limitations: 

1. It is theoretical in nature and the methodologies were not applied to an actual project

created by a low-development platform.

2. There are various types of low-development platforms.  Some are more robust than others.

Low-development as used within this research is a generic term as defined in ‘The

Background of the Study’.  It cannot be generalized to all low-code development

platforms.

This research has the following delimitations: 

1. The result of the research is the suitability of current methodologies to effort estimation

of low-development platforms.  Application was limited to a hypothetical project.

Specific real-world testing was outside the scope of this research.

2. The research is based on the general use of the methodologies.  It was not applied to all

the various extensions and modifications available for the methods.

1.7 Thesis Contribution 

The quest for a software project size estimation model for low-development platforms in the 

current body of knowledge did not yield any results.  This research will: 

• Stimulate research in the low-development platform project size estimation

• Demonstrate the disparity of current estimation models applicability to low-code

development

• Suggest a possible future method for low-code effort estimation

7 



CHAPTER 2 RELATED WORK 

Source line of code, function points, use-case points and object points are measurement 

standards used to estimate software size.  As notated in Figure 3 below, the measurement 

standards are over twenty five years old; however, they continue to be the basis of effort 

estimation methodologies.  

Figure 3 Historical Metrics Creation Dates and Creator 

This first part of this chapter discusses the historical metrics which are key to understanding the 

current effort estimation process that are discussed in the latter part of the chapter. 
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2.1 Size Oriented Metrics 

 Source Lines of Code (SLOC) is the software metric used to measure the size of software program 

by counting the number of lines in the text of the program’s source code.  This metric does not 

count blank lines, comment lines, and libraries. SLOC measurements are programming language 

dependent.  They cannot easily accommodate nonprocedural languages (Jodpimai, Sophatsathit 

and Lursin 2009). 

Boehm’s Deliverable Source Instruction (DSI) is another size-oriented metric.  It is closely 

related to source lines of code.  The main difference between DSI and SLOC is the "if-then-else" 

statement.  The statement is counted as one line in source lines of code but might be counted as 

several lines in deliverable source instructions (Jodpimai 2009). 

2.2 Function Oriented Metrics 

 Function Point (FP) defined by Allan Albrecht at IBM in 1979, is a unit of measurement to express 

the amount software functionality.  Function point analysis (FPA) is the method of measuring the 

size of software.  The advantage is that it can avoid source code error when selecting different 

programming languages.  Function point is programming language independent which makes it 

ideal for applications using conventional and nonprocedural languages.  It is based on data that is 

more likely to be known early in the project (Ingold 2013),(Jodpimai 2009). 

2.3 Object Point Oriented Metrics 

 In 1994 Kaffman Banker introduced the concept of object oriented points which measure 

the software size from a different dimension.  This measurement is based on the number and 

complexity of the following objects:  screens, reports and 3GL components.  It is easy to use at 
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the early phase of the development cycle.  Also object points are a measurement of size.  Object 

points have been used in COCOMO II for cost estimation (Bogdan 2003). 

2.4 Use-Case Oriented Metrics  

Use case points were first described by Gustav Karner in 1993.  The number of use case points in 

a project is a function of the following:  the number and complexity of the use cases in the system, 

the number and complexity of the actors on the system, various non-functional requirements (such 

as portability, performance, maintainability) that are not written as use cases, and the environment 

in which the project will be developed (Ochodek 2011). 

2.5 Effort Estimation Methods 

According to Pichai, Peraphon, and Chidchanok (2009), software researchers have provided 

effort estimation for decades with most of them focusing on formal software estimation models, 

such as SLIM, COCOMO 81, COCOMO II, Kemerer and Albrecht-Gaffney.  The metrics listed 

above are utilized in the following methods for effort estimation. 

2.5.1  COnstructive COst MOdel (COCOMO) 

Constructive Cost Model was first published in 1981 by Dr. Barry Boehm(COCOMO 81).  Boehm 

proposed three models of the COCOMO model:  basic, intermediate and advanced where software 

development effort is expressed as a function of program size in estimated thousand delivered 

source instructions (KDSI).  Drawbacks of COCOMO are the difficulty to estimate KDSI early in 

a project when most effort estimates are required, misclassification of the development mode and 
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the need to tune the model to the organization using historical data which may not be available 

(McConnell 2006)(Umair 2013). 

2.5.2  COnstructive COst MOdel II(COCOMO II) 

Constructive Cost Model II was published as a joint effort between the University of California 

Center for Software Engineering and the COCOMO II Project Affiliate Organizations in 1997.  

The contributors reengineered COCOMO focusing on issues such as non-sequential and rapid-

development process models, reuse driven approaches, software process maturity affects and 

process driven quality estimation.  COCOMO II differs from COCOMO in its use of thousand 

source line of code (KSLOC) which is logical code, usage of 161 data points instead of 63, and 

the use of the five scale factor as opposed to the three development modes.  COCOMO II also 

adjusts for software reuse and reengineering where automated tools are used for translation of 

existing software (McConnell 2006). 

2.5.3  COnstructive Rapid Application Development MOdel(CORADMO) 

This approach is an extension of COCOMO II and was first introduced in 2000 by Ingol et al in 

response to accelerating development schedules.  Unfortunately, at that time there was not enough 

data to sufficiently calibrate the model (Ingold, Boehm, and Koolmanojwong 2013); however, 

after additional research in expediting systems via lean and agile methods, a revised CORADMO 

was introduced in 2013 (Ingold).  The study identified a set of key factors (Ford and Morris 2012) 

that, in combination with factors derived in the earlier CORADMO research (Ingold 2013), could 
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be used to model rapid application development projects’ schedule acceleration.  These factors fall 

in the categories of product, process, project, people, and risk.   

2.5.4  The Web Objects Method 

The Web Objects method was proposed by Reifer to measure the size of Web applications (2000). 

This sizing metric is an adaptation of the COCOMO II model and is used to more accurately 

estimate web-based software development effort and duration. Reifer added four new web-related 

components:  multimedia files, web building blocks, scripts, and links, to the five predictors of the 

FPA method. (Reifer 2000).   

The metric computes size using Halstead’s equation for volume (Halstead 1977).  A table 

of predictors is used to identify uncounted web objects.  Similar to FPA, the further step is to 

determine the complexity of the identified instances of the nine components.   Reifer claims that 

computing size in this way offers advantages such as a mathematically sound foundation, easily 

extendable to include new predictors and the approach addresses the unique characteristics of web-

based development.  He acknowledges the disadvantages that software science as a basis is 

controversial, planning and data collection costs rise as you add additional predictors, and web 

objects counts are sensitive to counting conventions (Reifer 2000). 

2.5.5  Work Break-Down Structure 

According to Jorgensen, work break-down is the most commonly used effort estimation method 

(Jorgensen 2004).  To use this method, you decompose the project into small parts of work tasks. 

Then, you estimate the effort for every task.  Work break-down is an expert judgement method 

and it comes with two flavors: Three Point System and Delphic Oracle.  Using the Three Point 
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method an expert gives 3 estimations for every task:  Best Case, Most Probable, Worst Case. The 

effort for every task is the outcome of a weighted average of the three estimations where the most 

probable effort gets a higher weight. 

In Delphic Oracle, three ‘experts’ estimate the tasks independently.  The final task effort is 

the average of the three(McConnell 2006)(Spyrosktenas 2013). 

2.5.6  Analogy / Comparison  

It is a Formal Estimation Method where projects with similar characteristics are located.  The 

project most similar to the one you are trying to estimate is chosen as the base for your new 

estimate.   

Comparison based estimation involves considering the attributes of the project to be 

estimated, selecting projects with similar attributes and then using the median values for effort, 

duration, and other factors from the selected group of projects to produce an estimate of project 

effort(McConnell 2006),(Spyrosktenas 2013). 

2.5.7  Bayesian Approach 

This method consists of merging expert-opinion (Delphi) and project data, based on the variance 

of the two sources of information.  Effectively, a weighted average is produced which gives 

higher weights to parameter values with smaller variances (McConnell 2006). 

12 13 



CHAPTER 3  ESTIMATING EFFORT FOR A LOW-CODE APPLICATION 

In the following section, an attempt is made to apply the selected effort estimation methods 

discussed in Section 2.5.  Due to the lack of available ‘real world’ project data, a hypothetical 

project was created for the purpose of applying the effort estimation methods. 

3.1 Hypothetical Project Software Requirements  

The purpose of the employee travel authorization management system is to allow employees to 

easily submit travel plans and expenses for pre-authorization.  The requests are sent to the 

manager and if approved are relayed to the finance department for allocation of funds.  The 

system will have a database backend to support storing the processed requests for financial 

auditing purposes.  The user experience should allow for employees, managers and finance to 

easily see the status of requests.   A low-development platform should be used to create the 

employee travel authorization management system. 

3.1.1 Product Details   

The travel request includes the employee, manager, reason for travel, travel dates, travel 

destination, mode of travel, estimated costs for the selected mode of travel, lodging cost, taxes 

and miscellaneous expenses. 

3.1.2  User Class and Characteristics 

The employee should be able to do the following functions: 

• Submit travel authorization requests

 



• Attach supporting documentation

• View the status of pending requests

• View their completed requests

The manager should be able to do the following functions: 

• View all their employee pending requests

• View their employee completed requests

• Approve or reject employee requests

The finance department should be able to do the following functions: 

• View requests pending financial processing

• View completed requests

• Update approved requests with financial information

3.1.3  Operating Environment 

The operating environment for the employee travel authorization management system is: 

• Accessible from Intranet only

• Low-code development platform

• Client/server system

• SQL Database

15 



3.2  COnstructive COst MOdel (COCOMO) Implementation 

To implement the COCOMO estimation model to a low-code development project, an estimate of 

effort must be obtained.  In small projects, effort is a linear function of the project size and is 

calculated:  Effort = a * Size + b.  In larger projects, the size is scaled exponentially and is 

calculated as Effort = a * SIZE b.   The parameters, a and b, are determined by the version of 

COCOMO (basic or intermediate) and the type of project being developed (organic, semi-

detached, or embedded) (Ingold 2013). 

When using the online COCOMO calculator located at sunset.usc.edu/research to estimate 

effort for the fictional  project, the missing required component is the ‘lines of code’ as seen in 

Figure 4.  The source code for low-code development is inaccessible; therefore, the accurate 

amount for lines of codes is inaccessible.  If the source code was available, the contained 

information could be misleading.  It may take a few minutes to drag and drop a template onto a 

canvas which may equate to hundreds of lines of code.  To effectively use the traditional 

COCOMO model, a gearing factory is needed to obtain the lines of code. 
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Figure 4  COCOMO Implementation

17 17 



3.3  COnstructive COst MOdel II(COCOMO II) Implementation 

In COCOMO II effort (in person months) is based on the software project’s size measured in 

thousands of lines of code where Effort =  a*EAF*KSLOCb ( ‘a’ is 2.94 and the scaling factor ‘b’

is about 1.0997).  The coefficient ‘a’, also known as the effort adjustment factor, is derived from 

seventeen cost drivers and the scaling factor comes from five scale drivers (McConnell 2006).  

Like the original COCOMO, COCOMO II uses lines of code as its basis for effort calculation 

which poses a conundrum in low-code developed applications because this parameter is not 

available.  However, many automated COCOMO II tools give an option of using the function point 

sizing method.  Using function point sizing, it is possible to continue with the COCOMO II 

estimate for low code. 

The next step is the calculation of unadjusted functions points.  This requires the count and 

complexity of external inputs, external outputs, external queries, internal log files, and external log 

files.  Based on the hypothetical project description, it was feasible to ascertain this information 

low-code development project.  The detailed calculation for unadjusted function point is found in 

Figure 5 below.  The unadjusted function points total for the fictional project is 109. 
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Next, the unadjusted function points must be converted into lines of code based on the 

programming language.  According to Forrester’s Clay Richardson, the low-code development 

platform originates from fourth generation programming languages.  The online version of 

COCOMO II at the University of  Southern California’s Center for Software Engineering site 

(https://csse.usc.edu/tools/COCOMOII.php) does not compute for languages above 3rd 

generation.  As seen in Figure 6 below, COCOMO II.2000.4 desktop version accounts for fourth 

generation languages.  The total unadjusted functions points were converted to an equivalent 

total of 2180 in sources lines of code. 

Figure 5: Unadjusted Function Points Calculation
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Finally, I was able to use the 2108 SLOC as the module size within COCOMO II to 

successfully calculate effort the hypothetical project.  Figure 7 depicts the results: 

Optimistic estimation  = 4.6 person-months 

Most Likely estimation =  6.9 person-months 

Pessimistic estimation = 10.4 person-months. 

Figure 7:  COCOMO II Implementation Results
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3.4  COnstructive Rapid Application Development MOdel(CORADMO) Implementation 

The Constructive Rapid Application Develop Model’s was developed in response to the difficulty 

of effort estimation for agile development methodologies (Ingold 2013).  The model is based on 

COCOMO II but concentrates on the effects of Life Cycle Objectives, Life Cycle Architecture, 

and Initial Operational Capability in a development life cycle (Ingold 2013).  According to the 

Center for Systems and Software Engineering website of the University of California, CORADMO 

is based on four stages with overlapping workflows as seen in Figure 8.  CORADMO is best suited 

for:  Development Process Re-engineering (DPRS), Rapid Prototyping (RPRO), Collaboration 

efficiency (CLAB), Architecture and risk resolution (RESL), Pre-Positioning of assets (PPOS), 

RAD Capability of Personnel (RCAP).     

Figure 8:  CORADMO Stages (CSEE, 2009)



The first step to implement CORADMO for the hypothetical project is to apply the front 

end staged schedule and effort model seen in Figure 9 below.  Though similar to the COCOMO 

II, the schedule estimation uses more complex calculations for situations where effort is below 

64 person-months (Winsor 1998).  The initial estimate is 7.9 person-months. 

The second part of implementation is to apply the RAD extensions.  The five RAD 

drivers are input into the RAD extension:  Reuse and VHLLs (RVLH), Development Process 

Reengineering and Streamlining (DPRS), Collaboration Efficiency (CLAB), Architecture/Risk 

Resolution (RESL), Prepositioning Assets (PPOS).  The result is a new schedule multiplier.  The 

final effort estimation is 7.7 person-months as seen in Figure 10. 
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Figure 9: CORADMO  Implementation Part 1
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Figure10: CORADMO  Implementation Part 2

3.5  The Web Objects Method Implementation 

Reifer recognized the need for an estimation technique for ‘estimating quick-to-market software 

(Reifer, 2000).   He proposed an estimation method based on web objects using an ad hoc or 

work breakdown structure.  To apply the Web Objects Method as stated in Reifer’s original 

concept, function points must be computed and then the web components identified and 

calculated.  This method’s applicability is an improvement for low-code development because it 

does not require a programming language specification nor lines of code conversion. 

On the other hand, to overcome what Reifer described as the ‘challenges for the 

estimation process with web development’, to implement the web objects method you must 

identify multimedia files, web building blocks, scripts and links.  This is generally a non-issue 

when the low-code development platform is being used to create a web-based product (although 
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in some instances, the fine grained building blocks may be running behind the scenes without the 

knowledge of the low-code user).  Nonetheless, if the application being developed is not web 

based, the web objects method simply becomes function point analysis. 

The first step to implement the web objects method is performing function point analysis.  

As stated before, this should be a feasible task; however, external interface files and internal 

logical files may not be easily calculated.  Next the Total Degree of Influence (TDI) is calculated 

using the formula, TDI = ∑14 Degrees of Influence.  Reference Figure 11 below for the detailed 

calculation for the general system characteristics.  TDI for the fictional project is 24.  Next the 

value adjustment function point is calculated using formula, VAF = (TDI × 0.01) + 0.65.  VAF 

for the fictional project is 0.89.  Finally, a calculation for adjusted functions is determined using 

formula, Adjusted FP Count = Unadjusted FP Count × VAF.  The result is an adjusted 

function point count of calculation 97.  
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Figure 11: General System Characteristics used in TDI Calculations



The next step is to calculate the number of web-related components that were not 

included in the function point analysis (Di Martino, 2011).  Reifer proposed using Halstead’s 

Equation for Volume, V = N log2 (n) =  (N1 + N2) log2(n1 + n2), with the operators and operands 

being calculated using the Web-Based Size Predictors information found in Figure 12.  For a 

low-code developed application that is not web based, this step could possibly be ignored.   

Web-Based Size Predictors 
Web Object Predictors Example Operands Example Operators 

# of building blocks Widgets, fined-grained 

components (Active X, 

DCOM, OLE, etc) 

Create, apply, call, dispatch, 

interface, terminate, etc 

# of COTS components COTS programs, library 

routines, web objects (carts), 

etc. 

Transform, access, bind, 

generate, interface, etc. 

# of multi-media files Text, video, audio, etc. 

 (not graphic files) 

Create, cut, paste, clear, edit, 

etc. 

# of application or object 

points (or others proposed) 

# server tables, # client tables, 

# states, # entities, attributes, 

etc 

Transform, access, modify, 

instantiate, generate, etc. 

# of web components Applets, agents, guards, etc. Create, schedule, dispatch, 

etc. 

# of xml, sgml, html and 

query lines 

Lines including links to data 

attributes 

Create, call, browse, link, 

traversal, etc. 

# of graphic files Templates, pictures, images, 

etc. 

Apply, align, import, export, 

insert, etc. 

# of scripts (visual language, 

audio, motion, etc.) 

Macros, containers, etc Create, store, edit, distribute, 

serialize, generate, etc. 

Figure 12: Web-Based Size Predictors (Reifer, 2000)
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When attempting to calculate the web-based size predictors for the fictional project, some issues 

become apparent:  how do you count the number of COTS components and how do you count 

the operators?  The entire application is being created using ‘off the shelf’ components.  Would 

you count the application, a template, a workflow, or a workflow graphic as component?  After 

clarifying the operand definitions, there are still some predictors that are not available because 

the low-code development platform hides the mechanics from the user.  In some instances, the 

operators are unknown.  Therefore, it is impossible to accurately apply Halstead’s model to the 

fictional project.  Figure 13, Fictional Project Web-Based Size Predictors,  shows the 

unsuccessful attempt to apply Halstead’s model.  The effort estimation is stopped with the 

adjusted function point calculation of 97. 

Fictional Web-Based Size Predictors 
Web Object Predictors Operands Operators 

# of building blocks At least 5 Create, apply, call, dispatch, 

interface, terminate, etc 

# of COTS components At least 30 Transform, access, bind, 

generate, interface, etc. 

# of multi-media files 0 0 

# of application or object 

points (or others proposed) 

At least 2 Unsure. 

# of web components Unsure Create, schedule, dispatch, 

etc. 

# of xml, sgml, html and 

query lines 

Unsure Create, call, browse, link, 

traversal, etc. 

# of graphic files 0 Apply, align, import, export, 

insert, etc. 

# of scripts (visual language, 

audio, motion, etc.) 

Unsure Create, store, edit, distribute, 

serialize, generate, etc. 

Figure 13:  Fictional Project Web-Based Size Predictors
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3.6  Work Break-Down Structure Implementation 

 Although work break-down structure is often seen as a technique used by project managers, this 

expert judgement method is commonly used to answer:   “How long will this take to complete?” 

(McConnell 2006),(Spyrosktenas 2013).  The project is decomposed into smaller pieces and effort 

estimations are assigned to each level.  The weakness and strength of the method is the reliance on 

expert estimation.  In low-code development platforms, the availability of historical projects for 

comparison may be small.  Experts may be non-existent.  When neither of these items are available, 

task effort assignments are decided based on the developers’ past experiences.  

When applying the work break-down methodology using personal experience to assign 

estimates, the effort total is 2.25 person months.  Figure 14, Work Break-down Implementation for 

Fictional Project contains the detailed deconstruction of tasks.  The effort total is subjective based 

exclusively on the amount of time assigned each task.  In the future, more accurate estimates can 

be obtained as familiarity with the low-development platform grows, more experts emerge, and 

historical project data is available(McConnell 2006),(Spyrosktenas 2013). 
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Figure 14: Work Break-down Implementation for Fictional Project
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3.7  Analogy and Comparison Implementation 

To implement an effort estimation for the fictional project using the analogy-based technique 

requires historical data from similar projects.  When there are no similar projects, modules or 

activities that are similar to those in the current project can be used as a basis for the estimate 

(McConnell 2006), (Spyrosktenas 2013). 

 The complication with the application of this methodology is the lack of historical data for 

projects using the same low-code development platform.  Like the work break-down structure 

method, the implementation of this estimation methodology will become feasible as use of the 

methodology increases.  Unfortunately, without access to similar projects, an estimation cannot be 

completed for the fictional project using analogy or comparison. 

3.8  Bayesian Approach Implementation 

The Bayesian approach is an expert-opinion methodology.  To implement the Bayesian approach 

successfully, a need exists for at least three experts who have worked on projects similar to the 

hypothetical project.  Without the needed input, it is impossible to create the effort estimation.  for 

historical data exists; therefore, the initial implementation is not feasible.  Similar to the analogy 

and comparison methodology, the use of this technique will be feasible as more users adopt and 

share their experience with low-code development platforms(McConnell 2006). 
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CHAPTER 4. VIABLE SOLUTION FOR LOW-CODE EFFORT ESTIMATION 

To reiterate, low-code platforms expedite application delivery by providing visual tools for the 

quick definition and assembly of forms (Rubens 2014).  Estimating effort for this type of project 

requires a size metric that does not depend on lines of code and is programming language 

independent (Reifer 2000).   

`This research focused on the applicability of some commonly used effort estimation 

techniques to create effort estimate for low-code development platforms.  This research revealed 

the need for more studies concerning low-code development.  More research must be performed 

to better categorize low-code platforms.  Is it low-code or no-code in nature?  Is it an application 

platform running as a service?  Does it integrate with existing technology?  How customizable is 

the platform?  What is the minimum functionality that quantifies the tool as a low-code platform?  

The proposed questions are some topics which should be answered in future projects.  As a 

standard definition is created for ‘low-code platform’, the process of creating a future effort 

estimation model will become more feasible. 

Based on this research, I suggest an effort estimation methodology for low-code 

development projects similar to function point analysis but with emphasis on the following factors 

as web-size predictors:  number of user inputs, number of external connections and their 

complexities, workflow complexity, developer experience with the platform, customizations, and 

platform documentation.  A depiction is seen in Figure 15 below. 



 

Further information on the web-size predictors follows:  

User Inputs:  The number of user input forms and their complexity should be accounted 

for in estimating effort.  Forms created directly from templates are low in complexity.  

Forms with minor customizations such as field name changes or other cosmetic changes 

would be moderate.  Forms with external connections and more in depth designs such as 

repeating tables and external connections would be complex. 

Figure 15: Proposed Low-Code Effort Estimation Method

32 

Low-code 
Effort 

Estimate
User Inputs

External 
Connections

Workflow 
Complexity

Developer 
Experience

Application 
Customizations

Tool 
Documentation



External Connections:  Will the new application connect to a server, a database, or 

integrate with an existing system?  Does the platform contain built in connectors to 

perform these tasks or will the connections need to be manually created?  

Workflow Complexity:  Are the processes followed that produce the desired results 

basic, moderate or complex?  Do the steps require approvals before advancement?  Are 

there parallel sequences that occur?  Are there numerous decision points, rules and\or 

dependencies?  Do the workflows cross to other systems? 

Project Customizations:  Is this new project being created based on a template with 

little or no change?  Or will the creator need to edit workflows to fit organizational 

process?  Will the look and style need modification?  Will the creator need to develop 

new features to match the organization’s specification? 

Experience with the platform:  Is this low-development platform new to the team?  

Have they created projects with the tool in the past?   Will the ‘developers’ need 

additional training on the tool for this project?  Are they well versed with the strengths 

and weaknesses of the platform?  
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Platform documentation:  The accompanying files that explain how to use the low-code 

platform.  Does the documentation exist?  Is it well written and easy to understand?  Are 

there user guides, a knowledge base, online training, or videos?  Is there an existing user 

community to assist with problems? 

Calculation:  To calculate low-code development effort, 

• Tally the number of user inputs, external connections, and workflows.

• Determine the complexity category for each factor.

o When a factor has more than one line item, determine the complexity for

each item.

o If there is only one count, determine the complexity for that factor in its

entirety.

• Apply the appropriate weight for each complexity

• Multiply the count by the weight for each line item to produce the ‘total’.  The

weight for project customization, experience with platform, and platform

documentation is always equal to ‘1’.

• Sum the items in the total column to create the ‘effort total’

There is a direct correlation between the ‘effort total’ and the complexity of the 

application being developed.  As complexity increases, the ‘effort total’ increases.  

See Figure 16 below for an example worksheet which could be used to calculate ‘effort total’. 
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FACTOR COUNT COMPLEXITY WEIGHT TOTAL 

User Inputs 

Low 

Moderate 

Complex 

# of user inputs Low=2 

Moderate=3 

Complex=5 

External Connections 

Database 

Server 

Existing System Integration 

Other 

# of external 

connections 

Database=2 

Server=2 

Existing 

System 

Integration=3 

Other=3 

Workflow Complexity 

Low 

Moderate 

Complex 

# of work flows 
Low=2 

Moderate=3 

Complex=5 

Project Customization 

Low 

Moderate 

Complex 

1 
Low=2 

Moderate=3 

Complex=5 

Experience with Platform 

Extensive 

Moderate 

None 

1 Extensive=1 

Moderate=3 

None=5 

Platform Documentation 

Extensive 

Moderate 

None 

1 
Extensive=1 

Moderate=3 

None=5 

EFFORT TOTAL 
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Figure 16: Low-Code Development Effort Estimation



Implementation and testing of the suggested low-code development effort estimation 

method was outside the scope of this research.  Further research should answer: 

• How does the value created in the ‘effort total’ field translate to time in the real world?

• What improvements could be generated to allow accurate estimation?

• Should gearing factors be introduced to standardize between the low-code development

platforms.

 It is equally important to review the applicability of other models as historical data is 

gathered.  As more data is accumulated, the likelihood of a gearing factor increases.  Ultimately 

the goal exists to be able to confidently answer the question, ‘how long will it take to complete 

this project using a low-code development platform?’  
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CHAPTER 5. CONCLUSIONS 

Low-code platforms make it possible to create and deploy applications in a fraction of the 

amount of time of traditionally developed software by reducing the effort of manual coding.  The 

increase in the usage of low-code platforms combined with the gap in the current body of 

knowledge in estimating project size for this type of development are key motivating factors in 

performing this research.  Project success of future low-code projects will be directly impacted 

by the lack of low-code project estimation methodologies. 

The main purpose of this research was to investigate the historical use of some commonly 

used project size estimation techniques, theoretically apply the techniques to a hypothetical low-

development project, and determine which methods are suitable for use with low-code 

development projects. 

5.1  Research Summary 

The question “how do I measure size?” has not been definitively answered.  Most traditional 

methods continue to use lines of code as the standard measurement.  This is due in part to the 

length of time it has been around, the familiarity in the industry, and the fact that lines of code 

correlates well with functionality and effort.  However, due to the inaccessibility of the source 

code within low-code platform applications, using this sizing metric is difficult.   Another 

drawback is that it can be misleading at a micro-level.  Generally, an efficient programmer can 

write a function in fewer lines than a novice.  In the same way, low-code platforms have 

optimized functionality to be completed in as little code as feasible (Ingold 2103).  As stated 

previously, it may take seconds to drag and drop a template onto a canvas which could equate to 

hundreds of lines of code. 

 



As Reifer stated in his article, Web Development:  Estimating Quick-to-Market Software, 

SLOC is not suitable for early estimation because web projects are design based.  At times, 

function points may not be appropriate because the complexity of the applications.    Although 

CORADMO attempts to address estimation for rapid deployment, it often attempts to solve the 

estimation problem by assigning more personnel to work on projects that are under six months in 

length (Ingold 2013).   

Currently, methodologies that rely on historical data or expert judgement cannot calculate 

effort for low-code platforms due to the lack of historical data and ‘experts’.  As historical data is 

gathered and more experts are created, these tools will prove useful in estimating effort for low-

code platforms.   

The web object method did not provide a complete estimate for this fictional project due 

to the definition of its operands; however, as suggested in the  Future Direction section, if the 

definition of operands and operators was updated to reflect modern programming it could 

provide better results for predicting effort for web application development over function point 

analysis (Di Martino, 2011).   

In conclusion, three of the existing methodologies produced a successful estimation for 

the low-code development project:  COCOMO II, CORADMO and Work Breakdown Structure.  

The estimates ranged from 2.25 person months to a pessimistic estimate of 10.4 person months 

with a standard deviation of 2.93 person months.  The other approaches were unsuccessful due to 

inaccessibility of some parameters to complete the calculations, lack of historical projects for 

comparison and the dearth of experts to provide estimats. 
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